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ABSTRACT

The semiconductor industry can no longer afford to rely on decreasing the size of the

die, and increasing the frequency of operation to achieve higher performance.  An

alternative  that  has  been  proven  to  increase  performance  is  multiprocessing.

Multiprocessing refers to the concept of running more than one application or task on

more  than  one  central  processor.  Multi-core  processors  are  the  main  engine  of

multiprocessing. In asymmetric multiprocessing, each core in a multi-core systems is

independent and has its own code that determines its execution. These cores must be

able to communicate and synchronize access to resources.

In real-time applications, where the output of the system should be deterministic, and

with the increasingly power-intensive embedded systems applications,  asymmetric

multiprocessing can provide a balance between increasing the system performance

and maintaining its determinability.

This  project  documents  the  process  and  provides  the  results  of  implementing

asymmetric  multiprocessing  support  in  FreeRTOS,  a  popular  real-time  operating

system. The platform of choice is Altera Nios II soft-core processor running on a

Field Programmable Gate Array.
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CHAPTER 1

INTRODUCTION

The aim of this project is to extend the open-source FreeRTOS kernel capabilities to

support Asymmetric Multiprocessing (AMP). The hardware platform selected to run

the kernel is Altera Nios II soft processor.

1.1 Background Of Study

A real time system is a system whose output is deterministic. That is, the system must

respond within a specified time, known as the deadline. Normally, embedded systems

have real-time requirements. The “hardness” of a real-time system depends on the

severity of the consequences of missing a deadline. Hence, a hard real-time system

must absolutely meet its deadline always,  whereas a soft  real-time system should

generally meet the deadline, however, a deadline miss is not as severe as it is in hard

real-time systems [1]. Due to their deterministic respond time, hard real-time systems

are used for critical applications such as aerospace and missile control applications. 

A real-time  operating  system,  or  RTOS  is  an  operating  system  with  real-time

capabilities.  The  RTOS  acts  as  a  bridge  between  the  hardware  and  the  user

applications,  or threads of execution. RTOSes in general require multitasking, the

ability to assign priority to threads, and having an enough number of interrupt levels

[2].

FreeRTOS is one of the most widely used RTOSes [3] and currently it has more than

35 microcontroller ports. FreeRTOS was selected to be used in this study. In addition

to being free and open source, FreeRTOS has a very small footprint and it is written

almost entirely in C, except for few assembly lines where needed. 

Despite its wide use in the industry, FreeRTOS is built from the ground up to run on a

single  core.  A microprocessor  contains  a  unit,  called  a  “core”  that  can  execute

instructions  sequentially.  Traditionally,  most  embedded  systems  used  single-core
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processors [4]. A multi-core system can execute code instructions in parallel. For an

example, a dual-core processor can run a piece of code in half the time that a single-

core requires to execute the same code. With the increase in complexity and amount

of processing power required for embedded systems, it  is  not  uncommon to find

homogeneous and heterogeneous multicore embedded systems, and as such, RTOSes

need to be able to take advantage of these cores.

The hardware platform selected for this project is Altera Nios II processor. Nios II is

a 32-bit RISC architecture soft core that can be implemented on Altera FPGAs (Field

Programmable Gate Array). 

1.2 Problem Statement

To increase the system performance,  the  semiconductor  industry  has  traditionally

relied on making the size of the die smaller and increasing its operating frequency

[1]. However, the limitation of using a single processor was soon realized, with the

greatest limitation being heat dissipation when decreasing the die size and increasing

the frequency. Due to heat dissipation problem and the increasing complexity of chip

architecture, multi-core systems were inevitable.

While symmetric multiprocessing can improve the performance of the system, it can

only be implemented on homogeneous cores.  Asymmetric  multiprocessing on the

other  hand  can  be  implemented  on heterogeneous  and homogeneous  cores  alike.

Another critical problem of SMP is that it is not deterministic as system functions

and  threads  are  highly  dependent  on  load  distribution  [5].  This  will  limit  the

applications of SMP in embedded systems.

Therefore, the need for an AMP implementation on RTOS arises to overcome the

problems and limitations of a single core, and the drawbacks of SMP in embedded

systems. This paper aims to develop an AMP setup of FreeRTOS and investigate its

benefits in embedded systems.

1.3 Objectives And Scope Of Study

The principal objective of this paper is to develop an AMP implementation of the

FreeRTOS kernel on a dual-core Nios II processor. The detailed objectives of this

study are as follows.
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• Develop  and  implement  a  dual-core  Nios  II  processor  on  a  simulation

platform.

• To set up an instance of the FreeRTOS kernel on one core of the Nios II dual-

core processor.

• To  provide  an  inter-core  communication  method  for  managing

synchronization routines between the two cores and allowing the master core

to control the slave core execution.

Chapter  2  in  this  project  is  the  literature  review where  previous  work  has  been

discussed and analyzed.  After  that  is  the methodology in chapter  3.  This  chapter

focuses  on  the  implementation  of  the  project  and  presents  the  detailed  steps

undertaken  to  complete  the  project.  The  results  of  the  project  are  presented  and

discussed in chapter 4. Finally, the lasts chapter is the conclusion, where a summary

of the project and recommendations for future work are given. 
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CHAPTER 2

LITERATURE REVIEW

This chapter analyzes the literature for this project. It has been divided into sections

where each section discusses the part of the literature related to its topic. The chapter

starts  with  a  discussion  about  multicore  processors  and  then  multiprocessing  in

RTOS in details.  Synchronization plays a major role in this  project,  and as such,

synchronization mechanisms are analyzed in  the following section.  The basics  of

FreeRTOS is then discussed in the third chapter.  Afterwards, the SMP FreeRTOS

booting process in multi-core system is discussed.

2.1 Multicore Processors

In  a  single  core  processor,  only  one  task  can  run  at  any  given  time,  however,

processors achieve multitasking by relying on the speed of execution being very fast.

The “illusion” of multitasking can be achieved in single-core processors by switching

between tasks rapidly. Multicore systems can, however, achieve real multitasking by

having more than one core executing code at the same time. This can increase the

performance of the system and reduce the time required to execute tasks. 

2.1.1 Multiprocessing in RTOS

Multiprocessing  on  multicore  systems  can  be  either  Symmetric  Multiprocessing

(SMP) or Asymmetric Multiprocessing (AMP). In SMP configuration, all processors

will be connected to a shared memory where all cores execute the same code. One

OS controls all the cores, schedules tasks and synchronizes resources access. In AMP,

on the other hand, each core will have its own OS, memory space and it will execute

a different code. Each OS is responsible for scheduling tasks for its respective core

[1]. 

The most noticeable difference between SMP and AMP is memory footprint. Since
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SMP requires only one instance of the OS, it takes less memory space than AMP

where each core requires its own OS. Managing synchronization routines such as

mutex,  and spin-locks is also easier in SMP since one kernel controls the system

resources.  However,  due  to  the  shared  queue  that  is  used  for  scheduling  tasks,

scheduling overhead for accessing the OS code is much greater in SMP [6].

Other than requiring more memory space, managing synchronization routines is also

more difficult in AMP as each core has its own code. On the other hand, AMP in real-

time applications is more deterministic as studies have shown that algorithms for

single-core scheduling (in contrast to global scheduling in SMP) can offer a better

real-time performance  [7].  Also,  AMP allows for applying single-core scheduling

techniques since each core schedules its own tasks.

Mistry in his thesis [8] develops a modified version of FreeRTOS to support SMP on

dual  processors.  He  used  the  MicroBlaze  port  to  base  his  project  upon,  as  the

platform for  implementation  he is  using is  the  MicroBlaze  processor  running on

Xilinx FPGAs. His implementation allows the FreeRTOS scheduler to schedule tasks

on the two core simultaneously.  The main primary difference of this project, is that

in Mistry's project, the kernels shares the same ready list of tasks. The fact that the

protection of this  list  is  implemented with mutual exclusion,  which is  a blocking

synchronization, reduced the efficiency of the code due to the busy waiting of the

processor [6], [9]. Thus, by increasing the number of cores, the time spent in the busy

waiting state will increase as well,  as each core will be waiting for the list to be

released.  This solution,  on the other hand, makes synchronization easier. Suppose

that there is a task that is busy waiting for a resource held by another task on the

other core. Having the task in this state, makes synchronization easier as the task will

be awaken by simply exiting the waiting loop. An additional feature that Mistry [8]

implemented is core affinity. Core or processor affinity is the ability to bind tasks to a

certain core to run on [10]. 

Another example of implementing multiprocessing on an RTOS is Bulusu's thesis

[6]. The RTOS of choice he used is  uC-OS-II and he used a dual-core Freescale

MPC567K MPU as the platform. The major difference of Bulus's and Mistry's works

is that the former is using an asymmetric multiprocessing setup, where two kernels
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are running; one on each core of the SoC. Every kernel is independent with its own

code and data sections. Bulusu's implementation shares many similarities with this

project, with the main difference being the RTOS of choice. Consequently, a different

hardware platform is used in this paper. 

2.2 Synchronization

In  computer  science,  thread  or  process  synchronization  refers  to  the  concept  of

allowing processes to communicate or shake hands in order to agree on a sequence of

action [11]. In the case of sharing resources for example, synchronization insures that

only one task  can  access  this  resource at  a  time.  Techniques  for  synchronization

among  processes  can  be  software-based  or  hardware-based  [12].  Software-based

techniques  are  implemented  completely  in  code,  and  hence,  it  is  hardware

independent and can be used on any processor.  Such techniques include software

locks, ticket locks, and MCS (Mellor-Crummey and Scott) locks. Hardware locks on

the other hand require the processor to have atomic operations such as test-and-set

and  compare-and-swap.  A comparison  of  software  and  hardware  synchronization

mechanism  [12] shows that hardware synchronization mechanisms are faster than

software mechanisms where they require around one fourth (25%) only of the time

required for software mechanisms.

For shared resources such as peripherals, or for synchronization of the tasks between

the  kernels,  Bulusu  [6] uses  inter-core  semaphores,  which  he  calls  Global

Semaphores. He uses shared memory for inter-tasks communication. Basically, he

implemented global queues that are protected by the global semaphores. In addition

to semaphores, he also uses barrier primitives for synchronization. For an example to

ensure that the kernels and the services are initialized correctly, a barrier primitive

will ensure that all kernels reach a certain point before proceeding.

Priority  ceiling  protocol  is  a  synchronization  protocol  that  is  used  to  prevent

deadlock resulting from priority inversion [13]. Rajkumar proposes an extension for

this protocol, namely Multiprocessor Priority Ceiling Protocol [14]. Bulusu [6] uses

MPCP for his implementation. However, due to the fact that his project is AMP, and

thus,  kernels  are  not  sharing  tasks  ready-list,  he  neglected  the  Priority  Ceiling

concept of the protocol. The Priority Ceiling is based on the concept that a task with
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the highest priority on one core, might not have the highest priority of the global

view [6].

For synchronization, Mistry  [8] opted for use of software based techniques. As he

discussed, mutex peripherals are hardware specific, and in the case of his paper (and

this  project  as  well)  it  is  configuration-specific,  since  it  requires  a  hardware

intellectual property (IP) to be configured into the FPGA. This IP peripheral will take

an additional FPGA space. 

2.3 FreeRTOS

2.3.1 Source Directory Structure

FreeRTOS  is  a  widely  used  RTOS  and  has  many  applications  [3].  To  run  an

application demo, many files might be required, but the whole FreeRTOS kernel is

contained within 3 files only. These files are list.c, tasks.c, and port.c [1], [15]. 

The demo application files

The core kernel files

The core kernel header files

Processor specific code (contains port.c)

One of FreeRTOS strong features is its separation between the hardware independent

layer, and the portable layer [1]. The hardware-independent layer is common across

all ports and it performs most of the system functions. The portable layer performs

the hardware specific  functions and exposes  a set  of  functions  that  the hardware

independent layer can interface with.
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2.3.2 Tasks

Embedded applications can be structured as a set of “tasks” [16]. Each task can run

without any dependency on another task to perform a specific function. On a single

core, only one tasks can be running at any given moment. Other than being in the

“running” state, tasks can also be ready, blocked, or suspended.  A task in the running

state is the task that is actually being executed [17].

 A ready task is a task that is able to run, but it is not running because another task

with an equal or higher priority

is being executed. A blocked task

is a task that cannot run because

it  is  waiting  for  a  temporal  or

external  event.  Finally,

suspended  tasks  are  similar  to

blocked tasks in that they cannot

be  scheduled,  however,  a  task

needs to be explicitly set in and

out  of  the  suspended  state

through  vTaskSuspend()  and

xTaskResume() respectively. The

figure  to  the  right  shows  the

valid state transitions.

FreeRTOS uses preemtive multitasking where every task is given a processor time to

run or suspended involuntary by the scheduler. Every task is given a priority when it

is created [18]. At any given moment, the task with the highest priority (that is not

blocked or suspended) will be running. The following figure explains how tasks are

preemted by showing three tasks running.

8
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2.4 Multiprocessors Booting

Mistry's  [1] setup  consists  of  2  processors  connected  to  a  shared  RAM.  Each

processor however has its own small private block RAM (BRAM) memory. Upon

booting up, the master core starts  executing the code in its private BRAM. After

initializing  the necessary  hardware,  such as  the interrupt  controller  and hardware

timer, the master core starts executing the FreeRTOS scheduler code. At the same

time, the slave core also starts executing the code in its private BRAM to initialize its

hardware. The two cores use the shared RAM for communication. When the slave

core  finishes  initializing  the  hardware,  it  waits  for  the  master  core  to  start  the

scheduler, as it is only then the slave can start executing the code of FreeRTOS in the

shared RAM and can schedule tasks itself.

In his setup, interrupts are handled by the master core. When an interrupt occurs on

the slave core, a small interrupt handler runs that simply passes the interrupt to the

master core, which will be handled by the FreeRTOS interrupt handler. The slave

then returns to its normal execution.

2.5 Altera's Nios II 

Nios II  is  a  soft  core that can be programmed entirely on an FPGA. FPGAs are

integrated circuits that contains memory and logic blocks. These logic blocks can be

configured as digital systems [19]. Using Altera's tools and software, Nios II can be

9
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implemented in Altera's FPGAs.

Out of the box, FreeRTOS provides an official port and demo applications for Nios II

implemented on a Altera Cyclone III FPGA with as specific design [20]. However, in

this paper, FreeRTOS is run on DE2 board, which has Cyclone II on board, and the

hardware design will be developed to suit the project needs. As such, some changes

are required.

2.6 Summary Of The Literature Review

In this chapter, previous work that is related to this project has been reviewed. The

chapter started by discussing multicore processors and multiprocessing in RTOSes,

and discussed some implementations of SMP and AMP versions of popular RTOSes.

Then synchronization techniques are  compared,  and it  was  shown that  hardware-

based techniques are much faster than hardware techniques. FreeRTOS basics was

discussed  and  then  the  booting  process  of  SMP  RTOS  was  explored.  Finally,

important point about Altera Nios II processor were highlighted.
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CHAPTER 3

METHODOLOGY

This chapter focuses the implementation methodology of the project. The first section

discusses Altera's IP cores that are used as the platform for this project. Next section

discusses the implementation and flow chart of the project, whereas the third chapter

shows the detailed steps of implementation.

3.1 Altera's IP Cores

The project uses Alter's FPGA as the platform for implementing the system. Many

soft cores are used to construct the system. The processor core used is Altera's Nios

II/e processor. The processor is used without cache memory for simplicity. Two types

of memories are used. The first one is the on chip memory, which is the memory

inside the FPGA. The size of this memory is limited hence, the second memory is

used  which  the  SDRAM on the  DE2 board.  To interface the processor  with this

memory, an SDRAM Controller IP core is used.

For communication with the host computer, JTAG UART IP cores are used. These

cores allow the processors to send and receive data serially to and from the computer.

Interval Timers cores are connected to the processors to provide a constant “tick” that

is required by the FreeRTOS. Finally, for synchronization, Altera Avalon Mutex core

is used. 

3.2 Project Implementation And Flow Chart

In this  project, two processors are implemented on an FPGA. One processor is a

master, and the other is a slave. The flow chart below shows the behavior of the two

cores. Each processor is independent and runs its own code, however the slave will

process requests coming from the master. As shown below, the slave is waiting in an

infinite loop checking a request queue. When there is a request, the slave will process
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what is required, and then send the results to the master.

The master processor runs tasks that might needs the slave to do extra processing. If

a task needs the slave, it will send a request, and waits for the results. If the results

are not available, the tasks should yield the processor and go into the blocked state,

so it will not consume time busy waiting. Whenever the tasks is run again, it will

check  for  the  results  from  the  slave.  If  results  are  available,  the  task  will  run,

otherwise, it continues to be blocked and other task will take turns. 

If a task does not require the slave for processing, it will run normally on the master

core. 

Figure 4: Flow chart of the system operation
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Sending the request from the tasks on the master to the slave can be achieved via

message passing. Sending the results from the slave to the master can be achieved via

either  message  passing  or  shared  memory.  In  this  project,  message  passing  is

implemented with global queues.

The advantage of this configuration is that the master core in this case is running an

RTOS, however, the slave processor can be running an RTOS or just a bare-metal

application. Therefore, the slave core can be a more powerful core that is intended for

heavy-processing applications.

Another configuration has been developed for the project where the slave core runs

FreeRTOS as well.  This method provides  many benefits  as discussed in  the next

chapter.

3.3 Research Methodology

This  section  details  the  methodology  for  implementing  this  project.  The  general

framework for implementation includes first understanding the project background.

Then,  the  tools  used  for  the  project  including  the  FreeRTOS,  and  the  Nios  II

processor are studied in details. Afterwards, different implementations for AMP has

been explored to determine the most suitable approach for implementation. Before

actual modifications were made to the FreeRTOS kernel, a detailed design for the

project should be developed. Then the FreeRTOS kernel was modified and tested. At

last, final results was then recorded and analyzed.

3.3.1 Preliminary Research Work

Before any progress was made, many aspects of the project background has been

understood. This background includes the concept of real-time systems, SMP and

AMP, heterogeneous and homogeneous cores, FPGAs and soft cores.

3.3.2 Learning the required tools

Many  tools  are  required  to  accomplish  this  project.  The  first  of  which  is  the

FreeRTOS.  In  addition  to  studying  its  documentation,  a  useful  method  for

understanding  the  FreeRTOS operation  was  by  using  its  POSIX/Linux  simulator.

This  simulator  allows the FreeRTOS to be run in  a POSIX environment.  This  is

useful as it allows for advanced debugging using GDB.
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Other  tools  include  the  Nios  II  core,  Altera  Quartus  II,  Nios  II  Integrated

Development Environment, and Altera Embedded Design Suite (EDS).

3.3.3 Exploring possible AMP implementations

Different  options  and algorithms have  been developed for  AMP.  At  this  stage,  a

suitable  implementation  has  been  determined,  such  as  which  inter-core

communication method is to be used.

3.3.4 Project design

In this stage, the project was designed in details and verified before development

started. Making modifications at this step is easier than later. Once the design was

approved, the project implementation started.

3.3.5 Implementation

At this stage FreeRTOS kernel was extended to implement AMP. The implementation

step includes two parts. First, the hardware design has been developed. It determines

how the two processors are connected, and what other IP cores are required for the

design.  The FPGA then was configured with the design.  The second step was to

modify and extend the kernel code of FreeRTOS. Based on the design developed in

the previous chapter, the code has beem modified to achieve the project objectives.

3.3.6 Results analysis

The results  of  the  project  have  been recorded and analyzed and different  simple

application has been developed to demonstrate the AMP implementation. 

3.4 Key Milestones

The following steps have been identified as key milestones for the project.

For FYP1, the key milestones are as follows.

• KM1 - Implementing a single Nios II core on an FPGA (W5).

• KM2 - Submission of extended proposal (W6)

• KM3 - Running FreeRTOS on a single Nios II core (W9)

• KM4 - Implementing a dual-core Nios II processor on an FPGA (W12)
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• KM5 - Submission of Interim Draft Report (W13)

• KM6 - Submission of Interim Report (W14)

For FYP2, the key milestones are as follows.

• KM1 - Running FreeRTOS on the dual-core Nios II processor (W1)

• KM2 - Finishing the AMP system design (W4)

• KM3 - Submission of Progress Report (W7)

• KM4 - Modifying the FreeRTOS code to support AMP (W9)

• KM5 - Pre-SEDEX (W10)

• KM6 - Submission of Draft Final Report (W11)

• KM7 - Recording the system results (W11)

• KM8 - Submission of Dissertation (soft bound) (W12)

• KM9 - Submission of Technical Paper (W12)

• KM10 - Viva (W13)

• KM11 - Submission of Project Dissertation (Hard Bound) (W15)

3.5 Gantt Chart

The Gantt chart for FYP1 and FYP2 are available in appendix 1.

15



CHAPTER 4 

RESULTS AND DISCUSSION

This chapter details the results of the project until the time of writing. The project

progress is on time with the Gantt chart developed in the methodology section. The

key milestones for FYP1 have all been achieved, in addition to all the milestones of

FYP2 until week 8. This chapter first discusses running FreeRTOS on a single Nios II

processor. Next, it shows the dual processor setup running asymmetrically using the

developed framework.

4.1 Running FreeRTOS On A Single Nios II Core

This section discusses the implementation of a Nios II core that is able to run an

RTOS. Then it focuses on the modifications made to the FreeRTOS to be able to run

on the Nios II processor.

4.1.1 Hardware implementation

When creating a Nios II processor, it needs to be connected to a clock source and to a

memory to run the code stored in it. These are the very basic requirements for the

system. A JTAG-UART module is usually added to send and receive data from the

PC to the board. For the FreeRTOS to run, it requires a timer that is able to interrupt

the processor at specified intervals of time. To implement this, Interval Timer module

is also created and connected to the processor as an interrupt.

The system used to run the FreeRTOS consist of the Nios II processor, connected to

the  on-chip  memory,  with  the  address  0x00000000  for  the  reset  vector,  and

0x00000020 for  the  exception  vector.  A JTAG UART,  timer  are  also  added  and

connected appropriately to the processor. 

The figure below shows the block diagram of the system and the memory map.
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Figure 5: Single core Nios II processor: (a) Block diagram (b) Memory map

4.1.2 Software implementation

The official  FreeRTOS Nios  II  port  is  used  in  the  paper  as  the  base  for  all  the

modifications.  However,  the hardware-specific portion of the port  depends on the

hardware system developed to run the FreeRTOS. As such, some modification were

required to make it operate on the system described above.

After importing all the necessary files, and modifying the hardware-specific portions,

FreeRTOS was then run on the Nios II processor. To demonstrate the task switching

of FreeRTOS, two tasks were created that use the JTAG module to print messages on

the PC. Each task has a different delay time. 

The first task is called “sayHello”, which prints “Hello, world!” and has a delay of

1000ms. Its code is as follows.

void sayHello( void *p){
while(1){

 alt_putstr("Hello, world!\n");

 vTaskDelay(1000);

 }

}

The second task is called “sayInBetween”, which prints “In between” and has a delay

of 300 ms. Its code is as follows.

void sayInBetween (void *p){
while(1){

 alt_putstr("In between\n");

 vTaskDelay(300);

 }
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}

Not  surprisingly,  the  output  shows  that  the  second  task  sayInBetween  prints  its

message 3 times every time the first task prints its message. The output on the PC

when running the tasks is shown below.

Figure 6: FreeRTOS tasks output

4.2 Running FreeRTOS On The Dual-core Nios II Processor

This section focuses on the connections of two Nios II cores. The software part will

also be discussed briefly. 

4.2.1 Hardware implementation

Each core of the Nios II processor requires a timer and a memory. However, they can

be connected to the same physical memory, but each has its own section. However,

due to the limited size of the on chip memory, the slave processor uses the SDRAM

as its private memory. The master processor is connected to the on chip memory and

has the addresses 0x00000000 and 0x00000020 for the reset and exception vectors

respectively. 

A part of the on chip memory is shared by the two processors. Both processors have
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their data lines connected to this memory so they can use it for communication. To

synchronize the access  to  this  shared memory,  the two processors  uses  an Altera

Avalon Mutex. Finally,  each processor is connected to a JTAG UART IP core to

allow it to communicate with the PC.

The figure below shows the block diagram of the dual core setup as well as their

memory map.
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Figure 7: Dual core Nios II processor: (a) Block diagram (b) Memory map

The  following  figure  shows the  actual  connections  of  the  processors  taken  from

Qsys.
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Figure 8: Dual core system connections
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4.2.2 Software implementation

The asymmetric multiprocessing framework supports two modes of operation. The

first one consists of the master core running FreeRTOS whereas the slave core is

running  a  custom  kernel.  The  second  mode  consist  of  the  two  cores  running

FreeRTOS. These two modes are discussed below.

4.2.3 Running FreeRTOS on the master core

The  asymmetric  multiprocessing  framework  consists  of  two  files,  asym.c  and

asym.h. They define functions that the master core and the slave core can use to

communicate  and synchronize actions.  Some functions should be called from the

master processor only, whereas other should only be called from the slave. Instead of

having two sets of files, one for each core, the same file can be compiled for the

master and slave core as well. The only change that needs to be done is defining

IS_MASTER or IS_SLAVE macros at the top of the file when compiling it for the

master and for the slave respectively. 

The framework defines a global queue structure for communications. A global queue

(request queue) is created for holding the tasks that the master sends to the slave. The

user  is  free to  change the size of the queue to  match its  application as  the only

limitation is the memory size. The global queue resides in the shared memory and

accessible by both the master and slave core.

Sending requests

Upon boot up, the master core calls two functions to instantiate the mutex and the

global queue using the functions

xAsymMutexInit();

xAsymReqQueuInit();

Then the master core should continue to create the FreeRTOS tasks and finally starts

the FreeRTOS scheduler. 

Tasks  running  on the  master  core  can  send requests  to  the  slave  core  using  the

function xAsymSendReq() which has the prototype

bool_t xAsymSendReq( int8_t xReqValue , bool_t xReturn );
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The first parameter of the function xReqValue is the request index that the master

requires the slave to perform. The other value xReturn can be either zero or one. This

value specifies if the task should return immediately or should wait until the slave

finishes servicing the request. This is important as the tasks might only need to send a

request to the slave without the need for it to wait. An example might be if a task

requires the slave to show some output such as displaying a message or playing a

sound. The master task does not need to wait to the end of the execution of the slave

task. For other application, and especially if the master task requires some output

from the slave,  the task might  need to wait  until  the slave finishes servicing the

request.

When a task waits for its request to be serviced by the slave, it goes to a blocked state

until the slave finishes servicing the request. This is achieved by utilizing FreeRTOS

binary semaphores. When the task sends the request, a binary semaphore is created,

and the task tries to take it using FreeRTOS function xSemaphoreTake(). While in

this state, FreeRTOS does not allocate any CPU time to the task and other tasks can

run instead. Once the task request is serviced, the binary semaphore associated with

this request is given using xSemaphoreGive(), and the task will be put in the ready-

list to run. 

If the request queue is  full,  the function does not return but wait  until  there is  a

location  for  the  new  request.  The  task  returns  True  if  the  request  was  sent

successfully, and false otherwise.

Example code

An example of a simple master code is as follows.

#include "sys/alt_stdio.h"
#include "altera_avalon_mutex.h"
#include "system.h"
#include "stdlib.h"

// FreeRTOS
#include "FreeRTOS.h"
#include "task.h"
#include "semphr.h"

// asym includes
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#include "asym.h"

void masterTask( void *p){
int i = 0;
int task;
while(i < 18){

task = rand() % 3;
taskENTER_CRITICAL();
alt_printf("Sending Task %x\n", task );
taskEXIT_CRITICAL();
xAsymSendReq( task, 1  );
vTaskDelay(20);
i++;

}
alt_printf("Finished sending tasks\n");
while(1);

}

void readyTask( void *p){
while(1){

taskENTER_CRITICAL();
alt_printf("Ready is now running\n" );
taskEXIT_CRITICAL();
vTaskDelay(1000);

}
}

int main()
{

xAsymMutexInit();
xAsymReqQueuInit();
xTaskCreate(masterTask, "masterTask", 100, NULL, 2, NULL);
xTaskCreate(readyTask, "readyTask", 100, NULL, 1, NULL);
alt_putstr("Starting scheduler\n");
vTaskStartScheduler();
return 0;

}

4.2.4 Running a custom kernel on the slave core

As mentioned  previously,  the  slave  processor  can  run  either  a  custom kernel  or

FreeRTOS. When running the custom kernel, the slave will be busy waiting for the

master request.

Adding tasks to the scheduler

Upon boot  up,  the  slave  core  instantiate  the  mutex  and  request  queue  using  the

functions 

  xAsymMutexInit();
  xAsymReqQueuInit();

Then  the  tasks  that  the  slave  should  run  are  added  using  the  function

xAsymTaskCreate which has the following prototype

bool_t xAsymTaskCreate( void (* pxTask )( void *p ) , xTaskIndex_t 
xTaskIndex);
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xAsymTaskCreate takes two parameters. The first parameter pxTask is a pointer to

the function of the type 

void taskName( void *p);

This pointer should points to the task that the slave execute. The second parameter is

the task index. The master tasks send requests using this task index. The tasks that are

defined in the slave are similar to the FreeRTOS tasks. They are normal C functions

with the above prototype, and then added for scheduling using xAsymTaskCreate( )

instead of FreeRTOS xTaskCreate( ).

In this custom kernel, the slave create an array of function pointers, psTasks

PRIVILEGED_DATA static void (* pxTasks[ NUMBER_OF_TASKS ] )( void *p
);

This array holds the pointers to the functions that the slave can execute. The function

xAsymCreateTask( ) adds the function pointer to this array.

Running the scheduler

After  adding  the  tasks,  the  schedule  is  run  by  calling  the  function

vAsymStartScheduler(  ).  This  function never  returns,  and waits  for  the master  to

sends  a  request.  When  a  request  is  sent,  the  function  calls

vAsymServeReq( xToServe ), where xToServe is the index of the request that is to be

serviced.

 Example code

 The following example shows a simple code running on the slave core.

#include "altera_avalon_pio_regs.h"
#include "altera_avalon_mutex.h"
#include "system.h"
#include "unistd.h"

// Asym
#include "asym.h"

void xZerothTask( void * data){
alt_printf("Task 0 is running: ");
usleep(1500000);
alt_printf("Done\n");

}

void xFirstTask( void * data){
alt_printf("Task 1 is running: ");
usleep(1500000);
alt_printf("Done\n");
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}
void xSecondTask( void * data){

alt_printf("Task 2 is running: ");
usleep(2500000);
alt_printf("Done\n");

}

int main()
{ 

xAsymMutexInit();
xAsymReqQueuInit();
alt_putstr("CPU 1 started\n");
/* Adding tasks */
xAsymTaskCreate(xZerothTask , Task0 );
xAsymTaskCreate(xFirstTask , Task1 );
xAsymTaskCreate(xSecondTask , Task2 );

/* Starting the scheduler */
vAsymStartScheduler();
return 0;

}

Output of the code

After running the two examples of code on the master and the slave cores, here is the

output on the PC terminal. The master core sends tasks to the slave core. When a task

is sent, the “Ready” task runs indicating that the “Master” now is in a blocked state.

The slave waits for requests from the master, and then runs the corresponding tasks.

Figure 9: The slave processor running the custom kernel

4.2.5 Running FreeRTOS on the slave core

Instead of running a custom kernel,  the slave can run FreeRTOS and service the

master  requests.  This  configuration  allows  the  slave  to  be  running  its  own tasks

instead of busy waiting for the master requests. Another important advantage of this

setup is that the requests are prioritized. That is, if the slave is servicing a low priority

request, and a request with higher priority occurs, the slave will drop the low priority

request and service the one with the highest priority. To achieve this, the framework
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utilizes FreeRTOS tasks priorities.

Handling requests

Now that FreeRTOS is running on the slave processor, some tasks might be required

to run regardless of the presence of the master requests, while others should run only

when  requested.  Tasks  that  service  the  master  request  call  the  function

vAsymServeRequest( ). This function takes one parameter, which is the index of the

requests that is to be serviced. When a task calls vAsymServeRequest function, it

goes to the blocked state (similar to what happens on the master core) waiting for a

request from the master. This is achieved by creating a binary semaphore which the

task will take it. This semaphore is only given when the master sends a request with

an index matching the index that the task sent when calling the vAsymServeRequest

function.

The framework defines a queue xToServeQueue that contains the slave tasks that are

waiting  for  requests  from  the  master.  When  a  task  calls

vAsymServeRequest(  ucRequestedTask ),  it  will  be  added to this  queue with  the

requested task index ucRequestedTask, and a pointer to the semaphore that the task is

trying to take. When a request occurs, it will be compared with the queue of tasks on

the slave core that are awaiting. If task has a requested task index ucRequestedTask

that  matches  the  request  index  from the  master,  the  task  will  be  removed  from

xToServeQueue, and its semaphore will be given so the task can run.

Example code

Below is an example where the slave is running FreeRTOS.

#include "altera_avalon_pio_regs.h"
#include "altera_avalon_mutex.h"
#include "system.h"
#include "unistd.h"
// FreeRTOS
#include "FreeRTOS.h"
#include "task.h"
#include "semphr.h"
// Asym
#define IS_SLAVE
#include "asym.h"

void xZerothTask( void * data){
int8_t ucIndex;
while(1){

vAsymServeRequest(Task0);
for (ucIndex = 0; ucIndex < 3 ; ucIndex++ ){

taskENTER_CRITICAL();
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alt_printf("Task 0 is running\n");
taskEXIT_CRITICAL();
vTaskDelay(2000);

}
}

}

void xFirstTask( void * data){
int8_t ucIndex;
while(1){

vAsymServeRequest(Task1);
for (ucIndex = 0; ucIndex < 3 ; ucIndex++ ){

taskENTER_CRITICAL();
alt_printf("Task 1 is running\n");
taskEXIT_CRITICAL();
vTaskDelay(2000);

}
}

}

void xSecondTask( void * data){
int8_t ucIndex;
while(1){

vAsymServeRequest(Task2);
for (ucIndex = 0; ucIndex < 3 ; ucIndex++ ){

taskENTER_CRITICAL();
alt_printf("Task 2 is running\n");
taskEXIT_CRITICAL();
vTaskDelay(2000);

}
}

}

int main()
{ 

xAsymMutexInit();
xAsymReqQueuInit();
alt_putstr("CPU 1 started\n");
xTaskCreate(xZerothTask , "Task0" , 100, NULL, 1, NULL);
xTaskCreate(xFirstTask , "Task1" , 100, NULL, 2, NULL);
xTaskCreate(xSecondTask , "Task2" , 100, NULL, 3, NULL);
vTaskStartScheduler();
return 0;

}

Output of the code

After running the two examples of code on the master and the slave cores, here is the

output on the PC terminal. A slight modification was made to the master code so its

tasks will not be blocked when sending requests.
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Figure 10: FreeRTOS running on the slave core

When task 0 is sent, the slave start executing it. However, when task 1 is sent, the

slave stops executing task 0 and start task 1 since task 1 has a higher priority. When

task 1 finished, task 0 resumes execution.

4.3 Qualitative Analysis

The proposed AMP framework allows the master core to be running FreeRTOS in a

multi-core system without compromising its determinability by having ready lists of

tasks that are private for each core. All processing-intensive tasks can be offloaded to

the slave core. Moreover, the AMP framework has a very small memory footprint of

only 808 bytes after compilation. The global queue sizes can be defined by the user.

Despite these advantages, in this proposed design when the slave processor runs a

custom kernel,  the  processor  is  idle  when  the  queue  is  empty,  hence,  wasting  a

valuable CPU time. Also, the requests do not have priorities, hence, they are serviced

on First Come First  Served basis. The second mode addresses these problems by

having  FreeRTOS  running  on  the  slave  core.  The  priorities  of  the  requests  are

handled by FreeRTOS tasks priorities,  and when the requests  queue is empty the

slave can perform lower priority tasks.

This proposed design can have applications in robotics or in systems where there is

intensive processing while real-time performance is required. The slave core in this

case can even be a Digital Signal Processor that processes data (e.g. image from a

camera), and the master core can handle input and output devices.
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4.4 Sample Application

To demonstrate the usage of the developed framework, a simple patient monitoring

application has been developed. The application uses the functions and the features

of  the  framework,  and  showcases  how  the  project  might  be  utilized  for  a  real

application.

RTOSes  are  commonly  used  in  medical  applications,  such  as  in  insulin  pumps,

cardio-vascular  and  hypertension  monitors,  and  self-monitoring  blood  glucose

devices  [21].  With  the  increasing  amount  of  data  that  needs  processing,  these

applications require high processing power. To maintain the RTOS determinability,

an AMP configuration can be used where one core runs the RTOS and the other cores

can run custom kernels, different RTOSes, or a high level operating system such as

Linux. In such case, the other core can even be a digital signal processor to provide

much higher processing power for data analysis.

The sample application showcases such an example, whereas the master core can be

connected to many sensors (heart rate, pressure, and temperature sensors) to monitor

a patient health. The core can also be controlling other devices that are critical to the

patient  health.  The master  then sends all  the data  to the salve core where it  can

perform different  functions on the data  to  analyze it  and then conclude a certain

course of action to be taken. In this application however, the slave only plots the data

coming from the master core and calculate the average for each sensor's readings. 
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Figure 11: Output of the sample application

The figure above shows the output of the master and the slave core while executing

the application.

In conclusion, this simple demonstration shows the ability of the framework to be

applied in real life applications where high processing power is needed, while the

system has hard real-time requirements.
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CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

In  addition  to  symmetric  multiprocessing,  asymmetric  multiprocessing  is  an

alternative approach for achieving multiprocessing. Admittedly, neither approach is

without its drawbacks, however depending on the application, one might be the better

option. In real-time applications, asymmetric multiprocessing seems promising as it

can guarantee the determinability of the output. 

This report documents the implementation of asymmetric multiprocessing on Nios II

soft core. The project has been divided into subtasks that are achievable within the

time frame. The project consists of 3 objectives. The first two objectives are related,

whereas the first objective is to develop a dual-core Nios II processor, and the second

objective is to run FreeRTOS on this setup. The third objective of the project is to

develop  an  inter-core  communication  framework  for  managing  synchronization

between the two cores.  All  objectives have been successfully  achieved. A system

including dual-core Nios II processor, memory and peripherals was developed and

tested. Some modification were made to FreeRTOS Nios II port to adapt it to run on

the  developed  system.  Then  an  asymmetric  multiprocessing  framework  was

developed  that  allows  the  two  cores  to  communicate.  A simple  demonstration

application has been developed as well to show how the projects can be implemented

in real-life applications.

For  future  work,  this  project  can  be  improved  upon  by  building  more  complex

applications that can demonstrate the use of this framework. Also, these applications,

can be designed to run on two heterogeneous cores. Finally, for awaking the tasks

that are blocked, the current implementation of the project uses software polling to

detect when a request is received or serviced. An improvement to this project is to

use interrupts instead of polling which will reduce the time that the processor wastes

when polling.
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APPENDIX A

Gantt Chart for FYP1.

Activities/ Milestone Week No.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 Selection of Project Topic

2 Preliminary Research Work

3 Implementing a single Nios II core on an FPGA

4 Submission of extended proposal

5 Understanding FreeRTOS kernel

6 Running FreeRTOS on a single Nios II core

7 Understanding the Nios II ports and operation

8 Designing a dual-core Nios II processor

9 Implementing a dual-core Nios II processor on an FPGA.

10 Submission of Interim Draft Report

11 Submission of Interim Report



Milestone

Process

Gantt Chart for FYP2.

Activities/ Milestone Week No.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 Running FreeRTOS on the dual-core Nios II processor

2 Designing the AMP system

3 Finishing the AMP system design

4 Submission of Progress Report

5 Modifying the FreeRTOS code to support AMP

6 FreeRTOS supports AMP

7 Testing the system

8 Pre-SEDEX

9 Submission of Draft Final Report

10 Recording the system results

11 Submission of Dissertation (soft bound)



12 Submission of Technical Paper

13 Viva

14 Submission of Project Dissertation (Hard Bound)

Milestone

Process
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