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ABSTRACT 

 

 This project concerns about Bézier method in Computer Aided Geometric 

Design (CAGD) involving Bézier Curve and Bézier Surface which widely related 

to the other theorem and method. The aim of this project is to introduce the basic 

of Bézier method and then generate the Bézier curves, Bézier surfaces, theory and 

properties and develop Bézier method in image processing application specifically 

image compression by using MATLAB. The Bézier method was widely applied in 

many areas especially in Computer Aided Geometric Design (CAGD) but there is 

only several application in the image processing. This project will focus on Bézier 

Curve, Bézier Surface, Bernstein Polynomial, de Casteljau Algorithm, 

Interpolation, Approximation, Quadtree and Parametric Line Fitting, Image 

Rescaling and Image Compression application. The proof and examples of some 

theory and properties as well as the application will be shown by using MATLAB 

and also by using the calculation and analysis. For the main focus of this project 

which is image compression by RGB Quadtree Decomposition and Parametric 

Line Fitting method, the analysis have been made for four different images which 

are Peppers.tiff, Baboon.tiff, Airplane.tiff and Lena.png. From the analysis which 

being shown in the form of table and graph, the RGB channel threshold effect on 

the resulted output images being observed.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background of Study 

 

Originally, Bézier curves were independently developed in 1959 by Paul 

de Casteljau and by Pierre Bézier about 1962. The underlying mathematical 

theory is based on the concept of Bernstein polynomial [1]. The Bernstein 

polynomial is important and dominant in Bézier spline models for curve and 

surface design and drawing [2]. de Casteljau directly exploited this relationship, 

but it was not before 1970 that R. Forrest discovered the connection between 

Bézier’s work and Bernstein polynomials.  

 

Bézier and de Casteljau developed their theories as part of CAD systems 

that were built up at two French car companies, Renault and Citroën. The Renault 

system UNISURF was soon described in several publications, this is the reason 

that the underlying theory now bears Bézier’s name [1]. In the late sixties, the 

Bézier surface description was introduced and has remained one of the most 

popular schemes. When the Bézier’s work on UNISURF first published, the 

remarkable spline era in computer science started.  

 

The same situation was repeated with the discovery of Ingrid Daubechi’s 

wavelets. Different wavelet splines are now well known and extensively found in 

the literature. As splines are rich in properties, they provide advantages in many 

important areas. Bézier and wavelet splines, can, therefore, be regarded as two 

landmarks in spline theory with wide application in image processing and 

machine vision [2]. Presently, Bézier curves and surfaces are extensively utilized 

in many fields like industrial and computer-aided design, vector-based drawing, 

font design and 3D-modelling.  
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Two of the most important mathematical representations of curves and 

surfaces in computer graphics and computer-aided design are the Bézier and B-

spline forms. Bézier curves are polynomial curves which have a particular 

mathematical representation. Their popularity is due to the fact that they posses a 

number of mathematical properties which enable their manipulation and analysis, 

and yet no mathematical knowledge is required in order to use the curves [3]. 

 

1.2 Problem Statement 

 

The Bézier method was widely applied in many areas especially in 

Computer Aided Geometric Design (CAGD). The Bézier curves and surfaces 

were famously used in design problem and play an important role in the 

construction of quite different products such as car bodies, ship hulls, propeller 

blades, shoe, and bottles and even in the description of geological, physical and 

medical phenomena. In image processing, the most famous and familiar 

techniques being used was wavelet [1]. In order to varies the techniques in image 

processing and perhaps can improve the available techniques, the author will try 

to implement the Bézier method for image processing specifically image 

compression.  

 

1.3 Objectives 

 

The objectives of this project are: 

i. To understand the theoretical point of view for Bézier curves and 

surfaces 

ii.  To generate the Bézier curves and surfaces using MATLAB 

software 

iii.  To implement the Bézier method for image processing specifically 

image compression and simulating the theory and properties 

iv. To apply the Bézier method with another suitable method for 

image compression 
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1.4 Scope of Study 

 

This project is aim to implement the Bézier method for image processing 

using MATLAB. It will cover the theory and properties of Bernstein polynomial, 

de Casteljau Algorithm, spline, Bézier curves, Bézier surfaces, image processing 

application such as affine transformations, image rescaling, image reconstruction 

and image compression. The author will try to implement Bézier method for 

image processing including cubic interpolation, least square fitting and bilinear 

interpolation. The author will also apply the method with quadtree decomposition 

for image compression. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Bézier Curve 

  

In the mathematical field of numerical analysis, a Bézier curves is a 

parametric curve important in computer graphics and related fields. 

Generalizations of Bézier curves to higher dimensions are called Bézier surfaces. 

‘Paths” as they are commonly referred to an image manipulation programs are 

combinations of linked Bézier curves. Bézier curves are also used in animation as 

a tool to control motion [4]. By simply changing the control points, the Bézier 

curve will change. The examples are attached in appendices (refer Appendix A).  

 

2.1.1 Linear Bézier Curves  

 

A linear Bézier curve is a line segment joining two control points 

 ��(��, ��) and ��(��, ��), parameterized by 

 

 	
(�), �(�)
 = (1 − �)(��, ��) + �(��, ��),    ��� � ∈ [0,1]         (2.1) 

 

so that 
(�) = (1 − �)�� + ���, and �(�) = (1 − �)�� + ���. Letting 

 �(�) = (
(�), �(�)), the curve can be written in the vector form 

 �(�) = (1 − �)�� + ���                              (2.2) 

 

The curve is defined on the interval [0, 1], so the starting point of the curve 

is �(0) = �� and the finishing point is �(1) = �� , that is, the Bézier 

curve interpolates the first and last control points [3]. 
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2.1.2 Quadratic Bézier Curves 

 

Suppose three control points ��(��, ��), ��(��, ��) and ��(��, ��) are specified. 

Then the quadratic Bézier curve is defined to be 

 �(�) = (1 − �)�(��, ��) + 2(1 − �)�(��, ��) + ��(��, ��)   for  � ∈ [0,1]   (2.3) 

 

The starting points of the curve is �(0) = �� and the finishing point is �(1) =��. The curve can be expressed in the parametric for (
(�), �(�)) where 

 
(�) = (1 − �)��� + 2(1 − �)��� + ����,                        (2.4) �(�) = (1 − �)��� + 2(1 − �)��� + ����,                        (2.5) 

 

The triangle ������ obtained by joining the control points with line segments, in 

their prescribed order, is called the control polygon [3].  

 

2.1.3 Cubic Bézier Curves 

 

Suppose four control points ��, ��, ��, and �� are specified, then the cubic Bézier 

curve is defined to be 

 �(�) = (1 − �)��� + 3(1 − �)���� + 3(1 − �)���� + ����,    � ∈ [0,1]  (2.6) 

 

As in the quadratic case, the polygon obtained by joining the control points in the 

specified order is called the control polygon. 

Cubic Bézier curves provide a greater range of shapes than quadratic Bézier 

curves, since they can exhibit loops, sharp corners and inflections [3]. 
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2.1.4 Deriving the Curve 

 

The first step to understand Bézier curve is knows how the curves are 

geometrically formed. The construction of a Bézier curve begins with picking 

three or more points, called control points. For example, we use four control 

points, ��, ��, ��, and �� (refer Figure 1) to create Cubic Bézier curve [5]. 

 

 

 

 

 

 

 

 

 

Figure 1: Four Control Points 

 

The next step is to find the points on the line segments ����, ����, and ����. This 

is best done when thinking about the points as vectors. The first point is ��  and it 

lies �% of the way from point �� to �� (refer Figure 2).  

                                         �� 

 

     ��  

                                                          �� 

 

 

 

 

 

Figure 2: Formation of Individual Points 

0 
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This point is derived by: 

 �� = �� + �(�� − ��)                                                              = �� + ��� − ���        = (1 − �)�� + ���                                         (2.7) 

  

Repeating the process five more times as below; 

 �� (�) = (1 − �)�� + ���  �� (�) = (1 − �)�� + ���  �� (�) = (1 − �)�� + ���                   ��"(�) = (1 − �)�� (�) + ��� (�)                   ��"(�) = (1 − �)�� (�) + ��� (�)                            (2.8) 

 

we get the other points that form Figure 3.  

 

 

 

 

 

 

 

 

Figure 3: Formation of the First Points ��# on the Curve 

 

Only ��# is on the actual curve. To find other points on the curve we repeat the 

process with a different t value, ranging from 0 to 1.  

              ��#(�) = (1 − �)��"(�) + ���"(�)                                 (2.9) 

 

�� 

��  

�� 
��  ��# ��" ��"  

�� 

��  

�� 
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Using equation (2.9) we can form a specific polynomial called the Bernstein 

Polynomial (refer equation (2.11)) with the variable �. The Bernstein Polynomial 

can be derived by setting �(�) = ��#(�). 

 

             �(�) = ��#(�) = (1 − �)��"(�) + ���"(�)                       = (1 − �)[(1 − �)�� (�) + ��� (�)] + �[(1 − �)�� (�) + ��� (�)]           = (1 − �) $(1 − �)%(1 − �)�� + ��� + �	(1 − �)�� + ���
&' 
        +� $(1 − �)%(1 − �)�� + ��� + �	(1 − �)�� + ���
&'       = (1 − �)[(1 − �)��� + �(1 − �)�� + �(1 − �)�� + ����]    +�[(1 − �)��� + �(1 − �)�� + �(1 − �)�� + ����         = (1 − �)��� + �(1 − �)��� + �(1 − �)��� + ��(1 − �)��       (2.10) 

 �(�) = (1 − �)��� + 3�(1 − �)��� + 3��(1 − �)�� + ����           (2.11) 

 

Because now we have a polynomial that can give us the points on the curve we 

could consider ourselves lucky; however, since there are points ��, ��, ��, �� in 

the polynomial the desired curve is a little hard to generate. To find other points 

on the curve without having to recalculate ��# every time we put the Bernstein 

Polynomial in matrix form. This is done by looking at the polynomial as a linear 

combination of the four control points and their coefficients. We can then break 

the coefficient vector into a vector times a matrix. 

�(�) = [(1 − �)�     3�(1 − �)�     3��(1 − �)    ��] (��������)             (2.12) 

 

To break the coefficients into a vector and a matrix, the coefficients have to be 

expanded. 

�(�) = [1 − 3� + 3��     3� − 6�� + 3��     3�� − 3��    ��] (��������)       (2.13) 
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Now the vector can be expanded to include a matrix which will isolate the � 

values and allow us to quickly calculate multiple points on our Bézier curve. 

 

�(�) = [1     �     ��     ��]  ( 1−33−1    03−63     003−3    0001)  (��������
)                (2.14) 

 

With the matrix representation of the Bernstein Polynomial, multiple values of � 

can be quickly entered and calculated using a computer to generate points on the 

Bézier curve. 

 

2.1.5 Subdivisions and Generating New Control Points 

 

Sometimes it is useful to adjust part of a curve and not the whole thing. The 

easiest way to do this is to subdivide the curve into parts and find new control 

points for each of the subdivisions. To do this, take the matrix form of the 

Bernstein Polynomial equation (2.14), then decide which part of the curve needs 

to be changed. For this example, the curve will be divided into two equal parts. In 

order to do this, the Bernstein Polynomial needs to be reparameterized, which is 

easily done by adjusting � [5]. 

 �(�) = + ,-�. + +(�� + -�)                                    (2.15) 

 

Taking the first part of the reparameterization of �(�), +(-�), which is the first half 

of �(�), and writing in matrix form, the control points of the matrix can be 

determined. Reparameterizing �(�) we get the matrix equation: 

 

/1     �/2     (�2)�     (�2)�1  ( 1−33−1    03−63     003−3    0001)  (��������
) 
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Next we expand the vector 2- into a vector matrix form labeling the matrix 3( 456). 
We get: 

/1     �/2     (�2)�     (�2)�1  = [1     �     ��     ��]   (1000    01/200     001/40     0001/8)   
 

Putting this new matrix into our equation �(�) we get +(�) which is exactly half 

of �(�) but this does not find the new control points. To find these points we have 

to multiply the �9 vector of the points by a relationship of 3. In other words we 

need to put the matrix equation into a form resembling +(�) = 2- ∗ ; ∗ 3(�,�,�) ∗�9. We know +(�) = 2- ∗ 3(65) ∗ ; ∗ �9, which leaves us with the matrix equation 

3(65) ∗ ; = ; ∗ 3(�,�/�).  
 

(1000    01/200     001/40     0001/8) ( 1−33−1    03−63     003−3    0001) = ( 1−33−1    03−63     003−3    0001) (????    ????    ????    ????) 

 

 

Multiplying both sides by ;>�, we get our 3(�,�/�). 
 

(1111    01/32/31     001/31     0001) (1000    01/200     001/40     0001/8) ( 1−33−1    03−63     003−3    0001) = (????    ????    ????    ????) 

 

Now we have calculated the matrix 3(�,�/�). 
 

3(�,�/�) = ( 11/21/41/8    01/21/23/8    001/43/8    0001/8)                             (2.16) 
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Using the 3(�,�/�) we found we can now multiply our control points vector �9 on 

the left by 3(�,�/�) to generate our new points for +(�). This same process can be 

done for +(�� + -�) to generate the 3(�,�/�) matrix which can be used to find the 

new control points for the other half of the curve �(�). 

 

3,�,45. (��������
) = ?@@

A��B��B��B��BCDD
E
                                         (2.17) 

?@@
A��B��B��B��BCDD

E = ( ��1/2��  + 1/2��1/4��  + 1/2�� + 1/4��1/8��  + 3/8�� + 3/8�� + 1/8��
)                      (2.18) 

 

Calculating 3(45F�/�-), similarly to what we did for 3(-/�) 
 

3(45F-/�) = (1000    1/21/200     1/41/21/40     1/83/83/81/8)                                   (2.19) 

3(45,�) = (1/8000     3/81/400     3/81/21/20     1/81/41/21 )                              (2.20) 

 3(45F-/�) is similar to 3(45,�) as 3(-/�) is similar to 3(�,�/�). Once we have one we 

can easily find the other using the matrix M. This works for any subdivision of the 

original matrix and allows us to find the new control points for the subdivision. 

Once the subdivisions are found we can move two of the control points, ��B or ��B, 
to change just part of the curve. This tool is highly practical in drafting and allows 

for more complex changes. 
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2.1.6 Properties of Bézier Curves [3] 

 

� Endpoint Interpolation Property: �(0) = �� and �(1) = �G 

 

� Endpoint Tangent Property:  

 �B(0) = H(�� − ��)  and �B(1) = H(�G − �G>�) 

 

� Convex Hull Property (CHP):   For all   � ∈ [0,1], �(�) ∈ CH{��, … . , �G} 
Thus every point of a Bézier curve lies inside the convex hull of its 

defining control points. The convex hull of the control points is often 

referred to as the convex hull of the Bézier curve. 

 

� Invariance under Affine Transformations: Let N be an (affine) 

transformation (for example rotation, reflection, translation or scaling). 

Then  N ,∑ �PQPR� BP,Q(t). = ∑ NQPR� (�P)BP,Q(t)                   (2.21) 

 

� Variation Diminishing Property (VDP): For a planar Bézier curve �(�), 

the VDP states that the number of intersections of a given line with �(�) is 

less than or equal to the number of intersections of that line with the 

control polygon. 
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2.2 Bézier Surface 

 

A species of mathematical spline used in computer graphics, computer-

aided design and finite element modeling. Bézier surface is defined by a set of 

control points. Similar to interpolation in many respects, a key difference is that 

the surface does not, in general, pass through the central control points; rather, it is 

“stretched” toward them as though each were an attractive force. They are visually 

intuitive, and for many applications [6]. 

 

A Bézier surface of order (H, U) is defined by a set of (H + 1)(U + 1) 

control points VW,X. It maps the unit square into a smooth continuous surface 

embedded within a space of the same dimensionality as {VW,X}. For example, if V 

are all points in a four-dimensional space, then the surface will be within a four-

dimensional space [5]. A two-dimensional Bézier surface can be defined as a 

parametric surface where the position of a point Y as a function of the parametric 

coordinates Z, [ is given by: 

 Y(Z, [) = ∑ ∑ \WG]XR�GWR� (Z)\X]([)VW,X                       (2.22) 

 

evaluated over the unit square where 

 \WG(Z) = 	GW 
ZW(1 − Z)G>W                               (2.23) 

 

is a Bernstein polynomial and 	GW 
 = G!W!(G>W)! is the binomial coefficient.        
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2.2.1 Bilinear Bézier Surfaces 

 

The simple method to define bilinear Bézier surface is (linear curve)(linear curve). 

So we can define bilinear Bézier surface by 

 _(Z, [) = (1 − Z)(1 − [)���� + (1 − Z)[���� + (1 − [)Z���� +Z[����                                                                                      (2.24) 

 

2.2.2 Biquadratic Bézier Surfaces 

 

The simple method to define biquadratic Bézier surface is (quadratic 

curve)(quadratic curve). So we can define biquadratic Bézier surface by 

 _(Z, [) = (1 − Z)�(1 − [)����� + (1 − Z)�2(1 − [)[����                         +(1 − Z)�[����� + 2(1 − Z)Z(1 − [)�����                               +2(1 − Z)Z2(1 − [)[���� + 2(1 − Z)Z[�����                         +Z�(1 − [)����� + Z�2(1 − [)[���� + Z�[�����       (2.25) 

 

2.2.3 Bicubic Bézier Surfaces 

 

The simple method to define bicubic Bézier surface is (cubic curve)(cubic curve). 

So we can define bicubic Bézier surface by 

 _(Z, [) = ����(1 − Z)�(1 − [)� + 3����Z(1 − Z)�(1 − [)� +3����Z�(1 − Z)(1 − [)� + ����Z�(1 − [)�                    +3����(1 − Z)�[(1 − [)� + 9����Z(1 − Z)�[(1 − [)�         +9����Z�(1 − Z)[(1 − [)� + 3����Z�[(1 − [)�                     +3����(1 − Z)�[�(1 − [) + 9����Z(1 − Z)�[�(1 − [)          +9����Z�(1 − Z)[�(1 − [) + 3����Z�[�(1 − [)                                +����(1 − Z)�[� + 3����Z(1 − Z)�[� + 3����Z�(1 − Z)[� +����Z�[�                                                                          (2.26) 
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2.2.4 Properties of Bézier Surfaces [7] 

 

� Endpoint interpolation: Analogous to the curve case, the patch passes 

through the four corner control points, that is a(0,0) = ��,�     a(1,0) = �],� a(0,1) = ��,G     a(1,1) = �],G 

 

� Symmetry: We could re-index the control net so that any of the corners 

corresponds to ��,� and evaluation would result in a patch with the same 

shape as the original one. 

 

� Affine invariance: Apply an affine map to the control net, and then 

evaluate the patch. This surface will be identical to the surface created by 

applying the same affine map to the original patch. 

 

� Convex hull property: For (Z, [) ∈ [0,1] × [0,1], the patch a(Z, [) is in 

the convex hull of the control net. 

 

� Bilinear precision: A degree U × H patch with boundary control points 

which are evenly spaced on lines connecting the corner control points, and 

the interior control points are evenly-spaced on lines connecting boundary 

control points on adjacent edges. This patch is identical to the bilinear 

interpolant to the four corner control points. 

 

� Tensor product: Bézier patches are in the class of tensor product surfaces. 

This property allows Bézier patches to be dealt with in terms of 

isoparametric curves, which in turn simplifies evaluation and other 

operations. 
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2.3 Bernstein Polynomial 

 

In the mathematical field of numerical analysis, a Bernstein polynomial is 

a polynomial in the Bernstein form that is linear combination of Bernstein basis 

polynomials. A numerically stable way to evaluate polynomials in Bernstein form 

is de Casteljau’s algorithm. With the advent of computer graphics, Bernstein 

polynomials restricted to the interval x ∈ [0, 1], became important in the form of 

Bézier curves [8]. 

 

The H + 1 Bernstein basis polynomials of degree H are defined as  

 \W,G(�) = 	GW 
�W(1 − �)G>W,     c = 0, … . , H                        (2.27) 

 

A linear combination of Bernstein basis polynomials is called a Bernstein 

polynomial \(�) = ∑ dW\W,GGWR� (�)                                          (2.28) 

 

2.3.1 Properties of Bernstein Polynomials [3] 

 

� Partition of Unity: The Bernstein polynomials of degree n sum to one 

 ∑ \W,G(�)GWR� = 1,   � ∈ [0,1)                                 (2.29) 

 

� Positivity:       The Bernstein polynomials are non-negative on the interval 

[0, 1] 

 \W,G (�)  ≥ 0,   � ∈ [0,1]                                   (2.30) 
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� Symmetry:  \G>W,G(�) = \W,G(1 − �),    for   c = 0, … , H                    (2.31) 

 

So, the graph of \G>W,G(�) is a reflection of the graph of \W,G(1 − �). 
 

� Recursion: The Bernstein polynomials of degree n can be expressed in 

terms of the polynomials of degree H − 1 

 \W,G(�) = (1 − �)\W,G>�(�) + �\W>�,G>�(�),    for c = 0, … , H     (2.32) 

 

where \>�,G>�(�) = 0 and \G,G>�(�) = 0 

  

The partition of unity and positivity properties gives rise to two important 

properties of Bézier curves namely invariance under transformations and the 

convex hull property. As a consequence of the symmetry property, a symmetrical 

control polygon gives rise to a symmetrical curve. The recursion property gives 

rise to the de Casteljau algorithm. 

 

2.4 de Casteljau Algorithm 

 

In the mathematical subfield of numerical analysis, de Casteljau algorithm 

is a recursive method to evaluate polynomials in Bernstein form or Bézier curves. 

This algorithm can also be used to split a single Bézier curve into two Bézier 

curves at an arbitrary parameter value. Although the algorithm is slower when 

compared with the direct approach it is numerically stable [9]. 
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The de Casteljau algorithm provides a method for evaluating the point on a 

Bézier curve  corresponding to the parameter value � ∈ [0,1]. For the case of a 

cubic Bézier curve with control points ��, ��, ��, and ��, and for a specified 

parameter value � ∈ [0,1], the de Casteljau algorithm is expressed by the recursive 

formula 

 

f �W� = �W�WX = (1 − �)�WX>� + ��WF�X>�,g                                 (2.33) 

 

for h = 1, 2, 3 and c = 0, … , 3 − h. The formula generates a triangular set of values 

as below for which ��� = �(�) for the specified value of � [3].  

 ���   ���   ���   ��� ���   ���   ��� ���   ��� ��� 

 

2.5 Spline 

 

In mathematics, a spline is a special function defined piecewise by 

polynomials. In the computer science subfields of computer-aided design and 

computer graphics, the term ‘spline’ more frequently refers to a piecewise 

polynomial (parametric) curve. Splines are popular curves in these subfields 

because of the simplicity of their construction, their ease and accuracy of 

evaluation, and their capacity to approximate complex shapes through curve 

fitting and interactive curve design [10]. 
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2.6 Bernstein – Bézier – Spline 

 

In fact, Bernstein polynomial can be thought of as the gateway to splines, 

namely the Bézier spline. Bézier polynomial can be made to act in either as a 

spline or non-spline. When it acts as a spline, it does piecewise approximation of a 

data set with some smoothness conditions satisfying at the break points, but when 

it acts as a non-spline to approximate, it does not take into consideration the 

smoothness conditions to satisfy at the break points. Bézier curves is influenced 

by Bernstein polynomial. As Bézier curves and surfaces are driven by Bernstein 

basis, they can also be thought of, respectively, the Bernstein polynomial pieces of 

curves and surfaces.  

 

The basic philosophy behind the Bernstein polynomial approximation is 

that this polynomial is very convenient to free-form drawing. In fact, some of the 

properties of this Bernstein polynomial are so attractive that no sooner than the 

technique was published by Bézier, it became widely popular in many industries. 

In order to design the body of an automobile, Bézier developed a spline model 

that became the first widely accepted spline model in computer graphics and 

computer-aided design, due to its flexibility and ease over the then-used drawing 

and design techniques. This model, therefore, helps to design and draw smooth 

curves and surfaces of different shapes and sizes, corresponding to different 

arbitrary objects, based on a set of control points. 

 

Bézier spline model, can also be used to approximate data points 

originated from different functions. Notice that Bézier spline-based drawing 

technique starts from the zeroth order Bernstein approximation (which is exactly 

the line drawing between control points) of the data points and goes to some 

higher order (quadratic or cubic) approximation, until it mimics the shape of the 

object. The Bézier splines are effective, efficient, and easy to implement, and have 

a strong and elegent mathematical background as well. In computer graphics, their 

significant role is well documented. Unfortunately it is not the case in image 

processing and machine vision [2]. 
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2.7 Image Processing 

 

Image processing is any form of signal processing for which the input is 

an image or frames of video, the output of image processing can be either an 

image or a set of characteristics or parameters related to the image. Most image-

processing techniques involve treating the image as a two-dimensional signal and 

applying standard signal-processing techniques to it. The typical operations 

involved in image processing were denoising, compressing, reduction, rotation, 

and color corrections [11]. 

 

2.8 Image Compression 

 

 Image compression is minimizing the size in bytes of a graphics file 

without degrading the quality of the image to an unacceptable level. The reduction 

in file size allows more images to be stored in a given amount of disk or memory 

space. It also reduces the time required for images to be sent over the internet or 

downloaded from web pages. 

 

 There are several different ways in which image files can be compressed. 

For internet use, the two most common compressed graphic image formats are the 

JPEG format and the GIF format. The JPEG method is more often used for 

photographs, while the GIF method is commonly used for line art and other 

images in which geometric shapes are relatively simple. 

 

Other techniques for image compression include the use of fractal and 

wavelets. These methods have not gained widespread acceptance for use on the 

internet as of this writing. However, both methods offer promise because they 

offer higher compressions ratio than the JPEG or GIF methods for some types of 

images. Another new method that may in time replace the GIF format is the PNG 

format. 
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A text file or program can be compressed without the introduction of 

errors, but only up to a certain extent. This is called lossless compression. Beyond 

this point, errors are introduced. In text and program files, it is crucial that 

compression be lossless because a single error can seriously damage the meaning 

of a text file, or cause a program not to run. In image compression, a small loss in 

quality is usually not noticeable. There is no ‘critical point’ up to which 

compression works perfectly, but beyond which it becomes impossible. When 

there is some tolerance for loss, the compression factor can be greater than it can 

where there is no loss tolerance. For this reason, graphic images can be 

compressed more than text files or programs [12]. 

 

2.9 Cubic Interpolation 

 

  Suppose we are given four points ��, ��, ��, �� and we wish to pass a 

curve through them, just like the situation shown in Figure 4. There, the points are 

2D, but they might as well be 3D. This is called interpolation [7]. 

 

 

 

 

 

 

 

 

Figure 4: Cubic Bézier Curve Through Four Given Points 

 

 Every point on a Bézier curve has a parameter value; in order to solve our 

problem, we have to assign a parameter value �W to every �W. A natural choice is to 

associate each �W with a parameter value �W = W�. Now, our interpolation problem 

becomes: 

 Given four point / parameter pairs (�W, �W), find a cubic Bézier curve 
(�) 

such that: 
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(�W) = �W;    c = 0,1,2,3.                                       (2.34) 

 

This simply states that we want the Bézier curve to pass through the data points at 

the right parameter values. The desired Bézier curve will be of the form 

 
(�) = \��(�)dj + \��(�)d� + \��(�)d� + \��(�)d�                  (2.35) 

 

Writing out all interpolation conditions (2.34) yields 

 �� = \��(��)dj + \��(��)d� + \��(��)d� + \��(��)d� �� = \��(��)dj + \��(��)d� + \��(��)d� + \��(��)d� �� = \��(��)dj + \��(��)d� + \��(��)d� + \��(��)d� �� = \��(��)dj + \��(��)d� + \��(��)d� + \��(��)d� 

 

These are four equations in the four unknowns d�, … , d�. In order to find a 

solution, it helps to write them in matrix form: 

 

(��������
) = ?@@

@A\��(��)\��(��)\��(��)\��(��)  \��(��)\��(��)\��(��)\��(��)  \��(��)\��(��)\��(��)\��(��)  \��(��)\��(��)\��(��)\��(��)CDD
DE (djd�d�d�

)                   (2.36) 

 

We further abbreviate this as 

 � = ;\                                             (2.37) 

 

The solution is now simply 

 \ = ;>��                                            (2.38) 
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2.10 Image Rescaling Using Bilinear Interpolation 

 

 In computer graphics, image scaling is the process of resizing a digital 

image. Scaling is a non-trivial process that involves a trade-off between 

efficiency, smoothness and sharpness. As the size of an image is increased, so the 

pixels which comprise the image become increasingly visible, making the image 

appears ‘soft’. Conversely, reducing an image will tend to enhance its smoothness 

and apparent sharpness [13]. 

 

 In mathematics, bilinear interpolation is an extension of linear 

interpolation for interpolating function of two variables for example 
 and � on a 

regular grid. The key idea is to perform linear interpolation first in one direction, 

and then again in the other direction. Although each step is linear in the sampled 

values and in the position, the interpolation as a whole is not linear but rather 

quadratic in the sample location [14]. 

 

 When an image needs to be scaled up, each pixel of the original image 

needs to be moved in a certain direction based on the scale constant. However, 

when scaling up an image by a non-integral scale factor, there are pixels (holes) 

that are not assigned appropriate pixel values. In this case, those holes should be 

assigned appropriate RGB or grayscale values so that the output image does not 

have non-valued pixels. Based on [15], the examples of image rescaling using 

bilinear interpolation performed by using MATLAB are attached in the 

appendices (refer Appendix B).  

  

2.11 Cubic Bézier Curve Least Square Fitting 

 

 According to [16], Bézier curve is a parametric curve. A Bézier curve of 

degree m can be generalized  as follows: 

 �(�W) = ∑ 	]l 
]lR� �l(1 − �W)]>l�Wl,     0 ≤ �W ≤ 1,                   (2.39) 
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where �(�W) is an interpolated point at parameter value �W , U is degree of Bézier 

curve and �l is n-o control point. To generate H points ( H is count of 

interpolating points) between first and last control points inclusive, the parameter �W is uniformly divided into H − 1 intervals between 0 and 1 inclusive. Equations 

of cubic Bézier curves can be derived from Eq. (2.39) as follows: 

 �(�W) = (1 − �W)��� + 3�W(1 − �W)��� + 3�W�(1 − �W)�� + �W���        (2.40) 

 

 Bézier curve passes through its first and last control points which are �� 

and ��. The middle control points, �� and �� determine the shape of curve. 

 

2.11.1  Least Square Bézier fitting 

  

For data to be fit by cubic Bézier, the first and last control points of Bézier curve 

are first and last point of the input data segment. The input data can be divided 

into many segments or just one segment by specifying initial set of break point, 

but the middle control points �� and �� for cubic Bézier must be determined. We 

used least square method to find the middle control points. Least square method 

gives the best value of middle control points that minimize the squared distance 

between original and fitted data and is well suited for approximating data. If there 

are H data points and �W and �(�W) are values of original and approximated points 

respectively then we can write the least square equation as follows: 

 _ = ∑ [�WGWR� −�(�W)]�                                      (2.41) 

 

Equation above can be written as follows: 

 _ = ∑ [�W − (1 − �W)��� + 3�W(1 − �W)��� + 3�W�(1 − �W)�� + �W���]�GWR�    (2.42) 
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�� and �� can be determined by: 

 p_p�� = 0 

p_p�� = 0 

 

Solving for �� and �� gives: 

 

�� = (q�r� − q��r�) (q�q� − q��q��),s                         (2.43) 

�� = (q�r� − q��r�) (q�q� − q��q��),s                         (2.44) 

where 

q� = 9 t �W�G
WR� (1 − �W)u, 

q� = 9 t �WuG
WR� (1 − �W)�, 

q�� = 9 t �W�G
WR� (1 − �W)�, 

r� = t 3�W
G

WR� (1 − �W)�[�W − (1 − �W)��� − �W���], 
r� = t 3�W�G

WR� (1 − �W)[�W − (1 − �W)��� − �W���], 
 

After determining the control points, Bézier curves can be fitted to large number 

of original data points with very few control points using Bézier interpolation. 
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2.11.2  Fitting strategy 

 

Suppose we have set of points (original data) v = {��, ��, … , �G} and we want to 

approximate it using cubic Bézier. As in input we specify the value of limit of 

error (maximum allowed square distance between original and fitted data) and 

provide initial set of breakpoints. At least two breakpoints are required, the first 

point and the last point of original data. Input data is divided into segments based 

on initial set of breakpoints. A segment is set of all points between two 

consecutive breakpoints. We have to fit each segment using cubic Bézier curve. 

Now the fitting process begins. We generate H points (approximated data) w = {��, ��, … , �G} using cubic Bézier interpolation such that cubic Bézier curve 

passes through breakpoints. Then we measure the error between original and 

approximated (fitted) data. 

 

When approximated data is not close enough to original data, limit of error bound 

is violated then an existing segment is split (break) into two segments at a point 

called new breakpoint. After splitting, number of segments are increased by one 

(splitted segment is replaced by two new segments). Number of breakpoints are 

also increased by one (new breakpoint is added in the set of existing breakpoints). 

The point where the error is maximum between original and approximated data is 

selected as new breakpoint and this point is added in the set of breakpoints. 

 

After splitting, repeat the same fitting procedure using updated set of segments 

and breakpoints until error is less than or equal to limit of error. We call this 

technique as fitting break and fit strategy. 
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2.12 Quadtree and Parametric Line Fitting 

 

Quadtree is a data structure that is widely used for image storage, 

representation and processing [17, 18]. Quadtree is most often used to partition a 

2-D space by recursively subdividing it into four quadrants or blocks until each 

quadrant contains only pixels of one color or luminance. Recursive subdivision 

may result a quadrant contains only single pixel. This conventional quadtree 

decomposition has following drawbacks:  

(1) The overhead of representing a single pixel by quadtree is not desirable 

for image compression. It may take more space to represent a single 

pixel by quadtree that without using it.  

(2) Due to subdividing criteria, even if a single pixel in a quadrant is of 

different color or luminance then quadtree decomposition would 

divide that quadrant into four quadrants.  

As a consequence of this, there may be three quadrants with same luminance 

value. In other words, the boundaries between quadrants does not necessary 

represent quadrant of different luminance. To overcome the first drawback; in our 

method we imposed a constraint of minimum block size on quadtree 

decomposition. It means that a quadrant would not be further divided into four 

quadrants if its size is equal to the predefined minimum block size. The constraint 

of minimum block size safeguards our method from the overhead of representing 

very small quadrants (quadrants of size less than 4x4) by a quadtree. The 

constraint based quadtree decomposition results in two types of quadrants:  

(a) Homogeneous quadrants: quadrants that contain only pixels of one 

color or luminance 

(b) Non-homogeneous quadrants: quadrants that contain pixels of more 

than one color or luminance 

We represented only homogeneous quadrants using quadtree. Non-homogeneous 

quadrants are represented by parametric line [19]. 
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 Parametric line is essentially a straight line obtained by linear interpolation 

between two points (control points). To generate a parametric line that 

interpolates n + 1 points, n line segments are used. Equation of h-o segment 

between points �X and �XF� can be written as follows: 

 �X(�) = (1 − �)�X + ��XF�,    � ∈ [0,1],    1 ≤ h ≤ n,                (2.45) 

 

where �X(�) is an interpolated point between control points �X and �XF� at 

parameter value �. To generate H points between �X and �XF� inclusive, the 

parameter � is divided into H − 1 intervals between 0 and 1 inclusive such that �X(0) = �X and �X(1) = �XF�. In order to represent the non-homogeneous 

quadrants, we scanned the image data row wise and fitted the parametric line to 

pixels of non-homogeneous quadrants. Parametric line fitting helps to further 

reduce the data size in two ways. First, the parametric line fitting helps to 

represent the pixels of one color/luminance with smaller data set. Second, the 

parametric line fitting merges the data of a row, belong to more than one non-

homogeneous quadrant, as a single data set. This single merged row removes the 

artificial boundaries between quadrants that have been imposed by quadtree 

decomposition. It is very likely that at the boundaries of two adjacent non-

homogeneous quadrants, pixels have same luminance. By merging quadrants, 

large number of pixels can be represented by small output data obtained from 

parametric line fitting. This also solves the second drawback of conventional 

quadtree representation of image [19]. 

    

2.13 Application: A New Method For Video Data Compression By 

Quadratic Bézier Curve Fitting 

 

The input points are approximated using quadratic Bézier least square 

fitting. The output data consists of quadratic Bézier control points and difference 

between original and fitted data. In order to understand how quadratic Bézier 

curve can be used to fit video data, we need to understand the nature of video  
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data. Digital video data consists of sequence of frames which is images. Each 

frame consists of rectangular 2-D array of pixels. An important factor in fitting of 

data via quadratic Bézier curve is finding least number of control points [20]. 

 

Fitting process is applied to temporal data of each spatial location (
, �) 

individually. Let H is the number of frames in a video sequence, let x and y are 

width and height of a frame respectively. At frame c, where 1 ≤ c ≤ H, let �W as 

luminance or color value of a spatial location (
, �). We have to approximate the H values of each spatial location by quadratic Bézier curve. As an input to 

algorithm the user specifies breakpoint interval z.Luminance or color values of a 

spatial location after every zth frames are taken as a breakpoint (control point). 

The fitting process divides the data into segments based on breakpoints. A 

segment is a set of all points (luminance or color values) between two adjacent 

breakpoints. Each segment is fitted (approximated) by a quadratic Bézier curve. 

The first and the last breakpoints of a segment are taken as end control points, for 

example �� and ��of quadratic Bézier curve, while middle control point, ��is 

obtained by least square method. Once all the three control points, ��, �� and ��are known, then approximated data of a segment using Bézier curve is obtained 

using following equation: 

 w(�W) = (1 − �W)��� + 2�W(1 − �W)�� + �W���                   (2.46)    

                

Note that the first and last points of input data and interpolated data are always 

same, because w(�W = 0) = �� and w(�W = 1) = ��. Interpolated points other than 

first and last points may or may not have the same values as corresponding points 

of input data. In order to reconstruct the original video data without any loss, first 

interpolated frames are generated using keyframes of end control points (KFE) 

and keyframes of middle control points (KFM), then adding the difference 

between original and quadratic Bézier approximated (interpolated) frames other 

than keyframes, frame difference (FD) to interpolated frames reproduces the 

original video frames. 
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The most important application of the method is data compression. A 

fundamental approach of prevalent video data compression techniques such as 

MPEG-1, MPEG-2 and H.263 [21, 22] is to reduce the entropy of data by 

applying Discrete Cosine Transform. Data with reduced entropy can be encoded 

with less number of bits. In this method, the overall entropy of KFE, KFM and FD 

is much less than the entropy of original video data. So, it can be encoded with 

less number of bits. This less entropy of output data is mainly due to the fact that 

quadratic Bézier curve approximates the original video data with quite good level 

of accuracy. 

 

2.14 Application: An Innovative Scheme For Effectual Fingerprint Data 

Compression Using Bézier Curve Representation 

  

 This kind of application utilizes the Bézier curve representations for 

effective compression of fingerprint image. It is designed in a way to preserve the 

fine details in the fingerprint image such as ridge endings and bifurcations. It is 

employed for achieving better compression with some cost to quality. A 

fingerprint image can have hundreds of ridges each having its own structure. In 

the proposed scheme, each ridge is visualized as a cubic Bézier curve and it’s 

Bézier control points are determined. The set of four Bézier control points 

determined, serve as compressed form of an individual ridge. So every fingerprint 

image with n ridges can be compressed into a file containing 4*n Bézier control 

points. A desirable property of these curves is that the curve can be translated and 

rotated by performing these operations on the control points. It is sufficient to 

store all the four Bézier control points instead of storing the actual Bézier curve 

(ridge). The original ridge can be reproduced from these stored control points by 

the properties of Bézier curve. Thus, the proposed scheme for fingerprint 

compression achieves an effective reduction in the memory space required to store 

the fingerprint [23]. 
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CHAPTER 3 

METHODOLOGY 

 

3.1 Procedure Identification 

 

Figure 5: Flowchart of The Project 

 

Reviewing the Literature 

Gathering Data 

Understanding Bézier Curves and Surfaces 

Theory Properties 

Solving Equation 

MATLAB Simulation 

Interpolation 

Data Approximation 

Quadtree Decomposition Parametric Line Fitting 

Image Compression 
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3.2 Tools used 

 

3.2.1 Software 

 

• MATLAB 7.4.0 (R2007a) 

• GPL Ghostscript 8.64 

• GSview 4.9 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

4.1 Linear Bézier Curve 

 

The following figures show the examples of linear Bézier curve. The following 

figures vary from its control points. The comparison between the equation and the 

coding are as followed: 

 

Equation: �(�) = (1 − �)�� + ���                             (4.1) 

Coding: �
(c) = (1 − �)∗{
(1) + �∗{
(2) 

 

So, we can see that the different is �� = {
(1) and �� = {
(2) 

 

� Linear Curve 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Linear Curve 
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� Linear Curve 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Linear Curve 

 

� Linear Curve 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Linear Curve 
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� Linear Curve 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Linear Curve 

 

4.2 Quadratic Bézier Curve 

 

The following figures show the examples of quadratic Bézier curve. The 

following figures vary from its control points. The comparison between the 

equation and the coding are as followed: 

 

Equation: �(�) = (1 − �)��� + 2(1 − �)��� + ����               (4.2) 

Coding: �
(c) =(1-t)^2*cx(1)+2*(1-t)*t*cx(2)+t^2*cx(3) 
 

So, we can see that the different is �� = {
(1), �� = {
(2), and �� = {
(3) 
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� Quadratic Curve 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Quadratic Curve 

 

� Quadratic Curve 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Quadratic Curve 
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� Quadratic Curve 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Quadratic Curve 

 

� Quadratic Curve 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Quadratic Curve 
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4.3 Cubic Bézier Curve 

 

The following figures show the examples of cubic Bézier curve. The following 

figures vary from its control points. The comparison between the equation and the 

coding are as followed: 

 

Equation: �(�) = (1 − �)��� + 3(1 − �)���� + 3(1 − �)���� + ����    (4.3) 

Coding:cx(1)*(1-t)^3+3*cx(2)*t*(1-t)^2+3*cx(3)*(1-t)*t^2+cx(4)*t^3 
 

So, we can see that the different is �� = {
(1), �� = {
(2), �� = {
(3), and �� = {
(4) 

 

� Cubic Curve 

 

Figure 14: Cubic Curve 
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� Cubic Curve 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Cubic Curve 

 

� Cubic Curve 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Cubic Curve 
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� Cubic Curve 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Cubic Curve 

 

4.4 Bilinear Bézier Surface 

 

The following figures show the examples of bilinear Bézier surface. The 

following figures vary from its control points. The difference between the 

equation and coding is from its control points representation: 

 ���� = {
(1,1), ���� = {
(1,2), ���� = {
(2,1), and ���� = {
(2,2) 
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� Bilinear Surface 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Bilinear Surface 

 

� Bilinear Surface 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Bilinear Surface 
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� Bilinear Surface 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Bilinear Surface 

 

� Bilinear Surface 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Bilinear Surface 
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4.5 Biquadrtic Bézier Surface 

 

The following figures show the examples of biquadratic Bézier surface. The 

following figures vary from its control points. The difference between the 

equation and coding is from its control points representation: 

 ���� = {
(1,1), ���� = {
(1,2), ���� = {
(1,3), ���� = {
(2,1),  ���� = {
(2,2), ���� = {
(2,3), ���� = {
(3,1), ���� = {
(3,2), and ���� = {
(3,3) 

 

� Biquadratic Surface 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Biquadratic Surface 
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� Biquadratic Surface 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Biquadratic Surface 

 

� Biquadratic Surface 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: Biquadratic Surface 

 



45 

 

� Biquadratic Surface 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: Biquadratic Surface 

 

4.6 Bicubic Bézier Surface 

 

The following figures show the examples of bicubic Bézier surface. The following 

figures vary from its control points. The difference between the equation and 

coding is from its control points representation: 

 ���� = {
(1,1), ���� = {
(1,2), ���� = {
(1,3), ���� = {
(1,4),  ���� = {
(2,1), ���� = {
(2,2), ���� = {
(2,3), ���� = {
(2,4), 

 ���� = {
(3,1), ���� = {
(3,2),  ���� = {
(3,3), ���� = {
(3,4),  ���� = {
(4,1), ���� = {
(4,2), ���� = {
(4,3), and ���� = {
(4,4) 
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� Bicubic Surface 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: Bicubic Surface 

 

� Bicubic Surface 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27: Bicubic Surface 
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� Bicubic Surface 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28: Bicubic Surface 

 

� Bicubic Surface 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: Bicubic Surface 
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4.7 Bernstein Polynomial of degree 2 

 

This figure displayed the Bernstein Polynomial of degree 2.  

� Degree 2 

 

 

 

 

 

 

 

 

 

 

 

Figure 30: Bernstein Polynomial of Degree 2 

 

4.8 Convex Hull Property (CHP) 

 

� Convex Hull (The curve lies in the control polygon)   [7] 

 

 

 

 

 

 

 

 

 

 

 

Figure 31: Convex Hull Property 
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4.9 Rotation of Cubic Bézier Curve 

 

Consider a cubic Bézier curve with vertices ��(1,0), ��(2,3), ��(5,4), and  ��(2,1). [3] 

Apply a rotation through an angle � 4�  about the origin in the anticlockwise 

direction to the curve. 

 

�1252   0341   1111� � cos � 4�− sin � 4�0    sin � 4�cos � 4�0    001� = � 0.707−0.7070.7070.707    0.7073.5366.3642.121   1.01.01.01.0�        (4.4) 

 

The control points of the rotated curve are  ��(0.707,0.707),  ��(−0.707,3.536),  ��(0.707,6.364), and ��(0.707,2.121). The curve and its rotated image are 

illustrated in Figure 32.  

 

� Rotation of Cubic Curve 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32: Rotation of Cubic Curve 
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4.10 Cubic Bézier curve with loop 

 

� Loop (It self-intersects)   [7] 

 

 

 

 

 

 

 

 

 

 

 

Figure 33: Loop 

 

4.11 Cubic Bézier curve with two inflection points 

 

� Two inflection points   [7] 

 

 

 

 

 

 

 

 

 

 

 

Figure 34: Two Inflection Points 
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4.12 Cubic Bézier curve with cusp 

 

� Cusp (Points where the first derivative vector vanishes)    [7] 

 

 

 

 

 

 

 

 

 

 

 

Figure 35: Cusp 

 

4.13 Variation Diminishing Property 

 

� Variation Diminishing Property [7] 

 

 

 

 

 

 

 

 

 

 

 

Figure 36: Variation Diminishing Property 
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4.14 Combination of Bézier Curve 

 

� 8 segments of Cubic Curve  

 

 

 

 

 

 

 

 

 

 

 

Figure 37: 8 Segments of Cubic Curve 

 

� 2 segments of Cubic Curve  

 

 

 

 

 

 

 

 

 

 

 

Figure 38: 2 Segments of Cubic Curve 
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� 4 segments of Quadratic, 2 segments of Linear Curve 

 

 

 

 

 

 

 

 

 

 

 

Figure 39: 4 Segments of Quadratic, 2 Segments of Linear Curve 

 

4.15 Combination of Bézier Surface 

 

� 2 segments of Biquadratic Surface  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 40: 2 Segments of Biquadratic Surface 
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4.16 Utah Teapot 

 

The teapot data was created in 1975 by early computer graphics researcher 

Martin Newell, a member of the pioneering graphic program at the University of 

Utah. Newell needed a moderately simple mathematical model of a familiar object 

for his work, and his wife’s teapot (a Melitta) provided a convenient solution. The 

shape contains a number of elements that make it ideal for the graphics 

experiments of the time. Its round, contains saddle-points, has a concave element 

(the hole in the handle), and looks reasonable when displayed without a complex 

surface texture [24]. 

 

Newell made the mathematical data which describes the teapot’s geometry 

(largely a set of three-dimensional coordinates) publicly available and soon other 

researches needed something with roughly the same characteristics that Newell 

had, and using the teapot data meant they didn’t have to laboriously enter 

geometric data for some other object. The actual teapot is about 30% taller than 

many of its computer-generated images because the data was originally recorded 

for the rectangular pixels of early displays [24]. 

 

The following figures showed the Utah teapot which being generated by 

MATLAB. The model is designed by using 32 bicubic Bézier surfaces [25]. 

Another images for Utah teapot are attached in appendices (refer Appendix C) 

 

� Utah Teapot  

 

 

 

 

 

 

 

Figure 41: Utah Teapot 
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4.17 Cubic Interpolation 

 

Let the �W be given by 

 �� = $−10 ' , �� = $01' , �� = $ 0−1',        �� = $10',  
 

and set �W = W�. Then the matrix M for our linear system becomes 

 

; =
?@@
@@A

18271270
       

049290
       

029490
      

01278271 CDD
DDE 

 

Now we inverse the matrix M becomes 

 

;>� = ( 1.0000−0.83330.33330        03.0000−1.50000        0−1.50003.00000       00.3333−0.83331.0000 )            (4.5) 

 

With the �W given above, first we solve for 
- coordinate 

 

\� = ;>��� = (−1.00001.1667−1.16671.0000 )                                   (4.6) 

 

Then for �- coordinate 

 

\� = ;>��� = ( 04.5−4.50 )                                      (4.7) 

 



56 

 

Thus, the Bézier ponts for interpolating cubic are    d� = $−10 ' , d� = $1.16674.5 ' , d� = $−1.1667−4.5 ',        d� = $10',  
 

This example is outlined in Figure 42 below: 

 

 

 

 

 

 

 

 

 

 

Figure 42: Cubic Bézier Interpolation 

 

4.18 Image Rescaling Using Bilinear Interpolation 

� Lake.tif 

 

 

 

 

 

 

 

 

 

 

 

Figure 43: Original Image Lake.tif 
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Figure 44: Rescale 33% 

 

 

 

 

 

 

 

 

 

 

 

Figure 45: Rescale 200% 
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� Mosque.jpg 

 

 

 

 

 

 

 

 

 

 

Figure 46: Original Image Mosque.jpg 

 

 

 

 

 

 

 

 

 

 

 

Figure 47: Rescale 33% 
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Figure 48: Rescale 200% 

 

The comparison of WxH and file size for each images are showed as follow: 

 

Table 1: Quantitative Analysis for Image Rescaling 
 

Image Lake.tif Mosque.jpg 
Original Image WxH 720x540 500x350 

File Size 2.25 MB 1.01 MB 
Rescale 33% WxH 238x178 165x116 

File Size 264 KB 122 KB 
Rescale 200% WxH 140x1080 1000x700 

File Size 8.98 MB 4.04 MB 
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4.19 Bézier Curve Least Square Fitting 

 

� Circle Approximation [16] 

 

 

 

 

 

 

 

 

 

 

Figure 49: Circle Approximation 

 

� Sine Approximation (sin (x)) [16] 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 50: Sine Approximation 
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� Five Text Approximation [16] 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 51: Five Text Approximation 

 

� Tangent Approximation (tan (x)) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 52: Tangent Approximation 
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4.20 RGB Quadtree Decomposition and Parametric Line Fitting 

 4.20.1 Uniform Threshold Variation 

� Peppers.tiff 

 

 

 

 

 

 

 

Figure 53: Original Image Peppers.tiff 

 

 

 

 

 

 

 

 

 

Figure 54: Decoded Image Peppers.tiff Threshold (0.3, 0.3, 0.3) 

 

 

 

 

 

 

 

 

 

Figure 55: Decoded Image Peppers.tiff Threshold (0.5, 0.5, 0.5) 
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� Baboon.tiff 

 

 

 

 

 

 

 

 

Figure 56: Original Image Baboon.tiff 

 

 

 

 

 

 

 

 

Figure 57: Decoded Image Baboon.tiff Threshold (0.3, 0.3, 0.3) 

 

 

 

 

 

 

 

 

Figure 58: Decoded Image Baboon.tiff Threshold (0.5, 0.5, 0.5) 

 

 



64 

 

� Airplane.tiff 

 

 

 

 

 

 

 

 

Figure 59: Original Image Airplane.tiff 

 

 

 

 

 

 

 

 

 

Figure 60: Decoded Image Airplane.tiff Threshold (0.3, 0.3, 0.3) 

 

 

 

 

 

 

 

 

 

Figure 61: Decoded Image Airplane.tiff Threshold (0.5, 0.5, 0.5) 
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� Lena.png 

 

 

 

 

 

 

 

Figure 62: Original Image Lena.png 

 

 

 

 

 

 

 

 

 

Figure 63: Decoded Image Lena.png Threshold (0.3, 0.3, 0.3) 

 

 

 

 

 

 

 

 

 

Figure 64: Decoded Image Lena.png Threshold (0.5, 0.5, 0.5) 
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� Threshold (0.3, 0.3, 0.3) 

Table 2: Quantitative Analysis for Threshold (0.3, 0.3, 0.3) 

Image Peppers.tiff Baboon.tiff Airplane.tiff Lena.png 
MSE  R 56.0000 54.0000 56.0000 63.0000 

G 68.0000 56.0000 63.0000 60.0000 
B 63.0000 57.0000 58.0000 66.0000 

RMSE R 7.4833 7.3485 7.4833 7.9373 
G 8.2462 7.4833 7.9373 7.7460 
B 7.9373 7.5498 7.6158 8.1240 

PSNR R 30.6489 30.8069 30.6489 30.1374 
G 29.8057 30.6489 30.1374 30.3493 
B 30.1374 30.5721 30.4965 29.9354 

File Size Original 35.7 KB 54.7 KB 33.7 KB 34.3 KB 
Decoded 34.0 KB 50.2 KB 30.9 KB 31.7 KB 

 

� Threshold (0.5, 0.5, 0.5) 

Table 3: Quantitative Analysis for Threshold (0.5, 0.5, 0.5) 

Image Peppers.tiff Baboon.tiff Airplane.tiff Lena.png 
MSE  R 107.0000 97.0000 101.0000 102.0000 

G 112.0000 98.0000 108.0000 106.0000 
B 99.0000 103.0000 81.0000 100.0000 

RMSE  R 10.3441 9.8489 10.0499 10.0995 
G 10.5830 9.8995 10.3923 10.2956 
B 9.9499 10.1489 9.0000 10.0000 

PSNR  R 27.8370 28.2631 28.0876 28.0448 
G 27.6386 28.2185 27.7966 27.8777 
B 28.1745 28.0024 29.0460 28.1308 

File Size Original 35.7 KB 54.7 KB 33.7 KB 41.2 KB 
Decoded 32.8 KB 41.3 KB 28.5 KB 35.9 KB 

 

From the quantitative analysis in two tables above, we can see the 

comparison of value for MSE, RMSE and PSNR for each RGB channel and also 

file size for original and decoded of the images. The compression ratio for 

threshold (0.3, 0.3, 0.3) is 1.43 and for threshold (0.5, 0.5, 0.5) is 2.00 for all 

images. From the above value, we can observe the best result by looking at lowest 

MSE and RMSE value and highest PSNR value. The lowest MSE and RMSE and 

highest PSNR determine the best quality of image compression. From the four 

tested image, we can see that the best result is Baboon.tiff and if we observe the 

image itself, we can see the quality is better from others.   
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4.20.2 Non-uniform Threshold Variation 

 

For the non-uniform threshold variation, there are three patterns of 

variation being used to examine and analyze the quality of the image. The lists of 

non-uniform threshold being used are as followed: 

 

Table 4: Non-uniform Threshold Variation 

First Pattern Second Pattern Third Pattern 
0.3, 0.5, 0.7 0.8, 0.3, 0.3 0.8, 0.8, 0.3 
0.3, 0.7, 0.5 0.3, 0.8, 0.3 0.3, 0.8, 0.8 
0.5, 0.3, 0.7 0.3, 0.3, 0.8 0.8, 0.3, 0.8 
0.5, 0.7, 0.3   
0.7, 0.3 0.5 
0.7, 0.5, 0.3 

 

The images of Peppers.tiff, Baboon.tiff, Airplane.tiff and Lena.png with 

the non-uniform threshold variation are as followed: 

 

� Peppers.tiff 

 

 

 

 

 

 

 

 

 

Figure 65: Decoded Image Peppers.tiff Threshold (0.3, 0.5, 0.7) 
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Figure 66: Decoded Image Peppers.tiff Threshold (0.3, 0.7, 0.5) 

 

 

 

 

 

 

 

 

 

Figure 67: Decoded Image Peppers.tiff Threshold (0.5, 0.3, 0.7) 

 

 

 

 

 

 

 

 

Figure 68: Decoded Image Peppers.tiff Threshold (0.5, 0.7, 0.3) 
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Figure 69: Decoded Image Peppers.tiff Threshold (0.7, 0.3, 0.5) 

 

 

 

 

 

 

 

 

Figure 70: Decoded Image Peppers.tiff Threshold (0.7, 0.5, 0.3) 

 

 

 

 

 

 

 

 

Figure 71: Decoded Image Peppers.tiff Threshold (0.8, 0.3, 0.3) 

 

 



70 

 

 

 

 

 

 

 

 

Figure 72: Decoded Image Peppers.tiff Threshold (0.3, 0.8, 0.3) 

 

 

 

 

 

 

 

 

Figure 73: Decoded Image Peppers.tiff Threshold (0.3, 0.3, 0.8) 

 

 

 

 

 

 

 

 

Figure 74: Decoded Image Peppers.tiff Threshold (0.8, 0.8, 0.3) 
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Figure 75: Decoded Image Peppers.tiff Threshold (0.3, 0.8, 0.8) 

 

 

 

 

 

 

 

 

Figure 76: Decoded Image Peppers.tiff Threshold (0.8, 0.3, 0.8) 

 

� Baboon.tiff 

 

 

 

 

 

 

 

 

Figure 77: Decoded Image Baboon.tiff Threshold (0.3, 0.5, 0.7) 
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Figure 78: Decoded Image Baboon.tiff Threshold (0.3, 0.7, 0.5) 

 

 

 

 

 

 

 

 

Figure 79: Decoded Image Baboon.tiff Threshold (0.5, 0.3, 0.7) 

 

 

 

 

 

 

 

 

Figure 80: Decoded Image Baboon.tiff Threshold (0.5, 0.7, 0.3) 
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Figure 81: Decoded Image Baboon.tiff Threshold (0.7, 0.3, 0.5) 

 

 

 

 

 

 

 

 

Figure 82: Decoded Image Baboon.tiff Threshold (0.7, 0.5, 0.3) 

 

 

 

 

 

 

 

 

Figure 83: Decoded Image Baboon.tiff Threshold (0.8, 0.3, 0.3) 
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Figure 84: Decoded Image Baboon.tiff Threshold (0.3, 0.8, 0.3) 

 

 

 

 

 

 

 

 

Figure 85: Decoded Image Baboon.tiff Threshold (0.3, 0.3, 0.8) 

 

 

 

 

 

 

 

 

Figure 86: Decoded Image Baboon.tiff Threshold (0.8, 0.8, 0.3) 
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Figure 87: Decoded Image Baboon.tiff Threshold (0.3, 0.8, 0.8) 

 

 

 

 

 

 

 

 

Figure 88: Decoded Image Baboon.tiff Threshold (0.8, 0.3, 0.8) 

 

� Airplane.tiff 

 

 

 

 

 

 

 

 

Figure 89: Decoded Image Airplane.tiff Threshold (0.3, 0.5, 0.7) 
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Figure 90: Decoded Image Airplane.tiff Threshold (0.3, 0.7, 0.5) 

 

 

 

 

 

 

 

 

Figure 91: Decoded Image Airplane.tiff Threshold (0.5, 0.3, 0.7) 

 

 

 

 

 

 

 

 

Figure 92: Decoded Image Airplane.tiff Threshold (0.5, 0.7, 0.3) 
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Figure 93: Decoded Image Airplane.tiff Threshold (0.7, 0.3, 0.5) 

 

 

 

 

 

 

 

 

Figure 94: Decoded Image Airplane.tiff Threshold (0.7, 0.5, 0.3) 

 

 

 

 

 

 

 

 

Figure 95: Decoded Image Airplane.tiff Threshold (0.8, 0.3, 0.3) 
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Figure 96: Decoded Image Airplane.tiff Threshold (0.3, 0.8, 0.3) 

 

 

 

 

 

 

 

 

Figure 97: Decoded Image Airplane.tiff Threshold (0.3, 0.3, 0.8) 

 

 

 

 

 

 

 

 

Figure 98: Decoded Image Airplane.tiff Threshold (0.8, 0.8, 0.3) 
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Figure 99: Decoded Image Airplane.tiff Threshold (0.3, 0.8, 0.8) 

 

 

 

 

 

 

 

 

Figure 100: Decoded Image Airplane.tiff Threshold (0.8, 0.3, 0.8) 

 

� Lena.png 

 

 

 

 

 

 

 

 

Figure 101: Decoded Image Lena.png Threshold (0.3, 0.5, 0.7) 
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Figure 102: Decoded Image Lena.png Threshold (0.3, 0.7, 0.5) 

 

 

 

 

 

 

 

 

Figure 103: Decoded Image Lena.png Threshold (0.5, 0.3, 0.7) 

 

 

 

 

 

 

 

 

Figure 104: Decoded Image Lena.png Threshold (0.5, 0.7, 0.3) 
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Figure 105: Decoded Image Lena.png Threshold (0.7, 0.3, 0.5) 

 

 

 

 

 

 

 

 

Figure 106: Decoded Image Lena.png Threshold (0.7, 0.5, 0.3) 

 

 

 

 

 

 

 

 

Figure 107: Decoded Image Lena.png Threshold (0.8, 0.3, 0.3) 
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Figure 108: Decoded Image Lena.png Threshold (0.3, 0.8, 0.3) 

 

 

 

 

 

 

 

 

Figure 109: Decoded Image Lena.png Threshold (0.3, 0.3, 0.8) 

 

 

 

 

 

 

 

 

Figure 110: Decoded Image Lena.png Threshold (0.8, 0.8, 0.3) 
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Figure 111: Decoded Image Lena.png Threshold (0.3, 0.8, 0.8) 

 

 

 

 

 

 

 

 

Figure 112: Decoded Image Lena.png Threshold (0.8, 0.3, 0.8) 

 

 

For all of the images with the twelve variation of threshold, the 

quantitative analysis have been made including MSE, RMSE, PSNR, File size and 

CR. The analysis has been arranged in the table on the next page as followed: 
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� Peppers.tiff 

 

                   Table 5: MSE, RMSE and PSNR for Peppers.tiff 

No. 
Threshold MSE RMSE PSNR 

R G B R G B R G B R G B 
1 0.3 0.5 0.7 62 111 145 7.874 10.536 12.042 30.2069 27.6776 26.5171 
2 0.3 0.7 0.5 62 157 112 7.874 12.53 10.583 30.2069 26.1718 27.6386 
3 0.5 0.3 0.7 107 71 128 10.3441 8.4261 11.314 27.837 29.6182 27.0587 
4 0.5 0.7 0.3 107 157 68 10.3441 12.53 8.2462 27.837 26.1718 29.8057 
5 0.7 0.3 0.5 134 71 99 11.5758 8.4261 9.9499 26.8598 29.6182 28.1745 

6 0.7 0.5 0.3 134 112 63 11.5758 10.583 7.9373 26.8598 27.6386 30.1374 
7 0.8 0.3 0.3 148 71 63 12.1655 8.4261 7.9373 26.4282 29.6182 30.1374 
8 0.3 0.8 0.3 62 157 66 7.874 12.53 8.124 30.2069 26.1718 29.9354 

9 0.3 0.3 0.8 56 68 128 7.4833 8.2462 11.314 30.6489 29.8057 27.0587 

10 0.8 0.8 0.3 158 158 68 12.5698 12.57 8.2462 26.1442 26.1442 29.8057 
11 0.3 0.8 0.8 62 163 161 7.874 12.767 12.689 30.2069 26.0089 26.0625 

12 0.8 0.3 0.8 148 71 128 12.1655 8.4261 11.314 26.4282 29.6182 27.0587 

 

 

            Table 6: File Size and CR for Peppers.tiff 

No. 
Threshold File Size CR 

R G B Original Decoded R G B 

1 0.3 0.5 0.7 35.7 KB 33.3 KB 1.43 2.00 3.33 

2 0.3 0.7 0.5 35.7 KB 33.2 KB 1.43 3.33 2.00 

3 0.5 0.3 0.7 35.7 KB 33.2 KB 2.00 1.43 3.33 

4 0.5 0.7 0.3 35.7 KB 33.4 KB 2.00 3.33 1.43 

5 0.7 0.3 0.5 35.7 KB 33.4 KB 3.33 1.43 2.00 

6 0.7 0.5 0.3 35.7 KB 33.3 KB 3.33 2.00 1.43 

7 0.8 0.3 0.3 35.7 KB 33.7 KB 5.00 1.43 1.43 

8 0.3 0.8 0.3 35.7 KB 33.9 KB 1.43 5.00 1.43 

9 0.3 0.3 0.8 35.7 KB 33.6 KB 1.43 1.43 5.00 

10 0.8 0.8 0.3 35.7 KB 33.0 KB 5.00 5.00 1.43 

11 0.3 0.8 0.8 35.7 KB 32.4 KB 1.43 5.00 5.00 

12 0.8 0.3 0.8 35.7 KB 33.0 KB 5.00 1.43 5.00 
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� Baboon.tiff 

 

            Table 7: MSE, RMSE and PSNR for Baboon.tiff 

No. 
Threshold MSE RMSE PSNR 

R G B R G B R G B R G B 
1 0.3 0.5 0.7 60 101 132 7.746 10.0499 11.4891 30.3493 28.0876 26.9251 
2 0.3 0.7 0.5 58 109 103 7.6158 10.4403 10.1489 30.4965 27.7565 28.0024 
3 0.5 0.3 0.7 97 60 121 9.8489 7.746 11 28.2631 30.3493 27.3029 
4 0.5 0.7 0.3 97 104 61 9.8489 10.198 7.8102 28.2631 27.9605 30.2775 
5 0.7 0.3 0.5 105 60 102 10.247 7.746 10.0995 27.9189 30.3493 28.0448 

6 0.7 0.5 0.3 114 98 62 10.6771 9.8995 7.874 27.5618 28.2185 30.2069 
7 0.8 0.3 0.3 105 56 57 10.247 7.4833 7.5498 27.9189 30.6489 30.5721 
8 0.3 0.8 0.3 54 84 61 7.3485 9.1652 7.8102 30.8069 28.888 30.2775 

9 0.3 0.3 0.8 54 60 108 7.3485 7.746 10.3923 30.8069 30.3493 27.7966 

10 0.8 0.8 0.3 140 135 62 11.8322 11.619 7.874 26.6695 26.8275 30.2069 
11 0.3 0.8 0.8 60 136 153 7.746 11.6619 12.3693 30.3493 26.7954 26.2839 

12 0.8 0.3 0.8 105 60 121 10.247 7.746 11 27.9189 30.3493 27.3029 

 

 

                 Table 8: File Size and CR for Baboon.tiff 

No. 
Threshold File Size CR 

R G B Original Decoded R G B 

1 0.3 0.5 0.7 54.7 KB 45.3 KB 1.43 2.00 3.33 

2 0.3 0.7 0.5 54.7 KB 46.2 KB 1.43 3.33 2.00 

3 0.5 0.3 0.7 54.7 KB 48.1 KB 2.00 1.43 3.33 

4 0.5 0.7 0.3 54.7 KB 47.9 KB 2.00 3.33 1.43 

5 0.7 0.3 0.5 54.7 KB 48.1 KB 3.33 1.43 2.00 

6 0.7 0.5 0.3 54.7 KB 48.0 KB 3.33 2.00 1.43 

7 0.8 0.3 0.3 54.7 KB 49.7 KB 5.00 1.43 1.43 

8 0.3 0.8 0.3 54.7 KB 49.6 KB 1.43 5.00 1.43 

9 0.3 0.3 0.8 54.7 KB 48.7 KB 1.43 1.43 5.00 

10 0.8 0.8 0.3 54.7 KB 47.7 KB 5.00 5.00 1.43 

11 0.3 0.8 0.8 54.7 KB 45.0 KB 1.43 5.00 5.00 

12 0.8 0.3 0.8 54.7 KB 48.1 KB 5.00 1.43 5.00 
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� Airplane.tiff 

 

     Table 9: MSE, RMSE and PSNR for Airplane.tiff 

No. 
Threshold MSE RMSE PSNR 

R G B R G B R G B R G B 
1 0.3 0.5 0.7 61 107 81 7.8102 10.3441 9 30.2775 27.837 29.046 
2 0.3 0.7 0.5 61 134 107 7.8102 11.5758 10.3441 30.2775 26.8598 27.837 
3 0.5 0.3 0.7 99 63 88 9.9499 7.9373 9.3808 28.1745 30.1374 28.686 
4 0.5 0.7 0.3 98 109 58 9.8995 10.4403 7.6158 28.2185 27.7565 30.4965 
5 0.7 0.3 0.5 99 63 63 9.9499 7.9373 7.9373 28.1745 30.1374 30.1374 

6 0.7 0.5 0.3 95 102 58 9.7468 10.0995 7.6158 28.3536 28.0448 30.4965 
7 0.8 0.3 0.3 99 63 58 9.9499 7.9373 7.6158 28.1745 30.1374 30.4965 
8 0.3 0.8 0.3 61 105 58 7.8102 10.247 7.6158 30.2775 27.9189 30.4965 

9 0.3 0.3 0.8 56 63 58 7.4833 7.9373 7.6158 30.6489 30.1374 30.4965 

10 0.8 0.8 0.3 118 121 58 10.863 11 7.6158 27.412 27.3029 30.4965 
11 0.3 0.8 0.8 61 137 107 7.8102 11.7047 10.3441 30.2775 26.7636 27.837 

12 0.8 0.3 0.8 99 63 91 9.9499 7.9373 9.5394 28.1745 30.1374 28.5404 
 

 

            Table 10: File Size and CR for Airplane.tiff 

No. 
Threshold File Size CR 

R G B Original Decoded R G B 

1 0.3 0.5 0.7 33.7 KB 30.6 KB 1.43 2.00 3.33 

2 0.3 0.7 0.5 33.7 KB 30.6 KB 1.43 3.33 2.00 

3 0.5 0.3 0.7 33.7 KB 30.9 KB 2.00 1.43 3.33 

4 0.5 0.7 0.3 33.7 KB 28.6 KB 2.00 3.33 1.43 

5 0.7 0.3 0.5 33.7 KB 30.9 KB 3.33 1.43 2.00 

6 0.7 0.5 0.3 33.7 KB 28.3 KB 3.33 2.00 1.43 

7 0.8 0.3 0.3 33.7 KB 30.9 KB 5.00 1.43 1.43 

8 0.3 0.8 0.3 33.7 KB 30.7 KB 1.43 5.00 1.43 

9 0.3 0.3 0.8 33.7 KB 30.9 KB 1.43 1.43 5.00 

10 0.8 0.8 0.3 33.7 KB 28.0 KB 5.00 5.00 1.43 

11 0.3 0.8 0.8 33.7 KB 30.6 KB 1.43 5.00 5.00 

12 0.8 0.3 0.8 33.7 KB 30.9 KB 5.00 1.43 5.00 
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� Lena.png 

 

             Table 11: MSE, RMSE and PSNR for Lena.png 

No. 
Threshold MSE RMSE PSNR 

R G B R G B R G B R G B 
1 0.3 0.5 0.7 63 99 91 7.9373 9.9499 9.5394 30.1374 28.1745 28.5404 
2 0.3 0.7 0.5 63 130 99 7.9373 11.4018 9.9499 30.1374 26.9914 28.1745 
3 0.5 0.3 0.7 92 62 73 9.5917 7.874 8.544 28.4929 30.2069 29.4976 
4 0.5 0.7 0.3 106 133 66 10.296 11.5326 8.124 27.8777 26.8923 29.9354 
5 0.7 0.3 0.5 92 62 73 9.5917 7.874 8.544 28.4929 30.2069 29.4976 

6 0.7 0.5 0.3 124 106 66 11.136 10.2956 8.124 27.1966 27.8777 29.9354 
7 0.8 0.3 0.3 92 61 66 9.5917 7.8102 8.124 28.4929 30.2775 29.9354 
8 0.3 0.8 0.3 63 99 66 7.9373 9.9499 8.124 30.1374 28.1745 29.9354 

9 0.3 0.3 0.8 63 62 73 7.9373 7.874 8.544 30.1374 30.2069 38.8142 

10 0.8 0.8 0.3 124 133 66 11.136 11.5326 8.124 27.1966 26.8923 29.9354 
11 0.3 0.8 0.8 63 130 99 7.9373 11.4018 9.9499 30.1374 26.9914 28.1745 

12 0.8 0.3 0.8 92 62 73 9.5917 7.874 8.544 28.4929 30.2069 29.4976 
 

 

               Table 12: File Size and CR for Lena.png 

No. 
Threshold File Size CR 

R G B Original Decoded R G B 

1 0.3 0.5 0.7 34.3 KB 30.1 KB 1.43 2.00 3.33 

2 0.3 0.7 0.5 34.3 KB 30.1 KB 1.43 3.33 2.00 

3 0.5 0.3 0.7 34.3 KB 31.6 KB 2.00 1.43 3.33 

4 0.5 0.7 0.3 34.3 KB 30.7 KB 2.00 3.33 1.43 

5 0.7 0.3 0.5 34.3 KB 31.6 KB 3.33 1.43 2.00 

6 0.7 0.5 0.3 34.3 KB 30.5 KB 3.33 2.00 1.43 

7 0.8 0.3 0.3 34.3 KB 31.7 KB 5.00 1.43 1.43 

8 0.3 0.8 0.3 34.3 KB 31.2 KB 1.43 5.00 1.43 

9 0.3 0.3 0.8 34.3 KB 31.6 KB 1.43 1.43 5.00 

10 0.8 0.8 0.3 34.3 KB 30.4 KB 5.00 5.00 1.43 

11 0.3 0.8 0.8 34.3 KB 29.9 KB 1.43 5.00 5.00 

12 0.8 0.3 0.8 34.3 KB 31.6 KB 5.00 1.43 5.00 
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In this non-uniform threshold variation, we want to find which colour 

channel most contribute to the error. We will compare the average MSE and 

threshold value. By knowing this, we will consider that the threshold for that 

colour channel (highest average MSE) should be the lowest compared to other 

colour channels to get the better quality of image. So, the average MSE for each 

variation of threshold for each images have been calculated as followed: 

 

Table 13: Comparison of Threshold and Average MSE 

No. Threshold Average MSE 

R G B Peppers.tiff Baboon.tiff Airplane.tiff Lena.png 
1 0.3 0.5 0.7 106 98 83 84 
2 0.3 0.7 0.5 110 90 101 97 
3 0.5 0.3 0.7 102 93 83 76 
4 0.5 0.7 0.3 166 87 88 102 
5 0.7 0.3 0.5 101 89 75 76 

6 0.7 0.5 0.3 103 91 85 99 
7 0.8 0.3 0.3 94 73 73 73 
8 0.3 0.8 0.3 95 66 75 76 

9 0.3 0.3 0.8 84 74 59 66 

10 0.8 0.8 0.3 128 112 99 108 
11 0.3 0.8 0.8 129 116 102 97 

12 0.8 0.3 0.8 116 95 84 76 

 

 

Then, we analyze the comparison between threshold and average MSE for 

each images; Peppers.tiff, Baboon.tiff, Airplane.tiff and Lena.png. The average 

MSE being arranged in descending order, so we can observe the highest threshold 

belongs to which colour channel.  
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� Peppers.tiff 

 

R G B Average MSE 
0.5 0.7 0.3 166 
0.3 0.7 0.5 110 

0.3 0.5 0.7 106 

0.7 0.5 0.3 103 

0.5 0.3 0.7 102 

0.7 0.3 0.5 101 

R G B Average MSE 
0.3 0.8 0.8 129 
0.8 0.8 0.3 128 

0.8 0.3 0.8 116 

R G B Average MSE 
0.3 0.8 0.3 95 
0.8 0.3 0.3 94 

0.3 0.3 0.8 84 

 

 

- For Peppers.tiff, the Green channel contributes the highest error when its 

threshold value is highest. 

- So, to obtain better quality of image, the threshold value for Green channel 

should be lowest compared with Red and Blue channel. 
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� Baboon.tiff 

 

R G B Average MSE 

0.3 0.5 0.7 98 

0.5 0.3 0.7 93 

0.7 0.5 0.3 91 

0.3 0.7 0.5 90 

0.7 0.3 0.5 89 

0.5 0.7 0.3 87 

R G B Average MSE 

0.3 0.3 0.8 74 

0.8 0.3 0.3 73 

0.3 0.8 0.3 66 

R G B Average MSE 
0.3 0.8 0.8 116 
0.8 0.8 0.3 112 

0.8 0.3 0.8 95 
 

 

- For Baboon.tiff, the Blue channel contributes the highest error when its 

threshold value is highest. 

- So, to obtain better quality of image, the threshold value for Blue channel 

should be lowest compared with Red and Green channel. 
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� Airplane.tiff 

 

R G B Average MSE 

0.3 0.7 0.5 101 

0.5 0.7 0.3 88 

0.7 0.5 0.3 85 

0.5 0.3 0.7 83 

0.3 0.5 0.7 83 

0.7 0.3 0.5 75 

R G B Average MSE 

0.3 0.8 0.3 75 

0.8 0.3 0.3 73 

0.3 0.3 0.8 59 

R G B Average MSE 
0.3 0.8 0.8 102 
0.8 0.8 0.3 99 

0.8 0.3 0.8 84 
 

 

- For Airplane.tiff, the Green channel contributes the highest error when its 

threshold value is highest. 

- So, to obtain better quality of image, the threshold value for Green channel 

should be lowest compared with Red and Blue channel. 
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� Lena.png 

 

R G B Average MSE 

0.5 0.7 0.3 102 

0.7 0.5 0.3 99 

0.3 0.7 0.5 97 

0.3 0.5 0.7 84 

0.5 0.3 0.7 76 

0.7 0.3 0.5 76 

R G B Average MSE 

0.3 0.8 0.3 76 

0.8 0.3 0.3 73 

0.3 0.3 0.8 66 

R G B Average MSE 
0.8 0.8 0.3 108 
0.3 0.8 0.8 97 

0.8 0.3 0.8 76 
 

 

- For Lena.png, the Green channel contributes the highest error when its 

threshold value is highest. 

- So, to obtain better quality of image, the threshold value for Green channel 

should be lowest compared with Red and Blue channel. 
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From the analyses that have been made for non-uniform threshold 

variation, we also can determine the best non-uniform threshold combination. We 

can do the comparison between threshold combination and RMSE and also PSNR. 

The average values of RMSE and PSNR have been calculated to determine the 

best non-uniform threshold combination.  

 

As we know, the values of MSE and RMSE are directly proportional 

between each other’s and the values of MSE and PSNR are inversely proportional 

between each other’s. From the quantitative analysis, the quality of images being 

determined by the lowest values of MSE and RMSE and highest value of PSNR. 

The average MSE and PSNR values with the respective threshold combination are 

as followed: 

 

Table 14: Comparison of Threshold and Average RMSE, PSNR 

No. 
Threshold Peppers.tiff Baboon.tiff Airplane.tiff Lena.png 

R G B RMSE PSNR RMSE PSNR RMSE PSNR RMSE PSNR 
1 0.3 0.5 0.7 10.15 28.13 9.76 28.45 9.05 29.05 9.14 28.95 
2 0.3 0.7 0.5 10.33 28.01 9.40 28.76 9.91 28.33 9.76 28.43 
3 0.5 0.3 0.7 10.03 28.17 9.53 28.64 9.09 29.00 8.67 29.40 
4 0.5 0.7 0.3 10.37 27.94 9.29 28.83 9.32 28.82 9.98 28.24 
5 0.7 0.3 0.5 9.98 28.07 9.36 28.77 8.61 29.84 8.67 29.40 
6 0.7 0.5 0.3 10.03 28.21 9.48 28.66 9.15 28.97 9.85 28.34 
7 0.8 0.3 0.3 9.51 28.73 8.43 29.71 8.50 29.60 8.51 29.57 
8 0.3 0.8 0.3 9.54 28.77 8.11 30.00 8.56 29.56 8.67 29.42 
9 0.3 0.3 0.8 9.01 29.17 8.50 29.65 7.68 30.43 8.12 33.05 
10 0.8 0.8 0.3 11.13 27.37 10.44 27.90 9.83 28.40 10.26 28.01 
11 0.3 0.8 0.8 11.11 27.43 10.60 27.81 9.95 28.29 9.76 28.43 
12 0.8 0.3 0.8 10.64 27.70 9.66 28.52 9.14 28.95 8.67 29.40 

 

  

The graph of threshold combination versus RMSE & PSNR is plotted as in 

the next page. From the plotted graph, we can observe the best combination of 

non-uniform threshold. 
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� Peppers.tiff 

 

 

Figure 113: Threshold Combination versus RMSE & PSNR for Peppers.tiff 

 

 

 

� Baboon.tiff 

 

 

Figure 114: Threshold Combination versus RMSE & PSNR for Baboon.tiff 
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� Airplane.tiff 

 

 

Figure 115: Threshold Combination versus RMSE & PSNR for Airplane.tiff 

 

 

 

� Lena.png 

 

 
Figure 116: Threshold Combination versus RMSE & PSNR for Lena.png 
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 From the plotted graph in the previous pages, for the Peppers.tiff image, 

from Figure 113, we can see the threshold combination which achieves lowest 

RMSE and highest PSNR is the ninth combination, which is 0.3, 0.3, 0.8. For the 

Baboon.tiff image, from Figure 114, we can see the threshold combination which 

achieves lowest RMSE and PSNR is the eighth combination, which is 0.3, 0.8, 

0.3. For the Airplane.tiff image, from Figure 115, we can see the threshold 

combination which achieves lowest RMSE and PSNR is the ninth combination, 

which is 0.3, 0.3, 0.8. For the Lena.png image, from Figure 116, we can see the 

threshold combination which achieves lowest RMSE and PSNR is the ninth 

combination, which is 0.3, 0.3, 0.8. 

 

For the RGB Quadtree Decomposition and Parametric Line Fitting method 

for image compression, from the analysis and output images of variation threshold 

in uniform and non-uniform patterns, we can see the quality of image Baboon.tiff 

is better than others even all the Red, Green and Blue channels are at high 

threshold. The Baboon.tiff image looks clear and less blur. The reason is we can 

see the pure colours of the image Baboon.tiff itself which contains all of the RGB 

colour components. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

 

5.1 Conclusion 

 

In summary, to define a Bézier curve of degree H, we need to choose H + 1 control points in space (+�, where � = 2 or 3) so that they roughly indicate 

the shape of the desired curve while to define a Bézier surface, we need to choose (H + 1)(U + 1) control points [26]. The concept of Bézier method including 

Bézier curves, Bézier surfaces, theory, properties and applications have been 

generated and proved by MATLAB simulation. The quadtree decomposition and 

parametric line fitting method for image compression also have been proved by 

MATLAB simulation. For the image compression, we can see the quality of 

image Baboon.tiff is better than others even all the Red, Green and Blue channels 

are at high threshold. The reason is we can see the pure colours of the image 

Baboon.tiff itself which contains all of the RGB colour components. 

 

5.2 Recommendation 

 

 For the extension and future works, there are few recommendations that 

can be done: 

• For image compression using the quadtree decomposition and 

parametric line fitting, we can try to use higher degree of line fitting 

such as quadratic or cubic instead of parametric line fitting.  

• We can try to apply filtering such as using wavelet Bior 3.5 or 

Gaussian for the input image or output image of image compression 

using quadtree decomposition and parametric line fitting method. 
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APPENDIX A: BÉZIER DEMO 

 

In the following figures, we can see the changing of Bézier curve by changing the 

control points. 

 

 

 

 

 

 

 

 

Demo 1 

 

 

 

 

 

 

 

 

Demo 2 

 

 

 

 

 

 

 

 

Demo 3 
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Demo 4 

 

 

 

 

 

 

 

 

 

Demo 5 
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APPENDIX B: IMAGE RESCALING USING BILINEAR 

INTERPOLATION 

 

 

 

 

 

 

 

 

Original Image 

 

 

 

 

 

 

 

 

 

Rescaling 60% 

 

 

 

 

 

 

 

 

 

Rescaling 400% 
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APPENDIX C: UTAH TEAPOT 

 

 

 

 

 

 

 

 

Utah Teapot 1 

 

 

 

 

 

 

 

 

 

Utah Teapot 2 

 

 

 

 

 

 

 

 

 

Utah Teapot 3 


