Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.

Improving the Accuracy to Count Bottle Caps by Implementation of Computer Vision and Deep Learning

Saifbudin, Abdul Syahid (2019) Improving the Accuracy to Count Bottle Caps by Implementation of Computer Vision and Deep Learning. IRC, Universiti Teknologi PETRONAS. (Submitted)

[img] PDF
Restricted to Registered users only

Download (1497Kb)

Abstract

The current system to detect the bottle caps is using the HSV (Hue, Saturation and Value) technique. This technique has an accuracy of 85.938% to count the bottle caps. The accuracy of the system to count the bottle caps can be increased by implementing computer vision with deep learning. The proposed system should be able improve the accuracy to count the bottle caps. The development of the system is develop using python, computer vision and deep learning. The output of the result is expected to improve the accuracy for the detection of the bottle cap by 15 percent.

Item Type: Final Year Project
Academic Subject : Academic Department - Information Communication Technology
Subject: Q Science > Q Science (General)
Divisions: Sciences and Information Technology > Computer and Information Sciences
Depositing User: Ahmad Suhairi Mohamed Lazim
Date Deposited: 09 Sep 2021 19:58
Last Modified: 09 Sep 2021 19:58
URI: http://utpedia.utp.edu.my/id/eprint/20879

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...