Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, dissertation, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.

CHARACTERIZATION AND PROPERTIES INVESTIGATION OF AUTOMOTIVE STEEL EXHAUST PIPING FAILURE

KHAIRDDIN, MUHAMAD FIKRI (2017) CHARACTERIZATION AND PROPERTIES INVESTIGATION OF AUTOMOTIVE STEEL EXHAUST PIPING FAILURE. IRC, Universiti Teknologi PETRONAS.

[img]
Preview
PDF
Download (2229Kb) | Preview

Abstract

Incident involving failures of steel exhaust elbow pipe connected to a muffler of Proton Persona investigated carrying raw gas has caused serious disruption within the system. This study looks at developing useful approaches and strategies to forecast failure of exhaust piping system for automotive applications. Existing design, manufacturing process and exhaust pipe material as well as operating condition have been reviewed and analyzed using Non-Destructive techniques (NDT) and Destructive techniques (DT). Vickers hardness test conducted using 100kgf load on the failed materials indicated the exhaust pipe fulfill the tensile strength requirement based on industry specification to carry out intended function. Metallographic analysis conducted using optical microscope as well as Scanning Electron Microscope (SEM) at various magnifications indicated multiple evidences of internal corrosion and micro-fractures on steel exhaust pipe surface. Besides, computational Fluid Dynamics (CFD) results showed that the elbow of the exhaust pipe have been exposed to an extreme exhaust gas flow gradient. The high risk elbow area exposed to high velocity, pressure and temperature simulated by Computational Fluid Dynamics (CFD) simulation coherence to the leakage area of the exhaust pipe. Root Cause Analysis (RCA) showed that phenomenon excessive thinning of steel pipe wall caused by erosion-corrosion mechanism exhaust pipe lead to the perforation of an exhaust pipe. Based on the data collected, it is suggested, proper process design of the product may be implemented during installation and fabrication of exhaust piping system, followed by revising and improving gas stream flow inside the exhaust pipe system as well as using corrosion inhibitor in order to avoid occurrence of same failure in future.

Item Type: Final Year Project
Academic Subject : Academic Department - Civil Engineering - Water and environment - Environmental - Solid waste
Subject: T Technology > TA Engineering (General). Civil engineering (General)
Divisions: Engineering > Civil
Depositing User: Ahmad Suhairi Mohamed Lazim
Date Deposited: 01 Aug 2018 09:57
Last Modified: 01 Aug 2018 09:57
URI: http://utpedia.utp.edu.my/id/eprint/17900

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...