Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, dissertation, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.

Effect of Single Corroded Defect Geometry on the Burst Capacity of Grooved Corroded Pipeline Subjected to Internal Pressure

Mohd Khairuddin, Muhammad Amirul Izzwan (2018) Effect of Single Corroded Defect Geometry on the Burst Capacity of Grooved Corroded Pipeline Subjected to Internal Pressure. IRC, Universiti Teknologi PETRONAS. (Submitted)

[img] PDF
Restricted to Registered users only

Download (1087Kb)

Abstract

Pipeline corrosion causes substancial losses to the economy as well as human life. This project assessed the API 5L X52 steel grade pipeline using Finite Element Analysis and the results were compared with the industrial conventional code DNV-RP-F101. The conventional had been proved as a comprehensive method in determining failure pressure for pipeline subjected to internal pressure and longitudinal comprehensive stress in the presence of single defect, interacting defect and complex shape defect. However, the interaction between single defect and circumferetial groove defect is uncertain. Two types of defects were analysed in this study, namely circumerential groove defect and single defect (assessed as rectangular shape). There are two approaches according to DNV-RP-F101 to be used in determining the failure pressure of pipeline which are calibrated safety factor approach (Part A) and also allowable stress method (Part B). ANSYS Mechanical APDL software was used to perform FEA and validation with previous research shows 10.54 % difference. Since DNV code does not consider the circumferential length of the defect, the results of failure pressure due to the interaction of the two defects show high diference with depth 0.8. The failure pressure obtained from FEA is lower than DNV code. Therefore then can be concluded, DNV code are not comprehensive for determining the failure pressure of interacting defects comprising of circumferential groove and single defect.

Item Type: Final Year Project
Academic Subject : Academic Department - Mechanical Engineering - Materials - Corrosion engineering - Degradation of materials due to temperature, stress and environment
Subject: UNSPECIFIED
Divisions: Engineering > Mechanical
Depositing User: Ahmad Suhairi Mohamed Lazim
Date Deposited: 13 Dec 2019 09:18
Last Modified: 13 Dec 2019 09:18
URI: http://utpedia.utp.edu.my/id/eprint/20063

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...