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ABSTRACT 

As the application of chemical industry and oil and gas industry, fluid flow in the pipeline 

is governed by Navier-Stokes equations. Darcy’s law is to express the fluid flow behaves 

in the porous medium. As the oil and gas industry interested on the heavy oil, the study 

focus on the heavy oil behaves in between permeable beds. The combination of Navier-

Stokes and Darcy explain the behavior of heavy oil in between permeable beds. Pressure 

is assumed to vary exponentially with respect to time. Bingham fluid was deduced for 

velocity field between beds and between rigid walls, shear stress and mass flow rate for 

lower zones, upper zones and plug flow region. Findings have shown that permeable beds 

increases the velocity of the fluid flow compared to the rigid wall condition. It also found 

out low σ increases the fractional increase drastically after σ<6.  
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NOMENCLATURE 

𝑥, 𝑦 :   Cartesian co-ordinates 

𝑡  :   Time 

𝑈 :   Velocity field in the plug flow region 

𝑢1, 𝑢2 :   Velocity components in x-direction in zones I and II respectively 

𝑘1, 𝑘2 :   Permeabilities of the lower and upper beds 

𝜎1, 𝜎2 :   Dimensionless parameters 
ℎ

√𝑘1
,

ℎ

√𝑘2
 

𝜎𝑥𝑦 :   Shear stress 

𝑢𝐵1, 𝑢𝐵2 :   Slip velocities at the lower and upper beds 

𝑄1, 𝑄2 :   Darcy’s velocities 

𝑝  :   Pressure 

𝛼  :   Slip parameter 

𝜎0 :   Yield stress 

𝜎1 :   Shear stress at lower bed 

ℎ  :   Width of the channel 

𝑐  :   Constant 

𝑅𝑒 :   
𝜌𝑐ℎ2

𝜇
, Reynold number 

( )∗ :   Dimensionless quantity 

𝜇  :   Viscosity coefficient 

𝜌  :   Density 

𝜀  :   Porosity 

𝛼0 :   Non-Newtonian parameter 
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CHAPTER 1  

 INTRODUCTION 

1.1 Background  

 

The analysis of Non-Newtonian fluids flow has been a popular area of research since 

several years ago. In order to understand the fluid flow in between permeable beds, several 

studies have been carried out. Bingham fluid flow is investigated bounded by permeable 

beds with different permeability under unsteady flow. Bingham fluid has often 

representing viscous fluid’s behavior[2] and therefore these flows finds applications in 

chemical engineering and oil industry. As the nature of geological formed by layering, 

there is higher permeability in the x direction. For any exploration or production well 

nearby, fluid tend to flow in x direction due to the pressure difference. Hence, the high 

viscous fluid such as heavy oil will tend to move horizontally.  

 

1.2 Problem Statement  

 

The heavy oil in the reservoir is always be assumed as non-Newtonian fluid such as 

Bingham fluid. The other fluids such as drilling mud, cement, foam which are used in oil 

and gas industry are interrelated with the non-Newtonian fluid model. Therefore, the study 

focus more on Bingham fluid flow between permeable beds for better understanding on 

the heavy oil flow. 
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1.3 Objectives  

 The objectives of this study are defined as following:  

 To formulate Bingham’s unsteady flow in zone 1, zone 2 and plug flow region 

 To formulate Bingham’s fluid with equal permeability between two permeable 

beds, between two rigid walls, shear stress and mass flow rate 

 To identify the velocity profiles under different σ 

 

1.4 Scope of Study  

This study investigates Bingham  fluid in various velocity profile, shear stress and 

fractional mass flow rate under unsteady flow which bounded by permeable beds with 

different permeabilities. Under various assumptions, flow is assumed as incompressible, 

horizontal direction and driven by Pexp(ct) between homogeneous beds. Through Matlab 

programming, velocity profiles will show how the fluid flow and behaves. Upon 

validating the result, several studies will be compared for the result. 
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CHAPTER 2 

LITERATURE REVIEW AND THEORY 

Many scientists have been researching on the Newtonian fluid and non-Newtonian fluid 

flow in the porous media. It is necessary to understand the fluid flow in porous media, but 

it is more crucial to know that geology is usually in heterogeneous formation. Therefore, 

in this chapter, review and findings made by previous researchers, the different fluid flows 

between permeable beds and porous media. 

 

2.1 Review of Previous Studies 

 

It is crucial as a fundamental engineering application for understanding non-

Newtonian fluid behaves in permeable beds[3]. Bingham fluid and power law fluid were 

studied widely by various literature until now. Wu [3] studied how Bingham fluid’s 

displace and move in porous media. Slightly compressible Bingham fluid is discussed and 

new well-test-analysis method is developed.  

Pascal [2] showed transient flow in porous medium by power law fluids. Poollen 

[1] mentioned that when injecting power-law type of fluid into a reservoir, the viscosity 

of the power-law fluid will decreases as rate of shear or flow rate increases. Poollen[1] 

formulate equations for stady-state linear, transient behavior results from a finite 

difference model of a radial system, and transient behavior results from a field test. 

Vajravelu [4] investigated study of two immisicible conducting fluids between 

permeable beds with hydromagnetic unsteady flow. Results in the form of velocity 

distributions in the porous regions and mass flow rate are obtained. 

Malathy [7] studied the pulsating flow of a hydromagnetic fluid between two 

permeable beds. Channel from the lower permeable bed is injected with fluids and sucked 

out at the upper permeable bed with the same velocity. Velocity field and volume flux are 

obtained as result. 
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Two immiscible conducting fluids under hydromagnetic unsteady flow between 

two permeable beds was studied with different permeabilities by Vajravelu[4]. Through a 

porous medium between permeable beds, hydromagnetic fluid flow is investigated by 

Prasad[8]. He exhibited different parameters and showed the velocity field and volume 

flux under graphical method. 

 

2.2 Bingham fluid 

 

Among the non-Newtonian fluid’s model, Bingham fluid is one of them. Under an amount 

of force where beyond the yield stress, Bingham fluid’s flow rate will increase 

proportional with shear stress. Mathematical expression of this model is 
y

ui
xy




  0 . 

Having viscosity coefficient  , and the yield shear stress 0  as parameters which 

characterize Bingham fluid. If the shear stress is lower than yield stress, these fluids act 

as rigid solids. 
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CHAPTER 3 

METHODOLOGY 

 

3.1 Formulation of the Problem 

The flow region between two permeable beds is divided in three zones with unsteady flow 

of Bingham  fluid. Zone I is bounded by 0y  and 
1yy  , plug flow region is divided 

by 
1yy   and 

2yy  , and zone II is covered by 
2yy   and hy  . In zones I and II, 

0 xy . In plug flow region, 0 xy . Zone I and II are ruled by Navier-Stokes 

equations. Darcy’s law expresses the flow behavior in between permeable beds.[5] 

The pressure is assumed to vary exponentially with respect to time. 

 

 

Upper Permeable Bed 

Lower Permeable Bed 

y = h 

y = y2 

y = y1 

y = 0 

Zone II 

Zone I 

Plug Flow Region 

y 

z 

x 

Figure 1 Physical Model 
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In order to derive the basic equations, some assumptions are made as follow : 

1. The flow is unsteady and incompressible. 

2. The flow is in x-direction. 

3. All the physical quantities except the pressure are functions of y and t only.    

The velocity is given by (𝑢(𝑦, 𝑡), 0,0) 

4. The body forces are negligible. 

5. Homogeneous lower and upper beds has constant permeabilities 𝑘1 and 𝑘2 

respectively. 

6. The flow is driven by Pexp(ct) which is a common time-dependent pressure 

gradient. 

 

Flow Between Permeable Beds 

 Basic Equations : 

 
yx

p

t

u xyi













 
  where i = 1,2 (3.1) 

where 

 0 













y

ui
xy  (3.2) 

(+sign for zone-I and –sign for zone-II) 

 

Boundary condition : 

 )(, iBi

i

i
Bii Qu

ky

u
uu 







 (3.3) 

 
 

at ,0y where 2,1i (+ sign for 1i , - sign for 2i ) 
 

 
 

(Beavers and Joseph (1967) slip condition) 

 
 

1 xy  at 0y  
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Flow in the Permeable Beds 

 Basic Equations : 

 i

i

i Q
kx

P

t

Q 














 (i = 1,2) (3.4) 

 

𝑖 = 1 corresponds to lower permeable bed 

𝑖 = 2 corresponds to upper permeable bed 

3.2 Non-Dimensionalization of the Flow Quantities 

It is convenient to introduce the following non-dimensional quantities: 

;

;;

;;

;;

;;

*

2

0*

02

*

*

2

*

**

**

av

Bi

Bi

avav

xy

xy

av

i

i

av

av

av

i

i

u

u
u

uu

u

Q
Q

u

P
P

h

y
y

h

x
x

h

tu
t

u

u
u






















 

The asterisk (*) are neglected after dimensionless quantities are used in (3.1) – (3.4). 

The non dimensional form of (3.1) – (3.4) are 

 
yx

P

t

u xyi













 
 (3.5) 

 0
Re

1
 






y

ui
xy  (3.6) 

 i
ii

i

Q
x

P

t

Q

Re

1
2












 (3.7) 

 

 

 iBii
i

Bii Qu
y

u
uu 




 ,  at y=0,1 

(3.8) 
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Based on assumption (6), we take 

 t

ii eyvtyu
2

)(),(    

 

 

tPe
x

p 2



 

 

 
 

t

BiBi evu
2  

 

 
 

t

Qii evQ
2  

 

 
 

t

xyxy e
2   

 

 
 

te
2

00

   
 

 

The basic equations and boundary conditions above form as following: 

Zone I 

 Pv
dy

vd
 1

2

2

1

2

Re

1
   (4.1) 

and 

 

0

1

Re

1
 

dy

dv
xy  (4.2) 

 
 

1 xy  at 0y  
(4.3) 

and 

 

 111
1

11 , QBB vv
dy

dv
vv    at 0y  

(4.4) 

   

Plug Flow Region 

In this region, we defined velocity by 0 xy  for 
21 yyy   
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Zone II 

 Pv
dy

vd
 2

2

2

2

2

Re

1
  )2,1( i  (4.5) 

 

 

0
2

Re

1
 

dy

dv
xy

 (4.6) 

 
 

Vv 2
 at 

2yy   
 

(4.7) 

and 

 

 222
2

22 , QBB vv
dy

dv
vv    at 1y  

(4.8) 

 

Flow in the Permeable Beds 

 



22 Re

Re

i

Qi

P
v


  )2,1( i  (4.9) 

 

3.3 Solution of the Problem 

Zone I 

From (4.1) with boundary condition of (4.3) and (4.4), we get  

 

 

2

Re

2

Re

11


 P
ececv yy     

(5.1) 

   

where  
21

1

01
1

22

11Re

2

Re



 P
vc Q 











   

 

 

 
 

21

1

01
2

22

11Re

2

Re



 P
vc Q 











   

   

Use (5.1) in (4.2), shear stress is expressed as 

 
 

  0

Re

2

Re

1     yy

xy ececM  
(5.2) 
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Velocity in Zone I can be expressed as 

 

 

 
2

01

211 Resinh
Re

Recosh










P
yy

P
vv B 











  

(5.3) 

   

where slip velocity 
1Bv  is given by 

 

 

 
1

1

01

1

Re
QB vv 







 (5.4) 

   

Plug Flow Region 

Use Vv  at
1yy   in (5.3), velocity in plug flow region as 

 

 

 
21

01

121 Resinh
Re

Recosh










P
yy

P
vV B 











  

(5.5) 

   

Zone II  

From (4.5), with boundary conditions (4.7) and (4.8), velocity in Zone II as  

 

  
)1(Resinh

)(Resinh)()1(Resinh)1(Resinh

2

2

22

2

2

2

2
y

yyPvyPyPV
v B









 

(5.6) 

where slip velocity 
2Bv  is given by 

 

)1(RecoshRe)1(Resinh

Re)1(RecoshRe)1(ResinhRe

2

2

22

2222

2

2
yy

PyPyvV
v

Q

B









 

(5.7) 

 

 

 

 

 

 

 

3.4 Shear Stress 
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Plug flow region is not being affected by shear stress at the boundaries. At Zone I and 

Zone II, fluid is affected by shear stress as fluid constantly contact with solid which is the 

permeable beds. Therefore, determining y1 and y2 can find out the height of fluid affected 

by shear stress 

 

Shear stress in Zone I is given by  

 

 

0
1

Re

1
 

dy

dv
xy

 
 

(4.2) 

 

then it is being substituted by the differential of (5.3) 

 

 

00121 cosh)(sinh
1

 







 MyMyM

M
vBxy  

(6.1) 

 

where the boundary of Zone I 

 
 

0 xy  at 
1yy   

 

(6.2) 

 

For (6.2) in (6.1),  

 

 


















)Re(

)(Re
1tanh

Re

1

01

2

11

2

1

011

1




 QvP
y  

(6.3) 

 

 

 

 

 

 

 

Shear stress in Zone II is given by  
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0
2

Re

1
 

dy

dv
xy

 

  

(4.6) 

 

then it is being substituted by the differential of (5.6) 

 

  
0

2

2

22

22

)1(Resinh

)(RecoshRe)()1(RecoshRe

Re

1





 














y

yyPvyVP B
xy

 

 

(6.4) 

 

where the boundary of Zone II 
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As 
1 and 

2  tend to infinity, equation (6.3) and (6.6) becomes 
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3.5 Mass Flow Rate 
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The mass flow rate G of the Bingham fluid flow between permeable beds is given by  
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Mass flow rate cG of the Bingham fluid flow between rigid walls as equation (7.4) as 
1

and 
2  tend to infinity. 
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where  
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The fractional increase in mass flow rate is given by  
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3.6  Deductions of Two Different Situations 
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 3.6.1 Bingham Fluid Between Two Permeable Beds of Equal Permeability 

For 
1k =

2k = k , (then   21
), velocity is expressed as 
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where slip condition of lower velocity 
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where slip condition of upper velocity 
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 3.6.2 Bingham Fluid Flow Between Two Rigid Walls 
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For 
1k &

2k tend to zero, (then  21  ), velocity is expressed as 
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CHAPTER 4 
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RESULT AND DISCUSSION 

Bingham model was chosen for derivation and understanding how unsteady fluid flow 

move between permeable beds over time. The derivation was derived from basic equations 

of Navier Stokes and Darcy law, velocity equations, shear stress, mass flow rate until 

different conditions applied. Matlab coding was created for the graphical of velocity 

profiles. It is attached as Appendix 4. 

For the Bingham fluid flow between two permeable beds, velocity profiles are drawn in 

Figure (2-10). With the various value of τ₀, α and σ, different shapes of velocity graph can 

be seen in Figure (2-10). For a fixed σ, the velocity of the flow grows larger with the 

increment of y initially from lower permeable bed and take a constant value in the plug 

flow region. After the plug flow region, the velocity decreases with the continue of 

increment in y until the upper permeable bed. Therefore, the velocity is maximum in the 

plug flow region. 

For a fixed y, the velocity of the curves decreases with the increasing of σ, and it reaches 

to a minimum when the σ becomes infinity. As the σ increases, the gap between velocity 

curves becomes smaller which indicates the effect of the σ toward velocity reduces.  

For τ₀ increases from 0.1 to 0.3, for example, in Figure (2-4), the velocity reduces.  

As the α increases, the width of plug flow region reduces. It indicates the α has a direct 

effect on the Zone I and Zone II which influenced by the shear stress. 

Comparing the velocity curves between the two conditions of permeable beds and rigid 

walls, we found out that the effect of permeable beds is to increases the velocity in the 

channel. 
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10 15 20 

10 15 20 

Figure 2 V against Y with τ₀=0.1,α=0.5 and different σ                      

Figure 3 V against Y with τ₀=0.2,α=0.5 and different σ                      
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10 15 20 

10 15 20 

 

Figure 5 V against Y with τ₀=0.3,α=0.5 and different σ                      

Figure 4 V against Y with τ₀=0.1,α=0.78 and different σ                      
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10 15 20 

10 15 20 

Figure 6 V against Y with τ₀=0.2,α=0.78 and different σ                      

Figure 7 V against Y with τ₀=0.3,α=0.78 and different σ                      
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10 15 20 

10 15 20 

Figure 9 V against Y with τ₀=0.1,α=1.45 and different σ                      

Figure 8 V against Y with τ₀=0.2,α=1.45 and different σ                      
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In Figure (11),(12) and (13), those are graphs plotted for the variation of fractional 

increase in mass flow rate for different τ₀ and α. For the fixed α, fractional increases 

decreases with the increment of σ. For fixed τ₀, and σ, it decreases with the increment of 

α. For fixed α and σ, the fractional increases increases with the increment of τ₀.  

 

10 15 20 

α=0.5 

α=0.78 

α=1.45 

Figure 10 V against Y with τ₀=0.3,α=1.45 and different σ                      

Figure 11 Fractional increase in mass flow rate with τ₀=0.1, and different α                      
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α=0.5 

α=0.78 

α=1.45 

α=0.5 

α=0.78 

α=1.45 

Figure 12 Fractional increase in mass flow rate with τ₀=0.2, and different α                      

Figure 13 Fractional increase in mass flow rate with τ₀=0.3, and different α                      
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CHAPTER 5 

CONCLUSION & RECOMMENDATIONS 

5.1 Conclusion 

In the nutshell, this project studies hows the behavior of the velocity profile for the three 

regions, zone I, II and plug flow region and fractional increase in mass flow rate of with 

the variation of τ₀, α and σ parameters. The steps of derivation for the Bingham fluid 

between permeable beds is shown in the Chapter 3.  Furthermore, Figure (2-10) have 

shown that permeable beds increases the velocity of the fluid flow compared to the rigid 

wall condition. Figure (11-13) have resulted low σ increases the fractional increase 

drastically after σ<6.  

5.2 Recommendations 

This study was entirely assumed the flow in x-direction, which limited the idea of natural 

behavior of the fluid flow in all direction. Futher study of 3D of the fluid flow should be 

carried out as fluid will flow upward as the pressure decreases. Other type of fluid flow 

between permeable beds such as power law and Herschel Bulkley should be studied for 

different situations. Different scenario of the fluid flow should be investigated for a better 

understanding of heavy oil behave in complex geology.  
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APPENDICES 

Appendix 1: Project Key Milestones  

Project Key Milestones Date 

FYP 1 Project topic selection 16th Jan 2015 

 Literature Review 23th Jan– 10th Feb 2015 

 Derivation of Past Papers 25th Feb – 30th Mar 2015 

 Matlab Simulation 1st Apr – 17th Apr 2015 

FYP 2 Derivation of Bingham Fluid Model 18th Jul – 30th Jun 2015 

 Matlab Simulation 1st Jul – 31st Jul 2015 

 Simulation Result Collection and Analysis 20th  Jul– 31st Jul 2015 
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Appendix 2: Project Timeline - Gantt Chart 
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Appendix 3: Matlab Coding 

1) Matlab coding: Velocity graph 

clear all; 

tao1=1; 

A=1.45;             %alpha 

S=10;               %sigma 

tao0=0.3;           %change these value for another graph 

L=2;                %lamda(constant) 

P=10;               %pressure 

E=0.2;              %porosity 

Re=1;               %Reynold number 

 

vq1=(P*E*Re)/(L^2*Re+S^2*E); 

vq2=vq1; 

x1=(L*sqrt(Re)*A*S*(tao1-tao0))/(P*A*S-L^2*vq1*A*S-L^2*Re*(tao1-tao0)); 

y1=(1/(L*sqrt(Re)))*atanh(x1); 

vb1=(Re*(tao1-tao0)/(A*S))+vq1; 

 

V=(vb1-(P/L^2))*(cosh(L*sqrt(Re)*y1))+((sqrt(Re)*(tao1-tao0)/L))*sinh(L*sqrt(Re)*y1)+(P/L^2); 

 

x2=sqrt(A^2*S^2*(P-(L^2*vq2))^2-((A^2*S^2)-(L^2*Re))*(P-(L^2*V))^2); 

y2=1-((1/(L*sqrt(Re)))*log((A*S*(P-L^2*vq2)+x2)/((P-L^2*V)*(A*S+L*sqrt(Re))))); 

vb2=(L^2*sqrt(Re)*V+L*A*S*vq2*sinh(L*sqrt(Re)*(1-y2))+sqrt(Re)*P*cosh(L*sqrt(Re)*(1-y2))... 

    -(sqrt(Re)*P))/(L*A*S*sinh(L*sqrt(Re)*(1-y2))+L^2*sqrt(Re)*cosh(L*sqrt(Re)*(1-y2))); 

 

for y=0:0.001:1 

if (0<=y)&&(y<=y1) 

    V=(vb1-P/L^2)*cosh(L*sqrt(Re)*y)+(sqrt(Re)*(tao1-tao0)/L)*sinh(L*sqrt(Re)*y)+P/L^2; 

elseif (y1<=y)&&(y<=y2) 



30 
 

    V=(vb1-P/L^2)*cosh(L*sqrt(Re)*y1)+(sqrt(Re)*(tao1-tao0)/L)*sinh(L*sqrt(Re)*y1)+P/L^2; 

else  

    V=(1/(L^2*sinh(L*sqrt(Re)*(1-y2))))*((L^2*V-P)*sinh(L*sqrt(Re)*(1-y))... 

        +P*sinh(L*sqrt(Re)*(1-y2))+(L^2*vb2-P)*sinh(L*sqrt(Re)*(y-y2))); 

end 

plot(V,y,'b') 

xlabel('V') % x-axis label 

ylabel('Y') % y-axis label 

hold on 

end 
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2) Matlab coding for fractional increase in mass flow rate 

clear all; 

clc 

 

tao1=1; 

tao0=0.1;           %change these value for another graph                

A=1.45;             %alpha 

E=0.2;              %porosity 

L=2;                %sigma 

P=10;               %pressure 

Re=1;               %Reynold number  

 

for S=2:0.01:20 

vq1=(P*E*Re)/(L^2*Re+S^2*E); 

vq2=vq1; 

 

x1=(L*sqrt(Re)*A*S*(tao1-tao0))/(P*A*S-L^2*vq1*A*S-L^2*Re*(tao1-tao0)); 

y1=(1/(L*sqrt(Re)))*atanh(x1); 

vb1=(Re*(tao1-tao0)/(A*S))+vq1; 

 

V=(vb1-(P/L^2))*(cosh(L*sqrt(Re)*y1))+((sqrt(Re)*(tao1-tao0)/L))*sinh(L*sqrt(Re)*y1)+(P/L^2); 

 

x2=sqrt((A^2*S^2*(P-L^2*vq1)^2)-((A^2*S^2-L^2*Re)*(P-L^2*V)^2)); 

y2=1-((1/(L*sqrt(Re)))*log((A*S*(P-L^2*vq1)+x2)/((P-L^2*V)*(A*S+L*sqrt(Re))))); 

vb2=(L^2*sqrt(Re)*V+L*A*S*vq1*sinh(L*sqrt(Re)*(1-y2))... 

    +sqrt(Re)*P*cosh(L*sqrt(Re)*(1-y2))-(sqrt(Re)*P))/(L*A*S*sinh(L*sqrt(Re)*(1-y2))... 

    +(L^2*sqrt(Re)*cosh(L*sqrt(Re)*(1-y2)))); 

 

y3=(1/(L*sqrt(Re)))*atanh(L*sqrt(Re)*(tao1-tao0)/P); 
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V1=(P/L^2)*(1-cosh(L*sqrt(Re)*y3))+(sqrt(Re)*(tao1-tao0)/L)*sinh(L^sqrt(Re)*y3); 

 

y4=1-(1/(L*sqrt(Re)))*log((P+sqrt(P^2-(P-L^2*V1)^2))/(P-L^2*V1)); 

 

 

G=(vb1-P/L^2)*(sinh(L^sqrt(Re)*y1)/(L*sqrt(Re))+(y2-y1)*cosh(L*sqrt(Re)*y1))... 

    +((tao1-tao0)/L^2)*(L*sqrt(Re)*(y2-y1)*sinh(L*sqrt(Re)*y1)+cosh(L*sqrt(Re)*y1)-1)... 

    +((L^2*V+L^2*vb2-2*P)*(cosh(L*sqrt(Re)*(1-y2))-1))/(L^3*sqrt(Re)*sinh(L*sqrt(Re)*(1-

y2)))+P/L^2; 

 

Gc=(P/L^2)*(1-(sinh(L*sqrt(Re)*y3)/(L*sqrt(Re)))-(y4-y3)*cosh(L*sqrt(Re)*y3))... 

    +((tao1-tao0)/L^2)*((L*sqrt(Re)*(y4-y3)*sinh(L*sqrt(Re)*y3))+cosh(L*sqrt(Re)*y3)-1)... 

    +((L*sqrt(Re)*(tao1-tao0)*sinh(L*sqrt(Re)*y3)... 

    -P*cosh(L*sqrt(Re)*y3)-P)*(cosh(L*sqrt(Re)*(1-y4))-1))/(L^3*sqrt(Re)*sinh(L*sqrt(Re)*(1-

y4))); 

 

phi=(G-Gc)/Gc; 

plot(S,phi,'b') 

set (gca,'FontName','Symbol') 

xlabel('s') % x-axis label 

ylabel('F') % y-axis label 

hold on 

 

end 

 

 


