

Development of LabVIEW FPGA program for Energy Management System

(EMS) Controller for Hybrid Electric Vehicle (HEV)

BY

ABDUL AZIZ BIN MUSTAFFA KAMAL BASHA

FINAL PROJECT REPORT

Dissertation submitted to the Department of Electrical & Electronic Engineering

in Partial Fulfilment of the Requirements

for the Degree

Bachelor of Engineering (Hons)

(Electrical & Electronic Engineering)

Universiti Teknologi PETRONAS

Bandar Seri Iskandar

31750 Tronoh

Perak Darul Ridzuan

© Copyright 2016

by

Abdul Aziz, 2016

i

CERTIFICATION OF APPROVAL

Development of LabVIEW FPGA program for Energy Management System

(EMS) Controller for Hybrid Electric Vehicle (HEV)

By

Abdul Aziz Bin Mustaffa Kamal Basha

A project dissertation submitted to the

Department of Electrical & Electronic Engineering

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

Bachelor of Engineering (Hons)

(Electrical & Electronic Engineering)

Approved:

Mr. Saiful Azrin Bin Mohd Zulkifli

Project Supervisor

UNIVERSITI TEKNOLOGI PETRONAS

TRONOH, PERAK

January 2016

ii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

Abdul Aziz Bin Mustaffa Kamal Basha

iii

ABSTRACT

This dissertation explains the construction of LabVIEW Field Programmable

Gate Array (FPGA) for Energy Management System (EMS) Controller for Hybrid

Electric Vehicle (HEV). The HEV is engineered to reduce the world’s dependency on

fossil fuels. An HEV is designed to utilize two power sources which are from electric

motor and an internal combustion engine (ICE). These sources need to be carefully

controlled so that the energy of both sources can be synergized to achieve fuel and

power efficiency in the vehicle. The control algorithm is implemented by an EMS

Controller for which in this project, it will run on a National Instruments (NI)

CompactRIO, cRIO-9076. This EMS controller algorithm will be built and designed

in FPGA of NI LabVIEW to extract and control parameters from the electric motor

controller, which is the Motor Control Unit (MCU) and the engine controller, which

is the Engine Control Unit (ECU). The extracted and controlled parameters are engine

RPM, vehicle speed and vehicle fuel consumption. These data will be output using

the embedded server to the client, which is a windows-based tablet PC and the

embedded server is cRIO-9076. The communication between server and client will

be implemented using HTTP-based communication protocol making the data appear

in HyperText Mark-up Language (HTML) which will be rendered into the Graphical

User Interface (GUI) web page interface. This GUI will enable the driver to monitor

and control the MCU and ECU of the Hybrid Electric Vehicle.

iv

ACKNOWLEDGEMENT

In completing my Final Year Project (FYP), I would like to express my deepest

gratitude towards my supervisor - Mr. Saiful Azrin Mohd Zulkifli for providing

continuous support and advice for this project, simulating suggestions, motivation and

encouragement. I am gratefully indebted to him for assistance which is really valuable

and indispensable in the course of finishing this research and writing dissertation.

 I owe my wholehearted thanks and appreciation to technologists of the

electrical and electronic and mechanical engineering departments for providing

assistance and permission to use the required equipment that is vital to complete this

project. Not to forget, the FYP committee members for coordinating a well-organized

programme for the Final Year Project at UTP

Last but not least, I would like to show appreciation to my family and my

colleagues at UTP for their continuous support toward my FYP project. Furthermore,

I’d like to also thank all those who I have not mentioned and have directly or indirectly

contributed to the completion of this report. None of this would have been possible

without everyone’s help.

v

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION ... 1

1.1 Background of project .. 2

1.2 Problem statement... 3

1.3 Objectives ... 4

1.4 Scope of study ... 4

1.5 Relevancy of project ... 4

1.6 Feasibility of project ... 5

CHAPTER 2 LITERATURE REVIEW .. 6

2.1 Hybrid Electric Vehicle (HEV) architecture 6

2.2 Energy Management System (EMS) .. 8

2.2.1 EMS Control Strategy ... 9

2.3 CompactRIO and LabVIEW ... 10

2.3.1 cRIO-9076 .. 11

2.4 In-Wheel Motor (IWM) System ... 16

2.5 Re-generative Braking System (RBS) .. 16

CHAPTER 3 METHODOLOGY .. 18

3.1 Research Methodology ... 18

3.2 Implementation Concept ... 19

3.2.1 Pictorial Schematic ... 19

3.2.2 Block Diagram .. 19

3.2.3 Input/ Output List .. 20

3.3 Project Activities... 20

3.3.1 Project background and literatures .. 20

3.3.2 Learning CompactRIO & LabVIEW Real-time Scan Mode

program .. 20

3.3.3 Verification of existing Real-time Scan Mode program 21

3.3.4 Learning LabVIEW FPGA program 21

3.3.5 Translation of existing Real-Time Scan mode program to

FPGA mode .. 22

3.3.6 Trial Run ... 22

vi

3.4 PROJECT ACTIVITIES & KEY MILESTONES 23

3.5 GANTT-CHART .. 24

3.6 TOOLS.. 26

3.6.1 Software .. 26

3.6.2 Hardware ... 26

CHAPTER 4 RESULT AND DISCUSSION .. 27

4.1 Verification of existing Real-Time scan mode program 27

4.1.1 Instantaneous fuel consumption (ml/s) and total fuel

consumption (ml) ... 27

4.1.2 Vehicle speed (km/h) and Engine RPM 29

4.1.3 Data Acquisition ... 31

4.1.4 Front Panel .. 32

4.1.5 Verification of data ... 33

4.2 Translation of existing Real-time Scan mode program to FPGA

mode .. 35

4.2.1 Data acquisition and calculation in FPGA mode 35

4.2.2 Data interfacing in Real-time programming 41

4.3 FPGA program for CAN bus communication between the EMS

and MCU controller .. 44

4.3.1 Kelly Controller setup ... 44

4.3.2 Connection between Kelly Controller, EMS controller and PC

 ... 48

4.3.3 EMS control program for MCU .. 51

4.4 Graphical Driver Interface (GDI) development 55

CHAPTER 5 CONCLUSION .. 56

REFERENCES ... 57

APPENDICES ... 59

APPENDIX A LABVIEW FPGA BLOCK DIAGRAM 59

APPENDIX B LABVIEW FPGA FRONT PANEL 60

APPENDIX C LABVIEW REAL-TIME BLOCK DIAGRAM 61

APPENDIX D LABVIEW REAL-TIME FRONT PANEL 62

vii

LIST OF TABLES

Table 1: Input/ Output list .. 20

Table 2: FYP 1 activities and key milestones .. 23

Table 3: FYP2 activities and key milestone ... 23

Table 4: FYP 1 Gantt-chart .. 24

Table 5: FYP 2 Gantt-chart .. 25

Table 6: RPM vs Frequency [2] ... 34

Table 7: Vehicle Speed vs Frequency [2] .. 35

Table 8: RPM vs Frequency [2] ... 40

Table 9: Vehicle Speed vs Frequency [2] .. 41

viii

file:///D:/Abdul%20Aziz%20FYP2%20Final%20Report%20-%20Revised%20Saiful%20Ver.%202%20-%20Revised%20Aziz.docx%23_Toc450943324
file:///D:/Abdul%20Aziz%20FYP2%20Final%20Report%20-%20Revised%20Saiful%20Ver.%202%20-%20Revised%20Aziz.docx%23_Toc450943325
file:///D:/Abdul%20Aziz%20FYP2%20Final%20Report%20-%20Revised%20Saiful%20Ver.%202%20-%20Revised%20Aziz.docx%23_Toc450943326
file:///D:/Abdul%20Aziz%20FYP2%20Final%20Report%20-%20Revised%20Saiful%20Ver.%202%20-%20Revised%20Aziz.docx%23_Toc450943327

LIST OF FIGURES

Figure 1: Split-parallel HEV architecture [5]... 2

Figure 2: Parallel hybrid architecture [9] ... 7

Figure 3: Series hybrid architecture [9] ... 7

Figure 4: Power-split hybrid architecture [9] ... 8

Figure 5: Split-parallel hybrid architecture [9] .. 8

Figure 6: CompactRIO software architecture [13]... 10

Figure 7: NI CompactRIO, cRIO-9076[13] ... 11

Figure 8: Module NI 9401 and NI 9853 .. 12

Figure 9: FPGA clock speed [17]... 13

Figure 10: FPGA technology [17] ... 13

Figure 11: How LabVIEW FPGA works [17] ... 14

Figure 12: Embedded system serving content to client machine [6] 15

Figure 13: IWM (left) and motor controller (right) [4] .. 16

Figure 14: Brake pedal that will be integrated with re-gen breaking system [4] 17

Figure 15: Travel pattern of re-generative breaking [4] .. 17

Figure 16: EMS layout and connectivity [3] .. 19

Figure 17: Block Diagram .. 19

Figure 18: Scaled pulse for DFM 50C-K [2] .. 27

Figure 19: Both DIO0 is initialized to sense falling edges .. 28

Figure 20: Setting the pulse reading time to be execute for every 500ms 29

Figure 21: Fuel-flow measurement in real time scan mode 29

Figure 22: Both DIO1 and DIO2 is initialized to read time period 30

Figure 23: Vehicle speed measurement in real time scan mode 30

Figure 24: Engine RPM measurement in real time scan mode 31

Figure 25: Saving data in CompactRIO memory program .. 32

Figure 26: Tabulation of data program .. 32

Figure 27: : The user interface of related parameters measurement 33

ix

Figure 28: DIO0 is initialized to sense falling edges ... 36

Figure 29: The pulse reading time to be execute for every 500ms 36

Figure 30: Fuel-flow measurement in FPGA mode ... 37

Figure 31: Both DIO1 and DIO2 is initialized to read time of falling edge 37

Figure 32: Vehicle speed measurement in FPGA mode .. 38

Figure 33: Engine RPM measurement in FPGA mode .. 38

Figure 34: USB to RS-232 and RS-232 extension cable ... 44

Figure 35: Connection between Kelly controller and PC .. 45

Figure 36: Kelly Controller setting step 1 [21] .. 45

Figure 37: Kelly Controller setting step 2 [21] .. 46

Figure 38: Kelly Controller setting step 3 [21] .. 46

Figure 39: Kelly Controller setting step 4 [21] ... 47

Figure 40: Kelly Controller setting step 5 [21] .. 47

Figure 41: Kelly Controller setting step 5 [21] .. 48

Figure 42: CAN bus topology [19] .. 49

Figure 43: RS-232 pins schematics [19] .. 49

Figure 44: Kelly J2 pins schematics [20] ... 49

Figure 45: Example of 120 Ohm cable termination ... 50

Figure 46: CAN bus cable .. 50

Figure 47: Overall hardware connection for CompactRIO, Kelly Controller and PC 51

Figure 48: CAN data acquisition in FPGA programming ... 52

Figure 49: Data interfacing in front panel in Real-time programming 52

Figure 50: Front panel for end user .. 53

Figure 51: NI 9853 data rate setting ... 54

x

LIST OF ABBREVIATIONS

CAN : Controller Area Network

ECU : Engine Control Unit

EMS : Energy Management System

FPGA : Field Programmable Gate Array

GUI : Graphical User Interface

HEV : Hybrid Electric Vehicle

HTML : Hyper Text Mark-up Language

I/O : Input/Output

ICE : Internal Combustion Engine

LAN : Local Area Network

NI : National Instrument

PC : Personal Computer

REEV : Range Extended Electric Vehicle

SoC : State of Charge

USB : Universal Serial Bus

xi

1

CHAPTER 1

INTRODUCTION

The automotive industry nowadays mainly depends on fossil fuel as energy for the

prime mover of the vehicle. This natural resource utilization has contributed to critical

environmental pollution in recent years. Hence, the world nowadays tries to shift their

reliance on fossil fuel to relatively cleaner energy. However, cleaner energy such as

solar, wind, biomass and etc. require high cost of implementation, which makes the

fossil fuel more suitable for use in vehicle.

 Since the automotive industry is a sector that greatly depend on this fossil fuel,

revolutionizing the way this natural resource is utilized will effectively aid in reducing

the environmental pollution problem.

 The automotive industry today tries to come up with the eco-friendly

automobile such as electric and hybrid electric vehicle. The electric vehicle is designed

to use an electric motor to propel the vehicle, but for hybrid vehicles, it utilizes two

engines propulsion sources, which is the internal combustion engine and the electric

motor. The electric vehicle is a zero pollution energy source, but with the downside of

long charging time since it utilizes battery to store the energy. Meanwhile, for hybrid

electric vehicles it still need to rely on fossil fuel as its energy source. Both these types

of eco-friendly vehicle are relatively expensive. Despite that, it is a great move by

automotive industry in helping to resolve environmental pollution issue.

 Therefore, to support the awareness of reducing the reliance on fossil fuel, this

FYP project will support the new approach in building the hybrid vehicle by

converting a conventional vehicle into a hybrid electric vehicle. This conversion

involves conversion components retrofitted in to the internal combustion engine

(ICE)-based vehicle.

2

1.1 Background of project

The Hybrid Electric Vehicle (HEV) for split-parallel drivetrain enables propulsion

power to be provided to both the front and rear axles of a vehicle. As for normal

conventional vehicle, the propulsion power from Internal Combustion Engine (ICE) is

applied only on the front axle. This type of vehicle can be converted into HEV of split-

parallel configuration with minimal modification to its system. This will enable the

vehicle to reduce its fuel consumption. It can be done by replacing the rear wheels with

in-wheel motors (IWM). These IWM require a controller to control and monitor its

operation called Motor Drive/Controller Unit (MCU). The same situation goes to ICE

where its own controller is called Engine Control Unit (ECU). The power from both

MCU and ECU will be synergized, controlled and monitored by an Energy

Management System (EMS) Controller to achieve optimum efficiency in energy

utilization of HEV split-parallel axle architecture. [3, 4] The figure below shows the

configuration of this split-parallel architecture.

Figure 1: Split-parallel HEV architecture [5]

The present EMS has been programmed in ‘Real-Time Scan Mode’ to

communicate between the EMS controller with ECU. However, this type of program

mode cannot be used in getting data from the MCU because the Control Area Network

In-Wheel Motor

In-Wheel Motor

3

(CAN) module of the EMS controller (NI 9853) can only function in FPGA mode

ONLY. or the EMS controller to communicate with MCU, the EMS controller needs

this specific module (NI 9853). Therefore, this can be solved by converting the existing

program in the EMS controller communicate with the MCU using FPGA program.

Thus, the existing EMS control program needs to be converted from the Real-Time

Scan Mode program to the FPGA program to enable communication between the EMS

and MCU controllers. This program conversion is the first aim of this project. Both

programming modes are based on the National Instruments LabVIEW software

LabVIEW., while the controller hardware is CompactRIO cRIO-9076.

For this split-parallel architecture, the other desired design is to enable the

vehicle driver to control and monitor the data attained from the EMS controller. EMS

controller basically will read the signal status of vehicle’s engine revolutions per

minute (rpm), velocity and speed (km/h) and also its fuel consumption [4]. These data

will be channelled to Graphical Driver Interface (GUI) in a tablet PC and connected to

the CompactRIO cRIO-9076 via a web service protocol. This tablet PC utilizes a

Windows operating system. For GUI interface, whenever web browser receive signal

content from EMS controller, the Hypertext mark-up language (HTML) will render

the content into the GUI web page interface [6] . This GUI development in windows

tablet PC is the second aim of this project.

1.2 Problem statement

The HEV motor controller offers many parameters that can be monitored through CAN

communication. Some parameters are also controllable in real time. However, CAN

bus communication is incompatible with the existing LabVIEW Real-Time Scan Mode

program of the EMS controller. This project implements LabVIEW FPGA

programming on the CompactRIO, to enable integration of the EMS controller with

the HEV motor controller.

4

1.3 Objectives

The objectives of this project are as follows:

1. To convert the existing LabVIEW program from Real-Time Scan Mode to FPGA

programming in the EMS controller.

2. To develop FPGA program for CAN bus communication between the EMS

controller and MCU for motor parameter reading and control.

3. To build a Graphical User/Driver Interface (GUI/GDI) on a Windows-based

tablet PC for in-car real-time monitoring, control & data acquisition.

1.4 Scope of study

1. To understand differences between LabVIEW Real-Time Scan Mode and

FPGA programming. mode LabVIEW

2. To perform program conversion in existing EMS controller (CompactRIO) to

enable CAN bus communication with HEV motor controller

3. To develop a Graphical Driver interface (GDI) for real-time monitoring,

control and data-logging of vehicle parameters

1.5 Relevancy of project

The outcomes of this project shall address the following;

1. Reducing fossil fuel dependency, pollution and green house impact: This split-

parallel hybrid vehicle has TWO sources to propel the vehicle, which is the

ICE and electric motor. Hence, dependency on ICE power utilizing fossil fuel

is reduced in comparison to conventional vehicle. This will also reduce carbon

monoxide emissions, which can lead to the greenhouse effect.

2. Economical option: User will have the option to have their conventional car

converted to a hybrid vehicle rather than buying a new hybrid car. [2]

3. Car resale value: As of current trend on car resale value, the hybrid vehicle

has higher resale value than conventional car. It is because of a hybrid car is

equipped with higher standard equipment and most of it has strong reliability

5

records.[7] Hence, a conventional car converted into a hybrid vehicle certainly

has impact on its resale value.

4. Infrastructure Availability: With hybrid EMS conversion kit retrofitted into a

conventional car, the benefits of flexible vehicle fuelling for the user is

realized. They can now charge their HEVs at home, workplace or public

charging stations. They can also continue to fill up their car with gasoline. [8]

This gives users the option on location that they can refuel their car.

1.6 Feasibility of project

The time frame to complete this project is within two semesters of Universiti

Teknologi PERTONAS (UTP) academic calendar. The first semester is planned to

understand LabVIEW software and program, get familiar with the all the tools and

hardware, connections between hardware and also finalizing overall project planning.

The first objective is expected to finish in the first semester. While in the second

semester, the second and third objectives are expected to be finished, aside from

prototype building and fine tuning.

6

CHAPTER 2

LITERATURE REVIEW

 Common configurations of Hybrid Electric Vehicle (HEV) are of the series, parallel

or power-split HEV configurations [9]. These configurations have the ICE and EM

deliver propulsion power to the same drive axle – either the front or rear axle of the

car. These types of hybrid vehicle are expensive and are designed specifically for a

certain car (OEM vehicles). However, one hybrid vehicle architecture which enables

a conventional ICE vehicle to be converted into a hybrid automobile is called a split-

parallel hybrid where ICE will propel the front axle and EM will propel the rear axle.

This type of drivetrain is currently being developed in Universiti Teknologi

PETRONAS. This system requires an Energy Management System (EMS) to

synergize the TWO power sources, which are ICE and EM and also an on-board

battery pack [3, 4]. The present EMS controller is programmed in National

Instruments’ embedded CompactRIO- modelcRIO-9076, using LabVIEW software

[3]. The split-parallel drivetrain also utilizes re-generative breaking system of IWM

hardware to boost HEV power efficiency and energy savings [4].

The following are detailed explanation of the HEV architecture, EMS controller,

CompactRIO, LabVIEW, IWM System and re-generative breaking.

2.1 Hybrid Electric Vehicle (HEV) architecture

1) Parallel hybrid: In this configuration, both ICE and EM will work in tandem to

deliver the propulsion power to the front axle [10]. This single parallel hybrid

transmission system, rely on ICE as main prime mover with EM functions as an

additional power source. Hence it will perform very well during high speed than the

series hybrid system [11]. This EM also will work as a generator to recharge the

vehicle. Aside from that, parallel hybrid also normally utilize regenerative braking to

generate the energy and enhance its hybrid system efficiency [10].

7

Figure 2: Parallel hybrid architecture [9]

2) Series hybrid: This system is also known as Extended-Range Electric Vehicles

(EREV)[12] or Range-Extended Electric Vehicles (REEV) [9]. For this architecture,

the EM will solely provide the propulsion power to the front axle while the ICE will

act as generator to charge the battery bank. Hence due to this configuration, the vehicle

will fully functional as an electric car on a short distance [11]. The ICE for series

hybrid also is smaller than then the parallel hybrid configuration one, but it requires

larger battery bank since this battery bank will be the one empowering the EM. This

large battery bank causes the series hybrid configuration vehicle becomes more

expensive than the parallel architecture one [10].

Figure 3: Series hybrid architecture [9]

3) Power-split hybrid: The other name of this configuration is series-parallel hybrid

system. The propulsion energy that drives the front axle can be either from mechanical

or electrical wise [9]. The EM will be the vehicle prime mover during the low speed

(as in series configuration) and ICE for the high speed one (as in the parallel hybrid

system). The reasons are that the series hybrid work efficiently during low speed and

parallel hybrid work efficiently during high speed [10]. This power-split hybrid

configuration requires larger ICE and but smaller and highly efficient EM [9]. It also

requires large battery pack to store the power. This types of architecture certainty has

better performance and fuel saving than parallel or series hybrid configuration [10].

8

Figure 4: Power-split hybrid architecture [9]

4) Split-parallel hybrid: In this configuration, ICE and two EM will provide

propulsion power to different vehicle axel. ICE will provide propulsion power to the

front axle. While, the two EM will propel the rear axle which is a non-driven wheels.

Therefore, this EM is called ‘hub motor’ or ‘In Wheel Motor (IWM)’. Other than that,

battery bank will also be connected to this real axel. Since, there is no hard connection

between both front and rear axle, battery bank cannot directly be charged by ICE.

Battery will be charged by IWM when vehicle is moving only. This means that the

power is deliver from ICE to battery through the load which are vehicle’s framework,

wheels and road coupling rather than mechanical device. Hence, due to this design, the

car is called split-parallel Through-The-Road (TTR) configuration. This TTR design

actually allow the normal conventional vehicle to be converted into HEV with some

modification. Therefore, after this conversion is done the configuration is now can be

called as TTR-IWM hybrid architecture. [4, 5]

Figure 5: Split-parallel hybrid architecture [9]

2.2 Energy Management System (EMS)

The general purpose of EMS controller is to reduce vehicle fuel intake aside from self-

sustaining battery. Specifically for the split-parallel hybrid architecture, the EMS is

9

connected to ECU and MCU which enable it to read the input of throttle and vehicle

speed, engine rpm and also the battery SOC [4]. Then based on these inputs, the EMS

controller will plan the power management strategy to dictate the best operation of this

TTR-IWM drivetrain [5]. All the inputs from ECU and MCU later, will be controlled

and monitored by EMS controller and will synchronized this input data to the

Graphical User Interface (GUI) in Windows-based tablet PC. This GUI will be

developed using National Instruments’ software LabVIEW. The GUI implementation

will allow the vehicle driver to monitor and control the specific car parameters

according to their desire [6]. For this project, all the algorithm development of EMS

controller program will be done using Field Programmable Gate Array (FPGA) where

it will run in National Instrument CompactRIO, cRIO-9076. For GUI development,

the web service protocol will be use in the development.

2.2.1 EMS Control Strategy

There are three controls strategy for HEV which are normally use in HEV [21]:

1. Parallel Electric Assist; ICE acts as key propulsion power and electric motor

acts as secondary source. Based on certain control strategy the Battery State of

Charge (SoC) will be conserved at certain level.

2. Fuzzy Logic; It utilize “load levelling” idea. The electric motor use as a backup

power to ICE. Meanwhile, the ICE is run at full efficiency. This system

determines the vehicle power requirement and compute circulation among ICE

and electric motor.

3. Adaptive Control; A complex control approach that monitors the systems in

real time. It takes into account both fuel consumption and emission level which

resulted in better EMS strategy control decision.

Therefore, in this project it is more suitable to implement the parallel electric assist

control strategy due to its simpler and flexible nature. Since the electric motor require

seamless integration with ICE, it need to work in certain routine;

 Motor controller will only operate when driving torque lower than certain

minimum speed

 To charge battery during regenerative braking

10

 Electric motor will act as the key propulsion for vehicle. This is when engine

ICE is very low. In this situation the ICE will be turn off

 During low battery State of Charge (SOC) – Motor will be charged by excess

torque from ICE

2.3 CompactRIO and LabVIEW

CompactRIO (Fig 6) is a programmable hardware which rely on LabVIEW software to

create its program. It usually builds in Real-time Scan Mode or FPGA program. For,

Human Machine Interface (HMI) coding, it will enable the program information to be

display in GUI. This hardware will lessen the system development time and

complexity of a project. It offers the capability to monitor and control of various

applications. This CompactRIO also has communication and logging function for

maximum flexibility and performance of the system [13, 14]. CompactRIO need to be

configure as the following figure in order to execute real-time control and monitoring.

[13]

Figure 6: CompactRIO software architecture [13]

11

2.3.1 cRIO-9076

The cRIO-9076 is a hardware that will be use to execute for EMS control program for

this project. This hardware contains 400 Mhz real-time processor, 4 slot chassis with

and embedded and configurable LX45 FPGA chip. The other hardware features are as

of figure below:

Figure 7: NI CompactRIO, cRIO-9076[13]

2.3.1.1 MODULE

In this project, there are only TWO modules that will be used which are NI 9401 and

NI 9853.

2.3.1.1.1 NI 9401

This module is a bidirectional input and output module with 8 channel where each of

it compatible with 5V/TTL. This hardware can response to digital signal in about

100ns. It usually being utilized in program that require input or output of high speed

counter or timers, digital communication protocols, pulse generation and a lot more.

[15] This module can run on both Real-time Scan Mode or in FPGA program.

12

2.3.1.1.2 NI 9853

This module is a high-speed Control Area Network (CAN) module which has one port

for internally powered and other port for externally powered. This module has ability

to transfer or transmit signal at 100% bus load up to 1 Mbit/s. This module capable to

synchronize with any NI CompactRIO input and output module at 25ns resolution.

[16] This module can only run in FPGA program ONLY.

Figure 8: Module NI 9401 and NI 9853

2.3.1.2 Field Programmable Gate Arrays (FPGA)

FPGA are made of silicon chip with unconnected logic gates. This gates can be wired

together using software where it can be compiled into bit stream configuration file.

The FPGA will takes different “personality” once it reconfigures its gates. It is useful

in an application where time and cost of developing and fabricating application-

specific integrated circuit (ASIC) is prohibitive. This ASIC is different from FPGA

since its functionality is fixed according to the design. While for FPGA, it is design

and execute in hardware without operating system. This FPGA offers; [17]

1) Flexibility – FPGA can be configured according to current needs and

reconfigure according to future demand. There is no need to go through the

long fabrication process as ASIC. Hence, it will save time to build the desired

program.

2) Performance – FPGA is control by programmable interconnects of gates, hence

it can implement parallel task to run the program simultaneously and

13

independence of each other. The LabVIEW FPGA run on up to 120 Mhz

clocks. Hence, it can run and accomplish more executions per clocks. With

default clock rate for about 40 Mhz, it can response to digital signal for about

25ns.

3) Reliability - FPGA utilized deterministic hardware which is dedicated to every

task and its parallelism ability reduce the reliability concern.

4) Offload Processing – FPGA can free up the CPU on host computer by get rid

the exhaustive processing.

5) Cost – FPGA is programmable silicon which neglected the fabrication cost of

component circuitry assembly in contrast of ASIC.

Figure 9: FPGA clock speed [17]

Figure 10: FPGA technology [17]

14

2.3.1.2.1 The operation of LabVIEW FPGA

When LabVIEW IV is compiled into FPGA hardware by LabVIEW FPGA module, the

LabVIEW IV itself is converted into test-based VHDL code. Based on this code, then

the Xilinx ISE Compiler create the hardware circuit realization of the related LabVIEW

design in term of bit file. This bit file then is loaded to FPGA chip and reconfigure the

gate array logic (Refer figure 10 Below).

Figure 11: How LabVIEW FPGA works [17]

2.3.1.3 Web service

As of the third objective of this project, is to build the GUI in windows-based tablet

PC to implement the in-car real time monitoring, control and data acquisition form the

EMS controller. In this case, the EMS controller program is built in CompactRIO,

cRIO-9076. This communication pattern between CompactRIO and windows-based

tablet PC will be done in ‘client-server model’. The CompactRIO act as an embedded

server and windows-based tablet PC act as the client or human-machine interface

(HMI) (Refer figure 11 below). [6]

15

Figure 12: Embedded system serving content to client machine [6]

If the embedded server comprehends the client request, then it will reply with a

response. If not then, it will reply with an error. Both of these hardware must speak the

same language called Hypertext Transfer Protocol (HTTP) to mutually understand

each other request and response. The program in the embedded server that is able to

communicate over HTTP is termed as ‘web service’. It basically handles the client

request and reply with a response according to the developer program. Meanwhile, the

program in the client computer is called ‘client application’. Its task is basically

interpreting the response of web service according to developer programme. [6]

 This data of request and response is called content. The examples of content

are image, sounds, text and a lot more. Each of this content have their own standard.

When the web service gives a response to web server, this web server will interpret

this content into web page. This process is called rendering. [6]

 The content itself can be categorized by static and dynamic content. For ‘static

content ‘it is a not-executed and just transmitted content such as of plain text, image

and XML file. While the ‘dynamic content’ is generated by executing programming

code. Hence for this project the FPGA programming data execution is categorized as

the ‘dynamic content’. [6]

 Before the full usage of internet, the communication between HMI and

embedded server is done using TCP/IP which is a custom protocol or Modbus which

is an industrial standard. This custom protocol has higher cost of maintenance and low

interoperability while industrial standard is lack or security or scalability. [6] Hence,

because of that the web service technology is being created and has more merit than

custom protocol and industrial standard. The following is the advantage of web service

technology.

CompactRIO

(Embedded Server)
Windows-based Tablet PC [1]

(Client/HMI)

16

1) Cross Platform – The embedded target that utilize web service can support

most HMIs.

2) Connection management – The HTTP language enables persistence connection

and termination to the point.

3) Multi-client – It can operate multi HTTP at the same time.

4) Security – This web service can encrypt the transmitted content and also have

ability to verify the party operate the server throughout authentication process

which require user name and password.

2.4 In-Wheel Motor (IWM) System

To enhance the efficiency of power distribution and energy saving for hybrid vehicle,

the re-generative braking system sourced from Kelly Motor Controls is applied in this

split-parallel hybrid design. This system is a combination of mechanical braking and

electrical re-generative braking. It will enable the kinetic energy loss during braking

to be captured and converted into electrical energy. This captured electrical energy

will be stored in the battery bank. [4]

Figure 13: IWM (left) and motor controller (right) [4]

2.5 Re-generative Braking System (RBS)

This system occurs at the braking pedal of the car. When the pedal is pressed for the

first 30% of initial pedal position, the electrical energy is harvested from IWM. This

harvested energy will still be depended on battery SOC. The re-gen breaking will be

little when the battery is nearly full. This will affect the effectiveness of RBS.

Meanwhile, for the remaining 70% of the pedal travel zone, the mechanical breaking

17

is used. This mechanical braking will utilize OEM braking mechanism for safety

purpose and maximum breaking performance. [4]

Figure 14: Brake pedal that will be integrated with re-gen breaking system [4]

Figure 15: Travel pattern of re-generative breaking [4]

18

CHAPTER 3

METHODOLOGY

3.1 Research Methodology

END

START

Project topic selection

Initial research work & literature review

Learning of LabVIEW software programming

Conversion of EMS control program from

Real-time scan mode to FPGA programming

GUI algorithm development in Windows

based-tablet PC

Overall system integration

Trial Run

CAN Bus communication between EMS and

MCU

Data gathering and analysis

Final report

FYP 1

FYP 2

19

3.2 Implementation Concept

3.2.1 Pictorial Schematic

Figure 16: EMS layout and connectivity [3]

3.2.2 Block Diagram

Figure 17: Block Diagram

20

3.2.3 Input/ Output List

No. Subsystem I/O Type Description

1. Fuel flow Digital pulse Tapped from Fuel Meter,

5 ml/pulse

2. Vehicle speed Digital pulse Tapped from speedometer

3. Engine speed Digital pulse Tapped from speedometer

4. Motor speed, phase current,

voltage, motor temp, regen

mode. etc.

CAN signal Tapped from Kelly

Controller

Table 1: Input/ Output list

3.3 Project Activities

3.3.1 Project background and literatures

The project starts by investigating the background of the project such which are the

crucial topics that are related for this project. Then, the research on the literature of

each topic are made for better understanding of the overall project content itself. The

crucial topics are HEV architecture, EMS, CompactRIO and the modules used in this

project, FPGA, web service, IWM and RBS. Then, the step-by-step procedure is

planned to achieve the objectives of this project.

3.3.2 Learning CompactRIO & LabVIEW Real-time Scan Mode program

The overall learning process is a self-learning process with supervision from FYP

supervisor. It starts with the installation of LabVIEW software in the PC and in the

CompactRIO, the connection between hardware and the software configuration to

prepare the CompactRIO and PC so that everything is working fine during the next

process later on. For the Real-time Scan mode program, the learning is assisted by the

example from the National Instrument web site itself, and the LabVIEW training

21

module. Most of the time the learning process is done throughout the internet and

National Instrument forum.

3.3.3 Verification of existing Real-time Scan Mode program

The verification of existing program is done to test the understanding toward existing

Real-time (RT) Scan mode algorithm. It is basically the remake of this program. This

step also is crucial for the author to get familiar with the LabVIEW type of

programming.

3.3.4 Learning LabVIEW FPGA program

The learning process of FPGA program also is a self-learning process with supervision

from FYP supervisor. As of Real-time (RT) Scan mode program, the learning is

assisted by the example from the National Instrument web site itself, and the LabVIEW

training module and most of the time the learning process is done throughout the

reading from internet, the National Instrument forum and trial and error. There are

some difficulties in constructing the FPGA that is noticeable than the construction of

program in Real-time Scan mode.

i. The pallet in FPGA program is more lesser than in RT scan mode. Some

important pallet that is found in RT mode cannot be found in FPGA panel.

ii. The compilation time of FPGA program is roughly more than 9 min and

has the tendency to fail rather than success. This failure is mainly due to

the very long unfinished and unusual compilation time where the

compilation is mainly got stuck during the translation process.

iii. The input taken from the module need to be program not as RT mode

where, it has special digital configuration depending on the type of module.

For example, in RT mode, the input can be configured to be a counter,

counter driven output, PWM or quadrature. Meanwhile, for FPGA mode

the user need to program himself to get the certain configuration.

The FPGA program required the deep understanding toward the type of usage of each

pallet itself before it can be easily use. Luckily, the National Instrument training

22

module and internet provided the example need to understand the application of the

related pallet.

3.3.5 Translation of existing Real-Time Scan mode program to FPGA mode

The translation process of the existing program to FPGA mode still uses the same

formula and method as of in Real-time Scan mode program. The translation of the

program involving TWO process. First is the data acquisition and processing in FPGA

programming. Second is data interfaced for end-user front panel in real-time

programming.

All the data is obtained and calculated in FPGA mode. This is because this

FPGA mode clock is faster the real-time mode clock. Therefore, all the data can be

obtained and calculated faster. These processed data are then transferred to real-time

programming throughout FIFO function for end-user data display interface. This

transfer is done due several reasons as below;

 In FPGA mode, for everything that are modified even for as small

modification in the block diagram arrangement or wire, it require the whole

program to be compile back and this takes a lot of time which is normally

for about 15 minutes. This is really troublesome because trial and error

require a lot of modification to be done.

 In real-time programming the program can be compiled faster than in the

FPGA mode for about half a second. Hence, all the trial and error process

regarding the program algorithm is done in real-time mode.

3.3.6 Trial Run

The trial runs are performed for verification of existing program to ensure the

understanding towards current algorithm is perfect and also for every objective

completed. As of the first objective, the result from FPGA algorithm is being compared

to Real-time Scan mode program to ensure the result is comparable. It is not done to

increase accuracy of the reading.

23

3.4 PROJECT ACTIVITIES & KEY MILESTONES

FYP 1

No. Activities Start Date End Date

1. Project topic selection 21/9/15 4/10/15

2. Initial research work & literature review 28/9/15 1/11/15

3. Submission of extended proposal 30/10/15 30/10/15

4. Learning of LabVIEW software programming 26/10/15 27/12/15

5. Proposal defence 18/11/15 18/11/15

6.
Conversion of EMS control program from

Real-time Scan mode to FPGA programming
23/11/15 27/12/15

7. Writing of interim report 10/12/15 17/12/15

8. Submission of draft interim report 17/12/15 17/12/15

9. Submission of interim report 24/12/15 24/12/15

Table 2: FYP 1 activities and key milestones

FYP 2

No. Activities Start Date End Date

1.
Conversion of EMS control program from

Real-time Scan mode to FPGA programming.
18/1/16 20/3/16

2.
CAN Bus communication between EMS and

MCU
14/3/16 17/4/16

3. Submission of progress report 9/3/16

4.
GUI algorithm development in windows

based-tablet PC
28/5/16 17/4/16

5. Overall system integration 4/4/16 17/4/16

6. Trial run 4/4/16 17/4/16

7. Data gathering and analysis 11/4/16 17/4/16

8. Writing of final report 11/4/16 17/4/16

9. Submission of final report 18/4/16

Table 3: FYP2 activities and key milestone

24

3.5 GANTT-CHART

FYP 1

No. Project Activities / Milestones

Week

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1. Project topic selection

2. Initial research work & literature review

3. Submission of extended proposal

4.

Learning of LabVIEW software

programming

5. Proposal defence

6.

Conversion of EMS control program from

Real-time Scan mode to FPGA

programming

7. Writing of interim report

8. Submission of draft interim report

9. Submission of interim report

Table 4: FYP 1 Gantt-chart

25

Table 5: FYP 2 Gantt-chart

FYP 2

No. Project Activities / Milestones

Week

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1.
Conversion of EMS control program from

real-time scan mode to FPGA programming

2.
CAN Bus communication between EMS

and MCU

3. Submission of progress report

4.
GUI algorithm development in windows

based-tablet PC

5. Overall system integration

6. Trial run

7. Data gathering and analysis

8. Writing of final report

9. Submission of final report

26

3.6 TOOLS

3.6.1 Software

1. LabVIEW 2013

2. LabVIEW run-time engine 2013

3. LabVIEW FPGA module 2013

4. LabVIEW Real-time module 2013

5. Microsoft Office

3.6.2 Hardware

1. National Instrument CompactRIO (Crio-9076)

2. National Instrument NI 9401 (8 Channel digital I/O)

3. National Instrument NI 9853 (High speed CAN)

4. FUEL-VIEW DFM-50C-K

5. 12 VDC Power supply

6. 24V Battery

7. Digital multimeter

8. Ethernet cable

27

CHAPTER 4

RESULT AND DISCUSSION

4.1 Verification of existing Real-Time scan mode program

The verification of existing program only involves FOUR parameters which are

instantaneous fuel consumption (ml/s), total fuel consumption, vehicle speed (km/h)

and Engine RPM. All these parameters formula made by following the existing

program data as reference.

4.1.1 Instantaneous fuel consumption (ml/s) and total fuel consumption (ml)

The input of for both of these parameters comes from fuel meter called ‘FUEL_VIEW

DFM 50C-K’ which give the normally high output voltage which is 12V. Whenever

the fuel is consumes by car, this output voltage will be lower down to 0.7V for amount

of 80ms.

Figure 18: Scaled pulse for DFM 50C-K [2]

This means for every fuel consumption pulse is generated throughout falling edge.

One falling edge is considered as one pulse. In CompactRIO, this pulse will be read by

digital input module which is 9401. Both instantaneous and total fuel consumption will

use the same digital input/output pins of this module. The pin for instantaneous and

total fuel consumption is set to be DIO0 and is initialized as below.

28

I. Initialization I/O pin

This DIO0 is set to count the falling edge of fuel meter output pulse as

below. Note that, the CTR0 = DIO0.

Figure 19: Both DIO0 is initialized to sense falling edges

The input filter is set to be 256us due to the analyzation of fuel meter

to output where one pule is equivalent to 5ml of which in produce in

the range of second minimum. The variation outside of this time frame

will be ignored. Hence, the input filter must me much faster than the

pulse production. This change is considered as noise.[2]

II. Data processing

The reading of the pulse is design to be taken for every 500ms. This

pulse is counted by calculating the difference of previous and current

counter. This pulse count now is considered as pulse per 500ms.

29

Figure 20: Setting the pulse reading time to be execute for every

500ms

Since, one pulse is equivalent to 5ml and which has the minimum

consume time of a second, therefore the current pulse need to be

multiply with 5 to make the pulse in millilitre reading and multiply

again by 2 to make it into millilitre per second (ml/s). This ml/s is the

instantaneous fuel consumption.

 Meanwhile, for total fuel consumption is a measurement of

accumulation of fuel consumption. This accumulation can be made by

calculating the addition of current millilitre litre reading to previous

millilitre reading. The total fuel consumption is calculated in ml. The

program for both instantaneous and total fuel consumption parameters

are as below.

Figure 21: Fuel-flow measurement in real time scan mode

4.1.2 Vehicle speed (km/h) and Engine RPM

I. Initialization of I/O pin

The input of the vehicle speed and engine RPM is read by tapping the

wire from the dashboard of car itself to read the frequency of both

parameters. This frequency still will be read by NI 9401 module. Due

to limitation of NI 9401 where it can only read the frequency above

30

500Hz, so there is possibility that the frequency will be infinite. This

problem happens because the frequency measurement depended on the

pre-set sampling time of the module but not the period measurement

configuration. Hence, the pin DIO1 and DIO2 is set to read the period

from both vehicle speed and engine RPM. Therefore, both of this pins

need to set to period measurement configuration. Note that

DIO1=CTR1 and DIO2=CTR2.

Figure 22: Both DIO1 and DIO2 is initialized to read time period

II. Data processing

The time period for each of the vehicle speed and engine RPM later is

convert into frequency by the formula of frequency = 1 / Period.

Since, the pin is set to read period from both vehicle speed and

engine RPM, there is a possibility that the period value to be zero which

will cause the frequency to be infinite. Hence, the value 839000 is

chosen to give negligibe vehicle speed value if the program detect the

zero period value. (((1/839000)x1000000)x1.487)-1.7628 = 0.0095

km/h [2]. The other calculation is just follow the linear regression

formula that is made based on signal conditioning linear regression

equation for vehicle speed below made by Kurniawan, Y. (2013).

Figure 23: Vehicle speed measurement in real time scan mode

31

 For, engine RPM the program is perform in similar manner and

is made by following the linear regression equation for engine RPM

below.

Figure 24: Engine RPM measurement in real time scan mode

4.1.3 Data Acquisition

The data from FOUR parameters of instantaneous fuel consumption (ml/s), total fuel

consumption (ml), vehicle speed (km/h) and engine RPM need to be recorded for

further analysis. There are TWO type of data acquisition implemented in this program.

First, is saving the data in CompactRIO drive and second is data tabulation in front

panel purpose.

I. Saving data in CompactRIO memory

Each of the FOUR parameters is shared throughout the network-

published shared variable called RT FIFO. This RT FIFO enable to

create communication loop by transferring the data from deterministic

loop to the host over the network. These shared variables than are used

to save the four parameters data into the CompactRIO drive with the

tdms format. The name of the folder to save this file need to be initialize

of which in this case is RT-RVF (green colour) and the name of the

tdms file is RT-RVF (Pink colour). The program to save the parameters

data into CompactRIO memory is as below.

32

Figure 25: Saving data in CompactRIO memory program

II. Data tabulation in front panel

The program to tabulate all the related parameters in front panel is as

followed;

Figure 26: Tabulation of data program

4.1.4 Front Panel

This front panel enables all the related parameters data to be monitor. The data check

column in yellow box is for monitoring the overall parameters data. The gauge in green

box will display the vehicle speed and engine ROM data in real time. The table in red

box will tabulate the engine RPM, vehicle Speed, instantaneous and total fuel

consumption data. While, the charts in blue box are used to tabulate the related data.

33

Figure 27: : The user interface of related parameters measurement

4.1.5 Verification of data

The data obtain need to be verify to ensure the reliability of existing program before

translating the existing program to FPGA mode. The verification is done by comparing

the testing results with the data obtained by Kurniawan, Y. (2013) which is only

limited to vehicle speed and engine RPM. The verification between both data is

compared throughout the error measurement formula where, [Error %= ((Original

Value – Measured Value)/Original Value) x 100]. The data is considered valid as long

as long as the error percentage is less than 20%. Note that, the all the value calculated

and displayed is converted into TWO decimal place.

I. Engine RPM vs frequency

For the below error calculations, the original value is the engine RPM

value obtained by Kurniawan, Y. (2013) and the measured value is the

testing result value.

34

As of above results, all the percentage of errors for all the engines’ RPM

values are less than 20%. Therefore, the testing result value are

accepted.

II. Vehicle speed vs frequency

For the below error calculations, the original value is the vehicle speed

(km/h) value obtained by Kurniawan, Y. (2013) and the measured value

is the tested result value.

Table 6: RPM vs

Frequency [2]

35

As of above results, all the percentage of errors for all the vehicle speed

(km/h) values are less than 20%. Therefore, the testing result values are

accepted.

4.2 Translation of existing Real-time Scan mode program to FPGA mode

The translation process of the existing program to FPGA mode still uses the same

formula and method as of in Real-time Scan mode program. Therefore, the result of

this translation is comparable to the existing program. For this conversion step, the

data will be obtained and calculated in FPGA mode. Then these data will be transferred

to Real-Time program for end user interface.

4.2.1 Data acquisition and calculation in FPGA mode

4.2.1.1 Instantaneous fuel consumption (ml/s) and total fuel consumption (ml)

Since the input of the Instantaneous fuel consumption (ml/s) and total fuel

consumption (ml) sill comes from ‘FUEL_VIEW DFM 50C-K’. It means that the fuel

Table 7: Vehicle

Speed vs

Frequency [2]

36

consumption pulse is generated throughout falling edge. Therefore, the input

initialization for this parameters need to be the falling edge counter.

I. Initialization I/O pin

This DIO0 output is tested to be a Boolean output where it will give

either 1 or 0. One is 12v, and zero is 0.7V. By utilizing the shift register

concept, the current pulse is compared with previous pulse. If the value

is being found that much bigger than the previous one (1>0), the

comparator will output the value 1. This means that it initiate that

whenever the DIO output value change from 1 to zero, this indicate the

falling edge.

Figure 28: DIO0 is initialized to sense falling edges

II. Data processing

The reading of the pulse is design to be taken for every 500ms

throughout the while loop timer.

Figure 29: The pulse reading time to be execute for every 500ms

Since, one pulse is equivalent to 5ml and which has the minimum

consume time of a second, therefore the current pulse need to be

multiply with 5 to make the pulse in millilitre reading and multiply

37

again by 2 to make it into millilitre per second (ml/s). This ml/s is the

instantaneous fuel consumption.

 Meanwhile, for total fuel consumption is a measurement of

accumulation of fuel consumption. This accumulation can be made by

calculating the addition of current millilitre litre reading to previous

millilitre reading. The total fuel consumption is calculated in ml. The

program for both instantaneous and total fuel consumption parameters

are as below.

Figure 30: Fuel-flow measurement in FPGA mode

4.2.1.2 Vehicle Speed (km/h) and Engine RPM

I. Initialization of I/O pin

The same with the real-time scan mode program the DIO1 and DIO2

need to be configured for the period counting. Bu utilizing the frame

sequence pallet, the timer will count the falling edge time and by using

the shift register the current timer value will be compared the previous

one to find the actual time of period.

Figure 31: Both DIO1 and DIO2 is initialized to read time of

falling edge

38

II. Data processing

The time period for each of the vehicle speed and engine RPM later is

convert into frequency by the formula of frequency = 1 / Period. Then,

all the formula is exactly follow the real-time scan mode program

formula.

Figure 32: Vehicle speed measurement in FPGA mode

 For, engine RPM the program is perform in similar manner and

is made by following the linear regression equation for engine RPM

below.

Figure 33: Engine RPM measurement in FPGA mode

4.2.1.3 Front Panel for programmer

This front panel can only be seen by the author. This front panel will only be use to

check and verify the data with existing program. These data later will be transfer and

display in end user’s front panel using Real-time program. For the following front

panel, the data check column in yellow box is for monitoring the overall parameters

data. The gauge in green box will display the vehicle speed and engine ROM data in

39

real time. While the chart in blue box represent the accumulate fuel consumption (ml),

vehicle speed (km/h) and engine RPM.

Figure 31: The FPGA interface of related parameters measurement

4.2.1.4 Verification of data

The data obtained need to be verified with the data obtained by Kurniawan, Y. (2013)

of which is only limited to vehicle speed and engine RPM. The verification between

both data is compared throughout the error measurement formula where, [Error %=

((Original Value – Measured Value)/Original Value) x 100]. The data is considered

valid as long as long as the error percentage is less than 20%. Note that, the all the

value calculated and displayed is converted into TWO decimal place.

I. Engine RPM vs frequency

40

For the below error calculations, the original value is the engine RPM

value obtained by Kurniawan, Y. (2013) and the measured value is the

testing result value.

 As of above results, all the percentage of errors for all the engines’

RPM values are less than 20%. Therefore, the testing results values are

accepted.

II. Vehicle speed vs frequency

For the below error calculations, the original value is the vehicle speed

(km/h) value obtained by Kurniawan, Y. (2013) and the measured value

is the testing result value.

Table 8: RPM vs

Frequency [2]

41

As of above results, all the percentage of errors for all the vehicle speed

(km/h) values are less than 20%. Therefore, the testing result values are

accepted.

4.2.2 Data interfacing in Real-time programming

4.2.2.1 FIFO Data transfer

The data transfer from FPGA to real time program utilized the FIFO read function.

Then, these data are displayed in front panel in with charts. Only vehicle speed and

engine RPM utilized an additional gauge dial function display. The algorithm of this

data transfer is as follow;

Table 9: Vehicle

Speed vs

Frequency [2]

42

Figure 34: Saving data in CompactRIO drive program

4.2.2.2 Data acquisition

As of existing program the FOUR parameters of instantaneous fuel consumption

(ml/s), total fuel consumption (ml), vehicle speed (km/h) and engine RPM will be

saved in the CompactRIO drive and these data will be tabulated in front panel.

I. Saving data in CompactRIO memory

The algorithm to save the FOUR parameters in CompactRIO memory

is as below.

Figure 35: Saving data in CompactRIO drive program

II. Data tabulation in front panel

The program to tabulate all the related parameters in front panel is as

followed;

43

Figure 36: Tabulation of data program

4.2.2.2.1 Front panel for end-user

This front panel enables all the related parameters data to be monitor. The data check

column in yellow box is for monitoring the overall parameters data. The gauge in green

box will display the vehicle speed and engine RPM data in real time. The table in red

box will tabulate the engine RPM, vehicle Speed, instantaneous and total fuel

consumption data. While, the charts in blue box are used to tabulate the related data.

Figure 31: The real-time mode interface of related parameters measurement

All the data is displayed, according to original data. Hence, the program conversion is

a success.

44

4.3 FPGA program for CAN bus communication between the EMS and MCU

controller

To establish connection between Energy Management System (EMS) and Motor

Controller Unit (MCU) controller, it requires the MCU to be setup first. The MCU

utilized in this project is Kelly Controller and the EMS controller in this project is

CompactRIO cRIO-9076. After that, the controller need to

4.3.1 Kelly Controller setup

4.3.1.1 Connection between Kelly Controller and windows PC

To setup the controller, the MCU need to be connected to windows PC using USB to

RS232 cable. In this case the extension cable will be connected to this USB to RS-232

cable to increase the cable length. The Kelly Motor need to be stop first before this

connection is made because it will cause the cable to getting hot. The connection of

this hardware are as follow.

Figure 34: USB to RS-232 and RS-232 extension cable

USB to RS-232 cable RS-232 Extensioncable

45

Figure 35: Connection between Kelly controller and PC

The setting of the Kelly Controller is as in the following figure from step 1 until step

6. This step is a standard given by manufacturer of Kelly Controller.

Figure 36: Kelly Controller setting step 1 [21]

46

Figure 37: Kelly Controller setting step 2 [21]

Figure 38: Kelly Controller setting step 3 [21]

47

Figure 39: Kelly Controller setting step 4 [21]

Figure 40: Kelly Controller setting step 5 [21]

48

Figure 41: Kelly Controller setting step 5 [21]

After all these steps already been follow, the Kelly Controller setting is complete. Now

the USB to RS-232 cane can be disconnected from PC and Kelly controller. The Kelly

Controller now is ready to be connected with CompactRIO. The steps to connect the

controllers will be discussed in the following chapter.

4.3.2 Connection between Kelly Controller, EMS controller and PC

To connect Kelly Controller to CompactRIO, it requires wire that has end to end of

RS-232 socket with Kelly J2 Cable. Since this cable is not usual in market, the cable

itself need to be build. The building process will be explain as followed.

4.3.2.1 Kelly Motor CAN bus cable building

This CAN bus cable is built based on the CAN bus topology below. The CAN Nodes

at both side left and right of this cable in this case are RS-232 socket and Kelly J2

socket.

49

Figure 42: CAN bus topology [19]

The CAN_H (Pin 10) of Kelly J2 need to be soldier so that it is connected to CAN_H

(Pin7) of RS-232 socket. Meanwhile, The CAN_L (Pin 11) of Kelly J2 n need to be

soldier so that it is connected to CAN_L (Pin2) of RS-232 socket. Kindly refer to the

following figures for schematics both sockets’ pins.

Figure 43: RS-232 pins schematics [19]

Figure 44: Kelly J2 pins schematics [20]

After all the cable at both nodes is already been solider, this cable requires termination

resistor of 120 Ohm to prevent communication error, since CAN bus is bidirectional.

50

This termination resistor need to be placed at the end of CAN_H connection to CAN_L

connection at both of the cable. The cable build as of in the following figure.

Figure 45: Example of 120 Ohm cable termination

Figure 46: CAN bus cable

The CAN bus cable is tested with connectivity function of multimeter and is found

that all the connections are corrected. Now, the CompactRIO is ready to be connected

to Kelly controller and PC.

51

4.3.2.2 Overall hardware connections

The Kelly Controller, CompactRIO and PC are connected as if the following figure.

Figure 47: Overall hardware connection for CompactRIO, Kelly Controller and

PC

As of above figure, the CompactRIO is connected to Kelly Controller using the CAN

bus cable meanwhile, the LAN cable is use to connect the CompactRIO and PC. Now,

the EMS control program for MCU controller can be executed.

4.3.3 EMS control program for MCU

Same as the translation of existing program to FPGA mode, the FPGA programming

will only be use to acquire the data from the controller. These acquired data later will

be transferred into Real-time program.

4.3.3.1 Data Acquisition in FPGA mode

The input pin of CAN0 of NI 9853 will be use CAN data acquisition for MCU

controller. The following FPGA program will be use to acquire data from Kelly

Controller.

52

Figure 48: CAN data acquisition in FPGA programming

These data will be read in Real-time programming algorithm.

4.3.3.2 Data interfacing in Real-time programming

The data in FPGA is read by using the FPGA open pallet (Red box). This function will enable

the data in FPGA programming to be read in Real-time programming. These data will be read

the Read/write control pallet and output it to front panel (Purple Box). The ID in yellow box,

here will enable the user to key in the ID of the CAN bus data in front panel.

Figure 49: Data interfacing in front panel in Real-time programming

53

The ID of this CAN bus data is given by manufacturer, in the Kelly Motor Controller User’s

Manual. This ID is in hexadecimal. For this project there are only several parameters will be

read by the EMS controller. These parameters are summarized as follow;

4.3.3.3 Front panel for end user

The following front panel is the example of whet user will see. Since the program is still in

the testing process, the ID in the red box is not being fix yet. Once, the every this is completed

the ID will be fix and the data for the related parameters will be display. Meanwhile, the

green box will show the error occur if any in the data reading process.

Figure 50: Front panel for end user

Bil. Parameters ID

1. Kelly Motor Phase Current 26

2. Controller temperature 51

3. Kelly Motor Speed RPM 55

4. Current throttle switch status 66

5. Re-generative Braking status 67

54

4.3.3.4 Result

The current program is still being tested. The data of the related ID is still failed to be

display. There are several reasons on why, this data is failed to be display.

1. Due to the clock speed setting of Kelly motor controller

The Kelly controller has CAN data rated of about 1Mbit/s. Therefore, the

CompactRIO reading clock must be set faster than the Kelly Controller clock.

For this program, the CAN module NI 9853 is set to run at 1kb/s. Therefore,

since the reading clock is faster than the Kelly Controller out data, the data

should be display.

Figure 51: NI 9853 data rate setting

However, there are possibilities that the reading data is set too fast that make

the data unable to be display. This possibility takes time to be tested because,

since the data acquisition is done in FPGA mode, any changes will result the

whole program need to be compile again. This compile time normally will take

a long time, for about 15-30 minutes and sometimes the compilation got stuck

due to unknown issue. Hence, this possibility remains unsolved.

55

2. Due to the faulty of CAN bus cable

The CAN bus cable is a self-made cable based on the internet, this cable is only

being tested with multimeter connectivity function to see whether the CAN_H

or CAN_L between CAN Nodes are connected or not. If it is connected, the

multimeter will be beeping. This cable is never being tested to transfer the CAN

data. Therefore, this be the one that contributed to this issue.

3. Due to the wrong data acquisition algorithm implementation

The program is made based on the understanding on the certain graphical pallet

function, however throughout experience using this software, some of the

pallet can only be use for certain hardware only. For example, DAQmx type of

program, is made for simple data acquisition which can only be use for certain

controllers. National instruments had produced a lot of controllers, such as

sbRIO, CompactRIO, PCIe, PXIe, Ni Elvis II and etc. All these controllers can

use both Real-time Scan Mode program and FPGA program. However, there

are certain function that in both of this program that can only be use for specific

controller. For this DAQmx case, sbRIO and CompactRIO are not supported

to use this function, but is fully supported for PCIe and PXIe and NI Elvis II

controller. Since the author did not receive any training to use this software,

there are possibility that this issue comes from this cause.

4.4 Graphical Driver Interface (GDI) development

Since, there is some faulty issue in CAN bus data display and also time constraint, this

GDI development is unable to be done.

56

CHAPTER 5

CONCLUSION

All data obtained in ems control program in FPGA mode is compared and verified

with existing results of real-time scan mode program. The implementation of program

conversion has been successful. The completion of ems control program will enable

the HEV to achieve certain control strategy for efficient energy distribution and energy

storage through re-generative braking, in order to reduce fuel consumption while

maintaining acceleration and other performance requirements. This control strategy is

a project which is currently ongoing in University of Technology PETRONAS (UTP)

entitled “Design and Development of Split-parallel Through-the-road Retrofit Hybrid

Electric Vehicle with In-wheel Motors”. This FYP project will partially complete this

UTP research project.

57

REFERENCES

1. Nelson, R. Keep Tabs on Your Data. 2013 Available from:

http://www4.evaluationengineering.com/articles/201306/keep-tabs-on-your-

data.php.

2. Kurniawan, Y., Development of Energy Management System (EMS) with

Driver Interface for Retrofit-Conversion Hybrid Electric Vehicle. 2013.

3. Zulkifli, S.A., et al. Implementation of energy management system for a split-

parallel hybrid electric vehicle with in-wheel motors. in Control Conference

(ASCC), 2015 10th Asian. 2015.

4. Zulkifli, S.A., et al. Development of a retrofit split-axle parallel hybrid

electric vehicle with in-wheel motors. in Intelligent and Advanced Systems

(ICIAS), 2012 4th International Conference on. 2012.

5. Zulkifli, S.A., et al. Operation, power flow, system architecture and control

challenges of split-parallel through-the-road hybrid electric vehicle. in

Control Conference (ASCC), 2015 10th Asian. 2015.

6. Web Technology in Embedded Systems. 2013; Available from:

http://www.ni.com/white-paper/14992/en/.

7. 9 Benefits Of Hybrid Cars - 09 - High Resale Value. Available from:

http://www.autobytel.com/hybrid-cars/car-buying-guides/9-benefits-of-

hybrid-cars-120071/.

8. Benefits and Considerations of Electricity as a Vehicle Fuel. 2015.

9. Hybrid vehicle drivetrain. Available from:

https://en.wikipedia.org/wiki/Hybrid_vehicle_drivetrain.

10. Taylor, D. Series vs Parallel vs Series/Parallel Drivetrains. Available from:

http://www.ucsusa.org/clean-vehicles/electric-vehicles/series-vs-parallel-

drivetrains#.VjG8-JD6xaR.

11. Hartman, D. Series Vs. Parallel Hybrid. Available from:

http://www.ehow.com/about_6130613_series-vs_-parallel-hybrid.html.

12. Eberle, U., The Voltec System: Energy Storage and Electric Propulsion.

2014.

13. cRIO-9076. 2014; Available from:

http://sine.ni.com/nips/cds/view/p/lang/en/nid/209758.

14. How to reduce the time required for programming a PAC. 2008; Available

from: http://machinebuilding.net/ta/t0130.htm.

15. NI 9401. 2014; Available from: http://www.ni.com/datasheet/pdf/en/ds-86.

16. NI 9853. Available from: http://www.sal.wisc.edu/PFIS/docs/rss-

nir/archive/public/Product%20Manuals/ni/ni-9853-datasheet.pdf.

17. LabVIEW FPGA Course Manual. 2012.

18. How to Connet Kelly Controller to a Computer. n.d.

19. Operating Instruction NI 9853 (n.d.). Retrieved from

http://www.ni.com/pdf/manuals/371453e.pdf

http://www4.evaluationengineering.com/articles/201306/keep-tabs-on-your-data.php
http://www4.evaluationengineering.com/articles/201306/keep-tabs-on-your-data.php
http://www.ni.com/white-paper/14992/en/
http://www.autobytel.com/hybrid-cars/car-buying-guides/9-benefits-of-hybrid-cars-120071/
http://www.autobytel.com/hybrid-cars/car-buying-guides/9-benefits-of-hybrid-cars-120071/
https://en.wikipedia.org/wiki/Hybrid_vehicle_drivetrain
http://www.ucsusa.org/clean-vehicles/electric-vehicles/series-vs-parallel-drivetrains#.VjG8-JD6xaR
http://www.ucsusa.org/clean-vehicles/electric-vehicles/series-vs-parallel-drivetrains#.VjG8-JD6xaR
http://www.ehow.com/about_6130613_series-vs_-parallel-hybrid.html
http://sine.ni.com/nips/cds/view/p/lang/en/nid/209758
http://machinebuilding.net/ta/t0130.htm
http://www.ni.com/datasheet/pdf/en/ds-86
http://www.sal.wisc.edu/PFIS/docs/rss-nir/archive/public/Product%20Manuals/ni/ni-9853-datasheet.pdf
http://www.sal.wisc.edu/PFIS/docs/rss-nir/archive/public/Product%20Manuals/ni/ni-9853-datasheet.pdf

58

20. Kelly KBL Brushless Motor Controller User’s Manual. n.d.

21. Kelly KBLI/KHB/HP Controllers Configuration Program . n.d.

22. A. Bedir, "Design of a Stand-Alone Control Strategy For Retrofit Hybrid

Electric Vehicles," Tennessee Technological University, 2010.

59

APPENDICES

 APPENDIX A

 LABVIEW FPGA BLOCK DIAGRAM

60

 APPENDIX B

 LABVIEW FPGA FRONT PANEL

61

 APPENDIX C

 LABVIEW REAL-TIME BLOCK DIAGRAM

62

 APPENDIX D

 LABVIEW REAL-TIME FRONT PANEL

