

OPTIMAL DESIGN OF HELICAL COMPRESSION SPRINGS

By

Muhammad Hakim Bin Mat Tasir

16418

Dissertation submitted in partial fulfilment of

the requirements for the

Bachelor of Engineering (Hons)

Mechanical Engineering

JANUARY 2016

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

i

CERTIFICATION OF APPROVAL

OPTIMAL DESIGN OF HELICAL COMPRESSION SPRINGS

By

Muhammad Hakim Bin Mat Tasir

16418

A project dissertation submitted to the

Mechanical Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

MECHANICAL ENGINEERING

Approved by,

__

(DR. DEREJE ENGIDA WOLDEMICHAEL)

UNIVERSITI TEKNOLOGI PETRONAS

BANDAR SERI ISKANDAR, PERAK

January 2016

ii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

MUHAMMAD HAKIM BIN MAT TASIR

iii

ABSTRACT

This paper is aimed to present a calculation process to optimize the design of helical

compression springs with regard to the criterion of minimum mass. By using

conventional design a helical spring may be under-designed or over-designed. This

process can be used in the early design stage or to re-design the spring. For this

purpose, it revolves around the deflection limit, shear stress, frequency of surge waves,

diameter constraint and minimum and maximum limits on design variables. This

model of helical springs is translated into programming language and it is able to

automatically solve the set of constraints. The optimal design of helical spring is

generated in term of spring coil diameter, spring wire diameter and number of coil. It

is resolved by using the Python Software and focus primarily on utilizing the PyOpt

and NumPy package. The validation test of the software was done by sample

calculation and also bench marking with other researcher’s work.

iv

ACKNOWLEDGEMENTS

 First and foremost, First and foremost, I would like to extend my gratitude to

Allah for his guidance and blessing for me to complete the final year project in the

duration time given. Deepest appreciation to UTP Mechanical Engineering department

who have provided and assist me directly and indirectly during the progress of this

project being carried out. Other than that I would also to thank my family for giving

me moral support throughout this final year, thus giving me strength in order to finish

this final year project successfully. My acknowledgement of thankfulness to my

supervisor, Dr. Dereje Engida Woldemichael for guiding and supervising me in

completing the project. Without guidance from him, I may not be able to complete this

project. I owe gratitude to him for his unwavering commitment and support for this

final year project. Thank you for the supportive nature and for the concern of my

professional and personal well-being development. Not to forget to all my friends that

assists me in this project and for their unstoppable support to me for every problem

that I faced throughout this project. Lastly, thank you very much to whoever involves

directly and indirectly in this project. Without all of them, I may not be able to

accomplish my final year project entitled “Optimal Design of Helical Compression

Springs”.

v

TABLE OF CONTENT

CERTIFICATION OF APPROVAL…..…………………………………... i

CERTIFICATION OF ORIGINALITY.......……………………………… ii

ABSTRACT ……………………………………………………………. iii

ACKNOWLEDGEMENTS………………………………………………… iv

CHAPTER 1: INTRODUCTION……………………………..………... 1

 1.1 Background of study…………………………..……... 1

 1.2 Problem Statement………………………………..….. 2

 1.3 Objectives………………………………………….…. 3

 1.4 Scope of Study……………………………………..…. 3

CHAPTER 2: LITERATURE REVIEW…………………………….… 4

 2.1 Design of Helical Springs……………………….……. 4

 2.2 Optimal Design of Helical Springs…………………... 5

 2.3 Composite Material Spring…………………………... 6

 2.4 Python Programming and PyOPT……………………. 7

CHAPTER 3: METHODOLOGY…………………...………….……… 8

 3.1 Process Flow Chart………………………………...…. 8

 3.2 Materials, Tools and Equipment……………………... 10

 3.3 Project Timeline…………………………………….... 11

CHAPTER 4: RESULTS AND DISCUSSIONS………………………. 12

CHAPTER 5: CONCLUSION AND RECOMMENDATION………... 22

REFERENCES ……………………………………………………………. 23

APPENDICES ……………………………………………………………. 26

vi

LIST OF FIGURE

Figure 1: Process Flow Chart of Project Development .. 8

Figure 2: Flow Chart of modelling methodology .. 9

Figure 3: Design of Tension/Compression Spring ... 13

Figure 4: Specification Sheet ... 19

Figure 5 Screen Shot of Program Developed ... 21

LIST OF TABLE

Table 1: List of equipment with its function .. 10

Table 2: Gantt Chart for FYP ... 11

Table 3: Information needed to design helical springs .. 12

Table 4: Design Variables values subjected to a set of constraint. 15

Table 5: Best Solution Iterated by Optimizers ... 21

Table 6: Constraints values for the proposed model of helical springs: 26

1

CHAPTER 1

 INTRODUCTION

1.1 Background of Study

Design is the engineering process in which involves imagination, creativity as well as

the application and knowledge of technical and scientific skills with the use of material

[1]. Designing process of a system includes trial and error procedure where the designer

estimates and analyses it to check whether it behaves according to the subjected

requirement. It is depending solely on designer’s acumen, experience and intuition.

On the other hand, optimal design process is a step in which it maximizing the

reliability, efficiency, durability and cost-effectiveness of a design without jeopardizing

the ability to carry out the required task. Optimal design are iterative process where the

trial design is analysed to determine if it is the best [2]. This project is expected to

calculate and model the optimal design of helical spring from the given requirements

according to certain constraints.

Springs can be found in most of our daily applications. In automotive industry,

springs are crucial suspension elements to lower down the vertical vibrations, impacts

and bumps due to road irregularities [3]. Helical springs are one of the common

component used in the industry. There are many types of helical springs such as;

compression, extension, torsion, conical, spiral, and disc spring.

2

1.2 Problem Statement

Main industrial program for spring design do not make the most of the powerful

capabilities for optimization currently available. The current software only provides

validation tool for the design of spring. On the other hand, this project is expected to

introduce an advance optimization tool at any design stage and involves specifications

for interval analysis and optimization process to provide the best design as output.

Helical Springs are used in various practical applications. The in-depth analysis

and designing such components are developing over the years. There are certain

available software in the market which calculate the optimal design of springs such as

FED1/FED1+ calculates cylindrical helical compression springs in accordance with EN

13906-1. This software is developed by HEXAGON Software, Berlin. The total price

for the software is EUR1,186.00 [4]. Apart from that, there is another software

developed by Spring Manufacturers Institute that is charging 750$ for licence and 350$

for annual subscription [5]. Hence, the cost for getting of the software is not possible

subjected to the budget constraint.

One example for usage of helical springs from automotive applications can be

seen in damping systems of vehicle suspension. This have to be optimized under

consideration of mechanical aspects, electrical aspects, electronical aspects and

software-related to ensure a sufficient vibration absorption and a smooth ride. Without

an optimized spring design, the vehicle damping system might be inadequate or

overdesigned.

The purpose of this project is to develop the optimal design of helical spring.

The designed spring are expected to carry a given axial load (tension-compression

spring) without material failure. This tool will assist designers in modelling and

developing the optimal design of helical spring based on the given requirements and

constrains.

3

1.3 Objectives

There are three objectives to achieve in the project, which are:

 To develop models for the optimal design of helical springs.

 To develop a user friendly software for the optimal design of helical spring using

the proposed model.

 To conduct validation test on software.

1.4 Scope of Study

Optimal Design of helical springs’ scope of study includes the following; compression

spring, extension spring, and torsional spring. The design process of the helical springs

includes modelling, programming, debugging and validation of the program. In

modelling, appropriate algorithm and calculation technics are done and validated before

proceeding to further step. Some of the area of applications are automotive, industrial,

goods, motorsports, aerospace, and oil & gas. Springs are very common in these area

and the operation is more or less the same. The outcome of optimal design of helical

spring will be validated and compared to conventional design by testing the program

with existing product and by sample calculations.

4

CHAPTER 2

LITERATURE REVIEW

There are literature reviews that meet the objective of the project. Below shows some

directly related literature reviews for understanding the purpose of the project.

2.1 Design of Helical Springs

A helical spring is usually coiled and has a uniform diameter cylinder and often

manufactured in round wire. A conventional design of compression helical spring

normally governs the dimensional limit that are solid height, outside diameter and

inside diameter with regard to the load and deflection requirement. Compression helical

springs end feature four types of ends; closed, open, ground and ungrounded.

Combination of both either closed or open with either ground or ungrounded depends

on the nature of application. When two compression springs are put in series, the

deflection for the same load will be doubled and three springs with the same applied

load with tripled the deflection. Whereas two compression springs in parallel can carry

out the same deflection with double load applied and three springs are able to carry out

triple amount of load with the same deflection [6].

 Extension helical springs are able to store and absorb energy by resistance to a

pulling force. There are many types of ends depending on the location or source of

force. A conventional design of extension springs can be done when the amount of force

at a length, number of cycle, and the length between attachment location. From the

information given, the suitable spring wire diameter, mean diameter and number of

coils can be determined by using the appropriate calculation and analysis [6].

 Torsional helical springs’ ends are rotated in angular deflection to exert a

torsional moment. The design of torsion springs are always close-wounded whereas the

end of the coil tends to be extended to provide levers to carry out the torque. The way

it operates is when torque is applied, it always increase in body length and reduce in

5

coil diameter as it is deflected. In contrast to compression and extension helical springs,

the wire is in bending stresses. The fatigue factor, inside coil diameter and pin diametral

clearance when subjected to torque, maximum operating torque and corresponding

rotation for static loading can be calculated when given the diameter of music wire,

number of coil/turns, coil outside diameter and pin diameter [7].

2.2 Optimal Design of Helical Springs

On the other hand, optimal design differs from conventional design in term of

maximizing the usage of material (e.g. minimum mass) and the highest fatigue life

under given operation requirement. When conventional design are done, the product

may be inadequate or overdesigned. [2] defined the optimization of coil spring with

minimum-mass spring while complying two constraints. The deflection of the spring at

the least ∆ (in) and the frequency of the surge waves must not be less than 𝜔0.

Another research on optimal design of helical springs [8] concluded that the

choice of a large spring diameter has a result of large value of the spring mass and the

reduction of the spring mass by optimal design may be of 16%. This was done by

nonlinear programming model with given spring rate, the fatigue stress, buckling

stability condition, torsional stress corresponding to the maximum force applied, and

constraints of outer coil diameter and spring index.

 M. Paredes, M. Sartor, and C. Masclet approached the optimization process by

linking both industrial and mathematical knowledge. This method is done by

determining the optimal extension spring design from a specification sheet where data

are set with interval values. The optimization problem is solved using branch-and-

bound process and added to a Generalized Reduced Gradient solution process using

excel solver [9]. The outcome is that the spring with biggest fatigue life and efficient

design for mass production are obtained.

 Spring mass optimization can be done in many methods. Different methods are

used to get different related outcome. Minimization of the helical spring mass and its

first natural frequency as objective function is developed as a method of dynamic

optimization for helical spring. The sensitivity of the spring to its first natural

frequencies where the phenomenon of resonance appears with large displacements is

6

taken into account to establish a complex helical spring optimization problem. The

results show that by moving away the helical spring first natural frequency from

working zone can greatly reduce the spring mass and increase the design quality [10].

Another optimal design mathematical model of helical spring is established by

theory of Particle Swarm Optimization (PSO) algorithm. With fourteen inequality

constraints conditions and three design variables, the complex optimal design problem

is simulated and thus the optimal values of the variables and minimal weight of the

helical spring can be obtained. The result of simulation shows that by using PSO

algorithm the design quality and efficiency can be improved greatly and weight of the

helical spring can be greatly reduced [11].

Y. Takao T. Takeaki and G. Mitsuo in their paper formulate an optimal weight

design problem of helical spring for a constrained allowable shearing stress, number of

active coils and coil's average radius as a nonlinear integer programming problem and

solve it directly by keeping the nonlinear constraint by using improved genetic

algorithm. As a result, the number of decision (design) variables did not increase, the

best compromised solution is generated [12].

This approach can be extended to the other types of springs such as extension,

torsion or conical springs. More generally, as this approach can be time consuming, it

could be of major interest to help designers when analytical formulae can be exploited.

2.3 Composite Material Spring

Studies on optimal design of composite material tubular compression spring with given

the stiffness, the maximum deflection and the spring material properties show that the

mass of tubular metal spring can be calculated as at least one half of the mass of

common bar springs. By adopting materials with regard to the steel springs, the

outcome show that the mass of helical springs can dramatically be reduced [13].

The results of analysis and optimization of a composite leaf spring [3] close that

the composite springs has lower stresses, higher natural frequency whilst reducing the

spring weight by 80%. The optimum spring width decrease hyperbolically and the

thickness increase linearly from the spring eye towards the axle seat.

7

To reduce the weight of automotive coil springs, the use of carbon fiber/epoxy

composite materials was considered. The verification of the static spring rates, as well

as material and design parameters are determined. In order to get the properties of

matrix and fiber, theoretical equations with modified correction coefficient were used

and the results agreed with carbon fiber/epoxy composite material experimental results.

From the inverse relationship between the twist angle and the shear modulus, the

equivalent shear modulus of the composite was predicted. Weight reduction in excess

of 55% could be obtained by applying the finite element analysis[14].

In one of the study done by Mehdi Bakhshesh and Majid Bakhshesh [15], where

three composite materials; Carbon-Epoxy, Kevlar-Epoxy and Glass-Epoxy, shows that

numerical results have been compared with theoretical results and found to be in good

agreement. When fiber position has been considered to be in direction of the loading,

the composite helical springs has been found to have lesser stress and has the most

value compared to steel spring. When changing the percentage of fiber, Weight of

spring has been reduced and has been shown that changing percentage of fiber does not

affect the spring weight. Composite helical spring longitudinal displacement is more

than steel composite helical spring is more than that of steel helical spring.

2.3 Python Programming and PyOpt

Python is an open source, free, high-level programming language that has a large

following in the scientific computing community and supports object-oriented

programming. Python is able to provide a readable and clear syntax in line with an

intuitive object oriented with large number of data structures and types[16]. It is highly

stable and run in an interactive mode. Thus, this make Python an easy to debug and

learn programming language.

 Python Optimization Framework or known as PyOpt is a Python-based package

for solving nonlinear optimization. The goal of the optimization process can either be

to maximize or minimize the objective function subjected to a set of constraints. There

are several types of optimization solver available in the PyOpt package; SNOPT,

NLPQL, NLPQLP, FSQP, SLSQP, PSQP, ALGENCAN, FILTERSD, COBYLA,

SDPEN, SOLVOPT, ALPSO, ALSHO, MMA, GCMMA, CONMIN, MMFD, KSOPT,

NSGA-II, and MIDACO [16]. However, only a few is selected for ease of analysis.

8

CHAPTER 3

METHODOLOGY

In order to achieve the objectives, this project focused on three types of helical springs

which are compression spring, extension spring and torsional spring. For each type of

spring, different objective function will be developed and further analysed to obtain

different criterions which are either fatigue life or minimum weight. The result of

optimal design of helical springs are then exported to Computer Aided Drawing (CAD)

format for modelling.

3.1 Process Flow Chart

Figure 1: Process Flow Chart of Project Development

Identification of Problem Statement
and Objectives Function

Modelling of Helical Springs

Adding Optimization Process
Formulation into Proposed Model

Validation of proposed model of
Spring

Translation of model into coding
using Python

Debugging of program prototype

Validation of Proposed Program

9

Types of helical
spring

Compression

Input Design
Variables

Select Algorithm

ALPSO

Optimization
formulation

from proposed
model

Display calculated
spring values

Results for Optimal
Design of Spring

Run Iterations

Meet the
criteria ?

NO

YES

NSGAII

COBYLA
SLSQP

MIDACO

ALGENCAN

ALHSO

Figure 2: Flow Chart of modelling methodology

10

3.2 Materials, Tools and Equipment

Availability of resources specifically on materials, tools and equipment are one of the

important parameters in executing this project. This inclusive of software (computer

programs for project preparation, documentation and project execution), and project

tools i.e. hardware. The items are listed in table 1.

Table 1: List of equipment with its function

No Items Function

1
Microsoft Office Excel 2013

Software

To carry out preliminary calculations and

formulation.

2
Programming Software

(Python, C++, C)

To develop equations and performing

calculations.

3
GUI Development Software

(tkInter, wxPython, PyGtk)

To prepare the friendly Graphical User

Interface.

4
Scientific and Numeric Software

(SciPy, Pandas, IPython)

To calculate and solve the formulation/

algorithm.

5
CAD Software

(freeCAD, TinkerCAD, Cura)
To develop 3D model of the design.

11

3.3 Project Timeline

Table 2: Gantt Chart for FYP

No Activity Final Year Project 1 Final Year Project 2

 Weeks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 Modelling of Helical Spring

1.1 Identifying Parameters

1.2 Identifying Variables

1.3 Defining Constrains

1.4 Verification of modelling process

1.5 Complete model of spring

2 Optimization Process Formulation

2.1 Problem Statement

2.2 Data and information collection

2.3 Identification of design variables

2.4 Criterion to be optimized

2.5 Formulation of constraints

3 Programming / Coding

3.1 Identifying suitable program

3.2 Defining the algorithm

3.3 Converting model into programming

3.4 Running and debugging of program

3.5 Developing Graphical User Interface

(GUI)

4 Validation Process

4.1 Comparison with conventional design

4.2 Sample calculation for existing product

12

CHAPTER 4

RESULTS AND DISCUSSION

The informations needed to design a coil spring is tabulated as below:

Table 3: Information needed to design helical springs

DESCRIPTION SYMBOL UNIT

Deflection along the axis of spring 𝛿 𝑚

Mean coil diameter 𝐷 𝑚

Wire diameter 𝑑 𝑚

Number of active coils 𝑁

Gravitational constant 𝑔 m

s2

Frequency of surve waves 𝜔 𝐻𝑧

Weight Density of spring material 𝛾 𝑔

𝑚3

Shear Modulus 𝐺 kg

ms2

Mass Density of Material 𝜌 𝑘𝑔𝑠2

m4

Allowable Shear Stress 𝜏𝑎 kg

ms2

Number of inactive coils 𝑄

Applied load 𝑃 𝑘𝑔

Minimum Spring Deflection ∆ 𝑚

Lower limit on surge wave frequency 𝜔0 Hz

Limit on outer diameter of coil 𝐷0 𝑚

The design equation for the spring are as follows:

𝐿𝑜𝑎𝑑 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛: 𝑃 = 𝐾𝛿 (a)

13

𝑆𝑝𝑟𝑖𝑛𝑔 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡: 𝐾 =
𝑑4𝐺

8𝐷3𝑁
 (b)

𝑆ℎ𝑒𝑎𝑟 𝑆𝑡𝑟𝑒𝑠𝑠: 𝜏 =
8𝑘𝑃𝐷

𝜋𝑑3 (c)

𝑊𝑎ℎ𝑙 𝑆𝑡𝑟𝑒𝑠𝑠 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟: 𝑘 =
4𝐷−𝑑

4(𝐷−𝑑)
+

0.615𝑑

𝐷
 (d)

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑠𝑢𝑟𝑔𝑒 𝑤𝑎𝑣𝑒𝑠: 𝜔 =
𝑑

2𝜋𝑁𝐷3 √
𝐺

2𝜌
 (e)

PyOpt

 PyOpt is a package designed for formulating and solving optimization

problems[16]. It requires the user to be familiar with Python Programming software or

any other similar programming language (C++, C, etc.). Basic structures required in

solving optimization problem by using PyOpt are:

1. Objective Function (Minimum or maximum)

2. Constraints (Inequality or equality equations)

3. Design Variables (Continuous, Integer, or Discrete)

4. Optimizers (Algorithm Solver)

Spring Design Case Study

The optimization problem is described by Garg, H. [17] and it consist of minimizing

the weight of a compression/tension spring as in Figure 5 subjected to constraints on

limits on outside diameter, design variables, surge frequency, shear stress, and

minimum deflection. The equations on objective functions and the respective

constraints can be summarize as follow:

Figure 3: Design of Tension/Compression Spring

14

Minimize 𝑓(𝑋) = (𝑥3 + 2)𝑥2𝑥1
 2

𝑠. 𝑡 𝑔(𝑋) = 1 −
𝑥2

 3𝑥3

71785𝑥1
4

≤ 0

𝑔(𝑋) =
4𝑥2

2 − 𝑥1𝑥2

12566(𝑥2𝑥1
3 − 𝑥1

4)
+

1

5108𝑥1
2

− 1 ≤ 0

𝑔(𝑋) = 1 −
140.45𝑥1

𝑥2
2𝑥3

≤ 0

𝑔(𝑋) =
𝑥1 + 𝑥2

1.5
− 1 ≤ 0

0.05 ≤ 𝑥1 ≤ 2; 0.25 ≤ 𝑥2 ≤ 1.3; 2 ≤ 𝑥3 ≤ 15

This problem has been solved using geometric programming and the solution was found

iteratively as shown in Table 4 below. For different solver used, it can be seen that the

values are different from each other. This is because each of them has a unique way of

formulating the optimization problem to be solved.

In order to achieve the objectives, this project focused on three types of helical

springs which are compression spring, extension spring and torsional spring. For each

type of spring, different objective function will be developed and further analyzed to

obtain different criterions which are either fatigue life or minimum weight. The result

of optimal design of helical springs can later be used for desired application.

 Therefore, to generate the possible configuration of helical compression

springs, there are 7 algorithm techniques were selected namely; Sequential Least

Squares Programming (SLSQP), Augmented Lagrangian with GENCAN

(ALGENCAN, Constrained Optimization BY Linear Approximation (COBYLA),

Augmented Lagrangian Particle Swarm Optimizer (ALPSO), Non-Sorting Genetic

Algorithm II (NSGA2), Augmented Lagrangrian Harmony Search Optimizer

(ALHSO), and Mixed Integer Distributed Ant Colony Optimizer (MIDACO). To verify

the applicability of this algorithm in generating the optimal result, one model of helical

compression spring was taken into test.

15

Table 4: Design Variables values subjected to a set of constraint.

𝑀𝑒𝑡ℎ𝑜𝑑
𝐷𝑒𝑠𝑖𝑔𝑛 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

𝑓(𝑋)
𝑥1 𝑥2 𝑥3

Harish [17] 0.0516891 0.3567200 11.288831 0.0126652

Akay and

Karaboga[18]

0.051749 0.358179 11.203763 0.012665

Coelho[19] 0.051515 0.352529 11.538862 0.012665

Keveh and

Talatahari [20]

0.051865 0.361500 11.00000 0.012643

Omran and

Salman [21]

0.0516837 0.3565898 11.296471 0.0126652

Montes and

Coelho [22]

0.051643 0.355360 11.397926 0.012698

PRESENT STUDY

𝑆𝐿𝑆𝑄𝑃 0.051718 0.357416 11.243917 0.0126612

𝐶𝑂𝐵𝑌𝐿𝐴 0.051687 0.356668 11.28766 0.0126612

𝑁𝑆𝐺𝐴 − 𝐼𝐼 0.054379 0.424763 8.190675 0.0128002

𝐴𝐿𝐺𝐸𝑁𝐶𝐴𝑁 0.051687 0.356666 11.287729 0.0126612

𝐴𝐿𝑃𝑆𝑂 0.050141 0.320925 13.725588 0.0126881

𝑀𝐼𝐷𝐴𝐶𝑂 0.051353 0.356283 11.282812 0.0126261

𝐴𝐿𝐻𝑆𝑂 0.068999 0.933431 2 0.0177758

The results obtained were subjected to initial value of 𝑥1 = 1.473727, 𝑥2 =

1.93532, and 𝑥3 = 9.918556.

Modelling of helical springs.

The approach used in modelling the helical spring is by Geometric Programming.

1. Objective Function – to minimize the mass of spring for production.

𝑓(𝑥) = 𝑀𝑎𝑠𝑠 =
1

4
(𝑁 + 𝑄)𝜋2𝐷𝑑2𝜌 (f)

2. Constraints – 4 design constraints are formulated in inequality form

Deflection of spring to be at least ∆

𝑔(𝑋) =
8𝑃𝐷3𝑁

𝑑4𝐺
≥ ∆ (g)

16

Shear Stress in wire must be no greater than 𝜏𝑎

𝑔(𝑋) =
8𝑃𝐷

𝜋𝑑3
[

(4𝐷−𝑑)

4(𝐷−𝑑)
+

0.615𝑑

𝐷
] ≤ 𝜏𝑎 (h)

Frequency of surge waves to be as great as possible

𝑔(𝑋) =
d

2πND2 √
G

2ρ
≥ ω0 (i)

Summation of coil and wire diameter must be less than limit on outer

diameter

𝑔(𝑋) = 𝐷 + 𝑑 ≤ 𝐷0 (j)

3. Design Variables:

 𝑑𝑚𝑖𝑛 ≤ 𝑑 ≤ 𝑑𝑚𝑎𝑥

 𝑀𝑖𝑛 𝑎𝑛𝑑 𝑀𝑎𝑥 𝑙𝑖𝑚𝑖𝑡𝑠 ∶ 𝐷𝑚𝑖𝑛 ≤ 𝐷 ≤ 𝐷𝑚𝑎𝑥 (k)

𝑁𝑚𝑖𝑛 ≤ 𝑁 ≤ 𝑁𝑚𝑎𝑥

a. d = wire diameter, mm

b. D = coil diameter, mm

c. N = number of active coils

4. Optimizers

i. SLSQP

ii. COBYLA

iii. MIDACO

iv. ALHSO

v. NSGA-II

vi. ALGENCAN

vii. ALPSO

 Before programming of the proposed model into Python, each of the equation

from (f) to (j) must be modified to ensure that it is calculated correctly.

 The steps taken to convert into programming codes is shown as below:

17

From equation (f),

𝑓(𝑥) =
1

4
(𝑁 + 𝑄)𝜋2𝐷𝑑2𝜌

 =
𝜋2𝜌

4
(𝑁 + 𝑄)𝐷𝑑2

This equation is coded as below:

q=((pi**2)*D_)/4

f = q*(x[2]+2)*x[1]*x[0]**2

From equation (g),

𝑔(𝑋) =
8𝑃𝐷3𝑁

𝑑4𝐺
≥ ∆

 = 1 −
8𝑃𝐷3𝑁

𝑑4𝐺 ∆
≤ 0

 = 1 −
8𝑃

𝐺 ∆
×

𝐷3𝑁

𝑑4 ≤ 0

This equation is coded as below:

 y=(8*P)/(G*K)

 k=1/y

 g[0] = 1-((((x[1]**3)*x[2]))/(k*(x[0]**4)))

From equation (h),

8𝑃𝐷

𝜋𝑑3 [
(4𝐷−𝑑)

4(𝐷−𝑑)
+

0.615𝑑

𝐷
] ≤ 𝜏𝑎

8𝑃𝐷

𝜏𝑎𝜋𝑑3 [
4𝐷−𝑑

4(𝐷−𝑑)
+

0.615𝑑

𝐷
] − 1 ≤ 0

8𝑃

𝜏𝑎𝜋
×

𝐷

𝑑3 [
4𝐷−𝑑

4(𝐷−𝑑)
+

0.615𝑑

𝐷
] − 1 ≤ 0

8𝑃

𝜏𝑎𝜋
× [

4𝐷2−𝐷𝑑

4𝐷𝑑3−𝑑4
+

0.615

𝑑2
] − 1 ≤ 0

18

8𝑃

𝜏𝑎𝜋
× [

4𝐷2−𝐷𝑑

4𝐷𝑑3−𝑑4 +
0.615

𝑑2] − 1 ≤ 0

[(
8𝑃

𝜏𝑎𝜋
)

4𝐷2−𝐷𝑑

4𝐷𝑑3−4𝑑4 + (
8𝑃

𝜏𝑎𝜋
)

0.615

𝑑2] − 1 ≤ 0

This equation is coded as below:

m=((8*P)/(pi*T))

z=1/(m/4)

g[1] = (((4*(x[1]**2))-(x[0]*x[1]))/(z*(((x[1]*(x[0]**3)))-

(x[0]**4))))+(1/(u*x[0]**2))-1

From equation (i),

𝑔(𝑋) =
d

2πND2 √
G

2ρ
≥ ω0

= 1 −
𝑑

2𝜋𝑁𝐷2𝜔𝑜
√

𝐺

2𝜌
 ≤ 0

= 1 −
𝑑

𝑁𝐷2 ×
1

2𝜋𝜔𝑜
× √

𝐺

2𝜌
 ≤ 0

This equation is coded as below:

r=(G/(2*D))**0.5

t=r/(2*pi*W)

g[2] = 1-((t*x[0])/((x[1]**2)*x[2]))

From equation (j),

𝑔(𝑋) = 𝐷 + 𝑑 ≤ 𝐷0

=
𝑑+𝐷

𝐷𝑜
− 1 ≤ 0

This equation is coded as below:

g[3] = ((x[0]+x[1])/N)-1

19

The Optimization Program.

The goal here is to minimize the weight of the spring with regards to the value

given by the user. The program is divided into two parts in which the first part specifies

the material used. The common type of spring is included in form of list that can be

choose from in either Hard drawn steel wire ASTM A227, Music wire ASTM A228,

Oil-tempered steel wire ASTM A229, Chrome-vanadium alloy steel wire ASTM A231,

Stainless steel wire ASTM A313-302 or a custom material defined by the user itself.

The second part of the program is the design parameters which define the helical

spring geometry which are:

i. Load Applied (kg)

ii. Deflection of spring (m)

iii. Spring Coil Diameter (m)

iv. Spring Wire Diameter (m)

v. Number of Coil

These parameters are required and have to be specified in order to calculate the

other. Only two operating parameters is considered in this study that is load applied and

the deflection of the springs. The key here is to get the best possible configuration to

define the spring. For that reason, parameters (iii) to (iv) are defined with interval

values. This can be set by giving their bounds (lower and upper limits).

Figure 4: Specification Sheet

The data set in this way for stock compression springs has been tested by

Peredes [23] where is provides an efficient and powerful means of expression. The

20

resolution circumstances requires a starting point close to the solution area. So, a

random number is generated from the interval by implementing a function. This is done

by importing the random module from python standard library where the program is

able to generate random point from the given interval. This function is written as follow;

import random

A_= random.uniform(A1,A2)

B_= random.uniform(B1,B2)

C_= random.uniform(C1,C2)

where A_ is a random number generated from the given interval A1 and A2. Before

running the program, this kind of process needs the variables to be initialized, defining

the calculation starting point. The choice of the starting point is very important as the

algorithm is most likely to converge towards the optimal solution as closer this point is

to the final solution.

Calculation Examples.

After successful modelling and programming, a program is developed to

validate whether the proposed model is able to carry out the optimization problem. In

order to validate this, a sample calculation has been done referencing to the materials

and design parameter values provided by Harish Garg[17].

𝑊𝑒𝑖𝑔ℎ𝑡 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = 11215.334213 𝑘𝑔/𝑚3

𝑆ℎ𝑒𝑎𝑟 𝑀𝑜𝑑𝑢𝑙𝑢𝑠 = 79289108835 𝑃𝑎

Allowable Torsional Stress = 79289708835 𝑃𝑎

Maximum Deflection = 0.0127 m

Applied Load = 4.5359 kg

Coil Diameter Range = 0.00127 m ≤ 𝑥1≤ 0.0508 m

Wire Diameter Range = 0.00635 m ≤ 𝑥2≤ 0.00635 m

Number of Coil = 2 ≤ 𝑥3≤ 15

21

Table 5: Best Solution Iterated by Optimizers

PRESENT STUDY

𝑀𝑒𝑡ℎ𝑜𝑑
𝐷𝑒𝑠𝑖𝑔𝑛 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

𝑓(𝑋) : mass
𝑥1: coil diameter 𝑥2 : wire diameter 𝑥3: no. of coil

𝑆𝐿𝑆𝑄𝑃 0.001270 0.028371 3.164777 0.0006562

𝐶𝑂𝐵𝑌𝐿𝐴 0.001270 0.030718 2.490710 0.0006178

𝑁𝑆𝐺𝐴 − 𝐼𝐼 0.001270 0.033020 2.005172 0.0005923

𝐴𝐿𝐺𝐸𝑁𝐶𝐴𝑁 0.001270 0.033020 2.005168 0.0005922

𝐴𝐿𝑃𝑆𝑂 0.001270 0.033020 2.005125 0.0005923

𝑀𝐼𝐷𝐴𝐶𝑂 0.001270 0.033020 2.003163 0.000598

𝐴𝐿𝑆𝐻𝑂 0.001270 0.029889 2.976400 0.0006661

All of the optimizers are able to get the optimal solution for the springs from the given

values. It can be seen that ALGENCAN method gives the least weight and ALHSO

method gives the highest weight. This is again because different method are using

different method in formulating the constraints set.

Figure 5 Screen Shot of Program Developed

22

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

The model used to develop into programming was based on Aurora[2] and

Harish Garg[17]. It can be concluded that modelling of helical springs on

compression/tension spring was successful and future works will include another type

of springs that is torsional spring. This paper presents the Optimal Design of helical

springs. Modelling of Helical Springs. The objective is to minimize the weight of the

spring so that the cost of the design will also decrease. To evaluate the performance of

PyOpt package, a case study was conducted and compared to other optimization method

done by other researchers. The solutions found by each of the method is comparable

with the other algorithm-based optimization methods. To ease the utilization of the

package, a friendly Graphical User Interface (GUI) has been developed. All the results

are tabulated and compared accordingly. Thus, it is concluded that PyOpt with Python

Programming software is able to carry out the process of getting the Optimal Design of

Helical Springs based on the proposed helical springs model.

There are plenty of improvement can be taken into consideration. This

optimization problem can be more fine-tuned by adding more constraints into

consideration. Sets of constraints that can be considered is the range for length of

spring, range of operating load, and frequency of natural frequency. Adding more

constraints will lead to a more accurate result. Addition of options in getting the

objective in designing such as maximum fatigue life can also be taken into

recommendation. From the outcome of the optimal design of helical spring calculation,

the result can be transformed into CAD springs drawing which can later be used for

actual prototype and also simulations. For distribution of software, this program can be

simplified to executable files (.exe) where user without Python software can use it

easily.

23

REFERENCES

[1] J. Armstrong, Design Matters. London: Springer, 2008.

[2] J. S. Arora, Introduction to Optimum Design: Academic Press, 2011.

[3] M. M. Shokrieh and D. Rezaei, "Analysis and optimization of a composite leaf

spring," Composite Structures, vol. 60, pp. 317-325, 5// 2003.

[4] H. I. GmbH. (2015, 20 October). Mechanical Engineering Software.

Available: http://www.hexagon.de/

[5] S. M. Institute. (2015, 20 October 2015). Advanced Spring Design Software

(ASDS). Available: http://www.smihq.org/

[6] P. R. N. Childs, "Chapter 15 - Springs," in Mechanical Design Engineering

Handbook, P. R. N. Childs, Ed., ed Oxford: Butterworth-Heinemann, 2014,

pp. 625-675.

[7] R. G. Budynas, J. K. Nisbett, and J. E. Shigley, Shigley's mechanical

engineering design: McGraw-Hill, 2008.

[8] P. S. Aurel, "ON THE OPTIMAL DESIGN OF HELICAL SPRINGS OF AN

AUTOMOBILE SUSPENSION," 2009.

[9] M. Paredes, M. Sartor, and C. Masclet, "An optimization process for extension

spring design," Computer Methods in Applied Mechanics and Engineering,

vol. 191, pp. 783-797, 12/21/ 2001.

[10] M. Taktak, K. Omheni, A. Aloui, F. Dammak, and M. Haddar, "Dynamic

optimization design of a cylindrical helical spring," Applied Acoustics, vol. 77,

pp. 178-183, 3// 2014.

http://www.hexagon.de/
http://www.smihq.org/

24

[11] X. Qimin, L. Liwei, and X. Qili, "The optimal design and simulation of helical

spring based on particle swarm algorithm and MATLAB," WSEAS

Transactions on Circuits and Systems, vol. 8, pp. 84-93, 2009.

[12] T. Yokota, T. Taguchi, and M. Gen, "A solution method for optimal weight

design problem of herical spring using genetic algorithms," Computers &

industrial engineering, vol. 33, pp. 71-76, 1997.

[13] G. Mastinu, M. Gobbi, and C. Miano, "Optimal Design of Helical Spring," in

Optimal Design of Complex Mechanical Systems, ed: Springer Berlin

Heidelberg, 2006, pp. 303-330.

[14] B.-L. Choi and B.-H. Choi, "Numerical method for optimizing design

variables of carbon-fiber-reinforced epoxy composite coil springs,"

Composites Part B: Engineering, vol. 82, pp. 42-49, 12/1/ 2015.

[15] M. Bakhshesh and M. Bakhshesh, "Optimization of steel helical spring by

composite spring," International journal of multidisciplinary science and

engineering, vol. 3, 2012.

[16] R. E. Perez, P. W. Jansen, and J. R. R. A. Martins, "pyOpt: a Python-based

object-oriented framework for nonlinear constrained optimization," Structural

and Multidisciplinary Optimization, vol. 45, pp. 101-118, 2011.

[17] H. Garg, "Solving structural engineering design optimization problems using

an artificial bee colony algorithm," 2014.

[18] B. A. a. D. Karaboga, "Artificial bee colony algorithm for large-scale

problems and engi- neering design optimization," Journal of Intelligent

Manufacturing, vol. 23, pp. 1001-1014, 2012.

[19] L. S. Coelho, "Gaussian quantum-behaved particle swarm optimization

approaches for con- strained engineering design problems," Expert Systems

with Applications, , vol. 37, pp. 1676-1683, 2010.

25

[20] A. Kaveh and S. Talatahari, " An improved ant colony optimization for

constrained engineering design problems," Engineering Computations, vol.

27, pp. 155-182, 2010.

[21] M. G. H. Omran and A. Salman, "Constrained optimization using

CODEQ," Chaos, Solitons & Fractals, vol. 42, 2009.

[22] E. M. M. a. C. A. C. Coello, "An empirical study about the usefulness of

evolution strate- gies to solve constrained optimization problems,"

International Journal of General Systems, vol. 37, pp. 443-473, 2008.

[23] M. S. M. Paredes, C. Masclet, "Stock Spring Selection Tool," SPRINGS, 2000.

26

APPENDICES

Table 6: Constraints values for the proposed model of helical springs:

DESCRIPTION SYMBOL VALUE UNIT

Deflection along the axis of spring 𝛿 𝐼𝑁𝑃𝑈𝑇 𝑚

Mean coil diameter 𝐷 𝐼𝑁𝑃𝑈𝑇 𝑚

Wire diameter 𝑑 𝐼𝑁𝑃𝑈𝑇 𝑚

Number of active coils 𝑁 𝐼𝑁𝑃𝑈𝑇

Gravitational constant 𝑔 9.81 m

s2

Weight Density of spring material 𝛾 𝐼𝑁𝑃𝑈𝑇 𝑔

𝑚3

Shear Modulus 𝐺 𝐼𝑁𝑃𝑈𝑇 kg

ms2

Mass Density of Material 𝜌 𝛾/9.81 𝑘𝑔𝑠2

m4

Allowable Shear Stress 𝜏𝑎 𝐼𝑁𝑃𝑈𝑇 kg

ms2

Number of inactive coils 𝑄 2

Applied load 𝑃 𝐼𝑁𝑃𝑈𝑇 𝑘𝑔

Minimum Spring Deflection ∆ 𝐼𝑁𝑃𝑈𝑇 𝑚

Lower limit on surge wave frequency 𝜔0 100 Hz

Limit on outer diameter of coil 𝐷0 𝐼𝑁𝑃𝑈𝑇 𝑚

27

Python Code for the Program Developed.

import os, sys, time
import pdb
import math
import linecache
import ctypes
from numpy import *
from pyOpt import Optimization
from pyOpt import SLSQP
from pyOpt import COBYLA
from pyOpt import NSGA2
from pyOpt import ALGENCAN
from pyOpt import ALPSO
from pyOpt import MIDACO
from pyOpt import ALHSO
from Tkinter import *
import ttk

master = Tk()
master.wm_title("Spring Optimization")
master.minsize(500,400)
master.maxsize(1366,689)

class MyListbox:
 def __init__(self, parent, title):
 self.parent = parent
 self.parent.title(title)
 self.parent.protocol("WM_DELETE_WINDOW", self.closes)

 self.myData= (
 ["1", "Hard drawn steel wire ASTM A227", "7850", "79500000000",
"59000000"],
 ["2", "Music wire ASTM A228", "7850", "81000000000", "655000000"],
 ["3", "Oil-tempered steel wire ASTM A229", "7850", "77000000000",
"658000000"],
 ["4", "Chrome-vanadium alloy steel wire ASTM A231", "7850", "77000000000",
"769000000"],
 ["5", "Stainless steel wire ASTM A313 - 302", "7900", "69000000000",
"483000000"],["6", "Custom", "", "", ""])

 self.establishment()

 def combobox_handler(self, event):
 current = self.combobox.current()
 self.MatDen.delete(0, END)
 self.MatMod.delete(0, END)
 self.MatTor.delete(0, END)

 self.MatDen.insert(END, self.myData[current][2])
 self.MatMod.insert(END, self.myData[current][3])
 self.MatTor.insert(END, self.myData[current][4])

 def establishment(self):
 mainFrame = Frame(self.parent)
 mainFrame.pack(fill=BOTH, expand=YES)

 self.statusBar = Label(mainFrame, text="This software will calculate the
optimal value based on the given parameters",relief=SUNKEN, bd=1)

28

 self.statusBar.pack(side=BOTTOM, fill=X)

 fr_left = Frame(mainFrame, bd=10)
 fr_left.pack(fill=BOTH, expand=YES, side=LEFT)

 Materials = [Types[1] for Types in self.myData]
 self.combobox = ttk.Combobox(fr_left, values=Materials, width=40)
 self.combobox.bind('<<ComboboxSelected>>', self.combobox_handler)
 self.combobox.grid(row=1, column=1)

 Label(fr_left, font = "Times 20 bold italic", text='1. Select
Material').grid(row=0, column=1)
 Label(fr_left, font = "Times 14 ", text='Material').grid(row=1, column=0,
sticky=W)

 Label(fr_left, font = "Times 14 ", text='Material Density').grid(row=2,
column=0, sticky=W)
 self.MatDen = Entry(fr_left, width=40)
 self.MatDen.grid(row=2, column=1)
 Label(fr_left, font = "Times 14 ", text='kg/m^3').grid(row=2, column=2,
sticky=W)

 Label(fr_left, font = "Times 14 ", text='Shear Modulus').grid(row=3, column=0,
sticky=W)
 self.MatMod = Entry(fr_left, width=40)
 self.MatMod.grid(row=3, column=1)
 Label(fr_left, font = "Times 14 ", text='kg/m^2').grid(row=3, column=2,
sticky=W)

 Label(fr_left, font = "Times 14 ", text='Allowable Torsional
Stress').grid(row=4, column=0, sticky=W)
 self.MatTor = Entry(fr_left, width=40)
 self.MatTor.grid(row=4, column=1)
 Label(fr_left, font = "Times 14 ", text='kg/m^2').grid(row=4, column=2,
sticky=W)

 Label(fr_left, font = "Times 20 bold italic", text="2. Design
Parameters").grid(row=7, column=1)

 Label(fr_left, font = "Times 14 ", text="Load applied :").grid(row=8,
sticky=W)
 e1 = Entry(fr_left)
 e1.grid(row=8, column=1)
 Label(fr_left, font = "Times 14 ", text='kg').grid(row=8, column=2, sticky=W)

 Label(fr_left, font = "Times 14 ", text="Deflection of spring :").grid(row=9,
sticky=W)
 e2 = Entry(fr_left)
 e2.grid(row=9, column=1)
 Label(fr_left, font = "Times 14 ", text='m').grid(row=9, column=2, sticky=W)

 Label(fr_left, font = "Times 14 bold italic", text="Lower Bound
:").grid(row=11, column=1)
 Label(fr_left, font = "Times 14 bold italic", text="Upper
Bound:").grid(row=11, column=2)

 Label(fr_left, font = "Times 14 ", text="Spring Coil Diameter :").grid(row=12,
sticky=W)
 e3 = Entry(fr_left)

29

 e3.grid(row=12, column=1)
 e4 = Entry(fr_left)
 e4.grid(row=12, column=2)
 Label(fr_left, font = "Times 14 ", text='m').grid(row=12, column=3, sticky=W)

 Label(fr_left, font = "Times 14 ", text="Spring Wire Diameter :").grid(row=13,
sticky=W)
 e5 = Entry(fr_left)
 e5.grid(row=13, column=1)
 e6 = Entry(fr_left)
 e6.grid(row=13, column=2)
 Label(fr_left, font = "Times 14 ", text='m').grid(row=13, column=3, sticky=W)

 Label(fr_left, font = "Times 14 ", text="Number of Coil :").grid(row=14,
sticky=W)
 e7 = Entry(fr_left)
 e7.grid(row=14, column=1)
 e8 = Entry(fr_left)
 e8.grid(row=14, column=2)

 Label(fr_left, font = "Times 14 ", text="Select Optimization Algorithm
:").grid(row=16,column=0, sticky=W)

 Label(fr_left, font = "Times 20 bold italic", text="3. Optimal
Result").grid(row=7, column=5)
 Label(fr_left, font = "Times 14 ", text="Mass of spring
:").grid(row=8,column=5, sticky=W)
 Label(fr_left, font = "Times 14 ", text='kg').grid(row=8, column=7, sticky=W)
 Label(fr_left, font = "Times 14 ", text="Spring Coil Diameter
:").grid(row=9,column=5, sticky=W)
 Label(fr_left, font = "Times 14 ", text='m').grid(row=9, column=7, sticky=W)
 Label(fr_left, font = "Times 14 ", text="Spring Wire Diameter
:").grid(row=10,column=5, sticky=W)
 Label(fr_left, font = "Times 14 ", text='m').grid(row=10, column=7, sticky=W)
 Label(fr_left, font = "Times 14 ", text="Number of coil
:").grid(row=11,column=5, sticky=W)

 def callback():

 if not e1.get():
 def Mbox(title, text, style):
 ctypes.windll.user32.MessageBoxA(0, text, title, style)
 Mbox('ALERT', 'Please provide values before pressing calculate', 0)

 elif not e2.get():
 def Mbox(title, text, style):
 ctypes.windll.user32.MessageBoxA(0, text, title, style)
 Mbox('ALERT', 'Please provide values before pressing calculate', 0)
 elif not e3.get():
 def Mbox(title, text, style):
 ctypes.windll.user32.MessageBoxA(0, text, title, style)
 Mbox('ALERT', 'Please provide values before pressing calculate', 0)
 elif not e4.get():
 def Mbox(title, text, style):
 ctypes.windll.user32.MessageBoxA(0, text, title, style)
 Mbox('ALERT', 'Please provide values before pressing calculate', 0)
 elif not e5.get():
 def Mbox(title, text, style):
 ctypes.windll.user32.MessageBoxA(0, text, title, style)

30

 Mbox('ALERT', 'Please provide values before pressing calculate', 0)
 elif not e6.get():
 def Mbox(title, text, style):
 ctypes.windll.user32.MessageBoxA(0, text, title, style)
 Mbox('ALERT', 'Please provide values before pressing calculate', 0)
 elif not e7.get():
 def Mbox(title, text, style):
 ctypes.windll.user32.MessageBoxA(0, text, title, style)
 Mbox('ALERT', 'Please provide values before pressing calculate', 0)
 elif not e8.get():
 def Mbox(title, text, style):
 ctypes.windll.user32.MessageBoxA(0, text, title, style)
 Mbox('ALERT', 'Please provide values before pressing calculate', 0)
 elif not self.MatDen.get():
 def Mbox(title, text, style):
 ctypes.windll.user32.MessageBoxA(0, text, title, style)
 Mbox('ALERT', 'Please provide values before pressing calculate', 0)
 elif not self.MatMod.get():
 def Mbox(title, text, style):
 ctypes.windll.user32.MessageBoxA(0, text, title, style)
 Mbox('ALERT', 'Please provide values before pressing calculate', 0)
 elif not self.MatTor.get():
 def Mbox(title, text, style):
 ctypes.windll.user32.MessageBoxA(0, text, title, style)
 Mbox('ALERT', 'Please provide values before pressing calculate', 0)

 Q = float(2)
 D_= float(self.MatDen.get())
 D = float(float(self.MatDen.get())/9.81)
 P = float(e1.get())
 G = float(self.MatMod.get())
 K = float(e2.get())
 T = float(self.MatTor.get())
 W = float(100)
 N = float(e4.get())

 A1 = float(e3.get())
 B1 = float(e5.get())
 C1 = float(e7.get())
 A2 = float(e4.get())
 B2 = float(e6.get())
 C2 = float(e8.get())

 q=((pi**2)*D_)/4

 y=(8*P)/(G*K)
 k=1/y

 m=((8*P)/(pi*T))
 z=1/(m/4)

 i=(0.615*m)
 u=1/i

 r=(G/(2*D))**0.5
 t=r/(2*pi*W)

 def objfunc(x):

31

 f = q*(x[2]+2)*x[1]*x[0]**2
 g = [0.0]*4
 g[0] = 1-((((x[1]**3)*x[2]))/(k*(x[0]**4)))
 g[1] = (((4*(x[1]**2))-(x[0]*x[1]))/(z*(((x[1]*(x[0]**3)))-
(x[0]**4))))+(1/(u*x[0]**2))-1
 g[2] = 1-((t*x[0])/((x[1]**2)*x[2]))
 g[3] = ((x[0]+x[1])/1.5)-1

 fail = 0
 return f,g, fail

 import random
 A_= random.uniform(A1,A2)
 B_= random.uniform(B1,B2)
 C_= random.uniform(C1,C2)

 opt_prob = Optimization('SPRING OPTIMIZATION',objfunc)
 opt_prob.addVar('coil_diameter','c',lower=A1,upper=A2,value=A_)
 opt_prob.addVar('wire_diameter','c',lower=B1,upper=B2,value=B_)
 opt_prob.addVar('number_of_coil','c',lower=C1,upper=C2,value=C_)
 opt_prob.addObj('f')
 opt_prob.addCon('g1','i')
 opt_prob.addCon('g2','i')
 opt_prob.addCon('g3','i')
 opt_prob.addCon('g4','i')
 print opt_prob

 if v1.get()=="SLSQP":
 slsqp = SLSQP()
 slsqp.setOption('IPRINT',-1)
 slsqp(opt_prob,sens_type='FD')
 print opt_prob.solution(0)
 opt_prob.write2file(outfile='springEX.txt', disp_sols=True)
 file = open("springEX.txt","r+")
 selectline = file.readlines()
 data = selectline[37]
 bodo = data[10:23]
 selectline2 = file.readlines()
 data2 = selectline[41]
 bodo2 = data2[22:37]
 selectline3 = file.readlines()
 data3 = selectline[42]
 bodo3 = data3[22:37]
 selectline4 = file.readlines()
 data4 = selectline[43]
 bodo4 = data4[22:37]
 file.close()
 l6['text'] = bodo
 l7['text'] = bodo2
 l8['text'] = bodo3
 l9['text'] = bodo4

 elif v1.get()=="COBYLA":
 cobyla = COBYLA()
 cobyla.setOption('IPRINT',0)
 cobyla(opt_prob)
 print opt_prob.solution(0)
 opt_prob.write2file(outfile='springEX.txt', disp_sols=True)

32

 file = open("springEX.txt","r+")
 selectline = file.readlines()
 data = selectline[36]
 bodo = data[10:23]
 selectline2 = file.readlines()
 data2 = selectline[40]
 bodo2 = data2[22:37]
 selectline3 = file.readlines()
 data3 = selectline[41]
 bodo3 = data3[22:37]
 selectline4 = file.readlines()
 data4 = selectline[42]
 bodo4 = data4[22:37]
 file.close()
 l6['text'] = bodo
 l7['text'] = bodo2
 l8['text'] = bodo3
 l9['text'] = bodo4

 elif v1.get()=="NSGA2":
 nsga2 = NSGA2()
 nsga2.setOption('PrintOut',0)
 nsga2(opt_prob)
 print opt_prob.solution(0)
 opt_prob.write2file(outfile='springEX.txt', disp_sols=True)
 file = open("springEX.txt","r+")
 selectline = file.readlines()
 data = selectline[36]
 bodo = data[10:23]
 selectline2 = file.readlines()
 data2 = selectline[40]
 bodo2 = data2[22:37]
 selectline3 = file.readlines()
 data3 = selectline[41]
 bodo3 = data3[22:37]
 selectline4 = file.readlines()
 data4 = selectline[42]
 bodo4 = data4[22:37]
 file.close()
 l6['text'] = bodo
 l7['text'] = bodo2
 l8['text'] = bodo3
 l9['text'] = bodo4

 elif v1.get()=="ALGENCAN":
 algencan = ALGENCAN()
 algencan.setOption('iprint',0)
 algencan(opt_prob)
 print opt_prob.solution(0)
 opt_prob.write2file(outfile='springEX.txt', disp_sols=True)
 file = open("springEX.txt","r+")
 selectline = file.readlines()
 data = selectline[38]
 bodo = data[10:23]
 selectline2 = file.readlines()
 data2 = selectline[42]
 bodo2 = data2[22:37]
 selectline3 = file.readlines()
 data3 = selectline[43]

33

 bodo3 = data3[22:37]
 selectline4 = file.readlines()
 data4 = selectline[44]
 bodo4 = data4[22:37]
 file.close()
 l6['text'] = bodo
 l7['text'] = bodo2
 l8['text'] = bodo3
 l9['text'] = bodo4

 elif v1.get()=="ALPSO":
 alpso_none = ALPSO()
 alpso_none.setOption('fileout',0)
 alpso_none(opt_prob)
 print opt_prob.solution(0)
 opt_prob.write2file(outfile='springEX.txt', disp_sols=True)
 file = open("springEX.txt","r+")
 selectline = file.readlines()
 data = selectline[38]
 bodo = data[10:23]
 selectline2 = file.readlines()
 data2 = selectline[42]
 bodo2 = data2[22:37]
 selectline3 = file.readlines()
 data3 = selectline[43]
 bodo3 = data3[22:37]
 selectline4 = file.readlines()
 data4 = selectline[44]
 bodo4 = data4[22:37]
 file.close()
 l6['text'] = bodo
 l7['text'] = bodo2
 l8['text'] = bodo3
 l9['text'] = bodo4

 elif v1.get()=="MIDACO":
 midaco_none = MIDACO()
 midaco_none.setOption('IPRINT',-1)
 midaco_none.setOption('MAXEVAL',50000)
 midaco_none(opt_prob)
 print opt_prob.solution(0)
 opt_prob.write2file(outfile='springEX.txt', disp_sols=True)
 file = open("springEX.txt","r+")
 selectline = file.readlines()
 data = selectline[36]
 bodo = data[10:23]
 selectline2 = file.readlines()
 data2 = selectline[40]
 bodo2 = data2[22:37]
 selectline3 = file.readlines()
 data3 = selectline[41]
 bodo3 = data3[22:37]
 selectline4 = file.readlines()
 data4 = selectline[42]
 bodo4 = data4[22:37]
 file.close()
 l6['text'] = bodo
 l7['text'] = bodo2
 l8['text'] = bodo3

34

 l9['text'] = bodo4

 elif v1.get()=="ALHSO":
 alhso_none = ALHSO()
 alhso_none.setOption('fileout',0)
 alhso_none(opt_prob)
 print opt_prob.solution(0)
 opt_prob.write2file(outfile='springEX.txt', disp_sols=True)
 file = open("springEX.txt","r+")
 selectline = file.readlines()
 data = selectline[38]
 bodo = data[10:23]
 selectline2 = file.readlines()
 data2 = selectline[42]
 bodo2 = data2[22:37]
 selectline3 = file.readlines()
 data3 = selectline[43]
 bodo3 = data3[22:37]
 selectline4 = file.readlines()
 data4 = selectline[44]
 bodo4 = data4[22:37]
 file.close()
 l6['text'] = bodo
 l7['text'] = bodo2
 l8['text'] = bodo3
 l9['text'] = bodo4

 else:
 print "Please Select Algorithm"

 b1 = Button(fr_left, font="bold", text="CALCULATE", width=15,
command=callback)
 b1.grid(row=17, column=2)

 v1 = StringVar()
 v1.set("SLSQP")

 option = OptionMenu(fr_left, v1,
"SLSQP","COBYLA","NSGA2","ALGENCAN","ALPSO","MIDACO","ALHSO")
 option.grid(row=16, column=1)

 l6 = Label(fr_left, bg='chartreuse', font="bold", text='')
 l6.grid(row=8, column=6)
 l7 = Label(fr_left,bg='chartreuse', font="bold", text='')
 l7.grid(row=9, column=6)
 l8 = Label(fr_left,bg='chartreuse', font="bold", text='')
 l8.grid(row=10, column=6)
 l9 = Label(fr_left,bg='chartreuse', font="bold", text='')
 l9.grid(row=11, column=6)

 def closes(self, event=None):
 self.parent.destroy()

if __name__ == '__main__':
 app = MyListbox(master, "Spring Optimization")
 master.mainloop()

