
! "!

 

 

TWITTER-CONTROLLED MICROCONTROLLER   

SYSTEM FOR HOME AUTOMATION 
 

 

 

By 

 

MUHAMMAD GADDAFI BIN RUSLI 

 

 

 

  

Dissertation submitted in partial fulfillment  

of the requirements of the  

Bachelor of Engineering (Hons)  

(Electrical & Electronics Engineering) 

 

DECEMBER 2010 

 

 

 

 

 

 

 

 

Universiti Teknologi Petronas 
Bandar Seri Iskandar 
31750 Tronoh 
Perak Darul Ridzuan 



! ""!

CERTIFICATION OF APPROVAL  

 

TWITTER-CONTROLLED MICROCONTROLLER  

SYSTEM FOR HOME AUTOMATION 

 

 

by  

Muhammad Gaddafi bin Rusli 

 

 

A project dissertation submitted to the 
Electrical & Electronics Engineering Programme 

Universiti Teknologi PETRONAS 
in partial fulfilment of the requirement for the 

Bachelor of Engineering (Hons)  
(Electrical & Electronics Engineering) 

 

 

 

 

 

Approved: 

 

 

__________________________ 

Dr Mohd Zuki bin Yusoff 
Project Supervisor 

 

UNIVERSITI TEKNOLOGI PETRONAS 

TRONOH, PERAK 

December 2010 

 



! """!

CERTIFICATION OF ORIGINALITY 

 

 

This is to certify that I am responsible for the work submitted in this project, that the 

original work is my own except as specified in the references and acknowledgements, 

and that the original work contained herein have not been undertaken or done by 

unspecified sources or persons. 

 

 

 

 

__________________________ 

Muhammad Gaddafi bin Rusli 

 

 

 

 

 

 

 

 

 

 

 



! "#!

ACKNOWLEDGEMENT  

 

Given this opportunity, I would like to acknowledge those who have been 

helping me, either directly or indirectly, in continue working on the project – starting 

from exploration, to the development phase and until the completion phase of this 

Final Year Project in Universiti Teknologi PETRONAS. 

 First of all, I would like to express my gratitude to God for giving me the 

strength and health throughout my years of study in this university, that allows me to 

gain enough theoretical knowledge and practical skill sets as an electronics engineer, 

to be applied into this particular project or other project in the coming years. 

I would like to thank Dr Mohd Zuki bin Yusof, my supervisor for this project 

for the past two semesters. Dr Zuki has been giving me moral and mental support 

since the first day I proposed the idea of this project to him, in early 2010. His 

understanding and confidence on my capabilities and passion towards the idea has 

given me the flexibility and spiritual advantages that I needed in conducting the 

project from start to finish.  

Besides, I also like to thank all the lab technicians in the Electrical and 

Electronics Engineering department for their assistants in helping me to obtain some 

of the tools and resources needed during the development stage. The same gratitude 

goes to my colleagues in the university for the support and interest in this small 

project. Your interest in this project has boosted my confidence and expands my 

capabilities in exploring further into the project. 

 

 

 

 

 

 



! #!

RECOGNITIONS 

 

As of the time of this writing, Twitter-controlled microcontroller System for Home 

Automation project has obtained the following achievements: 

 

(1) Grade 4.00 in Final Year Project 1 – among top projects in Electrical 

and Electronic Engineering department (June 2010) 

(2) Chosen among the Top 10 project for Electrex (October 2010) 

(3) Received Silver Medal in EE Category during the 26th edition of 

Engineering Design Exhibition (October 2010) 

 

 

 

 

 

 

 

 

 

 

 

 

 

!



! #"!

ABSTRACT 

 

Twitter-controlled microcontroller system for home automation is a system 

that can be used to control certain part of a residential house via the Internet or mobile 

devices. It aims to illustrate the ability of a web application to be integrated in a real 

world application – which is represented by home automation in this particular 

project. This project is significance in a sense that it can improve the lifestyle of the 

targeted group in having an alternative control over their premise without the physical 

presence in that particular premise. It is implemented by making use of the existing 

platform available in the Twitter infrastructure and wide audience, as a unique means 

of transmitting information and instruction. This instruction is then fetched by the 

system and is propagated through the system via several processes and flows. The 

project involves software development on host computer, hardware interfacing 

between host computer and custom device, wireless communication and transmission; 

and the end part on the devices automation. The final outcome of this project is a fully 

working prototype that can demonstrate the home automation capabilities via several 

mediums. It is hoped that this project will benefit various kind of users especially 

those who have a busy lifestyle and have the need to control their house when they 

are on the move, or anyone who would like to have an alternative ways of automating 

some devices in their houses. 

 

 

 

 

 

 

 

 



! #""!

TABLE OF CONTENTS 

 

CERTIFICATION OF APPROVAL ....................................................................... ii 

CERTIFICATION OF ORIGINALITY ................................................................ iii 

ACKNOWLEDGEMENT ........................................................................................ iv 

RECOGNITIONS ...................................................................................................... v 

ABSTRACT ............................................................................................................... vi 

TABLE OF CONTENTS ........................................................................................ vii 

LIST OF TABLES .................................................................................................... xi 

LIST OF FIGURES ................................................................................................. xii 

ABBREVIATIONS AND NOMENCLATURES ................................................. xiii 

 

CHAPTER 1:  INTRODUCTION ............................................................................. 1 

  1.1 Background .............................................................................. 1 

1.2 Problem Statement ................................................................... 2 

1.3 Project Objectives .................................................................... 3 

1.4 Scope of study .......................................................................... 3 

1.5 Report Organization ................................................................. 4 

 

CHAPTER 2: LITERATURE REVIEW ................................................................. 5 

2.1 Twitter Application Programming Interface ............................ 5 

2.2 Microcontroller Programming .................................................. 6 

2.3 Real-life Twitter Applications .................................................. 7 



! #"""!

2.4 USB-based Devices .................................................................. 8 

2.5 Home Automation Technologies ............................................. 8 

 

CHAPTER 3: METHODOLOGY ............................................................................ 9 

  3.1 Project Development Components ........................................... 9 

  3.2 Project Development Stages ................................................... 11 

  3.3 Web-based Interface ............................................................... 13 

   3.3.1 Introduction ................................................................ 13 

   3.3.2 Twitter API and OAuth authentication ...................... 14 

   3.3.3 Overcoming duplication limitation ............................ 17 

  3.4 Status Fetcher and XML Parser ............................................. 18 

   3.4.1 Introduction ................................................................ 18 

   3.4.2 XML Parser ................................................................ 18 

  3.5 Custom Windows Application ............................................... 20 

   3.5.1 Introduction ................................................................ 20 

   3.5.2 USB connectivity ........................................................ 20 

   3.5.3 Actions and interval definitions .................................. 21 

   3.5.4 Periodic content fetch from text file ........................... 22 

   3.5.5 User interface development ........................................ 24 

  3.6 USB Device Development: Hardware ................................... 25 

   3.6.1 Introduction ................................................................ 25 

   3.6.2 Transfer types ............................................................. 26 

   3.6.3 Microcontroller circuits ............................................. 27 



! "$!

   3.6.4 Converting to Printed Circuit Board ......................... 30 

 3.7 USB Device Development: Firmware ................................... 30 

3.7.1 Introduction ................................................................ 31 

   3.7.2 Microchip Application Library – USB framework ..... 31 

   3.7.3 Customizing the firmware .......................................... 32 

   3.7.4 I/O configuration ....................................................... 32 

  3.8 Wireless Transmission ........................................................... 35 

3.8.1 Introduction to Xbee wireless module ........................ 35 

   3.8.2 Configuration setting ................................................. 36 

   3.8.3 Wireless module circuits ............................................ 37 

   3.8.4 Transmitter and receiver ............................................ 32 

3.9 Small-scale Home Devices Model ......................................... 41 

3.9.1 Introduction ................................................................ 35 

   3.9.2 Microcontroller circuits ............................................. 36 

   3.9.3 House model ............................................................... 37 

 

CHAPTER 4:  RESULTS AND DISCUSSION ..................................................... 43 

  4.1 Full System Prototype  ........................................................... 43 

  4.2 Usage Requirements ............................................................... 46 

  4.3 Full System Flow and Integration .......................................... 47 

  4.4 USB Device Failure Analysis ................................................ 49 

  4.5 Optimal Fetch and Feed Intervals .......................................... 51 

 



! $!

CHAPTER 5:  CONCLUSION AND RECOMMENDATIONS .......................... 52 

  5.1 Conclusion ............................................................................. 52 

5.2 Recommendations ................................................................. 53 

 

REFERENCES ......................................................................................................... 54 

APPENDIX A:  Source Code for Web-based Interface Application ............. 55 

APPENDIX B:  Screenshots of the Web-based Application ......................... 63 

APPENDIX C:  XML-formatted Status Information ..................................... 66 

APPENDIX D:  Source Code for Status Fetcher and XML Parser ............... 67 

APPENDIX E:  Source Code for Custom Windows Application .................. 68 

APPENDIX F:  USB Device Schematic ........................................................ 78 

APPENDIX G:  USB Connectors and Ports .................................................. 79 

APPENDIX H:  Source Code for USB Device Firmware ............................. 80 

APPENDIX I:  XBee Breakout Boards .......................................................... 88 

APPENDIX J:  XBee Wireless Module Circuit Schematic ........................... 89 

APPENDIX K: Source Code for Wireless Transmission .............................. 90 

APPENDIX L:  Source Code for Home Devices ........................................... 94 

APPENDIX M:  Project Gantt Charts .......................................................... 100 

 

 

 

 



! $"!

LIST OF TABLES 

Table 1 :   Scope of study for the project ..................................................................... 3 

Table 2 :   Programming languages to be used for the web-based interface .............. 13 

Table 3 :   Comparison between USB, Serial and Parallel port ................................. 25 

Table 4 :   USB transfer types  .................................................................................... 26 

Table 5 :   Pins for Type A USB connector ............................................................... 30 

Table 6 :   Actions definitions and representations .................................................... 34 

Table 7 :    Basic specifications of XBee Wireless Module ....................................... 35 

Table 8 :    Four basic pin assignments on XBee Wireless Module ........................... 37 

Table 9 :    Designated character for each transmitter input ...................................... 40 

Table 10 :    Small-scale home device automation representations ........................... 41 

Table 11 :    Usage requirements of the system ......................................................... 46 

Table 12 :    Stress test with 1 second timer interval .................................................. 50 

Table 13 :    Stress test with 10 second timer interval ................................................ 50 

Table 14 :    Stress test with 30 second timer interval ................................................ 50 

 

 

 

 

 

 

 



! $""!

LIST OF FIGURES 

Figure 1 :   Four major components involved in the project ....................................... 9 

Figure 2 :   Overall project development stages ......................................................... 12 

Figure 3 :   Setting page for the custom application registered with Twitter ............. 15 

Figure 4 :   Twitter user will be prompted for external access ................................... 15 

Figure 5 :   XML-formatted information from a single status update ........................ 18 

Figure 6 :   Visual Studio development environment ................................................. 24 

Figure 7 :   Pin-out of PIC18F4550 ............................................................................ 27 

Figure 8 :   Built-in components in PIC 18F4550 ...................................................... 28 

Figure 9 :   Simple circuit schematic for USB device with 18F4550 ........................ 29 

Figure 10 :  Four types of USB connector ................................................................. 29 

Figure 11 :  Configuring XBee using X-CTU ............................................................ 36 

Figure 12 : Illustration of wireless transmission configuration .................................. 37 

Figure 13 : Basic four pins connection from XBee module to microcontroller ......... 38 

Figure 14 : Point-to-point transmission demonstration from A(TX) to B(RX) ......... 40 

Figure 15 : Screenshot of the custom Windows application ...................................... 34 

Figure 16 : USB device constructed on breadboard ................................................... 34 

Figure 17 : USB device constructed on custom PCB ................................................. 34 

Figure 18 : Small-scale model of the house ............................................................... 35 

Figure 19 : Receiver modules and other home devices circuits ................................. 35 

Figure 20: Accessing Twitter using mobile application ............................................. 47 

Figure 21: Accessing Twitter using desktop application ........................................... 47 

 



! "###!

ABBREVIATIONS AND NOMENCLATURES 

API  Application Programming Interface 

CDC  Communications Device Class 

CSS  Cascading Style Sheet 

DC   Direct Current 

DIY  Do-it-yourself 

GUI  Graphical User Interface 

HID  Human Interface Device 

IEEE  Institute of Electrical and Electronics Engineers 

JSON  JavaScript Object Notation 

LCD  Liquid Crystal Display 

LED  Light Emitting Diode 

MSD  Mass Storage Device 

MAL  Microchip Application Library 

PHP  Hypertext Processor 

PCB  Printed Circuit Board 

RF  Radio Frequency 

URL  Universal Resource Locator 

USB  Universal Serial Bus 

xHTML eXtensible HyperText Markup Language 

XML  eXtensible Markup Language 

 



! 1!

 

 

 

CHAPTER 1 

INTRODUCTION 

 

Twitter-controlled microcontroller system for home automation is a project that aims 

to illustrate the ability to integrate Internet application, in this case, Twitter, to be 

connected to a real world application. For this particular project, home automation 

system is chosen to illustrate the end product for a real-world application 

 

1.1 Background  

Twitter, the Internet application chosen for this project, is a real-time status 

update application developed by Obvious Inc based in United States. It is one of the 

fastest rising social networking services on the Internet, with millions of users from 

all over the world and more than 100 million status updates sent out per day. Their 

user ranges from individuals (including various public figures) to huge respectable 

companies (such as Google). 

Twitter is chosen for the project because of its huge user base in many 

countries, including Malaysia. Besides, it is a portable and versatile platform for a 

remote system, as it can be access either via their website, various desktop 

applications for all operating system, mobile applications or even via short messaging 

services (SMS). It has a flexible API (Application Programming Interface), which is 

used to develop various types of applications and services by independent and third 

party developers. In this project, a web-based application will also be developed to 

serve as a simple control panel for a much friendlier approach for the targeted users. 

Looking into this, user can easily set up a free Twitter account and start controlling 

their devices from their computer or mobile phone, at anytime and anywhere in the 

world. 



! 2!

The basic model of the application is: user will send a textual message in the 

range of 140 characters as status update, anytime they wanted to. This status update 

will appear on their timeline is real time. This model will be used in the project, where 

those status updates will be treated as the string of instructions, sent by the user, to the 

microcontroller system. Then, this instructions will be translated into pre-determined 

actions that can be used to control pre-determine devices around the house. Compared 

to other existing home automation technology, this system aims for a much simpler 

setup and more of a DIY basis, thus reducing the installation and maintenance cost in 

the long run.  

  

1.2 Problem Statements 

This project, or rather the end product of the project, can be used by anyone as 

an alternative for a home automation system. However, it does have a specific target 

group.  For people who are always go out for business travel or vacation, it is a huge 

concern to leave their houses unattended for days, especially if they lived on their 

own. Besides, these targeted people normally come from a group of society with busy 

lifestyle and tight schedules.   

Therefore, it is much easier to have an integrated, portable and simple system 

that can be used to control certain parts of their house even if they were away. The 

project aims to provide an alternatively easy way for targeted users to manage and 

control their household devices and applications, via several mediums (Internet and 

mobile access), especially when they were not around the house. 

 

 

 

 

 



! 3!

1.3 Project Objectives 

The main objective of this project is to develop an alternative method for 

home automation system, paired with an Internet service called Twitter as the medium 

for control mechanism. Other than that, another main objective is to illustrate the 

ability of an Internet application to be integrated with real world application, for a 

seamless user experience. The system will allow a user to have a control over home 

devices and equipment, by manually sending a status update to Twitter, or by a click 

of buttons on our custom web-based interface. It is hoped that the final product can be 

used by group of people with tight life schedule, thus helping them in their daily 

chores. 

 

1.4 Scope of Study 

To develop the whole system in place, there are several skill sets required. The 

following table highlights some of the important scope of study: 

Table 1: Scope of study for the project 

Subject Description 

Web-based application 

development 

Involve web interface design, backend process 

(including Twitter API) and other 

Windows software development Development of custom windows application to 

fetch data and interact with USB device.  

USB interfacing and device 

development 

Requires for PC-to-microcontroller interfacing in 

sending the data via USB 

Basic wireless communication Involve transmitting and receiving signal from 

one point to another point. 

Microcontroller programming  

and circuitries  

Requires for all parts of the project that involves 

microcontrollers. 

 



! 4!

For Final Year Project 1 (FYP1), several researches and studies has been 

conducted in order to identify the most suitable methods, technologies and techniques 

to be employed into the project. Evaluations on each of them are performed to choose 

the most suitable ones to be applied in the later stages, especially the development 

phase. Once the suitable methods, technologies and techniques are acquired, further 

exploration on the subjects is performed to start working on the real prototype system. 

In this second stage, the Final Year Project 2 (FYP2), all the outcomes and 

information obtained from FYP1 are gathered and used for the development stage. 

The requirement of the project is set and all the components are developed and tested.  

 

1.5 Report Organization 

 In this report, there are five major chapters included. The first section is all 

about the introduction of the project and the Twitter model itself. The project 

objectives, problem statements and the scope of study were also included. In the 

second chapter, several literature reviews are conducted on the existing technologies 

that are related to the project.  

 In chapter 3, discussions will be conducted in detail on the methods, 

technologies and techniques that has been used throughout the project. It covers four 

major components of the project, which are the Software, USB Device, wireless 

transmission and the small-scale house model. Sample code snippets and figures are 

also included along with the explanations. 

 Chapter 4 highlights the results and discussions of the project - where the final 

product of the project is included. It also covers some basic understanding on how the 

whole system works and what are the requirements needed. The results from test 

cases conducted on the prototype are also included. 

The final part of this report includes the overall conclusion of the report and 

the project itself. Several recommendations for future works are also included for 

further exploration and potential improvements.  

 



! 5!

 

 

 

CHAPTER 2 

LITERATURE REVIEW 

 

Home automation is a common subject anywhere in the world. A lot of companies 

come out with their own version of home automation system that make use of 

different type of medium or communication system, such as wireless remote or 

controller, internet connectivity and other. Currently, there is no home automation 

system that uses Twitter, or any web services for that matter, available in the market. 

In other word, this type of system is not developed on a mass scale to be shipped to 

the end users.  

 

2.1 Twitter Application Programming Interface 

Since the main highlight of this project is the use of Twitter in a non-

conventional way, it is important to know the flexibility of this web application in 

integrating it into a real world application. Twitter Application Programming 

Interface (API) is one of the tools that is going to be used, which actually enables the 

realization of the initial idea for the project. With this API, it is possible to access the 

Twitter infrastructure in a third-party developed application to send data to and to 

fetch data from. 

Twitter API documentation on its developer page provide all the necessary 

information for developers. It is safe to say that with this API, Twitter manage to 

expand the visibility of their service with various applications developed by third 

party developers. One of the API used in the project is user timeline resources.  

 

 



! 6!

From the documentation, it is given that the URL for this resource is 

http://api.twitter.com/version/statuses/user_timeline.format 

where the format can be in json, xml, rss or atom. There are also optional parameters 

that can be used along with above URL, such as user_id, count, page and others. 

Therefore, for example if only the last 3 statuses is needed, the count parameter can 

be included as following: 

http://api.twitter.com/1/statuses/user_timeline.json?count=3 

They are of course more that this when it comes to API programming. Therefore, self-

exploration is conducted in order to start working on an application for the project. 

 

2.2 Microcontroller Programming 

Knowledge in microcontroller programming is inevitable as this project is 

fully microcontroller system based project. They are various types of programming 

languages that can be used to program a microcontroller; such as assembly and C. 

Although high flexibility can be achieved using assembly language, it is not as 

straight forward as C, especially for a new user. There are also different compiler 

applications available in the market - for example the freeware MPLAB IDE by 

Microchip, and commercial CCS C Compiler by CCS. Each compiler has their 

capabilities and built-in syntax and functions. However, this makes a program built in 

one compiler incompatible with the other compilers. 

There are different types of microcontroller as well, depending on the 

capabilities, functionalities and the purposes of the application to be achieved. 

Microchip, for example, is one of microcontroller chip producers, which is quite 

popular among students and hobbyist. In this particular project, all the 

microcontrollers are Microchip based. 

 



! 7!

2.3 Real-life Twitter-based Applications 

There are some similar Twitter-based applications being developed by 

individuals on a DIY (Do It Yourself) project scale. These DIY projects are basically 

done as a proof-of-concept in illustrating the creative use of Twitter, as one of the 

most popular social networking service on the Internet, paired with an easy-to-use and 

flexible programming interface in their API, as explained earlier. 

Basic idea of this project is inspired from free software called TweetMyMac 

(which was originally adapted from TweetMyPC). This software allows user to 

control their computers from the Twitter’s direct messaging feature. Available 

commands include shutdown, grab the screenshot and get the current IP address [1]. 

Some of the commands can be very useful in the case where the computer is being 

stolen. However, it can only control the internal operation of the host computer - not 

any external applications or additional peripherals.  

Botanicalls Twitter is a DIY project that also makes use of Twitter. Basically, 

a small kit of electronic circuit with some sensors is placed inside a vase of a real 

plant. This system will automatically send an update to its pre-defined Twitter 

account when it needs water, thus notifying the owner on his mobile phone [2].  

There are several other small-scale projects conducted by individuals that can 

be relating to the interaction of Twitter with external hardware and peripherals. Most 

of them, however, involve one-way communication between the devices and the host 

computer. 

 

 

 

 

 

 



! 8!

2.4 USB-based Devices 

This project will also incorporate the use of Universal Serial Bus (USB) for 

the data transfer and transmission to/from the computer. Nowadays, USB-based 

peripherals are widely available in the market. The commonly use includes keyboard, 

mouse and mass storage device. There are a lot of USB-based device developments 

resources available, for example in [3].  

 In order to develop an USB-based device, ones need to learn and understand 

the basic knowledge of USB Protocol. This protocol outlines how the data transfer is 

done between the host, the hub, as well as the device itself. Error detection and 

correction, control flow and other important features are important in the protocol. 

Documentations on this protocol can be acquired from the official USB website for 

free to help independent developers around the world in developing their custom 

devices. There are also several open source USB development frameworks available 

for hobbyist and student to ease their device development. In this report, information 

regarding USB device development is included in Section 3.6 and 3.7. 

 

2.5 Home Automation Technologies 

Various kind of home automation technologies are available in the market. 

The differences between these technologies are basically depends on how the home is 

actually controlled, and the level of flexibility among them. Some technologies use 

Internet connectivity, small-range remote control, mobile communication and many 

more. In this project, Internet connectivity, along with mobile communication is used 

as the control mechanism, but they are specifically integrated into the Twitter service. 

This Twitter integration is done with the help of Twitter API, which will be explained 

in later chapter of this report. 

 

  

 

 



! 9!

 

 

 

CHAPTER 3 

METHODOLOGY 

 

The research methodology for this project is mostly done by reading and self-

exploration on various matters related to the technical skills, knowledge and tools 

(resources) required to perform the tasks in completing all the components needed for 

the project. Internet is generally the major resource for the self-exploration. The 

following sub-sections highlight the important components and their development 

process for the project. 

 

3.1 Project Development Components 

This project can be divided into four (4) major components. By having this 

component-based development, it will ease the project management during the 

development stage as the explorations and development for these components can be 

performed in parallel. The major components are illustrated in the following figure.  

 

 

Figure 1: Four major components involved in the project 

 



! 10!

Component 1: Software 

The first component deals with the software part of the project, which mainly 

resides in a host computer. Several applications has been developed for the host 

computer in order to perform the following actions:  

(a) Communicate with Twitter via the Internet   

(b) Parse the Twitter status update from XML format to readable format 

by removing the unnecessary information 

(c) Periodically send the information to external microcontroller via USB 

connectivity. 

The main requirement for the software part is to make sure it is able to continuously 

fetch the latest status updates from Twitter. This is important as to make sure the 

instructions sent by user will propagate through the components in the system as fast 

as it can. Detail discussion on this component is explained in Section 3.3 for Web-

based Interface, Section 3.4 for Status Fetcher and XML Parser; and Section 3.5 for 

Custom Windows Application. 

 

Component 2: PC-to-Microcontroller interface 

A continuous data transfer from PC is needed to transfer the data fetched from 

Twitter (from Component 1) into the microcontroller circuit. Several options to 

achieve this process have been explored during the research stage, including serial 

port, parallel port and Universal Serial Bus (USB). For this particular project, USB 

has been chosen due to some of its advantages. Detail discussion on the options 

comparisons and USB device development is explained in Section 3.6 for Hardware 

and Section 3.7 for Firmware. 

 

 

 

 



! 11!

Component 3: Wireless communication  

A wireless transmission mechanism is required establish the communication 

between the first microcontroller which is connected to the host computer to the 

second microcontroller circuit that will be linked to various home devices and 

applications. Several options for this mechanism have been explored during the 

research stage. However, for this project, XBee Wireless Module has been chosen due 

to its low cost and low power consumption value. Detail discussion regarding the 

options and XBee Wireless Module is provided in Section 3.8. 

 

Component 4: Home devices for automation 

The last component of the project is the various home devices and application 

that can be used to illustrate the home automation ability. It is not a primary part of 

the product itself, but it is added to the project development to be used for 

demonstration purposes. However, the project will only exhibit several simple 

automation possibilities, such as turning the lights ON and OFF, closing and opening 

a small-scaled door, and others pre-defined actions. More explanation regarding this 

component is explained in Section 3.9. 

 

3.2 Project Development Stages 

As explained earlier, the whole project development is divided into four major 

components. This project division is also reflected on the flowchart. The approach is 

to have a parallel development on all the components. It is possible as each of the 

components is independent of each other, particularly during the development stage. 

This can reduce the lag time in the development phase as it can be carried out in 

parallel at the same time. Overall integration of the components is only performed at 

the end of the project for testing and troubleshooting purposes.   

Overall project development stages are illustrated in the form of a flowchart in 

the next figure. 

 



! 12!

!

 

 

Figure 2: Overall project development stages 

"#$%$!&'(!#)&*+&%,-'$!
!

Components integration 

 

Point-to-point 
wireless 

demonstration 

USB devices 
and interface 
development 

XBee module 
exploration 

USB protocol 
exploration 

Wireless 
 

USB Device 
 

Suitable for  
the project? 

Project development divisions 

 

Options evaluation 

 

Technology research 

 

Tools and Equipments Selection 

 

Literature research 
 

Full circuit 
development 

Microcontroller 
integration 

Small-scale 
model 

development 

Define home 
devices 

Automation 
 

Software 
 

Twitter API 
exploration 

 

Custom web-based 
application 

development 
 

Instruction encoder 
and feeder 

 



! 13!

3.3 Web-based Application 

3.3.1 Introduction 

One of the main parts in the software component is a custom web based 

interface. This web-based interface acts as a centralized control panel and one of the 

direct interaction mediums between the user and the system. Some of the features 

included onto the web-based interface are: 

• Secure user authentication for proof of validity using OAuth 

• Ability to send instruction via a click of a button 

• Check recent instructions sent to the system 

This web-based interface is developed from scratch using combination of 

several programming languages as highlighted in the following table, along with 

Twitter API and OAuth technology (will be explained in Section 3.3.2). 

 

Table 2: Programming languages used in web-based application development 

Languages Purpose description 

xHTML and 

CSS 

For the front-end development of the interface that will 

determine the appearance of the website 

PHP 

• For the backend of the website 

• To interface with the Twitter API and libraries in 

order to send and retrieve status updates as 

instructions 

• To interface with the OAuth system for user 

validation. 

JavaScript To handle other eye candy appearance on the website 

 

 

 

 



! 14!

3.3.2 Twitter API and OAuth authentication 

The Application Programming Interface (API) for Twitter is publicly available 

on their API website. Their approach of making the API available for the developers 

has enabled a lot of independent developers to develop various kinds of extended 

applications that incorporate Twitter's services - in web-based environment, 

standalone desktop applications for multiple operating systems (Microsoft Windows, 

Macintosh and Linux) and mobile application (iOS, Android, Symbian and others). 

In this project, we are required to use this API in order to perform the 

following actions: (i) post status update, (ii) fetch status updates, and (iii) display 

current status updates. A simple example of getting a list of status updates from a 

user, using basic PHP is shown below:  

require "twitter.lib.php"; 

$username = "username"; 

$password = "password"; 

$twitter  = new Twitter($username, $password); 

$xml      = $twitter->getPublicTimeline(); 

$twitter_status = new SimpleXMLElement($xml); 

foreach($twitter_status->status as $status){ 

 echo $status->text; } 

 

In this case, username and password of the user need to be supplied in order to 

use the code. This is not favorable as it can cause misused of user credentials by the 

developers. That is the major reason why we decided to use OAuth authentication 

method – where all the login credentials will be handled by Twitter themselves and 

the user will be able to allow or deny any access by custom applications without 

supplying any sensitive information. 

OAuth is an open protocol to allow secure API authorization, which is 

officially adapted by Twitter [4]. By enabling this user authentication method, it will 

increase the security feature of the application, give more control to the user and 

simplify the process of sending instruction to the whole system. 



! 15!

To use OAuth, we have to register this custom application with Twitter in 

order to obtain the API key, consumer key and consumer secret key. This information 

will be used inside the coding. For this particular project, we registered the 

application as MicroAuto, as shown below: 

Figure 3: Setting page for the custom application registered with Twitter 

 

When a user try to make a connection to MicroAuto, they will be prompted by 

Twitter, where they have to choose whether to allow MicroAuto to access their login 

credentials and perform other actions on their Twitter account, or deny the 

connection.  

 

 
Figure 4: Twitter user will be prompted for external access!



! 16!

Some of the important code snippets are shown below with some brief 

explanation.  Compared to previous code snippet, the following snippet doesn’t 

require the username and password to be hard-coded into the coding [5]. This is 

because it is using the OAuth authentication method. The credentials are 

automatically fetched from Twitter when the user allows the access, and once it is 

verified, it will display the user’s name on the screen. 

 

/* Connect to the Twitter API */ 

$to = new TwitterOAuth($consumer_key, $consumer_secret, 

$_SESSION['oauth_access_token'], 

$_SESSION['oauth_access_token_secret']); 

$content = $to-> OAuthRequest 

('https://twitter.com/account/verify_credentials.xml', 

array(), 'GET'); 

$user = simplexml_load_string($content); 

if ($user->screen_name!='') { 

 echo 'Hello, '.$user->screen_name.'</h2>'; 

} else { 

 echo 'An error has occurred.'; 

} 

 

The following code snippet, then, can be used to send an update to twitter to 

be used as instruction to the system. It can either be in a form of textual hyperlinks or 

visual buttons. This will be used as the mechanism to send instructions to the system. 

 

$content = simplexml_load_string($to-> 

OAuthRequest('https://twitter.com/statuses/update.xml', 

array('status' => This is the instruction to be sent'), 

'POST')); 

!

The complete source code files used for this web-based interface, including 

TwitterOAuth library, are included in Appendix A. 



! 17!

3.3.3 Overcoming duplication limitation 

During the development stage, it is discovered that Twitter imposes status 

duplication limitation on the status updates send by the users. It works by checking 

the last 10 status updates to see if the user already posted the same exact phrase. This 

introduced a little problem for the project, as users need to send a pre-defined phrase, 

which will be the same every time, for each action. In order to overcome this 

limitation, we decided to add extra characters at every phrase that are to be send to 

Twitter. These extra characters consist of a forward slash (/) and two random 

characters. For example: 

LIGHTS ON / 34 

These random characters can be anything, either in numerical or alphabetical 

form. This method will help to differentiate each status updates, so Twitter will not 

treat them as duplicates. As for the web-based interface, it will automatically add the 

random characters when users click on the buttons. However, for manual status 

update, user has to manually insert them at the end of each phrase. 

 

3.3.4 User interface design 

The web-based application development is completed with a usable interface 

design that makes it easier for the user to access the application itself. This interface 

will be responsible in guiding the user from the login to the sending of instruction via 

the click of buttons. 

The visual and graphic in the interface is designed using Adobe Fireworks 

CS5, and was converted into a full working web interface using xHTML and CSS 

languages. These languages are mixed together with the backend code, along with the 

Twitter API in order to make it fully functional. The source code files are included in 

Appendix A. Screenshots of the web interface are included in Appendix B. 

 

  

 



! 18!

3.4 Status Fetcher and XML Parser 

 3.4.1 Introduction 

Other than the web-based application, which is hosted on the Internet, another 

web-based page is needed. The objective of this small application is to read the latest 

status from a pre-defined Twitter account, and parse all the unnecessary information 

(such as the status unique ID and the date) to only capture the needed data (status 

text). This one-page status fetcher can be placed in the host computer with local 

server (localhost) enabled.  

 

3.4.2 XML parser 

One of the file formats that are provided by Twitter in their API is XML 

(extensible Markup Language), other that JSON. For this fetcher, we are fetching the 

status using the XML formatted information. The following screenshot shows a 

portion of the XML-formatted information of a single status. Full screenshot can be 

seen in Appendix C. 

 

Figure 5: XML-formatted information from a single status update 



! 19!

The XML parser will be applied onto this XML-formatted page to grab the status text 

(as highlighted with the red box in Figure 5). 

$xml = simplexml_load_file($source); 

$raw = $xml->status->text; 

if (strpos($raw, '/') !== false) { 

 $content = "<span>".$raw."</span>"; 

 $actBeg = strpos($content, '<span>', 0); 

 $actMid = substr($content, $actBeg+6); 

 $actEnd = strpos($actMid, ' /'); 

 $action = substr($post, 0, $actEnd); 

}else{ 

  $action = $raw; 

} 

echo $action; 

file_put_contents("action.txt",$action); 

 

The simplexml_load_file() function is used to read the XML-

formatted file generated by Twitter. Looking at the portion of XML file in Figure 5, it 

is shown that the text is a child of status. Therefore, in order to obtain just the content 

of text, the following snippet is applied: 

$raw->status->text 

!
The rest of the code is basically to get rid of the random characters generated by the 

web-based application, which is needed to overcome the duplication limitation 

imposed by Twitter, as explained in Section 3.3.3. 

Finally, the status text that has been extracted is stored inside a text file called 

action.txt using the file_put_content() function. The file name is arbitrary, 

but need to be defined in the custom Windows application, which will be explained 

later. Full source code for this part is included in Appendix D. 



! 20!

3.5 Custom Windows Application 

 3.5.1 Introduction 

The major part of software component is the development of custom Windows 

application, which is located in the host computer. This custom Windows application 

works in pair with the custom USB device hardware and firmware. Generally, this 

application acts as the intermediate between the data fetched from Twitter via the 

Internet, with the real-life hardware connected via USB. 

The development of this custom application is conducted in Microsoft Visual 

Studio 2008 using C# language and Windows API. This development environment 

allows us to create an application with simple Graphical User Interface (GUI) in a 

much easier way. Furthermore, this custom application doesn’t have any complicated 

features other than reading and sending some simple information via USB. Full 

source code that is used for this custom Windows application development is included 

in Appendix E. 

 

 3.5.2 USB connectivity 

Some important files and source code needed for USB connectivity in this 

custom Windows application are obtained from sample codes provided by Microchip 

in their Microchip Application Library (to be introduced further in Section 3.7.2). 

From Appendix E, the second file (usb_interface.cs) is the necessary file involved in 

USB connectivity with the USB device. It involves USB API interface and assigning 

the Vendor ID (VID) as well as the Product ID (PID). Since registration and payment 

are required to obtain unique VID and PID, the default IDs provided by Microchip in 

their sample file are used for this project.  

This file is also involved in the opening and closing of pipe. In the USB 

protocol, the concept of pipe represents a logical connection between the software on 

the host computer and the endpoint on the USB device. It acts as a communication 

channel that have a set of parameters associated with them such as how much 

bandwidth is allocated to it, what transfer type (Control, Bulk, Isochronous or 

Interrupt) it uses, direction of data flow and maximum packet/buffer sizes. 



! 21!

3.5.3 Actions and interval definitions 

Before the application can be used to send instruction to the USB device, a list 

of actions is pre-defined inside the application. These pre-defined actions will be used 

by the application to determine which instruction is to be transferred to the USB 

device, based on the status updates (or instruction) sent by the user via Twitter.  The 

list is defined on the top portion of MicroAuto.cs (refer to Appendix E). The phrase 

on the right side is defined to be the exact phrase (case sensitive) that is going to be 

used by the user to update their Twitter status. 

//define the read interval - in seconds 

public int second = 1;      

 

// instruction/action definition 

public string action1 = "LCD ON"; 

public string action2 = "LCD OFF"; 

public string action3 = "DOOR OPEN"; 

public string action4 = "DOOR CLOSE"; 

public string action5 = "LIGHTS ON"; 

public string action6 = "LIGHTS OFF"; 

public string action7 = "FAN ON"; 

public string action8 = "FAN OFF"; 

 

. For example, if the user wants to turn ON the lights, the exact phrase of 

LIGHTS ON (along with the extra characters as explained in Section 3.3.3) must be 

sent to Twitter. The application will decode the phrase, and identify that it is belong to 

the string called action5, and the further process will be conducted from there. 

Above code snippet also shows the interval definition, set to 1 second. This 

interval is the interval used by the custom application to read/fetch content from the 

text file (to be further explained in Section 3.5.4). In this case, the application will 

read the content of the text file every 1 second. 

 

 



! 22!

   3.5.4 Periodic content fetch from text file 

One of the features in this custom application is to periodically read the 

content of the text file generated by the status fetcher as explained in Section 3.4. 

This feature is important in order to get the latest instruction send by the user to be 

sent to the USB device, via the USB connectivity function built inside this 

application. It also has to be done periodically every n seconds, where n can be any 

value, to simulate the real-time functionality of the system. 

The following code snippet, taken from the MicroAuto.cs file, shows the part 

where the application read the text file.  

public void Read_file() { 

  StreamReader textFile = new StreamReader("action.txt"); 

  string fileread = textFile.ReadToEnd(); 

     if (fileread == action1) 

     { 

      ReadAction.Text = action1; 

      usb_int.actionSend(1, true); 

     } 

     else if (fileread == action2) 

     { 

      ReadAction.Text = action2; 

      usb_int.actionSend(2, true); 

     .... 

 

The snippet above shows that the application is using the StreamReader() 

function to read the content of text file. The content is stored inside a string called 

fileread. This string is then compared with the pre-defined actions. If the content of 

the text file is comparable, or available inside the pre-defined list, a specific data is 

send to the USB device accordingly. Otherwise, an error message is displayed on the 

application. 



! 23!

 The value “1” or “2” inside the usb_int.actionSend() function is the 

one that being send to the USB device through the pipes for further processing. This 

value will enable the system to differentiate between actions and devices to be 

controlled. 

In order to make the read functionality to work automatically at all time, it has 

to be executed periodically in a small interval of time. A simple timer function is 

created inside the application to handle the interval sequence.  The code snippet 

below is taken from MicroAuto.cs, showing several portion of code required for the 

timer function. 

private System.Windows.Forms.Timer timer1; 

... 

this.timer1.Enabled = true; 

this.timer1.Interval = 1000; 

this.timer1.Tick += new 
System.EventHandler(this.timer1_Tick); 

... 

private void timer1_Tick(object sender, EventArgs e) { 

    if (interval < 1) { 

        interval = second; 

        Read_file(); 

    } else { 

        interval -= 1; 

    } 

    lblSec.Text = interval.ToString() + " seconds"; 

} 
  

The timer works in a second by second basis, as noted by the 1000 integer, 

which represents 1000 milliseconds, which is equal to 1 second. The amount of 

interval is defined earlier along with the action definition (refer to Section 3.5.3). The 

timer1_Tick() functions works by subtracting 1 from the interval value. Once 



! 24!

the interval is equal to zero, it will reset the timer and re-execute the Read_file() 

function to obtain the latest content from that file. By doing this, the system will 

always get the recent actions/instruction sent by users. The value of the timer 

countdown is also displayed on the application. 

 

3.5.5 User interface development 

 The custom application will be running on the host computer at all time. 

Therefore, it is important to come out with a very simple application with simple 

Graphical User Interface (GUI) as not to confuse the user with any complexities. The 

application should also have a small footprint on the host computer’s resources and 

memory allocation. 

 The custom application for this project, called MicroAuto (to complement the 

web-based application), is developed using Microsoft Visual Studio in C# language. It 

is safe to say this development environment allows for a faster and easier approach in 

dealing with GUI. The following figure shows the development environment. 

 

 

Figure 6: Visual Studio development environment 



! 25!

3.6 USB Device Development: Hardware 

 3.6.1 Introduction 

Nowadays, USB is used in almost all external peripherals that need to be 

connected to a computer. Other than being plug-and-play, it is also a fast, bi-

directional, low-cost, dynamically attachable serial interface that is consistent with the 

requirements of the computer platform now and future. It is also a popular option for 

manufacturer being its primary advantages of having the ability to power larger 

circuits and higher connection bandwidth of the connection as explained in [3].  

The following table summarize some of the features comparison between 

USB, Serial and Parallel port [5]. As shown in the table, it is believed that – moving 

forward - USB is the most suitable technology to be used in interfacing the device 

with the host computer. 

 

Table 3: Comparison between USB, Serial and Parallel port 

 USB Serial Parallel 

Industry standard Yes Yes No 

Bandwidth 
12 Mbps 
USB 2.0 – 480Mbps  

115 Kbps 
115 Kbps 
EPP/ECP – 3 Mbps 

Number of 
devices 

127 on a single  
USB bus 

Limited to number 
of ports available 
on the computer 

Limited to number 
of ports available 
on the computer 

Bus Power Up to 500 mA at 5V No No 

Cable Length 
Limit 5m / 16.4ft 3m / 10ft 1.8m / 6ft 

Plug & Play Yes No No 

Hot Swappable Yes No No 
 

A typical USB system consist of the following parts  

a. One host - responsible to deal with the protocol and control the media 

access to the USB bus, for example the host computer. 



! 26!

b. Hub - responsible for detecting an attachment and detachment of devices 

and handling the power management for devices from the bus. 

c. Device - in this project, the microcontroller circuits can be considered as 

the device. It can be self-powered or bus-powered. 

 

3.6.2 Transfer types 

As specified by the USB specifications, there are four transfer types. Brief 

description for each transfer types is included in the following table. It also specifies 

which USB device type (full-speed or low-speed) is supported by each transfer type. 

 

Table 4: USB transfer types 

Transfer type Description 
USB device type support 

Full-speed Low-speed 
 
Isochronous 

Provide transfer method for large amount of 

data up to 1023 bytes. Timely delivered 

ensured but data integrity not ensured. 
!  

 
Bulk 

Provide transfer method for large amount of 

data with ensured data integrity. Delivery 

timeliness is not ensured. 
!  

 
Interrupt Provide transfer for small blocks of data with 

ensured delivery timeliness and data integrity ! ! 
Control Provide transfer for device setup control ! ! 

 

For this particular project, only small blocks of data are to be transmitted via 

the USB connection, therefore the Interrupt transfer type is the most suitable method. 

In addition, it also has more advantages as the delivery timeliness and data integrity 

are ensured.  

  



! 27!

3.6.3 Microcontroller circuit 

During the exploration and research stage of the project, a comparison 

between several microcontroller is conducted in order to choose the most suitable 

microcontroller for the project, especially between the 16F877A and 18F4550 

microcontrollers. Based on the result of that comparison, a decision is made to use the 

18F4550 PIC microcontroller for this particular project. One of the major reasons is 

because of its built-in USB capability that is required to develop a custom USB 

device in a much easier and faster approach.  

 

Figure 7: Pin-out of PIC18F4550 

 

Based on the datasheet provided by Microchip, The PIC18FX455/X550 

device family contains a full-speed and low-speed compatible USB Serial Interface 

Engine (SIE) that allows fast communication between any USB host and the PIC 

microcontroller. To make use of its SIE feature, it can be directly interfaced with the 

USB device, utilizing the internal transceiver. Optionally, external transceiver can 

also be used, but it is not going to be adapted for this project. Other than internal 

transceiver, this microprocessor also has a built-in 3.3V regulator as a power supply 

for the transceiver [7]. 

 



! 28!

Figure below shows some of the important components related to USB device 

developments that are available in PIC 18F4550. As the figure shows, the USB SIE, 

transceiver and the voltage regular are located inside the microprocessor (on the left 

side of the dashed line).  

Figure 8: Built-in USB components in PIC 18F4550 

 

Figure 9 shows the basic schematic for the USB device used in this project. 

Note that the USB socket is connected to Pin 23 (D-) and Pin 24 (D+), which are used 

for the data transfer with the host computer once it is connected. Also note that the 

LEDs connected to PORT D of the microcontroller is arbitrary, as they are only used 

for testing purposes during the development stage.  

 

 It is also shown from the schematic that the USB socket is also the source of 

power supply for the device. Therefore, the device is a passive device, as it does not 

need to have an external dedicated power supply in order to function. This is 

important as it is much favorable by the user and it will reduce the complexity of the 

whole system.  

  

 Full schematic for the USB device along with the wireless transmission 

component (to be explained in Section 3.8) can be seen in Appendix F. 

 



! 29!

 

 

Figure 9: Simple circuit schematic for USB device with 18F4550 

 

There are four major type of USB ports and connectors – namely Type A, Type B, 

Mini-A and Mini-B – as shown in the following figure (refer to Appendix G for more 

comparisons data).   

 

 

 

Figure 10: Four types of USB connector. 

From left: Type A, Type B, Mini-A and Mini-B 

 



! 30!

For this particular project, Type A connector is used, as it is the most common type 

available in most computers and portable devices. The pins and wires (color) for Type 

A USB connector is shown in the following table. 

 Table 5: Pins for Type A USB connector 

Pin Signal Color Description 

1 Vcc Red +5V 

2 D- White Data - 

3 D+ Green Data + 

4 Ground Black Ground 
 

The color property stated in above table is referring to the color of the wire inside a 

typical USB cable. The combination of Red and Black wires is enough to supply a 

sufficient power supply of 5V for the device. 

 

3.6.4 Converting to Printed Circuit Board 

During the development stage of the USB device, a typical breadboard is used 

for the circuitries to enable flexible troubleshooting and expansion. Once the device is 

proven to works after several tests, the prototype is converted to a printed circuit 

board (PCB). The PCB design is done using a specialize software, Eagle Layout 

Editor, by CadSoft. The fabrication process is performed in the laboratory, assisted by 

the lab technician. However, due to facility limitation, only single layer PCB can be 

produced. Plus, the conversion to PCB only reduced the size to half of the original 

size of breadboard prototype. Photo of the completed PCB circuit can be seen in 

Section 4.1. 

 

 

 



! 31!

3.7 USB Device Developments: Firmware 

 3.7.1 Introduction  

The firmware of USB device will be the operating brain of the custom USB 

device hardware. The firmware is programmed into the PIC 18F4550 microcontroller. 

This firmware is responsible for several tasks including establishing communication 

with the host computer, getting data from the host computer, sending data to 

transmitter circuit, and others. 

 

3.7.2 Microchip Application Library – USB Framework 

The development process of this firmware is assisted by the availability of a 

free USB Framework and sample codes provided by Microchip. This framework is a 

part of Microchips Application Library (MAL) - a collection of Microchip firmware 

libraries and demo projects - which is available for free on their website. Other than 

for USB development, this comprehensive application library also includes the 

following libraries: Graphics Library, Memory Disk Drive, TCP/IP Stack, mTouch 

Capacitive Touch Library, and Smart Card Library. By the time of this report is 

written, the latest version of MAL is released on 4th August 2010 (Microchip 

Application Libraries v2010-08-04), which is the exact version that we are using for 

this project. 

This USB framework support USB on 8-bit, 16-bit and 32-but 

microcontrollers. The source files provided in the framework are royalty free, which 

means we can use them without having to pay anything to Microchip. It includes USB 

firmware for the microcontroller as well as a USB device driver for the PC, which 

allows the PC to treat the microcontroller as a USB device. Classes supported include 

HID, CDC, MSD and generic. 

 

 

 



! 32!

3.7.3 Customizing the firmware 

From the framework, several sample codes have been used as the based for 

our USB project. This project comes with several source codes that are vital in 

establishing the connection between the USB device and the host computer. As far 

our purpose is concern, only "#$% of the files require modification in order to achieve 

our desired needs on the firmware. Other than adding additional piece of code for the 

customization, some original piece of code that are not necessary were also removed.  

 

3.7.4 I/O configuration 

In the USB device, the main microcontroller that handling the USB 

connectivity will receive the data via the data lines, which are D- and D+ pins (refer 

to Section 3.6.3). It doesn’t have any other inputs other than via this data line. In the 

I/O configuration, the output has to be defined to set the ports and pins required for 

outputting the data. The following snippet shows some of the configurations. 

 

#define mInitAllLEDs()      LATD &= 0x00; TRISD &= 0x00;

 LATB &= 0x00; TRISB &= 0x00; 

 

#define mLED_A         LATBbits.LATB0 

#define mLED_B         LATBbits.LATB1 

 

#define mLED_1         LATDbits.LATD0 

#define mLED_2         LATDbits.LATD1 

#define mLED_3         LATDbits.LATD2 

#define mLED_4         LATDbits.LATD3 

#define mLED_5         LATDbits.LATD4 

#define mLED_6         LATDbits.LATD5 

#define mLED_7         LATDbits.LATD6 

#define mLED_8         LATDbits.LATD7 

.... 

 



! 33!

The two mLED_A and mLED_B outputs are the two indicator lights used in 

this device to give the indication on the connectivity status based on their blinking 

pattern. The other 8 output pins is configure to send the 8-bit binary number to the 

XBee transmitter circuit based on the instruction received from the host computer.  

As explained in Section 3.5.4, a value is sent by the custom Windows 

application inside the usb_int.actionSend() function, in the form of single 

digit value, to the USB device. This single digit value received by the USB device 

will be translated into the unique 8-bit binary number in the following snippet. 

 

if(dataPacket.led_num == 1) { 

    mLED_1 = 1; mLED_2 = 0; mLED_3 = 0; mLED_4 = 0; 

    mLED_5 = 0; mLED_6 = 0; mLED_7 = 0; mLED_8 = 0; 

    counter = 0x01; 

} else if(dataPacket.led_num == 2) { 

    mLED_1 = 0; mLED_2 = 1; mLED_3 = 0; mLED_4 = 0; 

    mLED_5 = 0; mLED_6 = 0; mLED_7 = 0; mLED_8 = 0; 

    counter = 0x01; 

... 

 

The 8-bit binary number is unique to every instruction sent, and action to be 

performed. As the continuity from the action definition in Section 3.5.3, the binary 

digit is assigned to each action in the following table. 

 

 

 

 

 

 



! 34!

 

Table 6: Actions definitions and representations 

Variable Unique Phrase Unique Value Unique Binary 

Action mapping in 
the custom Windows 

Application 

Phrases to be used 
for Twitter status 

update 

Single digit 
number send to 

USB device 

Output from the 
microcontroller to 
XBee transmitter 

action1 LCD ON 1 00000001 

action2 LCD OFF 2 00000010 

action3 DOOR OPEN 3 00000011 

action4 DOOR CLOSE 4 00000100 

action5 LIGHTS ON 5 00000101 

action6 LIGHTS OFF 6 00000110 

action7 FAN ON 7 00000111 

action8 FAN OFF 8 00001000 
 

 

 

 

 

 

 

 

 

 



! 35!

3.8 Wireless Transmission 

3.8.1 Introduction to XBee wireless module 

In this project, wireless communication is used for data transmission between 

the first microcontroller, which is connected to the host computer, to the second 

microcontroller circuit, which is linked to various home devices and applications. In 

this case, wireless is preferred compared to wired system, as it is less messy and much 

easier to be set up on the user end. 

Based on the research conducted in the earlier stage, XBee Wireless Module 

has been chosen as the means for wireless communication. This module uses IEEE 

802.15.4 networking protocol for fast point-to-multipoint or peer-to-peer networking. 

It can form self-healing mesh networks - great for making a wireless control network 

that spans from one corner of the house to the other, which is adequate for the 

prototype development of this project. The following table provides some basic 

specification of an XBee Wireless Module [8]. 

 

Table 7: Basic specifications of XBee Wireless Module 

Power output 1mW 

Indoor/Urban range Up to 30 m (100 ft) 

Outdoor/RF line-of-sight range: Up to 90 m (300 ft)  

RF data rate 250 Kbps 

Interface data rate Up to 115.2 Kbps 

Operating frequency 2.4 GHz 

Receiver sensitivity -92 dBm 
 

 

 

 

 



! 36!

3.8.2 Configurations setting 

Before using an XBee module in the circuit, the configuration setting can be 

checked in order to see whether it has any issues or not. For that purpose, a simple 

application such as X-CTU can be used. In order to use this application, XBee module 

has to be connected to the host computer – for example via USB cable, using XBee 

Explorer USB board (refer to Appendix I). The following figure shows the 

configuration setting in X-CTU application. 

 

 

Figure 11: Configuring XBee using X-CTU 

 

Note that this procedure is a one-time procedure only. Once the XBee 

functions as required, there is no need to use this method throughout the project 

phase, except for troubleshooting or firmware upgrade. 



! 37!

3.8.3 Wireless modules circuits 

In this project, two XBee modules are required to perform a point-to-point 

transmission. The first one is connected to microcontroller 1 on the host computer 

side, and will act as the transmitter unit. The second module is connected to 

microcontroller 2 on the home devices side, and will act as the receiver unit. This 

scheme is illustrated in the following figure. 

 

!
Figure 12: Illustration of wireless transmission configuration 

 

The important and basic pins assignment of XBee module is shown in the 

following table. These four pins are the minimum requirement for a basic XBee 

connectivity to a PIC microcontroller. Pin 2 (DOUT) and Pin 3 (DIN) are connected 

to the Rx and Tx pin (on the microprocessor) respectively. In fact, these are the only 

pins we are using for this particular project. 

 

Table 8: Four basic pin assignments on XBee Wireless Module 

Pin Name Direction Description 

1 VCC - Power supply 

2 DOUT Output UART Data Out 

3 DIN / CONFIG Input UART Data In 

10 GND - Ground 
 



! 38!

Note that the power supply for the module is 3.3V rather than 5.0V. Therefore, 

XBee Explorer Regulated (refer to Appendix I) is used for each XBee module, with 

built-in voltage regulator to provide the 3.3V power. The following figure shows the 

basic connection between the XBee module and the microcontroller, using only four 

pins detailed before. Full basic circuit schematics for transmitter and receiver are 

provided in Appendix J.   

 

 

Figure 13: Basic four pins connection from XBee module to microcontroller 

 

3.8.4 Transmitter and receiver 

As explained earlier, the two XBee modules are used as a transmitter and a 

receiver. Compared to the other part of this project, the firmware of both transmitter 

and receiver is developed in CCS compiler. Although this compiler is essentially the 

same as MPLAB (using C language), CCS compiler has a much simpler syntax and 

approach for RS232 implementation, which is needed for XBee module.  

For a quick illustration on the wireless communication component in this 

project, snippets from transmitter and receiver are explained below. In the following 

code snippet, which is taken from the transmitter side, if the switch at Pin A0 is 

initiated, it will send a signal “a”. Otherwise, it will send signal “b”. 



! 39!

 while (TRUE) {  

      if (input(PIN_A0)){ 

   printf("a"); //sends signal a 

      } else{ 

   printf("b"); //sends signal b 

      } 

 } 

 

The printf("a") statement here means that the character “a” is printed 

through the RS232 protocol and it allows XBee module to transmit that particular 

character  On the receiver side, if the received signal is the character “a”, it will turn 

on the LED 0. Otherwise, it will turn it off. 

 

 while (TRUE) {  

       if (x=='a'){ 

         output_high(LED_0); 

       } else { 

         output_low(LED_0);        

       } 

 } 

 

Full complete source code files used for the transmitter and receiver module 

are provided in Appendix K. These two source code files are compiled using CCS 

compiler. 

 

The following figure shows a simple point-to-point transmission using the 

code explained earlier. The circuit labeled “A” is the transmitter while the circuit 

labeled “B” is the receiver. Flipping the switch in A trigger the signal transmission, 

and it will be fetched by B. 



! 40!

 

Figure 14: Point-to-point transmission demonstration from A (TX) to B (RX) 

Note that in this particular project, XBee will only be used as a mean of 

transferring data from the first microcontroller to the second microcontroller. No 

processing or complex algorithmic operations will be carried out throughout the 

transmission. 

 

Table 9: Designated character for each transmitter input 

Transmitter Input 
(PORT B) 

Transmitted 
Character 

Receiver Output 
(PORT B) 

00000001 a Pin B0 = 1 

00000010 b Pin B0 = 0 

00000011 c Pin B1 = 1 

00000100 d Pin B1 = 0 

00000101 e Pin B2 = 1 

00000110 f Pin B2 = 0 

00000111 g Pin B3 = 1 

00001000 h Pin B3 = 0 

00001001 i Pin B4 = 1 

00001010 j Pin B4 = 0 



! 41!

3.9 Small-scale Home Devices Model 

3.9.1 Introduction 

The final product out of the project is a fully working prototype that can be 

used to illustrate the working integration between all the major components. For the 

purpose of demonstration, a small-scale house with several ‘home devices’ is 

developed to represent the device automation. These ‘devices’ will be controlled by 

the system. Therefore, some actions need to be pre-defined on how to represent them 

in a small-scale model as to produce a good demonstration for the viewers. Several 

options and approaches that are considered is shown in the following table: 

 

Table 10: Small-scale home device automation representations 

Item Operation Implementation 

Lights Turning them ON and OFF An array of super bright LEDs is 

used as the light source 

Door Opening and closing in sliding 

motion 

A small servo motor is used to 

provide a simple mechanical 

movement 

Fan Turning it ON and OFF A small DC motor with blade is 

used to illustrate the fan 

Television Display message on screen A 16 x 2 characters LCD display is 

used as the display panel to display 

predefined characters/symbols 

 

This initial outline might be expanded further - by adding more operations and 

mechanisms on the small-scale model. By having more example of device automation 

on the house model, it will reflect the efficiency and the real potential of the system. 

 

 



! 42!

3.9.2 Microcontroller circuits 

In order to control the home devices, microcontroller has to be programmed to 

receive the input from the XBee receiver circuit and convert it to real action on the 

devices defined earlier – the lights, fan, door and television.  

Full source code files are included in Appendix M. Note that the source codes 

included in the report are as of this writing – more application is to be added to the 

house model. 

 

3.9.3 House model 

Initially, the model of the house is to be built using Perspex material. 

However, after several re-considerations, it is decided that the model of the house is 

to be built using white foam board. Other than of its look, this material is chosen 

because it is lightweight, easy to handle, robust enough for its purpose, and easy to 

get.  

The dimension of the house model is approximately 38cm x 44cm x 30cm. 

The two walls and floor are built in two layers in order to hide all the wirings and 

circuit under the house. This is to avoid distraction on the viewers so only the 

important part is viewable. Photo of the house model is shown in Figure 18 in Section 

4.1. 

 

 

 

 

 

 

 



! 43!

 

 

 

CHAPTER 4 

RESULTS AND DISCUSSION 

 

After almost one year of duration given for Final Year Project, a working prototype 

has been successfully constructed. This working prototype are able to demonstrate the 

objective of the project – namely to illustrate the ability of Internet application to be 

connected to the real world environment. Based on the several testing phases 

conducted on the prototype, it is safe to say that it is functioning as intended. 

 

4.1 Full System Prototype 

The whole system of the project consists of software and hardware 

components. Therefore, it is not possible to conclude the working prototype of the 

project as a single physical item. Furthermore, it is not safe to say that the fourth 

component of the project, which is the small-scale home devices model, is not exactly 

a part of the real outcome of the project. It is merely a medium of illustration and 

demonstration purposes, except that it is using the receiver circuit, a portion of 

wireless transmission component. Overall, a complete set of working prototype for 

this project consists of: 

i) Web-based application interface (refer Appendix B) 

ii) Custom Windows application 

iii) USB device  

iv) Wireless receiver module 

v) Small-scale house devices model 

 

 The following figures shows some screenshots and photos that are related to 

the working prototype of this project. 



! 44!

 

Figure 15: Screenshot of the custom Windows application 

 

Figure 16: USB device constructed on breadboard 

 

Figure 17: USB device constructed on custom PCB 



! 45!

 

Figure 18: Small-scale model of the house 

 

Figure 19: Receiver modules and other home devices circuits 

 

Note that as of this writing, the USB device constructed on the custom printed circuit 

board (PCB) in Figure 17 is having some stability issue on the wireless transmission 

portion. 

 



! 46!

4.2 Usage Requirements 

In order to use try or use the whole system, there are several requirements that 

has to be met first. The main requirements are: 

 

Table 11: Usage requirements of the system 

No Item Description 

1 Host computer with 

Internet connection 

The host computer has to be ON at all time (unless the 

user decided to turn the system OFF) and must be 

equipped with a reliable Internet connection 

2 Status fetcher and 

XML parser 

This locally hosted web-based page has to be open at all 

time in order to continuously fetching and parsing the 

latest status update from the user’s Twitter account 

3 Custom Windows 

application  

This application has to be running at all time to 

periodically send the instruction to USB device 

4 USB Device  This hardware needs to be connected to the host 

computer at all time to receive latest instruction and to 

transmit it wirelessly. No external power supply 

required. 

5 Receiver and home 

devices 

The receiver and devices must be connected, and can be 

place anywhere within the range, to be controlled by the 

user through the system. 

 

 

 

 

 

 



! 47!

4.3 Full System Flow and Integration 

There are several steps involve in the full system of the working prototype. 

The user triggers the action, and the rest is handled automatically by the system, 

assuming the usage requirements are met (refer Table 11). In this section, a simple 

scenario will be illustrated to help readers in fully understand how the whole system 

work, and how the instruction propagated through the integrated components.!
!
Step 1: Sending Instruction via Twitter!

Twitter is a very accessible and portable to the user. Instruction can be sent at 

anytime and anywhere via several methods that users are familiar with. Assuming an 

instruction to turn ON the lights is sent to Twitter using any of the available mediums.  

 

Figure 20: Accessing Twitter using mobile application 

 

Figure 21: Accessing Twitter using desktop application 



! 48!

Step 2: Fetching status and parsing XML to a text file  

The status fetcher and XML parser will continuously get the latest status 

update from Twitter (refer Section 3.4). Therefore, this web-based page will have to 

be running locally all the time in the host computer. It will read the latest status 

update in XML formatted file, parse the unnecessary information, and store it inside a 

text file. In this case, based on Step 1, the text file will contain the phrase LIGHTS 

ON. 

 

Step 3: Feeding instruction using custom Windows application 

The custom Windows application will continuously read the content of the 

text file (refer Section 3.5.4), produced in Step 2. In this case, the text file will contain 

the phrase “LIGHTS ON”. The application will also translate this phrase based on the 

pre-defined actions (refer Section 3.5.3) and a value of “5” will be fed to the USB 

device via USB connectivity (refer to Table 6 ). 

 

Step 4: Decoding instruction on USB device 

Once the USB device receive the value fed in Step 3, it will decode it and 

translate it to a 8-bit binary number which has been defined inside the firmware. This 

binary number is the output of the first microcontroller. In this case, the value 5 fed 

by the Windows application will, in turn, produce an output 00000101 to PORT D of 

the microcontroller (refer Table 6). 

 

Step 5: Transmitting character from USB device 

The output of the first microcontroller will be the input of the microcontroller 

of the transmitter circuit. This input is fed into the PORT B of the microcontroller. In 

this wireless module, instead of transmitting the binary number, it will be transmitting 

one single unique character, which has been assigned to every binary number (refer to 

Table 6). In this case, the corresponding character that is to be transmitted by XBee - 

based on the previous binary input - is the character “e”. 



! 49!

Step 6: Receiving transmitted characters 

The unique character that has been transmitted by the transmitter on USB 

device will be received on the receiver end. This character will be translated by 

microcontroller on the receiver end, to turn ON or OFF the selected devices, which 

has been connected to the receiver circuit. In this case, the character “e” received 

previously will trigger Pin B2, which in the small-scale house model, is connected to 

the lights – thus turning them ON. 

The six steps above show how the instruction sent by the user via Twitter is 

propagated through the system. Several translating and decoding involve throughout 

the system in order to keep each instruction unique to only one single device. This is 

to avoid any conflicts and issues that might effects other devices.  

 

4.4 USB Device Failure Analysis 

During the testing stage, the USB device exhibits a very small instability 

issues when it is connected to the host computer. This instability is observed on the 

two indicator lights, which supposed to be alternately blinking on normal condition. 

However, the percentage of the issues is very small, and the condition cannot be 

manually reproduced. 

Therefore, a stress test is conducted on the USB device to measure its failure 

rate. This stress test is conducted by leaving the device running for 2 hours. Note that 

the test doesn’t cover the whole system, especially the home devices automation. 

Steps involved in procedures of the test are: 

1. Open custom Windows application on host computer 

2. Connect USB device to host computer 

3. Observe any undesired condition on USB device – especially the 

indicator lights – for a complete 2 hours. 

4. Change the interval time of the custom Windows application 

5. Repeat test for next iterations 

 



! 50!

Table 12: Stress test with 1 second timer interval 

Iteration Duration completed Observation Remarks 

1 2 hours No issues  
The USB device is 
running smoothly 
throughout the test 

2 2 hours No issues 

3 2 hours No issues 
 

Table 13: Stress test with 10 seconds timer interval 

Iteration Duration completed Observation Remarks 

1 2 hours No issues  
The USB device is 
running smoothly 
throughout the test 

2 2 hours No issues 

3 2 hours No issues 
 

Table 14: Stress test with 30 seconds timer interval 

Iteration Duration completed Observation Remarks 

1 2 hours No issues  
The USB device is 
running smoothly 
throughout the test 

2 2 hours No issues 

3 2 hours No issues 
 

 

Table 12 to 14 shows the result of the stress test. Note that the timer interval in the 

application is used as the manipulative variable in this stress test to see if there is any 

effect on the instability of the USB device. Based on the result, all 9 iterations 

produced 100% reliability on the system with the entire test period passed. The USB 

device did not failed any of the 2 hours stress tests iterations. 

 

 

 



! 51!

4.5 Optimal Fetch and Feed Intervals 

In this working prototype, there are two different time interval or timer that is 

used inside the system. The first timer is used inside the status fetcher and XML 

parser, where the latest status update is continuously fetched from Twitter in a 

specified interval. The interval is defined on top of the source file, using header 

refresh method (refer to Appendix D).  

The second timer in used inside the custom Windows application, where it is 

used to periodically read the content of a text file. It is defined on the top part of 

source file MicroAuto.cs (refer Section 3.5.3 and Appendix E). 

These two timers do not necessarily have the same interval value (in seconds), 

as they are independent from each other. They can be set to any value possible, down 

to 0 second. However, finding an optimal value for these interval is important in order 

not to burden the whole system, and at the same time not to compromise on the 

almost real-time experience, as expected by the users. 

 

 

 

 

 

 

 

 

 

 

 



! 52!

 

 

 

CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 

 

Throughout the research and exploration stage of the project, we have looked into 

several approaches and alternatives in order to choose the right methods, techniques 

and technologies for the project. During the development stage, all of the outcomes 

from each component are tested and integrated into one fully working prototype. 

 

5.1  Conclusion 

The approach used in this project - by dividing the whole project into four 

major components - is essential as it allows for parallel development process. Since 

most of them are not really dependent on each other, the development of each 

component can be done separately at the same time. This definitely eases the project 

management as well as speeding up the development processes. At the end of 

development stage, all the components are integrated. 

The outcome of this project – which is mainly the physical prototype – shows 

that the objective and goals of this project has been successfully executed and all the 

requirements have been met. Starting out as a proof-of-concept idea, this project 

manages to illustrate the ability of Internet application/service to be connected to the 

real world environment. Although the project mainly focusing on Twitter to represent 

“the Internet application”, and home automation to represent “real world 

environment”, it is believed that these two variables may be change to other suitable 

options. 

 

 



! 53!

5.2 Recommendations 

This project has a huge potential to be improved further if the right amount of 

time and resources is allocated. Although the current concept is working as intended, 

there are several recommendations that can be considered in order to enhance and 

improve the project to obtain much better outcome in the user point of view.  

1. Consider two-way communication, which enables the home devices to 

update their current status, by the same mean of updating the Twitter 

status or sending a reply/ message to the user. This will allow a better 

interactivity throughout the system. 

 

2. Make a conversion from the custom Windows application to a cross-

platform desktop application – that can be used in any operating 

system - for a seamless user experience. One of the technologies that 

can be explored is Adobe AIR application platform as it is independent 

of the operating system. 

 

3. Skip the web-based page for the status fetcher and XML parser. These 

functionalities should be able to be integrated directly into the custom 

Windows application. With this, it will further reduce the complexity 

and steps required for the data propagation through the system. 

 

4. An advanced enhancement can be done by removing the dependency 

towards the host computer, but develop an embedded device and 

application with Internet capabilities that is connected directly to the 

microcontroller system instead. Open source operating system, or 

Windows Embedded CE can be used as the backbone of the system. 

However extensive knowledge in developing the device drivers for 

these operating systems is required. 

There are a lot more improvement and enhancement that could be included in 

this project. With an increasing number of Internet users, and as the popularity of 

Twitter as a social networking website increases, this project will be proven to be a 

solid idea for an alternative for simpler home automation system. 



! 54!

REFERENCES 

 

[1] TweetMyMac, .[Online]. Available: http://themacbox.co.uk/tweetmymac/ 

[Accessed 18 March 2010] 

[2] Botanicalls, “Botanicalls Twitter DIY” February 2008. [Online]. Available: 

http://www.botanicalls.com/archived_kits/twitter/ [Accessed: 18 March 2010] 

[3] Ruben Posada-Gomez, Jose Jorge Enriquez-Rodriguez, Giner Alor-Hernandez 

and Albino Martinez-Sibaja, “USB bulk transfers between a PC and a PIC 

microcontroller for embedded applications”, Electronics, Robotics and 

Automotive Mechanics Conference, 2008 

[4]  Biz Stone, “What's The Deal with OAuth?”, 22 April 2009. [Online]. 

Available: http://bit.ly/oGZ2f  [Accessed: 18 March 2010]. 

[5] Alison Gianotto, “Writing Your First Twitter Application With OAuth”, 23 

July 2009. [Online]. Available: http://bit.ly/SPgXK [Accessed: 18 March 

2010] 

[5] Total Phase Knowledge Base - Article 10048, “USB vs. Serial and Parallel”. 

[Online]. Available: http://bit.ly/b94jJn [Accessed: 18 March 2010] 

[6] Simon Inns, “Building a PIC18F USB device”, 1 April 2010. [Online]. 

Available: http://bit.ly/aApzbU [Accessed: 23 April 2010] 

[7] Microchip Technology Inc, “PIC18F2455/2550/4455/4550 Data Sheet”, 2009 

[8] Maxstream, “XBeeTM/XBee-PROTM OEM RF Modules Manual”, 2006 

 

 

 

 

 



! 55!

APPENDICES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



! 55!

APPENDIX A 

Source Code for Web-based Interface Application 

These are the essential source codes developed for the project. Other required files by 

third-party developers, such as the library files for OAuth authentication is included in  

the CD-ROM attached. 

File name : index.php 

Description : The main page before the user logged in using their Twitter acount 

<?php 
session_start(); 
include("header.php"); ?> 
 
<div class="front">  
<?php /* Destroy the session if the user is logging out */ 
if ((isset($_GET['logout'])) && ($_GET['logout']=='true')) { 
 echo 'LOGOUT'; 
 session_destroy(); 
    session_unset(); 
} 
 
if ( isset($_SESSION['loggedin']) || 
isset($_SESSION['oauth_access_token'])) { ;?> 
 
 <p>You're logged in<p> 
 <p><a href="callback.php">Go to dashboard!</a></p> 
 <p><a href="index.php?logout=true">Logout</a></p> 
 
<?php 
} else { 
/* Include the config file */ 
require_once('config.php'); 
  
/* include the twitter OAuth library files */ 
require_once('oauth/twitterOAuth.php'); 
require_once('oauth/OAuth.php'); 
 
/* 
Create a new TwitterOAuth object, and then get a request token. The 
request  
token will be used to build the link the user will use to authorize 
the 



! 56!

application.  
 
You should probably use a try/catch here to handle errors gracefully 
*/ 
$to = new TwitterOAuth($consumer_key, $consumer_secret); 
$tok = $to->getRequestToken(); 
 
$request_link = $to->getAuthorizeURL($tok); 
 
/* 
Save tokens for later  - we need these on the callback page to ask 
for the 
access tokens 
*/ 
$_SESSION['oauth_request_token'] = $token = $tok['oauth_token']; 
$_SESSION['oauth_request_token_secret'] = 
$tok['oauth_token_secret']; 
  
echo '<p><a class="login" href="'.$request_link.'">Login via 
Twitter</a>'; 
  
} ;?> 
</div><!end of front> 
<?php include("footer.php"); ?> 

  

!
 

File name : callback.php 

Description : Display panel page where the buttons can be seen once user logged-in 

via the OAuth authentication and received their access token. 

<?php 
session_start(); 
include("header.php"); 
include("actions.php"); 
 
/* Include the config file */ 
require_once('config.php'); 
 
/* include the twitter OAuth library files */ 



! 57!

require_once('oauth/twitterOAuth.php'); 

require_once('oauth/OAuth.php'); 

 

/* check for an auth access token. If there's no auth token set, go 
ahead and fetch one from Twitter, 

* using the API call. */ 

if ((!isset($_SESSION['oauth_access_token'])) || 
($_SESSION['oauth_access_token'])=='') { 

 

 $to = new TwitterOAuth($consumer_key, $consumer_secret, 
$_SESSION['oauth_request_token'], 
$_SESSION['oauth_request_token_secret']); 

 $tok = $to->getAccessToken(); 

 

  /* Save tokens for later  - might be wise to 

        * store the oauth_token and secret in a database, and 

        * only store the oauth_token in a cookie or session for 
security purposes */ 

 $_SESSION['oauth_access_token'] = $token = 
$tok['oauth_token']; 

 $_SESSION['oauth_access_token_secret'] = 
$tok['oauth_token_secret']; 

 

}  

 

/* Connect to the Twitter API */ 

$to = new TwitterOAuth($consumer_key, $consumer_secret, 
$_SESSION['oauth_access_token'], 
$_SESSION['oauth_access_token_secret']); 

$content = $to-
>OAuthRequest('http://api.twitter.com/1/account/verify_credentials.x
ml', array(), 'GET'); 

$user = simplexml_load_string($content); 

 

if ($user->screen_name!='') { 

  $_SESSION['loggedin'] = 1; 

   

  ?> 

  <div class="greetbox"> 

     

  <a href="http://www.twitter.com/<?php echo $user->screen_name 
;?>"><img class="propic" src="<?php echo $user->profile_image_url 
;?>"> </a> 

   

  <div class="greetmid"> 

   <p><strong>Hello,</strong></p> 

   <p><h2><?php echo $user->screen_name ;?></h2></p> 



! 58!

    

 </div> 

  

 <div class="greetout"> 

  

 <p><a class="login" 
href="index.php?logout=true">Logout</a></p> 

 </div> 

  

 <div class="clear"></div> 

  

  

 </div> 

  

<?php //$action_1 = str_replace('+',' ',$action1); ?> 

 <div id="actions">  

  

 <ul> 

 <li><a href="status.php?action=<?php echo $action1 
;?>&placeValuesBeforeTB_=savedValues&TB_iframe=true&height=140&width
=200&modal=true" title="Sending instruction" class="thickbox"><?php 
echo $action1 ;?></a></li> 

 <li><a href="status.php?action=<?php echo $action2 
;?>&placeValuesBeforeTB_=savedValues&TB_iframe=true&height=140&width
=200&modal=true" title="Sending instruction" class="thickbox"><?php 
echo $action2 ;?></a></li> 

 <li><a href="status.php?action=<?php echo $action3 
;?>&placeValuesBeforeTB_=savedValues&TB_iframe=true&height=140&width
=200&modal=true" title="Sending instruction" class="thickbox"><?php 
echo $action3 ;?></a></li> 

 <li><a href="status.php?action=<?php echo $action4 
;?>&placeValuesBeforeTB_=savedValues&TB_iframe=true&height=140&width
=200&modal=true" title="Sending instruction" class="thickbox"><?php 
echo $action4 ;?></a></li> 

 <li><a href="status.php?action=<?php echo $action5 
;?>&placeValuesBeforeTB_=savedValues&TB_iframe=true&height=140&width
=200&modal=true" title="Sending instruction" class="thickbox"><?php 
echo $action5 ;?></a></li> 

 <li><a href="status.php?action=<?php echo $action6 
;?>&placeValuesBeforeTB_=savedValues&TB_iframe=true&height=140&width
=200&modal=true" title="Sending instruction" class="thickbox"><?php 
echo $action6 ;?></a></li> 

 <li><a href="status.php?action=<?php echo $action7 
;?>&placeValuesBeforeTB_=savedValues&TB_iframe=true&height=140&width
=200&modal=true" title="Sending instruction" class="thickbox"><?php 
echo $action7 ;?></a></li> 

 <li><a href="status.php?action=<?php echo $action8 
;?>&placeValuesBeforeTB_=savedValues&TB_iframe=true&height=140&width
=200&modal=true" title="Sending instruction" class="thickbox"><?php 
echo $action8 ;?></a></li> 

 <li><a href="status.php?action=<?php echo $action9 



! 59!

;?>&placeValuesBeforeTB_=savedValues&TB_iframe=true&height=140&width
=200&modal=true" title="Sending instruction" class="thickbox"><?php 
echo $action9 ;?></a></li> 
 <li><a href="status.php?action=<?php echo $action10 
;?>&placeValuesBeforeTB_=savedValues&TB_iframe=true&height=140&width
=200&modal=true" title="Sending instruction" class="thickbox"><?php 
echo $action10 ;?></a></li> 
  </ul> 
 
</div> 
<div id="recent"> 
<h3>Recently sent</h3> 
<?php 
$x = $to-
>OAuthRequest('http://api.twitter.com/1/statuses/user_timeline.xml', 
array("count" => 5), 'GET'); 
$user = simplexml_load_string($x); 
echo '<ul>'; 
foreach($user->status as $status){ 
echo '<li>'.$status->text; 
echo '<br /><small>'.$status->created_at.'</small></li>'; 
} 
echo '</ul>';  
?> 
</div>  
<div class="clear"></div>  
</div>  
<?php  
   
} else { 
 echo 'Oops - an error has occurred.'; 
} 
 
include("footer.php"); 
?> 

 
 
!
!
!
!



! 60!

File name : status.php 

Description : An intermediate page to send status update to Twitter once the user  

clicked on the button.  

<?php session_start();?> 

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> 

<html> 

<head> 

<title>MicroAuto - a Final Year Project</title> 

<style type="text/css"> 

.modalsent{ 

background: lightblue; 

font-family: "Helvetica Neue", Verdana; 

text-align: center; 

font-size: 12px; 

} 

 

p.actionsent{ 

padding: 5px 10px; 

background: #333; 

font-size: 13px; 

color: #fff; 

} 

</style> 

</head> 

 

<body> 

  

<div class="modalsent"> 

 <?php 

/* Include the config file */ 

require_once('config.php'); 

 

/* include the twitter OAuth library files */ 

require_once('oauth/twitterOAuth.php'); 

require_once('oauth/OAuth.php'); 

 

/* check for an auth access token. If there's no auth token set, go 
ahead and fetch one from Twitter, 

* using the API call. */ 

if ((!isset($_SESSION['oauth_access_token'])) || 
($_SESSION['oauth_access_token'])=='') { 

 



! 61!

 $to = new TwitterOAuth($consumer_key, $consumer_secret, 
$_SESSION['oauth_request_token'], 
$_SESSION['oauth_request_token_secret']); 
 $tok = $to->getAccessToken(); 
 
  /* Save tokens for later  - might be wise to 
        * store the oauth_token and secret in a database, and 
        * only store the oauth_token in a cookie or session for 
security purposes */ 
 $_SESSION['oauth_access_token'] = $token = 
$tok['oauth_token']; 
 $_SESSION['oauth_access_token_secret'] = 
$tok['oauth_token_secret']; 
 
}  
 
/* Connect to the Twitter API */ 
$to = new TwitterOAuth($consumer_key, $consumer_secret, 
$_SESSION['oauth_access_token'], 
$_SESSION['oauth_access_token_secret']); 
$content = $to-
>OAuthRequest('https://twitter.com/account/verify_credentials.xml', 
array(), 'GET'); 
$user = simplexml_load_string($content); 
 
if ($user->screen_name!='') { 
  
 $updet=$_GET['action']; 
 $updetrand=$updet." / ".rand(10,99); 
 $content = simplexml_load_string($to-
>OAuthRequest('https://twitter.com/statuses/update.xml', 
array('status' => $updetrand), 'POST')); 
 
  if ($content){ 
  echo "<p>The following action has been sent: </p>"; 
  echo "<p class='actionsent'>".$updet."</p> "; 
  //echo "<p><a 
href='callback.php?oauth_token=".$_SESSION['oauth_request_token']."'
>Go to dashboard!</a></p>";  
   ?> 
   <p><input type="submit" id="Login" value="Close" 
onclick="self.parent.tb_remove();" /></p> 
   <?php 
  /*<meta http-equiv="refresh" content="1; 
URL=callback.php?oauth_token=<?php echo 
$_SESSION['oauth_request_token'];?>">*/ 
    
  }else{ 



! 62!

  echo "An error has occured. Please try again."; 
  } 
    
} else { 
 echo 'Oops - an error has occurred.'; 
} 
 
  
?> 
</div>  
  
</body> 
</html> 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



! 63!

APPENDIX B 

Screenshots of the Web-based Application 

These are some of the screenshots taken on the web-based application interface, 

developed for this particular project. 

!

 

The main page before the user login using their Twitter account 

!
!
!



! 64!

!

!
!

The panel page once the user logged in, showing the buttons representing the pre-

defined actions that can be performed on the home devices. 

!
!
!
!
!



! 65!

!

!
!

A modal box appeared on the top layer of the page for confirmation that the 

instruction has been successfully sent. 

!
!
!
!



! 66!

APPENDIX C 

XML-formatted Status Information 

 This screenshot shows data for a single status update from Twitter 

!



! 67!

APPENDIX D 

Source Code for Status Fetcher and XML Parser 

 

File name : index.php 

Description : This file fetches statuses from a user in XML format  and parse the 

XML file to a readable string, and store it into a text file. 

<?php   

header("Refresh: 25;"); 

  

$username = "overratedoh"; 

$source = 
"http://twitter.com/statuses/user_timeline/".$username.".xml?count=1
"; 

  

$xml = simplexml_load_file($source); 

$raw = $xml->status->text; 

if (strpos($raw, '/') !== false) { 

 $content = "<span>".$raw."</span>"; 

 $actBeg = strpos($content, '<span>', 0); 

 $actMid = substr($content, $actBeg+6); 

 $actEnd = strpos($actMid, ' /'); 

 $action = substr($post, 0, $actEnd); 

}else{ 

  $action = $raw; 

} 

echo $action; 

file_put_contents("action.txt",$action); 

?> 

!
!
!

 

 

 



! 68!

APPENDIX E 

Source Code for Custom Windows Application 

File name : MicroAuto.cs 

Description : The user interface and main functionalities of the application 

using System; 

using System.Drawing; 

using System.Collections; 

using System.ComponentModel; 

using System.Windows.Forms; 

using System.Data; 

using usb_api; 

using System.IO; 

using System.Threading; 

 

namespace WindowsApplication3 

{ 

    public class MicroAuto : System.Windows.Forms.Form 

    { 

        //define the read interval - in seconds 

        public int second = 1;                  

 

        // instruction/action definition 

        public string action1 = "LCD ON"; 

        public string action2 = "LCD OFF"; 

        public string action3 = "DOOR OPEN"; 

        public string action4 = "DOOR CLOSE"; 

        public string action5 = "LIGHTS ON"; 

        public string action6 = "LIGHTS OFF"; 

        public string action7 = "FAN ON"; 

        public string action8 = "FAN OFF"; 

        public string action9 = "Action#9"; 

        public string action10 = "Action#10"; 

 

        private System.Windows.Forms.Timer timer1; 

        usb_interface usb_int = new usb_interface(); 

        private GroupBox groupBox1; 

        private Label ReadAction; 

        private Label label1; 

        private IContainer components; 

        private Label lblSec; 



! 69!

        private Label label2; 

        public int interval; 

 

        public MicroAuto() 

        { 

            InitializeComponent(); 

        } 

 

        #region Clean up any resources being used. 

        protected override void Dispose(bool disposing) 

        { 

            if (disposing) 

            { 

                if (components != null) 

                { 

                    components.Dispose(); 

                } 

            } 

            base.Dispose(disposing); 

        } 

        #endregion 

 

        #region Windows Form Designer generated code 

        /// <summary> 

        /// Required method for Designer support - do not modify 

        /// the contents of this method with the code editor. 

        /// </summary> 

        private void InitializeComponent() 

        { 

        this.components = new System.ComponentModel.Container(); 

        this.groupBox1 = new System.Windows.Forms.GroupBox(); 

        this.ReadAction = new System.Windows.Forms.Label(); 

        this.lblSec = new System.Windows.Forms.Label(); 

        this.label1 = new System.Windows.Forms.Label(); 

        this.timer1 = new 
System.Windows.Forms.Timer(this.components); 

        this.label2 = new System.Windows.Forms.Label(); 

        this.groupBox1.SuspendLayout(); 

        this.SuspendLayout(); 

 

 

 

        //  



! 70!

        // groupBox1 

        //  

        this.groupBox1.Controls.Add(this.ReadAction); 

        this.groupBox1.Controls.Add(this.lblSec); 

        this.groupBox1.Location = new System.Drawing.Point(34, 94); 

        this.groupBox1.Name = "groupBox1"; 

        this.groupBox1.Size = new System.Drawing.Size(328, 107); 

        this.groupBox1.TabIndex = 9; 

        this.groupBox1.TabStop = false; 

        //  

        // ReadAction 

        //  

        this.ReadAction.Font = new System.Drawing.Font("Microsoft 
Sans Serif", 14.25F); 

        this.ReadAction.Location = new System.Drawing.Point(20, 26); 

        this.ReadAction.Name = "ReadAction"; 

        this.ReadAction.Size = new System.Drawing.Size(285, 56); 

        this.ReadAction.TabIndex = 9; 

        this.ReadAction.Text = "Reading data..."; 

        //  

        // lblSec 

        //  

        this.lblSec.AutoSize = true; 

        this.lblSec.Font = new System.Drawing.Font("Microsoft Sans 
Serif", 8.25F, System.Drawing.FontStyle.Regular, 
System.Drawing.GraphicsUnit.Point, ((byte)(0))); 

        this.lblSec.Location = new System.Drawing.Point(249, 82); 

        this.lblSec.Name = "lblSec"; 

        this.lblSec.Size = new System.Drawing.Size(56, 13); 

        this.lblSec.TabIndex = 12; 

        this.lblSec.Text = "5 seconds"; 

        this.lblSec.TextAlign = 
System.Drawing.ContentAlignment.TopRight; 

        //  

        // label1 

        //  

        this.label1.AutoSize = true; 

        this.label1.Font = new System.Drawing.Font("Microsoft Sans 
Serif", 24.25F, System.Drawing.FontStyle.Bold); 

        this.label1.Location = new System.Drawing.Point(110, 21); 

        this.label1.Name = "label1"; 

        this.label1.Size = new System.Drawing.Size(173, 38); 

 

        this.label1.TabIndex = 10; 



! 71!

        this.label1.Text = "MicroAuto"; 
        //  
        // timer1 
        //  
        this.timer1.Enabled = true; 
        this.timer1.Interval = 1000; 
        this.timer1.Tick += new 
System.EventHandler(this.timer1_Tick); 
        //  
        // label2 
        //  
        this.label2.Font = new System.Drawing.Font("Microsoft Sans 
Serif", 8.25F); 
        this.label2.Location = new System.Drawing.Point(38, 64); 
        this.label2.Name = "label2"; 
        this.label2.Size = new System.Drawing.Size(326, 27); 
        this.label2.TabIndex = 16; 
        this.label2.Text = "Twitter-controlled Microcontroller 
System for Home Automation"; 
        //  
        // MicroAuto 
        //  
        this.AutoScaleBaseSize = new System.Drawing.Size(5, 13); 
        this.ClientSize = new System.Drawing.Size(392, 213); 
        this.Controls.Add(this.label2); 
        this.Controls.Add(this.label1); 
        this.Controls.Add(this.groupBox1); 
        this.Name = "MicroAuto"; 
        this.Text = "MicroAuto - FYP Project"; 
        this.groupBox1.ResumeLayout(false); 
        this.groupBox1.PerformLayout(); 
        this.ResumeLayout(false); 
        this.PerformLayout(); 
        } 
        #endregion 
 
        /// <summary> 
        /// The main entry point for the application. 
        /// </summary> 
        [STAThread] 
 
         
 
        static void Main() 



! 72!

        { 

            Application.Run(new MicroAuto()); 

        } 

 

 // Function to read the content of the text file,  

 // as stored by the status fetcher and XML parser 

 

        public void Read_file() 

        { 

            StreamReader textFile = new StreamReader("action.txt"); 

            string fileread = textFile.ReadToEnd(); 

 

            if (fileread == action1) 

            { 

                ReadAction.Text = action1; 

                usb_int.actionSend(1, true); 

            } 

            else if (fileread == action2) 

            { 

                ReadAction.Text = action2; 

                usb_int.actionSend(2, true); 

            } 

            else if (fileread == action3) 

            { 

                ReadAction.Text = action3; 

                usb_int.actionSend(3, true); 

            } 

            else if (fileread == action4) 

            { 

                ReadAction.Text = action4; 

                usb_int.actionSend(4, true); 

            } 

            else if (fileread == action5) 

            { 

                ReadAction.Text = action5; 

                usb_int.actionSend(5, true); 

            } 

            else if (fileread == action6) 

            { 

                ReadAction.Text = action6; 

                usb_int.actionSend(6, true); 

 

            } 



! 73!

            else if (fileread == action7) 

            { 

                ReadAction.Text = action7; 

                usb_int.actionSend(7, true); 

            } 

            else if (fileread == action8) 

            { 

                ReadAction.Text = action8; 

                usb_int.actionSend(8, true); 

            } 

            else if (fileread == action9) 

            { 

                ReadAction.Text = action9; 

                usb_int.actionSend(9, true); 

            } 

            else if (fileread == action10) 

            { 

                ReadAction.Text = action10; 

                usb_int.actionSend(10, true); 

            } 

            else 

            { 

                ReadAction.Text = "Error! " + fileread + " - 
unidentified action"; 

            } 

            textFile.Close(); 

        } 

 

        private void timer1_Tick(object sender, EventArgs e) 

        { 

            // Verify if the time didn't pass. 

            // Else continue counting. 

            if (interval < 1) 

            { 

                interval = second; 

                Read_file(); 

            } 

            else 

            { 

               interval -= 1; 

            } 

 

            // Display the current values of interval in 



! 74!

            // the corresponding fields. 

            lblSec.Text = interval.ToString() + " seconds"; 

        } 

    } 

} 

 

!
!
!
File name : usb_interfaces.cs 

Description : For USB connectivity and interaction with the USB device 

using System; 

using System.IO; 

using System.Runtime.InteropServices; 

using PVOID = System.IntPtr; 

using DWORD = System.UInt32; 

 

namespace usb_api 

{ 

 unsafe public class usb_interface 

 { 

  #region  String Definitions of Pipes and VID_PID 

  //string vid_pid_boot= "vid_04d8&pid_000b";    // 
Bootloader vid_pid ID     

  string vid_pid_norm= "vid_04d8&pid_000c"; 

 

  string out_pipe= "\\MCHP_EP1"; // Define End Points 

  string in_pipe= "\\MCHP_EP1"; 

  #endregion 

 

  #region Imported DLL functions from mpusbapi.dll 

  [DllImport("mpusbapi.dll")] 

  private static extern DWORD _MPUSBGetDLLVersion(); 

  [DllImport("mpusbapi.dll")] 

  private static extern DWORD _MPUSBGetDeviceCount(string 
pVID_PID); 

  [DllImport("mpusbapi.dll")] 

  private static extern void* _MPUSBOpen(DWORD 
instance,string pVID_PID,string pEP,DWORD dwDir,DWORD dwReserved); 

  [DllImport("mpusbapi.dll")] 

  private static extern DWORD _MPUSBRead(void* 



! 75!

handle,void* pData,DWORD dwLen,DWORD* pLength,DWORD dwMilliseconds); 
  [DllImport("mpusbapi.dll")] 
  private static extern DWORD _MPUSBWrite(void* 
handle,void* pData,DWORD dwLen,DWORD* pLength,DWORD dwMilliseconds); 
  [DllImport("mpusbapi.dll")] 
  private static extern DWORD _MPUSBReadInt(void* 
handle,DWORD dwLen,DWORD* pLength,DWORD dwMilliseconds); 
 
  [DllImport("mpusbapi.dll")] 
  private static extern bool _MPUSBClose(void* handle); 
  #endregion 
 
  void* myOutPipe; 
  void* myInPipe; 
  private void OpenPipes() 
  { 
   DWORD selection=0; // Selects the device to 
connect to, in this example it is assumed you will only have one 
device per vid_pid connected. 
 
   myOutPipe = 
_MPUSBOpen(selection,vid_pid_norm,out_pipe,0,0); 
   myInPipe = 
_MPUSBOpen(selection,vid_pid_norm,in_pipe,1,0); 
  } 
 
  private void ClosePipes() 
  { 
   _MPUSBClose(myOutPipe); 
   _MPUSBClose(myInPipe); 
  } 
 
  private DWORD SendReceivePacket(byte* SendData, DWORD 
SendLength, byte* ReceiveData, DWORD *ReceiveLength) 
  { 
   uint SendDelay=1000; 
   uint ReceiveDelay=1000; 
   DWORD SentDataLength; 
   DWORD ExpectedReceiveLength = *ReceiveLength; 
   OpenPipes();  
 if(_MPUSBWrite(myOutPipe,(void*)SendData,SendLength,&SentDataL
ength,SendDelay)==1) 
    { 
    if(_MPUSBRead(myInPipe,(void*)ReceiveData, 
ExpectedReceiveLength,ReceiveLength,ReceiveDelay)==1) 
     { 



! 76!

      if(*ReceiveLength == 
ExpectedReceiveLength) 
      { 
       ClosePipes(); 
       return 1;   // Success! 
      } 
      else if(*ReceiveLength < 
ExpectedReceiveLength) 
      { 
       ClosePipes(); 
       return 2;   // Partially 
failed, incorrect receive length 
      } 
     } 
    } 
   ClosePipes(); 
   return 0;  // Operation Failed 
  } 
 
  public DWORD GetDLLVersion() 
  { 
   return _MPUSBGetDLLVersion(); 
  } 
 
  public DWORD GetDeviceCount(string Vid_Pid) 
  { 
   return _MPUSBGetDeviceCount(Vid_Pid); 
  } 
 
  public int actionSend(uint led, bool State) 
  { 
// The default demo firmware application has a defined application 
// level protocol. 
// To set the LED's, the host must send the UPDATE_LED 
// command which is defined as 0x32, followed by the LED to update, 
// then the state to chance the LED to. 
// i.e. <UPDATE_LED><0x01><0x01> 
// 
// Would activate LED 1 
// 
// The receive buffer size must be equal to or larger than the 
maximum 
// endpoint size it is communicating with. In this case, it is set 
to 64 bytes. 



! 77!

 
   byte* send_buf=stackalloc byte[64]; 
   byte* receive_buf=stackalloc byte[64]; 
   DWORD RecvLength=3; 
   send_buf[0] = 0x32; //Command for LED Status   
   send_buf[1] = (byte)led; 
   send_buf[2] = (byte)(State?1:0); 
 
   if 
(SendReceivePacket(send_buf,3,receive_buf,&RecvLength) == 1) 
   { 
    if (RecvLength == 1 && receive_buf[0] == 
0x32) 
    {  
     return 0; 
    } 
    else 
    { 
     return 2; 
    } 
   } 
   else 
   {  
    return 1; 
   } 
  } 
  } 
} 

!
!
!
!
!
!
!
!
!
!



! 78!

APPENDIX F 

USB Device Schematic 

The following figure shows the schematic diagram for the complete USB device. It 

consists of two part, which is the USB device itself, as well as the XBee transmitter 

circuit. These two circuits are only connected via PORT D to PORT B, for data and 

signal transfer between the two subsystems. 

 

!
!
!



! 79!

APPENDIX G 

USB Connectors and Ports 

The following table shows four types of USB connectors and ports that are widely use 

for various purposes.  

 

Type Port Image Connectors Receptacles 

Type A 

  
 

Type B 

   

Mini-A 

  

 
Mini-B 

 
 

 

 

Source   

"##$%&&'''()*#+,(-./&01$$.2#&/.#"+23.4250&5+06#.$&03&789:;<=>>("#/ 

http://www.accesscomms.com.au/reference/usb.htm! 

 

!



! 80!

APPENDIX H 

Source Code for USB Device Firmware 

The firmware source code that are included in this appendix are the main files that are 

highly modified for the purposes of this project. The other source files required for the 

firmware are included in the CD-ROM attached.  

 

File name : io_cfg.h 

Description : This header file taken from Microchip sample code has been 

modified to suits the input and output configuration needs of the project. 

/******************************************************************* 
 * 
 *                Microchip USB C18 Firmware Version 1.0 
 * 
********************************************************************
* 
 * FileName:        io_cfg.h 
 * Dependencies:    See INCLUDES section below 
 * Processor:       PIC18 
 * Compiler:        C18 2.30.01+ 
 * Company:         Microchip Technology, Inc. 
 * 
 * Software License Agreement 
 * 
 * The software supplied herewith by Microchip Technology 
Incorporated 
 * (the “Company”) for its PICmicro® Microcontroller is intended and 
 * supplied to you, the Company’s customer, for use solely and 
 * exclusively on Microchip PICmicro Microcontroller products. The 
 * software is owned by the Company and/or its supplier, and is 
 * protected under applicable copyright laws. All rights are 
reserved. 
 * Any use in violation of the foregoing restrictions may subject 
the 
 * user to criminal sanctions under applicable laws, as well as to 
 * civil liability for the breach of the terms and conditions of 
this 
 * license. 
 * 
 * THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, 
 * WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED 
 * TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
 * PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, 
 * IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR 
 * CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER. 
 * 
 * Author               Date        Comment 
 
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~ 
 * Rawin Rojvanit       11/19/04    Original. 



! 81!

 
********************************************************************
/ 
 
#ifndef IO_CFG_H 
#define IO_CFG_H 
 
/** I N C L U D E S 
*************************************************/ 
#include "autofiles\usbcfg.h" 
 
/** T R I S 
*********************************************************/ 
#define INPUT_PIN           1 
#define OUTPUT_PIN          0 
 
/** U S B 
***********************************************************/ 
#define tris_usb_bus_sense  TRISAbits.TRISA1    // Input 
 
#if defined(USE_USB_BUS_SENSE_IO) 
#define usb_bus_sense       PORTAbits.RA1 
#else 
#define usb_bus_sense       1 
#endif 
 
#define tris_self_power     TRISAbits.TRISA2    // Input 
 
#if defined(USE_SELF_POWER_SENSE_IO) 
#define self_power          PORTAbits.RA2 
#else 
#define self_power          1 
#endif 
 
/** L E D 
***********************************************************/ 
#define mInitAllLEDs()      LATD &= 0x00; TRISD &= 0x00; LATB &= 
0x00; TRISB &= 0x00; 
 
#define mLED_A              LATBbits.LATB0 
#define mLED_B              LATBbits.LATB1 
 
#define mLED_1              LATDbits.LATD0 
#define mLED_2              LATDbits.LATD1 
#define mLED_3              LATDbits.LATD2 
#define mLED_4              LATDbits.LATD3 
#define mLED_5              LATDbits.LATD4 
#define mLED_6              LATDbits.LATD5 
#define mLED_7              LATDbits.LATD6 
#define mLED_8              LATDbits.LATD7 
 
#define mLED_A_On()         mLED_A = 1; 
#define mLED_B_On()         mLED_B = 1; 
#define mLED_1_On()         mLED_1 = 1; 
#define mLED_2_On()         mLED_2 = 1; 
#define mLED_3_On()         mLED_3 = 1; 
#define mLED_4_On()         mLED_4 = 1; 
#define mLED_5_On()         mLED_5 = 1; 
#define mLED_6_On()         mLED_6 = 1; 
#define mLED_7_On()         mLED_7 = 1; 
#define mLED_8_On()         mLED_8 = 1; 
 



! 82!

#define mLED_A_Off()        mLED_A = 0; 
#define mLED_B_Off()        mLED_B = 0; 
#define mLED_1_Off()        mLED_1 = 0; 
#define mLED_2_Off()        mLED_2 = 0; 
#define mLED_3_Off()        mLED_3 = 0; 
#define mLED_4_Off()        mLED_4 = 0; 
#define mLED_5_Off()        mLED_5 = 0; 
#define mLED_6_Off()        mLED_6 = 0; 
#define mLED_7_Off()        mLED_7 = 0; 
#define mLED_8_Off()        mLED_8 = 0; 
 
#define mLED_A_Toggle()     mLED_A = !mLED_A; 
#define mLED_B_Toggle()     mLED_B = !mLED_B; 
#define mLED_1_Toggle()     mLED_1 = !mLED_1; 
#define mLED_2_Toggle()     mLED_2 = !mLED_2; 
#define mLED_3_Toggle()     mLED_3 = !mLED_3; 
#define mLED_4_Toggle()     mLED_4 = !mLED_4; 
#define mLED_5_Toggle()     mLED_5 = !mLED_5; 
#define mLED_6_Toggle()     mLED_6 = !mLED_6; 
#define mLED_7_Toggle()     mLED_7 = !mLED_7; 
#define mLED_8_Toggle()     mLED_8 = !mLED_8; 
 
#endif //IO_CFG_H 
!
!
File name : user.c 

Description : Handling the decoding on value received from custom Windows 

application to produce the 8-bit binary digit. It also handle the blinking state of 

indicator lights. 

/*******************************************************************
** 
 * 
 *                Microchip USB C18 Firmware Version 1.0 
 * 
 
********************************************************************
* 
 * FileName:        user.c 
 * Dependencies:    See INCLUDES section below 
 * Processor:       PIC18 
 * Compiler:        C18 2.30.01+ 
 * Company:         Microchip Technology, Inc. 
 * 
 * Software License Agreement 
 * 
 * The software supplied herewith by Microchip Technology 
Incorporated 
 * (the “Company”) for its PICmicro® Microcontroller is intended and 
 * supplied to you, the Company’s customer, for use solely and 
 * exclusively on Microchip PICmicro Microcontroller products. The 
 * software is owned by the Company and/or its supplier, and is 
 * protected under applicable copyright laws. All rights are 
reserved. 
 * Any use in violation of the foregoing restrictions may subject 
the 



! 83!

 * user to criminal sanctions under applicable laws, as well as to 
 * civil liability for the breach of the terms and conditions of 
this 
 * license. 
 * 
 * THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, 
 * WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED 
 * TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
 * PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, 
 * IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL OR 
 * CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER. 
 * 
 * Author               Date        Comment 
 
*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~ 
 * Rawin Rojvanit       11/19/04    Original. 
 
********************************************************************
/ 
 
/** I N C L U D E S 
**********************************************************/ 
#include <p18cxxx.h> 
#include <usart.h> 
#include "system\typedefs.h" 
 
#include "system\usb\usb.h" 
 
#include "io_cfg.h"             // I/O pin mapping 
#include "user\user.h" 
 
/** V A R I A B L E S 
********************************************************/ 
#pragma udata 
 
byte counter; 
byte trf_state; 
 
DATA_PACKET dataPacket; 
 
/** P R I V A T E  P R O T O T Y P E S 
***************************************/ 
 
void BlinkUSBStatus(void); 
void ServiceRequests(void); 
 
/** D E C L A R A T I O N S 
**************************************************/ 
#pragma code 
void UserInit(void) 
{ 
    mInitAllLEDs(); 
     
}//end UserInit 
 
 
/*******************************************************************
*********** 
 * Function:        void ProcessIO(void) 
 * 
 * PreCondition:    None 



! 84!

 * 
 * Input:           None 
 * 
 * Output:          None 
 * 
 * Side Effects:    None 
 * 
 * Overview:        This function is a place holder for other user 
routines. 
 *                  It is a mixture of both USB and non-USB tasks. 
 * 
 * Note:            None 
 
********************************************************************
*********/ 
void ProcessIO(void) 
{    
    BlinkUSBStatus(); 
    // User Application USB tasks 
    if((usb_device_state < CONFIGURED_STATE)||(UCONbits.SUSPND==1)) 
return; 
     
    ServiceRequests(); 
 
}//end ProcessIO 
 
 
void ServiceRequests(void) 
{ 
    byte index; 
     
    if(USBGenRead((byte*)&dataPacket,sizeof(dataPacket))) 
    { 
        counter = 0; 
        switch(dataPacket.CMD) 
        { 
            case READ_VERSION: 
                //dataPacket._byte[1] is len 
                dataPacket._byte[2] = MINOR_VERSION; 
                dataPacket._byte[3] = MAJOR_VERSION; 
                counter=0x04; 
                break; 
 
            case ID_BOARD: 
                counter = 0x01; 
                if(dataPacket.ID == 0) { 
                    mLED_3_Off();mLED_4_Off(); 
                }else if(dataPacket.ID == 1)  { 
                    mLED_3_Off();mLED_4_On(); 
                } else if(dataPacket.ID == 2) { 
                    mLED_3_On();mLED_4_Off(); 
                } else if(dataPacket.ID == 3) { 
                    mLED_3_On();mLED_4_On(); 
                } else 
                    counter = 0x00; 
                break; 
 
            case UPDATE_LED: 
                
   if(dataPacket.led_num == 1) { 
     
    mLED_1 = 1; mLED_2 = 0; mLED_3 = 0; mLED_4 = 0; 



! 85!

    mLED_5 = 0; mLED_6 = 0; mLED_7 = 0; mLED_8 = 0; 
    counter = 0x01; 
         
   } else if(dataPacket.led_num == 2) { 
                 
                mLED_1 = 0; mLED_2 = 1; mLED_3 = 0; mLED_4 = 0; 
     mLED_5 = 0; mLED_6 = 0; mLED_7 = 0; mLED_8 = 0; 
                    counter = 0x01; 
 
              } else if(dataPacket.led_num == 3) { 
                 
                mLED_1 = 1; mLED_2 = 1; mLED_3 = 0; mLED_4 = 0; 
     mLED_5 = 0; mLED_6 = 0; mLED_7 = 0; mLED_8 = 0; 
                    counter = 0x01; 
                     
              } else if(dataPacket.led_num == 4) { 
                 
                mLED_1 = 0; mLED_2 = 0; mLED_3 = 1; mLED_4 = 0; 
     mLED_5 = 0; mLED_6 = 0; mLED_7 = 0; mLED_8 = 0; 
                    counter = 0x01; 
                     
              } else if(dataPacket.led_num == 5) { 
                 
                mLED_1 = 1; mLED_2 = 0; mLED_3 = 1; mLED_4 = 0; 
     mLED_5 = 0; mLED_6 = 0; mLED_7 = 0; mLED_8 = 0; 
                    counter = 0x01; 
                     
              } else if(dataPacket.led_num == 6) { 
                 
                mLED_1 = 0; mLED_2 = 1; mLED_3 = 1; mLED_4 = 0; 
     mLED_5 = 0; mLED_6 = 0; mLED_7 = 0; mLED_8 = 0; 
                    counter = 0x01; 
                     
              } else if(dataPacket.led_num == 7) { 
                 
                mLED_1 = 1; mLED_2 = 1; mLED_3 = 1; mLED_4 = 0; 
     mLED_5 = 0; mLED_6 = 0; mLED_7 = 0; mLED_8 = 0; 
                    counter = 0x01; 
                     
              } else if(dataPacket.led_num == 8) { 
                 
                mLED_1 = 0; mLED_2 = 0; mLED_3 = 0; mLED_4 = 1; 
     mLED_5 = 0; mLED_6 = 0; mLED_7 = 0; mLED_8 = 0; 
                    counter = 0x01; 
                     
               } else { 
                 
                 mLED_1 = 1; mLED_2 = 1; mLED_3 = 1; mLED_4 = 1; 
      mLED_5 = 1; mLED_6 = 1; mLED_7 = 1; mLED_8 = 1; 
     counter = 0x01; 
   } 
     
                break; 
                 
                 
            case RESET: 
                Reset(); 
                break; 
                 
            default: 
                break; 
        }//end switch() 



! 86!

        if(counter != 0) 
        { 
            if(!mUSBGenTxIsBusy()) 
                USBGenWrite((byte*)&dataPacket,counter); 
        }//end if 
    }//end if 
 
}//end ServiceRequests 
 
/*******************************************************************
*********** 
 * Function:        void BlinkUSBStatus(void) 
 * 
 * PreCondition:    None 
 * 
 * Input:           None 
 * 
 * Output:          None 
 * 
 * Side Effects:    None 
 * 
 * Overview:        BlinkUSBStatus turns on and off LEDs 
corresponding to 
 *                  the USB device state. 
 * 
 * Note:            mLED macros can be found in io_cfg.h 
 *                  usb_device_state is declared in usbmmap.c and is 
modified 
 *                  in usbdrv.c, usbctrltrf.c, and usb9.c 
 
********************************************************************
*********/ 
void BlinkUSBStatus(void) 
{ 
    static word led_count=0; 
     
    if(led_count == 0)led_count = 10000U; 
    led_count--; 
 
    #define mLED_Both_Off()         {mLED_A_Off();mLED_B_Off();} 
    #define mLED_Both_On()          {mLED_A_On();mLED_B_On();} 
    #define mLED_Only_A_On()        {mLED_A_On();mLED_B_Off();} 
    #define mLED_Only_B_On()        {mLED_A_Off();mLED_B_On();} 
 
    if(UCONbits.SUSPND == 1) 
    { 
        if(led_count==0) 
        { 
            mLED_A_Toggle(); 
            mLED_B = mLED_A;        // Both blink at the same time 
        }//end if 
    } 
    else 
    { 
        if(usb_device_state == DETACHED_STATE) 
        { 
            mLED_Both_Off(); 
             
        } 
        else if(usb_device_state == ATTACHED_STATE) 
        { 
            mLED_Both_On(); 



! 87!

        } 
        else if(usb_device_state == POWERED_STATE) 
        { 
            mLED_Only_A_On(); 
        } 
        else if(usb_device_state == DEFAULT_STATE) 
        { 
            mLED_Only_B_On(); 
        } 
        else if(usb_device_state == ADDRESS_STATE) 
        { 
            if(led_count == 0) 
            { 
                mLED_A_Toggle(); 
                mLED_B_Off(); 
            }//end if 
        } 
        else if(usb_device_state == CONFIGURED_STATE) 
        { 
            if(led_count==0) 
            { 
                mLED_A_Toggle(); 
                mLED_B = !mLED_A;       // Alternate blink                 
            }//end if 
        }//end if(...) 
    }//end if(UCONbits.SUSPND...) 
 
}//end BlinkUSBStatus 
 
/** EOF user.c 
***************************************************************/ 
 
!
!

 

 

 

 

 

 

 

 

 



! 88!

APPENDIX I 

XBee Breakout Boards 

 

The following breakout boards are used along with the usual XBee wireless module 

for easier circuit integration and configuration setting. 

 

 

From left, XBee Explorer regulated and XBee Explorer USB 

 

The XBee Explorer regulated is used to connect the XBee module to the 

microcontroller circuit. It has built-in voltage regulator, to regulate the voltage to 

3.3V, which is the voltage used by the module. It also brings out the four most used 

pins to the front for easier access. 

The XBee Explorer USB is almost the same as above, but it has additional 

USB connectivity capability to connect the module to host computer. This can be 

used to update firmware versions or configure the necessary setting using X-CTU 

application. 

 

 

 



! 89!

APPENDIX J 

XBee Wireless Module Circuit Schematic 

The following schematics are the basic schematics used to build the XBee transmitter 

circuit (which is combined into USB device – Appendix F) and XBee receiver circuit. 

!

!



! 90!

APPENDIX K 

Source Code for Wireless Transmission!

File name : transmitter.c 

Description : This code is for the transmitter side, to get data from USB device, and 

transmit unique character accordingly. 

#include <18f452.h> 

#fuses HS,NOLVP,NOWDT,NOPROTECT         

#use delay(clock=24000000)         

#use rs232(baud=9600, UART1)        

#include <stdlib.h> 

 

void main() { 

 while (TRUE) { 

      if (input_b() == 0x01){ 

         output_d(0x01); 

         printf("a");  //sends signal a 

       } 

      else if (input_b() == 0x02){ 

         output_d(0x02); 

         printf("b");  //sends signal b 

       } 

      else if (input_b() == 0x03){ 

         output_d(0x03); 

         printf("c");  //sends signal c 

       } 

      else if (input_b() == 0x04){ 

         output_d(0x04); 

         printf("d");  //sends signal d 

       } 

      else if (input_b() == 0x05){ 

         output_d(0x05); 

         printf("e");  //sends signal e 

       }        

      else if (input_b() == 0x06){ 

         output_d(0x06); 

         printf("f");  //sends signal f 

       }     

 

      else if (input_b() == 0x07){ 

         output_d(0x07); 



! 91!

         printf("g");  //sends signal g 

       }     

      else if (input_b() == 0x08){ 

         output_d(0x08); 

         printf("h");  //sends signal h 

       }    

      else if (input_b() == 0x09){ 

         output_d(0x09); 

         printf("i");  //sends signal h 

       }     

      else if (input_b() == 0x0A){ 

         output_d(0x0A); 

         printf("j");  //sends signal h 

       }        

       else if (input_b() == 0x00) {  

         output_d(0x00); 

         printf("x");  //sends signal x 

       } 

       else {  

         output_d(0xFF); 

         printf("x");  //sends signal x 

       }        

   } 

} 

!
 

 

 

 

 

 

 

 



! 92!

File name : receiver.c 

Description : This code is for the receiver side, to receive character from 

transmitter, and decode it to control several devices.  

#include <18f4550.h> 

#fuses HS,NOLVP,NOWDT,NOPROTECT         

#use delay(clock=24000000) 

#use rs232(baud=9600, UART1) 

#include <stdlib.h> 

char x; 

 

void main() { 

output_b(0x00); 

   while (TRUE) {       

       if (kbhit()) { 

         x = getc();         

       }      

    

       if (x=='a'){ 

         output_d(0x01);    

         output_high(PIN_B0); 

       } 

       else if (x == 'b'){ 

         output_d(0x02);  

         output_low(PIN_B0); 

       } 

       else if (x == 'c'){ 

         output_d(0x03);  

         output_high(PIN_B1); 

       } 

       else if (x == 'd'){ 

         output_d(0x04);  

         output_low(PIN_B1); 

       } 

       else if (x == 'e'){ 

         output_d(0x05); 

         output_high(PIN_B2); 

       }        

       else if (x == 'f'){ 

         output_d(0x06);  

         output_low(PIN_B2); 

       } 



! 93!

       else if (x == 'g'){ 

         output_d(0x07);  

         output_high(PIN_B3); 

       } 

       else if (x == 'h'){ 

         output_d(0x08);  

         output_low(PIN_B3); 

       } 

       else if (x == 'i'){ 

         output_d(0x09);  

         output_high(PIN_B4); 

       } 

 

       else if (x == 'j'){ 

         output_d(0x0A);  

         output_low(PIN_B4); 

       } 

       else if (x == 'x'){ 

         output_d(0x00);          

       } 

   } 

} 

  

!
!
!
!
!
!
!
!
!
!
!
!
!



! 94!

APPENDIX L 
Source Code for Home Devices!

File name : devices1.c 

Description : This code is for the LCD, lights and fan 

#include <p18cxxx.h> 

#include "xlcd.h" 

#include "delays.h" 

  

#pragma config FOSC = HS      

#pragma config WDT = OFF    

    

//switches (input from XBee receiver circuit) 

#define swlcd   PORTBbits.RB2 

#define swlights   PORTBbits.RB1 

#define swfan   PORTBbits.RB0 

//output 

#define fan   LATAbits.LATA0 

#define lights  LATAbits.LATA1    

  

void Delay_1msX (unsigned int miliseconds); 

void Delay_100msX (unsigned int msec); 

unsigned int i, t; 

  

void main () 

{ 

 //set I/O input output 

 TRISA = 0b00000000; 

 TRISB = 0b00001111;       

 TRISD = 0b00000000; 

 PORTB = 0; 

 PORTD = 0; 

  OpenXLCD( EIGHT_BIT & LINES_5X7 ); 

 ClearXLCD(); //Clear display 

 //------------------------------------------------- 

 // User-defined Graphics 

 //------------------------------------------------- 

 SetCGRamAddr(0x40); //Goto CGRAM address #1 

 // 90 Degree Rotated   

 putcXLCD(0b11111); 

 putcXLCD(0b00101); 



! 95!

 putcXLCD(0b11101); 

 putcXLCD(0b00000); 

 putcXLCD(0b10100); 

 putcXLCD(0b10100); 

 putcXLCD(0b11111); 

 putcXLCD(0b00000); 

 // 90 Degree Rotated   

 putcXLCD(0b01001); 

 putcXLCD(0b10101); 

 putcXLCD(0b10011); 

 putcXLCD(0b01001); 

 putcXLCD(0b00000); 

 putcXLCD(0b11100); 

 putcXLCD(0b10100); 

 putcXLCD(0b11111); 

 // Symbol 1 

 putcXLCD(0b00000); 

 putcXLCD(0b00000); 

 putcXLCD(0b00000); 

 putcXLCD(0b00100); 

 putcXLCD(0b01110); 

 putcXLCD(0b11111); 

 putcXLCD(0b01110); 

 putcXLCD(0b01110); 

 // Symbol 2 

 putcXLCD(0b00000); 

 putcXLCD(0b00000); 

 putcXLCD(0b00100); 

 putcXLCD(0b01110); 

 putcXLCD(0b11111); 

 putcXLCD(0b01110); 

 putcXLCD(0b01110); 

 putcXLCD(0b01110); 

 // Symbol 3 

 putcXLCD(0b00000); 

 putcXLCD(0b00100); 

 putcXLCD(0b01110); 

 putcXLCD(0b11111); 

 putcXLCD(0b01110); 

 putcXLCD(0b01110); 

 putcXLCD(0b01110); 

 putcXLCD(0b01110); 

 // Symbol 4 



! 96!

 putcXLCD(0b00100); 

 putcXLCD(0b01110); 

 putcXLCD(0b11111); 

 putcXLCD(0b01110); 

 putcXLCD(0b01110); 

 putcXLCD(0b01110); 

 putcXLCD(0b01110); 

 putcXLCD(0b01110); 

 // Symbol 5 

 putcXLCD(0b01110); 

 putcXLCD(0b11111); 

 putcXLCD(0b01110); 

 putcXLCD(0b01110); 

 putcXLCD(0b01110); 

 putcXLCD(0b01110); 

 putcXLCD(0b01110); 

 putcXLCD(0b01110); 

 // Symbol 6 

 putcXLCD(0b11111); 

 putcXLCD(0b01110); 

 putcXLCD(0b01110); 

 putcXLCD(0b01110); 

 putcXLCD(0b01110); 

 putcXLCD(0b01110); 

 putcXLCD(0b01110); 

 putcXLCD(0b01110); 

 

 ClearXLCD();   

  while(1)           

 { 

  if(swlcd == 1){ 

   SetCurXLCD(0);    

   putcXLCD(1);    

   SetCurXLCD(20);    

   putcXLCD(0);       

   SetCurXLCD(2);    

    

   for(i=2;i<8;i++){ 

    putcXLCD(i); 

   } 

    

   putrsXLCD(" MicroAuto");    
    



! 97!

  } else { 

   ClearXLCD(); 

  } 

    

  if(swlights == 1){  

   lights = 1; 

  }else{ 

   lights = 0; 

  } 

   

  if(swfan == 1){ 

   fan = 1; 

  }else{ 

   fan = 0; 

  } 

 } 

}  

void Delay_1msX (unsigned int miliseconds) { 

 t=0; 

 while(t<miliseconds) { 

  Delay1KTCYx(11); 

  Delay10TCYx(96); 

  Nop(); 

  Nop(); 

  Nop(); 

  Nop(); 

  Nop(); 

  t++; 

 } 

}  

void Delay_100msX (unsigned int msec) { 

 t=0; 

 while(t<msec) { 

  Delay10KTCYx(119); 

  Delay1KTCYx(9); 

  Delay10TCYx(96); 

  t++; 

 } 

} 

!
!
!



! 98!

File name : servo.c 

Description : This code is for the servo motor in controlling the door  

#include <pic.h>          

         

__CONFIG ( 0x3F32 );     

           

#define servo RD2 

#define servo2 RD0 

#define SW0  RB0 

  

#define MHZ *1000L      

#define KHZ *1       

  

#define DelayUs(x) { unsigned char _dcnt; \ 

     _dcnt = (((x)*(20MHZ))/(24MHZ))|1; \ 

     while(--_dcnt != 0) \ 

      continue; \ 

     _dcnt = (((x)*    (20MHZ))/(24MHZ))|1; \ 

     while(--_dcnt != 0) \ 

      continue; } 

  

void DelayMs(unsigned char y);    

           

void main(void) 

{ 

 unsigned int i,a; 

   

 TRISB = 0xFF; 

 TRISD = 0x00;     

 PORTD = 0b00000000;     

        

 while(1){ 

 

 if(SW0 == 1){  

  

  for(i=0;i<50;i++)   

  { 

   servo2=1; 

   servo=1;     

   DelayUs(250); 

   DelayUs(250); 



! 99!

   DelayUs(125);    

   

   servo=0;    

   DelayMs(19);    

   DelayUs(250); 

   DelayUs(125); 

  } 

   

 } else { 

    

  for(i=0;i<50;i++)   

  { 

   servo2=0; 

   servo=1;    

   DelayMs(5);     

            
      

   servo=0;     

   DelayMs(15);       
    

  }  

 } 

 

 }   

} 

  

void DelayMs(unsigned char y) 

{ 

 unsigned char i; 

 do { 

  i = 4; 

  do { 

   DelayUs(250); 

  } while(--i); 

 } while(--y); 

} 

 

!



! "##!

APPENDIX M 

Project Gantt Charts 

Note that only official academic weeks are included for both phases of Final Year Project. 

 

Final Year Project 1 (January 2010 – May 2010) 

 

 

Final Year Project 2 (July 2010 – Nov 2010) 

 

Item \ Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
Proposal               
Technology Evaluation               
Research on possible methods               
Development (Component 1)               

Item \ Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
Research on possible methods               
Development (Component 1)               
Development (Component 2)               
Development (Component 3)               
Development (Component 4)               
Partial test and integration               
Full system test and integration               


