Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, dissertation, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.

Automated Classification System for HEp-2 Cell Patterns

Nor Shaharim, Nur Ashiqin (2015) Automated Classification System for HEp-2 Cell Patterns. IRC, Universiti Teknologi PETRONAS. (Unpublished)

[img] PDF
Download (1543Kb)

Abstract

Human Epithelial Type-2 (HEp-2) cells are essential in diagnosing autoimmune diseases. Indirect immunofluorescence (IIF) imaging is a fundamental technique for detecting antinuclear antibodies in HEp-2 cells. The four main patterns of HEp-2 cells that are being identified are nucleolar, homogeneous, speckled and centromere. The most commonly used method to classify the patterns is manual evaluation. This method is prone to human error. This paper will propose an automated method of classifying HEp-2 cells patterns. The first stage is image enhancement using Histogram equalization contrast adjustment and Wiener Filter. The second stage uses Sobel Filter and Mean Filter for segmentation. The third stage feature extraction based on shape properties data extraction. The last stage uses classification based on different properties data abstracted. The results obtained are more than 90% for nucleolar and centromere and about 70% for homogenous and speckled. For future work, another feature extraction method need to be introduced to increase the accuracy of the classification result. The method suggested is to analyze and obtain the data based on the texture of the image.

Item Type: Final Year Project
Academic Subject : Academic Department - Electrical And Electronics - Pervasisve Systems - Digital Electronics - Design
Subject: T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Engineering > Electrical and Electronic
Depositing User: Ahmad Suhairi Mohamed Lazim
Date Deposited: 09 May 2016 11:37
Last Modified: 25 Jan 2017 09:35
URI: http://utpedia.utp.edu.my/id/eprint/16518

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...