Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.

AMMONIA SYNTHESIS BY USING MAGNETIC INDUCTION METHOD (MIM)

RR., POPPY PUSPITASARI (2012) AMMONIA SYNTHESIS BY USING MAGNETIC INDUCTION METHOD (MIM). PhD thesis, Universiti Teknologi PETRONAS.

[img] PDF
Restricted to Registered users only

Download (5Mb)

Abstract

The Haber Bosch process for ammonia synthesis which includes the small surface area catalyst and high energy is not suitable for green ammonia production. Therefore, new type of catalysts, namelyMno 8Zno.zFez04 and Y3Fe5012, with their synthesis methods and characterizations were observed. New type of reactors (lab-scale reactor and Y-shape microreactor) was designed to enable ammonia to be produced at room temperature and ambient pressure. X-Ray Diffraction (XRD) analysis indicated the major peak of Mno.sZno.2Fez04 and Y3Fe5012 are at [311] and [ 420] planes, respectively. Field emission scanning electron microscopy (FESEM) revealed the size of nanoparticles of Mno.sZno.zFez04 and Y3Fes01zwas in the range 30nm to 120nm. Magnetic properties of the nanocatalysts were measured by vibration sample magnetometry (VSM). The value of magnetization saturation (Ms) for Mno.sZno.zFez04 is 40.3 emu/g and Y3Fes012 is 16.6 emu/g. The electron diffraction pattern confirmed the presence of [311] plane. The value of d-spacing for Mno.sZno.zFez04obtained from transmission electron microscope (TEM) was 2.8A.Permeability value for Mn0 8Zn02Fez04 is almost 10 times higher than that of Y3Fes012. Mechanical properties were determined by using Microhardness Vickers instrument. The values of Hardness Vickers Number (HVN) for catalyst synthesized via sol-gel, self-combustion, and ball milling methods were 102.56 HVN, 75.83 HVN, and 29.32 HVN, respectively.

Item Type: Thesis (PhD)
Academic Subject : Academic Department - Electrical And Electronics - Pervasisve Systems - Digital Electronics - Test and Reliablity
Subject: Electrical and Electronics > Instrumentation and Control
Divisions: Engineering > Electrical and Electronic
Depositing User: Ahmad Suhairi Mohamed Lazim
Date Deposited: 23 Sep 2021 23:24
Last Modified: 23 Sep 2021 23:24
URI: http://utpedia.utp.edu.my/id/eprint/21669

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...