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Abstract 
Naturally, vegetated channel has been developed for attenuating the flow in the 

drainage system. This is considered important as it will work as one of the effective 

ways to prevent high outflow velocity that could cause flooding and overtop of water 

at the outflow. The attenuated flow are as the result of the flow-resistant that existed 

within the drainage system and is manually calculated using Manning’s Roughness 

Equation, where 𝑉 =	$
%
= 	 &

'
	𝑅

)
*𝑆

,
). Therefore, experiment procedure is established to 

obtain the Manning Roughness’s Coefficient and from that, the experiment is 

conducted. The reading were taken at three main points. The reading were upstream 

of the natural vegetated channel, at the center of the natural vegetated region, and at 

the downstream of the natural vegetated channel. The Manning’s Roughness 

Coefficient is then evaluated using Manning’s Roughness Equation. On the basis of 

the measured data, all the parameter are then inputting in the engineering tool, 

Artificial Neural Network (ANN) to predict the same flow resistant that calculated 

earlier. Even though the predicted Manning’s Roughness Coefficient may show good 

agreement to the experimental data; however, sensible engineering judgement must be 

taken into consideration as the experimental works were done in a controlled 

parameter, a small-scale laboratory test. Nonetheless, the natural vegetated channel is 

good medium to attenuate flow giving greater Roughness Manning’s Coefficient than 

the existing precast concrete channel. 
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1.0 Introduction 
1.1 Background 

Major cities and town with the high populated area have many drainage systems that 

act as a channel to discharge any water during a downpour. However, the drainage 

system will lose it main purpose if the water volume increases way more than the 

channel volume capacity and subsequently the area will be flooded.  

 

In more technical terms, Ching et al (2013) stated that flood is a phenomenon of high 

water flow that dominates the natural or artificial channel banks and extended over the 

flood plain and will become a hazard to the society. Therefore, the hazard could be 

reduced by having alternative mitigation measure that could create a flow resistance 

to the high velocity of water going towards the high populated area. Hence, a natural 

vegetation was proposed as a means to create the necessary flow attenuation to the 

outflow discharge of water. 

 

Vegetation, as mentioned above, plays an essential role in a river bioengineering 

system. In this project, the vegetation is applied onto the naturally vegetated channel 

with the certain specification of bioengineering. Hence, it influences the flow structure 

and the discharge of the river system caused by the flow resistant created by the 

vegetation. This paper will show the application of vegetation in a river and apply it to 

a channel for flood protection in the high populated area. This research should be able 

to reduce flood or become a standard means for flood protection during the two 

Monsoons seasons in Malaysia which are Southwest Monsoon and Northeast 

Monsoon.  

 

Large data observation shows that most serious flooding cases happened due to high 

rainfall as a result of Monsoons and storms. Flooding that caused by this type of 

weather is seasonal. Nonetheless, due to high flood victims, seasonal flooding will also 

be taken into account. According to Thorndhal et.al (2008), the most problematic 

elements that increase the chances of flooding is the available drainage system in 

Malaysia. The six causes of the flood as mentioned by Thorndhal et. Al (2008) can be 

referred in Table 1.1 below: 
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Figure 1.1.1: Causes of Flood 

 

It is clear from Figure 1.1.1 above provided by Thorndhal et. Al (2008) that there is a 

serious need for improving our country’s drainage system. From the chart, failure in 

the state’s drainage system had cause to almost 30% flood cases. Therefore any 

improvement, however, is seen essential and can be made to the existing drainage 

characteristic such as improvement to the existing manning roughness coefficient, 

slope of the channel bed or improvement to the dimension of the open channel drainage 

system and this total improvement to the existing drainage system will reduce flood 

cases in Malaysia up to 30%.  

 

To understand how serious is the problem during the flood, we will then observe the 

West Coast Flood Hydrograph below that is created using a set of data that were 

collected and analyzed by the Malaysia’s Department of Irrigation and Drainage and 

were recorded in its Hydrological Procedure No. 27. The graph shows that the highest 

water discharged during a storm is 231.3 m3/s.  Which is considered high discharged 

value and may cause a flood and creates a hazard to the surrounding area. Therefore a 

medium, as proposed in the project, should be installed in a channel and should be able 

to create flow attenuation in order to reduce the flood. 
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Figure 1.1.2: 0.5 Hour, 1 hour and 2-hour unit Hydrograph 

 

Above tables resulted in the application of conventional concrete channel by the 

government agencies to overcome high runoff and flow. This is due to high degree of 

precision and confidence in precast concrete channel resulted in the usage of such 

concrete channel in the average drainage system. In engineering perspective, however, 

such application may result in sufficient protection to the related surrounding and no 

improvement have been made since the development of conventional concrete 

channel. Nonetheless, the conventional concrete channel resulted in 30% higher 

chances of flood causing an immediate assessment of the said conventional concrete 

channel. Therefore, a certain degree of questions should be answered whether or not 

the conventional concrete channel is still valid to be used in the increasing and rapid 

urbanization in the urban area. 

 

Hence, improvement of the channel can be done using the bioengineering construction 

technique. In this project, the flow-resistant will be created by sets of vegetation that 

is installed in the channel. The proposed vegetation should be able to improve the 

existing drainage system characteristic by increasing the manning roughness 

coefficient subsequently reduce the velocity of the flow in a channel, creating flow 

attenuation and therefore be another form of flood protection to control the flooding 

in the affected area and will also be able to reduce flood cases in Malaysia up to 30%. 

 

231.3 m3/s 
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Bioengineering specification that is mentioned in the latter is the suitable construction 

method of the natural vegetated channel. In a more controlled surrounding, the 

bioengineering method should be seen as a viable method to counter flooding as well 

as reduces the pollution through soil infiltration and sedimentation. Therefore, not only 

reduces the chance of flooding but as well as increases the aesthetic value of a site and 

reduces the amount of pollution in our river system. 

 

In this research, the bioengineering technique has been adopted using trial and error 

method. It is due to biotechnical engineering, that the trial and error method can be 

performed and the most suitable layout is able to produce the best result for Malaysia 

weather condition. Trial and error method can only be determined after a long through 

experiment and observation. Hence, therefore the adaptation of suitable 

bioengineering technique depended on the previous research papers and journals. 

Nonetheless, the experiment done in this project shows that the natural vegetated 

channel is able to become the alternative replacement for the existing conventional 

concrete channel. 

 

1.2 Problem Statement 

Flooding is considered to be the worst and most expensive natural disaster in Malaysia 

after landslides. The worst state affected by flooding in 2014 are Kelantan and 

Terengganu with 31 441 and 32 736 flood victims respectively and every year flooding 

cost the country about RM 1.50 billion (Jee Yee, T. 2015). The central government 

had to inject fund to the state affected by flood each year and the author saw this could 

be reduced by installing a naturally vegetated channel to reduce and create a flow 

attenuation to the discharge of the water flow by installing a velocity reduction 

medium. The reduced velocity of water flow will reduce the amount of water 

accumulate at the outlet and will significantly reduce flood at the affected area. 

Therefore enlighten the flooding situation. Currently, the reason of 30% flood 

probability is caused by the existing conventional concrete channel. From observation, 

it is seen that the improvement of channel needed an immediate attention due to the 

excessive urbanization that is currently ongoing and whether or not the existing 

conventional concrete channel is still viable to be applied in the current rapid urbanize 

area. 
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1.3 Objectives  

The main objectives of this study are as follows: 

 

1. To create a standard experimental procedure in determining the flow 

resistance of the naturally vegetated channel. 

2. To predict the flow resistance using the artificial neural network (ANN). 

 

1.4 Scope of Study 

Vegetation in a channel creates a certain amount of flow-resistant in the channel that 

is able to be applied in Malaysia. If applied well, the vegetation in the channel could 

act as a flood control in the two states that are most affected by the flood which is 

Kelantan and Terengganu, especially during the Northeast Monsoon. Thus becoming 

one of the viable and alternative media in replacing the existing conventional concrete 

channel. 

 

The vegetated channel is predicted to be able to reduce the flow attenuation and 

subsequently reduce the velocity of the water flow of the flood discharge and this is 

seen crucial when the flood discharge shows a high risk of flood hazard. Therefore the 

scope of this study is to be able to reduce flood by determining the flow resistance of 

the channel in order to create flow attenuation and once the flow resistance is 

sufficient, it should be able to control the flood situation when applied.  

 

The scope of the study is to prove that the naturally vegetated channel is able to denote 

as the most viable and suitable alternative media in replacing the existing conventional 

concrete channel. Therefore the objectives of this paper should be met in order to be 

able to reduce the flooding situation in Malaysia when the experiment is applied to the 

potential high flooding area.  

 

In this project, Adaptation of Manning Roughness Equation is being used to determine 

the Manning Roughness Coefficient of the naturally vegetated channel. The 

comparison will then be made to the existing conventional concrete channel and 

determine whether there is an improvement characteristic to the naturally vegetated 

channel. Further research is made by determining the suitable script from Matlab for 

determining the prediction of the Manning Roughness Coefficient.  



 

6 | P a g e  
 

  
Figure 1.4.1: Maps of Universiti Sains Malaysia Engineering Campus 

 

The experiment of this project will be done in Universiti Sains Malaysia REDAC 

center. The experiment will be done at the actual natural vegetated swale-type B and 

type C that is available at the surrounding site of the campus. The data collected is than 

analyze using Matlab. The study is considered as complete when the standard 

experimental procedure is established and the prediction is made with small amount 

of error. 
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2.0 Literature Review or Theory 
Vegetated foreshores have been studied by Vulk, V et al (2016) and is seen effective 

to create wave attenuation. He studied that the naturally vegetated foreshores are able 

to create wave damping to the wave action of the coastal area during severe storm 

condition and from his studies, the author adapted that the same vegetation installation 

process could be applied to an open channel flow as shown in the image below. The 

vegetated channel should be able to create flow attenuation during severe Monsoons 

condition whereas mentioned before that severe flood discharge is 231.3 m3/s as stated 

by the Department of Irrigation and Drainage Malaysia.  

 

 

 
Figure 2.0: Natural Vegetated Channel in Universiti Sains Malaysia 

 

2.1 Existing Drainage System 

From Table 1.1 as mentioned before, the highest causes of the flood in Malaysia is due 

to the state’s existing drainage system that fail to cater the high inflow velocity 

discharge during storm conditions. Thus, causing high-velocity outflow that may 

potentially result in flooding. Currently, the drainage system in Malaysia adapt an open 

channel system where every channel are precast with concrete Figure 2.1.1 below: 
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Figure 2.1.1: Precast open channel concrete drainage system 

 

From observation, precast concrete for open channel drainage system does not provide 

the sufficient manning’s roughness coefficient that could reduce the flow velocity. 

Hence create a high accumulation at the outflow of the channel at a short period of 

time, causing a sudden flood. Generally, manning’s roughness coefficient for concrete 

provided by Universiti Sains Malaysia Urban Drainage Centre (Redac) is as Table 

2.1.2 below: 

 

 
Table 2.1.2: Manning’s Roughness Coefficient for precast concrete 
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From Table 2.1.2 above we conclude that the Manning Roughness Coefficient is not 

sufficient to create the necessary flow attenuation. Therefore, from the table, above we 

could improve the existing drainage system by increases the manning’s roughness 

coefficient in order to achieve the sufficient flow velocity subsequently reduces the 

accumulation of outflow in a short period of time. For comparison purposes, Universiti 

Sains Malaysia also provides another Manning’s Roughness Coefficient for grassed 

floodways as shown in Table 2.1.3 below: 

 

 
Table 2.1.3: Manning’s Roughness Coefficient for grassed floodways. 

 

It is clear from Table 2.1.2 and Table 2.1.3 that there is an increment of Manning’s 

Roughness Coefficient after the installation of vegetation in the open channel drainage 

system. This is essential and very much needed as the flood control measurement 

because sufficient Manning’s Roughness Coefficient could decrease the flow velocity 

subsequently decreases the outflow discharge at the outflow of the open channel 

drainage system. Hence, the next step is to model the hydrology condition in ANN and 

obtain the predicted flow resistant of the naturally vegetated channel. 

 

Even though by surface properties precast concrete channel has disadvantages due to 

its low Manning’s Roughness Coefficient, however, it does have a longer lifespan and 

does not face channel erosion in short period of time as compared to a naturally 

vegetated channel. Therefore, the layout of the naturally vegetated channel has to be 

considered and analyzed as well so that optimum layout could be achieved in order for 
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it to work properly even in the experimental phase. Hence, the best layout would be to 

spread out some cobbles and stones at Q1 as image 2 below: 

 

 
Figure 2.1.4: Plan View Arrangement Layout in a Flume 

 

The purpose of the soil and stones region is to create a damping effect to the high 

inflow discharge and to avoid critical flow velocity so that the vegetation region will 

not be swept away by the flow of the water as well provide a good stable condition for 

the vegetation to grow within a period of time.  

 

2.2 Manning’s Equation 

Manning’s Equation is seen as viable to access the reliability of this experiment due to 

the type of parameters involved. The parameter that is linked closely to the experiment 

is the Manning’s Roughness Coefficient. Manning’s Roughness Coefficient took the 

roughness of the channel into accountability hence differentiate the roughness of the 

channel and the flow resistant created by the vegetation in the channel. Hence, giving 

a higher understanding towards the subject and yield a more accurate result.  

 

Manning Equation were first derived from Chezy Equation where parameters involved 

are Chezy coefficient, C, Hydraulic Radius, R, and Slope of the channel, S. Chezy 

Equation mentioned above is as follows: 

 

𝑉 = 𝐶√𝑅. 𝑆 

 

Manning, however, derived it further from including the roughness coefficient of the 

channel, n. Given that the empirical relation between Chezy equation and Manning 

Equation is as below: 
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𝐶 =	
1
𝑛 𝑅

&
23  

 

Therefore for better understanding the derivative of Manning’s Equation from Chezy 

Equation would be: 

 

𝑉 = (
1
𝑛 𝑅

&
23 )𝑅& 63 𝑆& 63  

 

Subsequently, the equation is mathematically converted as below: 

 

𝑉 =	
𝑄
𝐴 =	

1
𝑛	𝑅

6
9𝑆

&
6 

 

Where 

𝑉 = 𝑀𝑒𝑎𝑛	𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦	𝑜𝑓	𝐹𝑙𝑜𝑤,𝑚 𝑠⁄ 	 

𝑛 = 𝑀𝑎𝑛𝑛𝑖𝑛𝑔	𝑅𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠	𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 

𝑅 = 𝐻𝑦𝑑𝑟𝑎𝑢𝑙𝑖𝑐	𝑅𝑎𝑑𝑖𝑢𝑠,𝑚 

𝑆 = 𝑆𝑙𝑜𝑝𝑒	𝑜𝑓	𝑒𝑛𝑒𝑟𝑔𝑦	𝑔𝑟𝑎𝑑𝑒	𝑙𝑖𝑛𝑒,𝑚 𝑚⁄  

𝑄 = 𝐹𝑙𝑜𝑤	𝑅𝑎𝑡𝑒	𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒,𝑚
9
𝑠3  

𝐴 = 𝐹𝑙𝑜𝑤	𝐴𝑟𝑒𝑎	𝑜𝑓	𝐶ℎ𝑎𝑛𝑛𝑒𝑙,𝑚6	 

𝐶 = 𝐶ℎ𝑒𝑧𝑦	𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 

 

The area, A and the Hydraulic Radius, R in Manning’s Equation varies depended on 

the physical properties of the channel. The area, A and the Hydraulic Radius, R of the 

channel can be easily determined by the sets of formulae in the Table 2.2.1 below. 

However, in this research, we will use the rectangle channel physical properties as 

parameters. 
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Table 2.2.1: Different Type of Channel’s Physical Properties 

 

2.3 Artificial Neural Network (ANN) 

Once all the experimental data are obtained through experimental works, the same 

experimental data and hydrology condition were then applied to Artificial Neural 

Network (ANN). A software or modeling that is designed to do some prediction in 

controlled parameters. By definition, Artificial Neural Network (ANN) is a 

computational model or a software that its product or output is dictated by structure 

and functions of biological neural networks, in this case, the parameters of the channel.  

 

The Manning’s Roughness Coefficient, n should match the experimental Manning’s 

Roughness Coefficient obtained theoretically. Artificial Neural Network (ANN) is 

being chosen as the main software to model the condition of this experiment is because 

according to Muravyev et al (2016) an optimized Artificial Neural Network (ANN) 

should be able to approximate or predict any continuous non – linear function, being 

highly tolerant to any missing data or noises resulting to more trusted and accurate 

result. In general, the process of how Artificial Neural Network works is as progress 

flow below. 
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Figure 2.3.1: Progress Flow of Artificial Neural Network (ANN) 

 

In this project, it is determined that the suitably hidden layer is the 10 whereas any 

hidden layer greater than 10 may result to overfitting of the results. The increment of 

hidden layer is by trial and error method whereby increment of hidden layer is 

depended on performance progress. Figure 2.3.2 below shows the Network 

Architecture of the Artificial Neural Network tool. 

 

 
Figure 2.3.2: Network Architecture of the Artificial Neural Network 

 

From the program being set by the Matlab, the training will be done using Lavenberg-

Marquardt algorithm. The algorithm is also known as a damped least square method. 

The algorithm is seen suitable to be used in the Artificial Neural Network as it is able 

to analysis non-linear squares problem. The algorithms specifications used in Matlab 

is shown in Figure 2.3.3 below: 

 

 
Figure 2.3.3: Algorithm Specifications used in Matlab 

Predicted 
Flow 

Resistant
ProcessInput 

Parameters



 

14 | P a g e  
 

 

2.4 Reliability and accuracy of the experimental data 

Reliability of the experimental data is very important and essential in this research as 

the data will going to be inputted into the Artificial Neural Network software. Any 

unreliable data will cause the software to produce unreliable result causing a 

misleading view and perception towards the experiment and the whole research. 

Therefore, according to Kee et al (n.d.) the reliability of the experiment and the 

prediction in the modeling, however, can be determined by the Root Mean Square 

Error, RMSE, and coefficient of determination, R2. In general, Root Mean Square 

Error, RMSE is the variance, Ơ of the whole experiment to determine the consistency 

and the accuracy of the obtained data. The equation that denotes the Root Mean Square 

Error and coefficient of determination of Manning’s Equation are as follows: 

 

𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡	𝑜𝑓	𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛, 𝑅6

=

⎝

⎛ ∑ (𝑂W − 𝑂YZ[')(𝑃W − 𝑃YZ[')]
W^&

_∑ (𝑂W − 𝑂YZ[')6]
W^& ∑ (𝑃W − 𝑃YZ[')6]

W^& ⎠

⎞

6

 

 

 

𝑅𝑜𝑜𝑡	𝑀𝑒𝑎𝑛	𝑆𝑞𝑢𝑎𝑟𝑒	𝐸𝑟𝑟𝑜𝑟, 𝑅𝑀𝑆𝐸 = 	d
∑ (𝑂W − 𝑃W)6]
W^&

𝑁  

 

 

Where 

𝑂W = 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑	𝑉𝑎𝑙𝑢𝑒𝑠 

𝑂YZ[' = 𝑚𝑒𝑎𝑛	𝑜𝑓	𝑂W 

𝑃W = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑉𝑎𝑙𝑢𝑒𝑠 

𝑃YZ[' = 𝑚𝑒𝑎𝑛	𝑜𝑓	𝑃W 

𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠𝑎𝑚𝑝𝑙𝑒𝑠 

 

Therefore from the said equation, the Artificial Neural Network (ANN) will predict 

the most accurate result when the calculated Root Mean Square Error, RMSE has the 

smallest value which denotes the smallest uncertainty. The prediction is also 
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considered correct when the coefficient of determination, R2 is approaching to 1. The 

result is considered accurate enough when R2 ≥ 0.7. 

 

2.5 Flow Attenuation 

The inflow of water can be high at a time especially during stormy and rainy weather. 

The heaviest rainfall in Malaysia would be during the two Monsoons which are 

Southwest Monsoon and Northeast Monsoon. The high peak of inflow could result to 

high velocity in the drainage system and cause the risk of flood. Therefore the aim of 

this research is to create a flow attenuation which is defined as the reduction of 

hydrograph peak. Attenuation mentioned can be observed as the graph below. 

 

 
Figure 2.5.1: Flow Attenuation 

 

To create flow attenuation, some flow resistant object has to be established to increase 

the roughness causing flow attenuation in the hydrograph. Therefore in this research, 

the subject that will be used to create flow resistant in the rectangle flume would be 

grass and this vegetation will be installed at the bottom of the channel. In this 

experiment, many types of grasses will be used to determine the different scales of 

flow-resistant in a certain hydrological condition (Sand-Jensen, 2003). The type of 

vegetation that will create optimum flow resistant should be able to be applied as a 

flood measurement control in Malaysia. 
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2.6 Advantage of bioengineering technique 

The application of bioengineering techniques gives a lot of advantages in terms of 

biological, technical, aesthetic and economic. Their advantages make bioengineering 

technique as one of the techniques that are worth researching and expanding 

understanding of its characteristics. Not only it became the best tool for overcoming 

flood, but it also possesses the element of natural which is a great contribution to the 

aesthetic value. The natural cow grass that is being used not only inexpensive but can 

be obtained from anywhere within Malaysia. Not to mention it also considered being 

cheaper in production as compared to the existing conventional concrete channel. 

Table 2.6.1 below shows the advantages of the naturally vegetated channel in 4 

aspects. 

 

Aspects Advantages 

 

Technical 

1. Become bank protection during flood 

2. Become slope protection during heavy rainfall 

3. Increase the stability of the channel by having soil-root 

bond of the vegetation 

 

 

 

 

Ecological 

1. Enhancing the habitat of the ecological system by reducing 

the amount of human-made structure 

2. Improved the soil water condition by having infiltration, 

filtration and detention. 

3. Soil enhancement by having humus formation 

4. Creation of habitats other than the laid cow grass 

5. Water purification 

 

Aesthetical 

1. Harmonize with the natural surrounding 

2. Has the dimension of a river shape 

3. Minimize the usage of human-made structure 

 

Economical 

1. Increases the amount of maintenance needed 

2. Inexpensive material such as cow grass 

3. Does not need excellent workmanship to create the design 

naturally vegetated channel 

Table 2.6.1: Advantages of the Natural Vegetated Channel 
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2.7 Difference of Type B and Type C swale 

 In this project, the actual reading is being taken at the actual site of the grass swale 

that is situated in the surrounding of the Universiti Sains Malaysia Nibong Tebal 

campus. The reading is taken at two type of swale which is Type B and Type C grass 

swale. The swale is differentiated by the cross section of the swale and the bed slope 

of the grass swale as shown in Figure 2.7.1, Figure 2.7.2, Figure 2.7.3 and Figure 2.7.4 

below. 

 

 
Figure 2.7.1 Cross Section of Type B Swale 

 

 
Figure 2.7.2: Bed Slope of Type B swale 
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Figure 2.7.3: Cross Section of Type C Swale 

 

 
Figure 2.7.4: Bed Slope of Type C Swale 
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3.0 Methodology / Project Work 
For project work, the experiment will be held at Physical Modelling Laboratory of 

River Engineering and Urban Drainage Research Centre (REDAC) at Universiti Sains 

Malaysia. One of the equipment that we will use at the research center is the flume that 

could control the parameters of desired hydrology condition. The diagram of the flume 

with the vegetation zone that we will establish in this research would be as follows: 

 

 
Figure 3.1 Side View Arrangement Layout in a Flume  

 

 
Figure 3.2 Plan View Arrangement Layout in a Flume 
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The first step in this experiment is to determine the Manning’s Roughness Coefficient 

of the non-vegetation in the flume. The non-vegetation flume condition will act as the 

base and the control parameters of the hydrology condition. Later then, the vegetation 

region is then added into the flume to observe and record the increment of the 

Manning’s Roughness Equation. Once recorded and new Manning’s Roughness 

Coefficient is established, the modeling and the prediction of the flow-resistant in 

Artificial Neural Network (ANN) can be done. Generally, the flow of the experiment 

will be conducted using the Figure 3.3 below. 

 

 
Figure 3.3: Flow of the Experiment 

 

Therefore any increment of Manning’s Roughness Equation will be safely deducted as 

flow resistant of the vegetation. The control base Manning’s Roughness Equation can 

be calculated using the equation below: 

 

𝑛 = 	
1
𝑉 𝑅

6
93 𝑆& 63  

 

In this experiment, the parameters that will be taken account is the slope of the flume, 

S, the velocity of the flow, V, and the hydraulic radius, R of the flume. The table below 

will be used in both non-vegetation and vegetation condition when doing the 

experimental works. 

 

 

 

 

 

Parameters 
and data with 
vegetation in 

Flume

Established 
Flow Resistant 

and new 
Manning's 
Roughness 
Coefficient

Compare 
Manning 

Roughness 
Coefficient 

with the 
Conventional 

Concrete 
Channel

Apply same 
parameters 

and hydrology 
condition in 

Artificial 
Neural 

Network

Predicted Flow 
Resistant 

should be the 
same as yield 
experimental 
flow resistant.
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Flume Without Vegetation 

Width 

of 

Flume 

(mm) 

Slope, 

S 

Hydraulic 

Radius, R 

Depth, 

d (m) 

Velocity 

of the 

Water 

Flow, V 

Average 

Velocity 

of Water 

Flow, V 

Manning’s 

Roughness 

Coefficient, n 

  

0.0010 

 0.2d    

 0.6d  

 0.8d  

 

0.0015 

 0.2d    

 0.6d  

 0.8d  

0.0020  0.2d    

 0.6d  

 0.8d  

Flume With Vegetation 

  

0.0010 

 0.2d    

 0.6d  

 0.8d  

 

0.0015 

 0.2d    

 0.6d  

 0.8d  

 

0.0020 

 0.2d    

 0.6d  

 0.8d  

Table 3.4: Data Collection Sheet 

 

 

Once the experiment data are all collected and calculated, the Root Mean Square Error, 

RMSE and the Coefficient of Determination, R2 is then calculated as per equations 

below to determine the accuracy of the data before being inputted into the Artificial 

Neural Network (ANN) software. 
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𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡	𝑜𝑓	𝐷𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛, 𝑅6

=

⎝

⎛ ∑ (𝑂W − 𝑂YZ[')(𝑃W − 𝑃YZ[')]
W^&

_∑ (𝑂W − 𝑂YZ[')6]
W^& ∑ (𝑃W − 𝑃YZ[')6]

W^& ⎠

⎞

6

 

 

𝑅𝑜𝑜𝑡	𝑀𝑒𝑎𝑛	𝑆𝑞𝑢𝑎𝑟𝑒	𝐸𝑟𝑟𝑜𝑟, 𝑅𝑀𝑆𝐸 = 	d
∑ (𝑂W − 𝑃W)6]
W^&

𝑁  

 

 

Once the reliability of the experimental data is confirmed yielding small value of Root 

Mean Square Error, RMSE, and Coefficient of Determination, R2 ≥ 0.7, then the same 

hydrology conditions will be applied to the Artificial Neural Network to predict the 

flow resistant at any slope and velocity of the water flow. 
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4.0 Results and Discussion 
In this project, there will be two results to entertain both of the objectives of this study. 

The objectives are: 

 

1. To create a standard experimental procedure in determining the flow 

resistance of the naturally vegetated channel. 

2. To predict the flow resistance using the artificial neural network (ANN). 

 

4.1 Standard Experimental Procedure 

 

 
Figure 4.1.1: Plan View Arrangement Layout in a Flume 
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Therefore, from the layout given above, the standard experimental procedure that 

should be carefully considered in order to achieve the objective of this experiment are 

as follows: 

 

1. Establish 5 m length of vegetation region with 1.5 m width.  

2. The thickness of the vegetation region should approximately be up to 7.62 cm 

(3 inches) as shown in the image below. However, the thickness of the 

vegetation must be taken into consideration when the thickness of the 

vegetation is much smaller than the annual rainfall of the potential site. 

 

 
Figure 4.1.2: Cross section of naturally vegetated channel 

 

3. Run the 20 m flume with three different water depth, 10 cm, 20 cm, and 30cm. 

4. With each water depth, the reading will be taken at three different slopes. In 

other words, Slope of 1000, 750 and 500 will be tested at 10 cm, 20 cm, and 

30 cm water depth. 

5. Once the flume reaches the desired water depth, velocity reading will be taken 

at the upstream of the vegetated region, Point A. Velocity reading at Point A1, 

A2 and A3 for all 0.2y, 0.4y, and 0.6y depth are taken and must consider the 

drag force effect of the flume to the water flow. It is expected that point A2 

should yield greater velocity than at point A1 and point A3. Image below shows 

the relationship of the surface to the water flow. 
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Figure 4.1.3: Effect of Manning Roughness Coefficient of the surface to the 

water flow velocity. 

 

6. Next, velocity reading will be taken at the downstream of the vegetated region, 

Point C. Velocity reading at Point C1, C2 and C3 for all 0.2y, 0.4y and 0.6y 

depth are taken and again must consider the drag force effect of the flume to 

the water flow. It is expected that point C2 should yield greater velocity than at 

point C1 and point C3.  

7. Velocity reading at B11-13, B21-23 and C31-33 is then taken at the vegetation 

region. All velocity reading at point B is taken at 0.2y, 0.4y and 0.6y depth and 

again must consider the drag force effect of the flume to the water flow. 

8. The drag effect of the flume to the water flow, also known as Manning’s 

Roughness Coefficient, is then calculated using Manning’s Roughness 

Equation. 

9. The increment of Manning’s Roughness Coefficient is then observed at all 

Point A, B and C. Provided that flume material does not change, Manning’s 

Roughness Coefficient at Point A and C will remain constant and changes in 

velocity at Point C is as the result of Manning’s Roughness Coefficient 

increment at Point B. 

10. The Same procedure is then repeated through steps 1 till 9 in an empty flume 

and this will act a control parameter of the experiment. 

11. The Same parameter is then inputted in Artificial Neural Network to obtain the 

desired flow resistant as done in the experiment laboratory test. 
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4.2 Data Collection and Calculation for Type B Swale 

The result is taken at both of the upstream and the downstream part of the grass swale. 

The data collected at the upstream and downstream of the grass swale is as shown in 

Table 4.2.1 and Table 4.2.2 below. The Manning Roughness Coefficient is calculated 

using Roughness Manning Equation as shown in section 2.0. 

 

 
Table 4.2.1: Upstream data in Type B Swale 

 

 
Table 4.2.2: Downstream data in Type B Swale 
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From the table, it is shown that the upstream accommodate more flow area as 

compared to the downstream of the grass swale. From observation, the upstream has 

lower velocity reading as compared to the downstream data. This is as a result due to 

the increment of Roughness Manning Coefficient and blockade capacity of the 

naturally vegetated channel. In this regards, it is shown that in Table 4.2.3 below that 

the flow discharge decreases within time. Hence, it is known that the effect of an 

increment of Manning Roughness Coefficient took place. 

 

 
Table 4.2.3: Flow Discharge of the Upstream and the Downstream of Type B Swale 

 

4.3 Data Collection and Calculation for Type C Swale 

Similar to data collection procedure in Type B grass swale, the result is taken at both 

of the upstream and the downstream part of the grass swale. The data collected at the 

upstream and downstream of the grass swale is as shown in Table 4.3.1 and Table 4.3.2 

below. The Manning Roughness Coefficient is calculated using Roughness Manning 

Equation as shown in section 2.0. 
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Table 4.3.1: Upstream Data in Type C Swale 

 

 
Table 4.3.2: Downstream Data in Type C Swale 

 

From the table, it is shown that the upstream accommodate more flow area as 

compared to the downstream of the grass swale. From observation, the upstream has 

lower velocity reading as compared to the downstream data. This is as a result due to 

the increment of Roughness Manning Coefficient and blockade capacity of the 

naturally vegetated channel. In this regards, it is shown that in Table 4.3.3 below that 

the flow discharge decreases within time. Hence, it is known that the effect of an 

increment of Manning Roughness Coefficient took place. 
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4.4 Regression Analysis for Both Type-B Upstream and Downstream Data 

Regression analysis is the statistical modeling of a range of data and to prove that the 

data is within the limit of Root Mean Square Error and Coefficient of Determination, 

R2. It is known that a good data should have Coefficient of Determination, R2 

approaching to 1. From the Regression Analysis done by Matlab using Artificial 

Neural Network, the average Coefficient of Determination, R2 for Upstream Data is 

R2 = 0.99546 

 

 
Figure 4.4.1: Regression Analysis for Upstream Data Type B Swale 

 

 

 

 

 



 

30 | P a g e  
 

 
Figure 4.4.2: Regression Analysis for Downstream Data Type B Swale 

 

 
Figure 4.4.3: MSE and R2 Results for Type B Swale Downstream Data 

 

It is shown in Figure 4.4.2 and Figures 4.4.3 that the MSE and R2 are within the limit 

set in section 2.0 above. The result shows that the MSE is indeed approaching to zero 

and the Coefficient of Determination, R2 is approaching to one. Hence, the data 

collection is reliable and considered good to be interpreted. 
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4.5 Regression Analysis for Both Type C Upstream and Downstream Data 

Regression analysis is the statistical modeling of a range of data and to prove that the 

data is within the limit of Root Mean Square Error and Coefficient of Determination, 

R2. It is known that a good data should have Coefficient of Determination, R2 

approaching to 1. From the Regression Analysis done by Matlab using Artificial 

Neural Network, the average Coefficient of Determination, R2 for Upstream Data is 

R2 = 0.99546 

 

 
Figure 4.5.1: Regression Analysis for Upstream Data Type C Swale 

 

 
Figure 4.5.2: MSE and R2 Results for Type C Swale Upstream Data 

 

It is shown in Figure 4.5.2 and Figures 4.5.3 that the MSE and R2 are within the limit 

set in section 2.0 above. The result shows that the MSE is indeed approaching to zero 

and the Coefficient of Determination, R2 is approaching to one. Hence, the data 

collection is reliable and considered good to be interpreted. 
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From the Regression Analysis done by Matlab using Artificial Neural Network, the 

average Coefficient of Determination, R2 for Downstream Data is R2 = 0.99162. 

 

 
Figure 4.5.3: Regression Analysis for Downstream Data Type C Swale 

 

 
Figure 4.5.4: MSE and R2 Results for Type C Swale Downstream Data 

 

It is shown in Figure 4.5.2 and Figures 4.5.3 that the MSE and R2 are within the limit 

set in section 2.0 above. The result shows that the MSE is indeed approaching to zero 

and the Coefficient of Determination, R2 is approaching to one. Hence, the data 

collection is reliable and considered good to be interpreted. 
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4.6 Prediction of Manning Roughness Coefficient for Upstream Type B Swale 

From observation in Figure 4.6.1 below, it is shown that the best value is during the 

validation process. Artificial Neural Network does not possess the capability to train 

the data so that it reached the optimum performance and value for the training process. 

This is due to the lack of Type B Grass Swale Upstream Data.  

 

 
Figure 4.6.1: Best Validation Performance Graph for Upstream Type B Swale 

 

 

After 6 iterations, the Artificial Neural Network stop its analysis process and rate the 

performance as 2.65e-20 that is approaching to zero with validation checks of 4 out of 

6 as shown in Figure 4.6.2 below. 

 

 
Figure 4.6.2: Progress of Artificial Neural Network Analysis for Upstream Type 

B Swale 
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Artificial Neural Network also reported that as shown in Figure 4.6.3 below that 

the error of the result can be as high as 0.005669 and as low as -0.1191. The 

prediction, however, does not show significant differences between the actual and 

the prediction as shown in Table 4.6.4. 

 

 
Figure 4.6.3: Histogram Error in Artificial Neural Network for Upstream Type B 

Swale 

 

Upstream in Swale Type B 
Manning Roughness Coefficient, n Predicted Manning Roughness Coefficient, n 

0.051 0.173 
0.123 0.139 
0.186 0.191 
0.275 0.273 
0.244 0.255 
0.265 0.270 
0.117 0.136 
0.142 0.159 
0.142 0.149 
0.167 0.201 
0.284 0.275 
0.226 0.231 
0.097 0.098 
0.209 0.215 

Table 4.6.4: Comparison of Actual Manning Roughness Coefficient with the 

Predicted Manning Roughness Coefficient in Upstream Data of Type B Swale 
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Figure 4.6.5: Difference between actual and predicted Manning’s Roughness 

Coefficient for Upstream Type B Swale in Day one 

 

 
Figure 4.6.6: Difference between actual and predicted Manning’s Roughness 

Coefficient for Upstream Type B Swale in Day two 

 

Both figures above shows low differentiation and variances due to the high accuracy 

of ANN as compared to downstream Manning’s Roughness Coefficient value of Type 

B natural vegetated channel. The reason of such high accuracy value is due to the 

minimum effect of natural vegetation blockade effect to the watercourse causes the 

Manning’s Roughness Coefficient to be less variable as compared to the Downstream 

value. 
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Nonetheless, the RMSE and R2 value is acceptable in this experiment and therefore 

the predicted value of Manning’s Roughness Coefficient is considered sufficient to 

verify that the ANN is correct and does not lead to a misperception of this research. 

The value of inaccuracy can be further improved by having greater sets of data for all 

ANN modeling i.e. training, testing, and validation. 
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4.7 Prediction of Manning Roughness Coefficient for Downstream Type B Swale 

From observation in Figure 4.7.1 below, it is shown that the best value is the validation 

and testing processes. Artificial Neural Network does not possess the capability to train 

the data so that it reached the optimum performance and value for the training process. 

This is due to the lack of Type B Grass Swale Downstream Data.  

 

 
Figure 4.7.1: Best Validation Performance Graph Downstream Type B Swale 

 
After 6 iterations, the Artificial Neural Network stop its analysis process and rate the 

performance as 1.01e-16 that is approaching to zero with validation checks of 5 out of 

6 as shown in Figure 4.7.2 below. 

 

 
Figure 4.7.2: Progress of Artificial Neural Network Analysis Downstream Type B 

Swale 
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Artificial Neural Network also reported that as shown in Figure 4.7.3 below that the 

error of the result can be as high as 0.1067 and as low as -1136. The prediction, 

however, does not show significant differences between the actual and the prediction 

as shown in Table 4.7.4. 

 

 
Figure 4.7.3: Histogram Error in Artificial Neural Network for Downstream Type B 

Swale 

 

Downstream in Swale Type B 
Manning Roughness Coefficient, n Predicted Manning Roughness Coefficient, n 

0.025 0.005 
0.069 0.188 
0.060 0.171 
0.079 0.148 
0.076 -0.006 
0.095 0.067 
0.119 0.171 
0.092 0.206 
0.310 0.206 
0.323 0.210 
0.238 0.171 
0.187 0.141 
0.045 0.106 
0.136 0.179 

Table 4.7.4: Comparison of Actual Manning Roughness Coefficient with the 

Predicted Manning Roughness Coefficient in Downstream Data of Type B Swale 
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Figure 4.7.5: Difference between actual and predicted Manning’s Roughness 

Coefficient for Downstream Type B Swale in Day one 

 

 
Figure 4.7.6: Difference between actual and predicted Manning’s Roughness 

Coefficient for Downstream Type B Swale in Day two 

 

Both figures above shows high differentiation and variances due to the inaccuracy of 

the computation modeling ANN. Nonetheless, the RMSE and R2 value is acceptable 

in this experiment and therefore the predicted value of Manning’s Roughness 

Coefficient is considered sufficient to verify that the ANN is correct and does not lead 

to a misperception of this research. The value of inaccuracy can be further improved 

by having high sets of data for all ANN modeling i.e. training, testing, and validation. 
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4.8 Prediction of Manning Roughness Coefficient for Upstream Type C Swale 

From observation in Figure 4.8.1 below, it is shown that the best value is the validation 

and training processes. Artificial Neural Network does not possess the capability to 

train the data so that it reached the optimum performance and value for the training 

process. This is due to the lack of Type C Grass Swale Upstream Data.  

 

 
Figure 4.8.1: Best Validation Performance Graph for Upstream Type C Swale 

 
After 14 iterations, the Artificial Neural Network stop its analysis process and rate the 

performance as 1.79e-05 that is approaching to zero with validation checks of 6 out of 

6 as shown in Figure 4.8.2 below. 

 

 
Figure 4.8.2: Progress of Artificial Neural Network Analysis for Upstream Type C 

Swale 
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Artificial Neural Network also reported that as shown in Figure 4.8.3 below that the 

error of the result can be as high as 0.1067 and as low as -1136. The prediction, 

however, does not show significant differences between the actual and the prediction 

as shown in Table 4.8.4. 

 

 
Figure 4.8.3: Histogram Error in Artificial Neural Network for Upstream Type C 

Swale 
 
 

Upstream in Swale Type C 
Manning Roughness, n Predicted Manning Roughness, n 

0.099 0.106 
0.136 0.126 
0.153 0.132 
0.158 0.134 
0.141 0.154 
0.145 0.132 
0.014 -0.087 

 
Table 4.8.4: Comparison of Actual Manning Roughness Coefficient with the 

Predicted Manning Roughness Coefficient in Upstream Data of Type C Swale 
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Figure 4.8.5: Difference between actual and predicted Manning’s Roughness 

Coefficient in Upstream Type C Swale 

 

From the graph above, it shows that the Type C Swale has almost similar Manning’s 

Roughness Coefficient for both actual and predicted values. The similarities were due 

to the submergence of vegetation causes the Manning’s Roughness Coefficient to be 

similar for both upstream and downstream value. Hence, the computation modeling 

can be done quite easy without any improvement to a number of hidden layers needed. 

Nonetheless, outliers are bound to posess within the experiment due to the lack of data, 

especially for Type C Swale.  
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4.9 Prediction of Manning Roughness Coefficient for Downstream Type C Swale 

From observation in Figure 4.9.1 below, it is shown that the best value is the validation 

and training processes. Artificial Neural Network does not possess the capability to 

train the data so that it reached the optimum performance and value for the training 

process. This is due to the lack of Type C Grass Swale Upstream Data.  

 

 
Figure 4.9.1: Best Validation Performance Graph for Downstream Type C Swale 

 

After 9 iterations, the Artificial Neural Network stop its analysis process and rate the 

performance as 4.12e-25 that is approaching to zero with validation checks of 6 out of 

6 as shown in Figure 4.9.2 below. 

 

 
Figure 4.9.2: Progress of Artificial Neural Network Analysis for Downstream Type 

C Swale 
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Artificial Neural Network also reported that as shown in Figure 4.9.3 below that the 

error of the result can be as high as 0.4494 and as low as -0.02392. The prediction, 

however, does not show significant differences between the actual and the prediction 

as shown in Table 4.9.4. 

 

 
Figure 4.9.3: Histogram Error in Artificial Neural Network for Downstream Type C 

Swale 
 
 

Downstream in Swale Type C 
Manning Roughness, n Predicted Manning Roughness, n 

0.071 0.083 
0.103 0.139 
0.117 0.144 
0.168 0.183 
0.238 0.218 
0.152 0.159 
0.013 -0.449 

 
Table 4.9.4: Comparison of Actual Manning Roughness Coefficient with the 

Predicted Manning Roughness Coefficient in Upstream Data of Type C Swale 
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Figure 4.9.5: Difference between actual and predicted Manning’s Roughness 

Coefficient in Downstream Type C Swale 

 

From the graph above, it shows that the Type C Swale has almost similar Manning’s 

Roughness Coefficient for both actual and predicted values. The similarities were due 

to the submergence of vegetation causes the Manning’s Roughness Coefficient to be 

similar for both upstream and downstream value. Hence, the computation modeling 

can be done quite easy without any improvement to a number of hidden layers needed. 

Nonetheless, outliers are bound to have in the experiment due to the lack of data, 

especially for Type C Swale.  
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5.0 Conclusion and Recommendation  
As a conclusion, a more controlled experiment data can be done in the laboratory using 

hydraulics flume. The installation of the vegetation should also be carefully 

determined by referring to the previous bioengineering techniques when simulating 

and establishing a naturally vegetated channel. Every procedure is then recorded and 

a standard experimental procedure is established after the setting up of the vegetated 

flume is satisfied. 

 

The differences of cross section between Swale Type B and Swale Type C definitely 

resulted to different Manning Roughness Coefficient, n. The reading shows that the 

most optimum type of swale would be Type B swale where the Roughness Manning 

Coefficient, n can be as high as 0.310. Water flow in Type C swale has a tendency to 

submerge the vegetation due to its high depth. Therefore, resulted to fair amount of 

Manning Roughness Coefficient throughout the naturally vegetated channel for both 

Upstream and Downstream region. 

 

Hence, optimization of the naturally vegetated channel can be further research by 

studying the effect of flow velocity and Manning Roughness Coefficient to the length 

of the vegetation. It is also proven that the prediction of Flow Resistance can be made 

and analysis by the Artificial Neural Network tool. The results shown in section 4.0 

prove that the predicted Manning Roughness Coefficient n is more or less the same as 

the actual Manning Roughness Coefficient, n that has been calculated using Manning 

Roughness Coefficient as explained in section 2.0. 

 

However, it is also observed that lack of data resulted in low efficiency in performance 

of the Artificial Neural Network as per predicted in Type C Swale. Therefore, gaining 

more data will be able to ensure the accuracy of the performance of the Artificial 

Neural Network giving a more accurate result and prediction. 

 

The author recommendation in this research would be to observe the reaction of the 

velocity of the water flow with a different arrangement of vegetation. The optimum 

flow resistant could also be obtained with a different way of arranging the vegetation 

in the flume. Such, different arrangement will give a greater insight whether the 
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arrangement of vegetation will either reduce or increase the flow velocity of any given 

flow rate. 

 

Besides that, future extensive research could also be made in order to study the effects 

of the naturally vegetated channel to the concentration of oxygen in the outflow of the 

water discharged. With the extensive research, the naturally vegetated channel could 

also be proven as one inexpensive medium to reduce pollution up to a certain degree 

in the drainage system in Malaysia. Thus, increase the poor state of Malaysia’s river 

in terms of pollution. 
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6.0 Appendices 
 

 

Figure 6.1: Type B Swale  
 
 

 
Figure 6.2: Type B Swale  
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Figure 6.3: Type C Swale 

 

 
Figure 6.4: Type C Swale 

 


