Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.



[img] PDF
Restricted to Registered users only

Download (10MB)


Gas-to-Liquid (GTL), in particular Fisher-Tropsch synthesis (FTS) is a process of converting coal, natural gas and biomass derived synthesis gas into transportable liquid fuels. Depleting resources of crude oil and a growing demand for alternative sources of energy has encouraged renewed interest in the development of efficient GTL technology for clean fuel production via FTS. In this study autoclave type stirred reactor was used and utilized in semi batch regime. Multiwall carbon nanotubes (MWCNT) were commercially obtained and "treated with concentrated nitric acid and further dried overnight at 120°C and calcined at 300°C. Another support material which is SBA-15 was synthesized using Pluronic P123 and Tetraethyl orthosilicate (TEOS). These supports were used to synthesize lwt%Ru/10-30wt%Co/MWCNT and lwt%Ru/10-30wt%Co/SBA-15 catalysts were prepared by incipient wetness impregnation. In addition 10wt%Co/MWCNT and 10wt%Co/SBA-15 were prepared as a reference catalysts in order to study the effect of ruthenium promoter. All catalysts and support materials were characterized by field emission scanning electron microscope (FESEM) equipped with energy dispersive X-ray spectroscopy (EDX), surface area analyzer, X-ray diffractometer (XRD), Transmission Electron Microscope (TEM)and temperature-programmed reduction (TPR).Co(N03)2#6H20 was used as a cobalt precursor and ruthenium (III) acetylacetonate ((C5H702)3Ru) as ruthenium precursor. FT synthesis was carried out in slurry phase environment where catalysts were suspended in high boiling point solvent n-hexadecane. Commercial parameters were used, that is 220°C, 20 bar and H2/CO feed gas ratio of 2. Experimental results revealed that the yield of C8+ HC was higher when SBA-15 was used as support comparing to MWCNT due to the high surface area higher pore volume and pore size. High pore volume allows high loading of cobalt metal. In addition, it provides high dispersion of cobalt along the surface and enhancement of active sites of the catalyst which contributes tohigher conversion ofsynthesis gas to valuable products. Addition ofruthenium oxide did not make significant contribution to product yield, but positively affected the catalyst reduction temperature and metal particle size dispersion on MWCNT.

Item Type: Thesis (Masters)
Academic Subject : Academic Department - Chemical Engineering - Catalysis
Subject: T Technology > TP Chemical technology
Divisions: Engineering > Chemical
Depositing User: Ahmad Suhairi Mohamed Lazim
Date Deposited: 15 Sep 2021 20:08
Last Modified: 15 Sep 2021 20:08
URI: http://utpedia.utp.edu.my/id/eprint/21131

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...