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ABSTRACT 

In light of the industry’s constant need for better computer performance, this project 

aims to choose and evaluate an approach for facing this issue. The targeted category 

of computers is single board computers (e.g. Raspberry Pi). The approach utilized for 

enhancing performance is the use of reconfigurable computing as to execute 

computationally expensive calculations on a runtime custom-tailored hardware. The 

objective of this project is the test of the potential this approach has for increasing 

computers performance through comparing a software implementation of an 

algorithm with an FPGA assisted implementation of the same algorithm. 

The platforms chosen for this project are the Rapsberry Pi and the Parallella P1602 

board with its Zynq SoC for the software implementation and the FPGA assisted 

implementation in that order. The chosen algorithm is Fourier Fast Transform due to 

its part in many DSP applications and its suitability for the project objective. While 

the software solution worked successfully resulting in an asymptotic cost of O(N log 

N); the reconfigurable computing solution couldn’t be completed due to time 

constraints and lack of experience of the student. Future work should complete the 

experiment and add a multicore implementation of the same algorithm to add yet 

another class to the comparison. 
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CHAPTER 1 

INTRODUCTION 

1.1.BACKGROUND 

The impact computers have on humans life and technology is arguably unrivaled by 

any other invention in modern history. Their applications encompass everything from 

nuclear reactors and space stations to smart watches and glasses. As the applications 

evolve, they become greedier in terms of required hardware performance, that drives 

the computer industry to innovate and produce superior computers which in turn 

inspires greedier software and the race continues. One of the most relatable examples 

for the public would be video games; the quality of the games improves rapidly, 

forcing the gamers to upgrade their hardware every few years. 

However, the industry have started running into hardware limitations such as 

transistors’ sizes and the power wall; these limitations point that advancement of the 

hardware will rely on improving computer architectures and organization so that 

better designs emerge using the same hardware resources. Performance itself though 

depends on many parameters such as computation speed, memory access seed, and 

I/O speed, this project focuses on improving the performance in terms of 

computation speed. A plethora of methods to improve the performance were 

invented and implemented in the last few decades; the literature review chapter will 

provide a brief introduction to some of them and highlight the idea which the author 

think has the greatest potential in enhancing computer performance. 

Having chosen a worthy approach, this project attempts to test the appeal of this 

approach. Due to time limitations However, this project will only attempt to proof 

that the chosen concept for performance improvement (reconfigurable computing; 

which, simply put, is adding an FPGA to the microprocessor to increase its 

computational power) has the potential to lead to the development of higher 

performing computers. Development of a computer architecture based on the 

recommendations of this project is left for future work in the area. 
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1.2.PROBLEM STATEMENT 

The hardware limitations are hindering the development of processors computation 

capabilities. This project suggests re-configurable computing as a technologically-

feasible possible approach to enhance the computations speed of the processors and 

shows supporting results. 

1.3.OBJECTIVE AND SCOPE OF STUDY 

The objectives of this project are: 

1- Evaluating the performance of a typical computer. 

2- Evaluating the performance using re-configurable computing. 

The project time is four months; therefore, the scope of the project will be limited 

and will not attempt to actually implement a standalone microarchitecture. The proof 

of concept will be achieved through comparing the performance of pure software 

implementation of algorithms compared to FPGA assisted implementation. 

It is important to stress that this project is not attempting to provide a solution that 

fulfills industry qualifications; it is simply attempting to find a promising approach 

and provide a simple proof of concept to show that further research in this direction 

could potentially help the industry. This conservative aim is due to the project being 

a one man job in a very limited time frame with no prior experience. 
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CHAPTER 2 

LITERATURE REVIEW 

Since the aim of the project is improving computer performance; this chapter starts 

with defining performance and its different measures. After that a general overviews 

provided for several concepts used to maximize the computer performance and they 

are evaluated to pick an approach whose full potential has not been reached and 

which class of computers it might suit.  Following these sections is an overview of 

the Fast Fourier Transform (FFT); the algorithm used in this project to compare the 

performance of re-configurable computing to the performance of a traditional 

computer. 

 

2.1. PERFORMANCE 

As stated in the previous chapters, this project aims to improve computer 

performance. Therefore the first step would be defining performance. The problem 

with defining performance is that it depends on the application as Hennessy and 

Patterson mentioned in [2]. For example when running a sequential program, 

normally the computer that finished the program faster is considered the highest 

performing computer. On the other hand, in a datacenter the server that finishes the 

largest number of tasks is labeled the highest performing server. Those two cases 

introduce two popular performance measures that are usually called Execution Time 

or Response Time, and Throughput or Bandwidth. For a general purpose computer it 

will run tasks where Throughput is more important than execution time and vice 

versa, therefore selecting the right measure of performance is necessary for 

evaluating and enhancing the computer’s performance. Personal computers usually 

emphasize response time over throughput. 

When evaluating execution time, a good approach would be breaking it into several 

factors as shown in [2]. Suitable factors are: the number of instructions in the 

program, the average number of clock cycles required for an instruction (CPI, i.e. 

clock cycles per instruction), and the number of clock cycles per second. Multiplying 

these three factors yields the CPU execution time of the program. It should be noted 
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that, due to the operating system division of resources, this time could differ from the 

actual time it will take for the program to be executed; nevertheless it still provides a 

great insight into the performance [2]. 

𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡

𝑃𝑟𝑜𝑔𝑟𝑎𝑚
∗

𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠

𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛
∗

𝑠𝑒𝑐𝑜𝑛𝑑𝑠

𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒
=  

𝑆𝑒𝑐𝑜𝑛𝑑𝑠

𝑃𝑟𝑜𝑔𝑟𝑎𝑚
 

Until recent years, computers’ performances would raise continuously just by raising 

the clock rate of the processor. This made it easier for the programmers and the 

designers because using the same architecture the performance will improve rapidly 

even if they don’t modify anything else. The results were great and the performance 

doubled every 18 months thanks to rapid improvements in transistors speed and 

numbers [3]. However, raising the clock rate means raising the dissipated power 

which means the clock rate is limited by the amount of heat that could be dissipated 

successfully. The researchers managed to keep increasing the clocking speed by 

lowering the chip voltage the square of which is inversely proportional to the heat 

[2]. In the last decade, this approach reached a dead-end; according to the 

international roadmap for semiconductors in 2005, by 2010 a rate of over 10 GHz 

should have been achieved [3]. Failure in complying with these projections clearly 

shows that this approach reached its limit and raising the clock rates anymore is not 

feasible. Other approaches, which have been proposed and developed throughout the 

age of computer industry, to maximize performance are presented in the next 

sections. The key concept that is currently utilized is parallelization with its different 

levels. Due to the significance of this approach, the next section has been devoted to 

exploring few of its concepts. 

2.2. PARALLELISM 

The first model that comes to mind when imagining a computer running a program is 

a sequence of instructions stored in the memory; the processor fetches an instruction, 

executes it, and then fetches the next instruction. Actual models of sequential 

computing are more sophisticated and efficient than that, thanks to concepts such as 

pipelining, prefetching, multiple instruction issue, out of order execution, and other 

similar techniques [3]. Such techniques are often hidden from the programmer and 

are handled by the architecture; they can be referred to as Instruction Level 

Parallelism (ILP) [2]. Other types of parallelism were developed also to maximize 
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performance such as Data Level Parallelism (e.g. the use of vectors), Thread Level 

Parallelism, and Multiprocessors.  

2.2.1 Instruction Level Parallelism 

This type of parallelism aims to exploit parallelism on the level of instructions; 

therefore, its significance to the design of a novel instruction set is clear.  There are 

two approaches to maximizing the gains of ILP: utilizing the stages required for 

executing an instruction (fetching it, decoding it, using ALU, memory access… etc.) 

and insuring that at any given moment there is an instruction in each step of the 

process, this is called pipelining; the other approach is duplicating the components of 

the processor to run multiple instructions in the same pipeline level at the same time, 

which are called multiple issue processors [2]. 

The concept of pipelining is utilized in our everyday activities; for example, when a 

student in a dorm wakes up in the morning his process could be: taking a shower, 

brushing his teeth, preparing breakfast, ironing his clothes, and finally going to class. 

Now if this student has a roommate, this roommate can use the exact steps but, 

assuming the existence of only one shower and one heater for breakfast, he cannot do 

them at the same time with his roommate. However, instead of waiting for him to 

finish the whole process before starting; he will start it one stage later, that is, when 

the roommate exits the shower he will enter, then when he exits the shower and 

brush his teeth his roommate will be done with the breakfast and he can use the 

heater freely. This example shows that in case of limited resources, there is no need 

for the second student to wait for the first to be fully done; instead, he can begin 

executing as soon as the other student advances in the pipeline. Assuming that an 

instruction progresses through several stages from fetching until the result is written 

in a register, the longer the pipeline is, the more instructions that will be in it 

simultaneously which is referred to as increasing the pipeline depth [2].  

As can be noticed from the previous explanation, pipelining does not speed up the 

execution of individual instructions; instead, it eliminates any unnecessary gap 

between them so that the total number of instructions will be executed faster. In 

technical terms, pipelining increases the instructions throughput. There are few 

hazards that may arise from an improper pipelining. They are generally divided to 

Structural hazards (e.g. an instruction writing to the memory while another one is 
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reading from the same memory), Data hazards (e.g. instruction needs a result that 

hasn’t been obtained yet), and Control hazards (e.g. which instruction to load in the 

pipeline just after fetching a conditional instruction). A good overview for those 

hazards and methods to counter them was provided in [2]. For this project, pipelining 

will be implemented. 

Capitalizing on our previous analogy, if we want to utilize this concept we will build 

a second shower room so that no time is wasted waiting for it to be empty. Multiple 

Issue processors can be divided into dynamic multiple issue processors and static 

multiple issue processors depending on the time at which decisions are made; 

dynamically during runtime, or statically during compiling time; it can also be said 

that the distinction depends on the task division between the compiler and the 

processor. The decisions deal with questions pertaining to how many and which 

instructions should be executed simultaneously (packaging instructions into issue 

slots), and how to handle data and control hazards. Usually, each of the two methods 

embraces the other to achieve better results [2]. Two commonly used names for these 

methods are Very Long Instruction Word (VLIW) for static multiple issue, and 

Superscalars for dynamic issue processors [2].  

An important concept in ILP is Speculation, which is guessing the outcome of an 

instruction to avoid waiting for it to be calculated. An example would be guessing 

the outcome of a conditional branch and loading the instruction that is likely to be 

next. Speculation obviously could be wrong, thus it requires the inclusion of a 

recovery mechanism if the speculated result was wrong [2]. The microarchitecture 

developed in this project should support multiple issuing of instructions; it has not 

been decided whether it will be dynamic or static, further research is required. 

While ILP has been very significant, it is a fact that manufacturers have reduced its 

utilization and reduced their pipelines lengths and relied more on multi-cored 

architectures [2] which will be described later in this chapter. There are several 

reasons for this, one of the most prominent being power efficiency [2]. For cutting 

edge technology, minimizing power consumption has been a growing concern. When 

also factoring the extensive research done by the industry in this field it seems 

unlikely that it still has much to offer. Therefore, this approach was not chosen for 

this project. 
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2.2.2. SIMD 

Parallel hardware can be categorized in terms of instructions streams and data 

streams; an interesting category would be Single Instruction Multiple Data (SIMD) 

organizations which utilizes multiple data streams with a single instruction [2] [4]. 

SIMD requires what is called data-level parallelism (similarly structured data. e.g. 

for loops in arrays) in order to be fully utilized. One of the applications of SIMD 

organizations is their use in multimedia extensions instructions, such as MMX 

instructions in x86 instruction set. As stated in the previous chapter, this is beyond 

the scope of this project. Another application is vector architectures. Vector 

architectures fetch the instructions and store them in special registers that act as a 

pipeline to the ALU; this approach causes in a dramatic reduction in the number of 

instructions required for constructing a loop because a single instruction loads all the 

data into the registers to be processed by the ALU. It can be easily shown that vector 

instructions can run faster than scalar (conventional) instructions [2]. As mentioned 

before, these instructions have been a part of the x86 architecture for quite some 

time. This has two implications, this approach has been and is still being studied and 

researched extensively in technology leading facilities, and it is likely that most of 

what it can offer has been achieved. For these two reasons this approach will not be 

used for this project. 

2.2.3. Hardware Multithreading 

Hardware multithreading is achieved when multiple threads utilize the same 

hardware; in other words, when several independent tasks run on the same processor, 

in contrast to different threads running on different cores (processors) which will be 

covered in the next section. Hardware multithreading exploits thread level 

parallelism. Typically, multithreading is used to hide the latency in executing a 

thread that has been stuck by switching to another thread. This is particularly useful 

with lengthy latencies such as cache misses. Approaches to thread switching are 

normally categorized as fine-grained and coarse-grained. Fine grained 

multithreading switches threads every clock, thus it can hide even the shortest 

latencies since the thread has a few instructions gap to prepare the next instruction. 

The drawback however is that the individual threads slow down since it is delayed 

even if no latency exists. Coarse grained multithreading only switches on lengthy 

stalls; which insures that individual threads are not slowed down. Nevertheless, it 
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does not hide short stalls which may cause the overall execution time to increase [2].  

Multithreading is particularly useful for Graphical Processing Units (GPUs) which 

may run thousands of threads; the sheer number of threads helps hide the longest 

latencies. A type of multithreading is Simultaneous Multithreading (SM) in which a 

multiple issue processor runs several threads concurrently. Experiments have shown 

that SM models perform better than Superscalars and fine-grained multithreading 

models, which is expected since they combine the multiple issue characteristic of the 

former with the latency hiding of the latter [5]. Out of the discussed variants, SM 

offers the best performance. While this approach is intriguing and might deserve 

more research, its complexity is considerably beyond the level of a final year project. 

2.2.4 Multiprocessors. 

The need for multiprocessor architecture arose with the need to solve 

computationally costly problems; they appeared in the form of clusters. However, 

with the increasing demand for stronger personal computers, multiprocessors became 

very popular. These CPUs are called multicore multiprocessors whereas processors 

are called cores. There are two models for multiprocessor architecture depending on 

the memory construction, namely clusters and shared memory models. Clusters use 

separate memories for each processor and uses message passing to communicate and 

synchronize. However, clusters are considered beside the scope of this project. 

Shared memory structures use the same physical address for all processors which 

emphasizes the need for synchronizing by implementing means, such as locking the 

data, so that no two processors try modifying the same data or use an outdated value 

of a variable. [2]Another interesting approach to multiprocessing is General Purpose 

GPU (GPGPU) which utilizes the high level of parallelism in GPU to execute highly 

parallelized algorithms. NVIDIA’s Compute Unified Device Architecture (CUDA) is 

a popular example of this approach. [2]. Out of these approaches, the one that fits the 

project scope the best is the shared memory model. 

Parallel Processing faces many challenges. Fundamentally, in order to harness its full 

potential, the tasks executed by the processors should be distributed perfectly evenly. 

The bottleneck in performance is always the longest sequential code [2]. The main 

hurdle currently faced by parallel computing seems to be the software According to 

[3]. Three reasons are provided for that: the difficulty for programmers to migrate 

from the sequential mindset, understand the parallel models of programming, and 
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implement the rather unfamiliar or difficult concepts of parallel programming (e.g. 

deadlocks, load balancing, scheduling … etc.); the slow rate of development for 

operating systems and compilers compared to the rapid innovations required to 

achieve the desired results; and finding a subjective measure for programming 

languages improvement which has depended on the researchers personal opinions so 

far [3]. The research shown in [6] shows that the difference in performance between 

naïvely-written C/C++ code and well optimized code averages 24X (and reaches 

53X) for a 6-core Intel® Core™ i7 X980 Westmere CPU. These numbers show that 

the software awareness of the parallel programming is currently crucial for 

performance; especially when considering that with utilizing few algorithms and 

advancements, the gap drops to 1.3X [6]. 

Multicore technology is well researched and implemented, the optimization of the 

code also affects the result a few tens of times. Due to these reasons, this option is 

not chosen for this project. 

2.3. RECONFIGURABLE COMPUTING 

Reconfigurable computing refers to the use of FPGAs or other reconfigurable 

devices for computation purposes. It has been reported to achieve a performance 

improvement of 500 times and a power saving of 70% compared to microprocessor 

architectures [7]. However, in the context of this report, this term is used to refer to 

run-time reconfigurable computing; in which the processor employs a reconfigurable 

unit that is configured on run-time depending on the instructions it should execute. 

This approach attempts to merge the concept of microprocessor architectures where 

the same hardware is used for any application and the Application-specific Integrated 

Circuit (ASIC) approach which designs and manufacture an IC specifically tailored 

to deal with the particular task. Microprocessors are simply insufficient for many 

applications, and ASICs are notoriously expensive which is why a configurable 

cheap processor is a very good solution. Reconfigurable computers consist of a 

processor that is used for light tasks and a fabric that is configured to efficiently 

execute the application which makes it more capable of achieving high 

parallelization for example compared to microprocessors. [7].  This section will be 

more detailed because this project will design an architecture based on 

reconfigurable computing. 
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Looking into researches in the area it seems that reconfigurable computing 

architectures typically use a simple, usually RISC, microprocessor and a 

reconfigurable fabric. Looking into the different architectures that utilize 

reconfigurable computing, a classification based on the relation between the standard 

core and the reconfigurable unit; this classification is shown in Figure 1.  Comparing 

the five classes; the fifth case of a processor being embedded in the logic fabric 

provides the highest bandwidth among the alternative. It also adds the possibility of 

using a soft core processor which is a processor that is built entirely in an FPGA [7]. 

Considering the resources available for implementation for an undergraduate project, 

the choice of a soft core processor is likely the most feasible option, it also adds to 

the simplicity of the whole processing unit; this way any user with a suitable FPGA 

will be able to download the whole reconfigurable processing unit. 

In terms of granularity, a classification into fine-grained and coarse-grained 

architectures can be used. Fine-grained systems provide a small-sized logical unit 

that can be highly reconfigured to suit the desired applications; on the other hand, 

Figure 2. 1 Reconfigurable Systems classes. Adapted from [7] 
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coarse-grained systems utilize larger logic blocks [8]. Some architectures, such as the 

one proposed in [9], utilize several Reconfigurable Functional Units (RFUs) and 

VLIW instructions to make use of all of them at the same time. The architecture 

proposed there uses the compiler to determine the RFUs configuration most suitable 

to the 8 simple instructions it merges into a VLIW instruction. This current project 

will investigate the possibility of delegating this task to the hardware level; in other 

words, letting the processor itself decode the suitable configuration based on the 

concatenated instructions. 

While intriguing, the reconfigurable computing approach seems very application 

specific which makes it unsuitable for improving general purpose computing; which 

might explain it not becoming popular. However, this point can be capitalized on by 

employing reconfigurable computing in platforms that are usually used for specific 

applications such as single-board computers; single board computers (e.g. Raspberry 

Pi) can be used for performing special functionality in different projects by utilizing 

common Operating Systems such as Linux and their ability to be stand-alone 

computers that do not require external computers to be programmed (which is the 

case for microcontrollers). Coupling these features with the vast computing potential 

of reconfigurable computing might prove to be the gate to propel reconfigurable 

computing to the public market. From this point of view, this approach is worthy of 

further research and seems to have good potential. 

3.1 FFT: 

Discrete Fourier Transform (DFT) is a very essential technique known to every 

person associated with Digital Signal Processing. Its applications range from filters 

to image processing to multimedia communication services. DFT basically 

transforms a discrete time signal into a discrete frequency signal following Equation 

(2.1). 

 ; 𝑤ℎ𝑒𝑟𝑒 𝑊𝑁𝑗𝑘 = 𝑒−𝑖2𝑁𝜋𝑗𝑘
 

) 
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 DFT however is very expensive computationally and has a complexity of O(N
2
); 

making it highly impractical for transforming long series.  

It was noticed though that DFT can be broken down into a sum of smaller series to 

reduce the amount of multiplications. This algorithm is known as Fast Fourier 

Transform (FFT). The Decimation can be done in Time (DIT) or Decimation in 

Frequency (DIF) leading to vast performance improvements as shown in the 

following figure. 

 

In case of N being a power of 2, the asymptotic cost drops to O(N*log(N)). Such 

major improvement made FFT the typical choice for implementing DFT.  

There are many algorithms for implementing FFT, for the sake of simplicity only the 

most common algorithm, which is the Cooley-Tukey algorithm, is discussed in this 

project. This algorithm can be seen in the next pseudocode: 
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CHAPTER 3 

METHODOLOGY 

This project examines the potential of reconfigurable processing in the single board 

computer class; therefore, the methodology pits this approach against one of the most 

popular single board computer, that is Raspberry Pi The methodology could be 

broken into two section, Raspberry Pi implementation of FFT (software 

implementation) and re-configurable processing implementation of the same function 

(FPGA implementation). 

3.1 SOFTWARE IMPLEMENTAION:  

This implementation uses an arm sequential processor for executing the FFT 

algorithm. The chosen algorithm was radix-2 DIT (Decimation in Time) Cooley-

Tukey FFT Algorithm. Before describing the code though, a quick overview of the 

hardware is appropriate. 

Raspberry Pi is a single board computer that uses an arm microprocessor as its CPU. 

Its small size, computation ability, use of linux, and cheap price made it very 

appealing for engineers and hobbyists alike for numerous application. It runs a 

version of Debian linux called Raspbian and that offers it support for various high 

level languages like python or c++ which is supported through the very popular gcc 

tool chain. Figures 3.1 and 3.2 show the board and its linux.  

Figure 3.1 Raspberry Pi 
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Figure 3.2 Raspbian 

For this project, the code was developed on a windows laptop and copied to the 

raspberry Pi SD card later. Putty, a serial communication terminal, was used to 

connect the computer to the Pi through ssh to enable running the Pi headless. 

The code itself comprises of three main phases; Time series generation, series 

elements re-ordering, and then FFT calculation. Each part will be discussed 

separately. 

The series generation was done through the use of the standard library’s “stdlib.h” 

rand() function. The current time was passed as a seed to the random function 

through srand(), this ensures that successive runs of the code will generate different 

series because the happen at different times thus using different values for the seed of 

the random number generator. While this approach has some shortcomings, it is good 

enough for the purposes of this project and it is very simple to write too. However, 

the timing taken for generating the string should be excluded from the execution time 

of the algorithm since in typical scenarios the numbers will be generated or received 

in another part of the program and then passed to the FFT function. 

The recursive nature of Cooley-Tukey algorithm changes the order of the series 

elements when performing the transform. This happens because the function 

recursively divides the series into two sub-series of odd indexed elements and even 

indexed elements. To counter this rearrangement of elements, a step is performed in 

advance to reorder the elements so that they return to their proper places after the 

execution of the FFT algorithm. The algorithm used for reordering the elements is bit 

reversal algorithm which basically swaps the element number (10000)2 with the 

element number (00001)2 and so on. This simple algorithm leads to the final 
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frequency series being in-order when it is generated in the next step. The reversal 

algorithm takes a number in binary, divides it into two halves, and switches them. 

This process is repeated recursively for until all the bits of the number are swapped. 

Contrary to the previous step, the elements reordering is included in the total time 

consumed by the algorithm. 

The last step is calculating the FFT itself. This step calls the recursive FFT function 

that divides and conquers the time series generating a frequency series in the end. 

The function, whenever called, basically divides the series into two subseries one 

comprising of even indexed numbers {X i ; where i=0,2,4,6,..} and odd indexed 

numbers {X i ; where i=1,3,5,7,..} and calls itself on each of these two subseries until 

the length of the subseries reaches 1; a point in which it simply copies the single 

element of the input subseries into the single element of the output subseries(Note 

that some implementations performs the transform in-place, for the sake of simplicity 

the applied algorithm in this project uses a series for the input and another for the 

output . After the two subseries are calculated, they are combined as typical in divide 

and conquer algorithms. The appropriate twiddle factors (values of 𝑊𝑁𝑗𝑘 = 𝑒−𝑖2𝑁𝜋𝑗𝑘) 

are calculated and multiplied by the elements of the subseries when they are being 

combined. It should be noted that in future work, the twiddle factors should be 

calculated outside the FFT function so that their effect on the execution time of the 

function is eliminated. Especially since many FPGA implementations of FFT use 

tables to store the twiddle factors before even starting the process. 

Finally, the execution time measurement was done through the high resolution clock 

available in the c++ chrono class. While this clock has considerably higher accuracy 

compared to using ctime::clock(); it is defined under the C++ 11 standard that is still 

considered experimental so the effects, if any, of that on the results are unknown to 

the author of this report; nevertheless, the results should be taken with a grain of salt. 

3.2 RECONFIGURABLE SOLUTION: 

This solution was intended to be built on a Zynq System on Chip. Zynq SoCs form a 

line of Xilinx chips each of which comprises of an arm cortex microprocessor 

embedded in an FPGA Fabric thus making it an example of a class e reconfigurable 

system as was shown in figure 2.1. Due to budget limitations, the only available 

Zynq Solutions were the parallella boards. Those boards have a multicore co-

processor called epiphany that is connected to the zynq chip thus making it ideal for 
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testing various approaches such as sequential programming, parallel programming, 

or even reconfigurable computing for executing any algorithm. However, these 

boards have a much smaller community and support compared to alternatives like 

Zedboard or Xilinx Evaluation kits. The delays in receiving the board, lack of 

support from the parallella community, and relatively weak background of the author 

about FPGAs contributed to not managing to execute the task on the board. The 

methodology is mentioned nonetheless for future attempts. 

 

The evaluated algorithm is the same Cooley-Tukey FFT algorithm that was 

mentioned in the previous section with its same three phases. The generation of 

random numbers was to be executed on the cortex processor, because it is not the 

part of the program that we want to evaluate, and the FFT itself is to be implemented 

in the FPGA. The transmission of the series from the core to the logical fabric should 

be very fast thanks to the tight coupling between them since the core is embedded in 

the fabric. The exact same functions as in the previous section are to be used here 

since both run on arm cortex cores. 

After that, the FFT implementation was to be done in an FPGA. Lack of experience 

with fpga lead to the author being unable to write a working synthesizable code from 

Figure 3.3 Parallella 
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scratch. Some open core FFT processors were also tried with no result. Therefore this 

step was not completed successfully and that effectively prevented the confirmation 

or rejection of the null hypothesis of this research which is that reconfigurable 

computing will considerably outperform the software solution. Sadly, further effort is 

required to resolve this issue. 
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3.3 GANTT CHART: 

The following Gantt chart shows the timeline for the project, the last deadline was 

not met leading to the project not being finished on time.  

 

 

Figure 3.4 FYP Gantt chart 
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CHAPTER 4  

RESULTS AND DISCUSSION 

Since this project is composed of two parts, a software solution and a reconfigurable 

one, the results for both parts will be discussed separately.  

4.1 SOFTWARE SOLUTION: 

The methodology mentioned in the previous sections was executed for different 

series lengths. The following table shows the average number of clocks for each 

number. It should be noted that the times vary with each execution due to how the 

processor works, the differences are likely attributed to the effect of the operating 

system and the processor running background processes concurrently with the code. 

Series Length (N) Number of clocks required Time (ms) 

128 770  

256 1100  

512 1700  

1024 3400  

2048 7800  

4096 18000  

8192 43000  

16384 104800  

32768 243500  

 

In order to visualize the data easier, it has been plotted in Figure4.1 as can be seen in 

the next page. Figure 4.2 plots a O(N*log(N)) function, and the symmetry between 

the two plots indicates that this algorithm has that complexity, exactly as expected 

from the literature review. 
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Figure 4.1 

 

Figure 4.2 

 

RECONFIGURABLE COMPUTING: 

As mentioned in the methodology chapter, this part has not been finish until the 

writing of this dissertation. Therefore there are no results to discuss here. 

Nevertheless, the results of the first part indicates huge potential improvement in this 

part. The software solution had a response of O(N*logN) despite running the code 
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sequentially. This level of complexity resulted from running the divide and conquer 

code sequentially but in the case of reconfigurable solution many of these events will 

run concurrently leading to enormous minimization of the required number of clocks. 

Considering the highly parallel nature of the algorithm, it is even possible to 

outperform any parallel processor. Future work could try comparing the performance 

of the reconfigurable system with that of the epiphany co-processor on Parallella 

board, an experiment that might show that reconfigurable computing can outperform 

the trendy multicore options. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 

The industry is reaching the physical limits of silicon; further improvements in clock 

speed are not likely; therefore, alternatives approaches should be utilized in order to 

keep the computers evolving. 

This project envisions a bright future for fine-grained reconfigurable single board 

computers. It used the very popular FFT algorithm to benchmark both a software 

solution running on the most popular single board computer (Raspberry Pi), and a 

reconfigurable computing solution that makes use of the Zynq SOC. The software 

solution ran the code successfully and produced results consistent with the potential 

of the algorithm as far as sequential processing is concerned, i.e. O(N log N). 

However, due to time limitations, lack of experience, and lack of online support, the 

reconfigurable solution was not materialized successfully.  

Future work is needed to complete this experiment. Another recommendation is 

testing reconfigurable computing against parallel computing, possibly by running the 

same algorithm on the epiphany multicore coprocessor of the Parallella board. 
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APPENDICES 

APPENDIX A : C CODE: 

 #include<stdio.h> 

#include <stdlib.h> 

#include <math.h> 

#include<time.h> 

#include<iostream> 

#include <chrono> 

using namespace std; 

using namespace std::chrono; 

#define FFT_SIZE 4096 

#define M_PI  3.14159265358979323846 

//#define FREQ 10 

void swap (double &a, double &b) 

{ 

    double t=a; 

    a=b; 

    b=t; 

} 

unsigned char reverse(unsigned char b) { 

   b = (b & 0xF0) >> 4 | (b & 0x0F) << 4; 

   b = (b & 0xCC) >> 2 | (b & 0x33) << 2; 

   b = (b & 0xAA) >> 1 | (b & 0x55) << 1; 
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   return b; 

} 

void four1(double* data, unsigned long nn) 

{ 

    unsigned long n, mmax, m, j, istep, i; 

    double wtemp, wr, wpr, wpi, wi, theta; 

    double tempr, tempi; 

 

    // reverse-binary reindexing 

    n = nn<<1; 

    j=1; 

    for (i=1; i<nn; i+=2) { 

/*        if (j>i) { 

            swap(data[j-1], data[i-1]); 

            swap(data[j], data[i]); 

        } 

        m = nn; 

        while (m>=2 && j>m) { 

            j -= m; 

            m >>= 1; 

        } 

        j += m;*/ 
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    j=reverse(i); 

    swap(data[j-1], data[i-1]); 

    swap(data[j], data[i]); 

 

    } 

 

    // here begins the Danielson-Lanczos section 

    mmax=2; 

    while (n>mmax) { 

        istep = mmax<<1; 

        theta = -(2*M_PI/mmax); 

        wtemp = sin(0.5*theta); 

        wpr = -2.0*wtemp*wtemp; 

        wpi = sin(theta); 

        wr = 1.0; 

        wi = 0.0; 

        for (m=1; m < mmax; m += 2) { 

            for (i=m; i <= n; i += istep) { 

                j=i+mmax; 

 

                tempr = wr*data[j-1] - wi*data[j]; 

                tempi = wr * data[j] + wi*data[j-1]; 
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                data[j-1] = data[i-1] - tempr; 

                data[j] = data[i] - tempi; 

                data[i-1] += tempr; 

                data[i] += tempi; 

            } 

            wtemp=wr; 

            wr += wr*wpr - wi*wpi; 

            wi += wi*wpr + wtemp*wpi; 

        } 

        mmax=istep; 

    } 

} 

 

 

int main() 

{ 

    double data[FFT_SIZE*2]; 

    double factor = sqrt(3.0 / 2.0); 

 

    for(int i=0;i<FFT_SIZE*2;i++) 

    { 

        data[i]=(rand() * 2.0 * factor / RAND_MAX - factor); 

    } 
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    for(int i=0;i<FFT_SIZE*2;i+=2) 

    { 

   //     printf("%i:   %f+i%f\n",i/2,data[i],data[i+1]); 

    } 

    //    clock_t tStart = clock(); 

 

   high_resolution_clock::time_point t1 = high_resolution_clock::now(); 

 

    four1(data,FFT_SIZE); 

    high_resolution_clock::time_point t2 = high_resolution_clock::now(); 

 

    auto duration = std::chrono::duration_cast<std::chrono::microseconds>( t2 - t1 

).count(); 

cout<<duration; 

    //printf("\n%i\n",tStart); 

/* 

for (int i=0;i<324353;i++){ 

    int j,k; 

    j=i; 

    k=j; 

}*/ 

//    clock_t tend = clock()-tStart; 
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  //   printf("\n%i: %i \n",tStart,tend); 

 /*   for(int i=0;i<FFT_SIZE*2;i+=2) 

    { 

//        printf("%i:   %f+i%f\n",i/2,data[i],data[i+1]); 

    }*/ 

 

     //      printf("\n%d: %d \n",tStart,tend); 

//printf("\nTime elapsed: %.2f\n",1.0*(tend-tStart)/CLOCKS_PER_SEC); 

//printf("hhhhhhhhhhh"); 

 

    return 0; 

} 


