Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, dissertation, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.

DEVELOPMENT OF SOLAR ENERGY HARVESTING FOR WIRELESS SENSOR

ELTAYEB, ABUZAR MOHAMED ABDALLA (2016) DEVELOPMENT OF SOLAR ENERGY HARVESTING FOR WIRELESS SENSOR. IRC, Universiti Teknologi PETRONAS. (Submitted)

[img] PDF
Download (850Kb)

Abstract

To have a successful wireless sensor networks (WSN), we should have an energy supply which provided by batteries. Batteries have small size and provide sufficient energy for the motes, but batteries cannot sustain the energy for the (WSN) to operate long time. The reason is that the batteries have limit storage capacity and it used up by time. So to save the sustainability of the system we harvest energy from surrounding environment such as light, thermal, or vibration. All these are renewable and green types of energy that does not cause pollution to the environment. In our project, a solar energy harvesting system have been introduced to provide energy requirement for the (WSN) to operate. A photovoltaic (PV) module, solar charge controller and energy storage are elements that used for the solar energy harvesting system. And according to calculations, a suitable PV module, batteries, and solar charging circuit are determined. On the other hand to get the highest and the maximum efficiency of the energy harvested, we use a maximum peak power tracking or maximum power point tracking technique (MPPT), to charge our rechargeable batteries which for our project is lithium-ion battery.

Item Type: Final Year Project
Academic Subject : Academic Department - Electrical And Electronics - Pervasisve Systems - Digital Electronics - Design
Subject: T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Engineering > Electrical and Electronic
Depositing User: Ahmad Suhairi Mohamed Lazim
Date Deposited: 19 Jan 2017 15:38
Last Modified: 25 Jan 2017 09:34
URI: http://utpedia.utp.edu.my/id/eprint/17125

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...