
Multi-Hop Wireless Sensor Network for Continuous Oxygen Tank’s

Level Detection

by

Saeed Ahmed Saeed Al-Haddad

15780

Dissertation submitted in partial fulfilment of

the requirements for the

Bachelor of Engineering (Hons)

(Electrical & Electronic Engineering)

JANUARY 2016

Universiti Teknologi PETRONAS,
32610 Seri Iskandar, Perak Darul Ridzuan,
Malaysia

	 ii	

CERTIFICATION OF APPROVAL

Multi-Hop	Wireless	Sensor	Network	for	Continuous	Oxygen	Tank’s	Level	

Detection	

	

by

Saeed Ahmed Saeed Al-Haddad

15780

A project dissertation submitted to the

Department of Electrical & Electronics Engineering

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(ELECTRICAL & ELECTRONIC ENGINEERING)

Approved by,

Dr. Azlan Bin Awang

UNIVERSITI TECHNOLOGI PETRONAS

BANDAR SERI ISKANDER, PERAK

January 2016

	 iii	

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the reference and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

SAEED AHMED SAEED AL-HADDAD

	 iv	

ABSTRACT

Wireless sensor network technology is considered as one of the modern technologies

that are used in a lot of areas to measure physical, chemical or environmental variables

because of their low of cost and high efficiency in data transmission. This project aims

to design a wireless sensor network that will be used to measure pressure or level of

Oxygen gas inside the Oxygen tanks that are found in different places in hospitals in

order to overcome the problem of the manual checking of tanks level, which may cause

a lot of problems because of the lack of accuracy measurement and the absence of a

continuous monitoring from the control room. The designing of this project will be

based on the concept of multi-hop wireless sensor network using XBee modules.

XCTU software will be used to update and configure XBee modules and

PROCESSING software will be used to develop a program that reads data from XBee

and show it in interactive way on the screen.

	 v	

ACKNOWLEDGEMENT

First and foremost, all praises to Allah almighty for his blessings and guidance.

Deepest gratitude to project supervisor Dr Azlan Bin Awang, for teaching me to have

high standards and not to satisfy with less than the best, for giving me the chance to

do something that I enjoy and most of all for his constant guide and support. Second,

I would like to express my great gratitude and thankfulness to my co-supervisor AP

Dr. Fawnizu Azmadi Hussin for his continuous help in the circuit design, his guidance

and motivational spirit that pushed me to the maximum to payback his valuable time

and knowledge. Third I would like to thank all of those who helped and made sure the

project is a success and it will be a precious experience and I would like to specifically

thank Mr Azhar Bin Zainal Abidin, for his assistance in control laboratory work. Last

but not least I would like to thank my family and friends for standing beside me and

supporting me until the end of the project. Thank you

	 vi	

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL ii

CERTIFICATION OF ORIGINALITY iii

ABSTRACT iv

ACKNOWLEDGEMENT v

CHAPTER 1 INTRODUCTION 1

1.1 Background Study 1

1.2 Problem Statement 2

1.3 Objectives 2

1.4 Scope of Study 3

CHAPTER 2 LITERATURE REVIEW 4

2.1 Wireless Sensor Network 4

2.2 ZigBee Protocol 5

2.3 Multi-Hop Wireless Sensor Network and Energy Efficiency 6

2.4 Experiment Work on Multi-Hop WSN 8

CHAPTER 3 METHODOLOGY 10

3.1 Project Flow Chart 10

3.2 Project Activities 11

3.3 Gantt Chart and Key Milestone 12

3.4 Tools 13

 3.4.1 Hardware 13

 3.4.2 Software 13

3.5 Procedure 14

3.5.1 Point to Point WSN Implementation 14

 3.5.1.1 Configuration of XBee Modules 14

3.5.1.1.1 Sink Node (Coordinator) 14

3.5.1.1.2 Router Node 15

3.5.2 Multi-Hop WSN Implementation 18

 3.5.2.1 LM35 Temperature Sensor 18

 3.5.2.2 Microcontroller 19

	 vii	

 3.5.2.3 Low Pass Filter 19

 3.5.2.4 Flow of the Data 20

 3.5.2.5 XBee Modules Setup 20

3.5.3 Integration of DPTwith the Multi-Hop WSN 24

3.5.4 Designing of a Reporting System 24

CHAPTER 4 RESULT & DISCUSSION 26

4.1 Sending and Receiving of Data (Point to Point WSN) 26

4.2 Sending and Receiving of Data (Multi-Hop WSN) 28

 4.2.1 Data Received at Router Node 28

 4.2.2 Data Received at Sink Node (Coordinator) 31

4.3 Difference Between the Measured and Received Data 34

4.4 Average Delay Time Between the Received Packets 35

CHAPTER 5 CONCLUSION & RCOMMENDATION 37

5.1 Conclusion 37

5.2 Recommendation 37

REFERENCES 38

APPENDICES 40

	 viii	

LIST OF FIGURES

FIGURE 1.1 Oxygen tank pressure detection using multi-hop WSN 3	

FIGURE 2.1 Typical multi-hop WSN architecture [4] 4	

FIGURE 2.2 Transmission distance for n hops [7] 6	

FIGURE 2.3 Transmission distance for n hops [7] 7	

FIGURE 2.4 Mica2 energy consumption Vs hops length [7] 9	

FIGURE 3.1 Project flow chart 10	

FIGURE 3.2 XBee series 2 and it is specification 13	

FIGURE 3.3 Configuration of XBee coordinator using XCTU software 15	

FIGURE 3.4 XBee Coordinator 64 bit serial number 15	

FIGURE 3.5 Configuration of XBee router using XCTU software 16	

FIGURE 3.6 Point to point WSN (circuit diagram connection) 17	

FIGURE 3.7 LM35 basic temperature sensor circuit [9] 18	

FIGURE 3.8 Wiring of Atmega 328P to the board [10] 19	

FIGURE 3.9 RC low pass filter circuit [12] 19	

FIGURE 3.10 Flow of the data in multi-hop WSN 20	

FIGURE 3.11 Sink node (coordinator) 21	

FIGURE 3.12 Router node connected with Atmega 328-P Microcontroller 21	

FIGURE 3.13 Sensor node connected with LM35 temperature sensor 22	

FIGURE 3.14 Multi-hop WSN (XCTU software) 23	

FIGURE 3.15 Multi-hop WSN circuit connection 23	

FIGURE 3.16 Integration of differential pressure transmitter with sensor node 24	

FIGURE 3.17 Graphical user interface using processing software (Temperature) 25	

FIGURE 3.18 Graphical user interface using processing software (Pressure) 25	

FIGURE 4.1 Data receiving structure 26	

FIGURE 4.2 Receiving of digital input data 27	

FIGURE 4.3 Measured voltage output from LM35 temperature sensor 28	

FIGURE 4.4 Structure of data received at router node 29	

FIGURE 4.5 Display of temperature values received at router node 31	

FIGURE 4.6 Structure of data received at sink node (Coordinator) 31	

FIGURE 4.7 Display of temperature values received at sink node 33	

FIGURE 4.8 Average delay time vs. sampling time 35	

	 ix	

LIST OF TABLES

TABLE 2.1 Comparison between the existing wireless technologies [6] 5	

TABLE 2.2 Power consumption vs hops length [7] 8	

TABLE 3.1 Project activities 11	

TABLE 3.2 Gantt chart of FYP1 12	

TABLE 3.3 Gantt chart of FYP2 12	

	 x	

NOMENCLATURE

API Application Programming Interface

DPT Differential Pressure Transmitter

IEEE Institute of Electrical and Electronics Engineers

MAC Media Access Control

OSI Open System Interconnection

WSN Wireless Sensor Network

	 1	

CHAPTER 1

INTRODUCTION

1.1 Background Study

 Wireless sensor network is an innovation that has been used in a wide range of

wireless environment. Nowadays there is a lot of research that investigate the path to

develop a new technology that has a low power, low data rate and low cost. The

importance of this technology has been expanded by the announcement of the IEEE

802.15.4 standard and the anticipated of ZigBee standard. The Alliance of ZigBee has

created a wireless communication standard that gives a low cost and low consumption

of power compared to other available wireless technologies, this make the ZigBee

alliance to be widely used in applications that depend on automation and control. At

the end the committee of IEEE and the ZigBee Alliance agreed to unite and ZigBee

was the announced name for this innovation [1].

 ZigBee technology is used in applications that are mainly dependent on work for

long periods of time from several days to several months but does not require a high

data transmission. Also ZigBee wireless devices can be implemented in larger

networks and operated in the unlicensed radio frequency worldwide at 2.4GHz with

250kbps data rate [1].

	 2	

1.2 Problem Statement

 The Oxygen tanks sporadically found in different places in hospital, which makes

it difficult for the hospital administration to check the Oxygen gas remaining in each

tank directly from the control room and this need someone to go and check all the

pressure transmitters in order to know the status of the gas level in each tank.

 Manual checking for Oxygen tanks level in the hospital is not feasible as it may

cause a lot of serious problems because of the presence of the human error and lack of

accuracy in the measurement add to this the lack of continuous measurement directly

from the control room and so all of these reasons may lead to situations death and the

deterioration of the level of health within the hospital.

 The idea of this project is to design a real time wireless sensor network to

continuous monitor the level of all Oxygen tanks inside the hospital and transmit all

data to central monitoring stations so that the administrations can check the status of

all Oxygen tanks by only looking at a single screen in the control room.

1.3 Objectives

 The objectives of this project are to:

1. Design and implement a point to point WSN using XBee modules.

2. Design and implement a multi-hop WSN using XBee modules.

3. Connect a differential pressure transmitter to a multi-hop WSN in order to

transmit the data of Oxygen tanks level to a central node and show it on the

screen.

4. Design a reporting system that can report the status of each Oxygen tank.

	 3	

1.4 Scope of Study

 The scope of this project is focusing on three main parts, firstly, pressure sensor

with XBee end device node. In this part the Oxygen tank will be connected to a

differential pressure transmitter using pressure input pipe to measure the pressure

inside the tank. After that the pressure measuring signal wire will be connected to the

input pin of XBee end device node to send measurement data continuously to a router

node.

 Secondly, router node and it will be used as a connection between the end device

and sink node to receive and transmit data. this node will play an important role in the

multi-hop WSN because it will save power consumption, cover large area and increase

the efficiency of sending and receiving of data.

 Lastly, sink node this node is designed to receive data from the router node and

send it to the Arduino Uno board to make the necessary processing for the data before

show on the computer screen.

FIGURE 1.1 Oxygen tank pressure detection using multi-hop WSN

	

	 4	

CHAPTER 2

LITERATURE REVIEW

2.1 Wireless Sensor Network

 A WSN is comprise of various nodes that transmitting the data they designed to

capture wirelessly. A WSN is normally consist of a power, processing, sensing and

communication units. The consumption of power is the main issue that affects the use

of an WSN. Hence, battery power is required in order to operate the WSN nodes

independently for a long period of time with a low power consumption [2].

 The nodes of WSN that are located over a wide range of area to monitor specific

variables with their sensors and transmit the data between each other using wireless

technology as the correspondence medium for the transmission of sensor’s data to a

central station [3].

FIGURE 2.1 Typical multi-hop WSN architecture [4]

	 5	

2.2 ZigBee Protocol

 ZigBee is a protocol that has been developed based on an Open System

Interconnection (OSI) layer model. ZigBee modules support three kinds of

communication topologies; star, tree and mesh topology. ZigBee modules work with

very low power consumption and low cost which makes it the most preferred wireless

devices that had been used in Wireless Sensor Networks. ZigBee has the capability of

multi-hop communication that supporting an unlimited range of wireless

communications [5].

 ZigBee promises dependable and self-configuring networks that offers low cost

and low power consumption. These factors permit this technology to be specifically

used the advantages of flexible mesh networking, short-range wireless protocol, strong

security, a complete interoperability and well-defined application frameworks [6].

TABLE 2.1 Comparison between the existing wireless technologies [6]

 ZigBee/
IEEE 802.15.4

WLAN / IEEE
802.11b/ag Bluetooth 1.2

Application
focus

Monitoring &
controlling

Web, Mail,
Video

Cable
Replacement

Stack size
(Kbytes) <64 >1000 >250

Battery life
(days)

100 - 1000+ 0.5 - 5 1-7

Network size
(#nodes) ~Unlimited (65536) Many 7

Bandwidth
(kbps)

250 11000 / 54000 ~1000

Range (meters) 100+ 100 10+
Target BOM
cost

$3 $9 $5

	
	
	
	

	 6	

2.3 Multi-Hop Wireless Sensor Network and Energy Efficiency

 High Advancement in the manufacturing of small, accurate and low cost sensors

it becomes easier to design a multi-hop WSN for monitoring environmental or physical

parameters.

 In WSN there is a number of certain nodes called sensor nodes that is designed to

capture a specific physical or environmental changes. Sensor nodes are found in

different places from the central node (sink node) thus power management is needed

for sensor nodes to minimizing power consumption because they will operate

independently with a limited energy source. In order to maximize the network’s life

optimizing the length of the hop between the nodes will significantly extend the

lifetime of the WSN [7].

FIGURE 2.2 Transmission distance for n hops [7]

	
 Every node is transmitting data with low power consumption required to receive

the data at the receiver is equal to the sensitivity threshold Pt of the final node.

Referring to figure 4 above Pt equal to [7]:

 !"	 = 	!%	×(
()
%
)+ (1)

Thus, the total energy required to send the data from source to the destination equal:

																																																																!%	 = 	!"	×(
%
()
)+ (2)

Where:

 d0= Distance between source and Destination.

 x = Length of the hop.

 α = Path loss exponent.

	 7	

FIGURE 2.3 Transmission distance for n hops [7]

	
 In figure 5 it shows a multi-hop WSN from source A to the destination B, in the

first topology the data will be transmitted from A to B through four hops of length (x),

while in the second topology the data will be transmit ted from A to B through two

hops of length (y) with y=2x, thus the sensitivity threshold Pt becomes [7]:

 !"	 = 	!%	×(
()
%
)+ = !,	×	(

()
,
)+ (3)

Since the length of y equal the double of x, the formula becomes:

																																																																				!, = !%	×	2+ (4)

 Optimal length of hops in multi-hop WSN is required in order to control the

consumption of power by WSN as designing a WSN with numerous short length of

hops is more efficiently than longer hops [7].

	

	 8	

2.4 Experiment Work on Multi-Hop WSN

 In this experiment design of multi-hop WSN using Mica2 sensor nodes to transmit

data from one node to another with a length of 760 meters and compute the energy

consumption by the network with specific variety of hops and hop lengths [7].

The following table shows the calculation of the total consumption of power for

different networks, with different length of hops.

TABLE 2.2 Power consumption vs hops length [7]

Hops number Hop length (meter) Total power consumed (mA)

6 126.666 662.7732

8 95.0 557.59

10 76.0 503.672

11 69.0909 488.4290

12 63.3333 475.3866

14 54.2857 466.9028

16 47.5 466.2968

18 42.2222 476.9244

20 38.0 491.836

21 36.1904 499.6533

22 34.4545 503.3204

24 31.6666 521.2308

26 29.2307 546.1027

28 27.1428 569.4514

30 25.3333 591.5625

From Table 2 we conclude that the most reliable range of hops that provide much less

power consumption is 16 hops with hop length of 47.5 meters.

	 9	

FIGURE 2.4 Mica2 energy consumption Vs hops length [7]

	
 From the figure above we can conclude that the choice of optimal length of the

hop is necessary because it provide more energy efficiency and extend the network’s

life.

	 10	

CHAPTER 3

METHODOLOGY

 The methodology of this project refers to a set of techniques that will be used to

complete this project, the methodology techniques includes:

• Project Flow Chart

• Project Activities

• Gantt chart and key milestone

• Tools

3.1 Project Flow Chart

 The Flow chart for this project as shown in figure 6 below:

FIGURE 3.1 Project flow chart

	 11	

3.2 Project Activities

 The project tasks are briefly described in the table below:

TABLE 3.1 Project activities

Activity Description

Preliminary research Gathering information that related to the area of this
project and understanding preceding research papers
that involve in the field of this topic and their results.

Scope determination Figure out the scope of the project and how it will be
accomplished within the specified time.

Literature review Understanding of the current literatures, findings and
principles of the projects that relies on pressure/
level sensor and multi-hop WSN implementation.

Component selection Research on the different XBee modules and select
the suitable XBee module that support multi-hop
WSN communication.

Point to point WSN
implementation

Design and implement a point to point WSN.

Multi-hop WSN
implementation

Design and implement a multi-hop WSN.

Connect differential
pressure transmitter with
multi-hop WSN

Connect the differential pressure transmitter with
multi-hop WSN in control lab.

Design a reporting system Design of reporting system using Processing
software to show the data transferred on the screen.

Data analysis and future
work

Evaluation of the project outcomes, compare and
make a suggestion and recommendations for future
development works.

	 12	

3.3 Gantt Chart and Key Milestone

 The two tables below show the Gantt chart and key milestone for FYP1 and FYP 2:

TABLE 3.2 Gantt chart of FYP1

 * Key milestone

	

TABLE 3.3 Gantt chart of FYP2

 * Key milestone	
	

	
	

Item/Week (FYP1) 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Project title selection

Preliminary research and scope determination

Literature review

Extended proposal *

Component selection

Proposal defense presentation *

Point to point WSN implementation

Submission of FYP1 Draft Report *

Submission of FYP1 interim report *

Item/Week (FYP2) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Multi-hop WSN implementation

Connect differential pressure transmitter with
multi-hop WSN

Design a reporting system

Progress report submission *

Results analysis

Pre-SEDX presentation *

Future work recommendation

Draft report submission *

Final Report submission *

VIVA *

	 13	

3.4 Tools

 3.4.1 Hardware

1. Three XBee modules with antenna series 2.

FIGURE 3.2 XBee series 2 and it is specification

2. One Arduino Uno board.
3. One USB A to Mini B cable.
4. Two breadboards.
5. Two XBee Explorers.
6. Three breakout boards.
7. One external microcontroller.
8. One temperature sensor.
9. Two 3.3V voltage regulator.
10. One 5V voltage regulator.

 3.4.2 Software

1. XCTU software to update and configure XBee modules.
2. Fritzing software to simulate the circuit of prototype.
3. Processing software to develop a reporting system.
4. Arduino software to design codes to process the data at router and sink

nodes.

	 14	

3.5 Procedure

 3.5.1 Point to Point WSN Implementation

 Point to point WSN is the first step in the implementation of this project. In this

chapter we discuss the configuration of two XBee modules to make them communicate

to each other using XCTU software.

 3.5.1.1 Configuration of XBee Modules

 XBee is a wireless communication device that is most widely used in the

formation of an WSN using ZigBee protocol. All XBee modules can work on two

operation modes which is transparent mode and API mode [8]. In this project XBee’s

series 2 chosen to design multi-hop because they consume less power and support all

kind of ZigBee communication topologies.

 3.5.1.1.1 Sink Node (Coordinator)

 The Sink node (Coordinator) must be configured in API (Application

Programming Interface) mode because all input and output data only delivered in API

mode. The sink node sends all necessary data immediately to all nodes in the same

WSN to establish connection and respond to the terminal command. Once the

connection is established the Sink node can receive the data from all sensor nodes in

the WSN and transfer the received data using serial port to show it on the screen after

making the necessary processing for the data.

	 15	

 Steps to configure Sink XBee using XCTU software:

1. Set the mode of the XBee as coordinator API mode.

2. Set the PAN ID with 64-bit address (for example 1234).

3. Set IR-IO sampling rate with 20 milliseconds (hex =14).

4. Click WRITE to save changes.

FIGURE 3.3 Configuration of XBee coordinator using XCTU software

 3.5.1.1.2 Router Node

 Before configuring the router node, we need to write down the XBee Sink node

64-bit serial number (high and low). The router node must be configured in AT mode

to make it able to receive sensing data and communicate to other nodes.

FIGURE 3.4 XBee Coordinator 64-bit serial number

	 16	

 Steps to configure XBee router node:

1. Set the mode of the XBee as ZigBee Router AT.

2. Set JV (Channel Verification) to 1 to ensure that the router will connect with

coordinator on startup.

3. Set the PAN ID with 64-bit address (for example 1234).

4. Set DH (Destination High) and DL (Destination Low) with the serial high

and low of the sink node.

5. Set D4 pin to 3 to read digital input.

6. Set IR-IO sampling rate with 20 mille Second (hex =14).

7. Click WRITE to save the changes.	

FIGURE 3.5 Configuration of XBee router using XCTU software

	
 After configuring the router node connect a digital output circuit which consist of

normal switch, led and 200-ohm resistor to give a digital output (High or low) to pin

D3 in XBee router node.

	
	
	
	
	
	
	

	 17	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

FIGURE 3.6 Point to point WSN (circuit diagram connection)

	
The point to point WSN circuit design successfully completed and now the circuit is

ready to send and receive a digital values form the switch circuit that will give a digital

output (High or Low).

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	 18	

 3.5.2 Multi-Hop WSN Implementation with Temperature Sensor

 The multi-hop WSN will be implemented based on three XBee (series 2) modules,

one microcontroller, temperature sensor and one Arduino Uno board. The sensing

data will be captured using the LM35 temperature sensor and it will be transmitted

wirelessly through the XBee modules before it shows on the computer screen.

 The design of multi-hop WSN will contain three nodes which are sensor node,

router node and sink node (coordinator). The connection of each node will be different

from one another but the basic structure will remain the same. All nodes will be

powered by the 3.3V power supply form the Arduino Uno board.

 In this implementation we will study the efficiency of sending and receiving of

data and the performance of each item in the in the implementing of multi-hop WSN.

Moreover, the designing issues such as code error correction and troubleshooting.

 3.5.2.1 LM35 Temperature Sensor

 The LM35 is a temperature sensor, whose output voltage is linearly proportional

to the Celsius temperature. LM35 temperature sensor will be connected to pin 18 in

router 2 node to continuously send the data to the sink node through router 1. The

LM35 operates from 4 to 30 volt over a temperature range between -55 ̊C to 150 ̊C [9].

	
	
	
	
	
	
	
	
	
	
	
	

FIGURE 3.7 LM35 basic temperature sensor circuit [9]

	
	

	 19	

 3.5.2.2 Microcontroller

 Arduino bootloader programming chip (Atmega 328P) performs a task of

extracting the packet of data received at the router node, processing it and resend it

again to the pin 18 of router node using a low pass filter circuit to filtered high

frequency signals.

FIGURE 3.8 Wiring of Atmega 328P to the board [10]

	
 3.5.2.3 Low Pass Filter

 Low pass filter consists of a resistor and a capacitor, this kind of filters allow low-

frequency signal to pass through it while blocking the high-frequency signals. As we

can see from the figure below a resistor is placed in series with the signal source while

the capacitor is placed in parallel with signal source. Filtering process happens because

of the reactive properties of a capacitor as it offers a low impedance for the high -

frequency singles and high impedance for the low-frequency signals thus the high-

frequency signal will take the capacitor path and low-frequency signals will take the

output path [11].

	
	
	
	
	
	
	
	

FIGURE 3.9 RC low pass filter circuit [12]

	 20	

 3.5.2.4 Flow of the Data

 Figure below specify the flow of the data that will be sensed using LM35

temperature sensor until it reach to the destination.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

FIGURE 3.10 Flow of the data in multi-hop WSN

	
	
 3.5.2.5 XBee Modules Setup

 For this implementation of a multi-hop WSN ZigBee protocol will be used in the

formation of the network. Building a multi-hop WSN using ZigBee protocol is easier

as ZigBee is self-healing and self-organizing protocol. The coordinator is responsible

for the formation of the network as it will be establishing the connection with other

nodes that has the same PAN ID.

 The setting for each XBee module in the network:

Sink node (coordinator):

• Set the mode of the XBee as coordinator API mode.

• Set the PAN ID with 64-bit address (for example 1234).

• Set IR-IO sampling rate with 100 milliseconds (hex =3E8).

• Click WRITE to save changes.

	 21	

FIGURE 3.11 Sink node (coordinator)

Router node:

• Set the mode of the XBee as ZigBee Router API.

• Set JV (Channel Verification) to 1 to ensure that the router will connect with

coordinator on startup.

• Set the PAN ID with 64-bit address (for example 1234).

• Set DH (Destination High) and DL (Destination Low) with the serial high and

low of the coordinator.

• Set D3 pin to 2 (ADC).

• Set IR-IO sampling rate with 100 mille Second (hex =3E8).

• Click WRITE to save the changes.

FIGURE 3.12 Router node connected with Atmega 328-P Microcontroller

	
	
	

	 22	

Sensor node:

• Set the mode of the XBee as ZigBee Router AT.

• Set JV (Channel Verification) to 1 to ensure that the router will connect with

coordinator on startup.

• Set the PAN ID with 64-bit address (for example 1234).

• Set DH (Destination High) and DL (Destination Low) with the serial high and

low of the router node.

• Set D3 pin to 2 (ADC).

• Set IR-IO sampling rate with 100 mille Second (hex =3E8).

• Click WRITE to save the changes.

FIGURE 3.13 Sensor node connected with LM35 temperature sensor

 After the configuration of each XBee module the multi-hop WSN is ready to work

and the temperature values will be sent as packets of data over the multi-hop WSN.

	 23	

Once the circuit connection is done we connect the sink node (Coordinator) to the PC

and run XCTU software to scan the network and shows the connected nodes.

FIGURE 3.14 Multi-hop WSN (XCTU software)

	
 In the figure below we see that the multi-hop WSN consist of sensor node, router

node and one Coordinator, the data sending will follow the path from the sensor node

to the router node until it reaches the destination which is sink node (Coordinator).

FIGURE 3.15 Multi-hop WSN circuit connection

	
	
	
	

	 24	

 3.5.3 Integration of Differential Pressure Transmitter with the

Multi-Hop WSN

 After the implementation of multi-hop wireless sensor network with the LM35

temperature sensor now we will move to the integration of the differential pressure

transmitter with the sensor node to send the pressure data to the sink node.

 In this section we will connect the signal wires from the differential pressure

transmitter to the sensor node and leave all the other settings and parameters of the

XBee modules as the same as we do for the temperature sensor.

FIGURE 3.16 Integration of differential pressure transmitter with sensor node

 The differential pressure transmitter needs 24 DC volt power supply to work and

by ground both differential pressure transmitter and XBee sensor node the circuit will

be ready to transmit pressure data wirelessly by connect the signal wire to pin 17 in

XBee module.

 3.5.4 Designing a Reporting System using Processing Software

 Processing is an open source software development environment designed for

novice programmers and geared toward visual displays. It used to design a graphical

user interface that will be more easy to monitor and control variables instead of normal

display.

	 25	

 In this project we have used processing software to design a graphical user

interface for both temperature and pressure values based on some mathematical

equations that will convert the digital values received from the XBee modules into

normal values whether for temperature or pressure values.

 In the outlining of the code we utilized two units to show the values so that the

code will be more flexible and the reading of the data will be easier also to increase

the accuracy and detection of errors if exist.

FIGURE 3.17 Graphical user interface using processing software (Temperature)

FIGURE 3.18 Graphical user interface using processing software (Pressure)

	 26	

CHAPTER 4

RESULT & DISCUSSION

4.1 Sending and Receiving of Data (Point to Point WSN)

 After making the connection of point to point WSN, the sending of data from the

router node will be high or low. In the sink node the data will be received and

transferred to Arduino Uno board to make the necessary processing for the data by the

developing code to show it on the computer screen.

	

	

	

	

	

	

	

	

	
	

FIGURE 4.1 Data receiving structure

	

	 27	

A brief description of the packet structure received is given below:

IO data Sample RX Indicator (API 1)

7E 00 12 92 00 13 A2 00 40 D9 40 65 C5 A2 01 01 00 10 00 00 10 71

Start delimiter: 7E, this indicates the beginning of data frame.

Length: 00 12 (18) , this indicates the number of bytes except the beginning byte and

checksum byte.

Frame type: 92.

64-bit router address: 00 13 A2 00 40 D9 40 65

16-bit source address: C5 A2, network address

Receive options: 01, (01= Packet acknowledged, 02= Broadcast packet).

Number of samples: 01, always set to 01 due to XBee limitation.

Digital channel mask: 00 10, indicates which pin is configured to send data in this case

it is pin 4 configured as digital input pin.

Analog channel mask: 00

DIO4/AD4 digital value: High

Checksum: 71, this byte basically comes at the receiving end to check and see if

there was a transmission error.

	

	

	

	

	

	

FIGURE 4.2 Receiving of digital input data

	
	
	

	 28	

4.2 Sending and Receiving of Data (Multi-Hop WSN) Temperature

Values

 The LM35 temperature sensor will start sensing and the temperature values will

be sent to sensor node. By measuring the output voltage from the Lm35 temperature

sensor using the Multimeter equal to 0.333 volt, thus the temperature value equals to

(0.333/0.01) = 33.3 °C.

	

FIGURE 4.3 Measured voltage output from LM35 temperature sensor

 Now we will send the temperature values in a multi-hop WSN using XBee

modules and after the data reaches the destination we will compare it with the

measured values.

 4.2.1 Data Received at Router Node

 Figure below shows the packets of data received at Router node. The packets of

data will be shown on Arduino Uno serial monitor after uploading code 2 in the

appendixes to the Arduino Uno board.

	 29	

FIGURE 4.4 Structure of data received at router node

	
 A brief description of the packet structure received at router node:

IO data Sample RX Indicator (API 1)

7E 00 12 92 00 13 A2 00 40 D9 40 65 C5 A2 01 01 00 00 04 00 E9 71

Start delimiter: 7E, this indicates the beginning of data frame.

Length: 00 12 (18), this indicates the number of bytes except the beginning byte and

checksum byte.

Frame type: 92.

64-bit router address: 00 13 A2 00 40 D9 40 65

16-bit source address: C5 A2, network address

Receive options: 01, (01= Packet acknowledged, 02= Broadcast packet).

Number of samples: 01, always set to 01 due to XBee limitation.

Digital channel mask: 00 00.

Analog channel mask: 00

DIO3/AD3 analog value: High, this indicates which pin is configured as ADC in this

case it is pin 18.

Analog Sample data: 01 12, this indicates the temperature value in hexadecimal.

	 30	

Checksum: 7A, this byte basically comes at the receiving end to check and see if there

was a transmission error.

 After the data received we convert the temperature value from hexadecimal to

decimal, thus:

01 12 hexadecimal equal to:

(0*163 + 1*162 + 1*161 + 2*160) = 274 (Decimal).

 Since the voltage reference for the XBee modules (series 2) is 1.2 volt, and the

analog sample values are ranged between 0 and 1023 (0 = 0 volt, 1023 = 1.2 volt).

To convert the 233decimal value to volt we divide it by 852.5, thus the equation

becomes: (274/852.5) = 0.321 volt.

 To convert the decimal value to temperature value we need to upload the code 3 in

the appendixes to the microcontroller using Arduino Uno board, the code will read the

packets of the data and it will discard unnecessary data until it reaches to the analog

sample value. Which is the important value in the packet that we need to processing it

using the microcontroller in order to see the temperature value.

 The microcontroller will convert the analog sample value from hexadecimal to

decimal value and after that it will convert the decimal value to temperature value

using this equation:

temp_value_router_node = (analog_sample_value *0.117302053);

Serial.println(temp_value_router_node);

temp_value_router_node = (274*0.117302053) = 32.14 °C.
	

	

	

	 31	

FIGURE 4.5 Display of temperature values received at router node

	
 The microcontroller will be processing the data received at router node and it will

send it back to pin 18 of router node to transmit the data again to the sink node

(coordinator).

 4.2.2 Data Received at Sink Node (Coordinator)
 Figure below shows the packets of data received at sink node (Coordinator) from

router 1. The packets of data will be shown on Arduino Uno serial monitor after

uploading code 2 in appendixes to the Arduino Uno board.

FIGURE 4.6 Structure of data received at sink node (Coordinator)

	 32	

 A brief description of the packet structure received at sink node (Coordinator):

IO data Sample RX Indicator (API 1)

7E 00 12 92 00 13 A2 00 40 D9 40 65 C5 A2 01 01 00 00 04 00 E9 71

Start delimiter: 7E, this indicates the beginning of data frame.

Length: 00 12 (18), this indicates the number of bytes except the beginning byte and

checksum byte.

Frame type: 92.

64-bit router address: 00 13 A2 00 40 D9 40 80

16-bit source address: C5 A2, network address

Receive options: 01, (01= Packet acknowledged, 02= Broadcast packet).

Number of samples: 01, always set to 01 due to XBee limitation.

Digital channel mask: 00 00.

Analog channel mask: 00

DIO3/AD3 analog value: High, this indicates which pin is configured as ADC in this

case it is pin 18.

 Analog Sample data: 01 15, this indicates the temperature value in hexadecimal.

Checksum: 81, this byte basically comes at the receiving end to check and see if there

was a transmission error.

 After the data received we convert the temperature value from hexadecimal to

decimal, thus:

01 15 hexadecimals equal to:

(0*163 + 1*162 + 1*161 + 5*160) = 277 (Decimal).

 Since the voltage reference for the XBee modules (series 2) is 1.2 volt, and the

analog sample values are ranged between 0 and 1023 (0 = 0 volt, 1023 = 1.2 volt).

To convert the 233decimal value to volt we divide it by 852.5, thus the equation

becomes: (277/852.5) = 0.324 volt.

	 33	

 To convert the decimal value to temperature value we need to upload the code 4

in the appendixes to the microcontroller using Arduino Uno board, the code will read

the packets of the data and it will discard unnecessary data until it reaches to the analog

sample value. Which is the important value in the packet that we need to processing it

using the microcontroller in order to see the temperature value.

The microcontroller will convert the analog sample value from hexadecimal to decimal

value and after that it will convert the decimal value to temperature value using this

equation:

temp_value_coordinator = (analog_sample_value *0.117302053);

Serial.println(temp_value_coordinator);

temp_value_coordinator = (277*0.117302053) = 32.49 °C.

FIGURE 4.7 Display of temperature values received at sink node (Coordinator)

	
 For the pressure values it will take the same procedure for sending and receiving

of data, in the pressure we need to change the mathematical equation that used in the

code for the calculation of the pressure values.

	 34	

4.3 Difference Between the Measured and Received Data

(Temperature Values)

 After data is received now we will compare the result of sending and receiving of

temperature values

Measured temperature from LM35 temperature sensor = 33.3 °C.

Received temperature at router node = 32.14 °C.

Received temperature at sink node (coordinator) = 32.49 °C.

Percentage of error equal the difference between the measured value and the exact

value.

Percentage of error = .//01%234"5	6478595%4:"	64785
;%4:"	64785

	Χ	100% (5)

Thus the percentage of error for each stage is:

Router node:

Percentage of error = @@.@9@B.CD
@B.CD

×	100% = 3.61%

Sink node (Coordinator):

Percentage of error = @B.CD9@B.DG
@B.DG

×100% = 1.07%	

 The overall percentage of error between the measured value and the received value

at the sink node (Coordinator):

Percentage of error = @@.@9@B.DG
@B.DG

	×100% = 2.49%

 After the calculation of percentage of error in each stage (router node and sink

node), we can see that there is a quiet difference in the temperature value between the

measured value and the received value at router node this error may be occurring

because of the delay in the sending of data packets.

	 35	

 Because of the using of low pass filter circuit in router node that will clear the

signal and eliminate the high frequency signals from passing and allow only the low

frequency signals to pass through the output. We can analyze the small difference in

the percentage of error between the temperature value received at router node and the

temperature value received at the sink node (Coordinator).

 The overall percentage of error equal to 2.49% and the sending and receiving of

data is acceptable with a difference between the measured and received temperature

value equal to 0.81 °C. Same procedure will be followed for the calculation of the error

in the pressure values.

4.4 Average Delay Time Between the Received Packets

 The delay time specifics how long it will take for a packet of data to travel across

the multi-hop wireless sensor network. In this section we will discuss the average delay

time taken for the packets to be received at sink node and this measurement will be

conducted using the XCTU software as it gives the times received for each packet.

 In the configuration of the XBee modules we specify the sampling time in both

sensor and router nodes. We have configured the XBee modules with a sampling times

of (50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600) ms respectively and we

have calculated the average delay time for each sampling time.

FIGURE 4.8 Average delay time vs. sampling time

	 36	

 From the figure above we can see the average delay time for each sampling time

starting with 50 ms with almost 20ms average delay time. The average delay time is

decreased by increasing of the sampling time until it reaches to 0.196 ms for the 600

ms sampling time. We can conclude that by increasing the sampling time the average

delay time will be decreased.

	 37	

CHAPTER 5

CONCLUSION & RCOMMENDATION

5.1 Conclusion

 The designing of multi-hop WSN successfully completed with the integration of

both temperature sensor and differential pressure transmitter. The sending and

receiving of data is working perfectly with a small delay time and a small percentage

of error between the measured and the received data. The multi-hop wireless sensor

network can can be used in monitoring and controlling systems in different places such

as hospitals, companies, industries and public places, by using the XBee modules to

form the multi-hop wireless sensor network it becomes easier to control a lot of

variables at the same time with a small delay time and high level of security.

5.2 Recommendation

 It is recommended to study the power consumption by the XBee modules in a

large wireless sensor network and also the distance covered by the XBee modules to

make this project more valuable and improve it to the advanced level.

	 38	

REFERENCES
	
[1] N. Patel, H. Kathiriya and A. Bavara, “Wireless Sensor Network Using

ZigBee”, IJRET, vol. 2, pp. 1038- 1042, June. 6, 2013.

[2] E. Yaccoub and A. Abu-Dayya. “ Multihop Routing for Energy Efficiency in

Wireless Sensor Networks” in Wireless Sensor Networks - Technology and

Protocols, M.A. Matin, InTech, 2012, pp. 165-188.

[3] Akyildiz LF., Su W, Sankarasubramaniam Y., and Cayirci E, "Wireless Sensor

Networks: A Survey," Communication Magazine, vol. 40, no. 8, pp. 102-114,

August 2002.

[4] Wikipedia. “Wireless sensor network”, Wikipedia.org. [Online]. Available

https://en.wikipedia.org/wiki/Wireless_sensor_network [Last Modified: 8 Dec

2015, 09:21].

[5] R. A. Rashid, M. A. Sarijari and F. Mohamed. Applications and System Design

for Wireless Sensor Network. Malaysia: Penerbit Universiti Teknologi

Malaysia, 2008.

[6] Ferdinando, Fidelix, Francis, Coutinho, Samuel; Rocha, Monica L.“ZigBee

For Building Control Wireless Sensor Networks”. Microwave and

Optoelectronics Conference, 2007. IMOC 2007. SBMO/IEEE MTT-S

International Oct. 29 2007-Nov. 1 2007 Page(s):511 – 515.

[7] Kheireddine, M. and Abdellatif, “Analysis of Hops Length in Wireless Sensor

Networks, SRC, pp. 109-117, June. 17, 2014.

[8] S. C. Mukhopadhyay. Intelligent Sensing, Instrumentation and Measurements.

Palmerston North, NZ: Springer, 2013.

[9] National Semiconductor, “Precision Centigrade Temperature Sensors,” LM35

datasheet, Nov. 2000 [Revised Mar. 2016].

[10] Wiring. "Burning a bootloader into a brand new DIP atmega168/328part to use

it with Wiring," wiring.org.co. [Online]. Available:

http://wiring.org.co/learning/tutorials/atmegaDIPbootloader/ [Accessed: Mar.

6, 2016].

[11] Learningaboutelectronics.“LowPassFilterCalculator,”learningaboutelectronic

s.com.[Online].Available:http://www.learningaboutelectronics.com/Articles/

Low-pass-filter-calculator.php#answer1 [Accessed: Mar. 6, 2016].

	 39	

[12] YouTube. “Passive RC low pass filter tutorial!”. Youtube.com. [Online].

Available https://www.youtube.com/watch?v=OBM5T5_kgdI [Accessed: 6

March 2016].

[13] Vieira, M., Coelho, C., da Silva, D. & da Mata, J. [2003]. Survey on wireless

sensor network devices, Proceedings of the IEEE Conference on Emerging

Technologies and Factory Automation, pp. 537–544.

[14] P. R. Lakhe, “Wireless Sensor Network Using ZigBee’’, IJERA, pp. 292- 301,

March. 30, 2012.

[15] M. Yuksel and E. Erkip, “Multiple-antenna cooperative wireless systems: A

diversity-multiplexing tradeoff perspective,” IEEE Trans. Inf. Theory,vol. 53,

pp. 3371–3393, Oct. 2007.

[16] Alawieh, B., Zhang, Y., Assi, C. & Mouftah, H. [2009]. Improving spatial

reuse in multihop wireless networks-a survey, IEEE Communications Surveys

and Tutorials 11(3): 71–91.

	 40	

APPENDICES
	
Appendix I XBee series 2 pin description

	 41	

Appendix II Arduino Uno code 1 to receive digital data from XBee:

int switch =0;
void setup() {
 Serial.begin (9600);
}
void loop() {
 if (Serial.available () > 21) {
 if (Serial.read() ==0x7E) {
 for (int i=0; i<19; i++) {
 byte discard = Serial.read();

 }
 switch = Serial.read();
 Serial.print("Switch is:");
 if (switch ==0) {
 Serial.println ("closed");
 }
 else if (switch ==16) {
 Serial.println ("open");
 }
 }
 }
}

	 42	

Appendix III Arduino Uno Code 2 to show the structure of data:

void setup() {
 Serial.begin (9600);
}
void loop() {
if (Serial.available()>21){
 for (int i=0;i<22;i++){
 Serial.print(Serial.read(),HEX);
 Serial.print(",");
 }
 Serial.println('\n');
}
}	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	 43	

Appendix IV External microcontroller code 3 to process the data at Router

node:

int LED = 11;
int analog_sample_value;
float temp_value_router_node;
void setup() {
 pinMode(LED,OUTPUT);
 Serial.begin(9600);
}
void loop() {
if (Serial.available() >= 21) {
if (Serial.read() == 0x7E) {
for (int i = 0; i<18; i++) {
byte discard = Serial.read(); }
int analogHigh = Serial.read();
int analogLow = Serial.read();
analog_sample_value = analogLow + (analogHigh * 256);
}
}
temp_value_router_node = (analog_sample_value *0.117302053);
analogWrite(LED, analog_sample_value/16);
Serial.println(temp_value_router_node);
}

	 44	

Appendix V Arduino Uno code 4 to display temperature values on serial

monitor:

int analog_sample_value;
float temp_value_coordinator;
float pressure;
void setup() {
 pinMode(LED,OUTPUT);
 Serial.begin(9600);
}
void loop() {
if (Serial.available() >= 21) {
if (Serial.read() == 0x7E) {
for (int i = 0; i<18; i++) {
byte discard = Serial.read(); }
int analogHigh = Serial.read();
int analogLow = Serial.read();
analog_sample_value = analogLow + (analogHigh * 256);
}
}
// we need to change the equation of the code in order to display pressure values
//pressure=(0.006134*(analog_sample_value-144)) +5;
//Serial.println"Pressure Value";
//Serial.println(pressure);
//equation to display temperature values
temp_value_coordinator = (analog_sample_value *0.117302053);
Serial.println"Room Temperature";
Serial.println(temp_value_coordinator);
}

	 45	

Appendix VI Processing software code:

import processing.serial.*;
int lf = 10;
String myString = null;
Serial myPort;
float num;
int yDist;
float pressureP;
PFont font12;
PFont font24;
float[] pressureHistory = new float[100];
void setup() {
 printArray(Serial.list());
 myPort = new Serial(this, Serial.list()[4], 9600);
 myPort.clear();
 size(300, 400);
 font12 = loadFont("Verdana-12.vlw");
 font24 = loadFont("Verdana-24.vlw");
 for(int index = 0; index<100; index++)
 pressureHistory[index] = 0;
}
void draw() {
 while (myPort.available() > 0) {
 myString = myPort.readStringUntil(lf);
 if (myString != null) {
 print(myString); // Prints String
 num=float(myString);
 println(num);
 }
 }
 myPort.clear();
 background(123);
 colorMode(RGB, 160);
 stroke (0);
 rect (49,19,22,162);
 for (int colorIndex = 0; colorIndex <= 160; colorIndex++)
 {
 stroke(160 - colorIndex, 0, colorIndex);
 line(50, colorIndex + 20, 70, colorIndex + 20);
 }
 stroke(0);
 fill(255,255,255);
 rect(150,80,100,100);
 for (int index = 0; index<100; index++)
 {
 if(index == 99)
 pressureHistory[index] = num*10;

	 46	

 else
 pressureHistory[index] = pressureHistory[index + 1];
 point(150 + index,200 - (pressureHistory[index]));
 }
 fill(0,0,0);
 textFont(font12);
 textAlign(RIGHT);
 text("71K pal", 45, 25);
 text("28K pal", 45, 187);
 yDist = int(250 - (250 * (num*0.01*9.5)));
 stroke(0);
 triangle(75, yDist + 20, 85, yDist + 15, 85, yDist + 25);
 //write the pressure values in psi and pascal
 fill(0,0,0);
 textFont(font24);
 textAlign(LEFT);
 text(str(int(num)) + " psi", 170, 37);
 pressureP = (num*6.89);
 text(str(int(pressureP)) + " K pal", 153, 65);
 }

	 47	

Appendix VII Multi-Hop WSN circuit connection

	 48	

Appendix VIII Formation of the Multi-Hop WSN (XCTU software)

	 49	

Appendix IX Multi-Hop WSN prototype

