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ABSTRACT 

 

 

Pore Water Pressure (PWP) prediction is important in analyzing the strength 

and effective stress of the soil. Increase of PWP will cause slope failure in areas 

susceptible to landslide. Stability is determined by the equalization of shear strength 

and shear stress analyses. Knowledge in pore water pressure is important in 

hydrological analysis, such as seepage slope strength analyses, engineered slope 

design and assessing slope reactions to rainfall. The main aim of this work is to 

forecast pore water pressure variations in response to rainfall utilizing Radial Basis 

Kernel Function and to evaluate model performance using statistical measures. 

Support Vector Machine (SVM) is an algorithm which is based on kernel function, 

and this makes the selection of kernel an important one when implementing the SVM. 

This selection is dependent on the issue we want to model. The kernel function that is 

frequently used in previous studies is Radial Basis Function (RBF). It is also 

necessary to make decision on the measurement of precision that will be used for the 

performance of the model. Small values of Root Mean Square Error (MSE) are 

desirable. On the contrary, the Coefficient of Determinant, R2, is expected to have a 

high value, near to unity. Radial Basis Kernel Function is the most suitable technique 

to model the pore water pressure. This is because the modelling result from the 

software predicts the value of the PWP well enough and gave a good performance. 

Some of the points are not predicted well in the model, which might be because of 

other criteria such as temperature. 
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CHAPTER 1  

 
INTRODUCTION 

 

 
1.1 Background of Study 

 

Pore-water pressure (PWP) can be generally defined as the pressure applied 

inside the soil by water held in void in a rock or soil. The pressure is said to be 

positive when the soil is completely saturated, and is measured corresponding to the 

height of the water in a piezometer above the purpose of intrigue. The pressure is 

zero when the soil pores are filled with air. The pressure is negative when the voids 

are partly filled with water (in which case surface-tension forces operate to achieve a 

suction effect and the shear strength of the soil is increased) (Schnellmann, 

Busslinger, Schneider, & Rahardjo, 2010) PWP is imperative in dissecting the 

strength and viable stress of the soil. Increase of PWP will bring about slope failure 

in locations vulnerable to landslide. Stability is dictated by the equalization of shear 

strength and shear stress. An initially stable slope may be at first affected by 

preliminary factors, causing the slope to be conditionally unstable. Triggering factors 

of a failure of slope can be climatic occasions which a slope is actively unstable, 

prompting to mass movements. Increment in shear stress can cause mass movements, 

for instance loading, lateral pressure and transient forces. On the contrary, shear 

strength may drop caused by weathering, fluctuations in pore water pressure and 

organic material. Knowledge in pore water pressure is significant in analyzing 

hydrology, for example analyses of drainage and slope stability, design of engineered 

slope and assessing slope reactions to rainfall.   

 

Landslides are one of the intermittent natural hazard issues all through most 

of Malaysia. As indicated in local daily paper reports, overwhelming rainfalls 

triggered various landslides and mud flows along numerous parts in Peninsular
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 Malaysia. These landslides cost a fortune of property loss and some even cause fatal 

incidents. The landslides that happened along the New Klang Valley Express 

(NKVE) area in the year 2003 have alarmed the authorities and a few governmental 

associations towards the solemnness of the administrative and avoidance of 

landslides. These incidents that occur in the country are mostly triggered by tropical 

rainfalls leading to failure of the surface of the rock along the fracture, joint and 

cleavage planes. The lithological units of Malaysia are quite stable yet nonstop of 

uncontrolled urbanization causes deforestation and disintegration of the layers of the 

covering soil, thus leading to serious danger to the slopes. 

 

 Previous studies done by (Imrie, Durucan, & Korre, 2000; Karunanithi, 

Grenney, Whitley, & Boove, 2991) have used Artificial Neural Network (ANN) to 

predict streamflow. The study concluded that this method is superior when compared 

to the conventional models. Modelling of rainfall-runoff process using ANN has 

started with a study done by (Halff, Halff & Azmoodeh, 1993) who utilized ANN 

with three layers of feedforward architecture to predict hydrographs. From that point 

forward, many studies in the context of modelling rainfall-runoff utilizing ANN were 

done. Furthermore, another algorithm was proposed in (K.-I. Hsu, Gupta, & 

Sorooshian, 1995), called the linear least squares simplex (LLSSIM), for ANN 

training. It uses a mix of optimization technique; linear least squares and multi-start 

simplex methods. The algorithm was observed to be more effective and proficient 

than the backpropagation technique, which is ordinarily used by most researchers. In 

(Smith & Eli, 1995), the backpropagation method in ANN was used to forecast peak 

discharge and time to peak by leveraging simulated data from a synthetic catchment.  

 

 Support Vector Machine (SVM) is a new universal learning recommended by 

(V.Vapnik, 1995) which applies to both regression and recognition of patterns. SVM 

is a linear machine (or network) with a few exceptionally pleasant properties. It can 

provide a decent generalization of performance on the problem of pattern 

classification, in spite of the fact that it does not incorporate the knowledge of 

problem-domain.  
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1.2 Problem Statement 

 

 Pore Water Pressure is widely used in slope studies since the measurement 

and monitoring of the PWP levels is troublesome. It is important to understand the 

knowledge of PWP, particularly its variances during and after rainfall occurrences, 

because these are the time when the levels of PWP could worsen so badly or even 

reach undesirable threshold beyond which failure could actually happen. PWP is 

commonly measured and monitored through an instrumentation program of slope 

that is set up particularly for that reason. However, this technique is tedious, 

expensive and inconvenient. One approach to circumvent the program is to attempt 

in predicting the PWP with software tools.. 

 

 

1.3 Objective of Study 

 

 The primary objective of this work is to predict pore water pressure responses 

to rainfall with the following specific objectives: 

 

1) To predict the variations of pore water pressure in response to rainfall by 

using Radial Basis Kernel function. 

2) To evaluate the model performance using statistical measures. 

 

 

1.4 Scope of Study 

 

 The scope of study is limited to the followings: 

 

1) The application of Radial Basis Kernel function for modelling pore water 

pressure responses to rainfall using MATLAB 

2) Evaluate the result of pore water pressure prediction model using Mean 

Square Error (MSE), Squared Coefficient of Determination (R2) and No of 

Support Vector (nSV) 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 
2.1 Hydrological Modelling 

 

 Hydrological models give us an extensive range of important applications in 

the planning and administrative activities of the multi-disciplinary water resources. 

They can be formulated with deterministic, probabilistic and stochastic methods for 

the surface and ground water systems characterization together with the modelling of 

coupled systems like hydro-ecology, hydro-geology and weather. However, because 

of the resource constraint sand the confined extent of available measurement 

approaches, there are impediments to the availability of spatial-temporal data 

(Pechlivandis, Mcintyre, & Wheather, 2011). Therefore, there comes a need to 

generalize the data obtained from the existing measurements using special methods 

like the support vector machine and the hybrid models of it. The applications of the 

hydrological model have an extent variety of objectives, depending on the issues that 

need to be studied (Pechlivandis et al, 2011).  

 

 Statistically, the analysis of hydrologic data requires the user to understand 

the essential definitions and knows the reason and constraints of SVM. An 

application of SVM for hydrological analyses needs the physical phenomena 

measurement. The person who models the network needs to assess the precision of 

the collected data and must have a basic knowledge on the way the data are 

accumulated and processes prior to modelling activities. The most common used data 

in hydrological studies incorporates rainfall, snowmelt, stage, streamflow, and 

evaporation and watershed characteristics.
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2.2 Malaysia Landslide Problem 

 

 Landslides are major natural geological disasters which each year contributes 

to the huge amount of property damage including both direct and indirect expenses. 

Malaysia encounters frequent landslides each year, with the latest incidents happened 

in 2000, 2001, 2004, 2007, 2008 and 2009. Referring to the local newspaper, heavy 

rainfalls have activated landslides and mud flows along the highways of east coast in 

the Peninsular Malaysia, Sabah and the Penang Island (Pradhan and Lee, 2009). The 

regions that were hit the worst are along the Penang Island and Cameron Highlands, 

which are the mountainous areas of the peninsular. This natural disaster caused loss 

of million dollars of property and even lives. The degree of the damages could be 

reduced if a life-long early alarm system anticipating the mass movements in the 

landslide inclined areas would have been in place. The landslides that happened 

along the New Klang Valley Express Highway (NKVE) area in the year 2003, which 

was triggered by heavy rainfalls, have given hints to the administrations and other 

governmental associations on the significance of landslide management and 

prevention. Figure 2.1 and Figure 2.2 are a few cases of landslide that happened in 

the country. 

 

.  

Figure 2.1: Karak Highway Landslide on Nov 11, 2015 (source: google image) 
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Figure 2.2: Bukit Lanjan Landslide (source: google image) 

 

 

2.3 Support Vector Machine 

 

 Support vector machines are developed based on statistical learning theory 

and are acquired from the auxiliary hazard minimization hypothesis to minimize the 

empirical risk and the confidence interval of the learning network in request to obtain 

good generalization ability. It has been proved that SVM algorithm turns out to be 

exquisitely robust and efficient for classification (V.Vapnik, 1995) and regression 

(Vapnik, Golowich, & Smola, 1997). The present basic SVM algorithm was 

proposed by (Cortes & Vaonik, 1995). The excellence of this method is twofold; it is 

brief enough that scholars with adequate knowledge can promptly understand, yet it 

is powerful that the precision of the method’s prediction overpowers numerous other 

approaches. The essential thought behind SVM is to outline the original sets of data 

from the input space to a high dimensional space so that the problem of classification 

becomes less complex in the feature space. SVMs have the possibility to procreate 

the obscure relationship that exists between a set of input parameters and the output 

of the system.  

 



7 
 

The preparatory target of SVM classification is to build up decision 

boundaries in the feature space which differentiate data points towards distinguished 

classes. SVM contrasts from other classification strategies outstandingly. It tends to 

create an ideal separating hyperplane between two classes to minimize the 

generalization error and thus maximizing the margin. On the off chance that any two 

classes are distinguishable from among the infinite number of linear classifiers, SVM 

verifies that hyperplane has minimize the generalization error (i.e. error for the 

unseen test patterns) and on the contrary if the two classes are non-divisible, SVM 

tries to look that hyperplane which maximizes the margin and in the meantime, 

minimizes an amount relative to the amount of errors of misclassification. Therefore, 

the chosen hyperplane will have the greatest margin between the two classes, where 

the margin can be defined as the sum of the displacement between the separating 

hyperplane and the closest points on either side of the two classes (Vapnik, 1997) 

 

 The classification of SVM and thus its ability of prediction can be seen by 

dealing with four basic concepts: 

 

1) The Separation Hyperplane 

2) The Hard-Margin SVM 

3) The Soft-Margin SVM, and 

4) Kernel Function 

 

Originally, SVM models were developed for the classification of linearly 

separable classes of objects, as illustrated in Figure 2.3. Consider a two-dimensional 

plane comprising linearly separable objects of two distinguished classes {class (+) 

and class (*)}. The objective is to search a classifier which isolates them perfectly. 

There can be various approaches to classify/separate those objects yet SVM tries to 

find a unique hyperplane which results in a maximum margin (i.e. SVM augments 

the separation between the hyperplane and the closest data point of each class). The 

objects of class (+) are framed behind hyperplane H1, whereas class (*) objects are 

framed by hyperplane H2. The objects of each class which precisely fall over the 

hyperplane H1 and H2 are called as support vectors. Most “important” training 

points are support vectors as they define the hyperplane and have coordinate bearing 

on the ideal area of the decision surface. The obtained maximum margin is indicated 
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as i. When only support vectors are utilized to denote the separating hyperplane, 

sparseness of solution develops when dealing with extensive data sets.  

 

 

 

 In real time issues, it is impractical to decide a correct separating hyperplane 

isolating the data inside the space and we might also get a bended decision boundary 

in a few cases. Hence, SVM can likewise be utilized as a classifier for non-separable 

classes (Figure 2.4). In such cases, the initial input space can always be outlined to 

some higher-dimensional feature space, called Hilbert space, using nonlinear 

functions, also denoted as feature functions (as illustrated in Figure 2.4 and Figure 

2.5). Indeed in spite of the fact that feature space is high dimensional, it could not be 

practically feasible to utilize directly the feature functions for hyperplane 

classifications. Hence in such cases, nonlinear mapping instigated by the feature 

functions is used for computation using special nonlinear functions named as kernels.  

 

 

 

 

 

Figure 2.3: Maximum separation hyperplane 



9 
 

 

 In the mapping to higher dimensions, SVM utilizes a few kernel functions, 

which give a simple avenue that leads from non-linearity to linearity for algorithms, 

through simple expressions of the dot product of the input. Examples of basic kernels 

include linear kernel, polynomial kernel, sigmoid kernel and the one that will be 

discussed in this work is radial basis function kernel (RBF). These kernels are 

respectively expressed in Equations 1-4.  

 

k(x, y) = 	)*y + c……………………………………………………………… . .… (1)					 

k(x, y) = (−γ)*y + r)3 ……………………… .……………………………………(2)				 

k(x, y) = exp(−γ	‖) − 8‖9)……………… . .………………………………… .… (3)					 

k(x, y) = tanh	(γ	)*y + c)……………………………………………………… .… (4) 

 

 

 

 

 

 

 

 

Figure2.4: Linear separation in feature space 
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SVM emphasizes on the choice of kernel function one needs to make while 

executing the SVM. The choice relies on the type of problem that wants to be 

modelled. The most broadly used kernel function is Radial Basis Function (RBF). In 

several applications, RBF Kernel is considered as the default kernel, and is used 

accordingly.  

 

 Sound choice of kernels provides the magnificent generalization 

performance. The relationship or likeness between two different classes of data 

points is delineated using kernel functions.  Kernels have the upper hand of operating 

in the input space, which the classification problem result is a weighted total of 

kernel functions assessed at support vectors. The Kernel trick permits SVMs to shape 

nonlinear boundaries by using the different types of kernel as mentioned previously. 

The nonlinear kernels act in providing the SVM with the capability to model 

complex separating hyperplanes. 

 

 The unique qualities of SVM classification and kernel techniques are: 

 

1) Their execution is ensured as they are purely based on theoretical samples of  

statistical learning; 

2) Search space has a one of a kind minimal; 

3) Training is profoundly robust and effective; 

4) The ability of generalization empowers trade-off. 

Figure 2.5: SVM map the input space into a high-dimensional feature space 
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 Some of such studies incorporated of (P Samui & Sitharam, 2011) where 

SVM is used to predict liquefaction susceptibility of soils. The work of (Lamorski, 

Parchepsky, Slawinski, & Walczak, 2008) and (Twaravaki, Simunek, & Schaap, 

2009) in which an SVM model of pedotransfer function was built up to estimate soil 

moisture retention curve utilizing the properties of soil hydraulic. (Zhao, 2008) and 

(Pijush Samui & Karthikevan, 2013) have used SVM to foresee slope dependability 

index from factor of safety (FS), using data that included soil shear strength 

variables. Despite the success recorded in these models, using RBF just because it is 

the most typical kernel that was used is not sufficient enough for justification. Hence, 

this study will assess and do comparison in the performance metrics of a few basic 

kernels in modelling the nonlinear complicated responses of pore-water pressure to 

rainfall. This is with a view to choosing the best kernel for such system modelling.  

 

The greatest advantage of SVM is the kernel trick is used to establish expert 

information about a problem so that both the complexity of the model and error 

prediction is minimized in a simultaneous manner. 

 

 The following three principles of mathematics are involved in the SVM 

algorithms: 

 

• Principle of Fermat (1638) 

• Principle of Lagrange (1788) 

• Principle of Kuhn–Tucker (1951)  

 

Support Vector Machines have their advantages. SVMs are capable of 

producing accurate and robust classification results, notwithstanding when inputs are 

non-monotone and are not separable linearly. So they can assist to assess more 

applicable information advantageously (Cristianini & Shawe-Taylor, 2000). The 

structural risk minimization principle provides SVM the desirable property to 

maximize the margin and thereby the generalization ability does not deteriorate and 

is able to predict the unseen data instances (Saunders, Gammerman & Vovk, 1998; 

Smola, Scholkopf, & Muller, 1998). By properly setting the value of C – 

regularization parameter one can easily suppress the outliers and thus SVMs are 

robust to noise (V.Vapnik, 1995). A key feature of SVM is that it automatically 
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identifies and incorporates support vectors during the training process and prevents 

the influence of the non-support vectors over the model. This causes the model to 

cope well with noisy conditions (Han, Chan, & Zhu, 2007). With some key actual 

training vectors embedded in the models as support vectors, the SVM has the 

potential to trace back historical events so that future predictions can be improved 

with the lessons learnt from the past (Han et al., 2007). Input vectors of SVM are 

quite flexible; hence various other influential factors (such as temperature, relative 

humidity, and wind speed) can be easily incorporated into the model (Jamalizadeh et 

al., 2008). 

 

SVMs have recently presented generally new statistical learning method. 

Because of its strong hypothetical statistical frame-work, SVM has turned out to be 

considerably much more robust in numerous areas, particularly on noised mixed 

data, than the local model which only uses classical chaotic approaches (Yu, Liong, 

& Babovic, 2004). 

 

The SVM has delivered substantial expectations in recent couple of years as 

they have been effective when applied in problems of classification, regression and 

predicting; as they incorporate aspects and strategies from machine learning, 

statistics, analyses of mathematics and convex optimization. Aside from having a 

solid flexibility, global, optimization and a decent performance generalization, they 

also suit the classification of small specimens of data. Internationally, the application 

of these approaches in the area of hydrology has considerably progressing since the 

first articles began to show up in conferences in the early 2000s (Sivapragasm, 

Liong, & Pasha, 2001). This study aims at reviewing the essential theory behind 

SVM and the available SVM models, discussing the recent developments in research, 

and exhibiting the challenges and constraints for future work of the hydrological 

impacts of climate change.  

 

Advancement and use of simulation models for rainfall-runoff has been a 

design as a research subject in hydrology. Rainfall-runoff (R-R) relation in a 

watershed simulation has two main approaches that have been developed; 

knowledge-based and data-driven. A lot of researches have been done depending on 

the approach of knowledge-based method like the approach of physical and 
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conceptual. Generally, these approaches impersonate complexity of real world runoff 

behavior and conceptualize runoff forms and catchment properties (Hoesseine & 

Mahjouri, 2016). In their studies, SVR-GANN (Support Vector Regression 

combined with geomorphic-based ANN model) is being utilized to simulate the day 

by day runoff in a watershed to lessen the pitfalls while keeping up the advantages of 

ANN. The execution of this model is contrasted with ANN-based Back Propagation 

Algorithm (ANN-BP), Traditional SVR, ANN-based Genetic Algorithm (ANN-GA), 

Adaptive Neuro-Fuzzy Inference System (ANFIS) and GANN. In conclusion from 

the studies, SVR-GANN model is good and reliable to be utilized as a method to 

model rainfall-runoff.  However, it was encouraged to explore more research to study 

this model’s efficiency in terms of simulation of event-based rainfall runoff.  

 

A study was conducted to estimate the variation of pore-water pressure 

(PWP) in response to rainfall with the use of Radial Basis Function Neural Network 

(RBFNN) (Mustafa, Rezaur, Rhardjo, & Isa, 2012). The network was used to replace 

the common Multilayer Perceptron (MLP) architecture to solve the problems of 

complex modeling (Luo & Unbehaun, 1998). As conclusion, 8-10-1 structure at a 

spread of 3.0 was recognized as the best configuration network to outline the non-

linear pattern of PWP at soil depth of 0.5 meters. However, the work stated that 

RBFNN lacks the capacity to clarify the underlying functional relationships between 

the parameters required for PWP changes unlike a mathematical model, which is 

physically based, yet has the upper hand of utilizing predetermined number of 

variables. 

 

The transformation process of rainfall into runoff over a catchment is so 

complicated, not linear, and displays the variability of both temporal and spatial. 

Artificial Neural Network (ANN) approach was adopted for the modelling of 

rainfall-runoff. This has added a new dimension to the framework theoretic 

modelling technique and it has been used in recent years to deal with numerous 

problems related with hydrology and water resources engineering (Rajurkar, 

Kothyari, & Chaube, 2002).  An ANN can be treated mathematically as a global 

estimate having the capacity to learn from samples, not needing the explicit physics 

(Rajurkar et al., 2002).   
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2.4 Clustering using SVM 

 

 Clustering is often formulated as a discrete optimization problem. The main 

objective of cluster analysis is to segregate objects into groups, such that the objects 

are more “alike” to each other than the objects of other groups. Clustering is 

categorized under unsupervised learning of an underlying data concept. Clustering 

applications frequently deal with vast datasets and data with complex behaviors. 

Improving the training process of SVM using clustering methods has been analyzed 

with many varieties. Cluster-SVM quickens the training process by the 

distributional personalities of the training dataset. Firstly, the algorithm segregates 

the data into various pairwise of separate clusters and after that the representatives 

of the clusters are used to train an initial SVM, depending on which the support 

vectors and non-support vectors are distinguished roughly (refer to Figure 2.6). The 

clusters consisting of only non-support vectors are supplanted with their 

representatives to diminish the quantity of training data essentially and in this 

manner the speed of the training process is improved. 

 

 

 

 

 

Figure 2.6: SVM Clustering 
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2.5 Support Vector Regression 

 

Considering a straightforward linear regression problem on a training data set 

= { ui, vi; I = 1, . . ., n} with vector inputs u1 and linked targets vi. A function g(u) 

must be defined approximately in order to connect the inherited relations between the 

data sets and thus it can be utilized in the later part to induce the output v for a new 

input data u.  

 

 Standard SVM regression utilized a loss function Lε (v, g(u)) which depicts 

the deviation of the approximated function from the original one. A few sorts of loss 

functions can be mined in the literature e.g. linear, quadratic, exponential, Huber’s 

loss function, and so forth. In the present setting the standard Vapnik’s – ε insensitive 

loss function is utilized which is expressed as  

 

@A	BC, D(ư)F = 	 G 	0						
|C	 − 	D(J)| − 	ε						

LMN|C	 − 	D(J)| 	≤ 	A						
MPℎRNSTUR …………………(5) 

 

Using the function, one can discover g(u) that can better estimate the real 

output vector v and has at most tolerance error ε from the real incurred targets vi for 

all training dataset, and simultaneously as flat as would be prudent. Consider the 

regression function expressed by 

 

D(J) = 	S	 · 	J	 + 	X …………………………………………………………………… . (6) 

 

Which w ∈		.	[	is the space input; b ∈ R is the biases and (w·u) is the dot product of 

w and u vectors. Flatness in Equation (6) alludes to a smaller value of variable vector 

w. By reducing the standard ||w|| can be determined alongside model complexity. 

Hence regression problem can be expressed as the following problem of convex 

optimization. 
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\T]
S, X, ^, ^°	 		

1
2	
`|w|`9 + bc( d̂, ^°d

e

dfg

) 

Cd − (S ∙ Jd + X) ≤ A + ^°d . ………………………. (7) 

	(S ∙ Jd + X) − Cd ≤ A + ^°d 

d̂ , ^°d ≥ 0,				T = 1,2,…… , ] 

 

Where ξT j]kξ° represents the slack variables introduced to assess the training 

samples deviation outside the ε-insensitive area. The trade-off between the flatness of 

g and the amount up to which deviation larger than ε are endured is portrayed by C > 

0. C is a positive constant affecting the level of penalizing loss when training error 

happens. Underfitting and overfitting of the training dataset are kept away by 

minimization of the regularization term w2 /2 with the error term b ∑ (e
dfg ξd, ξnd) in 

Equation 7, which represents the primal objective function.  

 

 Now, the issue is managed by developing a Lagrange function from the 

primal objective function by presenting a dual set of parameters, ᾳi and ᾱi for the 

relating constraints. The conditions of optimality are exploited at the corresponding 

saddle points of a Lagrange function which leads to the formulation of the dual 

optimization problem.  

 

\j)
ᾳd, ᾱd

									− 	
1
2	 c ᾳd − ᾱdBᾳq − ᾱqFBJd − uqF − Ac(ᾳd + ᾱd) +

e

dfg

e

d,qfg

cCd(ᾳd − ᾱd)
e

dfg

 

						∑ (ᾳd − ᾱd)e
dfg  …………………………………………….................… (8) 

UJXsRtP	PM			0 ≤ ᾳd ≤ b,							T = 1,2,…… , ] 

																								0 ≤ ᾱd ≤ b,							T = 1,2,…… , ] 

 

After indicating the Lagrange multipliers, ᾳi  and ᾱi , w and b which are the 

parameter vectors can be assessed under Karush-Kuhn-Tucker (KKT) 

complementarity conditions, which are not explained herein. Hence, the estimation is 

a linear regression function can be defined as  
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D(J) =cᾳd − ᾱd
e

dfg

(Jd − J) + X……………………………(9) 

 

Therefore, the regression expansion of SVM is developed; where it is 

determined as a linear combination of the training patterns vi and b can be discovered 

by utilizing the primary constraints. For |g(u)| ≤ ε  Lagrange multipliers might be 

non-zero for every examples inside the ε-tube and these remaining coefficients are 

called support vectors. 
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CHAPTER 3 

 
METHODOLOGY 

 
 

3.1 Study Area 

 

  The area of study is situated in Perak, which is located on the west coast of 

the Peninsular of Malaysia. The state has an estimated region of 21,000 km2 with 187 

km of coastline. The weather in the area is warm and sunny during the day, while it 

is cool at night for the entire year, with infrequent rain usually in the evenings. The 

surrounding temperature is genuinely steady, from 23 oC to 33 oC, and moistness 

frequently more than 82.3%. Rainfall per annum is measured at 3,218 mm. The 

chosen site is a slope within the ground of Universiti Teknologi PETRONAS (UTP) 

near the Block 5 area. The chosen area is selected due to its strategic location which 

is easily reachable and open to rainfall. Figure 3.1 shows the location of the site in 

the Perak Map. The red circle indicates the site location. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Location of the site in the Perak Map 

. 
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The chosen slope has a height of about 11 meters and is 20 meters long, with 

an angle of 33o to the horizontal. The surface of the surrounding of the instrument is 

turfed, and free from inception and interruption. Figure 3.2 shows an image from 

Google Earth where it demonstrates the location of the instrument installed. 

Undisturbed soil sample was gathered to a 2-metres depth from the surface of the 

slope and the fundamental properties of the soil were ascertained.  Based on United 

States Department of Agriculture (USDA) soil classification system, general 

behaviors of the soils, from three distinctive boreholes, demonstrates the content of 

top 1 meter of the soil is sandy clay, and clay from that point onwards. The 

permeability of the soil at main 1 meter is 2.78 x 10-5 cm/s. 

 

 

 

Figure 3.2: Location of Study Area and Instrument Installed 
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3.2 Instrumentation 

 

Transducers were fitted in the tensiometers to empower automated logging 

and installed at the location. The tensiometers were installed at the crest at 0.6 meters 

depth (Crest A) and at a depth of 1.5 meters (Crest B), and another set at a mid-slope 

of 0.6 meters and 1.5 meters for Toe A and Toe B respectively. At the same place, 

the tensiometers were spaced 0.5 meters apart. Then, to measure rainfall events, it is 

necessary to set up a tipping bucket rain gauge at the toe. All instruments are then 

attached with data loggers. At a resolution of 1-hour intervals, pore-water pressure 

(PWP) and rainfall data were gathered. Though redundant information may be 

gathered amid relatively long periods drought; nevertheless, this high resolution is 

expected to viably estimate the PWP behavior during and instantly after rainfall 

occasions. The reason is because these are the times when PWP might hit the levels 

than can bring about problems in a slope. Figure 3.3 illustrates the installed 

instrument at the site. 

 

        Figure 3.3: The instrument on the site 
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3.3 Model Development 

 

 Advancement of the SVR model needs some basic thought with respect to the 

selection of input combination and the privilege optimal meta-parameters. The same 

data and input features will be utilized for the comparison of the SVR model’s 

development. 

 

 

3.3.1 Data Collection 

 

Rainfall and PWP data were collected for 1 hour-interval for a period of 1 

month. The data is specifically from 1st March 2015, at 0000 hours until 31st March 

2015 at 2359 hours. They are collected from the data logger at the site. The data for 

March 2015 is chosen because the instruments at that period were still in good 

condition. All the errors are to be avoided because it will somehow affect the 

performance of the model in predicting the correct value of PWP. Toe A data is 

chosen because the objective is to model the response of PWP and this can be 

simulated in a better way with a set of data that contains as much fluctuation of PWP 

as possible, and these fluctuations are much called at shallow depth. 

 

 

3.3.2 Data Reprocessing 

 

 From the data that have been collected from the site, all 744 data have been 

firstly processed to get the statistics of the data. The statistics that will be used in 

developing the model are: 

 

1) N – Number of data points 

2) Min – Minimum value of the data  

3) Max – Maximum value of the data  

4) SM – Sample Mean  

5) SD – Sample Standard Deviation 

6) SK – Skewness 

7) VAR – Variance 
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The statistical value is important in order to see the behavior of the data, 

which is significant in determining the division of the data for training and testing 

data set. All the critical points such as minimum and maximum data need to be 

categorized in training data set in order to train the model at critical part. 

Furthermore, more data is also needed in the training data set. Based on the 

reprocessing data, 70% will be chosen as Training Data set and 30% will be chosen 

as Testing Data set. Then, these data sets are initially normalized between 0 and 1, 

which is a process called data scaling. It is a standard technique utilized in data 

mining and modeling to avoid points with huge variances that dominate the results to 

the detriment of other points with moderately much smaller variance; this guarantee 

maintenance of input data sparsity. Moreover, down scaling the features will save 

computational time since SVM kernel includes inner products of the features. 

 

 

3.3.3 Model Input Structure 

 

 One of the very important stages in model development is model input 

selection. Diverse choice of inputs will give distinctive output and precision of the 

model. From Mustafa et al. (2002) The Radial Basis Function (RBF) ANN model of 

PWP for modelling responses to rainfall was produced as a function present -day and 

two antecedent conditions of rainfall (rt, rt-1, rt-2) and three antecedent conditions of 

PWP (Ut-1, Ut-2, Ut-3). These input components were developed using detailed cross 

connection analysis between PWP and rainfall, and auto correlation analysis of PWP. 

In this review, the same input features will be exploited in one of the models. These 

features are more disposed to PWP and area some of the time portrayed herein as the 

‘PWP-inclined model’. The input model is expressed as in Equation (10). 

 

                Ut= fSVR  (U(t-1,t-2,t-3) )  ,(r(t,t-a,t-2) )……………..(10) 
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Referring to (Babangida et al. 2016), for rainfall antecedent records, 

expanding input elements to higher antecedent record resulted a small mean square 

error (MSE). Two antecedent records show a slight positive change with addition of 

input elements from higher antecedent records. Addition of excessively numerous 

rainfall features will not give any significant affect to the result, the best model 

features are the present time and until two antecedent records of rainfall. Moreover, 

addition of antecedent records will add to the complexity of the model and 

computational weight with evidently no huge positive change in the precision, 

features from one to three lag records could provide better outcomes. 

 

 

3.3.4 IMPLEMENTATION OF SVR 

 
SVR implementation for cases of nonlinear, the most vital step is the choice 

of appropriate kernel function. For time arrangement, the radial basis function (RBF) 

kernel has been the best. The basis kernels’ comparison was done by CRONE 

(Crone, Lessman, & Pietsch, 2006) in what they called “Exhausted Empirical 

Comparison”. They came to a conclusion that RBF is the selected approach on most 

time series. Among the basic kernels, RBF ends up giving better outcomes in time 

series modeling of rainfall and resulting runoff (Dibike, Velickov, Solomatine, & 

Abbott, 2001). (C.-W.Hsu, Chang, & Lin, 2003) in their manual, regarding the use of 

SVM, encouraged the utilization of RBF, thus in this work of time series of PWP and 

rainfall, RBF will be used. 

 

 Optimization of one parameter of RBF Kernels needs to be done alongside 

the parameters of SVR, which sums up to a total of three parameters which are 

1. Kernel Parameters (γ) 

2. Cost Parameters (C) 

3. Radius of the error insensitive tube (ε) 

 

 These parameters are optimized to have a model with the best performance. 

They are mutually dependent and therefore are optimized simultaneously. The 

selection of cost parameters (C) and the radius of the error insensitive tube (ε) will be 

hugely dependent on the behaviors of the dataset, for instance, a noisy data suits 
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better with a greater value of ε. Several techniques exist to optimize these 

parameters, some of which are largely related not only on the optimization of the 

parameters but the minimization in the computational time as well. However, try and 

error method search is utilized in this project in finding the optimal parameters 

 

 

3.3.5 PERFORMANCE MEASURES 

 
Two measures will be considered to develop model in this study; 

a) The coefficient of determinant (R2) – which will show how good the model 

fits the data (Indicate 1 as perfect fit and 0 indicate poor fit) 

b) Mean Square Error (MSE) – which smaller values are desired 

c) No of Support Vector – which lower value than training data set are desired. 
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3.4 PROJECT MILESTONE AND GANTT CHART 
 

       Table 3.1: Project Milestone 

Activity Dateline Actual 
Submission Percentage 

Topic Selection 26th May 2016 26th May 2016 - 

Extended 
Proposal 23th June 2016 23th June 2016 10% 

Proposal 
Defenses 14th July 2016 14th July 2016 20% 

Interim Draft 
Report 11th Aug2016 11th Aug 2016 40% 

Interim Report 18th Aug 2016 18th Aug 2016 50% 

Progress Report 25th Oct 2016 25th Oct 2016 60% 

Pre-SEDEX 16th Nov 2016 16th Nov 2016 70% 

Final Report 30th Nov 2016 30th Nov 2016 80% 

Technical 
Report 07th Dec 2016 07th Dec 2016 85% 

Final Viva 13st Dec 2016 13st Dec 2016 90% 

Hardbound 
Thesis 09th Jan 2017 09th Jan 2017 100% 
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Table 3.2: Gantt chart for FYP1 and FYP2 
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CHAPTER 4 
 

 RESULT AND DISCUSSION 
 

 

4.1 DATA STATISTICAL  

 
 A month of 1-hour interval data from 1st March 2015 until 31st March 2015 

was collected and analyzed to see the behavior of the data. Total number of data is 

744, and the analysis of the data is shown in Table 4.1 below; 

 

Table 4.1: Descriptive Statistics of PWP and Rainfall 

 

N- No of Data, Min-Minimum, Max-Maximum, SM-Sample Mean, SD- Sample 

Standard Deviation, SK-Skewness, VAR-Variance 

 

Data Statistics Pore Water Pressure (kPa) Rainfall (mm) 

N 744 744 

Min -18.60 0.00 

Max -4.10 26.50 

SM -9.93 0.10 

SD 2.27 1.32 

SK 0.08 14.50 

VAR 5.16 1.74 
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Figure 4.1: Graph of PWP, Rainfall VS Time 
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 Based on the statistical data conducted, it is shown that PWP and rainfall has 

quite a huge range of the minimum and maximum value. Hence, this clearly proves 

that normalization of data is necessary in order to scale down the range and assist the 

software to process them in the model.  

 

 The variance, σ2, is a measure of how far each value of the data set is from 

the mean. The statistical data obtained above demonstrates that the data set does not 

have a high value of variance, which shows that it is good enough to be used for 

modelling purpose. The variance values for rainfall and pore-water pressure of the 

data set are 5.16 kPa and 1.74 mm respectively, while the Sample Mean values are -

9.93 kPa for PWP and 0.10 mm for rainfall. 

 

 Based on Figure 4.1, we can see that the data critical point for both rainfall 

and PWP are towards the end part of the time. This is significant to understand for 

the selection of training and testing data set. The data will be partitioned into the two 

aforementioned sets with a 70:30 ratio. It is determined that the training data set will 

be covered from the top of the data, and the rest will be the testing data set. The 

reason is because these data covered by the training data set are the ones that have 

high value, which is a good characteristic to be used for training and ultimately 

expected to produce a good model performance. Therefore, from 744 data, training 

data set will contain the first 521 data while training data set will have the other 223 

data. 

 

 Generally, it is known that groundwater is not static, as it is a piece of a 

dynamic stream framework. It moves into and through aquifers from regions of high 

elevation of water-level to areas that have low elevation of the water-level. The 

fluctuation of the groundwater level is because of the changes of aquifer storage 

include either the addition or extraction of water from the aquifer, both through 

means of nature and involvement of human. Naturally, the groundwater recharge 

happens where the earth materials are adequately permeable to permit water to move 

in a descending manner through them. It happens most effortlessly in unconfined 

aquifers where water given by precipitation moves downward from land surface until 

the water comes to the water table. 
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 The water table is the limit between the unsaturated areas below it where 

basically all of the interconnected pore spaces are loaded with water. When recharge 

happens in an unconfined aquifer, the water table ascents to a higher elevation, much 

like water level in bucket that rise when there is addition of water to it. One inch of 

precipitation moving underground to the water table will bring about a significantly 

more than an inch rise to the groundwater level. This happens due to the volume of 

aquifer occupied mostly by rock, sand or other solid geologic material, while water 

can only fill in the void or pore spaces between them. The most critical changes of 

water level that happen during the springtime of the year is because of the occurrence 

of recharge, which is when precipitation is at its highest and the rates of evaporation 

and plant usage are low. This fluctuation, thus, will be good for the model to make 

predictions 

 

 

4.2 NORMALIZATION OF RAW DATA  

 

 One of the fundamental steps to the development of the model is to scale the 

data into an appropriate range, in order to maintain a strategic distance from huge 

values ruling over the smaller ones. The data will be scaled in a range of -1 and 1. It 

is also required to decide on the accuracy measurement to be used in determining the 

performance of the model. The normalization process of the data is expressed as in 

Equation (11) 

 

!" = 2	&	 '(" − (*+,-((*/0 − (*+,)
− 1………………………(11) 

 

Where  

!4 = normalized or transformed data set 

 (p = original data set such that 1 ≤p≤P 

P = number of data 

(min = minimum value of original data sets 

(max = maximum value of original data sets 
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Table 4.2: Descriptive Statistics of Normalized PWP and Rainfall in Training and 
Testing Sets 

 
 

 

 

 

 

 

 

 

 

 

 

N-No of Data, Min-Minimum, Max-Maximum, SM-Sample Mean, SD- Sample 

Standard Deviation, SK-Skewness, VAR-Variance 

 

 

4.3 MODELLING AND PERFORMANCE MEASURES   

 

 Modelling in MATLAB software requires optimization of three parameters so 

as to achieve the best performance of the model. The parameters are the Kernel 

Parameter (γ), Cost Parameter (C) and the Radius of the Error Intensive Tube (ε). 

The parameters are dependent to each other, thus making it necessary for them to be 

optimized simultaneously. In this study, the parameters are optimized with the trial-

and-error approach, keeping in mind that the selection of C and ε values will be 

largely dependent on the behaviors of the data set (Babangida, 2016).  

 

 The parameter C checks the smoothness or flatness of the approximation 

function. A smaller value of C yields a learning machine with poor approximation 

Data Statistics 

Testing Sets (70%) Training Sets (30%) 

Rainfall 

(mm) 

Pore Water 

Pressure (kPa) 

Rainfall 

(mm) 

Pore Water 

Pressure (kPa) 

N 521 521 220 220 

Min 0.00 0.00 0.02 0.40 

Max 1.00 1.00 .0.77 1.00 

SM 1.00 0.44 0.39 0.99 

SD 0.05 0.17 0.12 0.05 

SK -17.63 -0.20 -0.14 -8.70 

VAR 0.00 0.03 0.02 0.00 
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due to under fitting of training data, whereas a greater C-value will over fit the 

training data and sets its objective to minimize only the empirical risk, making way 

for more complex learning. The parameter ε is related to the smoothening process of 

the complexity of the estimation function and monitors the width of the ε-insensitive 

region used for fitting the training dataset. It affects the amount of support vectors, 

and both the approximation function’s complexity and ability of generalizing. 

Besides that, ε also monitors the accuracy of the approximation function, as smaller 

values will cause more quantity of support vectors.  

 

 Low values of Mean Square Error (MSE) as shown in Equation 12 are 

necessary, as they demonstrate the closeness of the model estimations to the 

observed values. On the contrary, a high value near to unity is required when 

coefficient of determinant, R2, is used as expressed in Equation 13. Both of these 

values illustrate the relationship strength between the predicted and observed values. 

 

567 =	 189(:;+ − :+)<
,

+
……………… . . . … . …… (12)			 

>< = 	∑(:+ − :@+)
< − ∑(:;+ − :+)<

∑(:+ − :@+)<
……………… . . . . … . (13)	 

 

Where 

ũ and u = values of observed and predicted PWP respectively 

ū = mean of the observation values 

n = number of observations 

k = number of model parameters 

 

 A few tests have been done in the software. Table 4.3 shows some of the 

trial-and-error process that has been conducted. The table indicates that the most 

optimum value for the parameters is 2, 3 and 0.009 for C, γ and ε respectively. The 

Mean Squared Error (MSE) obtained for the data is 0.0035, which is a great result as 

it is approaching to 0. Furthermore, the Coefficient of Determinant, R2, obtained is 

0.8975, which is close and approaching to 1. The outcomes of the model show that 

the model is great enough to be used for the prediction of PWP and rainfall.  
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Another measurement made in the model performance is the number of 

Support Vector (nSV). This measurement is dependent on the amount of slack 

variables that are permitted and also depends on the data distribution. Large number 

of slack will make large amount of support vectors, and vice versa. Some data are not 

possible to have a high level of accuracy, thus a search for the best fit has to be done. 

The result of the model is 329 nSV from 521 data in the training data set is produced, 

which is approximately 63% of the data set. 

 

Table 4.3: List of some try and error that have been done 

Cost 

Parameter 

(C) 

Kernel 

Parameter 

(γ) 

Radius of 

the Error 

Intensive 

Tube (ε) 

Mean 

Squared 

Error 

(MSE) 

Squared 

Correlation 

Coefficient 

(R2) 

No of 

Support 

Vector 

(nSV) 

0 3 0.009 ERROR ERROR ERROR 

1 3 0.009 0.0037 0.8929 327 

2 3 0.009 0.0035 0.8975 329 

3 3 0.009 0.0036 0.8952 330 

4 3 0.009 0.0037 0.8925 331 

2 0 0.009 0.0039 0.8844 331 

2 1 0.009 0.0040 0.8823 323 

2 2 0.009 0.0037 0.8931 322 

2 3 0.009 0.0035 0.8976 329 

2 4 0.009 0.0037 0.8925 329 

2 3 1.000 0.0408 -8.6e-16 0 

2 3 0.900 0.0408 -8.6e-16 0 

2 3 0.090 0.0038 0.8906 70 

2 3 0.0009 0.0037 0.8930 498 

 

Figure 4.2 shows the extent of argument between observed and predicted 

data. The line of the graph shows the best fit line. Most of the data falls in the best fit 

area, which indicates that the data are predicted well in the model. 
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 Figure 4.3 illustrates the estimated PWP using SVR model and the 

corresponding observed data recorded of PWP. It demonstrates that the predicted 

PWP has the same trend with the observed PWP, which means that Radial Basis 

Kernel Function based model is excellent for the prediction of PWP. However, there 

are a few extreme points that are difficult to be predicted accurately by the model due 

to influences from rainfall and might also be because of temperature effect as well. 
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Figure 4.2: Extent of argument between observed and predicted data. 

Extent of argument between observed and predicted data. 
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Figure 4.3: Predicted PWP using SVR model and corresponding observed recorded of PWP: 
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CHAPTER 5 

 

CONCLUSION AND RECOMMANDATION 
 

 

 Pore-water pressure (PWP) is the pressure applied on its surrounding by 

water held in voids in rock or soil. It is necessary to understand the pore-water 

pressure responses to rainfall for the analysis of hydrology. Previously, field 

instrument is used to get the information on pore-water pressure. This method, 

however, is tedious. Hence, this study will be a more appropriate and convenient 

approach to predict pore-water pressure. 

 

 Predicting PWP with Radial Basis Kernel Function of Support Vector 

Machine (SVM) is a good technique to be used. The outcome of the model from 

MATLAB software proves that the model can predict the pore-water pressure well 

enough by giving a good performance. However, some points are not predicted well 

in the model, due to other uncontrolled factors like surrounding temperature. On the 

bright side, most of the data has been predicted excellently in the model, which 

dominates the overall result and can be concluded that the objectives are achieved.  

 

 As recommendation for future work, it is encouraged to use more data for the 

modelling process. The meaning of this is to collect the data of 30-minutes interval, 

instead of 1-hour interval, for a period of 3 months, rather than only 1 month. The 

reason behind this is so that the model will have more data to be processed in order 

to obtain a better prediction result. Other than that, other criteria need to be 

considered as well, such as the surrounding temperature, as the pore-water pressure 

is not only affected by rainfall but these other factors as well.   
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APPENDICES 
 

 

APPENDIX A: MATLAB CODING 

 

 
 
>> model=svmtrain1(TrainingTarget1,TrainingData1,'-s 3 -t 2 -c 2 -g 3 -p 0.009') 
*. 
WARNING: using -h 0 may be faster 
* 
optimization finished, #iter = 1145 
nu = 0.595511 
obj = -26.273644, rho = -0.435655 
nSV = 329, nBSV = 296 
 
model =  
 
    Parameters: [5x1 double] 
      nr_class: 2 
       totalSV: 329 
           rho: -0.4357 
         Label: [] 
    sv_indices: [329x1 double] 
         ProbA: [] 
         ProbB: [] 
           nSV: [] 
       sv_coef: [329x1 double] 
           SVs: [329x6 double] 
 
>> [predicted_label,accuracy,prob_estimates]=svmpredict 
(TestingTarget1,TestingData1,model); 
Mean squared error = 0.00353684 (regression) 
Squared correlation coefficient = 0.897592 (regression) 
 


