
1

CHAPTER 1

INTRODUCTION

1.1 Background of study

In its early inception, robots were used as human replacements for

hazardous work that requires repetition, precision and endurance. Most of them

were initially confined to just manufacturing lines and automotive works.

However, as time goes by, their reliability and stability in doing their job

continuously again and again became recognised by a bigger audience, and today

robots have integrated themselves more into the human society. They are no

longer confined to just the manufacturing industry, as now they are increasingly

being utilised in other fields such as agriculture, healthcare and surgery, physics,

energy, research and even entertainment. In several places around the world, they

are becoming a common sight, acting as caregivers, housekeepers and even

educators. Their disposability and immunity against hazardous agents make them

ideal tools in the military, law enforcement, and search and rescue.

2

1.2 Problem Statement

Maintenance and inspection is an essential process that needs to be done

on a routine basis in every plant, factory and works. However, the task becomes

more complicated when the plant in question deals with materials that are in

general hazardous to human health, such as radioactive material in nuclear power

plant, corrosive chemicals in a plastic factory or toxic fumes from sewage

treatment facility. This problem is further compounded by the fact that many

places that require inspection are often rather remote and too small for humans to

even access. The personnel in charge of the maintenance tasks run the risk of

being exposed to these harmful materials every time they need to inspect the

place. Even if they are fully equipped with protective gear, there is a chance that

something will go wrong, especially when there is an emergency situation due to

leaks or fires occurring in critical areas.

As such, replacing humans with robots to do these hazardous work is an

attractive prospect. However, before such a thing can be done, there are many

factors that needs to be thought out and considered. Apart from the obvious

financial and technological constraints, those who will be in charge of operating

and taking care of the robot must also consider how the robot will be designed to

operate in its intended environment. Several crucial deliberations include: how the

robot will navigate around, whether it should be autonomous, manually operated

or both, the sensors needed to allow the robot to receive input from its

surroundings and whether the robot will be interacting with the environment

passively or actively.

Therefore, it is imperative that the design of the robot caters specifically

for its environment so as to ensure that it will be able to execute its intended tasks

perfectly and without hassle. A reliable robot, in this case, is very crucial as its

tasks are delicate, and any errors from inefficient design and implementation can

result in huge losses to those who had depended on it.

3

 1.3 Objectives and Scope of Study

The objective of this project is to design and create a robot that is capable

of moving a pre-planned route and check for any fires through its IR sensor. The

robot is intended to be lightweight and easy to manufacture, using commercially

available and inexpensive materials as opposed to the current ones used in the

industry.

The scope of the project study is limited to the study of the robot design,

serial connection between the many systems of the robot, as well as the fire

detection capabilities of the robot. At the end of this project a working prototype

that showcases its abilities is expected.

4

CHAPTER 2

LITERATURE REVIEW

2.1 Overview

The idea of using robots as human replacements for hazardous inspection

jobs is not an original one, as many others had also though out and implemented

similar ideas. Most of the time, these ideas are more complex than the one

proposed in this report, as they often involve multiple systems, with more

manpower and monetary investments.

Yamamoto [1] proposed a basic idea, in that an inspection robot system is

developed for use in nuclear plants. The robot can detect any type of abnormality

using a T.V. camera, a microphone, and an infrared camera. It is an efficient

approach, as it aims to increase inspection reliability through multiple sensors

which preventing risk or radiation exposure. The robots are made to be compact

and run along a guided rail, which minimises maintenance and simplifies

navigation. On the other hand, Kawauchi, Shiotani, Kanazawa, Sasaki and Tsuji

[2] opted for an actual humanoid robot, which can go around just like a normal

human would by the help of RFID tags and autonomous tele-operation fusion

control. In this approach, the robot replaces the human operator himself. Rather

than confining itself to a single specialised job, the robot can be used for tasks of

multitude nature. However, such a method would be difficult to do as the robot is

very complex.

 Most of the time, these robots are made to just carry out inspections in

very specific areas. Several common designs are used in sewer pipes [3][4] and

nuclear power plants[5]. The specialisation of tasks ensures that the robots are

able to fully perform their intended usages with minimal drawbacks. Some of

5

these designs incorporate sophisticated sensors, for example to detect cracks[6] in

order to further enhance its effectiveness.

 However, the ability to function in hazardous conditions led robots to not

just being adopted in plant inspection tasks but also in the fields of search and

rescue. Murphy, Kravitz, Stover and Shoureshi [7] proposed using robots for

search and rescue operations in collapsed mines. A number of people deal with

not the creation of new systems, but rather new methods to implement already

existing systems. There are several works devoted to controlling the behaviour of

robots in hazardous conditions [8], or using a group of robots, instead of one, to

get the job done[9]. Considering all factors, there are several trends that are

common in today’s inspection robots, which are listed below;

 Task specialisation – sewer, plant, fire extinguisher

 Autonomy; fully automatic, semi automatic or remotely controlled

 Use of different sensors – temperature, infrared, crack sensors

 Guidance system – line-tracking, robot vision, RFID tags

2.2 Task Specialisation

Specialisation defines what the robot design will be. For a hazard

inspection robot, this mainly determines how the robot should move and what

elements it should be capable of withstanding. As part of this project’s job scope,

the robot commutes around using wheels, as its environment comprises of flat

surfaces that are easy to move on. The robot must also be robust enough to

withstand minor elements present in the environment such as heat and dirt.

Extreme heat and other applicable hazards must be avoided at all times whenever

possible, as the robot is designed to just detect and report on the presence of such

elements, not approach them and try to eliminate them.

6

2.3 Autonomous Control and Navigation

The robot should be designed with at least a semi autonomous capability

in mind. This is necessary as the robot is meant to patrol select areas on a routine

basis; it is more practical to have the robot automatically patrol its routes than to

have an operator directly controlling the robot every time. The robot must also be

able, upon detection, to alert the operator of any abnormalities. Being autonomous

means that the robot must have some kind of navigation system to guide itself

around. An ideal choice is to have a robust guidance system that is easy to

implement and does not require sophisticated parts. As such, a line-tracking

guidance system can be used to navigate the robot autonomously around its

environment.

2.4 Sensor System

The sensors are integral to the robot in a sense that they allow the robot to

receive input from the surroundings, whether from touch, vision, smell, sound or

taste. In the context of this project, the only sensor used is the IR camera. The IR

camera can detect IR signatures coming from flames or any objects emitting heat.

In order to make the system more accurate and less prone to false positives, heat

detectors should also be used. However, in this project the implementation of the

sensor is kept simple by using only one type of sensor, and it is assumed that all

the hot objects encountered by the robot are detectable via the IR camera and all

IR light captured by the camera comes from the heat source. Other sensors used

are line detectors for navigation guided by the lines on the floor.

7

CHAPTER 3

METHODOLOGY

3.1 Procedure Identification

In order to ensure that the project goes according to plan in an ordered

fashion, a flowchart is used. The flowchart is used as a guide for the project, to

determine what task should be done and in what order it should be done. The said

flowchart is shown in Figure 1.

Figure 1: Flowchart of the project

8

3.1.1 Research

The research phase is the first phase of the project. The research conducted on

this project involves study on previous and existing hazard inspection robot

and its derivatives, how an autonomous robot works, I
2
C connection and

programming. Much time has been devoted to the understanding of the I
2
C

connection and its master-slave capabilities.

3.1.2 System Design

In this phase, all the aspects from the research phase are brought

together to the project at hand. At this point the robot is designed according to

the specifications. These specifications involve designing the circuits, sensors

and the hardware necessary for the robot to operate. This is a crucial phase as

the effectiveness of the proposed designs will determine whether the robot will

be able to function as intended. The project is currently at this stage.

3.1.3 Fabrication

After the software and hardware parts of the robot have been devised,

they are created using the chosen parts and materials. This is the phase which

requires the most effort as in bring the robot from concept to reality. Much

design modifications are expected at this point, where old designs are found

wanting and new designs being necessary.

3.1.4 Testing

 In this phase, the robot is tested to see whether it worked as intended. All

the systems will be tested to see whether they are able to work with each other

in unison. Several criteria are used to measure the effectiveness of the robot,

such as its ability to detect IR and the robustness of the Wiimote -

microcontroller connection.

9

3.1.5 System Optimization

 This is the last phase of the project. After the robot has been tested to fulfil

its basic requirements, further work are carried out on the robot to further

enhance and improve the systems of the robot. New systems may even be

considered to be put on the robot to complement the existing features. This is

necessary in making the robot more efficient and robust for its expected task.

3.2 Tools and Equipment

The tools and equipment can be separated into software and hardware

parts. Throughout the duration of this project, there are several systems that were

used, but later abandoned as they were not working properly, and replaced by

other methods. Nevertheless, these systems are still listed here for documentation

purposes. The following is an explanation of all the main hardware and software

tools and equipment, in no particular order of importance, used in the project.

3.2.1 Hardware

The Nintendo Wii Remote, or Wiimote, is the primary controller for the Wii

game console. The Wiimote features wireless control, motion detection and

gesture recognition by accelerometers, IR camera and a Bluetooth connection.

Many hackers and homebrew enthusiasts had found new applications for the

Wiimote outside its usage for Wii applications. The Wiimote used in this

project is shown in Figure 2.

10

Figure 2: Wiimote.

In this project, the IR camera of the Wiimote is used to detect IR generated

by open flames. The Bluetooth connects the Wiimote to the computer, where

the images from the IR camera are sent to for processing.

The SK40C is a low cost PIC-based microcontroller development board

made by Cytron. It is designed with basic elements for Microchip PIC users to

begin project development. In this project, the SK40C serves as the initial main

board for the mobile robot. The board will be connected to various subsections

of the robot by means of wires. Figure 3 shows the SK40C board.

Figure 3: The SK40C board.

11

The Arduino Duemilanove is a development board similar to the SK40C,

except it is based on the Atmel ATmega168 microcontroller. The use of the

Duemilanove came later in the project, due to problems that occur during the

use of the SK40C. A picture of the Arduino board used in this project is shown

in Figure 4.

Figure 4: The Arduino Duemilanove.

K’Nex is a type of construction toys similar to Lego Technic. The toys

consist of interconnecting plastic connectors and rods, that can be connected

together to create different kinds of things. In this project, the K’Nex parts are

used to construct the robot’s main body.

Other physical tools and equipment, apart from those previously

mentioned, are standard hardware used for circuit development such as

breadboards, DC power supply, hand tools, soldering irons and various circuit

components.

12

3.2.2 Software

The following list of software in Table 1 includes those that are used

throughout the project as well as those that are only used partially, again for the

purpose of documentation.

Table 1: Software used in this project.

No Name Purpose

1 MPLAB IDE Used to write the codes for the PIC microcontroller

algorithms.

2 CCS IDE Another PIC-compatible application for writing

algorithms.

3 PICKit 2 Used to program the PIC with the codes written

previously by either MPLAB or CCS

4 Arduino IDE The integrated development tools for the Arduino

Duemilanove

5 Microsoft

Visual Studio

2008

Used with the purpose of creating the application to

display the IR dots on the PC from the Wiimote

13

3.3 Work Completed

The overall progress on the robot was broken down into smaller sections

that measure the progress of various parts of the robot. Each of these parts was

worked upon one by one. Later, the entire parts of the robot are combined together

to see just how much has the project actually finished.

3.3.2 Robot base design and construction

After deliberating on the various aspects of the robot, the robot base was

constructed. A suitable material is chosen as the basis of the robot. A set of tires

are fastened onto the base and the base were tested to see if it would move

smoothly.

3.3.2 Circuit testing and fabrication

Much thought had also been given to the line tracking system to ensure

that the robot is able to patrol while not detecting any fires. Several circuit

schematics on line sensors and motor drivers are studied, recreated and tested for

its workability. After initial testing on the breadboard, the circuits are transferred

onto the veroboard, where they are again tested to make sure they are properly

functioning. Consideration is also given on the power supply used by the robot.

3.3.3 Wiimote connection

The Wiimote connection proved to be the most challenging part yet on

this project. Initial attempts to establish the link between the Wiimote and the

microcontroller using the SK40C were fruitless, even after changing the

algorithm from using MPLAB to CCS. After the Duemilanove was put into use,

other problems came up which hindered the Wiimote from being able to send

and receive data from the microcontroller.

A more thorough explanation of each section, complete with results, is

discussed in the following chapter.

14

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Wiimote Test Results

The Wiimote is a main component of the robot of which the rest of the

mechanisms rely on. Therefore, it is imperative that it works as planned. Initial

testing of the Wiimote has yielded several results:

4.1.1 Bluetooth Connection

The Wiimote can easily connect with any computer so long a

Bluetooth connection is supported on the computer. In order to connect the

Wiimote to a desktop computer, a Bluetooth dongle is used. The

maximum distance needed to maintain stable connection is not yet tested;

however, a distance of 5 meters is considered within the acceptable limits

for the connection.

15

4.1.2 Infrared Detection

The IR camera has several problems that hindered it from becoming a

good, cheaper substitute for the normal IR camera:

 The Wiimote IR camera is originally meant to detect only a few IR

points coming from the sensor bar, which is basically a bar with IR

LEDS. It does not register IR as a bunch of blobs like a normal IR

camera. As such, when presented with a flood of IR lights, it picks

out four of the brightest IR points rather than entire blobs. An

initial testing of the IR camera is done using the Multiple Wiimote

Tester software [9]. The IR camera is pointed towards a constant

IR source, in this case, a flame burning a paper. Multiple images of

the IR dots are shown in Figure 5. Appendix A shows the full

software.

Figure 5: Four images of the IR dots

16

There are several random dots scattered around the four screens.

These dots are the detected IR light from the IR source. The IR can

only detect up to four dots at any one time. Obviously this does not

make for a good IR image, as a single large blob is more

convenient.

 IR can be reflected off shiny surfaces. When using the IR camera

outdoors, false IR detection can come directly from the sun, or any

shiny objects that reflect the sun’s rays.

These issues rise from using the Wiimote in a different system not meant for

its original intent. Nevertheless, there are solutions one can envision to solve these

problems. The IR blob problem can be alleviated by using coding techniques that

do not just take the detected IR points, but rather reconstruct them into blobs. In

order to prevent interference, the robot can be limited to only be used in dark, cold

places, where detection of IR guarantees fire breakout.

17

4.2 Robot Body

4.2.1 Body Material

In making the choice of the robot body, several factors need to be taken into

account:

1. Adjustability

Since the project is in its early stages, there are going to be lots of

design changes implemented throughout the process. These changes

may be temporary or stay until the final design. Therefore, it would be

best if the material used to create the body can be easily and quickly

changed and adjusted according to the current design of the robot.

2. Lightweight/Sturdiness

Having a material that is both lightweight and robust is a added

advantage as it allows the robot to move under minimal internal force

while being tough enough to withstand normal locomotion conditions.

There is no need to use a strong material as the robot is designed to

only work on a smooth surface with minimal restrictions.

3. Cost

As this project has limited budget, it is necessary that the material for

the body to be as cheap as possible while still be commercially

available. Most of the budget should go to other more important parts

such as the Wiimote, electronic board and motor system, and as such

minimal budget should be spent on the body.

Taking all factors into consideration, it is decided that the material for the

body will be the construction toy system K’Nex. It is a system similar to Lego

Technic and Meccano; however, it is chosen as it is deemed easier to work

with as well as suited to the task at hand, although not as commercially

available. The K’Nex body is intended for use as a prototype. Should this

project become more serious, a better material will be used to replace it.

18

4.2.2 Construction

In order to see how the robot’s entire body would look like in real life, an

initial body was constructed using the available K’Nex parts with the Wiimote

included. The early robot body is shown in Figure 6 below.

Figure 6: A side look of the first robot body

The robot body uses four wheels instead of two. A hollow compartment is

made in the middle of the robot to accommodate the Wiimote. On top of the

Wiimote is a flat platform intended for the microcontroller board and other

circuits. There is no room for any power supply yet.

This body was found to be difficult to steer and turn around as it has four

wheels. As such, the robot was redesigned. The second iteration of the robot,

along with the attached line tracker sensor, is shown in Figure 7.

19

Figure 7: The second robot body with line tracker sensor attached

The K’Nex parts are built around a Perspex robot base on which the

geared motors and wheels are attached. Two wheels are used, with two front

casters for easy manoeuvrability. The robot line tracker sensor was put rather

far away from the wheels for easier line tracking. A bigger platform is made to

accommodate the circuit board, and hinges are added on the back end to allow

the platform to open away and the Wiimote be placed in the middle of the

robot, as show in Figure 8.

Figure 8: Placement of the Wiimote in the robot

20

A third iteration of the robot body was later made to accommodate the

entire robotic system. The robot is made to be more compact, the power

supply is placed at the back of the robot and the comparator and line tracker

circuit are combined as one. A breadboard is placed on the platform as a base

for the microcontroller board and the motor driver. Figure 9 showcases the

new robot design along with the Arduino board. Different views of the robot

are available on Appendix B and C.

Figure 9: The final robot body with the Arduino attached.

Throughout the redesigning process of the robot body, the K’Nex parts

proved its versatility and ease of usage. The robot was not only able to be

disassembled and reassembled into different designs in little time, the natural

shape of the individual K’Nex parts also aid in design. For example, the line

tracker sensor circuit is able to be held firmly without much fastening, and the

resulting boxed configuration behind the geared wheels under the robot is

used to house the batteries.

21

4.3 Circuitry System

4.3.1 Line Tracker Sensor

Like the rest of the circuitry, the line tracker sensor is made to be as simple

as possible. The sensor detects black line over a white background. There are

four sensors used in the robot, and each sensor uses a combination of an LDR,

a super bright LED and a comparator to detect lines. The schematic for a single

sensor is shown in Figure 10 and a soldered line tracker sensor with the

comparator circuit in Figure 11.

22

Figure 10: Circuit diagram of the line tracking sensor.

(a) (b)

Figure 11: Line tracking sensor (a) and comparator circuit (b)

23

4.3.2 Motor driver circuit

The motor driver takes the output from the microcontroller board and uses

it to control the geared motors. The circuit uses an L298 motor driver due to

its ease of use. The schematic for the motor system is shown in Figure 12.

Figure 12: Schematic of the L293D motor driver system

This circuit was also soldered onto a veroboard like the line tracker sensor.

However, after soldering, the circuit failed to properly work, even when all

connections are checked and multiple boards are constructed. Eventually a

breadboard is instead used and the circuit finally worked. The circuit is

connected to the Arduino Duemilanove board along with the tracker circuit.

The schematic for this whole setup is shown in Appendix D

24

4.3.3 Line tracking algorithm

The whole setup was first tested using a breadboard with switches and

unused DC motors. An initial algorithm has been written using the MPLAB

IDE software. After the motor driver was confirmed to be working, the code

was expanded to include the input from the line tracker sensor. The flowchart

for the code is shown in Figure 13.

Figure 13: Flowchart of the motor driver algorithm

The entire code is later ported from the Microchip environment to the AVR

microcontroller in the Arduino board. This is necessary as the final prototype

will use Arduino as its control board while the SK40C is used mostly for

testing. The tested line tracker code is shown in Appendix E.

25

 4.3.4 Test Run

After the line tracker sensor, motor driver and Arduino board are ready,

they are put together on the mobile robot for a test run. The trial run consists

of a single white board with black tape on it to simulate a short line track

course. Figure 14 shows this setup. The robot is switched on and made to run

the test several times. Several issues are noted concerning the robot’s

performance.

Figure 14: Testing the line tracking ability

The line tracker sensor responds to the black and white colour on the floor

as expected, and the wheels both turn the correct way, corresponding to what

the line tracker senses. One major problem is that the robot always veers to the

right considerably when it is supposed to go straight. Although using two

separate motors do result in both wheels not spinning at the same speed, the

difference in speed should not be significant. On closer look, the right wheel is

found to be not properly connected to the axle, resulting in a wobbly

movement. After tightening the wheels to the axle, the robot moves straighter.

Of course, given the line tracker’s self-correcting ability, even with the

wobbly wheel problem, the robot would still able to follow lines closely, albeit

slower.

26

4.4 Wiimote I
2
C Connection

Up until the moment this report is being made, the connection between the

Wiimote and the PIC through the I
2
C communication still cannot be established.

Much effort had been put into trying to make the connection work; however, so

far, the conversion of the Wiimote into a Bluetooth transceiver is yet to be

achieved. Several attempts have been done which are further explained in the

following paragraphs.

4.4.1 First Code using MPLAB

In the first attempt to establish the I
2
C connection, the hardware used is the

Microchip PIC 16F877A and Cytron SK40C development board, and the

MPLAB IDE software with Hi-Tech C Toolsuite. The code is modified from

the original code made by Michael Alon from the Microchip website [10]. The

original code is chosen as it was recommended by other Microchip users. A

sample of the main function is shown below in Figure 15.

Figure 15: The main function for the first I
2
C code.

void main()

{

ADCON1 = 0b00000011;//set RA3 as voltage reference

 i2c_init(); // init i2c

 init_nunchuk_nocode(); //initialise uncoded data

 init_nunchuk_encode(); //initialise encoded data

 while(1)

 {

 //write_six_bytes_nocode(0xa5);

 // write_six_bytes_nocode(0x52);

 write_six_bytes_encode(0xa5);

 //write_six_bytes_encode(0x52);

 DelayMs(255);

 if(read_six_bytes(0xa4))

 {

DelayMs(255);

 }

}

}

27

The initial test managed to get some data sent to the Wiimote and to the

WiimoteTest program. However, all of the data are registered as IR instead of

the intended Nunchuk data. This occurrence happened a few times, and then

the Wiimote stopped receiving data from the PIC at all. It is assumed that the

entire code might not be workable enough for the Wiimote, so after more

attempts remain futile, a new I
2
C code is used instead.

4.4.2 Second Code using MPLAB

The second code is taken from the samples provided by Microchip itself,

as opposed from the first code which is adapted from CCS. The code is written

differently from the first code. The main function is shown in Figure 16, while

the data write and read functions are shown in Figure 17.

Figure 16: The main function of the second I
2
C code.

void main(void)

{

unsigned char count,val;

//setup ADC

ADCON1 = 0b00000011; //set RA3 as voltage reference

TRISA = 0b00000111; //configure PORTA I/O direction

TRISB=0; /* use a led on RB0 - set as output */

PORTB=0;

RB0=0;

 init_nunchuk_nocode(); //initialise uncoded data

 init_nunchuk_encode(); //initialise encoded data

/* initialize i2c */

#ifdef I2C_MODULE

 SSPMode(MASTER_MODE);

 SSPEN = 1;

 CKP = 1;

#else

 SCL_DIR = I2C_OUTPUT;

 SDA_DIR = I2C_OUTPUT;

 SDA = 0;

 SCL = 0;

#endif

while(1)

{

 WriteByte(count,count); /* write to I2C EEPROM */

 val = ReadByte(count); /* read back value */

flashled3();

 DelayMs(200); /necessary

}

}

28

Figure 17: The write and read functions of the second code.

Unlike the first code, the second code failed to achieve any kind of data

transmission with the Wiimote. When the I
2
C bus is plugged into the Wiimote

the WiimoteTest program registers no new events. Even when another

Wiimote program is used (that uses the WiiYourself, another different

wiimote emulation library), no data are shown being sent.

During the modification of both the first and second code, it is assumed

that the PIC should emulate the I
2
C connection as the master, and the Wiimote

as the slave. However, closer inspection of the original Arduino codes reveals

that the established I
2
C link uses slave protocol instead of the master protocol.

The code snippet is shown in Figure 18.

void WriteByte(unsigned char addr, unsigned char byte)

{

 //i2c_WriteTo(WRITE);

 if (i2c_PutByte(WRITE)==I2C_ERROR)

 flashled1();

 for (int i=0;i<6;i++)

 {

 if (i2c_PutByte(outbufencode[i])==I2C_ERROR)

 flashled1();

 }

}

int ReadByte(unsigned char addr)

{

 //i2c_WriteTo(READ);

 if (i2c_PutByte(READ)==I2C_ERROR)

 flashled2();

 for (int i=0;i<6;i++)

 {

 i2c_ReadFrom(READ);

 }

 return i2c_GetByte(I2C_LAST);

}

3

29

Figure 18: I
2
C connection initialisation of the Arduino code.

Going with this new knowledge, a new I
2
C code for slave devices are

searched for. However, no usable codes for I
2
C slave devices are found.

Therefore, the best option is to switch programming software from MPLAB to

PIC C, which has plenty of master and slave example codes.

4.4.3 CCS PIC C Code

The PIC C code uses C language, simplifying the process of switching

codes from MPLAB. Most importantly, PIC C has inbuilt options that

provides the required I
2
C specifications for the codes.

For the I
2
C connection with Wiimote, the created code is made for a slave

device. A sample project taken from the PIC C forums show a Nunchuk

connected to a PIC with the PIC as the master. Technically, this would make

the Nunchuk a slave device, and as such the PIC in this project should be

made a slave device as well. The resulting slave codes are shown, with the

main function in Figure 19 and the I
2
C subroutine in Figure 20.

Currently, like its previous MPLAB counterparts, the code still fails to

send data from the PIC to the Wiimote. The code is being continuously

improved upon, and hopefully is able to connect the PIC to the Wiimote.

void

setup ()

{

 Wire.begin (0x52); // join i2c bus with address 0x52

 // this is the nunchuk address.

 // all nunchuks use this address

 Wire.onReceive (receiveEvent); // register event

 Wire.onRequest (requestEvent); // register event

}

30

Figure 19: Main function of the PIC C code.

void main () //main program

{

 encrypt_init_encode(); //generate encoded data

 encrypt_init_nocode(); //generate simple data

 //series of on-off LEDS to signify program initialised and

working

output_high(PIN_B7);

 output_low(PIN_B6);

 output_high(PIN_B5);

 output_low(PIN_B4);

 delay_ms(500);

 output_low(PIN_B7);

 output_high(PIN_B6);

 output_low(PIN_B5);

 output_high(PIN_B4);

 delay_ms(500);

 output_low(PIN_B7);

 output_low(PIN_B6);

 output_low(PIN_B5);

 output_low(PIN_B4);

 enable_interrupts(GLOBAL);

 enable_interrupts(INT_SSP);

 while (TRUE) {}

}

31

Figure 20: The PIC C I
2
C subroutine code.

4.4.4 Original Arduino Code

Looking at the failures of the previous getups that use PIC

microcontrollers and MPLAB and PIC C compilers, a contingency plan is

drafted in which the project uses the Arduino, just like what the original

project used [11]. The latest Arduino Duemilanove board with microcontroller

Atmel ATMega 328 are used to replicate this project. The code for the

Arduino is shown in Appendix F.

#INT_SSP

void ssp_interupt ()

{

 BYTE incoming, state;

 state = i2c_isr_state();

 if(state <= 0x80) //Master is sending data

 {

 incoming = i2c_read();

 if(state == 1) //First received byte is address

 {

 flashled1();

 address = incoming;

 }

 if(state == 2) //Second received byte is data

 {

 buffer[address] = incoming;

 flashled2();

 }

 }

 if(state > 0x80) //Master is requesting data

 {

 index = state & 7; // Lower 3 bits of state = the index

 i2c_write(bufencode[index]);

//! i2c_write(buffer[address]);

//! i2c_write(bufencode[0]);

//! i2c_write(bufencode[1]);

//! i2c_write(bufencode[2]);

//! i2c_write(bufencode[3]);

//! i2c_write(bufencode[4]);

//! i2c_write(bufencode[5]);

 flashled3();

 }

 //flashled4();

}

32

Even when using a direct code of the original program, the I
2
C connection

is still not established. No changes are made to the original code, and yet it

still doesn’t work. Figure 9 shows the Arduino setup.

 Figure 21: The Arduino setup.

The setup had been tested with both the WiimoteTest and the WiiYourself

demo program with negative results. From Figure 21, it is shown that the four

coloured input wires from the Wiimote are connected to its respective places.

However, the connections are actually loose, since the square holes are bigger

than the single-core wires. In order to have a tight fit, another short wire is

inserted into each hole.

There is a possibility that such a configuration interfered with the

programming; however, previous testing of the setup using just the four I
2
C

wires (in loose conditions) also yield the same results.

33

4.4.5 Wiimote Extension Library

Further research on the Internet yields an alternative method to the

Arduino code; the Wiimote Extension Library (WEP) [12]. The WEP is a C

library that gives an AVR microcontroller the ability to act as a Wiimote

extension controller like the Nunchuk and the Guitar Hero controller. It

addresses the problem with encryption by giving the microcontroller the

encrypted handshaking and unique ID based on the actual extensions.

Problems arise when trying to program the Arduino using the code. The

code itself is not the problem, but somehow the Arduino cannot be

programmed with the code. While the WEP can use the Arduino due to its

AVR microcontroller, programming the WEP into the AVR uses text-based

software called AVRDUDE as C programming is incompatible with the

Arduino IDE (which uses C++). The AVRDUDE lacks any GUI, and instead

uses command line interfaces to access the various AVR microcontrollers.

Numerous attempts were done to try using the AVRDUDE to program the

Arduino with no positive results. Several different commands that are possibly

compatible with the Arduino are tried using the AVRDUDE to no avail. Some

of these commands written into the command prompt are shown in Figure 22.

The resulting error message from all these commands is shown in Figure 23.

The reason for this problem is still unclear. Searches at the Arduino and

AVRDUDE forum yield several possible solutions, several which were tried

but were not successful. Even when using a different OS, from Windows 7 to

Windows XP, the problem still persists.

34

Figure 22: The slightly different commands to program the Arduino using

AVRDUDE.

Figure 23: The resulting error message from previous commands.

4.4.6 Direct IR Camera Access

After many previous failures to turn the microcontroller into an emulated

extension of the Wiimote, a final attempt is to access the IR camera directly.

Rather than having the computer access the camera through Bluetooth and

commands sent to the microcontroller, the microcontroller directly accesses

the IR camera through the I
2
C connection. This method is a bypass, as the

microcontroller is not communicating with the Wiimote, but only its IR

camera, as explained by Brian Dwyer[13] and Stephen Hobley[14]. The whole

setup is as follows:

 Open the Wiimote cover and solder a wire to the port 7 of the

Pixart IR camera.

 Connect the wire to a 24MHz crystal oscillator clock.

 Connect the red Vcc wire from the I
2
C cable to a 3.3 V power

supply and the white ground wire to the ground. Both connections

must come from the Arduino board in use.

avrdude: stk500_getsync(): not in sync: resp=0x00

avrdude done. Thank you

C:\WinAVR-20100110\Test Program avrdude –p m328p –c stk500v2 –P com3 –U

flash:w:count.hex -v -v -v -v

C:\WinAVR-20100110\Test Program avrdude –p m328p –c stk500v1 –P com3 –U

flash:w:count.hex -v -v -v -v

C:\WinAVR-20100110\Test Program avrdude –p m328p –c stk500 –P com3 –U

flash:w:count.hex -v -v -v -v

C:\WinAVR-20100110\Test Program avrdude –p m328p –c arduino –P com3 –U

flash:w:count.hex -v -v -v -v

35

 Connect the SDA and SCL wires from the I
2
C cable to the

corresponding SDA and SCL pins on the Arduino

The Arduino is later programmed using the code provided by Bryan

Dwyer, slightly modified to show any responses to the detection of the IR

lights. The body of the code is shown in Figure 24. Appendix G shows the full

code.

 Figure 24: The main code for the direct IR camera access.

void loop()

{

 result = ircam.read();

 if (result & BLOB1)

 {

if (ircam.Blob1.X > 480 && ircam.Blob1.X < 520)

{

 myservo.write(STOP);

}

 else if (ircam.Blob1.X < 480)

{

 if (ircam.Blob1.X < 200)

 {

 digitalWrite(13, HIGH); //Turns Led on when ircam initiation is complete

 }

 else if (ircam.Blob1.X < 400)

 {

 digitalWrite(13, HIGH); //Turns Led on when ircam initiation is complete

 }

 else

 {

 digitalWrite(13, HIGH); //Turns Led on when ircam initiation is complete

 }

}

else if (ircam.Blob1.X > 520)

{

 if (ircam.Blob1.X > 800)

 {

 digitalWrite(13, HIGH); //Turns Led on when ircam initiation is complete

 }

 else if (ircam.Blob1.X > 600)

 {

 digitalWrite(13, HIGH); //Turns Led on when ircam initiation is complete

 }

 else

 {

 digitalWrite(13, HIGH); //Turns Led on when ircam initiation is complete

 }

}

 }

 else

 {

 digitalWrite(13, HIGH); //Turns Led on when ircam initiation is complete

 delay(100); // wait for a second

 digitalWrite(13, LOW); // set the LED off

 delay(100);

 }

}

36

Even when using this setup, the Arduino failed to detect any IR lights from

the Wiimote. The previous code will light up an LED if any IR is detected by

the camera. As such, the LED did not light up even when there a flame is

waved very close to the camera. However, when the code is changed so that

the LED lights up when there are no IR points detected, the LED does light up

– indicating that the code does work. The only problem is that the code

somehow does not get the IR from the camera, even if the IR values are

actually available. Several measures are tried out, with no success:

 Changing the value of the crystal oscillator to 20 MHz and 25 MHz.

 Using batteries instead of the 3.3 V to power the Wiimote.

 Using a separate code to determine if there is any I
2
C data transfer going

on

 Using 5 V instead of 3.3 V to power the Wiimote. This is not

recommended as it can damage the circuit.

 At this point, there is not much to be done as even the final attempt for the

connection between the Wiimote and the microcontroller failed to produce any

positive results. Searches on the internet yield some insight on why all the

attempts so far have failed. The encryption and unique ID identified with each

Wiimote peripheral renders the previous attempts using the Microchip boards

futile. The original Arduino code failed probably due to the different versions

of Wiimote used then and now. This is a crucial factor, as many people have

posted their own results with the Wiimote online and some of them varied

significantly from each other. A code that works with one Wiimote does not

work with another Wiimote. Of course, there are also other possible reasons

like improper implementation of the previous connection attempts.

37

4.4.7 Bluetooth Direct Connection

The last option available is to forgo the Wiimote as the Bluetooth

transceiver and instead use a specialised Bluetooth transceiver to send data

from the computer directly to the microcontroller. This means that the robot

now has two Bluetooth connections, with the first Bluetooth used by the

Wiimote to send data from its IR camera to the PC. This new system is

illustrated by Figure 25.

Figure 25: The new Bluetooth system.

A module, the KC Wirefree Bluetooth Transceiver SKKCA, is already

acquired for this purpose. Figure 26 shows this Bluetooth module.

Figure 26: the KC Bluetooth module SKKCA, on the right.

With the new Bluetooth in place, the full Wiimote-PC-microcontroller link is

finally established. This allows for the final robot design to be realised, as shown

in the next section.

38

4.5 Final Working Design

With the various aspects of the robot finally put in order, the actual robot

is finally able to be built. A software is created that can bring together the

image from the IR camera and the commands needed to control the robot.

Called the Wiimote Infrared Program (WIRP), it acts as the graphical user

interface (GUI) for the entire project, displaying the IR images and their

coordinates, and also the current mode of the robot. The WIRP software is

shown in Appendix H.

The software is created using the Microsoft DirectX API. DirectX is a

library specifically made for multimedia and graphics applications, and is used

to show the IR images for the application. The WIRP use the application taken

from the Codesampler website [15], as well as several other references

[16][17]. The WIRP is divided into several sections that deal separately with

the Wiimote, the serial Bluetooth port and the IR display and robot control.

4.5.1 Wiimote Connection

The WIRP is able to connect to the Wiimote by including the Wiimotelib

library from the previous Multiple Wiimote Tester application as part of the

project. The Wiimote is connected at the start of the program and

disconnected when the program exits. The codes for the function for the

processes are shown in Figure 27.

Figure 27: The functions to connect and disconnect the Wiimote.

 private void InitWiimote()

 {

 Wyrm.Connect();

 Wyrm.SetReportType(InputReport.IRExtensionAccel, true);

 Wyrm.SetLEDs(false, false, true, false);

 }

 private void ExitWiimote()

 {

 Wyrm.SetLEDs(false, false, false, false);

 Wyrm.SetRumble(false);

 Wyrm.Disconnect();

 }

39

4.5.2 Bluetooth Serial Port Connection

The computer uses the HyperTerminal, a built-in communications

software for Windows to connect to the second Bluetooth. However, the

HyperTerminal is a standalone program and cannot be integrated into the main

WIRP application. Therefore, connection using the WIRP is done by calling

the SerialPort class under the System.IO.Ports library. The class contains

functions for opening, reading and writing to serial ports. Like the Wiimote

function, the connection is divided into functions that define the port, open

the port, write to and close the port. The port functions are shown in Figure

28.

Figure 28: The functions for the serial Bluetooth connection.

SerialPort port = new SerialPort("COM9", 115200, Parity.None,

8, StopBits.One);

 private bool SerialOpen()

 {

 port.Open(); //

 return true;

 }

 private void SerialWrite()

 {

 if (input == 1)

 {

 port.Write("1"); //

 }

 else if (input == 2)

 {

 port.Write("2"); //

 }

 else if (input == 3)

 {

 port.Write("3"); //

 }

 else if (input == 4)

 {

 port.Write("4"); //

 }

 else port.Write("5"); //

 }

 private bool SerialClose()

 {

 port.Close();

 return true;

 }

40

4.5.3 IR Display and Robot Control

The IR section of this code consists of the IR display and robot control

functions. The IR display deals with showing the present IR values on the

WIRP. Up to four values of the IR can be shown on the screen at any one

time. The IR display is further divided into two parts: calculating the x and y

coordinates of the values with respect to the IR camera’s 768 x 1024

resolution, and drawing the squares on the screen to show the locations of the

IR points. The calculation and drawing functions are shown in Figure 29

below.

Figure 29: The IR calculation and drawing functions.

IR1X = (Wyrm.WiimoteState.IRState.IRSensors[0].Position.X *

FormWidth) * 3 / 4;

IR1Y = (FormHeight -

(Wyrm.WiimoteState.IRState.IRSensors[0].Position.Y * 5 / 7) *

FormHeight) * 3 / 4;

IR2X = (Wyrm.WiimoteState.IRState.IRSensors[1].Position.X) *

FormWidth * 3 / 4;

IR2Y = (FormHeight -

(Wyrm.WiimoteState.IRState.IRSensors[1].Position.Y * 5 / 7) *

FormHeight) * 3 / 4;

IR3X = (Wyrm.WiimoteState.IRState.IRSensors[2].Position.X *

FormWidth) * 3 / 4;

IR3Y = (FormHeight -

(Wyrm.WiimoteState.IRState.IRSensors[2].Position.Y * 5 / 7) *

FormHeight) * 3 / 4;

IR4X = (Wyrm.WiimoteState.IRState.IRSensors[3].Position.X *

FormWidth) * 3 / 4;

IR4Y = (FormHeight -

(Wyrm.WiimoteState.IRState.IRSensors[3].Position.Y * 5 / 7) *

FormHeight) * 3 / 4;

 WiimoteDrawIR1(IR1X, IR1Y,0);

 WiimoteDrawIR2(IR2X, IR2Y,1);

 WiimoteDrawIR3(IR3X, IR3Y,2);

 WiimoteDrawIR4(IR4X, IR4Y,3);

41

The IR robot control gets the position of the IR point and sends commands

to the robot as an output. This function is shown in Figure 30.

Figure 30: The IR robot control function.

The code works by dividing the IR camera screen into three regions: left,

middle and right. For example, if a point is available on the left region, the

code sends a “3” integer to the robot so the robot will move to the right to

keep tracking the IR. The choice of the “3” integer is due to simplicity. Other

characters or strings are also possible, with “3” chosen to reduce complexity

and maintain a sense of numerical differentiation.

private void GetDirections()

{

if (manualcheck != 0)

input = manualcheck;

else

{

if (IR1X >= 599) //if IR is zero

{

input = 5;//go linetracker mode

}

else if ((IR1X >= 0) && (IR1X < 200)) //if IR less than 200

{

input = 2; //go left

}

else if ((IR1X >= 200) && (IR1X < 400)) //if less than 400

{

input = 1; //go straight

}

else if ((IR1X >= 400) && (IR1X < 599)) //less than 600

{

input = 3;// go right

}

else input = 5;

}

}

42

Figure 31: The manual robot control function.

To control the robot manually, the user only needs to press the

corresponding keys. For example, to make the robot go straight, the key ”W”

is pressed. The robot can also be reverted to line tracker mode by pressing the

spacebar. The current mode is also displayed on the WIRP, as determined by

the strings “Automatic”, “Straight”, “Stop” and so on. This is shown in Figure

31.

The rest of the WIRP consists of functions necessary to setup the

application. The full code of the entire WIRP application can be seen in

Appendix I.

protected override void

OnKeyDown(System.Windows.Forms.KeyEventArgs e)

{

if(e.KeyCode == Keys.Space)

 {

 manualcheck = 0;//disables manual control

 arrow = "Automatic";

 }

 if (e.KeyCode == Keys.W)

 {

 manualcheck = 1;//goes straight

 arrow = "Straight";

 }

 if (e.KeyCode == Keys.S)

 {

 manualcheck = 4;//reverse

 arrow = "Stop";

 }

 if (e.KeyCode == Keys.A)

 {

 manualcheck = 2;// go left

 arrow = "Left";

 }

 if (e.KeyCode == Keys.D)

 {

 manualcheck = 3;//go right

 arrow = "Right";

 }

 if (e.KeyCode == Keys.Escape)

 {

 this.Dispose();

 }

}

43

4.5.4 Final Robot Body

The final robot body is virtually the same with the third body design, with

several differences. The SK40C is used instead of the Duemilanove due to its

compatibility with the SKKCA. A new line tracker circuit that utilises five

sensors is used. The SKKCA Bluetooth transceiver is put at the top front part

of the robot. Five red LEDs are used to show what the line tracker circuit

senses. Appendix J shows these changes in the robot body.

4.5.5 Microcontroller code

The 16F877A code used for the final design is similar to the previous

Arduino line tracker code; apart from the addition of the serial data receive

function. The function is shown in Figure 32.

Figure 32: The serial data receive function.

void main(void)

{

 TRISB = 0b00011111; //port b output, input

 //TRISD = 0x00; //port d output

 init();

 level = 5;

 while(1)

 {a = receive();

 if (a == '1') // signal 1, go straight

 {level = 1;

 }

 else if (a == '2') // signal 2, go lef

 {level = 2;

 }

 else if (a == '3') // signal 3, go right

 {level = 3;

 }

 else if (a == '4') //signal 4, stop

 {level = 4;

 }

 else if (a == '5') //signal 5, stop

 {level = 5;

 }

 else if (a == '6') //signal 5, stop

 {level = 6;

 }

 else level = 5;

 serialcheck(level);

 }

}

44

The function is similar to the one on the WIRP side. The code accepts the

data and determines what the value is, and sets the variable ”level”, which is

the mode for the robot. The function that checks the mode is shown below in

Figure 33.

Figure 33: The mode checking function.

The serialcheck function determines what is the action of the robot based

on the variable “level” provided. From the codes, the line tracker mode is

called if the “level” variable is 5. Any other value and the robot goes on a

manual control. The full microcontroller code is provided in Appendix K.

void serialcheck(int check)

{

 if (check == 1) // signal 1, go straight

 {

 straight();

 }

 else if (check == 2) // signal 2, go lef

 {

 left();

 }

 else if (check == 3) // signal 3, go right

 {

 right();

 }

 else if (check == 4) //signal 4, stop

 {

 stop();

 }

 else if (check == 5) //signal 5, linetracker mode

 {

 linetrack(check);

 }

 else if (check == 6) //signal 5, linetracker mod

 {

 reverse();

 }

 else linetrack(check);

}

45

4.5.6 Final Test Run

Now that the robot is finally finished, it is ready for its final test run. The

test run consists of putting the robot on a line track, letting it have its run and

testing its fire detection ability.

The line track is made of a large aluminium sheet. The aluminium sheet is

covered with white A4 papers where the black tape is present. Technically the

reflective surface of the sheet will act as a good substitute to the A4 papers;

however, this is not the case. Nevertheless, the track is good enough with the

current setup. For the test run, a power supply cord is used to connect to the

robot as rechargeable batteries are too heavy and does not last long. The cord

is held high at all times to ensure that it does not become tangled up with the

robot.

When the robot is turned on, the wheels started moving. However, it was

not in a line tracker mode as testing the sensors does not yield expected

results. This did not matter, as when the WIRP application is turned on, the

robot went into line tracker mode. Results of the initial testing of the manual

mode and fire detection mode made while the robot was immobile (wheels not

touching the ground) were positive; the robot responded as expected. The

robot also responded to IR coming from the window; this is also expected.

Putting the robot on the actual track yielded slightly different results. The

robot followed the line, but often went off, especially when going round the

bend. This was due to the robot’s high speed and less calibrated line tracker

sensor. After letting the motors run at 5 V and adjusting the sensitivity of the

sensor, the robot performed a lot better. The robot can still run off course, but

this occurrence was significantly reduced.

Fire detection is done using a candle. Due to the candle flame’s flickering

nature, its IR presence is not consistent and the robot might miss it. As such,

two candles are used to maximise the IR source. The candles are cut in half to

46

cater for the IR camera’s low position. The candles are put approximately 1

meter from the track, and latter tests involved putting the candles even further.

The robot again performed as expected. When running the track, the robot

will break off and move towards the fire. Previously, when the robot was

moving with high speed, the robot will swerve violently from left to right

when moving towards the fire in an attempt to keep the IR in the middle of the

camera. Often the robot ends up missing the IR and proceeds to move

somewhere else. With the speed fixated to 5 V, the robot became more

manageable and approached the fire source smoothly. Even when the candle is

around 2-3 meters from the track, the robot still detects the IR source.

47

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

The hazard inspection robot is essential in high-risk maintenance jobs

which involve dangerous working conditions and materials hazardous to human

health. The average hazard inspection robot or equivalent costs a substantial

amount of money, resources and technology sophistication. As such, the scope of

this project is limited to using cheap and available materials as a proof of concept

that such devices can be done in a more economical way.

The project managed to achieve its intended objective to produce a fully

working prototype of a fire inspection mobile robot, although not without running

into a few serious problems. Most notably is the failure to conceive the original

idea of hacking the Wiimote to recognise the microcontroller as its extension

controller. Although the current setup is able to do the job just as nicely, the fact

remains that the robot would be a lot smaller than it is now, due to lack of the

transceiver circuit.

The robot has been fully tested and was found to be performing its

required tasks as expected. Although the robot will not work perfectly 100% of

the time, nevertheless the results show that the current system definitely works,

and any future work regarding the project may resume from here.

48

5.2 Recommendations

There is still much that can be done for this project should it be explored

further in the future. For a start, the previous problems mentioned can be explored

further to see what exactly is causing the Wiimote to not able to connect to the

microcontroller. This study can be limited to just the AVR or Microchip

microcontrollers and its development boards, or both if one choose to have a

greater scope. There is a likely possibility that inappropriate use of hardware, as

well as bad coding (as in the case with the AVRDUDE) are responsible for the

whole rig to not work.

Other aspects of the robot can also be improved upon. The current

patrolling capability of the robot can be further expanded from just using line

tracking sensors to, for example, tracking underground cables, riding on rails or

even utilising an odometer to track the distance travelled for navigation. Rather

than relying on just the infrared camera, a temperature sensor can also be installed

to ensure that the detected IR corresponds to an actual flame. A small fire

extinguishing system can also be implemented to put out small fires.

Using a new material for the robot body is also a good consideration. The

scope of this project requires it to be cheap and light, hence the use of K’Nex.

However, K’Nex, being made of plastic, aren’t good against extreme heat, and as

such another more heat resistant material is preferable. If the next project is not

limited by the budget, perhaps material like aluminium would be ideal.

49

REFERENCE

[1] Yamamoto, S., “Development of Inspection Robot for Nuclear Power

Plant”, Robotics and Automation, 1992. Proceedings., 1992 IEEE

International Conference, 12-14 May 1992, Pages: 1559 - 1566.

[2] Kawauchi, N.; Shiotani, S.; Kanazawa, H.; Sasaki, T.; Tsuji, H.;

“Plant Maintenance Humanoid Robot System”, Robotics and

Automation, 2003. Proceedings. ICRA '03. IEEE International

Conference on 14-19 Sept. 2003, Pages: 2973 - 2978 vol. 3.

[3] Nassiraei, A.A.F.; Kawamura, Y.; Ahrary, A.; Mikuriya, Y.; Ishii, K.;

“Concept and Design of A Fully Autonomous Sewer Pipe Inspection

Mobile Robot “KANTARO””, Robotics and Automation, 2007 IEEE

International Conference on 10-14 April 2007, Collaboration Center,

Pages: 136 - 143.

[4] Yukawa, T.; Suzuki, M.; Satoh, Y.; Okano, H.; “Design of Magnetic

Wheels in Pipe Inspection Robot”, Systems, Man and Cybernetics,

2006. SMC '06. IEEE International Conference on 8-11 Oct. 2006,

Pages: 235 - 240.

[5] Briones, L.; Bustamante, P.; Serna, M.A.; “Wall-Climbing Robot for

Inspection in Nuclear Power Plants”, Robotics and Automation, 1994.

Proceedings., 1994 IEEE International Conference on 8-13 May 1994,

Pages: 1409 - 1414 vol. 2.

[6] Kobayashi, F.; Usami, T.; Kojima, F.; Nakatsuka, H.; “Crack Shape

Recovery with ECT Sensor Robot for Remote Diagnosis System”,

SICE-ICASE, 2006. International Joint Conference on 18-21 Oct.

2006, Pages: 964 - 969.

50

[7] Murphy, R.; Kravitz, J.; Stover, S.; Shoureshi, R.; “Mobile Robots in

Mine Rescue and Recovery”, Robotics & Automation Magazine,

2009, Volume: 16, Issue: 2, Page(s): 91 – 103.

[8] McCarty, K.; Manic, M.; “Adaptive Behavioural Control of

Collaborative Robots in Hazardous Environments”, Human System

Interactions, 2009. HSI '09. 2nd Conference on 21-23 May 2009,

Pages: 10 – 15.

[9] WiimoteLib, .NET Managed Library for the Nintendo Wii Remote,

<http://www.brianpeek.com/blog/pages/wiimotelib.aspx>, 7 June

2008, [Accessed 3 March 2010].

[10] Michael Alon, C sample code for PIC micros and Hi-Tech C,

http://www.microchipc.com/sourcecode/#i2c>, [Accessed 18 June

2010].

[11] Chad Phillips, How to make your own Wiimote peripheral,

<http://www.windmeadow.com/node/37>, July 11 2006-07 [Accessed

1 January 2010].

[12] Frank Zhao, Wiimote Extension Library, Circle of Current,

<http://frank.circleofcurrent.com/cache/wii_extension_lib.htm>,Marc

h 15 2009 [Accessed 2 September 2010].

[13] Brian Dwyer, Wiimote light follower with servo,

<http://ohmwardbond.blogspot.com/2010/03/wiimote-light-follower-

with-servo.html>,March 17, 2010 [Accessed 20 October 2010].

[14] Stephen Hobley, Pixart/Wiimote sensor library for Arduino,

<http://www.stephenhobley.com/blog/2009/03/01/pixartwiimote-

sensor-library-for-arduino>, March 1, 2009[Accessed 17 September

2010].

[15] Kevin R. Harris, Direct3D (DirectX 9.0) Code Samples, <

http://www.codesampler.com/dx9src.htm>, June 15, 2005 [Accessed

October 1, 2010].

51

[16] Riemer Grootjans, Displaying text using DirectX, Riemer’s XNA

Tutorials,

http://www.riemers.net/eng/Tutorials/DirectX/Csharp/Series2/tut18.ph

p >, February 2008 [Accessed October 2, 2010].

[17] Craig Andera, Texture Basics Tutorial, Craig Andera's DirectX Wiki,

http://alt.pluralsight.com/wiki/default.aspx/Craig.DirectX/TextureBasi

csTutorial.html>, April 2005 [Accessed October 2, 2010].

52

APPENDICES

53

APPENDIX A

THE MULTIPLE WIIMOTE TESTER APPLICATION

54

APPENDIX B

THE FRONT VIEW OF THE FINAL ROBOT BODY

55

APPENDIX C

THE SIDE VIEW OF THE FINAL ROBOT BODY

56

APPENDIX D

THE SCHEMATIC FOR THE LINE TRACKER CIRCUIT

57

APPENDIX E

THE CODE FOR THE LINE TRACKER

int Input0 = A0;

int Input1 = A1;

int Input2 = A2;

int Input3 = A3;

int Output0 = 4;

int Output1 = 5;

int Output2 = 6;

int Output3 = 7;

void setup() {

 // initialize the digital pin as an output:

 pinMode(13, OUTPUT);

 //Inputs

pinMode(Output0, OUTPUT);

pinMode(Output1, OUTPUT);

pinMode(Output2, OUTPUT);

pinMode(Output3, OUTPUT);

pinMode(Input0, INPUT);

pinMode(Input1, INPUT);

pinMode(Input2, INPUT);

pinMode(Input3, INPUT);

digitalWrite(13, HIGH);

}

void loop()

{

 if((digitalRead(Input0)==1) && (digitalRead(Input1)==1) &&

(digitalRead(Input2)==1) && (digitalRead(Input3)==1)) //if everything is zero

 {

 digitalWrite(Output0, HIGH);

 digitalWrite(Output1, LOW);

 digitalWrite(Output2, LOW);

 digitalWrite(Output3, HIGH);

 }

 else if((digitalRead(Input0)==1) && (digitalRead(Input1)==0) &&

(digitalRead(Input2)==0) && (digitalRead(Input3)==1)) //0110, go straight

 {

 digitalWrite(Output0, HIGH);

 digitalWrite(Output1, LOW);

 digitalWrite(Output2, LOW);

 digitalWrite(Output3, HIGH);

 }

 else if((digitalRead(Input0)==1) && (digitalRead(Input1)==0) &&

(digitalRead(Input2)==1) && (digitalRead(Input3)==1)) //0100, go straight

 {

 digitalWrite(Output0, HIGH);

 digitalWrite(Output1, LOW);

 digitalWrite(Output2, LOW);

 digitalWrite(Output3, HIGH);

 }

 else if((digitalRead(Input0)==1) && (digitalRead(Input1)==1) &&

(digitalRead(Input2)==0) && (digitalRead(Input3)==1)) //0010, go straight

 {

 digitalWrite(Output0, HIGH);

 digitalWrite(Output1, LOW);

 digitalWrite(Output2, LOW);

 digitalWrite(Output3, HIGH);

58

 }

 else if((digitalRead(Input0)==0) && (digitalRead(Input1)==1) &&

(digitalRead(Input2)==1) && (digitalRead(Input3)==1)) //1000 go left

 {

 digitalWrite(Output0, HIGH);

 digitalWrite(Output1, LOW);

 digitalWrite(Output2, LOW);

 digitalWrite(Output3, LOW);

 }

 else if((digitalRead(Input0)==1) && (digitalRead(Input1)==1) &&

(digitalRead(Input2)==1) && (digitalRead(Input3)==0)) //0001 go right

 {

 digitalWrite(Output0, LOW);

 digitalWrite(Output1, LOW);

 digitalWrite(Output2, LOW);

 digitalWrite(Output3, HIGH);

 }

 else //default zero

 {

 digitalWrite(Output0, LOW);

 digitalWrite(Output1, LOW);

 digitalWrite(Output2, LOW);

 digitalWrite(Output3, LOW);

 }

}

59

APPENDIX F

THE ORIGINAL ARDUINO CODE FOR WIIMOTE EXTENSION

#include <Wire.h>

uint8_t outbuf[6];

void

receiveEvent (int howMany)

{

 while (Wire.available ())

 {

 char c = Wire.receive (); // receive byte as a character

 }

}

void

requestEvent ()

{

 outbuf[0] = nunchuk_encode_byte (125); // joystick X

 outbuf[1] = nunchuk_encode_byte (126); // joystick Y

 outbuf[2] = nunchuk_encode_byte (227); // Axis X

 outbuf[3] = nunchuk_encode_byte (241); // Axis Y

 outbuf[4] = nunchuk_encode_byte (140); // Axis Z

 outbuf[5] = nunchuk_encode_byte (1); // Press C button, byte[5] is

buttons

 //C,Z and accelaration data

 Wire.send (outbuf, 6); // send data packet

}

void

setup ()

{

 Wire.begin (0x52); // join i2c bus with address 0x52

 // this is the nunchuk address.

 // all nunchuks use this address

 Wire.onReceive (receiveEvent); // register event

 Wire.onRequest (requestEvent); // register event

}

void

loop ()

{

 delay (100);

}

char

nunchuk_encode_byte (char x)

{

 x = x - 0x17;

 x = (x ^ 0x17);

 return x;

}

60

APPENDIX G

THE CODE FOR THE DIRECT IR CAMERA ACCESS METHOD

#include <Wire.h>

#include <PVision.h> // http://www.stephenhobley.com

#include <Servo.h>

Servo myservo;

PVision ircam;

byte result;

//Servo speeds

#define LEFT_SLOW 1510

#define LEFT_MEDIUM 1520

#define LEFT_FAST 1540

#define RIGHT_SLOW 1490

#define RIGHT_MEDIUM 1480

#define RIGHT_FAST 1460

#define STOP 1500

void setup()

{

 pinMode(13, OUTPUT);

 myservo.attach(9);

 ircam.init();

 digitalWrite(13, HIGH); //Turns Led on when ircam initiation is complete

 delay(1000); // wait for a second

 digitalWrite(13, LOW); // set the LED off

 delay(1000);

}

void loop()

{

 result = ircam.read();

 if (result & BLOB1)

 {

if (ircam.Blob1.X > 480 && ircam.Blob1.X < 520)

{

 myservo.write(STOP);

}

 else if (ircam.Blob1.X < 480)

{

 if (ircam.Blob1.X < 200)

 {

 digitalWrite(13, HIGH); //Turns Led on when ircam initiation is complete

 }

 else if (ircam.Blob1.X < 400)

 {

 digitalWrite(13, HIGH); //Turns Led on when ircam initiation is complete

 }

 else

 {

 digitalWrite(13, HIGH); //Turns Led on when ircam initiation is complete

 }

}

else if (ircam.Blob1.X > 520)

{

 if (ircam.Blob1.X > 800)

 {

61

 digitalWrite(13, HIGH); //Turns Led on when ircam initiation is complete

 }

 else if (ircam.Blob1.X > 600)

 {

 digitalWrite(13, HIGH); //Turns Led on when ircam initiation is complete

 }

 else

 {

 digitalWrite(13, HIGH); //Turns Led on when ircam initiation is complete

 }

}

 }

 else

 {

 digitalWrite(13, HIGH); //Turns Led on when ircam initiation is complete

 delay(100); // wait for a second

 digitalWrite(13, LOW); // set the LED off

 delay(100);

 }

}

62

APPENDIX H

THE WIIMOTE IR PROGRAM

63

APPENDIX I

THE WIIMOTE IR PROGRAM

using System;

using System.Drawing;

using System.Windows.Forms;

using Microsoft.DirectX;

using Microsoft.DirectX.Direct3D;

using Direct3D = Microsoft.DirectX.Direct3D;

using System.Data;

using System.Linq;

using System.Text;

using WiimoteLib;

using System.IO.Ports;

namespace DX9Sample

{

 public class DX9Form : System.Windows.Forms.Form

 {

 private Device d3dDevice = null;

 Direct3D.Font text;

 //serial connection variables

 int input = 0;

 SerialPort port = new SerialPort("COM9", 115200, Parity.None, 8,

StopBits.One);

 //Wiimote variables

 Wiimote Wyrm = new Wiimote();

 float IR1X, IR1Y;

 float IR2X, IR2Y;

 float IR3X, IR3Y;

 float IR4X, IR4Y;

 int FormWidth = 800;

 int FormHeight = 600;

 int manualcheck = 0;

 string arrow = "Uninitiated";

 private VertexBuffer vertices;

 private Texture texture;

 public DX9Form()

 {

 this.ClientSize = new System.Drawing.Size(FormWidth, FormHeight);

 this.Text = "Wiimote IR Program";

 this.SetStyle(ControlStyles.AllPaintingInWmPaint |

ControlStyles.Opaque, true);

 }

 protected override void OnPaint(System.Windows.Forms.PaintEventArgs e)

 {

 this.Render();

 this.Invalidate();

 }

64

protected override void OnKeyDown(System.Windows.Forms.KeyEventArgs e)

 {

 if(e.KeyCode == Keys.Space)

 {

 manualcheck = 0;//disables manual control

 arrow = "Automatic";

 }

 if (e.KeyCode == Keys.W)

 {

 manualcheck = 1;//goes straight

 arrow = "Straight";

 }

 if (e.KeyCode == Keys.S)

 {

 manualcheck = 4;//reverse

 arrow = "Stop";

 }

 if (e.KeyCode == Keys.A)

 {

 manualcheck = 2;// go left

 arrow = "Left";

 }

 if (e.KeyCode == Keys.D)

 {

 manualcheck = 3;//go right

 arrow = "Right";

 }

 if (e.KeyCode == Keys.Escape)

 {

 this.Dispose();

 //break;

 }

 }

 private void InitWiimote()

 {

 Wyrm.Connect();

 Wyrm.SetReportType(InputReport.IRExtensionAccel, true);

 Wyrm.SetLEDs(false, false, true, false);

 }

 private void ExitWiimote()

 {

 Wyrm.SetLEDs(false, false, false, false);

 Wyrm.SetRumble(false);

 Wyrm.Disconnect();

 }

 private void WriteTexts()

 {

 text.DrawText(null, string.Format("IR value X1 :"), new

System.Drawing.Point(10, 470), Color.White);

 text.DrawText(null, string.Format("IR value Y1 :"), new

System.Drawing.Point(10, 490), Color.White);

 text.DrawText(null, string.Format("IR value X2 :"), new

System.Drawing.Point(10, 530), Color.White);

 text.DrawText(null, string.Format("IR value Y2 :"), new

System.Drawing.Point(10, 550), Color.White);

65

 text.DrawText(null, string.Format("IR value X3 :"), new

System.Drawing.Point(300, 470), Color.White);

 text.DrawText(null, string.Format("IR value Y3 :"), new

System.Drawing.Point(300, 490), Color.White);

 text.DrawText(null, string.Format("IR value X4 :"), new

System.Drawing.Point(300, 530), Color.White);

 text.DrawText(null, string.Format("IR value Y4 :"), new

System.Drawing.Point(300, 550), Color.White);

 text.DrawText(null, string.Format("Manual Check :"), new

System.Drawing.Point(600, 550), Color.White);

 text.DrawText(null, string.Format(arrow.ToString()), new

System.Drawing.Point(710, 550), Color.White);

 text.DrawText(null, string.Format(IR1X.ToString()), new

System.Drawing.Point(110, 470), Color.White);

 text.DrawText(null, string.Format(IR1Y.ToString()), new

System.Drawing.Point(110, 490), Color.White);

 text.DrawText(null, string.Format(IR2X.ToString()), new

System.Drawing.Point(110, 530), Color.White);

 text.DrawText(null, string.Format(IR2Y.ToString()), new

System.Drawing.Point(110, 550), Color.White);

 text.DrawText(null, string.Format(IR3X.ToString()), new

System.Drawing.Point(400, 470), Color.White);

 text.DrawText(null, string.Format(IR3Y.ToString()), new

System.Drawing.Point(400, 490), Color.White);

 text.DrawText(null, string.Format(IR4X.ToString()), new

System.Drawing.Point(400, 530), Color.White);

 text.DrawText(null, string.Format(IR4Y.ToString()), new

System.Drawing.Point(400, 550), Color.White);

 }

 private void GetIRLights()

 {

 IR1X = (Wyrm.WiimoteState.IRState.IRSensors[0].Position.X * FormWidth)

* 3 / 4;

 IR1Y = (FormHeight -

(Wyrm.WiimoteState.IRState.IRSensors[0].Position.Y * 5 / 7) * FormHeight) * 3 / 4;

 IR2X = (Wyrm.WiimoteState.IRState.IRSensors[1].Position.X) * FormWidth

* 3 / 4;

 IR2Y = (FormHeight -

(Wyrm.WiimoteState.IRState.IRSensors[1].Position.Y * 5 / 7) * FormHeight) * 3 / 4;

 IR3X = (Wyrm.WiimoteState.IRState.IRSensors[2].Position.X * FormWidth)

* 3 / 4;

 IR3Y = (FormHeight -

(Wyrm.WiimoteState.IRState.IRSensors[2].Position.Y * 5 / 7) * FormHeight) * 3 / 4;

 IR4X = (Wyrm.WiimoteState.IRState.IRSensors[3].Position.X * FormWidth)

* 3 / 4;

 IR4Y = (FormHeight -

(Wyrm.WiimoteState.IRState.IRSensors[3].Position.Y * 5 / 7) * FormHeight) * 3 / 4;

 WiimoteDrawIR1(IR1X, IR1Y,0);

 WiimoteDrawIR2(IR2X, IR2Y,1);

 WiimoteDrawIR3(IR3X, IR3Y,2);

 WiimoteDrawIR4(IR4X, IR4Y,3);

 DrawHoriBar();

 DrawVertiBar();

66

 text.DrawText(null, string.Format(IR1X.ToString()), new

System.Drawing.Point(110, 470), Color.White);

 text.DrawText(null, string.Format(IR1Y.ToString()), new

System.Drawing.Point(110, 490), Color.White);

 text.DrawText(null, string.Format(IR2X.ToString()), new

System.Drawing.Point(110, 530), Color.White);

 text.DrawText(null, string.Format(IR2Y.ToString()), new

System.Drawing.Point(110, 550), Color.White);

 text.DrawText(null, string.Format(IR3X.ToString()), new

System.Drawing.Point(400, 470), Color.White);

 text.DrawText(null, string.Format(IR3Y.ToString()), new

System.Drawing.Point(400, 490), Color.White);

 text.DrawText(null, string.Format(IR4X.ToString()), new

System.Drawing.Point(400, 530), Color.White);

 text.DrawText(null, string.Format(IR4Y.ToString()), new

System.Drawing.Point(400, 550), Color.White);

 }

 private void WiimoteDrawIR1(float IRX, float IRY, int IRno)

 {

 int size = 5;

 int xcoordinate = (int)IRX;

 int ycoordinate = (int)IRY;

 Texture t = TextureLoader.FromFile(d3dDevice, "V1.jpg");

 CustomVertex.TransformedTextured[] verts = new

CustomVertex.TransformedTextured[4];

 int i = 0;

 verts[i++] = new CustomVertex.TransformedTextured(

 xcoordinate, ycoordinate, 0.5F, //

Vertex position

 1, // rhw

(advanced)

 0, 0); //

texture coordinates

 verts[i++] = new CustomVertex.TransformedTextured(

 xcoordinate, ycoordinate+size, 0.5F,

 1,

 1, 0);

 verts[i++] = new CustomVertex.TransformedTextured(

 xcoordinate + size, ycoordinate +

size, 0.5F,

 1,

 1, 1);

 verts[i++] = new CustomVertex.TransformedTextured(

 xcoordinate+ size, ycoordinate, 0.5F,

 1,

 0, 1);

 VertexBuffer buf = new

VertexBuffer(typeof(CustomVertex.TransformedTextured), 4, d3dDevice,

Usage.WriteOnly, CustomVertex.TransformedTextured.Format, Pool.Default);

 GraphicsStream stm = buf.Lock(0, 0, 0);

 stm.Write(verts);

 buf.Unlock();

 //vertices.Unlock();

 d3dDevice.SetTexture(0, texture);

 d3dDevice.VertexFormat = CustomVertex.TransformedTextured.Format;

 d3dDevice.SetStreamSource(0, buf, 0);

 d3dDevice.DrawPrimitives(PrimitiveType.TriangleFan, 0, 2);

 t.Dispose();

 }

67

 private void WiimoteDrawIR2(float IRX, float IRY, int IRno)

 {

 int size = 5;

 int xcoordinate = (int)IRX;

 int ycoordinate = (int)IRY;

 Texture t = TextureLoader.FromFile(d3dDevice, "V2.jpg");

 CustomVertex.TransformedTextured[] verts = new

CustomVertex.TransformedTextured[4];

 int i = 0;

 verts[i++] = new CustomVertex.TransformedTextured(

 xcoordinate, ycoordinate, 0.5F, //

Vertex position

 1, // rhw

(advanced)

 0, 0); //

texture coordinates

 verts[i++] = new CustomVertex.TransformedTextured(

 xcoordinate, ycoordinate + size, 0.5F,

 1,

 1, 0);

 verts[i++] = new CustomVertex.TransformedTextured(

 xcoordinate + size, ycoordinate +

size, 0.5F,

 1,

 1, 1);

 verts[i++] = new CustomVertex.TransformedTextured(

 xcoordinate + size, ycoordinate, 0.5F,

 1,

 0, 1);

 VertexBuffer buf = new

VertexBuffer(typeof(CustomVertex.TransformedTextured), 4, d3dDevice,

Usage.WriteOnly, CustomVertex.TransformedTextured.Format, Pool.Default);

 GraphicsStream stm = buf.Lock(0, 0, 0);

 stm.Write(verts);

 buf.Unlock();

 //vertices.Unlock();

 d3dDevice.SetTexture(0, texture);

 d3dDevice.VertexFormat = CustomVertex.TransformedTextured.Format;

 d3dDevice.SetStreamSource(0, buf, 0);

 d3dDevice.DrawPrimitives(PrimitiveType.TriangleFan, 0, 2);

 t.Dispose();

 }

68

private void WiimoteDrawIR3(float IRX, float IRY, int IRno)

 {

 int size = 5;

 int xcoordinate = (int)IRX;

 int ycoordinate = (int)IRY;

 Texture t = TextureLoader.FromFile(d3dDevice, "V3.jpg");

 CustomVertex.TransformedTextured[] verts = new

CustomVertex.TransformedTextured[4];

 int i = 0;

 verts[i++] = new CustomVertex.TransformedTextured(xcoordinate,

 ycoordinate, 0.5F,

 1,

 0, 0);

 verts[i++] = new CustomVertex.TransformedTextured(

 xcoordinate, ycoordinate + size, 0.5F,

 1,

 1, 0);

 verts[i++] = new CustomVertex.TransformedTextured(

 xcoordinate + size, ycoordinate +

size, 0.5F,

 1,

 1, 1);

 verts[i++] = new CustomVertex.TransformedTextured(

 xcoordinate + size, ycoordinate, 0.5F,

 1,

 0, 1);

 VertexBuffer buf = new

VertexBuffer(typeof(CustomVertex.TransformedTextured), 4, d3dDevice,

Usage.WriteOnly, CustomVertex.TransformedTextured.Format, Pool.Default);

 GraphicsStream stm = buf.Lock(0, 0, 0);

 stm.Write(verts);

 buf.Unlock();

 //vertices.Unlock();

 d3dDevice.SetTexture(0, texture);

 d3dDevice.VertexFormat = CustomVertex.TransformedTextured.Format;

 d3dDevice.SetStreamSource(0, buf, 0);

 d3dDevice.DrawPrimitives(PrimitiveType.TriangleFan, 0, 2);

 t.Dispose();

 }

69

private void WiimoteDrawIR4(float IRX, float IRY, int IRno)

 {

 int size = 5;

 int xcoordinate = (int)IRX;

 int ycoordinate = (int)IRY;

 Texture t = TextureLoader.FromFile(d3dDevice, "V4.jpg");

 CustomVertex.TransformedTextured[] verts = new

CustomVertex.TransformedTextured[4];

 int i = 0;

 verts[i++] = new CustomVertex.TransformedTextured(

 xcoordinate, ycoordinate, 0.5F, //

Vertex position

 1, // rhw

(advanced)

 0, 0); //

texture coordinates

 verts[i++] = new CustomVertex.TransformedTextured(

 xcoordinate, ycoordinate + size, 0.5F,

 1,

 1, 0);

 verts[i++] = new CustomVertex.TransformedTextured(

 xcoordinate + size, ycoordinate +

size, 0.5F,

 1,

 1, 1);

 verts[i++] = new CustomVertex.TransformedTextured(

 xcoordinate + size, ycoordinate, 0.5F,

 1,

 0, 1);

 VertexBuffer buf = new

VertexBuffer(typeof(CustomVertex.TransformedTextured), 4, d3dDevice,

Usage.WriteOnly, CustomVertex.TransformedTextured.Format, Pool.Default);

 GraphicsStream stm = buf.Lock(0, 0, 0);

 stm.Write(verts);

 buf.Unlock();

 //vertices.Unlock();

 d3dDevice.SetTexture(0, texture);

 d3dDevice.VertexFormat = CustomVertex.TransformedTextured.Format;

 d3dDevice.SetStreamSource(0, buf, 0);

 d3dDevice.DrawPrimitives(PrimitiveType.TriangleFan, 0, 2);

 t.Dispose();

 }

70

private void DrawHoriBar()

 {

 int size = 5;

 int xBar = FormWidth * 3 / 4;

 int yBar = FormHeight * 3 / 4;

 Texture t = TextureLoader.FromFile(d3dDevice, "output.jpg");

 CustomVertex.TransformedTextured[] verts = new

CustomVertex.TransformedTextured[4];

 int i = 0;

 verts[i++] = new CustomVertex.TransformedTextured(

 xBar, 0, 0.5F, // Vertex position

 1, // rhw

(advanced)

 0, 0); //

texture coordinates

 verts[i++] = new CustomVertex.TransformedTextured(

 xBar, yBar, 0.5F,

 1,

 1, 0);

 verts[i++] = new CustomVertex.TransformedTextured(

 xBar+size, yBar, 0.5F,

 1,

 1, 1);

 verts[i++] = new CustomVertex.TransformedTextured(

 xBar+size, 0, 0.5F,

 1,

 0, 1);

 VertexBuffer buf = new

VertexBuffer(typeof(CustomVertex.TransformedTextured), 4, d3dDevice,

Usage.WriteOnly, CustomVertex.TransformedTextured.Format, Pool.Default);

 GraphicsStream stm = buf.Lock(0, 0, 0);

 stm.Write(verts);

 buf.Unlock();

 //vertices.Unlock();

 d3dDevice.SetTexture(0, texture);

 d3dDevice.VertexFormat = CustomVertex.TransformedTextured.Format;

 d3dDevice.SetStreamSource(0, buf, 0);

 d3dDevice.DrawPrimitives(PrimitiveType.TriangleFan, 0, 2);

 t.Dispose();

 }

71

private void DrawVertiBar()

 {

 int size = 5;

 int xBar = FormWidth * 3 / 4;

 int yBar = FormHeight * 3 / 4;

 Texture t = TextureLoader.FromFile(d3dDevice, "output.jpg");

 //return t;

 CustomVertex.TransformedTextured[] verts = new

CustomVertex.TransformedTextured[4];

 int i = 0;

 verts[i++] = new CustomVertex.TransformedTextured(

 0, yBar, 0.5F, // Vertex position

 1, // rhw

(advanced)

 0, 0); //

texture coordinates

 verts[i++] = new CustomVertex.TransformedTextured(

 xBar, yBar, 0.5F,

 1,

 1, 0);

 verts[i++] = new CustomVertex.TransformedTextured(

 xBar, yBar + size, 0.5F,

 1,

 1, 1);

 verts[i++] = new CustomVertex.TransformedTextured(

 0, yBar + size, 0.5F,

 1,

 0, 1);

 VertexBuffer buf = new

VertexBuffer(typeof(CustomVertex.TransformedTextured), 4, d3dDevice,

Usage.WriteOnly, CustomVertex.TransformedTextured.Format, Pool.Default);

 GraphicsStream stm = buf.Lock(0, 0, 0);

 stm.Write(verts);

 buf.Unlock();

 //vertices.Unlock();

 d3dDevice.SetTexture(0, texture);

 d3dDevice.VertexFormat = CustomVertex.TransformedTextured.Format;

 d3dDevice.SetStreamSource(0, buf, 0);

 d3dDevice.DrawPrimitives(PrimitiveType.TriangleFan, 0, 2);

 t.Dispose();

 }

72

private void GetDirections()

 {

 if (manualcheck != 0)

 input = manualcheck;

 else

 {

 if (IR1X >= 599) //if value registered is zero

 {

 input = 5;//go linetracker mode

 }

 else if ((IR1X >= 0) && (IR1X < 200)) //

 {

 input = 2; //go left

 }

 else if ((IR1X >= 200) && (IR1X < 400)) //

 {

 input = 1; //go straight

 }

 else if ((IR1X >= 400) && (IR1X < 599)) //

 {

 input = 3;// go right

 }

 else input = 5;

 }

 }

 private bool SerialOpen()

 {

 port.Open(); // Write a string

 return true;

 }

 private void SerialWrite()

 {

 if (input == 1)

 {

 port.Write("1"); //

 }

 else if (input == 2)

 {

 port.Write("2"); //

 }

 else if (input == 3)

 {

 port.Write("3"); //

 }

 else if (input == 4)

 {

 port.Write("4"); //

 }

 else port.Write("5"); //

 }

 private bool SerialClose()

 {

 port.Close();

 return true;

 }

 protected override void Dispose(bool disposing)

 {

 base.Dispose(disposing);

 }

73

 static void Main()//this is the main program

 {

 using (DX9Form frm = new DX9Form())

 {

 frm.Show();

 frm.InitDirectX();

 frm.InitWiimote();

 frm.InitFont();

 frm.SerialOpen();

 Application.Run(frm);

 frm.SerialClose();

 frm.ExitWiimote();

 }

 }

 /// <summary>

 /// This method basically creates and initialize the Direct3D device and

 /// anything else that doens't need to be recreated after a device

 /// reset.

 /// </summary>

 private void InitDirectX()

 {

 // Does the hardware support a 16-bit z-buffer?

 if (!Manager.CheckDeviceFormat(Manager.Adapters.Default.Adapter,

 DeviceType.Hardware,

Manager.Adapters.Default.CurrentDisplayMode.Format,

 Usage.DepthStencil,

 ResourceType.Surface,

 DepthFormat.D16))

 {

 // POTENTIAL PROBLEM: We need at least a 16-bit z-buffer!

 return;

 }

 //

 // Do we support hardware vertex processing? if so, use it.

 // If not, downgrade to software.

 //

 Caps caps = Manager.GetDeviceCaps(Manager.Adapters.Default.Adapter,

 DeviceType.Hardware);

 CreateFlags flags;

 if (caps.DeviceCaps.SupportsHardwareTransformAndLight)

 flags = CreateFlags.HardwareVertexProcessing;

 else

 flags = CreateFlags.SoftwareVertexProcessing;

 //

 // Everything checks out - create a simple, windowed device.

 //

74

 PresentParameters d3dpp = new PresentParameters();

 d3dpp.BackBufferFormat = Format.Unknown;

 d3dpp.SwapEffect = SwapEffect.Discard;

 d3dpp.Windowed = true;

 d3dpp.EnableAutoDepthStencil = true;

 d3dpp.AutoDepthStencilFormat = DepthFormat.D16;

 d3dpp.PresentationInterval = PresentInterval.Immediate;

 d3dDevice = new Device(0, DeviceType.Hardware, this, flags, d3dpp);

 // Register an event-handler for DeviceReset and call it to continue

 // our setup.

 d3dDevice.DeviceReset += new System.EventHandler(this.OnResetDevice);

 OnResetDevice(d3dDevice, null);

 }

 private void InitFont()

 {

 System.Drawing.Font systemfont = new System.Drawing.Font("Arial", 12f,

FontStyle.Regular);

 text = new Direct3D.Font(d3dDevice, systemfont);

 }

 /// <summary>

 /// This event-handler is a good place to create and initialize any

 /// Direct3D related objects, which may become invalid during a

 /// device reset.

 /// </summary>

 public void OnResetDevice(object sender, EventArgs e)

 {

 // This sample doens't create anything that requires recreation

 // after the DeviceReset event.

 Device device = (Device)sender;

 device.RenderState.ZBufferEnable = true;

 device.RenderState.Lighting = false;

 }

 private void Render()//this is where D3D comes in

 {

 d3dDevice.RenderState.CullMode = Cull.None;

 // Determine if wireframe is needed

 d3dDevice.RenderState.FillMode = FillMode.Solid;

 d3dDevice.Clear(ClearFlags.Target | ClearFlags.ZBuffer,

 Color.Black, 1.0f, 0);

 d3dDevice.BeginScene();

 // Render geometry here...

 WriteTexts();

 GetIRLights();

 GetDirections();

 d3dDevice.EndScene();

 SerialWrite();

 d3dDevice.Present();

 }

 }

}

75

APPENDIX J

THE FINAL ROBOT DESIGN

76

APPENDIX K

THE FINAL MICROCONTROLLER CODE

#include <pic.h>

//#include <delay.h>

void delay(unsigned int data);

void linetrack(int check);

void straight(void);

void left(void);

void right(void);

void stop(void);

void reverse(void);

void serialcheck(int check);

__CONFIG(0x3F32);

#define L1 RB6

#define L2 RB7

#define L3 RD4

//input

#define Input0 RB0

#define Input1 RB1

#define Input2 RB2

#define Input3 RB3

#define Input4 RB4

//output

#define Output0 RD2

#define Output1 RD3

#define Output2 RD4

#define Output3 RD5

unsigned char a;

int level;

77

void init(void) // subroutine to initialize

{

 SPBRG=0x0A; // set baud rate as 115200 baud

 BRGH=1;

 TXEN=1;

 CREN=1;

 SPEN=1;

 TRISD = 0b00000000;

 //seg = 0b00000000;

 //TRISC = 0b00000000;

 //PORTC = 0b00000000;

}

void display(unsigned char c

{

 while (TXIF == 0);

 TXREG = c;

}

unsigned char receive(void) // subrountine to receive text from PC

{

 while (RCIF == 0);

 a = RCREG;

 return a;

}

void main(void)

{

 TRISB = 0b00011111; //port b output, input

 init();

 level = 5;

 while(1)

{

a = receive();

if (a == '1') //signal 1, go straight

 {

 level = 1;

 }

 else if (a == '2') // signal 2, go left

 {

 level = 2;

 }

78

 else if (a == '3') // signal 3, go right

 {level = 3;

 }

 else if (a == '4') //signal 4, stop

 {level = 4;

 }

 else if (a == '5') //signal 5, stop

 {level = 5;

 }

 else if (a == '6') //signal 5, stop

 {level = 6;

 }

 else level = 5;

 serialcheck(level);

 }

}

void serialcheck(int check)

{

 if (check == 1) // signal 1, go straight

 {

 straight();

 }

 else if (check == 2) // signal 2, go left

 {

 left();

 }

 else if (check == 3) // signal 3, go right

 {

 right();

 }

 else if (check == 4) //signal 4, stop

 {

 stop();

 }

 else if (check == 5) //signal 5, linetracker mode

 {

 linetrack(check);

 }

79

else if (check == 6) //signal 6

 {

 reverse();

 }

 else linetrack(check);

}

void linetrack(int check)

{ L2 = 1;

if ((Input0==1)&&(Input1==1)&&(Input2==1)&&(Input3==1)&&(Input4==1))

//No input, no go

 {

 straight();

 }

else if ((Input0==1)&&(Input1==1)&&(Input2==0)&&(Input3==1)&&(Input4==1))

//go straight

 {

 straight();

 }

else if((Input0==1)&&(Input1==0)&&(Input2==1)&&(Input3==1)&&(Input4==1))

// go left

 {

 left();

 }

else if ((Input0==0)&&(Input1==1)&&(Input2==1)&&(Input3==1)&&(Input4==1))

// go left

 {

 left();

 }

else if ((Input0==0)&&(Input1==0)&&(Input2==1)&&(Input3==1)&&(Input4==1))

// go left

 {

 left();

 }

else if ((Input0==1)&&(Input1==1)&&(Input2==1)&&(Input3==0)&&(Input4==1))

// go right

 {

 right();

 }

80

else if ((Input0==1)&&(Input1==1)&&(Input2==1)&&(Input3==0)&&(Input4==0))

// go right

 {

 right();

 }

else if ((Input0==1)&&(Input1==1)&&(Input2==1)&&(Input3==1)&&(Input4==0))

// go right

 {

 right();

 }

 else //no go

 {

 stop();

 }

 L2 = 0;

}

void straight(void)

{

 Output0 = 1;

 Output1 = 0;

 Output2 = 0;

 Output3 = 1;

}

void left(void)

{

 Output0 = 0;

 Output1 = 0;

 Output2 = 0;

 Output3 = 1;

}

void right(void)

{

 Output0 = 1;

 Output1 = 0;

 Output2 = 0;

 Output3 = 0;

}

81

void stop(void)

{

 Output0 = 0;

 Output1 = 0;

 Output2 = 0;

 Output3 = 0;

}

void reverse(void)

{

 Output0 = 0;

 Output1 = 1;

 Output2 = 1;

 Output3 = 0;

}

