Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.

A FRAMEWORK FOR MARKERLESS FULL BODY HUMAN 3D MONOCULAR POSE ESTIMATION

TOMI, AZF AR (2014) A FRAMEWORK FOR MARKERLESS FULL BODY HUMAN 3D MONOCULAR POSE ESTIMATION. Masters thesis, Universiti Teknologi PETRONAS.

[img] PDF
Restricted to Registered users only

Download (2863Kb)

Abstract

Pose estimation IS an important pre-processing step m computer vision-based automatic capture and analysis human motion. Despite its high efficiency in handling the ambiguities situation, multiple view approach of pose estimation is costly incurs high computational cost due to more complex system. Recently, most of the work focusing in a low cost and practical monocular view approach due to its suitability for a common user and low complex system. However, several monocular view issues arise with regard to self-occlusion which leads into problem in body part extraction, and the undetermined value in human pose reconstruction focusing on upper and lower limbs reconstruction that caused the reconstruction problem especially in high noise movement. Thus, this thesis project presents a framework for a real time markerless motion capture to track human full-body movement for monocular 3D pose estimation. The proposed framework comprises of a combination of top-dov.'!1 and bottom-up approach toward 3D pose estimation in monocular view based on endeffector driven. The proposed framework is built as a three-stage framework.

Item Type: Thesis (Masters)
Academic Subject : Academic Department - Information Communication Technology
Subject: Q Science > Q Science (General)
Divisions: Sciences and Information Technology > Computer and Information Sciences
Depositing User: Ahmad Suhairi Mohamed Lazim
Date Deposited: 15 Sep 2021 20:08
Last Modified: 15 Sep 2021 20:08
URI: http://utpedia.utp.edu.my/id/eprint/21124

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...