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ABSTRACT 

The success of foam injection as a displacing fluid in the porous media mainly depends 

on the stability of the foam. However, foam stability tends to decrease once exposed to 

crude oil and reservoir conditions. In the last few decades, research on nanoparticles as 

a foam stabilizer has shown favourable results, however, for field-scale application the 

nanoparticles for foam stabilization would have to be commercially feasible thus 

require an inexpensive alternative source that can be produced in large quantity. Coal 

fly ash is a by-product of burning coal for electricity in Malaysia, thus can serve as a 

source for low-cost large-scale production of nanoparticles. A chemical synthesis 

technique is used to synthesize nanoparticles from the coal fly ash as the technique is 

proven successful in producing much smaller nanoparticles capable of effective 

movement in the narrow lamellae space of the gas-liquid interface as compared to the 

larger-sized particles. The diameter size of FANP1 (Synthesized Fly Ash 

Nanoparticles) was between 10 nm to 20 nm whereas, the diameter size of FANP2 

(Synthesized Fly Ash Nanoparticles coated with MFOMAX) was 40 nm to 60 nm. The 

main composition of both nanoparticles was SiO2, Al2O3 and Na2SO4. Static foam 

stability and lamella number calculation were done as a screening process for core 

flooding experiment. In both experiment, foam with FANP1 nanoparticles has the 

highest foam stability compared to coated FANP2 nanoparticles and commercial 

nanoparticles, R1 (50% of SiO2 & 50% of Al2O3) and R2 (33.3% SiO2 & 66.7% of 

Al2O3). The core flooding experiment, the foam with FANP1 nanoparticles produced 

the highest mobility reduction factor compared to other nanoparticles. However, foam 

with R1 nanoparticles produced higher oil recovery than FANP1 and FANP2 

nanoparticles and between the two synthesized nanoparticles, FANP2 produced higher 

oil recovery than FANP1 nanoparticles even though FANP1 gives better MRF value. 

The sensitivity analysis is done to determine the factor governing oil recovery and it 

indicates that surfactant adsorption with an optimum foam stability has a major 

influence on increasing oil recovery compared to stability of the foam. 



viii 

ABSTRAK

 

Kejayaan mengunakan suntikan busa sebagai cecair yang mengalir ke dalam media 

berpori bergantung pada kestabilan busa. Namun begitu, kestabilan busa akan merosot 

masa busa didedah dengan minyak mentah dan keadaan takungan. Dalam beberapa 

dekad terakhir, penyelidikan tentang mengunakan nanopartikel sebagai penstabil busa 

menunjukkan keputusan yang memberangsangkan, namun begitu, kegunaan 

nanopartikel sebagai penstabilan busa secara skala padang akan memerlukan sumber 

alternatif yang murah dan senang dihasilkan dalam jumlah yang besar. Abu arang batu 

merupakan produk sampingan daripada pembakaran arang batu untuk penjanaan 

elektrik dalam negara Malaysia, boleh dijadikan sebagai sumber pengeluaran 

nanopartikel secara berskala besar disebabkan kos rendah. Nanopartikel boleh 

disintesiskan dari abu arang batu mengunakan prosedur sintesis kimia dan prosedur 

berjaya menghasilkan nanopartikel yang menpunyai saiz yang lebih kecil serta mampu 

lebih berkesan bergerak dalam ruang lamellae yang sempit antara muka gas-cecair 

berbanding dengan nanopartikel yang bersaiz lebih besar. Saiz diameter FANP1 (Abu 

arang batu yang disintesiskan) adalah antara 10nm hingga 20nm, manakal saiz diameter 

FANP2 (Abu arang batu yang disintesis dengan campuran MFOMAX surfactant) 

adalah antara 40nm hingga 60nm. FANP1 dan FANP2 yang disintesiskan hanya 

mengandungi SiO2, Al2O3 dan Na2SO4. Eksperimen kestabilan buih dan pengiraan 

lamela dilakukan untuk proses penyaringan nanopartikel untuk eksperimen suntikan 

buih. Dalam kedua-dua eksperimen tersebut, nanopartikel FANP1 mempunyai 

kestabilan busa tertinggi berbanding dengan nanopartikel FANP2 bersalut dan 

nanopartikel komersial, R1 (50% of SiO2 & 50% of Al2O3) atau R2 (33.3% SiO2 & 

66.7% of Al2O3). Dalam eksperimen suntikan buih, buih yang mengandungi 

nanopartikel FANP1 menghasilkan faktor pengurangan mobiliti tertinggi berbanding 

dengan nanopartikel lain. Namum begitu, busa yang mengandungi nanopartikel R1 

menghasilkan minyak yang tertinggi berbanding dengan busa yang mengandungi 
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nanopartikel FANP1 atau FANP2. Tambahan pula, antara dua nanopartikel yang 

disintesis daripada abu arang batu, FANP2 menghasilkan lebih banyak minyak daripada 

busa yang mengandungi nanopartikel FANP1 walaupun busa yang mengandungi 

FANP1 mempunyai kestabilan busa yang tertinggi. Analisis kepekaan dilakukan untuk 

menentukan faktor utama suntikan buih untuk penghasilan minyak dan simulasi 

tersebut telah menunjukkan bahawa penjerapan surfaktan oleh batu takungan 

mempunyai pengaruh besar terhadap faktor penghasilan minyak utama berbanding 

dengan kestabilan busa. 

  



x 

In compliance with the terms of the Copyright Act 1987 and the IP Policy of the 

university, the copyright of this thesis has been reassigned by the author to the legal 

entity of the university, 

 

Institute of Technology PETRONAS Sdn Bhd. 

 

Due acknowledgement shall always be made of the use of any material contained 

in, or derived from, this thesis. 

 

© Phong Guan Ming, 2021 

Institute of Technology PETRONAS Sdn Bhd 

All rights reserved. 

  



xi 

TABLE OF CONTENT 

ABSTRACT ................................................................................................................. vii 

ABSTRAK ..................................................................................................................viii 

LIST OF FIGURES .................................................................................................... xiv 

LIST OF TABLES ....................................................................................................... xv 

LIST OF ABBREVIATIONS ..................................................................................... xvi 

LIST OF SYMBOLS ................................................................................................. xvii 

CHAPTER 1 INTRODUCTION ................................................................................... 1 

1.1 Background Study ............................................................................................. 1 

1.2 Problem Statement ............................................................................................. 3 

1.3 Research Objectives........................................................................................... 4 

1.4 Significance of the Research ............................................................................. 4 

1.5 Scope of Study ................................................................................................... 5 

1.6 Organization of the Thesis ................................................................................. 5 

CHAPTER 2 LITERATURE REVIEW ........................................................................ 7 

2.1 Chapter Overview .............................................................................................. 7 

2.2 Foam Fundamental ............................................................................................ 7 

2.2.1 Foam Definition .................................................................................... 8 

2.2.2 How is Foam Formed? .......................................................................... 8 

2.2.3 Foam Parameters ................................................................................... 9 

2.3 Foam in Porous Media for Enhanced Oil Recovery (EOR) ............................ 11 

2.3.1 Effect of Foam Parameters on Foam Stability .................................... 12 

2.3.1.1 Capillary Suction Effect ........................................................... 12 

2.3.1.2 Gibbs Surface Elasticity and Marangoni Theory ..................... 14 

2.3.1.3 Disjoining Pressure .................................................................. 16 

2.3.1.4 Gravity Drainage ...................................................................... 17 

2.3.2 Effect of External Parameters on Foam Stability ................................ 18 

2.3.3 Foam Generation Mechanism in the Porous Media ............................ 26 

2.3.3.1 Leave Behind ........................................................................... 26 

2.3.3.2 Lamella-division ...................................................................... 27 



xii 

2.3.3.3 Snap-off.................................................................................... 28 

2.3.3.4 Neighbour-induced bubble pinch-off ....................................... 29 

2.3.4 Mechanism of Foam Destruction in Porous Media ............................. 30 

2.4 Nanoparticles as a Foam Stabilizer in FAWAG Injection .............................. 32 

2.4.1 Mechanism of Nanoparticles as a Foam Stabilizer in FAWAG 

Injection ........................................................................................... 33 

2.4.1.1 High Particle Detachment Energy ........................................... 33 

2.4.1.2 Particle Arrangement During Film Drainage ........................... 34 

2.4.1.3 Reduced Capillary Pressure ..................................................... 35 

2.4.1.4 Maximum Capillary Pressure of Foam Coalescence ............... 38 

2.4.2 Effect of Nanoparticles on Foam Stability Against External 

Parameters ........................................................................................ 39 

2.4.3 Influence of Nanoparticle’s Parameters on Stability of the foam ....... 42 

2.5 Nanoparticles Assisted Foam Injection Using Fly Ash Nanoparticles ............ 47 

2.6 Chapter Summary ............................................................................................ 50 

CHAPTER 3 MATERIALS METHODOLOGY ........................................................ 51 

3.1 Chapter Overview ............................................................................................ 51 

3.2 Chemicals and Materials.................................................................................. 53 

3.3 Synthesis of Nanoparticles from Coal Fly Ash using Chemical Treatment .... 56 

3.3.1 Synthesis of FANP1 Nanoparticles using Chemical Treatment ......... 57 

3.3.2 Synthesis of FANP2 Nanoparticles using Chemical Treatment ......... 58 

3.4 Preparation of Foaming Solution ..................................................................... 60 

3.5 Characterization of Nanoparticles and Coal Fly Ash ...................................... 62 

3.5.1 Nanoparticle’s Size Measurement ....................................................... 63 

3.5.2 Nanoparticle’s Composition Analysis ................................................. 64 

3.5.3 Sedimentation of Synthesized Nanoparticles Experiment .................. 65 

3.6 Interfacial Tension (IFT) Measurement........................................................... 66 

3.7 Static Foam Stability Measurement ................................................................. 68 

3.8 Core Flooding Experiment .............................................................................. 69 

3.8.1 Core Cleaning Methodology ............................................................... 69 

3.8.2 Porosity and Permeability of Berea Core Measurement ..................... 70 

3.8.3 Foam Injection Experiment ................................................................. 71 



xiii 

3.9 History Matching and Sensitivity Analysis ..................................................... 72 

3.10 Chapter Summary .......................................................................................... 74 

CHAPTER 4 RESULT AND DISCUSSION .............................................................. 75 

4.1 Chapter Overview ............................................................................................ 75 

4.2 Nanoparticle’s Size Measurement ................................................................... 76 

4.3 Nanoparticle’s Composition Analysis Study ................................................... 79 

4.4 Sedimentation Experiment of Synthesized Nanoparticles and Coal Fly Ash .. 84 

4.5 Interfacial Tension (IFT) Measurement........................................................... 86 

4.6 Static Foam Stability Measurement ................................................................. 89 

4.7 Study of Foam and Oil Interaction .................................................................. 93 

4.8 Foamability of Nanoparticle Assisted Foam Injection Measurement ............. 95 

4.9 Core Flooding Experiment .............................................................................. 96 

4.9.1 Mobility Reduction Factor (MRF) ...................................................... 97 

4.9.2 Oil Produced by SAG Injection Measurement .................................. 101 

4.10 History Matching ......................................................................................... 103 

4.11 Sensitivity Analysis ..................................................................................... 104 

4.11.1 Forecasting of Oil Recovery Study using Surfactant Adsorption by 

Reservoir Rock .............................................................................. 105 

4.11.2 Forecasting of Oil Recovery Study using Half-life of Foam Study 106 

4.12 Chapter Summary ........................................................................................ 107 

CHAPTER 5 CONCLUSION AND RECOMMENDATION .................................. 108 

5.1 Conclusion ..................................................................................................... 108 

5.2 Recommendation ........................................................................................... 110 

APPENDIX A ............................................................................................................ 112 

  



xiv 

LIST OF FIGURES 

Figure 2.1: Schematic illustration of the liquid structure in the foam [42].................... 8 

Figure 3.1: Research methodology of the research ...................................................... 52 

Figure 3.2: Procedure of how nanoparticles are synthesized from coal fly ash .......... 57 

Figure 3.3: Methodology of Synthesized Nanoparticles FANP1 ................................ 58 

Figure 3.4: Methodology of Synthesized Nanoparticles FANP2 ................................ 59 

Figure 4.1: FESEM Image of CFA nanoparticles [176] .............................................. 76 

Figure 4.2: FESEM Image of FANP1 nanoparticles ................................................... 77 

Figure 4.3: FESEM Image of FANP2 nanoparticles ................................................... 77 

Figure 4.4: FESEM Image of SiO2 nanoparticles ........................................................ 78 

Figure 4.5: FESEM Image of Al2O3 nanoparticles ...................................................... 79 

Figure 4.6: XPS analysis of CFA, FANP1 and FANP2 nanoparticles ........................ 82 

Figure 4.7: Turbidity experiment for CFA, PFA and SFA nanoparticles .................... 85 

Figure 4.8: Interfacial tension of foam solution with different type of nanoparticles . 87 

Figure 4.9: ANOVA of the IFT measurement with different types and concentration 

of nanoparticles ............................................................................................................ 88 

Figure 4.10: Foam stability experiment with different type and concentration of 

nanoparticles ................................................................................................................ 90 

Figure 4.11: Nanoparticles and nanoparticles interaction energy profile generated by 

DLVO theory [223]...................................................................................................... 91 

Figure 4.12: Nanoparticles adsorption at the gas-liquid interface in form of (a) 

Monolayer (b) Close-packed monolayer or a bilayer (c) Network of particles 

aggregate at the gas-liquid interface [132] ................................................................... 93 

Figure 4.13: Foamability of foam with different concentration and type of 

nanoparticles ................................................................................................................ 96 

Figure 4.14: Pressure drops of foam injection and gas injection for different type of 

nanoparticles ................................................................................................................ 98 

Figure 4.15: MRF of SAG with different type of nanoparticles ................................ 100 

Figure 4.16: Oil recovery for different levels of surfactant adsorption rate .............. 105 

Figure 4.17: Oil recovery comparison with different stability of foam half-life ....... 106 



xv 

 

LIST OF TABLES 

Table 3.1: Chemicals and Materials............................................................................. 53 

Table 3.2: Composition of Baronia Composition of Baronia Crude Oil in term of 

Hydrocarbon Chain ...................................................................................................... 54 

Table 3.3: Composition of Berea sandstone ................................................................ 55 

Table 3.4: Properties of Nitrogen Gas ......................................................................... 55 

Table 4.1: Composition of nanoparticles using EDX analysis .................................... 81 

Table 4.2: XPS energy peak analysis on CFA nanoparticles....................................... 83 

Table 4.3: XPS energy peak analysis on FANP1 nanoparticles .................................. 83 

Table 4.4: XPS energy peak analysis on FANP2 nanoparticles .................................. 84 

Table 4.5: Nanoparticles stabilized foam interaction between oil and foam at 

concentration ratio of 80:20 ......................................................................................... 95 

Table 4.6: Properties of the Berea sandstone core ....................................................... 97 

Table 4.7: Oil recovery of foam injection with different types of nanoparticles ....... 102 

Table 4.8: Oil recovery comparison between experimental and simulation run ....... 104 

  



xvi 

LIST OF ABBREVIATIONS 

EOR Enhanced oil recovery 

FAWAG Foam assisted water alternating gas 

IFT Interfacial tension (N/m) 

CMC Critical micelle concentration 

MRF Mobility reduction factor  

SAG Surfactant alternating gas  

PV Pore volume 

API American Petroleum Institute 

FESEM Emission Scanning Electron Microscope 

EDX Energy-Dispersive X-ray Spectroscopy  

XPS X-ray Photoelectron Spectrometer 

NTU Nephelometric Turbidity Unit 

MMP Minimum Miscibility Pressure 

PSD Particle Size Distribution 

  



xvii 

LIST OF SYMBOLS 

AS Total surface area in liquid-gas interfaces in the foam 

A Area 

𝛽   Theoretical packing parameter 

𝜀𝐹   Specific foam surface of foam 

𝜀𝐺   Specific foam surface of gas 

𝜀𝐿  Specific foam surface of liquid 

EG Gibbs surface of elasticity 

FM Non-dimensional of mobility reduction factor 

𝑓𝑚𝑚𝑜𝑏  Reference mobility factor 

𝐹𝑠𝑢𝑟𝑓   Mobility reduction factor due to surfactant concentration 

𝐹𝑑𝑟𝑦   Mobility reduction factor due to water saturation 

𝐹𝑜𝑖𝑙   Mobility reduction factor due to oil saturation 

𝐹𝑐𝑎𝑝   Mobility reduction factor due to capillary number 

𝐹𝑞   Foam quality 

g Gravitational force 

H Foam height or foam volume 

ℎ𝑓   Thin film (lamellae) thickness 

k Permeability of the reservoir rock 

𝑘𝑟𝑤
0   End point of relative permeability of water 

𝑘𝑟𝑓   Foam relative permeability 

L Length of the core 

𝑁𝑐   Capillary number 

𝜋𝑡    Total force 

𝜋𝑠𝑡    Steric force 



xviii 

𝜋𝑑𝑖𝑠   Dispersion force 

𝜋𝑒𝑙   Electrostatic force 

∅  Porosity 

𝜎   Interfacial tension between gas and liquid 

𝜃   Contact angle 

𝜎𝑜𝑤  Interfacial tension between oil and water 

𝑃𝑐  Capillary pressure 

𝑝𝑐
∗  Critical capillary pressure 

𝑝𝑜  Reference pressure 

𝑝𝑒  Entry pressure 

𝑃𝑐
𝑚𝑎𝑥    Maximum capillary pressure 

𝑃𝑓𝑖𝑙𝑚   Film pressure 

𝑃𝑜   Reference Pressure 

𝑃𝑚𝑖𝑛   Minimum pressure drops required to mobilize one lamella 

𝑃𝑓𝑜𝑎𝑚   Pressure drop across the core during SAG injection 

𝑃𝑤𝑖𝑡ℎ𝑜𝑢𝑡ℎ 𝑓𝑜𝑎𝑚   Pressure drop across the core during gas injection 

𝜌𝑏𝑟𝑖𝑛𝑒  Density of the brine solution 

q Injection flow rate 

R Radius  

Soi Oil saturation 

Swirr Irreducible water saturation 

Sor Residual oil saturation 

𝑢𝑤  Velocity of water 

𝜇𝑤  Viscosity of water 

𝑢𝑒  Viscosity of the aqueous phase 

𝑢𝑔
𝑓

   Gas viscosity with foam 



xix 

𝑢𝑔  Viscosity of gas 

VF Foam volume 

VL Volume of liquid content 

VG Gas volume in the foam 

v Velocity 

W Work energy 

𝑊𝑟  Energy required to remove the particle from the interface of 

the foam 

𝑊𝑎𝑓𝑡𝑒𝑟    Weight of the core after submerging into the brine 

𝑊 𝑏𝑒𝑓𝑜𝑟𝑒    Weight of the core before submerging into the brine 

𝛾  Interfacial tension 

𝛾𝐺𝐿   Interfacial tension between gas and liquid 

𝛾𝑔𝑤  Interfacial tension of oil and water phase 

𝛾𝑜𝑔   Interfacial tension of oil and gas phase 

𝛾𝛼𝛽  Interfacial tension of two fluids 

𝛾𝑎𝑤   Interfacial tension of air and water 

z Height 

  





  

CHAPTER 1 

INTRODUCTION 

1.1 Background Study 

The production life cycle of a hydrocarbon reservoir consists of three stages which 

are primary recovery, secondary recovery, and enhanced oil recovery. In the primary 

recovery stage, the hydrocarbons are produced without any external stimulus due to 

sufficient reservoir pressure pushing the hydrocarbons upwards towards the surface. As 

a result of continuous production, the reservoir pressure will decline and consequently, 

reduce the hydrocarbons production. Therefore, to overcome this declining trend, a 

secondary injection technique is used to maintain the pressure. In enhanced oil 

recovery, some techniques are used to change the properties of the hydrocarbons such 

as gas injection, steam injection, surfactant injection, polymer injection and alkaline 

injection. Gas injection is one of the most widely used EOR method [1]–[4] due to its 

higher sweep efficiency than other EOR methods [5]. However, due to the 

characteristics of gas injection having lower density and viscosity than the crude oil, 

the process usually leads to viscous fingering, gravity segregation and early 

breakthrough [6]. Additionally, the heterogeneity of the reservoir will also contribute 

to poor volumetric sweep efficiency of oil production [7]. Therefore, to alleviate the 

drawbacks of gas injection, a combination of gas and chemical injection better known 

as foam assisted water alternating gas (FAWAG) injection or foam injection was 

proposed to reduce the effect of viscous fingering, gravity segregation and early 

breakthrough by increasing the displacing fluid viscosity and density [8], [9]. In other 

words, the foam injection will serve as a mobility control agent during gas injection 

[10], [11] by trapping the gas into the foaming solution. When the foam is formed, the 

gases are trapped in the foam and therefore, reduces the high mobility of the gas phase 

in the porous media [12], [13].  
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The concept of foam injection was first introduced in 1958 by Boud and Holbrook 

[14]. The foam is formed when the gas enters the layers of the foaming solutions that 

expands to trap the gas with a film of liquid membrane [15]. Normally, the shape of the 

foam is hexagonal which structure consists of a gas cells and the cell walls consist of 

lamellae that contains chemical solutions [16]. Maintaining the foam stability in the 

porous media under the condition of high temperature and high salinity conditions, 

however, is proven to be quite a challenging task. This is because the viscosity of the 

foaming solution tends to decrease with high temperature and enhances liquid drainage 

and increases gas diffusion in the foam lamellae [17], [18]. Secondly, liquid drainage 

leads to surfactants in the foaming solutions to start precipitate in the porous media 

when there is a high salinity condition. Precipitation is due to surfactants’ reaction with 

the multivalent ions from the brine solutions [19], [20]. In addition, surfactants also 

tend to undergo a higher rate of thermal degradation process with the rise in temperature 

owing to the fact that they mostly have low thermal stability [21]. Lastly, and most 

observed phenomena is, the foam stability decreases with the presence of oil in the 

porous media [22].  

The usage of nanoparticles in oil and gas industries is widely studied in EOR, 

drilling fluids, fracturing fluids and production application [23]–[26]. In EOR, 

nanoparticles are particularly useful for improving the foam stability. The adsorbed 

nanoparticles tend to reduce the direct contact between the fluids, therefore reducing 

the effect of liquid drainage, gas diffusion, and bubbles coarsening, which are the  

causes of foam instability [27]. Moreover, previous studies have shown that 

nanoparticles are less likely to suffer from the adsorption by reservoir rocks compared 

to surfactants [28]. Despite the advantages of nanoparticles, the application of 

nanoparticles for foam stabilization is deferred because a large amount of nanoparticles 

required to allow for field application on a commercial scale. [29]. Therefore, this study 

is focused on the: 1) economical production of nanomaterials from an abundant local 

waste material of coal fly ash, and 2) the effective use of the nanoparticles to stabilize 

foam in FAWAG injection for Malaysian field at the given reservoir conditions, and 3) 

the comparison between the produced and commercially available nanoparticles 

efficiency in stabilizing foam and increasing oil recovery. Coal fly ash is a waste 
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produced from the burning of coal and it can serve as a source of a large scale 

production of nanoparticles [30]–[32]. 

1.2 Problem Statement  

Foam assisted water alternating gas (FAWAG) injection is used to control gas 

mobility and to overcome the drawback of gas injection. However, a major concern 

about foam injection is the foam stability in the porous media. Therefore, the foam 

stability is considered the most crucial parameter of the foam injection in porous media. 

This is because if the foam stability is low, the control of gas mobility will be low and 

results in early gas breakthrough. The foam stability is affected by many external 

parameters such as reservoir temperature, salinity of the brine and the presence of crude 

oil in the reservoir.  

   In recent years, the application of nanoparticles as an additive to increase the foam 

stability has proven to be a success. This is because the adsorbed nanoparticles into the 

foam interface will reduce the direct contact between the fluids (gas and surfactant), 

therefore reducing the effect of liquid drainage, gas diffusion, and bubbles coarsening. 

In addition, nanoparticles tend to provide a higher tolerance against the presence of oil 

when added into the foaming solution. This is because the adsorbed nanoparticles at the 

interface of the gas-liquid will strengthen the interface of the gas-liquid film and thus, 

reduces the liquid drainage rate, in which will lead to a stronger and stable foam 

production [33]. Although, foam stability increases with the addition of nanoparticles 

in the foaming solution, the availability of the nanoparticles such as silicon oxide and 

aluminium oxide for a large and economical scale applications may be hard to achieve. 

This is because 95% of silicon oxide produced in the world are used for construction 

and 90% of aluminium oxide produced are used for production of aluminium metal 

[34], [35]. Therefore, an alternative source is needed to replace the commercial source. 

In this research, an alternative source called coal fly ash is introduced as a replacement 

for silicon oxide and aluminium oxide. The minerology of coal fly ash contains mainly 

glassy aluminosilicates with some magnetic fractions such as hematite, magnetite iron, 

copper, and some non-magnetic fractions such as calcite, lime and quartz [29]. 

However, recent investigations describe the size of coal fly ash is bigger than 1µm in 
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size and cannot be classified as nanoparticles. Furthermore, the effectiveness of coal fly 

ash as a foam stabilizer is much lower compared to silicon oxide and aluminium oxide 

nanoparticles. However, in recent research such as wet grinding and chemical synthesis 

technique have mange to synthesis nanoparticles size [36]. According to Priya et al, the 

composition of the synthesized nanoparticles are mainly silicon oxides, aluminium 

oxide, and sodium sulphate [37]. Therefore, in this research, we will be focus on using 

chemical synthesis technique to synthesis nanoparticles from raw coal fly ash and 

investigate the effectiveness of synthesis nanoparticles compare to the commercial 

nanoparticles. Lastly, a simulation run is performed to determine the main governing 

factor of foam application in oil recovery for future research work in foam injection. 

1.3 Research Objectives 

• To evaluate the size and composition of nanoparticles synthesized from the 

coal fly ash through the chemical synthesis process in comparison to 

commercial nanoparticles. 

• To determine the capability of synthesized nanoparticles to enhance foam 

stability and affect oil recovery under reservoir conditions in comparison 

with commercial nanoparticles. 

• To determine the main governing factor of foam injection in increasing oil 

recovery using reservoir simulation 

1.4 Significance of the Research 

The research about using nanoparticles in the oil and gas industry has been 

increasing lately specially in the last few years and one of them is using nanoparticles 

as a foam stabilizer in FAWAG injection. Unfortunately, the usage of coal fly ash as a 

potential nanoparticle for foam stabilizer is limited. There was no reported synthesis 

technique to convert them to nanoparticle size required nor the study on its content for 

commercial application to date. 
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In this research, a two-step chemical synthesis technique is used to synthesize size 

nanoparticles that are to less than 100nm size and to investigate the capability of 

synthesized nanoparticles in increasing the half-life of the foam in comparison with 

other potential nanoparticles. The success of this study will enable the industry to mass 

produce the synthesized coal fly ash nanoparticles as a foam stabilizer for FAWAG 

injection. In addition, a simulation study is done to determine the main governing factor 

in improving oil recovery when using FAWAG injection. 

1.5 Scope of Study 

The scope of study is divided into three parts. The first part is the characterization 

study of coal fly ash nanoparticles after using the two-step chemical synthesis method. 

The purpose is to determine whether the two-step chemical synthesis process can 

successfully extract nano-size particles from the large and abundant sources: coal fly 

ash using FESEM (Field Emission Scanning Electron Microscope) analysis. In 

addition, the composition of extracted synthesized nanoparticles are also studied to 

determine the main component in the produced nanoparticles EDX (Energy-dispersive 

X-ray) and XPS (X-ray photoelectron spectroscopy) analysis. Meanwhile, the second 

part is to study the effectiveness of the synthesized nanoparticles in the porous media 

by comparing with the commercial nanoparticles; silicon oxide and aluminium oxide 

in terms of foam stability and oil recovery. The oil recovery experiment is also 

conducted to determine the relationship of foam stability and oil recovery using IFT 

experiment and core flooding experiment. The third part of the research is to determine 

the main governing factor of oil recovery using FAWAG injection using reservoir 

simulator. 

1.6 Organization of the Thesis 

This thesis is divided into five chapters and are describe as follows: 

Chapter 1 includes the background study, problem statement, objective, significant 

of this research and scope of study of this research. 
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Chapter 2 includes explanation of foam concepts, definitions, and foam application 

in enhanced oil recovery such as foam generation methods, foam mechanism in porous 

media, foam destruction mechanism, and parameters affecting foam stability. The study 

of nanoparticles as a foam stabilizer is also included in this chapter which includes 

mechanism of nanoparticles as a foam stabilizer and parameters affecting nanoparticles 

stabilized foam.  

Chapter 3 is discussion about research methodology and workflow of this research 

including chemicals, materials, equipment used and procedure for experimental works. 

Chapter 4 comprises the experimental result and discussion of nanoparticles 

characterization process, characterization of nanoparticles, foam stability studies, oil 

recovery studies and sensitivity analysis the governing factor in foam for oil recovery.  

Chapter 5 concludes the overall experimental and research work including the 

proposed recommendation for future experimental works. 

  



  

CHAPTER 2 

LITERATURE REVIEW

 

2.1 Chapter Overview 

In this chapter, the explanation of the foam fundamentals, formation of foam in the 

porous media, effect of nanoparticles as foam stabilizer and coal fly ash as foam 

injected were discussed. The chapter is divided into four sections. The first section is 

the explanation of foam fundamentals such as definition, foam parameters, how foam 

is generated and method of foam generation. The second section described the foam 

stability in the porous media including its destruction mechanism and external 

parameters affecting foam stability. The third section is the discussion of nanoparticles 

usage in foam, its mechanism of affecting foam stability and effect of nanoparticles 

against external parameters such as reservoir temperature, salinity, surfactant 

adsorption by the reservoir rock and presence of crude oil in the porous media. The last 

section is the discussion on previous study on coal fly ash performance as a foam 

stabilizer for FAWAG injection. 

2.2 Foam Fundamental 

The foams played a major part in almost every industrial sector from food 

technology, medicine, cosmetics, and from environmental technology to oceanography. 

Foams were actually formed by the thousands of tiny bubbles from a solution by an 

external energy either from a mechanical origin or chemical origin [38]. In this section, 

the fundamentals of foam were described thoroughly to enhance the understanding on 

foam. 
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2.2.1 Foam Definition  

The foam can be defined as the non-continuous dispersion system that consist of 

gas bubbles separated by the foaming liquid layers [39]–[41]. Figure 2.1 illustrated the 

gas bubbles trapped in the liquid structure in the foam [42]. The region that 

encompassed the two gas-liquid interfaces which was separated by a layer of thin film 

of liquid called lamella, and each gas-liquid interface has a surface tension. In Figure 

2.1, the blue circle indicated the plateau border and plateau border was defined as the 

connection of three lamellae connected to each other and the connection of the lamellae 

is at 120o each [43]. 

 

Figure 2.1: Schematic illustration of the liquid structure in the foam [42] 

2.2.2 How is Foam Formed? 

The foam was formed through the transformation of gas emulsion into polyhedral 

foam when the gas content in the foam reaches between 50% to 70%. The formation of 

foam can be observed through the behaviour of the rising bubbles. Each bubble will 

form a hemispherical liquid film when reaching the liquid surface. The foam can be 

explained as followed [44]:  



 

9 

1. Smaller bubbles were dissolved, while bigger bubbles grew bigger due to the 

diffusion of small bubbles in the continuous phase. 

2. Gas bubbles rapidly cream, thereby causing a segregation into a foam layer on 

top of the surface of the liquid. 

3. As the number of gas bubbles increases at the surface, the distance between each 

gas bubbles will become closer. The capillary attraction between gas bubbles 

will helped the process of bubble contact and deformation in which resulting in 

the formation of polyhedral foam. 

The presence of surfactant will ensure the liquid films to have a longer lifetime. As 

the number of gas bubbles increases at the interface, the distance between each gas 

bubble will become closer. The capillary attraction between gas bubbles will helped the 

process of bubble contact and deformation, resulting in thin liquid film formation 

between neighbouring bubbles [45]. 

2.2.3 Foam Parameters 

The foam quality and foam stability are the two important parameters in 

characterising the foam, to determine whether the foam is stable or unstable condition 

[45]. The foam quality can be defined as ratio between the foam volume and the volume 

of liquid content and can be expressed mathematically by the following equation (2.1): 

𝐹𝑞 =  
𝑉𝐺

𝑉𝐹
=

𝑉𝐺

(𝑉𝐺 + 𝑉𝐿)
 

(2.1) 

Where: 

VF = Foam volume 

VL = Volume of liquid content 

VG = Gas volume in the foam 

𝐹𝑞 = Foam quality 
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The foam stability can be defined as the ability of a foam to maintain its foam shape 

and parameter at a constant with time such as the total foam volume, liquid content, and 

foam bubble size. The half-life of foam is the most common usage to measure foam 

stability [46] and can be defined as the time taken for the foam volume to decreases 

down to half-of its original foam volume [47]. Bikerman test is the most common 

method to measure foam stability as shown in Figure 2.2 [48]. The gas was injected 

from the bottom through a porous plug into the liquid and the Bikerman coefficient can 

be measured at this stage. The Bikerman coeeficient or foam half-life can be calculated 

by measuring the average bubble lifetime in foam before it collapses, and it can be 

expressed as in equation (2.2) and foam height is the maximum height of the foam 

generated. 

Σ =  
𝐻

𝑣
 

(2.2) 

Where: 

Σ = Bikerman coefficient 

H = Foam height or foam volume 

v = linear gas velocity 
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Figure 2.2: Foam Stability Experiment using the Bikerman approach, where the gas is 

injected through a porous plug and the height of the foam volume is measured over 

time [48] 

2.3 Foam in Porous Media for Enhanced Oil Recovery (EOR) 

Foam injection can be defined as a dispersion of gas molecules into the liquid phase 

while the liquid phase remains as a continuous phase with the lamella creating a 

discontinuity of the gas phase [49] to control gas mobility and overcoming the 

deficiency of gas injection [50]. In this section, we will be discussing about the foam 

parameters, external influence on the foam stability and foam generation of foam 

injection in the porous media.  
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2.3.1 Effect of Foam Parameters on Foam Stability 

Foam stability is considered the most critical parameter to control gas mobility 

because the weak foam stability will be no difference than a normal gas injection. The 

parameters that affect the foam stability are the surface tension of two fluids, capillary 

pressure, Gibbs-Marangoni effect, and disjoining pressure. During the foam formation, 

the big unstable bubbles will reduced into smaller stable bubbles and five phenomena 

occurred which were [51]: 

1. The liquid flowed over from the interfacial films (Capillary suction) 

2. Diffusion of gas from smaller bubbles into larger ones (Bubble coalescence) 

3. Redistribution of the bubbles along the height of the foam volume (Gibbs-

Marangoni Effect) 

4. Natural escape of liquid from the foam (Gravity drainage) 

5. Destruction of inter-bubble films (Film rupture) 

   Therefore, in this section, we will be discussing the mechanism of destabilization 

foams such as capillary suction effect, Gibbs-Marangoni effect, disjoining pressure, 

disjoining pressure and gravity drainage. 

2.3.1.1 Capillary Suction Effect  

Capillary pressure can be defined as the pressure difference across the interface 

between two immiscible fluids [43]. According to the Young-Laplace equation, the 

surface tension played a major role in controlling capillary pressure. When the surface 

tension between gas and liquid reduces, the capillary pressure will be increased, and it 

be expressed in equation (2.3): 
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𝑃𝑐 =  𝑃𝑔 −  𝑃𝑤 =  
2 𝜎 cos 𝜃

𝑅
 

(2.3) 

Where: 

Pc = Capillary pressure 

𝜎 = Interfacial tension between gas and liquid 

𝜃 = Contact angle 

R = Radius of curvature 

   When the pressure of the liquid in the lamella is higher than the pressure of liquid 

at the plateau border, the pressure difference between them will cause the liquid to flow 

towards the plateau border. The pressure difference of liquid in the lamella and plateau 

border is called capillary suction effect and this will result to the reduction in lamella 

thickness and film thinning of the foam [52]. Figure 2.3 showed the illustration of 

capillary suction effect. 

 

Figure 2.3: Illustration of capillary suction effect [52] 
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2.3.1.2 Gibbs Surface Elasticity and Marangoni Theory 

When the expansion of the thin film occurred, some of the expanded area of the 

thin film will have a higher surface tension due to lack of surfactant molecules presence 

in these areas. When there is a higher surface tension at a certain area, the surfactant 

molecules will move from a lower surface tension area to a higher surface tension area, 

in order to reduce the surface tension of the area until an equilibrium of the foam is 

achieved. The movement of surfactant molecules from a lower surface tension area to 

a higher surface tension area in order to repair the foam films and prevent the whole 

film area from rupture is called Marangoni theory [53], [54].  

The foam elasticity is defined as the energy exerted to the lamella due to external 

stress on the surface layer and it is an important parameter to reduce film thinning 

because it promote the self-heal effect during deformation in order to avoid rupture 

[43].  When the surfactant molecules moved along the interface in order to relieve the 

surface tension gradient of the other area, the movement along the interface will induced 

an elasticity in the film surface and the elasticity effect is called Gibbs surface elasticity 

[55]. The surface elasticity can be increased by increasing the surfactant concentration 

and if the surface elasticity is higher, the foam stability will be higher. However, when 

the concentration of surfactant reaches the critical micelle concentration (CMC), the 

surface elasticity will decreased gradually [56]. The Gibbs surface of elasticity can be 

mathematically explained in equation (2.4): 

𝐸𝐺 =
𝑑𝛾

𝑑 ln 𝐴
 

(2.4) 

Where: 

EG = Gibb’s surface of elasticity 

A = Area of the surface. 

𝛾 = Surface tension of liquid and gas 
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Therefore, to increase the surface elasticity of the foam, a lower surface tension will 

be needed. Figure 2.4 explained  the illustration of Gibbs-Marangoni effect [57]. 

 

Figure 2.4: Gibbs–Marangoni effect: (a) surfactant concentration < CMC; (b) 

surfactant concentration = CMC; (c) surfactant concentration > CMC 
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2.3.1.3 Disjoining Pressure 

The disjoining pressure can be defined as the summation of the dispersion force 

(per unit area), the electrostatic forces and the steric forces, as defined in equation (2.5) 

[58] 

𝜋𝑡 =  𝜋𝑠𝑡 + 𝜋𝑑𝑖𝑠 +  𝜋𝑒𝑙 (2.5) 

Where: 

𝜋𝑡 = Total force 

𝜋𝑠𝑡 = Steric force 

𝜋𝑑𝑖𝑠 = Dispersion force 

𝜋𝑒𝑙 = Electrostatic force 

   During the formation of two monolayers at the gas-liquid interface by the 

surfactant molecules, the pressure between the two gas-liquid interfaces in the lamellae 

will cause lamella to be thinner [59]. However, this process can be stopped by the 

interaction between the two surfaces of the lamellae which is called disjoining pressure 

as shown in Figure 2.5. The disjoining pressure was contributed by the following three 

forces which were[60]: 

1. The Steric repulsion force can only be generated at a very small distance where 

electron clouds of the molecules start to overlap to stabilize the film. 

2. The London attractive dispersion force is a weak force that has a negative effect 

on destabilizing the film by exerting forces between the two non-permanent 

dipoles. 

3. The force exerted between two opposite charges molecules is called 

electrostatic repulsive force. This force helps to separate the two charged 

molecules in the interfaces apart. Thus, the force will have a stabilizing effect 

on stabilizing the film. 
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Figure 2.5:  Graph of total disjoining pressure vs the separation distance between two 

interfaces. The dotted lines represent the three forces contributing to the total 

disjoining pressure [60] 

2.3.1.4 Gravity Drainage 

Gravity drainage is defined as a phenomenon where a denser fluid (liquid) will 

starts to flow downwards and out from the foam interface due to the gravitational force 

effect [61]. The drainage will eventually convert the wet foam into a dry foam after a 

certain period. When the foam changed from a wet foam to a dry foam, the structure of 

the foam will also change from a spherical shape into a polyhedral shape. Furthermore, 

based on the Young-Laplace law, the capillary pressure of liquid in the dry foam will 

be lower than the capillary pressure of liquid in the wet foam [62]. Hence, the gravity 

drainage in the dry foam will decreased. 
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2.3.2 Effect of External Parameters on Foam Stability  

In the last few years, there have been some significant studies on the external 

parameters that will affect the foam stability such as types of surfactant, concentration 

of surfactant, reservoir temperature. reservoir pressure, salinity of the brine, type of gas 

used, injection foam rate, surfactant adsorption by the reservoir rock, and the presence 

of crude oil.  

The surfactant played a major role in the foam generation and maintaining the foam 

stability in the porous media. This is because the interfacial forces between the gas and 

liquid will be affected by the surfactant and in turn, the capillary pressure values will 

be affected [63]. Therefore, it is appropriate to select the suitable surfactant in 

generating a strong and stable foam against the high temperature and salinity 

conditions. Moreover, the surfactant should be capable of improving sweep efficiency 

while remains economical for implementation [63]. Surfactants are naturally 

amphiphilic which consist of a hydrophobic group (tail) and a hydrophilic group (head) 

[43] and can be classified into four types which are non-ionic, anionic, cationic, and 

amphoteric. A non-ionic surfactant does not contain any charges on its head group. 

Meanwhile, an anionic surfactant will contain a negative charge on the head and a 

cationic will contain a positive charge on its head group, respectively. Lastly, an 

amphoteric surfactant (zwitterionic) will contain both a positive and a negative charge 

in its head group. 

Although, there were many different type of surfactants, all the surfactants have 

their own optimum concentration called  “Critical Micelle Concentration (CMC)” [15]. 

When the surfactant concentration went beyond the CMC value, the number of micelles 

increases, and no other changes will occur. Figure 2.6 illustrated the surfactant 

molecules in gas-liquid interface when the concentration of surface is below the CMC 

value, equal to the CMC value, and above the CMC value. [64]. When the surfactant 

concentration is above the CMC value, the surfactant molecules will start formed a 

micelle arrangement when the hydrophobic tails will shield away from the liquid phase 

because the hydrophobic tails are afraid of water. Meanwhile, the hydrophilic head will 

be floating in the liquid phase. This is because the arrangement of this phenomenon 

helped to minimizes the surface free energy [65]. Although, the increasing of the 
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concentration of surfactant above CMC value does not change anything, the increasing 

of the surfactant concentration up to the CMC value will resulted in achieving a higher 

disjoining pressure and a more stable foam.  

 

 

Figure 2.6: Illustration of surfactant in gas-liquid interface when the concentration of 

surface is below the CMC value, equal to the CMC value, and above the CMC value 

The effect of high temperature of the reservoir is one of the parameters that will 

affect the foam stability. This is because the solubility of the surfactant in the brine will 

decreased due to the thermal degradation of the surfactant in high temperature condition 

[66]. Furthermore, non-ionic surfactants or anionic surfactants are not suitable for foam 

generation in the high temperature conditions due to the low cloud point of the 

surfactant. Cloud point is defined as the temperature at where cloudiness of the 

surfactant solution starts to appear due to the phase separation of the surfactant solution 

mixture [67]. For example, when the temperature is above the cloud point for non-ionic 

surfactants that consist of ethylene oxide groups, the hydrogen bonding between the 

ethylene oxide groups and water weakens with increasing of temperature [68].  

Reservoir pressure is one of the parameters that will affect foam stability of the 

foam that used miscible gas such as carbon dioxide. This is because when the reservoir 

pressure increases, the miscible gas become denser and the intermolecular associations 

between the gas and the hydrophobic tails of the surfactant molecules will increase. In 

Chang et al. experiment, it was found that carbon dioxide foam injection has a higher 

sweep efficiency with increasing reservoir pressure regardless whether the reservoir 
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pressure is above or below the minimum miscibility pressure (MMP) [69]. The 

minimum miscibility pressure (MMP) is defined as the lowest pressure for carbon 

dioxide gas to develop the miscibility through a multi contact process with the crude 

oil in the reservoir at the certain reservoir pressure [70]. Furthermore, when the 

reservoir pressure is high, the London attractive force is weakened due to higher density 

of neighbouring gas molecules interacting with the surface water molecules [71]. When 

the London attractive force decrease, the disjoining pressure will increase. The surface 

tension of the gas-liquid interface was expected to decrease with the increasing of 

reservoir pressure [72]. This was partly due to the reduction of the density difference 

between the gas and liquid and the increase of surfactant adsorption at the gas-liquid 

interface. Equation (2.6) showed that the pressure gradient is inversely proportional to 

the surface tension of the gas-liquid interface [69]. When the pressure gradient 

increases, the surface tension of the gas-liquid interface decreases and hence, the 

stability of the foam increases. 

∇p (𝑝) =
𝑢𝑤𝜇𝑤

𝑘𝑘𝑟𝑤
0 (

𝑝𝑐
∗(𝑝)

𝑝𝑒(𝑝𝑜)
)

2+3𝜆

(
𝛾(𝑝)

𝛾(𝑝𝑜)
)

−(2+3𝜆)

 
(2.6) 

 

Where: 

∇p (𝑝) = The changes of the pressure gradient 

𝑝𝑐
∗ = Critical capillary pressure 

𝑝𝑜 = Reference pressure 

𝛾(𝑝) = Surface tension of the solution at the limiting capillary pressure 

𝛾(𝑝𝑜)= Surface tension of the solution at the reference pressure 

𝑝𝑒 = Entry pressure  

k = Permeability  

𝑘𝑟𝑤
0  = End point of relative permeability of water 
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𝑢𝑤 = Velocity of water 

𝜇𝑤 = Viscosity of water 

 

The salinity of the brine in the reservoir is another factor that will affect the foam 

stability. When the salinity of the brine is low, the presence of monovalent and divalent 

ions helped to reduce the electrostatic repulsion force between the surfactant molecules 

at the gas-liquid interface of the foam [43]. Therefore, it helped to promotes more 

surfactant adsorption at the gas-liquid interface and resulted in the increase of the foam 

stability. However, when the salinity of the brine is high, the foam stability decreases. 

The foam stability decreases due to the decrease in electrostatic double layer (EDL) 

forces between the surfactant molecules at the gas-liquid interface. When the 

electrostatic forces decreases, the liquid drainage will increased thus the foam stability 

decreased [73]. Furthermore, with high salinity, the solubility of the surfactant into the 

brine decreases and the salts content in the brine will cause the precipitation of the 

surfactants. The  precipitation was due to the reaction between the divalent ions and the 

surfactant molecules in the porous media and it will completely or partially blocked the 

pore of the porous media [74]. However, different brine solutions will have different 

reactions with different types of surfactants hence it will produce a different effect 

accordingly. Similarly, different type of the surfactant will have different temperature 

tolerance, and salt tolerance [75]. In Liu et al. experiment, the anionic surfactants such 

as Chaser CD 1045 have a higher foam stability in the presence of high salinity solution 

[76] and in Torino et al. experiment, the presence of the high salinity solution also has 

a positive effect on the foam stability [77].  

In foam injection, there are two types of foam injection which were immiscible and 

miscible foam injection. The main difference between the two injections were the type 

of gas use to generate foam. In immiscible foam injection, the inert gas such as nitrogen 

was used to generate foam whereas, for miscible foam injection, soluble gas such as 

carbon dioxide gas was used for foam injection. In the work of Frajzadeh et al., a 

comparison study between the miscible and the immiscible gas injection was done to 

determine the most suitable type of gas to generate foam and oil recovery improvement 
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in the porous media [78]. In the experiment, Alpha Olefin Sulfonate (AOS) surfactant 

was used as the surfactant and carbon dioxide or nitrogen gas were used as the 

comparison between miscible and immiscible gas to generate a higher foam stability 

and a higher oil recovery. The conclusion of the experiment was that immiscible foam 

injection produced a higher oil recovery than carbon dioxide foam injection. This is 

because the carbon dioxide foam produced a lower pressure build up than nitrogen 

foam, and a lower gas velocity than nitrogen gas. This is due to carbon dioxide gas 

being more soluble in water than to remain in gas phase itself thus consequently, most 

of the carbon dioxide molecules would preferred to be soluble in water resulting in a 

weaker foam [79]. In immiscible foam, different type of chemicals and additives can 

be added into the foam to improve  the foam stability or the reduction of surfactant 

adsorption by the reservoir rock. [80]. However, carbon dioxide foam has a more 

favourable interactions with the crude oil due to the oil swelling effect will occur when 

the carbon dioxide gas is mixed with crude oil. Swelling effect occur when the carbon 

dioxide dissolved and mix into the crude oil droplets. Therefore, this phenomenon will 

leads to the reduction of oil viscosity and the carbon dioxide foam will have a higher 

tolerance in the presence of the crude oil than nitrogen foam [79]. 

The injection rate of the foam also played a vital role of affecting the foam stability 

[81]. When the injection rate is high, the fluid segregation between gas and surfactant 

increases greatly whereas, when the injection rate is low, fluid segregation is low and a 

higher oil recovery was observed [82]. This is because a higher injection rate will 

reduce the interaction between the gas and surfactant solution. The injection rate of gas 

and surfactant also determined the foam quality and the foam quality played a major 

role in determining the characteristics of foam propagation and mobility [83]. This is 

because the foam stability will decreased when the foam quality is too low (wet foam) 

or too high (dry foam) [84]. According to Chang et al., the optimum foam quality is 

between 45% to 95% to exhibit the longest foam stability and the highest gas mobility 

reduction [85]. When the foam quality is below 45%, the foam is classified as the wet 

foam and the foam normally loses its foam properties and only reflects on the flow 

behaviour of liquid phase whereas, when the foam quality is above 95%, %, the foam 

is classified as dry foam and is too dry to be stable. 
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Surfactant adsorption by the reservoir rocks is one of the unwanted problems in 

foam injection application. This is because when the surfactant is adsorbed by the 

reservoir rocks, the concentration of surfactant in the solution will reduced greatly and 

resulted in the decrease of foam stability. Therefore, to improve the stability of foam, a 

higher concentration of the surfactant is needed to overcome the surfactant loss to 

adsorption effect and continuing to produce a stable foam. In addition, different types 

of surfactant have different surfactant adsorption rates  [86]. For example, in a 

sandstone reservoir, the anionic, non-ionic, or amphoteric surfactants were used. This 

is because the cationic surfactant has a positive charge while, sandstone rock has a 

negative charge. Due to the magnetic attraction between a positive charge and a 

negative charge, the adsorption of cationic surfactant increased. In the carbonate 

reservoirs where the rocks are positive charge, the cationic surfactants were preferred 

[80]. The adsorption of surfactant by the reservoir can be affected by various parameters 

such as surfactant formulation, crude oil composition, brine composition, rock 

mineralogy, and reservoir condition (temperature and pressure) [63]. According to the 

Novosad et al showed that surfactant adsorption decreased with increasing temperature 

[87].  

The presence of the crude oil is the single most important fact to be considered for 

foam injection This is because the purpose of implementing foam injection is produce 

a higher oil recovery. However, the presence of crude oil droplets in the foam affect the 

foam stability [88].  The foam tends to collapse in the presence of the crude oil which 

allowed the oil droplets to flow into the foam structure and therefore destabilized the 

foam. The foam destabilization mechanisms occur in the presence of the crude oil were 

described as followed [89]: 

• Surfactants may be adsorbed by the oil, during the oil emulsification, and cause 

the surfactants to deplete in the foaming solution and therefore from the gas-

liquid interface of the foam. 

• Surfactants adsorbed by the oil may be re-adsorbed by the foam lamellae and 

form a mixed surfactant-oil layer and produced a less favourable weak foam. 
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• The oil may spread spontaneously onto the foam lamellae and destabilized the 

foam interface. 

• Oil emulsification may occur and allowed the oil droplets to enter and rupture 

the foam stabilizing interface. 

Therefore, to further study the interaction between foam and oil, two models have 

been proposed to predict the foam stability by using the entering, spreading and 

bridging coefficients model or lamella number model [90], [91]. The entering, 

spreading and bridging model is calculated using the interfacial tension between the 

gas, surfactant and oil which can be shown in Figure 2.7 [92]. 

 

Figure 2.7: The interfacial tension of an oil droplet [92] 

   Equation (2.7) showed the entering coefficient equation. If the calculated entering 

coefficient of less than zero, it indicates the oil droplets were unable to enter the foam 

interface. Meanwhile if the entering coefficient is higher than zero, the oil droplets will 

entered the foam interface and thus, the foam become unstable [93]. Equation (2.8) 

indicated the spreading coefficient equation [94]. If the calculated value of spreading 

coefficient is less than zero, the spreading of oil into the liquid interface will not occur. 

However, if the value is higher than zero, the spreading of oil will flow into to the gas-

water interface and results in the decreased of the foam stability. Then the oil droplets 

will formed a bridge when the oil droplets fully spread across the foam and the bridge 

is called the bridging coefficient as explained in equation (2.9)  [95]. If the calculated 

bridging coefficient is less than zero, it indicates the foam is stable whereas, if the 
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bridging coefficient is higher than zero, the foam is unstable. This is because when the 

bridging coefficient is higher than zero, the capillary pressure pushes the water 

molecules away from the interface instead of the oil droplets [96].  

Entering coefficient, E = 𝛾𝑔𝑤 +  𝛾𝑜𝑤 −  𝛾𝑜𝑔 (2.7) 

Spreading coefficient, S = 𝛾𝑔𝑤 − 𝛾𝑜𝑤 −  𝛾𝑜𝑔 (2.8) 

Bridging coefficient, B = 𝛾𝑔𝑤
2 +  𝛾𝑜𝑤

2 − 𝛾𝑜𝑔
2  (2.9) 

Lamella No., L = 0.15
𝛾𝑔𝑤

𝛾𝑜𝑤
 (2.10) 

Where: 

 𝛾𝑔𝑤 = interfacial tension of gas and water phase 

𝛾𝑜𝑤 = interfacial tension of oil and water phase 

𝛾𝑜𝑔 = interfacial tension of oil and gas phase 

  

The second model is the lamella number model. The model was first proposed by 

Schramm et al., where the emulsification of the oil droplets in the foam will cause the 

lamella to rupture [97]. This model is introduced to study the interaction between the 

foam and oil in the porous media and the model can be described in equation (2.10) 

[96]. Based on the equation (2.10), if the lamella number is less than one, the foam 

generated will be stable in the presence of the oil droplets. If the lamella number 

between one and seven, the foam will be moderate stable. However, if the lamella 

number is higher than seven, the foam will be unstable [96]. 
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2.3.3 Foam Generation Mechanism in the Porous Media  

The foam was produced when the gas entered the layers of liquid and the gas is 

trapped in the gas with a film of the liquid membrane [15]. The foam then formed a 

hexagonal structure of gas cells whose cell walls consist of lamellae with approximately 

plane parallel sides [16]. In Rossen et al. study, the foam can be formed in three 

different section of the porous media [98]. 

1. The inertial flow may create foam generation at the well itself with the surface 

facilities. 

2. Foam can be generated at the near-wellbore region where the pressure gradient 

and flow rate are still high. 

3. In the formation far from the injection well where the pressure gradient and flow 

rate are much lower. 

Each flow regime will be resulted in the entirely different foam generations and 

flow behaviours. There are three type of generation mechanisms that will lead to foam 

generation in the porous media which were leave behind, lamella-division, and snap-

off foam generation mechanism [99]. In recent studies, there is another new concept of 

foam generation called neighbour-induced bubble pinch-off [100].  

2.3.3.1 Leave Behind 

The leave-behind foam generation mechanism only occurs when there are two or 

more gas fronts approaching the same pore body [101]. The two fronts will then 

converge together and formed a large parallel number of lamellae. Normally the foam 

generated using this mechanism will be a weak foam [101]. Furthermore, depending on 

the pore neck geometry, the foam may collapse when the gas exits the pore body due 

to the absent of the surfactant. However, this mechanism is the only mechanism that 

allowed the gas to have a continuous flow without any blockage [102]. Figure 2.8 

illustrated the leave-behind foam generation mechanism [103]. 
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Figure 2.8: Leave-behind foam generation mechanism [103] 

2.3.3.2 Lamella-division  

Lamella-division is the second type of mechanism for foam generation. This 

mechanism happens when two or more lamellae are formed from a single lamella. 

However, this mechanism only occurred when using the pre-generated foam. The pre-

generated foam starts to accumulate the gas in the foam and forms a larger bubble size 

than the pore body [104] and it only occurred if the large bubble encounters a branched 

point and with enough capillary pressure, a division of lamellae will occurred [105].  

Figure 2.9 illustrated how the lamella-division mechanism occurred [103]. Initially, 

when the lamella entered the two pore throats, the lamella will stretch around the pore 

body so that it can break away and form another new lamella at each pore throat [106]. 

The lamella created by this method will have a lower gas mobility because the flow 

direction of lamella-division is perpendicular to the flow direction of snap-off 

mechanism [107]. 
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Figure 2.9: Lamella-division foam generation mechanism [103] 

2.3.3.3 Snap-off 

The third type of mechanism is the snap-off mechanism. This mechanism is the 

most dominant mechanism for foam generation in the porous media [108]. Figure 2.10 

illustrated the snap-off mechanism in the porous media [103]. The snap-off mechanism 

occurred when the gas front is flowing through the pore throat to another pore body that 

is filled with the liquid. The gas then expands and formed a gradient of interfacial 

curvature between the gas at the pore throat and the gas outside the pore throat as the 

gas exits the pore throat. This gradient will create a pressure difference between the 

front and at the throat [109]. If the capillary pressure at the front is lower than the 

capillary pressure at the throat, the difference in capillary pressure will allowed the gas 

bubbles to snap off [110]. In order for the snap off mechanism to work, the ratio of pore 

throat to the pore body must be 1 to 2.67 ratio [111]. The foam generated using this 

mechanism can provide several hundred-fold of reduction in gas permeability 

meanwhile, leave-behind mechanism can only generated a maximum five-fold of 

reduction in gas permeability [112], [113]. Therefore, this mechanism is considered the 

most dominant mechanism due to its ability to produce a more stable foam than other 

two mechanisms. 
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 Figure 2.10: Snap-off foam generation [103] 

2.3.3.4 Neighbour-induced bubble pinch-off  

According to the Liontas et al. experiment, a new foam generation mechanism was 

discovered, and it was called the neighbour-induced bubble pinch-off. Foam generation 

using this method can be divided into two groups which were the neighbour-wall pinch 

off method and neighbour-neighbour pinch off method. In Figure 2.11(a) illustrated the 

neighbour-wall pinch off method, when the two bubbles were trying to squeeze into the 

same pore throat. One of the bubbles will try push the other bubble while trying to enter 

the pore throat, the slower bubble will then break the bubble that is flowing faster into 

two bubbles. The red arrow and the white arrow in Figure 2.11(a) indicate the flow 

direction of the two bubbles. In Figure 2.11(b) illustrated that three bubbles were trying 

to flow through the same pore throat, when the middle of the three bubbles is flowing 

faster than the other two, the middle bubble will break into two by the other two 

bubbles. The red arrows in Figure 2.11(b)  indicate the flow of bubbles try to break the 

blue colour bubble into two [100]. 
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Figure 2.11: Neighbour-induced bubble pinch-off mechanism: (a) neighbour-wall 

pinch off and (b) neighbour-neighbour pinch off, the red and white arrows indicates 

the flow of the bubbles [100] 

2.3.4 Mechanism of Foam Destruction in Porous Media 

Foam destruction is one of the critical mechanisms for generating a stronger foam 

[114]. Therefore, in this section, the foam destruction was discussed in this section and 

the tree mechanisms were bubble coalescence, bubble coarsening and liquid drainage 

[115]. Bubble coalescence is the result of two smaller bubbles merging into one larger 

bubble due to the rupture of liquid films between bubbles [116]. Figure 2.12 will be 

explaining the overall process of bubbles coalescence: 

(a) When the gas bubbles were approaching each other. 

(b) The hydrodynamic interaction between approaching bubbles which can 

cause deformation on bubbles surfaces called the “dimple”.  

(c) Formation of a plane-parallel film by the gradual disappearance of the 

dimples  

(d) Coalescence of bubbles if attractive pressures overcome negative 

pressures along the film surface [117]. 
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Figure 2.12: Bubble Coalescence Process [22] 

   The thin liquid film formed between two approaching bubbles is influenced by 

the capillary pressure. The capillary pressure arises from the curvature of bubbles 

during stage (b) in Figure 2.12 which can be defined as in equation (2.11) [118]:  

𝑃𝑐 =
2 𝜎

𝑅
 

(2.11) 

Where: 

𝑃𝑐 = Capillary pressure 

 σ = Surface tension of gas and liquid 

 R = Radius of curvature  

When the film thickness is reduced to a thickness of 200nm to 300nm, the film 

drainage affected by the capillary will be slowing down. This is because the interactions 

between the two bubble’s film surfaces will causes a pressure known as disjoining 

pressure to overcome the capillary force [119]. Depending on the balance of capillary 

pressure and disjoining pressure, if the film drainage takes a longer time for the bubbles 

to make contact, the liquid film will be assumed in a stable condition and the bubble 

coalescence will not take place [120]. Foam coarsening happened when there is a 

diffusion of gas from the smaller bubbles to a bigger bubble. This is because of the 

inner and outer pressure differences of the bubbles [41]. Hence, the smaller bubbles 

will disappear upon the contact with the bigger bubbles [121]. For a well-separated 
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droplet, this process is known as Ostwald ripening or called ‘‘coarsening’’ for cellular 

materials such as foams. Foam coarsening tends to increase the volume of certain size 

of bubbles at the expense of the other size of bubbles.    

Foam drainage mechanism will start to occur when the foam starts to generate. This 

is because of the effect of the gravitational force, viscous force, and capillary pressure 

when the foam starts to generate. In the drainage process, the top of the foam will be 

the dry foam condition whereas, the bottom of the foam will be wet foam condition. 

This is because the liquid solution is flowing out from the bottom of the foam. Due to 

the foam drainage, the formation of the foam of the top section will always be 

polyhedral bubbles while, the bottom section of the foam will always be spherical shape 

due to the foam drainage. Hence, the foam drainage will always linked to the foam 

stability and other rheological properties of foam systems due to the formation of dry 

foam or the wet foam during the generation [122]. When the liquid films between the 

bubbles become very thin, the liquid films will eventually break. Therefore, the merging 

of two bubbles will be called bubble coalescence and the larger bubbles will start to 

appear in the foam and the number of bubbles decreases over time due to merging of 

bubbles and foam coarsening effect [123]. In general, the larger bubbles will continue 

to grow at the expense of smaller bubbles and at the end, smaller bubbles will disappear 

and eventually the foam collapsed [124].  

2.4 Nanoparticles as a Foam Stabilizer in FAWAG Injection 

In recent years, the usage of nanoparticles as a foam stabilizer is gaining attention 

due to its ability to overcome the limitations of conventional surfactant-stabilized 

foams. Nanoparticles are actually solid particles with a size of less than 100nm with its 

properties are being highly durable to the reservoir conditions [125]. The adsorbed 

nanoparticles helped to improve the foam stability by reducing the direct contact 

between the fluids to prevents liquid drainage, gas diffusion, and the rate of film rupture 

and bubbles coarsening [28]. Compared to the surfactants, nanoparticles are less prone 

to adsorption by the reservoir rocks and clay minerals. However, nanoparticles are still 

being influenced by many other factors such as concentration, size, and type of 
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nanoparticles [126]. Therefore, in this section, we will be discussing the mechanism of 

nanoparticles as a foam stabilizer for FAWAG injection, effect of nanoparticles 

stabilized foam against external factors and nanoparticles properties affecting foam 

stability. 

2.4.1 Mechanism of Nanoparticles as a Foam Stabilizer in FAWAG Injection  

When the foam that is stabilized by nanoparticles, it is largely dependent on the 

activity of nanoparticles at the foam lamellae. There are four type of mechanisms of 

nanoparticles that helped to improve foam stability which are high particle detachment 

energy, particle arrangement during film drainage, reduced capillary pressure and 

increased maximum capillary pressure of coalescence [127]. 

2.4.1.1 High Particle Detachment Energy  

Particle detachment energy is defined as the total energy required to remove the 

adsorbed particles from the gas-liquid interface of the foam [128] and particle 

detachment energy can be defined as in equation (2.12) [129]: 

𝑊𝑟 =  𝜋 𝑅2 𝛾𝛼𝛽 (1 − |cos 𝜃|)2 (2.12) 

Where: 

𝑊𝑟 = Energy required to remove the particle from the gas-liquid interface  

R = Radius of the particles 

𝛾𝛼𝛽 = Surface tension of two fluids 

θ = Particle contact angle at the interface of the fluids 

Based on the equation, the radius of particles, surface tension and contact angle of 

two fluids are the main contributors to the increase of detachment energy. If the radius 

of particles or surface tension is high, the particle detachment energy will be higher. 
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According to Sun et al., if the nanoparticles size was 10nm, the contact angle will be 

close to 90° and the detachment energy from the equation will be 103kT which was 100 

times higher than the detachment energy of surfactant molecules which was 1kT [130]. 

This is because when the contact angle is close to 90°, the cos 𝜃 will be near zero and 

the detachment energy will be higher whereas, if the contact angle is close to 0°, the 

cos 𝜃 will be near to one and the detachment energy will be low. Therefore, when the 

nanoparticles’ detachment energy is high, a higher energy or force is required to remove 

the adsorbed nanoparticles from the interface of two fluids. Meanwhile, in the 

conventional foaming applications, surfactant molecules can be adsorb and desorb 

easily from the gas-water due to low detachment energy, however the adsorption of 

nanoparticles at the interface will be irreversible due to the high adsorption energy of 

nanoparticles [131]. Hence, the foams with nanoparticles tend to have a higher foam 

stability than foams without presence of nanoparticles. 

2.4.1.2 Particle Arrangement During Film Drainage  

The second effect of nanoparticles in improving foam stability is the nanoparticles 

arrangement at the gas-liquid interface. When nanoparticles were absorbed at the gas-

liquid interface, some of the nanoparticles will formed a different structure arrangement 

because of the nanoparticle’s aggregation, agglomeration and repulsion effect between 

the nanoparticles [132] as described in Figure 2.13 [115]. Figure 2.13(a) showed the 

nanoparticles were absorbed in a monolayer arrangement at the gas-liquid interface. 

The foam stability of the monolayer of bridging nanoparticles is largely dependent on 

the spatial resistance to stop the nanoparticles from breaking and exiting the bridge 

layer. For Figure 2.13(b), the nanoparticles weas formed into a series of monolayer 

layer in the gas-liquid interface called bilayer layer. The bilayer layer of close-packed 

nanoparticles has a higher resistance against the dragging force of foam coalescence or 

foam coarsening effect than monolayer arrangement. Although, the bilayer layer of 

nanoparticles has a higher foam stability effect than monolayer nanoparticles, the 

arrangement of nanoparticles structure in Figure 2.19(c) has the highest foam stability 

effect between these three arrangements and called a series of aggregated nanoparticles 

layer [33].  This is because the aggregated nanoparticles at the gas-liquid interface tend 
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to create a thick solid film that will provide a steric barrier to film thinning and inter-

bubble diffusion. Therefore, the presence of nanoparticles at the gas-liquid interface 

will helped to slow down the gravitational effects and liquid drainage by reducing the 

direct contact between the fluids (gas and liquid). The formation of the nanoparticle 

arrangement is largely dependent on the interfacial rheological properties and capillary 

pressure of the foam. [115].  

 

Figure 2.13: Particle Arrangement of nanoparticles in air-water interface [115] 

2.4.1.3 Reduced Capillary Pressure 

Capillary pressure is defined as the pressure difference across the gas-liquid 

interface of the foam due to the influence of capillary forces. If the capillary pressure 

increases, the faster the rate of foam coalescence. Capillary pressure can be defined as 

per equation (2.12) [133]: 
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𝑃𝑐 =  
𝛾

 𝑅
 (1 −  ∅)0.5 

(2.12) 

Where: 

𝑃𝑐 = Capillary pressure 

R = Foam film radius 

𝛾 = Interfacial tension 

∅ = Foam quality 

   Based on the equation (2.12), the capillary pressure will increase if the interfacial 

tension between two fluids increases, or the film radius decreases. Therefore, the 

interfacial tension between two fluids will be an important parameter to increase the 

foam stability [134]. However, the presence of nanoparticles in the foam will helped to 

reduce the foam film radius due to higher stability control between the gas-liquid film 

[135]. This is because the adsorption and aggregation of nanoparticles between two 

bubbles helped to reduce the capillary suction effect, Gibbs–Marangoni effect, and an 

increase in disjoining pressure. Furthermore, the capillary pressure is expected to be 

reduced due to the effect of the decrease in  films thinning and lamellae drainage 

(drainage velocity in the lamellae)  from the low value of foam film radius as shown in 

the equation (2.13) [136]: 
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𝑉 =  
𝑑ℎ𝑓

 𝑑𝑡
=  

ℎ𝑓
3

3 𝑢𝑒  𝑅2
 ∆𝑃𝑓𝑖𝑙𝑚 

(2.13) 

Where: 

V = Liquid drainage velocity,  

ℎ𝑓 = Lamellae thickness,  

R = Foam film radius  

𝑢𝑒 = Viscosity of the aqueous phase 

∆𝑃𝑓𝑖𝑙𝑚 = Film pressure.  

Film pressure can be calculated using equation (2.14) [134]: 

∆𝑃𝑓𝑖𝑙𝑚 = 2 ( 𝑃𝑐 −  𝜋𝑑) (2.14) 

Where: 

𝑃𝑐 = Capillary pressure  

𝜋𝑑 = Disjoining pressure.  

   The liquid drainage velocity will be largely dependent on the film pressure and 

film pressure will eb largely dependent on the increment of disjoining pressure and 

decrement of capillary pressure. Even though the presence of nanoparticles increases 

the film radius, the disjoining pressure will also increase to alleviate the drawback. 

Hence, with the presence of nanoparticles, the liquid drainage velocity will still be 

reduced thus, reduces the liquid drainage. 
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2.4.1.4 Maximum Capillary Pressure of Foam Coalescence  

The capillary pressure of foam coalescence can be defined as the energy required 

to decrease the distance between two bubbles to almost zero and can be expressed as in 

equation (2.15) [137]: 

𝑃𝑐
𝑚𝑎𝑥  =  𝛽

2 𝛾𝑎𝑤

𝑅
cos 𝜃 

(2.15) 

Where: 

𝑃𝑐
𝑚𝑎𝑥 = Maximum capillary pressure 

𝛾𝑎𝑤 = Interfacial tension of air and water 

𝜃 = Nanoparticle’s wettability in the air-water interface 

R = Nanoparticle’s radius 

𝛽 = Theoretical packing parameter 

When the maximum capillary pressure increased, the foam coalescence effect will 

be extended to a longer duration and thus, the foam stability will be increased. This is 

because when the capillary pressure reaches the maximum capillary pressure, the thin 

liquid film ruptures [138]. Based on the equation (2.15), the maximum capillary 

pressure can be increased if the nanoparticles present at the air-water interface of the 

foam, (β) increased. The nanoparticles presented at the air-liquid interface is largely 

dependent on the arrangement of nanoparticles in the air-liquid interface as shown in 

Figure 2.13. Furthermore, the maximum capillary pressure is depended on the value of 

interfacial tension and size of nanoparticles. If the interfacial tension decreases, the 

maximum capillary pressure will also decrease. This is because when the interfacial 

tension decreases, the capillary pressure will also decrease [139]. If the nanoparticle’s 

size decreases to less than 100nm, the maximum capillary pressure will be higher than 

when the nanoparticle’s size is above 1µm [140].  
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2.4.2 Effect of Nanoparticles on Foam Stability Against External Parameters 

When nanoparticles migrated to the gas-liquid interface, the foam stability 

increases. This is because the foam with presence of nanoparticles has a higher 

tolerance against the effect of reservoir conditions such as temperature, salinity of brine, 

and adsorption of surfactant by the reservoir rock. [141]. Hence, in this section, we will 

be discussing the effect of nanoparticles on foam stability against reservoir condition. 

Reservoir temperature is one of the critical parameters that reduced the foam 

stability. When the reservoir temperature is high, the surfactants in the foam will 

degraded. When nanoparticles were added into the foam, the foam stability will still 

decreases compared to the foam stability in ambient condition. This is due to the 

thermal agitation of the nanoparticles and insufficient adsorption of the nanoparticles 

and surfactant molecules at the gas-liquid interface when the reservoir temperature is 

high [18]. The effect of reservoir temperature on nanoparticles stabilized foam can be 

described into three reasons [142]: 

1. The insufficient adsorption of nanoparticles at the lamellae because of the 

energetic movement of the nanoparticles gained in high temperature condition. 

2. The reduction in the foaming solution viscosity with increasing of temperature. 

Therefore, the rate of liquid drainage will increase and resulted in bubble 

coalescence and thin film rupture. 

3. The increasing rate of gas diffusion and evaporation of water from the thin 

liquid films will result in decrease of foam stability. 

Even though, the stability of nanoparticles stabilized foam decreases with 

increasing of reservoir temperature, the foam stability with nanoparticles is still higher 

compared to foam without the presence of nanoparticles at the same reservoir 

temperature [143]. Furthermore, the apparent viscosity of nanoparticles foaming 

solution has a higher value (18 cp) compared to the apparent viscosity of foaming 

solution without nanoparticles (2 cp) at the same reservoir temperature [144]. 

 



 

40 

High salinity of the brine is another critical parameter that will affect the foam 

stability [145]. The foamability and stability of the foam tend to decrease with the 

increasing of salt concentration in the brine solution when the concentration of the 

salinity increases from 0.5wt% to 5.0wt% [146], [147]. However, when nanoparticles 

were added into the foam, foam stability tend to increase with increasing of salt 

concentration [148]. When the salinity of the brine reaches a critical concentration 

called transition salt concentration, the stability of nanoparticles stabilized foam will be 

the highest and beyond the critical concentration, the foam stability will start to decrease 

[145]. This is because the foam stability was controlled by the sum of repulsive 

electrostatic forces and Van der Waals forces of the nanoparticles [149]. In the presence 

of the salts in the solution, the electrostatic repulsion force between nanoparticles 

becomes lower than the Van der Waals force of attraction between nanoparticles and 

therefore, it promotes the aggregation of nanoparticles in the gas-liquid interface [150].  

This is because of the screening of the inherent charges of nanoparticles with the salts 

decreases the electrostatic repulsion force between nanoparticles [151]. However, when 

the nanoparticles start to aggregate in the gas-liquid interface, the aggregated 

nanoparticles will start to form a network of aggregated nanoparticles arrangement in 

the gas-liquid interface as shown in Figure 2.19(c) and will helped to increase the foam 

stability instead. This is because when the electrostatic repulsion between nanoparticles 

decreases, the energy barrier for nanoparticles adsorption and agglomeration at the gas-

liquid interface will allow the formation of a series network of aggregated nanoparticles 

[152]. According to Kostakis et al., the increase of NaCl salt in the foaming solution 

resulted in the decrease of zeta potential and therefore allow nanoparticles adsorption 

at the air-water interface with ease [140]. Meanwhile, the stability of the foam without 

nanoparticles tend to decrease with increasing salinity of brine. This is because the 

presence of monovalent, divalent or multi-valent cation salts will react  with surfactant 

and the surfactant will start to precipitate in the reservoir [153].  

The foam stability decreases with the presence of crude oil even though the 

nanoparticles are added into the foam. However, the stability of the nanoparticles 

stabilized foam are much higher than the stability of the foam without any nanoparticles 

in the presence of the crude oil [128]. This is because the nanoparticles in the foam 

prevented the crude oil droplets from entering, or spreading into the foam which was 
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described in the entering, spreading and bridging coefficients model [154] discussed 

earlier. Based on Yekeen et al., the reason of the increase in foam stability for the foam 

with nanoparticles was because the nanoparticles in the foam were preventing the 

spreading of the oil droplets in the foam even though there was an accumulation of the 

oil in the foam plateau borders of the foam [149]. Therefore, the stability of the foam 

with nanoparticles remains higher than those without in as the nanoparticles also help 

to drain the oil droplets from the foam film and migrate the oil droplets to the plateau 

borders of the foam. 

The stability of foam is greatly influenced by surfactant adsorption by the reservoir 

rock in porous media. The higher the adsorption rate of surfactant onto the rock, the 

less surfactant is adsorbed at the gas-liquid interface of the foam and thus, the foam 

stability will be greatly reduced [149].  The retention of nanoparticles in the porous 

media is described as the fierce collision and friction effect between nanoparticles and 

reservoir rock which may have led to a decrease in surfactant adsorption by the reservoir 

rock [155]. If the adsorption of surfactant by the nanoparticles on the reservoir rock’s 

surface increases, the adsorption of the surfactant by the reservoir rock will decrease 

and vice versa [156]. However, when the nanoparticles and surfactant molecules were 

mixed, the nanoparticles and surfactant will form a negatively charged clusters and the 

mixture tend to suspend in the solution rather than residing on the reservoir rock surface 

and leads to a decrease of surfactant adsorption by the reservoir rock when the 

nanoparticles are presence in the solution [149]. However, if the concentration of the 

nanoparticles is too high, the interfacial tension between the two fluids of the foam will 

increase. This is because most of the surfactant will be adsorbed by the nanoparticles 

thus reduces the concentration of free surfactant in the foaming solution [157]. 
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2.4.3 Influence of Nanoparticle’s Parameters on Stability of the foam 

The parameters of the nanoparticles can influence the stability of the foam. 

Nanoparticles are similarly to the surfactant, where different types and concentration, 

will influence of the stability of the foam. In addition, for nanoparticles, the size of the 

nanoparticles will also influence the foam stability. The nanoparticles are chemical 

compounds  and therefore, the concentration of nanoparticles in the foaming solution 

will greatly affect the foam stability [158]. For example is Tang et al.’s experiment, the 

foam stability increased with the increase of nanoparticles concentration from 0.003 to 

0.5wt % using silicon oxide with the size of nanoparticles kept at a constant of 400nm 

diameter size [159]. This is because the liquid drainage from foam films reduces when 

the nanoparticles concentration increases [160]. When the concentration of 

nanoparticles increases, the presence of nanoparticles at the liquid-gas interface will 

also increase and form aggregate particles instead of a monolayer bridging particles 

[161]. However, an optimum concentration of nanoparticles is required to achieve the 

highest foam stability. For example, in Figure 2.14, the foam stability decreased with 

the increase of nanoparticles concentration from 0.1wt% to 1.0wt% [162]. Another 

example is the Frye et al. experiment, when the concentration of silica oxide 

nanoparticles is less than 1wt %, the foam stability is much lower compared to the 

stability with concentration of 1wt% or higher [163]. Similarly, to surfactants, when the 

concentration of nanoparticles is beyond the optimum concentrations, the excess 

nanoparticles will start to agglomerate and formed a bigger particle network either in 

the liquid phase or at the gas-liquid interface, which interferes with bubbles formation. 

At above optimum concentration also, a rapid rate of liquid discharge will start to occur 

due to the action of exerted gravity by the heavy agglomerated nanoparticles in the 

interface of gas-liquid [164]. When the nanoparticles were migrating out of the foam, 

the surfactant molecules in the gas-liquid interface also decreased because most of the 

surfactant molecules were adsorbed by the nanoparticles and therefore, it will cause the 

foam coalescence phenomena to occur [147]. 
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Figure 2.14: Comparison of foam half-life with different concentration and different 

type of nanoparticles [162] 

The size of nanoparticles is another factor affecting the foam stability [28]. In 

Figure 2.15 showed that foam with nanoparticles size of 20nm has higher foam stability 

than the foam with nanoparticle size of 100nm and 500nm [165]. Furthermore, when 

the concentration of CTAB surfactant increases from the ratio of 1:1 to 1:30, the foam 

with 20nm size of nanoparticles has the highest foam half-life compared to the other 

nanoparticles. This is because the foam stability increases when the nanoparticles size 

is smaller. Smaller nanoparticles will tend to migrate  to the gas-liquid interface of the 

foam easier than the larger-size nanoparticles [166]. This is because the smooth 

movement of the smaller nanoparticles to the gas-liquid interface of foam than the 

larger size nanoparticles [167]. Therefore, more nanoparticles were able to migrate into 

the gas-liquid interface than the larger size nanoparticles. This is because with less 

concentration of large size nanoparticles, the movement of nanoparticles into the 

interface will be easier and improved the stability of the foam by adsorption and 

accumulation of nanoparticles at foam lamellae.  
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Figure 2.15: Foam half-life vs CTAB concentration with nanoparticles at different 

size (20nm, 100nm and 500nm) [165] 

Similarly, to surfactants, the different types of nanoparticles will have different 

foam stability results. The most common nanoparticles used for foam stability is silicon 

oxide nanoparticles [144]. This is because the properties of the silicon oxide can be 

changed easier compared to the other types of nanoparticles. Furthermore, the foam 

with silicon oxide nanoparticles produces the highest foam stability compared to foam 

with aluminium oxide, titanium oxide or copper oxide nanoparticles based on Bayat et 

al. [168]. In Figure 2.16 showed that foam with silicon oxide has the highest foam 

stability compared to aluminium oxide, titanium oxide and copper oxide nanoparticles 

[168]. Meanwhile in Figure 2.17, the foam with silicon oxide nanoparticles has the 

highest oil recovery compared to foam with aluminium oxide, titanium oxide or copper 

oxide nanoparticles [168]. 
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Figure 2.16: Foam half-life vs nanoparticles (NP) concentration with different type of 

nanoparticles [168] 

 

 

Figure 2.17: Oil recovery comparison with different types of nanoparticles [168] 



 

46 

However, there are other experimental works that produced a higher foam stability 

using aluminium oxide nanoparticles compared to that with silicon oxide, copper oxide 

or titanium oxide nanoparticles [162]. This is because the aluminium oxide 

nanoparticles has higher Hamaker constant compared to silicon oxide which enables 

the formation of a stronger network structure in foam film [169]. In Figure 2.14 showed 

that foam with aluminium oxide has the higher foam half-life compared to foam with 

silicon oxide, copper oxide or titanium oxide. In Figure 2.18 showed that foam with 

aluminium oxide nanoparticles has the highest oil recovery compared to foam with 

silicon oxide, copper oxide or titanium oxide nanoparticles [162]. Therefore, the 

available literatures were not enough to make an absolute conclusion that foam with 

silicon oxide or aluminium oxide nanoparticles will produced the highest foam stability. 

The only major conclusion is that foam with nanoparticles will have a better stability 

than foam without nanoparticles, irrespective of the types of the nanoparticles in the 

foam. 

 

Figure 2.18: Oil recovery vs the pore volume (PV) of foam injected into the porous 

media with different types of nanoparticles [162]  
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2.5 Nanoparticles Assisted Foam Injection Using Fly Ash Nanoparticles 

Despite the advantages of nanoparticles, the application of nanoparticles as a foam 

stabilizer on a commercial scale will required an abundant and inexpensive alternative 

source to produce a large quantity for field-scale application [29]. Coal fly ash is a by-

product of burning coal and it can served as an alternative source for low-cost large-

scale production of nanoparticles [30]–[32]. However, the disadvantage of using fly ash 

nanoparticles compared to silicon oxide or aluminium oxide nanoparticles is the size of 

the fly ash sample. The size of nanoparticles played an important parameter because it 

helped to improve the stability of the foam [159]. Based on Singh et al. experiment, the 

diameter of the fly ash particles was between 18µm to 90µm, which is considered too 

large for the use to improve foam stability and therefore, the weak foam was generated 

and lower oil was produced compared to foam with other types of nanoparticles [170]. 

Therefore, to improve the performance of fly ash particles as a foam stabilizer, various 

techniques were used to produce fly ash nanoparticles with the size than 100nm such 

as dry grinding, wet grinding, alkaline mixing, and acid mixing. Based on Ishaq et al. 

experiment, the acidic treated fly ash and alkaline treated fly ash produced a higher 

foam stability compared to mechanical grinded wet or dry fly ash nanoparticles as 

shown in Figure 2.25 [171]. According to the Figure 2.25, the foam stability results of 

using mechanical grinded wet fly ash, acidic treated fly ash and alkaline treated fly ash 

were 92 minutes, 235 minutes, and 165 minutes, respectively. The stability of the foam 

with raw fly ash sample without any treatment was less than 50 minutes and the foam 

without any fly ash sample was between 100 minutes to 150 minutes which was much 

higher than when fly ash particles is added into the foaming solution. Therefore, it 

proved that the size of the nanoparticles played an important role affecting the foam 

stability. This is because the larger size nanoparticles will not be able to migrate into 

the gas-liquid interface since the diameter was larger than the foam lamellae. In 

addition, from the Figure 2.25, the foam with chemically treated fly ash produced the 

higher foam stability than foam with mechanically treated fly ash, raw fly ash or without 

any nanoparticles. When foam with fly ash sample is used for enhanced oil recovery 

(EOR) purposes, a high volume of foam solution is needed to improve oil recovery. In 

Figure 2.26 showed the pressure drop or pressure difference in the porous media when 

the foam is injected [170]. In figure 2.26(a) shows the foam without nanoparticles 
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producing a maximum pressure drop of 10psi meanwhile, in figure 2.26(b) shows the 

foam with fly ash nanoparticles producing up to a maximum pressure drop of 20psi. 

This showed that foam with nanoparticles regardless of size would help to improve the 

foam mobility compared to foam without nanoparticles. In Figure 2.27 showed the 

foam with AOS-LAPB surfactant mixed with fly ash sample has a higher oil recovery 

than foam with AOS-LAPB mixed with iron oxide nanoparticles [172]. However, the 

volume of foam injected for foam with fly ash sample was four times higher than the 

volume of foam injected for foam with iron oxide. This is because foam with fly ash 

sample has low foam half-life compared to foam with iron oxide and in the porous 

media, the foam with fly ash sample is more unstable compared to foam with iron oxide 

[172] 

 

Figure 2.25: Nitrogen foam stability and foam height measurement in the presence of 

tapis crude oil with different type of surfactants fly ash nanoparticles, (a) alkali treated 

fly ash, (b) acidic treated fly ash and (c) dry and wet grinded fly ash [171] 
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Figure 2.26: Pressure drop vs volume of foam injected a) foam without fly ash 

nanoparticles b) foam with fly ash nanoparticles [170] 

 

Figure 2.27: Oil recovery vs pore volume of foam injected, a) foam of AOS-LAPB + 

Fly ash, b) foam of AOS-LAPB + Iron oxide [172] 
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2.6 Chapter Summary 

In nanoparticles study, the most important parameters of using nanoparticles as the 

foam stabilizer were the concentration of nanoparticles, size of nanoparticles and type 

of nanoparticles. From the results, the foam with silicon oxide and aluminium oxide 

nanoparticles produced the highest foam stability. One of the reasons in selecting fly 

ash particles as a foam stabilizer is because the main composition of fly ash particles is 

silicon oxide, and second highest composition is aluminium oxide. Secondly, a 

chemical synthesis was proposed to synthesis the nanoparticles from fly ash sample 

because foam with chemically treated fly ash has the highest foam stability compared 

to foam with mechanically treated fly ash, and raw fly ash as discussed.  



  

CHAPTER 3 

MATERIALS METHODOLOGY 

3.1 Chapter Overview 

In this research, we will be incorporating the experimental works, reservoir 

simulation and data analysis. Figure 3.1 will be discussing the detail procedure of all 

the experiments conducted from sample preparation until data obtained from the 

experimental works. The most important factor affecting foam injection in the porous 

media is the foam stability. Therefore, in this research, we will be mainly investigating 

the foam stability and foamability using various nanoparticles with an aim to extend the 

foam stability. The first section which is highlighted in blue background will be 

discussing the workflow of synthesising nanoparticles and characterization of 

nanoparticles such as the size and composition of the nanoparticles. In the second 

section which is highlighted in orange background, we will be discussing the 

experimental works related to the properties of the foam such as foam stability, 

foamability and IFT of the solution which may affect the foam stability or oil recovery 

when injected into the porous media. The third section which is  highlighted in green 

background will be investigating the major governing factor of foam injection affecting 

oil recovery using Eclipse software. 
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Figure 3.1: Research methodology of the research 
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3.2 Chemicals and Materials 

Table 3.1 showed the chemicals and materials used for the experimental works.   

The MFOMAX surfactant solution was supplied by the Petronas Research Sdn Bhd 

company with a concentration of 20wt%. The surfactant is currently being patented 

hence no detailed content was provided by the company.  However, the general 

description of the MFOMAX surfactant properties by the company is that it is a 

zwitterionic surfactant with some polymeric content in its structure [173]. The coal fly 

ash sample was supplied by the coal plant in Manjung, Perak, Malaysia. The Baronia 

crude oil and the Berea sandstone core samples were supplied by Petronas Research 

Sdn Bhd, Malaysia. 

Table 3.1: Chemicals and Materials  

Materials/ Chemicals Supplied By 

Coal Fly Ash Manjung Tenaga Nasional Berhad (TNB), Malaysia 

Sodium Chloride (NaCl) Merck Millipore, USA 

Calcium Chloride (𝐶𝑎𝐶𝑙2) R&M, Switzerland 

Sodium Hydroxide (NaOH) Sigma Aldrich, USA 

Sulphuric Acid (𝐻2𝑆𝑂4) Sigma Aldrich, USA 

Aluminium Oxide (Al2O3) Sigma Aldrich, USA 

Silicon Oxide (SiO2)  US Research Nanomaterials, USA 

Ethanol Thermoscientific, USA 

Whatmann Filter Paper Thermoscientific, USA 

MFOMAX surfactant Petronas Research Sdn Bhd, Malaysia 

Berea Sandstone Petronas Research Sdn Bhd, Malaysia 

Baronia Crude Oil Petronas Research Sdn Bhd, Malaysia 
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The composition of the crude oil was described in Table 3.2 with a density of 0.8169 

g/cm3 with an API of 39.4° in room temperature [174]. When the temperature increased 

up to 90°C, the density and API of the crude oil were 781.2 kg/m3 and 44.0° 

respectively.  

 

Table 3.2: Composition of Baronia Composition of Baronia Crude Oil in term of 

Hydrocarbon Chain 

Type of 

Hydrocarbon Chains 

Percentage (%) Type of Hydrocarbon 

Chains 

Percentage (%) 

C5+ 15.62 C18 0.3 

C7+ 14.39 C18 – C20 7.19 

C11 1.58 C20 0.22 

C11 – C12 8.36 C20 – C22 3.64 

C12 4.88 C22 0.38 

C12 – C14 15.78 C22 – C24 0.73 

C14 7.04 C24 0.07 

C14 – C16 12.7 C24 – C26 0.19 

C16 0.75 C26 0.01 

C16 – C18 6.16 C26+ 0.03 

 

The obtained Berea sandstone core samples were in cylindrical in size with a 

diameter of 1.5 inches and a length of 6.0 inches and the composition of the Berea 

sandstone samples were described in Table 3.3 [175].  
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Table 3.3: Composition of Berea sandstone 

Composition of 

Berea Sandstone 

Concentration (wt%) Composition of 

Berea Sandstone 

Concentration 

(wt%) 

SiO2 84.60 CaO 0.20 

Al2O3 11.50 Fe2O3 0.16 

Na2O 1.64 Cr2O3 0.09 

MgO 0.66 SO3 0.36 

K2O 0.60  

 

The properties of nitrogen gas was described in Table 3.4  because the nitrogen gas 

was mainly used for foam generation in this research. 

Table 3.4: Properties of Nitrogen Gas 

Density (g/ml) at 25°C and 

14.7psi 

Viscosity (cp) at 25°C and 

14.7psi 

Purity of nitrogen gas 

(%) 

0.001251 0.0177 99 

Critical Temperature (°C) Critical Pressure (psia)   

-146.9 492.3   
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3.3 Synthesis of Nanoparticles from Coal Fly Ash using Chemical Treatment 

The aim of chemical treatment is to synthesis a nanoparticle size sample from the 

coal fly ash  because the size of coal fly sample is larger than 1µm [170], [172], [176], 

[177]. Furthermore, for a material to be classified as a nanoparticle, the diameter of the 

material must be less than 100nm. The chemical treatment procedure is divided into 

two steps which are alkaline leaching and acid titration as shown in Figure 3.2.  

Before the start of chemical treatment, the coal fly ash sample was washed with 

sulphuric acid (𝐻2𝑆𝑂4) at a temperature of 100°C. This was done to remove any 

metallic impurities and any loss-on-ignition (LOI) components attached on the fly ash 

sample. The loss-on-ignition (LOI) is a standard method to evaluate the carbon content 

in fly ash sample according to the ASTM D3174-82 [170]. The leached fly ash was 

leached in an alkaline solution using sodium hydroxide (NaOH). The mixture was then 

filtered using the Whatman filter paper and neutralise with distilled water until the pH 

reached 7. The colourless filtrate was then collected and used for acid titration process. 

During the acid titration process, the sulphuric acid was slowly added into the filtrate, 

until the formation of the white gel appeared. The white gel was then used calcinated 

to produce the synthesized nanoparticles. Therefore, in this section, we will be 

describing the procedure of synthesising two synthesized nanoparticles FANP1 and 

FANP2 using chemical treatment. 
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Figure 3.2: Procedure of how nanoparticles are synthesized from coal fly ash 

3.3.1 Synthesis of FANP1 Nanoparticles using Chemical Treatment 

The synthesis process for FANP1 nanoparticles using the chemical treatment was 

describe in Figure 3.3. Firstly, the coal fly ash sample was washed with sulphuric acid 

with a concentration of 10wt% and under a continuous stirring condition at the 

temperature of 100°C. The leached fly ash was then filtered using the Whatmann filter 

paper and the residue was washed with distilled water until the pH values reached 7. 

The residue was mixed with 2.5M of sodium hydroxide, followed by heating at a 

temperature of 100°C for five hours. The mixed solution was filtered again using the 

Whatmann filter paper and the filtrate was used for the acid titration process. The filtrate 

then undergoes a titration process using 2.0M of sulphuric acid with a continuous 

stirring condition at the temperature of 100°C, until a white gel appeared [37]. The 

white gel was then aged for 24 hours to get the uniform-size zeolite. After aging for 24 

hours, the white gel was washed with distilled water and ethanol solution until the pH 

value reached the value of 7. Lastly, the white gel was then filtered using Whatman 
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filter paper to remove the filtrate and undergoes the calcination process at the 

temperature of 400°C for two hours [178]. 

 

Figure 3.3: Methodology of Synthesized Nanoparticles FANP1 

 

3.3.2 Synthesis of FANP2 Nanoparticles using Chemical Treatment 

The process of synthesising FANP2 nanoparticles using the chemical treatment 

procedure is describe in Figure 3.4. Before the chemical treatment, the coal fly ash 

sample was washed with sulphuric acid with a concentration of 10wt% and under a 

continuous stirring condition at the temperature of 100°C. The leached fly ash was then 

filtered using the Whatmann filter paper and the residue was extracted and washed with 

distilled water until the pH values reached 7. The residue was mixed with 2.5M of 

sodium hydroxide in a beaker and the residue was heated at a temperature of 100°C for 

five hours. The mixed solution was filtered again using the Whatmann filter paper and 

the filtrate was extracted. The filtrate was then mixed with 2wt% of MFOMAX 

surfactant and the mixed solution undergoes the acid titration process using 2.0M of 
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sulphuric acid with a continuous stirring condition at the temperature of 100°C, until a 

white gel appeared [37]. The white gel was then aged for 24 hours to get the uniform-

size zeolite. After aging for 24 hours, the white gel was washed with distilled water and 

ethanol solution until the pH value reached the value of 7. Lastly, the white gel was 

then filtered using Whatman filter paper to remove the filtrate and undergoes the 

calcination process at the temperature of 400°C for two hours [178]. 

 

Figure 3.4: Methodology of Synthesized Nanoparticles FANP2  
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3.4 Preparation of Foaming Solution 

Six types of nanoparticles were used as a foam stabilizer for the foam injection 

experiment which were described as followed: 

• Base: No nanoparticles and only contain MFOMAX surfactant. 

• CFA: Coal fly ash sample as foam stabilizer. 

• FANP1: Synthesized nanoparticles FANP1 that was produced using 

chemical treatment as described in Section 3.3.1. 

• FANP2: Synthesized nanoparticles FANP2 that was produced using 

chemical treatment as described in Section 3.3.2. 

• R1: Consist of 50% of commercial nanoparticles SiO2 and 50% of 

commercial nanoparticles Al2O3. 

• R2: Consist of 66.7% of commercial nanoparticles SiO2 and 33.3% of 

commercial nanoparticles Al2O3. 

The foaming solution was made by the mixture of several fluids that have different 

properties which were listed: 

• Brine with salinity of 3.3wt% that consist of 95% NaCl and 5% CaCl2. 

• MFOMAX surfactant with a concentration of 0.5wt%. 

• Nanoparticles with a concentration of 556ppm, 1250ppm, or 2143ppm. 

The foaming solution was stirred for 12 hours using the magnetic stirrer. Followed 

by 2 hours of sonication using ultrasonic cleaner TPC-120, TELSONIC to stabilize 

nanoparticles in solution at room condition [179]. In Table 3.5 showed the 

concentration ratio between the MFOMAX surfactant and nanoparticles. Four different 

concentration ratios of nanoparticles were used for the experiment which were 100:0, 

90:10, 80:20 and 70:30. For R1 nanoparticles, when the concentration of the 

nanoparticles was 556ppm, the concentration of silicon oxide nanoparticles was 

278ppm and for aluminium oxide was 278ppm. For R2 nanoparticles, when the 
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concentration was 556ppm, the concentration of silicon oxide nanoparticles was 

371ppm and the concentration for aluminium oxide was 185ppm. These phenomena 

will be same when the concentration of nanoparticles increased up to 1250ppm and 

2143ppm. The reason was the composition of R1 nanoparticles was 50% of silicon 

oxide nanoparticles and 50% of aluminium nanoparticles. For R2 nanoparticles, the 

composition of R2 nanoparticles was 66.7% of silicon oxide and 33.3% of aluminium 

oxide. 

 

Table 3.5: Concentration Ratio Between Surfactant and Nanoparticles  

Type of 

Nanoparticles 
Labelling 

Concentration 

of Nanoparticles 

(ppm) 

Concentration 

of MFOMAX 

(ppm) 

Concentration 

ratio between 

MFOMAX and 

Nanoparticles 

Base Base 0 ppm 5000 ppm 100:0 

CFA 

CFA-a 556 ppm 5000 ppm 90:10 

CFA-b 1250 ppm 5000 ppm 80:20 

CFA-c 2143 ppm 5000 ppm 70:30 

FANP1 

FANP1-a 556 ppm 5000 ppm 90:10 

FANP1-b 1250 ppm 5000 ppm 80:20 

FANP1-c 2143 ppm 5000 ppm 70:30 

FANP2 

FANP2-a 556 ppm 5000 ppm 90:10 

FANP2-b 1250 ppm 5000 ppm 80:20 



 

62 

FANP2-c 2143 ppm 5000 ppm 70:30 

R1 

R1-a 556 ppm 5000 ppm 90:10 

R1-b 1250 ppm 5000 ppm 80:20 

R1-c 2143 ppm 5000 ppm 70:30 

R2 

R2-a 556 ppm 5000 ppm 90:10 

R2-b 1250 ppm 5000 ppm 80:20 

R2-c 2143 ppm 5000 ppm 70:30 

 

3.5 Characterization of Nanoparticles and Coal Fly Ash  

After the synthesis process of nanoparticles, the size of the nanoparticles will be 

measured using the FESEM (Emission Scanning Electron Microscope) equipment. The 

composition of the nanoparticles will be measured using the EDX (Energy-Dispersive 

X-ray Spectroscopy) and X-ray Photoelectron Spectrometer (XPS) equipment. The aim 

was to determine whether the synthesized nanoparticles and commercial nanoparticles 

can be classified as nanoparticles as discussed in Section 3.3. Furthermore, the size and 

composition nanoparticles will influence the foam stability as discussed in section 

2.4.32 and 2.4.3.3. The last experiment for characterization was sedimentation 

experiment. The objective of the experiment was to determine whether the 

nanoparticles was suspended in the liquid solution or agglomerated and sedimented on 

bottom of the foaming solution. This is because when the nanoparticles agglomerated 

due to the gravitational force, the nanoparticles will be migrated out of the foam 

lamellae and thus, the foam stability decreased.  
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3.5.1 Nanoparticle’s Size Measurement  

The size of nanoparticles will be observed using the Emission Scanning Electron 

Microscope (FESEM) equipment. The experiments were done at the temperature of 

25°C and the pressure of 1 atm. Before starting the measurement, the nanoparticles 

were coated with thin layer of gold using the Biorad RC500 equipment. The usage of 

gold particles was used to reduce the charge build-up on the nanoparticles under the 

electron beam at the high voltage needed to obtain high magnification and to improve 

the conductive character of the nanoparticles that contain metallic elements. After, 

coating the nanoparticles with gold particles, the procedure of size measurement was 

described as followed: 

1. The glass plate was used to place the nanoparticles on top of it and the glass 

plate was mounted onto microscopy stubs using carbon sticky tape. 

2. The FESEM equipment and the computer connected to the FESEM equipment 

were turned on. 

3. The SmartSEM® program was used for size measurement and, in the program, 

the docking panel was selected to load the nanoparticles sample on the glass 

plate into the specimen chamber. 

4. The Vent button was selected in the program to vacuum the air in the specimen 

chamber and the electron gun was switched on. 

5. The EHT value was set at 5.00 kV and the magnified image was set at 50.00 

K.X for the size measurement. 

6. The detector panel was selected in the SmartSEM® program to measure the size 

of nanoparticles. 
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7. The image was then saved by selecting the Freeze button and save the image 

into the word document. 

3.5.2 Nanoparticle’s Composition Analysis 

The composition of nanoparticles will be observed using the Energy-Dispersive X-

ray Spectroscopy (EDX) and X-ray Photoelectron Spectrometer (XPS) equipment.  The 

usage of two equipment to analyse the composition was to differentiate some chemical 

compounds that produced the same energy wavelength such as oxygen atom in term of 

O2 and O3 will produced the similar energy wavelength [180]. The composition 

experiments were done at the temperature of 25°C and the pressure of 1 atm. The EDX 

equipment can be operated using the procedure in Section 3.5.1 because the EDX 

equipment was connected to the FESEM equipment. The measurement can be done by 

opening the EDX program after the FESEM measurement and the data can be saved 

together with the size measurement into a word file document. The EDX equipment 

was used to measure the peaks of each electromagnetic emission created by the 

nanoparticles as each chemical elements will has its own unique atomic structure, thus 

allowing a unique set of peaks on the electromagnetic emission spectrum [181]. 

Meanwhile, the XPS equipment will be measuring the kinetic energy and number of 

electrons that escaped from the molecules by irradiating a material with a beam of X-

rays to determine the composition of the nanoparticles. The procedure of operating the 

XPS is as followed: 

1. The nanoparticles sample was mounted on the XPS stub after cleaning the stub. 

2. The XPS and computer connected to the XPS equipment were turned on. 

3. The nitrogen pump connected to the XPS equipment was turned on and the stub 

containing the sample was placed onto the load lock arm. 
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4. The sample was then moved into the specimen chamber and in the XPS 

program, the vacuum button was selected to vacuum the specimen chamber. 

5. The ion gun was switched to standby mode. In the X-ray gun panel, the emission 

(mA) was set to “1” and anode HT (kV) was set to “10”. 

6. The ion gun was then turned on. The emission (mA) and the anode HT were 

slowly increased up to 10mA and 15kV respectively while monitoring the SAC 

pressure. 

7. In the X-ray Gun panel, the “on” button to start injecting electrons and in the 

Acquisition panel, the “on” button was pressed to start the measurement. 

8. The microscope was magnified up to 50.00 K.X. The microscope was adjusted 

until the picture of the sample was clearer. 

9. After capturing the data, the “recipes” button was selected to export the data in 

excel format and the data was saved in the excel file. 

3.5.3 Sedimentation of Synthesized Nanoparticles Experiment 

The sedimentation experiment was done by measuring the turbidity of the foaming 

solution, using the Hach Model 2100A turbidimeter. The definition of turbidity is the 

measurement of water transparency lost due to the presence of suspended particles in 

the water. The experiments were done at the temperature of 25°C and the pressure of 1 

atm. Three type of nanoparticles will be used for the experiment which were CFA-a, 

FANP1-a and FANP2-a with a concentration ratio of 90:10. The procedure of the 

sedimentation experiment was done as followed: 
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1. 25ml of the foaming solution was prepared. 

2. The foaming solution was then put into the specimen chamber of turbidimeter. 

3. The lid of the specimen chamber was closed, and the button with the label 

“Scan” was pressed to start measuring the turbidity reading. 

4. The reading was recorded, and the turbidity measurement was repeated at the 

interval of 10 minutes for 2 hours. 

3.6 Interfacial Tension (IFT) Measurement 

The interfacial tension (IFT) measurement was done using the pendant-drop 

method. Before the IFT experiment, the density data was required for the IFT 

measurement, therefore, the density was measured using the DM 40 density meter. The 

density experiments were done at the temperature of 90°C and pressure of 1800 psi. 

The procedure of density experiment was done as followed: 

1. Before the experiment, toluene was injected into the equipment to clean the 

equipment. 

2. Nitrogen gas was then injected into the equipment to remove any remaining 

liquid residue in the equipment. 

3. 20ml of the solution was injected into the sample container. 

4. The sample container was closed tightly, and the pressure was set at 1800psi. 

5. After maintaining the pressure at 1800psi, the temperature was then set at 90°C. 

6. When the temperature reaches 90°C, the density readings was collected. 

 



 

67 

The IFT experiments were done at the temperature of 90°C and pressure of 1800 

psi using the HTHP pendant drop IFT-700 equipment. The IFT procedure was done as 

followed: 

1. Toluene solution was injected into the equipment to remove any residue in the 

equipment. 

2. Nitrogen gas was injected into the equipment to blow any remaining liquid 

residue in the equipment. 

3. Two types of fluid solutions for droplet fluid and bulk fluid were prepared and 

the fluids were injected into two separate sample containers, respectively. 

4. The bulk fluid was injected into the fluid chamber. 

5. The computer connected to the IFT equipment to connect the equipment and 

camera was turned on. 

6. The density of two fluids were inserted into the IFT software. 

7. The pressure of the equipment was set at 1800psi. 

8. After maintaining the pressure at 1800psi, the temperature was then set to 90°C. 

9. When the required temperature and pressure were achieved, the valve connected 

to the capillary needle was opened.  

10. The droplet fluid was then injected into the fluid chamber. 

11. The droplet was created and monitored through the PC camera window. 

12. The camera was adjusted to detect and monitor the clearer picture of the droplet. 

13. Through the IFT software, the IFT data were captured and saved into a excel 

document.  
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3.7 Static Foam Stability Measurement 

The static foam stability experiments were done using the FoamScan equipment 

manufactured by Teclis, France. In the static foam stability experiment, the foamability 

and foam stability (Foam half-life) were measured to determine the effectiveness of the 

foam when using nanoparticles. The foamability was calculated by measuring the time 

taken for the foam to reach 150 ml of foam volume and the foam stability was calculated 

by measuring the time taken for the foam volume to decrease from 150 ml to 75 ml of 

foam volume [182]. Although the morphology of the foam flowing in the porous media 

is different from static foam,  the static foam stability experiment can be used as a 

screening tool to compare and evaluate the foaming tendency of different chemical 

formulations because it has the highest accuracy to measure the half-life of the foam in 

reservoir condition compared to other measurement methods [183]. The temperature of 

the experiments was set at 90°C while the pressure was set at 3 bar. The static foam 

stability procedure was described as followed: 

1. Before the experiment, distilled water was injected to the FoamScan equipment 

to wash off any residue. 

2. Nitrogen gas was then injected into the Foamscan equipment to remove any 

residue left behind. 

3. 60ml of foaming solution containing 10wt% of Baronia oil was injected into the 

liquid column of the equipment. 

4. The computer connected to the equipment was turned on and the FoamScan 

equipment was pressurized up to 3bar. 

5. When the pressure reading stabilized, the temperature was increased up to 90°C. 

6. The camera was calibrated, and grey scale was adjusted so that the camera can 

differentiate the liquid solution and the foam. 
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7. Nitrogen gas was then injected from the bottom of the equipment at a flow rate 

of 50 cc/min until the foam volume generate up to 150 ml. 

8. The FoamScan software will captured the time taken for when the foam reached 

up to 150ml of foam volume and the time taken when the foam volume reduced 

to 75ml of foam volume. 

9. The data was then saved into the excel document. 

3.8 Core Flooding Experiment 

Core flooding experiments or known as core displacement experiments were done 

to investigate the efficiency of nanoparticles in improving the gas mobility control and 

oil recovery before the application into the pilot filed.  

3.8.1 Core Cleaning Methodology 

Five Berea sandstone cores were prepared for core flooding experiments. Before 

the core flooding experiment, the Berea sandstone cores were cleaned to remove any 

impurities, chemicals, and oil stain. The core cleaning process was done using the CO2 

and Solvent Core Cleaner equipment, Vinci Technologies. The core cleaning process 

was done by submerging the core samples into the solvent solution (Toluene) for a few 

hours. The purpose of using the Toluene was to dissolve any impurities into the solvent. 

The CO2 gas was injected into the core samples was to apply some pressure for the 

solvent to invade into the smaller pores of the core sample so that the solvent will 

dissolve any chemicals or oil stain in the pore of the core by forming the oil-solvent 

emulsion. The cycle of injecting solvent and CO2 gas were repeated for seven days. 

During the depressurization process, the solvent was drained out and CO2 gas was 

injected again to blow out any liquid out from the core samples. The core samples were 
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taken out and dried in the oven for a few days to remove any remaining solvent left in 

the core samples. 

3.8.2 Porosity and Permeability of Berea Core Measurement 

After the core cleaning process, the weight of the Berea core sample was measured 

using the mass balance. After the measurement, the core was submerged into a brine 

solution with a salinity of 3.3wt% (95% of NaCl and 5% of CaCl2) in the desiccator 

equipment attached with vacuum pump. When the lid of the desiccator equipment is 

closed, the vacuum pump was turned on to vacuum the air in the desiccator equipment 

for a few hours. The sample core was then left to submerged in the brine solution for a 

few days until there were no gas bubbles coming out of the core sample when the 

vacuum pump was turned on. The core sample was taken out and was weighted using 

the mass balance to calculate the porosity of the core which was measured using the 

equation (3.2): 

∅ =
𝑊𝑎𝑓𝑡𝑒𝑟 − 𝑊 𝑏𝑒𝑓𝑜𝑟𝑒 

𝜌𝑏𝑟𝑖𝑛𝑒
 (3.2) 

Where: 

∅ = Porosity,  

𝑊𝑎𝑓𝑡𝑒𝑟  = Weight of the core after submerging into the brine  

𝑊 𝑏𝑒𝑓𝑜𝑟𝑒  = Weight of the core before submerging into the brine  

𝜌𝑏𝑟𝑖𝑛𝑒 = Density of the brine solution. 
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   The permeability of the core was measured by measuring the water permeability 

of the core. The water permeability was calculated using the HTHP core flooding 

equipment, Sanchez Technologies. The salinity of the brine solution used for the water 

permeability measurement was 3.3wt% and contained 95% of NaCl and 5% of CaCl2. 

The core sample was put into a rubber sleeve and placed inside the core holder. The 

core holder was then placed into the equipment. The brine solution was injected with 

three different flow rates which were 0.2 ml/min, 0.5 ml/min, 1.0 ml/min at the 

atmospheric conditions. Equation (3.3) was used to calculate the water permeability 

[184]: 

𝑞 𝜇

𝐴
= 𝑘

∆𝑃

𝐿
 (3.3) 

Where: 

q = Injection flow rate 

A = Area of the core 

µ =Viscosity of the brine solution 

∆P = Differential pressure of inlet pressure and outlet pressure 

L = Length of the core 

k = Water permeability 

3.8.3 Foam Injection Experiment 

After measuring the water permeability, the equipment was heated up to 90°C and 

slowly pressurized up to 1800 psi. When the readings of the temperature and pressure 

become stable, Baronia crude oil was injected into the core sample at a flowrate of 0.2 
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ml/min, until there was no water produced at the outlet of the equipment. The initial oil 

saturation (𝑆𝑜𝑟) was calculated by subtracting the total volume of oil injected with the 

total volume of oil produced at the outlet of the equipment. The irreducible water (𝑆𝑤𝑟𝑟) 

was calculated by subtracting the total volume of brine (water) injected with the total 

volume of the brine produced at the outlet of the equipment. The core sample was then 

left to age for two days. Brine solution was injected thereafter, as primary recovery 

followed by nitrogen gas injection as secondary recovery. Finally, a cycle of foaming 

solution was injected followed by nitrogen gas injection as the EOR injection. All the 

injected solutions were injected at a flow rate of 0.2 ml/min [185]. The MRF value can 

be calculated using the equation (3.4) for the foam mobility calculation: 

𝑀𝑅𝐹 =  
∆𝑃𝑓𝑜𝑎𝑚

∆𝑃𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑓𝑜𝑎𝑚
 (3.5) 

Where: 

∆𝑃𝑓𝑜𝑎𝑚 = Pressure drops across the core during SAG injection 

∆𝑃𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑓𝑜𝑎𝑚 = Pressure drops across the core during gas injection 

A higher pressure drops and a higher MRF value will indicate a strong foam front 

inside the core whereas, a sustained pressure drops and MRF trend indicate the stability 

of the foam [186]. 

3.9 History Matching and Sensitivity Analysis 

Schlumberger Eclipse 100 software was used for the foam history matching from 

one of the core flooding experiment. The foam model used in this work is a Local-

equilibrium model, also known as "implicit texture (IT) model" [187], which does not 

able to clearly capture the dynamic behaviour of foam but assumes that foam creation 
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and coalescence has reached equilibrium. This assumption was considered valid at the 

timescale of a field scale applications as shown in equation (3.5) [188]: 

𝑢𝑔
𝑓

=  
𝑢𝑔

𝐹𝑀
 (3.5) 

Where: 

𝑢𝑔
𝑓
 = Gas viscosity with foam 

𝑢𝑔 = Viscosity of gas 

FM = Non-dimensional of mobility reduction factor 

 

   The IT model relates the value of FM to several functions such a surfactant 

concentration, water saturation, oil saturation, and capillary number as shown in 

equation (3.6) [189]: 

𝐹𝑀 =  
1

1 +  𝑓𝑚𝑚𝑜𝑏 +  𝐹𝑠𝑢𝑟𝑓 +  𝐹𝑑𝑟𝑦 + 𝐹𝑜𝑖𝑙 +  𝐹𝑐𝑎𝑝
 (3.6) 

Where: 

𝑓𝑚𝑚𝑜𝑏 = Reference mobility factor  

𝐹𝑠𝑢𝑟𝑓 = Mobility reduction factor due to surfactant concentration 

𝐹𝑑𝑟𝑦 = Mobility reduction factor due to water saturation 

𝐹𝑜𝑖𝑙 = Mobility reduction factor due to oil saturation  

𝐹𝑐𝑎𝑝 = Mobility reduction factor due to capillary number 
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   After history matching, the sensitivity analysis will be done to provide a better 

understanding and interpretation of foam injection. The foam stability and surfactant 

adsorption by the reservoir rock were the two factors in forecasting the oil recovery 

using the Eclipse 100. 

3.10 Chapter Summary 

This chapter was a platform to expose the methodology used in this research to 

achieve mentioned objectives. It presented different chemicals, materials and 

equipment employed in this study in detail.  All the equipment and procedure used in 

this study, was provided in this chapter with detail starting from sample preparation up 

to data analysis were described in detail such as nanoparticles characterization, foam 

stability, foamability, IFT, core flooding and reservoir simulation.  



  

CHAPTER 4 

RESULT AND DISCUSSION 

 

4.1 Chapter Overview 

The Chapter 4 will be discussing the results done from the experimental works and 

simulation run as described in Chapter 3. The result and discussion can be divided into 

3 sections related to the respective objectives.  

I. Characterization of nanoparticles after nanoparticles synthesis using 

chemical treatment. 

II. Experimental works such as foam stability experiment, IFT experiment and 

oil recovery to evaluate the performance of nanoparticles on foam stability 

and oil recovery. 

III. History matching and oil forecasting to determine the main governing factor 

of foam injection on oil recovery using Eclipse100. 
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4.2 Nanoparticle’s Size Measurement 

Figure 4.1 showed the FESEM image of CFA nanoparticles, and the size of the 

CFA nanoparticles was around 13.63µm. The size of the CFA nanoparticles was 

considered too large to be classified as a nanoparticle [176] 

 

Figure 4.1: FESEM Image of CFA nanoparticles [176] 

In Figure 4.2 showed the FESEM image of synthesized nanoparticles FANP1 that 

was produced using chemical treatment as discussed in Section 3.3.1. The size of 

FANP1 nanoparticles was between 10nm to 20nm. In Figure 4.3 showed the FESEM 

image of synthesized nanoparticles FANP2 that was coated with MFOMAX surfactant 

and was produced using chemical treatment as discussed in Section 3.3.2. The size of 

FANP2 nanoparticles was between 40nm to 60nm. Based on the Figure 4.2 and Figure 

4.3, the FANP2 synthesized nanoparticles was slightly larger than the FANP1 

synthesized nanoparticles. This is because FANP2 nanoparticles was coated with 

MFOMAX surfactant during the chemical treatment. This phenomena was similar to 

the Ahmed et al experiment [190]. In the Ahmed et al experiment, the size of normal 

silicon oxide nanoparticles was between 50nm to 125nm, but when the silicon oxide 

nanoparticles were coated with ENORDETTM O-342 surfactant, the size of the coated 
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nanoparticles was increased up to 145nm. Based on the FESEM results, it showed that 

the synthesized nanoparticles FANP1 and FANP2 were successfully produced into the 

size of less than 100nm which can be classified as nanoparticles when chemical 

treatment method was used.  

 

Figure 4.2: FESEM Image of FANP1 nanoparticles 

 

Figure 4.3: FESEM Image of FANP2 nanoparticles 
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Figure 4.4 and Figure 4.5 showed the FESEM image of SiO2 and Al2O3 

nanoparticles bought from Sigma Aldrich and US Research Nanomaterials, 

respectively. In Figure 4.4 showed that the size of SiO2 nanoparticles was between 

10nm to 55nm. In Figure 4.5 showed the image of Al2O3 nanoparticles and the size of 

the nanoparticles was between 20nm to 30nm. Therefore, it showed that the commercial 

nanoparticles SiO2 and Al2O3 have the size of less than 100nm. 

 

 

Figure 4.4: FESEM Image of SiO2 nanoparticles 
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Figure 4.5: FESEM Image of Al2O3 nanoparticles 

4.3 Nanoparticle’s Composition Analysis Study 

Table 4.1 showed the composition of CFA, FANP1, FANP2, SiO2 and Al2O3 

nanoparticles using EDX analysis. From the EDX analysis, the main composition of 

the CFA nanoparticles was SiO2 (43.26%) component followed by 20.59% of Al2O3, 

11.11% of iron (II) oxide (Fe2O3), 3.76% of calcium carbonate (CaCO3) and 8.79% of 

other components such as magnesium oxide (MgO), loss-on-ignition (LOI), and etc. 

For the synthesized nanoparticles of FANP1 and FANP2, both synthesized 

nanoparticles only contained three chemical components which were SiO2, Al2O3 and 

Na2SO4. Meanwhile the remaining chemical components such Fe2O3, MgO and K2O 

were absent in the composition of the synthesized nanoparticles. The Fe2O3 component 

was removed when the coal fly ash sample was washed with sulphuric acid before the 

chemical treatment as shown in Equation (4.1). This is because Fe2O3 is a maghemite, 

hematite, and magnetite component that will can be easily dissolved in the presence of 

diluted acid solution [191]. The CaCO3 component was removed when the leached fly 

ash sample was mixed with sodium hydroxide and formed calcium hydroxide (CaOH) 

as explained in Equation (4.2). Calcium hydroxide is relatively insoluble in water 
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especially under a higher temperature condition. Therefore, calcium hydroxide was 

separated through filtration after mixing with sodium hydroxide using Whatmann filter 

paper. MgO component was removed by mixing with the alkaline solution and formed 

Mg (OH)2  as explained in Equation (4.3) which was insoluble materials and therefore, 

can be filtered out as a residual using Whatmann filter paper [192]. Meanwhile for LOI, 

it was burn away during the heating process and during the primary washing with dilute 

sulphuric acid.  

 

𝐹𝑒2𝑂3 +  3𝐻2𝑆𝑂4 →  𝐹𝑒2(𝑆𝑂4)3 +  3𝐻2𝑂 (4.1) 

𝐶𝑎𝐶𝑂3 + 𝑁𝑎𝑂𝐻 → 𝐶𝑎𝑂𝐻 + 𝐻2𝑂 +  𝐶𝑂2 (4.2) 

𝑀𝑔𝑂 +  2𝑁𝑎𝑂𝐻 →   𝑀𝑔(𝑂𝐻)2 + 𝑁𝑎2𝑂 (4.3) 

2𝑁𝑎2𝐴𝑙2𝑆𝑖14𝑂32 · 3𝐻2𝑂 + 2𝐻2𝑆𝑂4 → 2𝐴𝑙2𝑂3 + 28𝑆𝑖𝑂2 + 2𝑁𝑎2𝑆𝑂4 + 5𝐻2𝑂 (4.4) 

 

Based on Table 4.1, the composition of the FANP1 nanoparticles was 40.71% of 

SiO2, 34.65% of Al2O3 and 24.64% of Na2SO4 whereas, the composition of FANP2 

nanoparticles was 29.54% of SiO2, 51.53% of Al2O3, and 18.93% of Na2SO4. FANP2 

nanoparticles has lower silicon oxide content because the MFOMAX surfactant 

attracted the silicon oxide component out from the filtrate, therefore, the composition 

of FANP2 will consist of high aluminium oxide content, when the white gel was formed 

during the chemical treatment process. However, due to the confidentiality of the 

surfactant, the reaction of component in MFOMAX with SiO2 component could not be 

discussed until the patent of MFOMAX is approved. The presence of Na2SO4 could be 

the remains of unreacted sodium silicate as shown in Figure (4.4). Lastly, the 

composition of commercial silicon oxide nanoparticles was 100% of SiO2 and the 

composition of commercial aluminium oxide nanoparticles was 100% of Al2O3. 
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Table 4.1: Composition of nanoparticles using EDX analysis 

Composition 
Percentage (%) 

CFA FANP1 FANP2 SiO2 Al2O3 

Silicon Oxide 43.26 40.71 29.54 100.00 - 

Aluminium Oxide 20.59 34.65 51.53 - 100.00 

Iron (II) Oxide 11.11 - - - - 

Calcium Carbonate 3.76 - - - - 

Sodium Sulphate - 24.64 18.93 - - 

Other Components 8.79 - - - - 

Total Percentage 100.00 100.00 100.00 100.00 100.00 

 

Figure 4.6 showed the XPS results of CFA (blue line), FANP1 (green line) and 

FANP2 (red line) nanoparticles. Based on the XPS graph, the CFA nanoparticles 

produced 7 energy peaks which were 78.77, 106.73, 309.47, 352.3, 532.2, 712.42, and 

1072.38 eV represent the aluminium (Al2p), silica (Si2p), carbon (C1s), oxygen (O1s), 

calcium (Ca2p), iron (Fe2p) and sodium (Na1s). For FANP1 nanoparticles, the XPS 

graph showed four energy peaks which were 67.98, 106.77, 533.98 and 1073.02 eV and 

the energy peaks represent the aluminium (Al2p), silica (Si2p), oxygen (O1s) and 

sodium (Na1s) respectively. For FANP2 nanoparticles, the XPS graph also showed four 

energy peaks which were 69.19, 107.23, 536.61 and 1076.68 eV and the energy peaks 

represent the aluminium (Al2p), silica (Si2p), oxygen (O1s) and sodium (Na1s). 
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Figure 4.6: XPS analysis of CFA, FANP1 and FANP2 nanoparticles 

 

Table 4.2 described the details of the chemical components for each energy peak of 

CFA nanoparticles. The EDX results confirmed the presence of aluminium oxide, 

silicon oxide, calcium carbonate, iron oxide, albite, and wollastonite in the CFA 

nanoparticles. However, the sodium (Na1s) detected by CFA nanoparticles was a 

different sodium component compared to synthesized nanoparticles. 
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Table 4.2: XPS energy peak analysis on CFA nanoparticles 

Element Chemical Formula Binding Energy, (eV) Ref. 

Silica, Si2p Silicon Oxide, SiO2 106.73 [180] 

Aluminium, Al2p Aluminium Oxide, Al2O3 78.77 [193] 

Carbon, C1s Calcium Carbonate, CaCO3 309.47 [194] 

Iron, Fe2p Iron (II) Oxide, Fe2O3 712.42 [195] 

Sodium, Na1s Albite, NaAlSi3O8 1072.38 [196] 

Calcium, Ca2p 
Wollastonite, CaSiO3 352.3 [196] 

Calcium Carbonate, CaCO3 352.3 [197] 

 

In Table 4.3 and 4.4 showed the XPS composition result of FANP1 and FANP2 

nanoparticles, respectively. Both the synthesized nanoparticles showed three chemical 

components which were silicon oxide, aluminium oxide, and sodium sulphate. The XPS 

experiment was not performed on commercial nanoparticles silicon oxide and 

aluminium oxide. This is because the EDX experiment had confirm the composition of 

the commercial nanoparticles with the material safety data sheet provided by the 

supplier. 

 

Table 4.3: XPS energy peak analysis on FANP1 nanoparticles 

Element Chemical Formula Binding Energy, (eV) Ref. 

Silica, Si2p Silicon Oxide, SiO2 106.77 [180] 

Aluminium, Al2p Aluminium Oxide, Al2O3 67.98 [193] 

Sodium, Na1s Sodium Sulphate, Na2SO4 1073.02 [198] 
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Table 4.4: XPS energy peak analysis on FANP2 nanoparticles  

Element Chemical Formula Binding Energy, (eV) Ref. 

Silica, Si2p Silicon Oxide, SiO2 107.23 [180] 

Aluminium, Al2p Aluminium Oxide, Al2O3 69.19 [193] 

Sodium, Na1s Sodium Sulphate, Na2SO4 1076.68 [198] 

 

4.4 Sedimentation Experiment of Synthesized Nanoparticles and Coal Fly Ash 

Figure 4.7 showed the turbidity results of CFA, FANP1 and FANP2 nanoparticles 

for the sedimentation experiment. Based on Sia et al when a higher turbidity value, it 

indicated a higher suspended particle in the liquid solution [199]. The NTU 

(Nephelometric Turbidity Unit) represent the unit value of turbidity. In Figure 4.7, the 

first reading of CFA nanoparticles was 639 NTU and it was the highest NTU reading 

among the three types of nanoparticles. This is because CFA nanoparticles has a larger 

particles size distribution (PSD) compared to the synthesized nanoparticles. The PSD 

value was affected by the concentration of the nanoparticles and the size of the 

nanoparticles [200]. When the size of the CFA nanoparticles was larger than 1µm, 

meanwhile the size of the synthesized nanoparticles of FANP1 and FANP2 were less 

than 100nm, the PSD of CFA nanoparticles will be larger than the synthesized 

nanoparticles. Therefore, a higher concentration of FANP1 and FANP2 were needed to 

achieve the NTU value of 639. However, the sedimentation experiment was to measure 

the duration of the nanoparticles can suspended in the solution and not the number of 

particles suspended in the solution. When the time= 0, the NTU reading of FANP1 and 

FANP2 were 185 NTU and 190 NTU, respectively. When the time was 120 minutes, 

the NTU reading recorded for CFA, FANP1 and FANP2 nanoparticles were 259 NTU, 

103 NTU and 82 NTU, respectively. The decremental NTU value from time= 0 to time= 

120 minutes for CFA nanoparticles was 59.47% or a 380 NTU difference. Meanwhile 

for FANP1 nanoparticles, the NTU difference when the time= 0 and time= 120 minutes 

was 44.32% or an 82 NTU difference. For FANP2 nanoparticles, when the time was 

zero compared to when the time was 120 minutes, the NTU difference was 30.53% 
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decrement or a 58 NTU difference. Based on the result, CFA nanoparticles has the 

highest sedimentation compared to the synthesized nanoparticles. This is because the 

CFA nanoparticles was affected by the gravitational force due to the its higher weight 

and larger size of CFA nanoparticles [201]. Meanwhile FANP2 nanoparticles has the 

highest stability to suspend in the solution for a longer time compared to FANP1 and 

CFA nanoparticles. This is because FANP2 nanoparticles was coated with MFOMAX 

surfactant. According to Ahmed et al. experiment. it stated that the presence of 

surfactant layers on the nanoparticles would helped to reduce the Van der Waals 

attraction force between the nanoparticles themselves and therefore improved the 

dispersion stability in the liquid phase [202]. Furthermore, when the nanoparticles 

coated with MFOMAX surfactant, it can used to reduce the agglomeration between the 

nanoparticles. This is because of the higher repulsion force between the double bonds 

of aromatic rings and the CH2 monomers on the surface of nanoparticles and therefore, 

increased the nanoparticle’s mobility and reduced the agglomeration between the 

nanoparticles [203]. Therefore, FANP1 nanoparticles will have a lower sedimentation 

rate compared to FANP1 and CFA nanoparticles. 

 

 

Figure 4.7: Turbidity experiment for CFA, PFA and SFA nanoparticles 
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4.5 Interfacial Tension (IFT) Measurement 

For a successful EOR injection, the EOR injection needed not only produced a good 

volumetric sweep efficiency and displacement efficiency but the injection also need to 

produce a sufficient energy to mobilize the immobilised fraction of the oil in the 

unswept region [204]. This is because in the oil reservoir, there were a lot of oil residual 

trapped in the pore network. Therefore, in order to mobilise the trap oil, a good capillary 

pressure is needed to recover the immobilised oils and one of the important parameters 

of increasing the capillary pressure is the interfacial tension (IFT) [205]. IFT can be 

defined as the surface free energy that exists between two immiscible liquids [206]. 

Figure 4.8 showed the IFT of foaming solution with different type of nanoparticles and 

Baronia crude oil. Based on the Figure 4.8, foaming solution with base sample has the 

lowest IFT reading compared to other foaming solution which was 0.21mN/m. The IFT 

readings for CFA-a, CFA-b, and CFA-c nanoparticles were 0.66, 0.68 and 0.74mN/m, 

respectively. The CFA nanoparticles has the highest IFT value when compared to other 

type of foaming solutions regardless the concentration of nanoparticles. This is because 

the size of CFA nanoparticles was larger than other type of nanoparticles, therefore, it 

resulted into the increases of IFT value. These results were similar to the Bhuiyan et al. 

experiment where the IFT increases when the size of aluminium oxide increased from 

13nm to 50nm and when the silicon oxide, the size increased from 5nm~10nm to 

10nm~20nm [207]. This is because the smaller nanoparticles will exhibit a higher 

surface charge density compared to its larger size counterpart [208].Therefore, the 

electrostatic repulsion force between nanoparticles and surfactant molecules will 

increased and  the diffusion of surfactant molecules toward the interface of the fluids 

will be much easier [209]. For FANP1 nanoparticles, the IFT readings for FANP1-a, 

FANP1-b and FANP-c were 0.49, 0.54 and 0.58mN/m, respectively. Meanwhile, the 

IFT readings for FANP2-a, FANP2-b, and FANP2-c were 0.35, 0.38 and 0.43mN/m, 

respectively. For the R1 nanoparticles, the IFT readings for R1-a, R1-b, and R1-C were 

0.39, 0.44 and 0.47mN/m, respectively. For the R2 nanoparticles, the IFT readings for 

R2-a, R2-b, and R2-c were 0.44, 0.46 and 0.49mN/m, respectively. The aim of having 

mixing nanoparticles of R1 and R2 nanoparticles were to compare the effectiveness of 

synthesized nanoparticles which were having the same concentration ratio of silicon 

oxide and aluminium oxide as R1 and R2 nanoparticles as showed in Table 4.1.  
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Figure 4.8: Interfacial tension of foam solution with different type of 

nanoparticles 

According to the Figure 4.8, the IFT reading increased with increased of the 

concentration of nanoparticles regardless the type of nanoparticles. This is because, 

when more nanoparticles were added into the solution, the nanoparticles in the interface 

will try to get closer to each other due to the Van der Waals force of attraction and 

agglomerated [207]. Therefore, this phenomena will lead to an unevenly distribution of 

the surfactant molecules at the interface of the fluids and cause an increment of IFT 

value [210]. FANP2 nanoparticles has the lowest IFT values when compared to the 

other types of nanoparticles. This is because of the effect of the MFOMAX surfactant-

coated nanoparticles. When the FANP2 nanoparticles was coated by a large amount of 

surfactant molecules, the nanoparticles will act as a carrier for the MFOMAX surfactant 

molecules towards the fluids interface, thus, the IFT value will reduced greatly [211]–

[213].  In addition, the reason foaming solution with R1 nanoparticles has a lower IFT 

value compared to R2 nanoparticles. This was due to the chemical compatibility 

between the silicon oxide nanoparticles and surfactant. These results were similar to the 

Ragab et al., Alomair et al. and Bayat et al. IFT experiments between SiO2 nanoparticles 

and Al2O3 nanoparticles [214]–[216]. Therefore, FANP2 nanoparticles will has the 

lowest IFT value compared to other nanoparticles. 
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Figure 4.9 showed the ANOVA two-way calculation for IFT measurement. The 

two variables’ conditions for the ANOVA calculation were the types of nanoparticles 

and concentration of the nanoparticles. In Figure 3.9, the first table showed the IFT 

values collected for the ANOVA calculation. Five IFT measurement were collected for 

concentration of the nanoparticles. The null hypothesis (Ho) for the experiment was that 

the IFT values be the same across the table and the alternative hypothesis (Ha) was that 

the IFT value will be different across the first table in Figure 3.9. The second table in 

the Figure 3.9 showed the calculation of ANOVA. Lastly, the F values calculated across 

the column of the first table and the F value across the row of the first table were higher 

than the accepted value. Therefore, both the F values rejected the null hypothesis, and 

the alternative hypothesis was accepted. Based on the ANOVA calculation, it showed 

that the presence of nanoparticles in the solution will influence the IFT value. 

 

Figure 4.9: ANOVA of the IFT measurement with different types and concentration 

of nanoparticles  
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4.6 Static Foam Stability Measurement 

Figure 4.10 showed the foam stability with five different nanoparticles and three 

types of concentration of the nanoparticles. The foam stability of the base sample (Ratio 

100:00) was 404 seconds. In the absence of nanoparticles, the foam half-life of base 

sample was the lowest when compared with surfactant in the presence of nanoparticles 

regardless the types or concentration of the nanoparticles. This is because when the 

nanoparticles were added into the foaming solution, the nanoparticles moved to the 

interface of the gas-liquid of the foam and aggregated to form a monolayer or a network 

of aggregate nanoparticles [217]. When the nanoparticles formed a layer of 

nanoparticles, the foam drainage was reduced because, the nanoparticles were resisting 

the dragging force of the liquid [131]. The foam stability of CFA-a, CFA-b and CFA-c 

were 472 seconds, 614 seconds, and 494 seconds. The foam stability of the CFA 

nanoparticles was higher than base sample by 30 seconds to 150 seconds according to 

the concentration of CFA. The reason CFA has higher foam stability than base sample 

was the presence of nanoparticles at the gas-liquid interface which slowed down the 

gravitational force and liquid drainage by reducing the direct contact between fluids 

[127]. However, when CFA nanoparticles was compared to other types of 

nanoparticles, the foam stability of CFA nanoparticles was the lowest. This can be 

because the size of CFA nanoparticles was larger than other type of nanoparticles. The 

size of CFA nanoparticles was between 5µm to 20µm, and the size of other 

nanoparticles were less than 100nm. Smaller nanoparticles tend to have higher foam 

stability because the smaller nanoparticles were able to flow into the small lamellae 

space easier compared to the larger size nanoparticles. In addition, the nanoparticle’s 

size has an effect on the apparent viscosity of the foam [166], [218].  For FANP1 

nanoparticles, the foam stability for FANP1-a, FANP1-b and FANP1-c were 669 

seconds, 1142 seconds, and 923 seconds. Meanwhile, for FANP2 nanoparticles, the 

foam stability of FANP2-a, FANP2-b, and FANP2-c were 757 seconds, 875 seconds, 

and 702 seconds. For R1 nanoparticles, the foam stability for R1-a, R1-b and R1-c were 

554 seconds, 962 seconds, and 627 seconds. For R2 nanoparticles, the foam stability 

for R2-a, R2-b and R2-c were 615 seconds, 738 seconds, and 587 seconds. 
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Figure 4.10: Foam stability experiment with different type and concentration of 

nanoparticles 

 

Based on the Figure 4.10, when the nanoparticles concentration ratio was increased 

from 90:10 to 80:20, the foam stability of the nanoparticles was increased too. 

However, when the nanoparticle concentration ratio increased from 80:20 to 70:30, the 

foam stability of the nanoparticles decreases. Based on the figure, it showed that when 

the concentration ratio of the nanoparticles was 80:20, the foam stability of the 

nanoparticles was the highest. Therefore, the optimum concentration ratio of 

nanoparticles was 80:20 and this phenomenon was the same for all types of 

nanoparticles. At low concentration of nanoparticles, the adsorbed nanoparticles at the 

gas-liquid interface were insufficient to improve the foam stability. However, when the 

concentration of nanoparticles was above the optimum concentration, the foam stability 

will either remains the same or decreased with the increasing concentration of 

nanoparticles [219]. When the concentration nanoparticles exceed the beyond the 

optimum concentration, more nanoparticles will agglomerated to form a larger 

nanoparticles network in the gas-liquid interface [125]. When more nanoparticles were 

in the interface, the interface become heavier and therefore, the liquid drainage will be 

increased dramatically under the force of gravitational energy due to the heavily 

agglomerated nanoparticles. In addition, when the concentration of nanoparticles 

exceed the optimum concentration, the main mechanism of the foam stability was 

changed from particles detachment energy and capillary pressure to gravity drainage 
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[220]. Therefore, based on Figure 4.10, we can conclude the concentration ratio of 

80:20 was the optimum concentration for all types of nanoparticles. 

Based on the Figure 4.10, nanoparticles with higher silicon oxide content in the 

composition tend to have a higher foam stability. This observation can be seen between 

the synthesized nanoparticles (FANP1 and FANP2 nanoparticles) and the commercial 

nanoparticles (R1 and R2 nanoparticles). Both FANP1 and R1 nanoparticles which 

have higher silicon oxide content produced a higher foam stability compared to FANP2 

and R2 nanoparticles. These results were same as the Yekeen et al. experiment. In 

Yekeen et al. experiment, the foam stability of silicon oxide or modified silicon oxide 

nanoparticles tend to have a higher foam stability than the foam stability of aluminium 

oxide nanoparticles [152]. The reason silicon oxide nanoparticles has a better effect on 

foam stability compared to aluminium oxide was due to the higher interaction energy 

between two particles according to the DLVO theory [221].  The definition of DLVO 

theory stated that the net interaction between two particles is a summation of 

electrostatic double layer (EDL) and the van der Waals force of attraction. The higher 

the positive values of the interaction energy,  implies that the EDL force is greater than 

the van der Waals force of attraction [222]. Figure 4.11 showed the DLVO theory done 

by Bayat et al’s experiment for aluminium oxide and silicon oxide nanoparticles [223]. 

 

Figure 4.11: Nanoparticles and nanoparticles interaction energy profile generated by 

DLVO theory [223] 
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The reason FANP1-b and FANP2-b nanoparticles have higher foam stability 

compared to R1-b and R2-b nanoparticles were due to the presence of sodium sulphate 

electrolyte in the composition of the synthesized nanoparticles (FANP1 and FANP2 

nanoparticles). This is because of the ionic effect of electrolytes where the electrolytes 

interacts with the counter-charges on the zwitterionic MFOMAX surfactant thereby 

reducing the electrostatic force which involved in film formation and trapping of gas 

[224]. Therefore, the synthesized nanoparticles (FANP1 and FANP2) have higher foam 

stability compared to the commercial nanoparticles (R1 and R2). 

The foam stability of FANP1 nanoparticles produced the highest foam stability 

compared to other type of nanoparticles. Although FANP1 nanoparticles has higher 

sedimentation rate compared to FANP2 nanoparticles, the FANP1 nanoparticles has 

higher foam stability compared to FANP2 nanoparticles. This can be attributed to the 

particle arrangement at the liquid-gas interface as shown in Figure 4.12 [132]. FANP1 

nanoparticles has higher sedimentation rate was because FANP1 nanoparticles has 

higher aggregation rate compared to FANP2 nanoparticles. When the FANP1 

nanoparticles aggregated in the gas-liquid interface, FANP1 nanoparticles tend to form 

a network of aggregate nanoparticles as shown in Figure 4.12 due to the high 

aggregation rate of the nanoparticles. However, for FNP2 nanoparticles, it was expected 

the FANP2 nanoparticles to form a monolayer or a bilayer of nanoparticles at the gas-

liquid interface due to lower agglomeration rate. The formation of network of aggregate 

nanoparticles tend to have a resistance against the dragging force of the fluids in the 

lamellae compared to monolayer and bilayer of nanoparticles [33]. This is because the 

aggregated nanoparticles will form a thick solid film at the lamellae to provide a steric 

barrier to reduce film thinning and inter-bubble diffusion. Therefore, the presence of 

aggregated nanoparticles will be more effective at slowing down the liquid drainage by 

reducing the direct contact between fluids [115]. Thus, the foam with FANP1 

nanoparticles produces the highest foam stability compared to foam with other types of 

nanoparticles. 
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Figure 4.12: Nanoparticles adsorption at the gas-liquid interface in form of (a) 

Monolayer (b) Close-packed monolayer or a bilayer (c) Network of particles 

aggregate at the gas-liquid interface [132] 

4.7 Study of Foam and Oil Interaction 

For the calculation of the entering, spreading, bridging coefficients and lamella 

number models were used to correlate the static foam stability in the presence of the 

crude oil so that it would be able to replicate the foam stability in the porous media. 

The Table 4.5 showed the calculation of the entering, spreading, bridging and lamella 

number models. The equation of the entering, spreading, bridging and lamella number 

models were discussed in Section 2.3.2. According to the Equation (2.12), (2.13) and 

(2.14) described that FANP2-b and R1-b nanoparticles have the highest foam stability 

because the value of the entering, spreading, and bridging were less than zero. 

Meanwhile, R2-b nanoparticles and base sample have a moderate stable foam because 

the spreading, and bridging values were less than zero, but the entering value was higher 

than zero. This indicated that the oil droplets were able to enter the gas-liquid interface 

of foam but the oil droplets were not able to spread through the gas-liquid interface of 

the foam [225]. Foam produced with FANP1-b and CFA-b nanoparticles have the 

weakest foam according to the entering, spreading, and bridging coefficients model. 
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This is because the entering, spreading, and bridging values for FANP1-b and CFA-b 

were all positive values. If the bridging values for FANP1-b and CFA-b were positive, 

the foam films will be destroyed completely when the oil droplets completely enter the 

lamellae surface [61]. However, when the model was compared to the results collected 

in Section 4.6, the calculation values were entirely different with the experimental 

results collected. In the experiment, FANP1 nanoparticles has the highest foam 

stability, and the base sample has the lowest foam stability but in the coefficients model, 

the base sample has the highest foam stability and the FANP1 nanoparticles has the 

lowest foam stability. These results were similarly to the Singh et al. experiment with 

three different type of crude oils (A, B, C), using the same type surfactant at a fixed 

concentration [128]. The calculated values of entering, spreading, and bridging values 

were all positive value and therefore, it indicates that all the foams will be highly 

unstable. However, in the foam stability experiment, the foams were in a stable 

condition. The reason that the entering, spreading, and bridging calculation were 

different with the experimental works was because the model does not included the 

antifoaming properties of the crude oil [154]. In Yekeen et al. experiment also showed 

the entering, spreading and bridging values were not accurate when compared to the 

foam stability experiment [149]. In the lamella number model, the values calculated 

were same with the experimental results in Section 4.6. According to the lamella 

number model, the lower the calculated value, the higher the foam stability. Therefore, 

the FANP1-b nanoparticles has the highest foam stability and base sample has the 

lowest foam stability. These values were same with Singh et al. experiment, where, the 

lamella number values were same with the experiment results [154].  
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Table 4.5: Nanoparticles stabilized foam interaction between oil and foam at 

concentration ratio of 80:20 

 Base CFA-b FANP1-b FANP2-b R1-b R2-b 

𝛾𝑔𝑤 17.64 30.10 18.90 15.70 17.35 17.66 

𝛾𝑜𝑤 0.21 0.68 0.54 0.38 0.44 0.42 

𝛾𝑜𝑔 17.80 17.80 17.80 17.80 17.80 17.80 

Entering 0.05 12.98 1.64 -1.72 -0.01 0.28 

Spreading -0.37 11.53 0.56 -2.48 -0.89 -0.56 

Bridging -5.63 589.63 40.66 -70.21 -15.62 -4.79 

Lamella No. 12.60 6.64 5.25 6.19 5.91 6.31 

4.8 Foamability of Nanoparticle Assisted Foam Injection Measurement 

Foamability is defined as the capacity of the solution to produce the amount of foam 

required. In this experiment, the foamability was measured based on the time required 

to generate foam up to 150ml of foam volume. Figure 4.13 showed the time taken for 

the foam to reach the foam volume of 150ml. The time taken for the base sample was 

80 seconds. For CFA nanoparticles, the CFA-a, CFA-b and CFA-c were 82 seconds, 

81 seconds, and 86 seconds, respectively. For FANP1 nanoparticles, the FANP1-a, 

FANP1-b, and FANP1-c were 82 seconds, 84 seconds, and 81 seconds, meanwhile, the 

foamability of FANP2-a, FANP2-b and FANP2-c were 78 seconds, 75 seconds, and 79 

seconds. The foamability results of R1-a, R1-b, R1-c, R2-a, R2-b, and R2-c 

nanoparticles were 87 seconds, 86 seconds, 92 seconds, 82 seconds, 68 seconds, and 87 

seconds, respectively. Based on the Figure 4.13, there was no clear relationship between 

the foamability and presence of nanoparticles in the foam. A similar observation was 

reported by Bee Chea at. al. experiment. In the foamability experiment, different types 

and concentration of nanoparticles were used for the experiment, however, the 

foamability results does not affected by the nanoparticles [226]. In addition to that, 

similar results were observed by Guo et al. experiment using the nano-fly ash sample 

[172]. Hence, we can deduce that nanoparticles have no effect on foamability. 
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Figure 4.13: Foamability of foam with different concentration and type of 

nanoparticles 

4.9 Core Flooding Experiment 

Based on previous screening experiments, five types of foaming solution were used 

to determine the effectiveness of the nanoparticles on foam stability and oil recovery. 

The nanoparticles used for the core flooding experiment were base sample, FANP1-b, 

FANP2-b, R1-a, and R1-b nanoparticles. In the core flooding experiment, two 

parameters were measured to determine the strength of the foam which were mobility 

reduction factor (MRF) and oil recovery measurement. Table 4.6 showed the properties 

of the Berea sandstone core after cleaning the core samples. The porosity of five 

sandstone core samples were between 22.0% to 23.0% and the permeability were 

between 215md to 235md using the equation (3.2) and (3.3) respectively.  
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Table 4.6: Properties of the Berea sandstone core 

Core Number 1 2 3 4 5 

Type of nanoparticles Base FANP1-b FANP2-b R1-b R2-b 

Concentration 100:00 80:20 80:20 80:20 80:20 

Permeability (md) 232 218 229 233 232 

Porosity (%) 22.11 22.18 22.49 22.77 22.64 

Dead Volume (ml) 4.3 4.3 4.3 4.3 4.3 

Pore Volume (ml) 38.17 38.25 38.50 39.04 38.97 

Initial oil saturation, Soi (%) 55.99 55.35 56.31 55.71 55.81 

Irreducible water saturation, 

Swirr (%) 

44.01 44.65 43.87 44.29 44.19 

 

4.9.1 Mobility Reduction Factor (MRF) 

Figure 4.14 showed the pressure drop of gas injection and foam injection the 

experiment. The purpose of showing the gas injection of five different core flooding 

experiment were to make sure the parameters of the core flooding were the same before 

proceeding to the SAG injection. During the initial of gas injection, the pressure drops 

increased up to 1psi because it indicated the flow resistance of the gas due to the 

formation of gas front encountering the oil.  After 16ml of cumulative volume of gas 

injection, the pressure drops below 1psi and the pressure drops remain at a stable 

condition at the 0.30psi. This was due to the early gas breakthrough [184].  When the 

foam was injected into the porous media, the pressure drops slowly increased regardless 

the presence of nanoparticles because the foam was slowly generated in the porous 

media. The fluctuating pressure drops during the foam injection indicated the 

phenomena of both foam generation and coalescence taking place simultaneously in the 

porous media [111]. The decrement of the pressure drops indicated the foam collapsing 

in the porous media. The foam with base sample has the lowest maximum pressure 
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drops difference which was 2.4 psi. Meanwhile, for foam with R2 nanoparticles, the 

maximum pressure drop was 4.6 psi and foam with R1 nanoparticles, the maximum 

pressure drop was 7.2 psi. For synthesized nanoparticles, the maximum pressure drops 

for foam with FANP2 nanoparticles was 5.2 psi and for foam with FANP1 the 

maximum pressure drops was 8.0 psi.  

 The foam with FANP1 has the highest pressure drops and it indicated the formation 

of strong foam. Strong foam offered a higher resistance against the gas flow and 

trapping the gas into the foam. The foam with base sample produced the lowest pressure 

drops and it indicated a weak formation of foam. Furthermore, the foam with FANP1 

with highest pressure drops propagates for a longer duration. This is because when a 

strong foam was formed, the crude oil droplets will have little effect on the foam 

stability.  In the core flooding experiment, the foam with base sample collapsed after 

27.48ml of total volume of injection, and the pressure drops decreases until it reaches 

the same pressure drops as the gas injection which indicates collapsed of the foam 

whereas, the foam with the presence of nanoparticles start to collapse at the range of 

between 35.0ml to 40.0ml of total volume injection into the porous media. Therefore, 

it indicated that the foam with the presence of nanoparticles will have a stronger foam 

and a higher tolerance against the presence of the crude oil in the porous media.  

  

 

Figure 4.14: Pressure drops of foam injection and gas injection for different type of 

nanoparticles 
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MRF value was used to determine the effectiveness of nanoparticles in 

strengthening the foam. The MRF values were calculated based on the comparison of 

pressure drop during foam injection against the pressure drop of gas injection in the 

same core as shown in Equation (3.5). A higher pressure drops or MRF value will 

indicate a strong foam front inside the core whereas, a sustained pressure drops and 

MRF trend indicate a  higher foam stability [186]. If the MRF values is equal to one or 

less than one, it indicates the absence of foam in the porous media because the pressure 

drop of the foam injection is the same as the pressure drop during gas injection.  Figure 

4.15 showed the MRF values of the foam with different types of nanoparticles against 

the cumulative volume of foam injected into the porous media. The highest MRF value 

produced was FANP1 nanoparticles which was 24.4 followed by the foam with R1 

nanoparticles which was 21.9. Meanwhile, the maximum MRF value produced by the 

foam with FANP2 and R2 nanoparticles were 15.4 and 14.5, respectively. Lastly, the 

foam with base sample produced the lowest MRF value which was 12.1. Based on 

Figure 4.15, the MRF value of the foam with nanoparticles showed a steady increase in 

MRF value and followed by a steep increase of MRF value. These phenomena indicate 

the foam generation in the porous media. For foam with base sample, the MRF value 

steady increases up to the maximum of 12.1 before the MRF value decreases again. 

This is because the foam was weakened by the oil droplets flowing into the foam 

lamellae [227].  The higher the concentration of the oil droplets flowing in the foam 

lamellae, the higher the chance for the foam to collapse. This phenomenon was same 

with foam with other type of nanoparticles. The MRF values start to decrease when the 

total of foam injection was 30ml. This is because, the foam quality decreases at this 

stage. When the MRF value is high, it  indicates a higher apparent viscosity [228] which 

translates into a higher foam apparent viscosity, and a higher foam quality [229]. With 

a higher foam quality, the volume of gas trapped in the foam also increased. According 

to Gong et al., the foam quality is governed by the fractional flow of liquid and gas. If 

the foam has at least 50% to 80% of gas in the foam, the apparent viscosity will be high. 

If the gas content in the foam is not between 50% to 80%, the apparent viscosity will 

be reduced and therefore, the control of gas mobility will be reduced. The fluctuation 

of MRF value means that the foam was carrying higher oil saturation in the foam which 

result in the foam stability decreased. When the foam is carrying higher oil saturation, 
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the foam tends to be unstable with the increasing oil saturation sipping in into lamellas 

until the foam completely collapsed when the saturation of oil in the foam was beyond 

the critical foaming oil saturation [56]. The critical foaming oil saturation can be 

defined as the maximum concentration of the crude oil can be carried by the foam. 

Although the nanoparticles retention was not measured, we believe that the 

nanoparticles retention may not be an important phenomena as based on the previous 

experimental work done by Singh et al, where 99.57% of the nanoparticles used for the 

foam injection were recovered with the remaining of less than 1% were retained in the 

porous media [230]. Murphy et al reported that the nanoparticles recovered from 

injection were 95% and 96% for two different type of coated silica nanoparticles [231]. 

In  Bayat et al. experiment, when aluminium oxide nanoparticles were injected into the 

porous media, the retention of aluminium oxide nanoparticles would be high [201]. 

However, according to the EDX analysis in the Bayat et al. experiment showed that the 

retention of aluminium oxide nanoparticles in the quartz sandstone was less than 2% 

while the retention of titanium oxide was estimated at 25% according to the EDX 

analysis  [201]. Therefore, we believed that high MRF is not resulted from nanoparticles 

retention phenomena.  

 

 

Figure 4.15: MRF of SAG with different type of nanoparticles 
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4.9.2 Oil Produced by SAG Injection Measurement 

Table 4.7 showed the oil recovered by using water injection, gas injection and foam 

injection with different type of nanoparticles. During the water injection, the oil 

recovery for water injection for experiments were between 57% to 58%. Meanwhile, 

the oil recovery for gas injection for all core flooding experiments were between 14% 

to 16%. The foam with R1 nanoparticles has the highest oil recovery which was 

12.18%. However, the foam with FANP1 nanoparticles which has the highest MRF 

value produced about 9.75% of oil whereas, the foam with FANP2 produced about 

11.48% of oil. The foam with R2 nanoparticles produced the lowest oil production 

among the foam with the presence of nanoparticles which was 8.75%. Although, the oil 

recovered by the foam with R2 nanoparticles was the lowest, the oil recovered using 

the foam using R2 nanoparticles was still higher than oil recovered using the foam with 

base sample. The oil recovery of foam with base sample was 6.69%. Based on the table, 

we can conclude that the foam in the presence of the nanoparticles will have a higher 

oil recovery than foam without the presence of any nanoparticles. Although the foam 

with FANP1 nanoparticles has a higher MRF value than the foam with R1 

nanoparticles, R1 nanoparticles produced a higher oil recovery than FANP1 

nanoparticles. Therefore, it can conclude that although a higher MRF value can helped 

to produce a higher oil recovery, there are other factors that will affect the oil recovery 

such as the reduction of interfacial tension (IFT) between the suspensions and oil phase, 

and reducing oil viscosity with the nanoparticles surfactant solution [216]. So that the 

oil droplets will can carried out by the foam aqueous medium [232]. Furthermore, the 

effect of capillary number, adsorption of the surfactant onto the rock, and wettability of 

the rock will have an effect on oil recovery [233]. 

Surfactant partitioning can be described as when the surfactants molecules were 

introduced to another fluid, the surfactants molecules will start to partition in the 

interface of the two fluids [234]. As a result, the surfactant molecules will start to 

remove any hydrophobic parts of the surfactant from the contact of water and therefore, 

it will decrease the energy of the interface or interfacial tension between the two fluids. 

According to Belhaj et al. experiment mentioned that surfactant partition is affected by 

two parameters which were critical micelle concentration and interfacial tension 
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between two fluids [235]. The coefficient of surfactant partition increases when the 

concentration of the surfactant increases towards the CMC value of the specific 

surfactant whereas, the coefficient of surfactant partition will decrease as the 

concentration of the surfactant increase above the CMC value. Furthermore, when the 

IFT value decreases, the coefficient of surfactant partition increased and vice versa 

[235]. However, according to Schramm et al. foam experiment stated that the surfactant 

partitioning was considered to be negligible in the presence of foam-foaming surfactant 

and crude oil if the foam-forming surfactant adsorptions by the crude oil and reservoir 

rocks have already been satisfied, then any foam destabilization effect or physical 

changes of the foam are attributed to the invasion of crude oil into the foam, temperature 

of the reservoir, and salinity of the brine [84]. Therefore, in foam injection experiment, 

the volume of surfactant injection was used until the experiment only produced 

surfactant solution. 

 

Table 4.7: Oil recovery of foam injection with different types of nanoparticles 

Oil Recovery (%) Base FANP1 FANP2 R1 R2 

Water Injection 57.00 57.58 57.70 57.84 57.29 

Gas Injection 15.25 14.83 14.86 14.94 15.17 

Initial Residual Oil Saturation (Sor) 27.75 27.59 27.44 27.22 27.54 

Foam Injection 6.69 9.75 11.48 12.18 8.75 

Final Sor After Foam Injection 21.06 17.84 15.96 15.03 18.79 

Oil recovered percentage using Foam 

Injection from initial Sor 
24.11 35.34 41.82 44.76 31.18 
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4.10 History Matching 

Based on the result of the core flooding experiment, foam with FANP2 

nanoparticles was using for history matching and oil forecasting. Some assumptions 

were made in the simulation compared to the experiment such as: 

1. The porous media was assumed in three phases. 

2. The flow in all the injections were considered in steady state. 

3. The foam injection was assumed as the co-injection of foam into the porous 

media. 

4. The simulator does not model foam generation in the porous media. 

5. The gas, oil and water were presented in the beginning of the simulation, 

purpose to enable the foam model in the simulation. 

6. The reservoir has isotropic and uniform permeability and porosity. 

7. The injection was assumed to be in a cylindrical geometry for a rectangular 

shaped grid block, and uniform properties in the grid block. 

8. The presence of C1 to C4 hydrocarbons were present in the simulation model 

meanwhile in the experiment, C1 to C4 hydrocarbon were absent in the Baronia 

oil content for the experiment. 

In Table 4.8, the total oil collected from water injection, gas injection and foam 

injection were 31.42%, 17.70% and 5.22% respectively. While in the simulation run, 

the total oil recovery for water injection, gas injection and foam injection were 33.65%, 

15.70% and 5.14%. The percentage difference between experimental and simulation 

results for water injection is 2.23%, 2.00% and 0.08%. 
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Table 4.8: Oil recovery comparison between experimental and simulation run 

Oil Recovery Percentage (%) Experimental Simulation 

Total Oil recovery by Water injection 31.42 33.65 

Total Oil recovery by Gas injection 17.70 15.70 

Total Oil by Foam injection 5.22 5.14 

Final Oil Recovery (Water + Gas + Foam 

Injection) 
54.34 54.49 

 

4.11 Sensitivity Analysis 

The sensitivity analysis was done using the history matching foam injection 

simulation model and equation (3.6) to determine the major influence of foam in oil 

recovery. According to equation (3.6), FM or Foam Mobility was depended on the 

surfactant concentration (𝐹𝑠𝑢𝑟𝑓), water saturation (𝐹𝑑𝑟𝑦), oil saturation (𝐹𝑜𝑖𝑙), capillary 

number (𝐹𝑐𝑎𝑝 ) and mobility reference factor (𝑓𝑚𝑚𝑜𝑏). However, in this simulation run, 

the water saturation, capillary number and reference factor will be defaulted. Since the 

Berea core is a horizontal homogenous permeability core, the water saturation will have 

little effect on oil recovery. Therefore, the foam stability on water saturation was not 

used for reservoir simulation run. In the simulation model, the capillary number was 

calculated by measuring the surface tension of the foam, and since no equipment were 

able to measure the surface tension of the foam, the data was set at a constant according 

to the Eclipse 100 software. The effect of surfactant concentration was model based on 

adsorption of the core and the maximum concentration of the surfactant was 0.5wt% 

which was the concentration of surfactant injected. For oil saturation, the static foam 

stability data was used to model the foam. This is because the core flooding equipment 
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could not measure dynamic foam stability. The sensitivity analysis was done to provide 

a better understanding and interpretation of foam injection. 

4.11.1 Forecasting of Oil Recovery Study using Surfactant Adsorption by 

Reservoir Rock 

Figure 4.16 showed the oil recovery of foam injection and the different surfactant 

adsorption rates. HS case was referred to foam history matching model in Section 4.10. 

For HS with -25% case, the surfactant adsorption by the reservoir rock was reduced by 

25% in the HS case.  For HS with -50% case, the surfactant adsorption by the reservoir 

rock was reduced by 50% in the HS case and for HS with -75% case, the surfactant 

adsorption by the reservoir rock was reduced by 75% in the HS case. The oil recovery 

for foam injection in HS case was 0.684cc in Figure 4.16. The oil recovery for HS with 

-25%, -50%, and -75% cases were 0.72cc, 0.79cc, and 0.89cc, respectively. Although 

the volume of oil recovered for three different adsorption rates were less than 1.00cc, 

in terms of percentage, the oil recovery was increased by 5.84%, 15.75% and 30.69% 

for the HS with -25%, -50% and -75% cases, respectively when compared to HS case. 

Therefore, it can be concluded that when the surfactant adsorbed onto the rock 

decreases, the oil recovery will increase. 

 

 

Figure 4.16: Oil recovery for different levels of surfactant adsorption rate 
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4.11.2 Forecasting of Oil Recovery Study using Half-life of Foam Study 

Figure 4.17 indicated the oil recovered by different stability of foam half-life cases 

in the presence of oil. HS case was referred to the foam history matching model in 

Section 4.10. The foam half-life of HS case was changed to 10 hours, 15 hours, 20 

hours, and 24 hours of foam half-life. In the Figure 4.17, the oil recovered by HS case 

was 0.684cc. Meanwhile for HS case with foam half-life of 10 hours, 15 hours, 20 

hours, and 24 hours were 0.70cc, 0.74cc, 0.77cc and 0.78cc, respectively. The oil 

recovery increment of when the foam half-life were 10 hours, 15 hours, 20 hours, and 

24 hours when compared to HS case were 2.34%, 8.19%, 12.57%, and 14.04%, 

respectively. When the foam half-life was extended to 24 hours, the increment of oil 

recovery predicted was increased by 14.04%, the oil recovery was less than the oil 

recovered when the surfactant adsorption was reduced by 75% which was 30.69% 

increment of oil recovery. This indicated that when the optimum foam stability was 

achieved, the oil recovery will reach a plateau [236]. Therefore, the increment of oil 

recovery for 10 hours, 15 hours, 20 hours, and 24 hours were 0.016cc, 0.04cc, 0.03cc, 

and 0.01cc, respectively. As a conclusion, the optimum half-life would be required to 

generate the maximum oil recovery and, in this case, 20 hours of foam half-life is the 

optimum limit.  

 

Figure 4.17: Oil recovery comparison with different stability of foam half-life 
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4.12 Chapter Summary 

In this chapter, we have presented the results from the characterization of 

nanoparticles to extensive experimental work mainly involving the effect of 

nanoparticles on foam stability and oil recovery. Furthermore, a history matching and 

sensitivity analysis were done to study the main factor governing oil recovery using 

foam injection. The size of the synthesized nanoparticles was observed to be less than 

100nm and the composition of components was reduced to three composition mainly 

silicon oxide, aluminium oxide, and sodium sulphate. Moreover, in the sedimentation 

test, the synthesized nanoparticles were more stable in suspending solution than the 

CFA nanoparticles. In experimental works, FANP1 nanoparticles produced the highest 

foam stability, and MRF value compared to other foam with other type of nanoparticles. 

Meanwhile, the foam with FANP2 nanoparticles produced a lowest IFT value. In core 

flooding experiment, foam with the presence of nanoparticles produced a higher oil 

recovery compared to foam without presence of nanoparticles. The foam with l R1 

nanoparticles produced the highest oil recovery followed by FANP2, FANP1, R2 

nanoparticles and lastly foam with base sample. Therefore, it indicates that a higher 

MRF value can helped to produce a higher oil recovery, there are other factors that will 

affect the oil recovery such as the reduction of interfacial tension (IFT) between the 

suspensions and oil phase, and reducing oil viscosity with the nanoparticles surfactant 

solution. A sensitivity analysis is done, and it was determined that the surfactant 

adsorption is the main governing factor for oil recovery using FAWAG injection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

 

5.1 Conclusion 

The synthesized nanoparticles from coal fly ash using the chemical treatment were 

a successful process in synthesising nanoparticles with the size less than 100nm. The 

two size of synthesized nanoparticles for FANP1 and FANP2 nanoparticles were 

between 10nm to 20nm and 40nm to 60nm, respectively. The size of synthesized 

nanoparticles was similarly to the commercial nanoparticle’s silicon oxide and 

aluminium oxide which were between 10nm to 55nm and 20nm to 30nm. Furthermore, 

the main composition of the synthesized nanoparticles were silicon oxide, aluminium 

oxide, and sodium sulphate. The sedimentation results showed that the FANP2 

nanoparticles has the highest stability in the solution due to longer suspension duration 

in the liquid followed by FANP1 nanoparticles and CFA nanoparticles. 

In the IFT experiment, it proved that when the foaming solution was added with 

nanoparticles, the IFT reading will increased. The foaming solution with base sample 

has the lowest IFT which was 0.21mN/m. Furthermore, the IFT value of foaming 

solution increased with increasing of nanoparticles concentration. As more 

nanoparticles were added into the foaming solution, the nanoparticles at the interface 

increased. As a result, the nanoparticles will try to get closer to each other and the Van 

der Waals force of attraction will increased and will lead to an unevenly distribute 

surfactant molecules at the interface of the two fluids that will increased the IFT value 

[210]. The foaming solution with FANP2 nanoparticles has the lowest IFT value if it 

was compared with other foaming solution in the presence of different type 

nanoparticles.  This is because of the effect of the surfactant-coated nanoparticles of 
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FANP2. When FANP2 nanoparticles was coated by a large amount of surfactant, the 

nanoparticles can act as a carrier of MFOMAX surfactant moving towards the oil and 

surfactant interface. When the surfactant is released from carrier and the IFT value will 

be reduced greatly [211]–[213].   

The static foam stability experiment was performed to investigate the effect of 

nanoparticles as an additive in foam stability and foamability. The static foam stability 

experiment was also used as a screening tool to select the best composition of 

nanoparticles for the core flooding experiments. The results from the static foam 

experiments showed that the nanoparticles have the potential of a foam stabilizer to 

increase the foam stability with the MFOMAX surfactant. Of all the mixture ratio 

tested, the highest performance for foam stability and foamability was FANP1-b. The 

optimum concentration ratio for the foam stability experiment was 80:20. In the 

foamability measurement, the foamability of foam with base sample was 80 seconds. 

However, the presence of nanoparticles has no effect on foamability as there was a no 

trending of increment or decrement of foamability with different type of nanoparticles 

or concentration of nanoparticles. According to the lamella number calculation showed 

that foam with FANP1 nanoparticles has the most stable foam compared to other foams 

since the lamella number calculated was 5.25.  

The core flooding experiments were conducted at the reservoir condition of 90°C 

and 1800psi. The foam with FANP1 nanoparticles has the highest MRF value which 

was 24. Meanwhile, the MRF of foam with base sample was 11. In the presence of 

nanoparticles, the MRF of foam increases by a twofold compared to foam without 

nanoparticles. Meanwhile, the MRF value of foam with R1, FANP2 and R2 were 21, 

15, and 13, respectively. The higher the MRF value will indicates a higher foam 

apparent viscosity which translates into a higher foam quality. A higher foam quality 

indicates a higher gas volume stored in the foam. On the other hand, if the MRF value 

of foam was fluctuating. This is because the foam was believed to be carrying a higher 

oil saturation. Therefore, the instability of the MRF values indicates the instability of 

the foam due to the foam being weakened by the oil droplets flowing into the foam 

lamellae. The higher the concentration of the oil droplets in the foam lamellae, the 

higher the chance for the foam stability to decrease or foam collapse. The oil recovered 
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by the foam with R1 nanoparticles has the highest oil recovery compared to other 

foams.  

The history matching, and sensitivity analysis were performed to investigate the 

major influence on oil recovery by the foam. History matching was done to validate the 

reservoir simulation model and to adjust the model until it closely reproduces the 

behaviour of the core displacement experiment. Overall, the history matching process 

of the simulation model has a 54.49% of oil production with the highest oil production 

percentage error coming from gas injection and water injection at around 2.0% error 

percentage. This because of the presence of gas in the porous media beginning of the 

simulation and the purpose gas is present in the beginning was part of the simulator 

requirement for foam injection model, and the presence of C1 to C4 in the hydrocarbon 

to produce natural gas in the simulator meanwhile in the experiment, the hydrocarbon 

of C1 to C4 are absence. In the sensitivity analysis, two major influence of foam on oil 

recovery were investigated which were surfactant adsorption and foam half-life. Owing 

to the fact that the increment of oil recovery by reducing the surfactant adsorption of 

75% was 30.69% and oil recovery from foam stability with a half-life of 24 hours was 

only 14.04% increment, we can conclude that surfactant adsorption reduction was the 

main governing factor of oil recovery compared to foam stability.  

5.2 Recommendation 

The chemical synthesis process has successfully synthesis the nanoparticles with a 

size less than 100nm in diameter from the coal fly ash with a size more than 1µm in 

diameter. However, based on the oil recovery results, the synthesized nanoparticles 

have a lower oil recovery compared to commercial R1 nanoparticles. This may be 

attributed to the presence of sodium sulphate in the composition of nanoparticles 

because the sulphate molecular chain is one of the main components in anionic 

surfactant. However, this result was not fully studied and therefore, a further analysis 

of sodium sulphate on foam stability and fluid-oil interaction should be proper studied. 

Although the synthesis process was able to produce a nano-size particle, the impurity 

of sodium sulphate in the composition may reduce the oil recovery produced using the 
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foam with synthesized nanoparticles compared to the foam with R1 nanoparticles. 

Therefore, a further chemical synthesis method should fully focus on extracting silicon 

oxide and aluminium oxide out from the coal fly ash sample. 

In the core flooding experiment, the nanoparticles retention and plugging were not 

studied.  Therefore, the reduction of oil recovery from FANP1 nanoparticles may also 

be resulted from nanoparticles retention and permeability plugging by the nanoparticles 

in the porous media whereby, it resulted a higher MRF value with a lower oil recovery 

factor compared to commercial nanoparticles. Although some studies have been 

conducted on nanoparticles retention such as Singh et al, where 99.57% of the 

nanoparticles used for injection were recovered with the remaining of less than 1% 

retained in the porous media [230]. Murphy et al reported that the nanoparticles 

recovery from injection were 95% and 96% for two different type of coated silica 

nanoparticles [231].  
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