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ABSTRACT

This project concerns about Bézier method in Cdemp@iided Geometric
Design (CAGD) involving Bézier Curve and Bézier faoe which widely related
to the other theorem and method. The aim of thegept is to introduce the basic
of Bézier method and then generate the Bézier suB€zier surfaces, theory and
properties and develop Bézier method in image [@gng application specifically
image compression by using MATLAB. The Bézier methas widely applied in
many areas especially in Computer Aided Geometesidh (CAGD) but there is
only several application in the image processirtgs project will focus on Bézier
Curve, Beézier Surface, Bernstein Polynomial, de t€jas Algorithm,
Interpolation, Approximation, Quadtree and Parametrine Fitting, Image
Rescaling and Image Compression application. Thefpnd examples of some
theory and properties as well as the applicatidhbei shown by using MATLAB
and also by using the calculation and analysis.tR@main focus of this project
which is image compression by RGB Quadtree Decoitippsand Parametric
Line Fitting method, the analysis have been madéoiar different images which
are Peppers.tiff, Baboon.tiff, Airplane.tiff andiapng. From the analysis which
being shown in the form of table and graph, the R@Bnnel threshold effect on

the resulted output images being observed.
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CHAPTER 1
INTRODUCTION

1.1  Background of Study

Originally, Bézier curves were independently depelb in 1959 by Paul
de Casteljau and by Pierre Bézier about 1962. Tindenying mathematical
theory is based on the concept of Bernstein polyabrii]. The Bernstein
polynomial is important and dominant in Bézier splimodels for curve and
surface design and drawing [2]. de Casteljau diremtploited this relationship,
but it was not before 1970 that R. Forrest discedethe connection between

Bézier's work and Bernstein polynomials.

Bézier and de Casteljau developed their theorigsadsof CAD systems
that were built up at two French car companies,aRitrand Citroén. The Renault
system UNISURF was soon described in several matimics, this is the reason
that the underlying theory now bears Bézier's ndtijeIn the late sixties, the
Bézier surface description was introduced and leasained one of the most
popular schemes. When the Bézier's work on UNISURS$t published, the

remarkable spline era in computer science started.

The same situation was repeated with the discovkiggrid Daubechi’s
wavelets. Different wavelet splines are now welbkm and extensively found in
the literature. As splines are rich in propertib®y provide advantages in many
important areas. Bézier and wavelet splines, darefore, be regarded as two
landmarks in spline theory with wide application iimage processing and
machine vision [2]. Presently, Bézier curves andases are extensively utilized
in many fields like industrial and computer-aidegsign, vector-based drawing,
font design and 3D-modelling.



Two of the most important mathematical represemmatiof curves and
surfaces in computer graphics and computer-aidsdylere the Bézier and B-
spline forms. Bézier curves are polynomial curvelictv have a particular
mathematical representation. Their popularity ie thuthe fact that they posses a
number of mathematical properties which enabler timanipulation and analysis,
and yet no mathematical knowledge is required deoto use the curves [3].

1.2 Problem Statement

The Bézier method was widely applied in many areapecially in
Computer Aided Geometric Design (CAGD). The Beéaarves and surfaces
were famously used in design problem and play apomant role in the
construction of quite different products such as lmadies, ship hulls, propeller
blades, shoe, and bottles and even in the desgripfi geological, physical and
medical phenomena. In image processing, the mostoda and familiar
techniques being used was wavelet [1]. In orderartes the techniques in image
processing and perhaps can improve the availablaigues, the author will try
to implement the Bézier method for image processapgcifically image

compression.

1.3  Objectives

The objectives of this project are:

I. To understand the theoretical point of view for Bézurves and
surfaces

i. To generate the Bézier curves and surfaces usinglrlMB
software

iii. To implement the Bézier method for image processpegifically
image compression and simulating the theory anpesties

iv. To apply the Bézier method with another suitablethoe for

image compression



1.4  Scope of Study

This project is aim to implement the Bézier metli@mdimage processing
using MATLAB. It will cover the theory and propesti of Bernstein polynomial,
de Casteljau Algorithm, spline, Bézier curves, Bé&urfaces, image processing
application such as affine transformations, imaggealing, image reconstruction
and image compression. The author will try to impdeit Bézier method for
image processing including cubic interpolation,stesquare fitting and bilinear
interpolation. The author will also apply the metheith quadtree decomposition

for image compression.



CHAPTER 2
LITERATURE REVIEW

2.1 Bézier Curve

In the mathematical field of numerical analysisBézier curves is a
parametric curve important in computer graphics arelated fields.
Generalizations of Bézier curves to higher dimemsiare called Bézier surfaces.
‘Paths” as they are commonly referred to an imagaipulation programs are
combinations of linked Bézier curves. Bézier curaes also used in animation as
a tool to control motion [4]. By simply changingetltontrol points, the Bézier

curve will change. The examples are attached ieghpes (refer Appendix A).
2.1.1 Linear Bézier Curves

A linear Bézier curve is a line segment joining twontrol points

bO(pOJ qO) andbl(pll CI1)' parameterized by

(x@®,y®) = @ = )P0, q0) + t(P1, 1), fort €[0,1] (2.1)

so that x(t) = (1 —t)py +tp,and y(t) = (1 —t)q, + tq,. Letting

B(t) = (x(t),y(t)), the curve can be written in the vector form
B(t) = (1 —t)by + th, (2.2)
The curve is defined on the interval [0, 1], sosteating point of the curve

is B(0) = b, and the finishing point i8(1) = b, , that is, the Bézier

curve interpolates the first and last control p®ii3j.



2.1.2 Quadratic Bézier Curves

Suppose three control poirttg (po, 90), b1(p1, q1) andb,(p,, q,) are specified.

Then the quadratic Bézier curve is defined to be

B(t) = (1 = t)*(po, o) + 2(1 — )t(p1,q1) + t*(p2,q2) for t €[0,1] (2.3)

The starting points of the curve B{0) = b, and the finishing point i8(1) =

b,. The curve can be expressed in the parametrigcfa), y(t)) where

x(t) = (1 —t)%py + 2(1 — t)tp, + t%p,, (2.4)
y() = (1 —t)?qo + 2(1 — O)tq; + t3q,, (2.5)

The trianglebyb, b, obtained by joining the control points with linegsnents, in

their prescribed order, is called the control polyda3].

2.1.3 Cubic Bézier Curves

Suppose four control pointgy, b;, b,, andb; are specified, then the cubic Bézier

curve is defined to be

B(t) = (1 —1t)3by + 3(1 — t)?tb; + 3(1 — t)t?b, + t3b;, t €[0,1] (2.6)

As in the quadratic case, the polygon obtainedobying the control points in the
specified order is called the control polygon.
Cubic Bézier curves provide a greater range of ehapan quadratic Bézier

curves, since they can exhibit loops, sharp coraedsinflections [3].



2.1.4 Deriving the Curve

The first step to understand Bézier curve is knowsv the curves are
geometrically formed. The construction of a Bezearve begins with picking
three or more points, called control points. Foarmagle, we use four control

points,P,, P;, P,, andP; (refer Figure 1) to create Cubic Bézier curve [5].

3

-1
0 2 4

Figure 1: Four Control Points

The next step is to find the points on the linensegtsP,P;, P, P,, andP,Ps. This
is best done when thinking about the points asovect he first point i®;, and it

liest% of the way from poinP, to P; (refer Figure 2).

Py

0

Figure 2: Formation of Individual Points

6



This point is derived by:

Py = Py + t(Py — Py)
:Po‘l'tpl_tpo

Repeating the process five more times as below;

Pi.t) =1 —-t)Py + tP;

Py(t) = (1 —t)P; + tP,

P;u() =1 —t)P, + tPs

Pip(t) = (1 — t)Py4(t) + tPya(t)

Pyp(t) = (1 — £)Ppq () + tP34(t) (2.8)

we get the other points that form Figure 3.

Figure 3: Formation of the First Poiritg. on the Curve

Only P, is on the actual curve. To find other points oa turve we repeat the

process with a different t value, ranging from @.to

P1c(6) = (1 = )Py (2) + tPp (2) (2.9)



Using equation (2.9) we can form a specific polyrancalled the Bernstein
Polynomial (refer equation (2.11)) with the varabl The Bernstein Polynomial
can be derived by settiR(t) = P;.(t).

P(t) = P(t) = (1 = t)Py,(t) + tPp (1)
= (1= O[(1 = OP1(t) + tPoo ()] + t[(1 = ) Pra(t) + tP3,(0)]
=1 -0|-0[A-0P +tP +t((L - P, +tP,)]|
+t [(1 —O[1—-0P, +tP, +t((1—t)P, + tP3)]]
=1 -0)[A-0t)?Py+t(1 —t)P; + t(1 —t)P; + t2P,]

+t[(1 —t)?P, +t(1 — )P, + t(1 — )P, + t2P,
=1-t)3P, +t(1—t)?P, +t(1 —t)?P, + t*(1 —t)P, (2.10)

P(t) = (1 —1t)3Py + 3t(1 —t)?P; + 3t?(1 —t)P, + t3P, (2.11)

Because now we have a polynomial that can givehesbints on the curve we
could consider ourselves lucky; however, sincedtae points,, P;, P,, P; in
the polynomial the desired curve is a little havdyenerate. To find other points
on the curve without having to recalculdg. every time we put the Bernstein
Polynomial in matrix form. This is done by lookiag the polynomial as a linear
combination of the four control points and theieffwients. We can then break
the coefficient vector into a vector times a matrix

P)=[1-1t)3 3t(1-t)? 3t2(1-1t) t3] (2.12)

To break the coefficients into a vector and a mathe coefficients have to be

expanded.
Py
P(t) =[1-3t+3t%2 3t—6t2+3t3 3t2-3t3 t3] 512 (2.13)
P3



Now the vector can be expanded to include a mawhich will isolate thet

values and allow us to quickly calculate multipters on our Bézier curve.

1 0 0 0] [P

— 2 3 —3 3 O 0 P1
Pt)=[1 t t= ¢t°] 3 6 3 ol |p, (2.14)

-1 3 -3 1l LP;s

With the matrix representation of the BernsteinyRomial, multiple values of
can be quickly entered and calculated using a ctenpo generate points on the

Bézier curve.
2.1.5 Subdivisions and Generating New Control Point

Sometimes it is useful to adjust part of a curve aot the whole thing. The
easiest way to do this is to subdivide the curte parts and find new control
points for each of the subdivisions. To do thiketahe matrix form of the

Bernstein Polynomial equation (2.14), then decidhciv part of the curve needs
to be changed. For this example, the curve wildliveded into two equal parts. In
order to do this, the Bernstein Polynomial needbdaeparameterized, which is

easily done by adjusting[5].
P(t) =R(3) +RG+3) (2.15)
2 2 2
Taking the first part of the reparameterizatiorP¢f), R(%), which is the first half

of P(t), and writing in matrix form, the control points tfie matrix can be

determined. ReparameteriziRgt) we get the matrix equation:

1 0 0 0] [P
t t -3 3 0 of |~
—\2 —\3
Lt/2 (2) (2) 3 =6 3 0] [P,
-1 3 =3 1] Lp;



Next we expand the vectdf into a vector matrix form labeling the matmii).
2t

We get:
1 0 0 0
t t 0 1/2 0 0
2 (23] = 2 43
0 0 0 1/8

Putting this new matrix into our equatié®{t) we getR(t) which is exactly half

of P(t) but this does not find the new control points.fihd these points we have
to multiply the P, vector of the points by a relationship 8f In other words we

need to put the matrix equation into a form resamyR (t) = T, * M * N(g 1,5y *

P,. We knowR(t) =T, * N . * M * P,, which leaves us with the matrix equation

3

N(%) * M = M * N(O,l/Z)'

1 0 0 0 1 0 0 O 1 0 o off[? ? ? 7
012 0o O0||-3 3 0 o[_|-3 3 0 of[? 2 ??
0o 0 1/4 0|3 -6 3 0 3 -6 3 0|f? 2 272 7?
o o o 1/8J]l-1 3 -3 1 [-1 3 -3 1ll?2 2 2 2
Multiplying both sides byM~*, we get oulN(g 1 /5.
1 0 0 O]t o 0 0 1 0 0 O 7777
11/30001/200—33002??7?
1 2/3 1/3 oflo o 1/4 0|3 -6 3 of [2 2 2 2
1 1 1 1110 O o 1/8J/[-1 3 -3 1 7777
Now we have calculated the matiy /2.
1 0 0 0
1/2 1/2 0 0
No,1/2) = 1/4 1/2 1/4 0 (2.16)
1/8 3/8 3/8 1/8
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Using theN ; 2y we found we can now multiply our control pointscie B, on

the left byN, 1/, to generate our new points fB(t). This same process can be
done forR(1+5) to generate thé&/,,,y Matrix which can be used to find the
2 2 (0,1/2)

new control points for the other half of the cuR(@).

P, [P(’)]

P _|P{]

N =1 2.17
(0'%) PZ lPZJ ( )
Py

Py Py

P/l 1/2P, +1/2P,

P, N 1/4P, +1/2P;, + 1/4P,

p;l l1/8P; +3/8P, +3/8P, + 1/8P,

(2.18)

CalculatingN(% similarly to what we did foN )

+1/2t)

1/2 1/4 1/8
1/2 1/2 3/8

0 1/4 3/8

0 o 1/8
'1/8 3/8 3/8 1/8

o 174 172 1/4

Nen=lo 0 12 12 (2.20)
L0 0 0 1

N (2.19)

G+t/2) —

oo R

N is similar toN(ll) asN, is similar toN( 1,,). Once we have one we
>

G+t/2)
can easily find the other using the matrix M. Thisrks for any subdivision of the
original matrix and allows us to find the new caohfpoints for the subdivision.
Once the subdivisions are found we can move twih@fontrol pointsP; or P,,

to change just part of the curve. This tool is higiractical in drafting and allows

for more complex changes.
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2.1.6

Properties of Bézier Curviy
Endpoint I nterpolation Property: B(0) =b, and B(1)=Db,
Endpoint Tangent Property:

B'(0) = n(b; —by) and B'(1) =n(b, —by,-1)

Convex Hull Property (CHP): For all t € [0,1], B(t) € CH{b,, ....,b,,}
Thus every point of a Bézier curve lies inside tumvex hull of its
defining control points. The convex hull of the toh points is often

referred to as the convex hull of the Bézier curve.

Invariance under Affine Transformations. Let T be an (affine)
transformation (for example rotation, reflectionarislation or scaling).
Then

T(Eob; Bin(®) = Sio T (b)Bin () (2.21)

Variation Diminishing Property (VDP): For a planar Bézier cun(t),
the VDP states that the number of intersectiores git’en line withB(t) is
less than or equal to the number of intersectionghat line with the

control polygon.
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2.2 Bézier Surface

A species of mathematical spline used in computaplycs, computer-
aided design and finite element modeling. Béziefase is defined by a set of
control points. Similar to interpolation in manyspects, a key difference is that
the surface does not, in general, pass througbetigal control points; rather, it is
“stretched” toward them as though each were aadite force. They are visually

intuitive, and for many applications [6].

A Bézier surface of ordefn,m) is defined by a set din + 1)(m + 1)

control pointsk; ;. It maps the unit square into a smooth continusuidace
embedded within a space of the same dimensiorasitk; ;}. For example, ik
are all points in a four-dimensional space, thendtwrface will be within a four-
dimensional space [5]. A two-dimensional Bézierfate can be defined as a
parametric surface where the position of a ppias a function of the parametric

coordinatest, v is given by:
pP(w,v) = XiLo Xito B WB" (V)k, (2.22)
evaluated over the unit square where
B'w) = (Til)ui(l —u)" (2.23)

n!
il(n—i)!

is a Bernstein polynomial ar(d) = is the binomial coefficient.
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2.2.1 Bilinear Bézier Surfaces

The simple method to define bilinear Bézier surfiadg¢inear curve)(linear curve).
So we can define bilinear Bézier surface by

S(u,v) =1 —-u)(A —v)byby + (1 —u)vb;by, + (1 — v)ubyb,

+uvb,b, (2.24)

2.2.2 Biquadratic Bézier Surfaces

The simple method to define biquadratic Bézier amef is (quadratic

curve)(quadratic curve). So we can define biquatiBézier surface by

Stu,v) = (1 —u)?(1 —v)?boby + (1 — u)?2(1 — v)vbyb,
+(1 —u)?v?byb, + 2(1 — w)u(l — v)?b, b,
+2(1 —w)u2(1 — v)vb,b; + 2(1 — w)uv?b,b,
+u?(1 — v)%b,by + u?2(1 — v)vb,b; + u?v?b,b,  (2.25)

2.2.3 Bicubic Bézier Surfaces

The simple method to define bicubic Bézier surfiscEubic curve)(cubic curve).
So we can define bicubic Bézier surface by

S(u,v) = byby(1 —u)3(1 —v)3 + 3bgbyu(l —u)?(1 —v)3
+3bgb,u?(1 —u)(1 — v)3 + bybsu3(1 — v)3
+3b;by(1 — u)3v(1 — v)? + 9b;bu(l — u)?v(1 — v)?
+9b,b,u?(1 — w)v(1 — v)? + 3b;bsuv(1 — v)?
+3b,bo(1 — u)3v2(1 — v) + 9b,byu(1 — u)?v2(1 —v)
+9b,b,u?(1 — w)v?(1 — v) + 3b,bsulv2(1 — v)

+bsbo(1 — u)3v3 + 3bsbu(1 — u)?v3 + 3bsb,u?(1 — w)v?

+b;bsudv3 (2.26)

14



224

Properties of Bézier Surfad@$

Endpoint interpolation: Analogous to the curve case, the patch passes
through the four corner control points, that is

x(0,0) =bgo x(1,0) = by,

x(0,1) =by, x(1,1)=b,,

Symmetry: We could re-index the control net so that anytha corners
corresponds tb,, and evaluation would result in a patch with thmea

shape as the original one.

Affine invariance: Apply an affine map to the control net, and then
evaluate the patch. This surface will be identicalhe surface created by

applying the same affine map to the original patch.

Convex hull property: For (u,v) € [0,1] x [0,1], the patchx(u, v) is in
the convex hull of the control net.

Bilinear precision: A degreem X n patch with boundary control points
which are evenly spaced on lines connecting theerarontrol points, and
the interior control points are evenly-spaced aediconnecting boundary
control points on adjacent edges. This patch isitidal to the bilinear

interpolant to the four corner control points.

Tensor product: Bézier patches are in the class of tensor prosludaces.
This property allows Bézier patches to be dealthwit terms of
isoparametric curves, which in turn simplifies esdlon and other

operations.
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2.3 Bernstein Polynomial
In the mathematical field of numerical analysifexnstein polynomial is
a polynomial in the Bernstein form that is lineambination of Bernstein basis
polynomials. A numerically stable way to evaluatdypomials in Bernstein form
is de Casteljau’s algorithm. With the advent of pomer graphics, Bernstein
polynomials restricted to the intervak [0, 1], became important in the form of
Bézier curves [8].
Then + 1 Bernstein basis polynomials of degreare defined as
Bin(®) =(Ht'@—-t)™", i=0,...,n (2.27)
A linear combination of Bernstein basis polynomiaés called a Bernstein
polynomial
B(t) = XizobiBin (t) (2.28)
231 Properties of Bernstein Polynomi8$
» Partition of Unity:  The Bernstein polynomials of degnesum to one

LoBin(®) =1, t €[0,1) (2.29)

> Positivity: The Bernstein polynomials are non-negadiveéhe interval
[0, 1]

Bi,() =20, t €[0,1] (2.30)
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» Symmetry:
Bn—i,n(t) = Bi,n(1 — t), for i = 0, ., n (231)

So, the graph aB,,_; ,(t) is a reflection of the graph & ,(1 — t).

» Recursion:  The Bernstein polynomials of degree n can beesgad in

terms of the polynomials of degree- 1

Bin(®) = (1 —=t)Bijp_1(t) + tBi_1n-1(t), fori=0,..,n (2.32)

whereB_; ,,_4(t) = 0andB, ,_4(t) = 0

The partition of unity and positivity propertiesvgs rise to two important
properties of Bézier curves namely invariance unmlansformations and the
convex hull property. As a consequence of the sytmnpgoperty, a symmetrical
control polygon gives rise to a symmetrical curVbe recursion property gives

rise to the de Casteljau algorithm.

2.4  de Casteljau Algorithm

In the mathematical subfield of numerical analydis Casteljau algorithm
is a recursive method to evaluate polynomials imBtin form or Bézier curves.
This algorithm can also be used to split a singdzi& curve into two Bézier
curves at an arbitrary parameter value. Although dlgorithm is slower when

compared with the direct approach it is numericsigble [9].
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The de Casteljau algorithm provides a method fatuating the point on a
Bézier curve corresponding to the parameter valad0,1]. For the case of a
cubic Bézier curve with control points,, b, b,, andb;, and for a specified
parameter value € [0,1], the de Casteljau algorithm is expressed by tberse/e

formula

{ bi = b, (2.33)
| oo _
b/ = (1 -t)b!"" +tb],,,

forj=1,2,3 andi =0, ...,3 —j. The formula generates a triangular set of values

as below for whictb3 = B(t) for the specified value af[3].

bg b by b3
by bi b;

bg bi

bg

2.5  Spline

In mathematics, a spline is a special function rafi piecewise by
polynomials. In the computer science subfields afmputer-aided design and
computer graphics, the term ‘spline’ more frequenttfers to a piecewise
polynomial (parametric) curve. Splines are poputarves in these subfields
because of the simplicity of their constructiongithease and accuracy of
evaluation, and their capacity to approximate caxpshapes through curve

fitting and interactive curve design [10].
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2.6 Bernstein — Bézier — Spline

In fact, Bernstein polynomial can be thought otlees gateway to splines,
namely the Bézier spline. Bézier polynomial cannbede to act in either as a
spline or non-spline. When it acts as a splindopés piecewise approximation of a
data set with some smoothness conditions satisBirige break points, but when
it acts as a non-spline to approximate, it doestaké into consideration the
smoothness conditions to satisfy at the break poBézier curves is influenced
by Bernstein polynomial. As Bézier curves and swgfaare driven by Bernstein
basis, they can also be thought of, respectivieyBernstein polynomial pieces of

curves and surfaces.

The basic philosophy behind the Bernstein polynbrapproximation is
that this polynomial is very convenient to freeaodrawing. In fact, some of the
properties of this Bernstein polynomial are soaative that no sooner than the
technique was published by Bézier, it became wigelyular in many industries.
In order to design the body of an automobile, Bédeveloped a spline model
that became the first widely accepted spline madetomputer graphics and
computer-aided design, due to its flexibility arase over the then-used drawing
and design techniques. This model, therefore, htelp$esign and draw smooth
curves and surfaces of different shapes and samsesponding to different

arbitrary objects, based on a set of control points

Bézier spline model, can also be used to approeinddta points
originated from different functions. Notice that Z%r spline-based drawing
technique starts from the z&rorder Bernstein approximation (which is exactly
the line drawing between control points) of theadpbints and goes to some
higher order (quadratic or cubic) approximationtilubh mimics the shape of the
object. The Bézier splines are effective, efficiemtd easy to implement, and have
a strong and elegent mathematical background dslwelomputer graphics, their
significant role is well documented. Unfortunatelyis not the case in image

processing and machine vision [2].
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2.7 Image Processing

Image processing is any form of signal processorgwhich the input is
an image or frames of video, the output of imagecessing can be either an
image or a set of characteristics or parameteatelto the image. Most image-
processing techniques involve treating the image &so-dimensional signal and
applying standard signal-processing techniquest.toThe typical operations
involved in image processing were denoising, cosgng, reduction, rotation,

and color corrections [11].

2.8 Image Compression

Image compression is minimizing the size in bytésaographics file
without degrading the quality of the image to amageptable level. The reduction
in file size allows more images to be stored inveiy amount of disk or memory
space. It also reduces the time required for imagdee sent over the internet or

downloaded from web pages.

There are several different ways in which imadgsfcan be compressed.
For internet use, the two most common compressagohgr image formats are the
JPEG format and the GIF format. The JPEG methothase often used for
photographs, while the GIF method is commonly ugmdline art and other

images in which geometric shapes are relativelyp&m

Other techniques for image compression includeuse of fractal and
wavelets. These methods have not gained wides@eaeptance for use on the
internet as of this writing. However, both methauffer promise because they
offer higher compressions ratio than the JPEG & Béthods for some types of
images. Another new method that may in time reptheeGIF format is the PNG

format.
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A text file or program can be compressed withow thtroduction of
errors, but only up to a certain extent. This idechlossless compression. Beyond
this point, errors are introduced. In text and paog files, it is crucial that
compression be lossless because a single erraecausly damage the meaning
of a text file, or cause a program not to run.nh@ge compression, a small loss in
qguality is usually not noticeable. There is no tical point’ up to which
compression works perfectly, but beyond which itdmees impossible. When
there is some tolerance for loss, the compressicioif can be greater than it can
where there is no loss tolerance. For this reagpaphic images can be
compressed more than text files or programs [12].

2.9  Cubic Interpolation
Suppose we are given four poinig p;, p,, p; and we wish to pass a

curve through them, just like the situation showirigure 4. There, the points are
2D, but they might as well be 3D. This is calletempolation [7].

Figure 4: Cubic Bézier Curve Through Four Givennoi

Every point on a Bézier curve has a parametereyatuorder to solve our

problem, we have to assign a parameter vglt@ everyp;. A natural choice is to
associate eacp; with a parameter valug = é Now, our interpolation problem

becomes:
Given four point / parameter paifg;, t;), find a cubic Bézier curve(t)
such that:
21



X(tl’) = Di, i = 0,1,2,3. (234)

This simply states that we want the Bézier curvpass through the data points at

the right parameter values. The desired Bézierecuiilt be of the form
x(t) = B3(t)b, + B3 (t)b, + B3(t)b, + B3(t)bs (2.35)
Writing out all interpolation conditions (2.34) lds

Po = B§(to)b, + Bi (to)by + B3 (to)b, + B3 (to)bs
p1 = B3 (t1)b, + Bi (t1)by + B3 (t)b, + B3 (t1)bs
P2 = B (t2)b, + Bi (t2)by + B3 (t;)b, + B3 (t3)bs
ps = B§(t3)b, + Bi (t3)by + B3 (t3)b, + B3 (t3)bs

These are four equations in the four unknowbgs..., b;. In order to find a

solution, it helps to write them in matrix form:

po1 [Bo(te) Bi(to) B3(to) B3(to)]rb,
pi| _[B3(t)) B3(ty) B3(t) Bi(t)||bs

2|~ iBé(tZ) B(ty) B3(6) BI(t)||be (20)
Psl B3 (ts) Bi(t3) B3(t3) Bi(ts)I1Ps
We further abbreviate this as
P=MB (2.37)
The solution is now simply
B=M"1p (2.38)
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2.10 Image Rescaling Using Bilinear Interpolation

In computer graphics, image scaling is the proa#ssgesizing a digital
image. Scaling is a non-trivial process that ineslva trade-off between
efficiency, smoothness and sharpness. As the §iae mnage is increased, so the
pixels which comprise the image become increasingiple, making the image
appears ‘soft’. Conversely, reducing an image teiid to enhance its smoothness

and apparent sharpness [13].

In  mathematics, bilinear interpolation is an esten of linear
interpolation for interpolating function of two vables for example andy on a
regular grid. The key idea is to perform lineaenpblation first in one direction,
and then again in the other direction. Althoughhesiep is linear in the sampled
values and in the position, the interpolation asheble is not linear but rather

quadratic in the sample location [14].

When an image needs to be scaled up, each pixileobriginal image
needs to be moved in a certain direction basedcherstale constant. However,
when scaling up an image by a non-integral scaltofathere are pixels (holes)
that are not assigned appropriate pixel valueshicase, those holes should be
assigned appropriate RGB or grayscale values gatihaoutput image does not
have non-valued pixels. Based on [15], the exampfesnage rescaling using
bilinear interpolation performed by using MATLAB earattached in the

appendices (refer Appendix B).
2.11 Cubic Bézier Curve Least Square Fitting

According to [16], Bézier curve is a parametrieveu A Bézier curve of

degreem can be generalized as follows:

q(t) = Yiso(P) P —t)™ %%, 0<t, <1, (2.39)
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whereq(t;) is an interpolated point at parameter vatyen is degree of Bézier
curve andP, is k'™ control point. To generate points (n is count of
interpolating points) between first and last cohpoints inclusive, the parameter
t; is uniformly divided inton — 1 intervals between 0 and 1 inclusive. Equations

of cubic Bézier curves can be derived from Eq.4R& follows:

q(t) = (1 —t;)3Py + 3t;(1 — t,)?P; + 3t,°(1 — t,)P, + t;3P, (2.40)

Bézier curve passes through its first and lastrobpoints which areP,

andP;. The middle control point$; andP, determine the shape of curve.

2.11.1 Least Square Bézier fitting

For data to be fit by cubic Bézier, the first aadticontrol points of Bézier curve
are first and last point of the input data segme&he input data can be divided
into many segments or just one segment by spegifiyitial set of break point,
but the middle control point8, andP, for cubic Bézier must be determined. We
used least square method to find the middle compimoits. Least square method
gives the best value of middle control points timaimize the squared distance
between original and fitted data and is well sufdapproximating data. If there
aren data points ang; andq(t;) are values of original and approximated points

respectively then we can write the least squaratemuas follows:

S = Yialpi —q(t)]? (2.41)
Equation above can be written as follows:

S=Y"[pi — (1 —t)%Py +3t;(1 — ;)P + 3t,°(1 — t))P, + t;°P5])*  (2.42)
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P; andP, can be determined by:

as
35 =0
as
35, =0

Solving forP; andP, gives:

_ (AC, — AlZCZ)/
b= (A14; — AgpAq,), (2.43)

— (Alcz _A1261)/ 2.44
P (A14z — A1zA12), (2.44)

where

n
A1 = 92 tiz (1 - tl')4,
i=1
n
AZ = 92 ti4 (1 - ti)z,
i=1
n
A =9 2 (-t
i=1
n
€= ) 361 t)%lpi — (1= t)*Po — t°P3],
i=1

n
C, = Z 3t (1 — t)[pi — (1 — t)3Py — t;3P5],
=1

After determining the control points, Bézier cungs be fitted to large number

of original data points with very few control panising Bézier interpolation.
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2.11.2 Fitting strategy

Suppose we have set of points (original dé&ay {p;,p,, ..., pn} @and we want to
approximate it using cubic Bézier. As in input weeaify the value of limit of
error (maximum allowed square distance betweenirmaligand fitted data) and
provide initial set of breakpoints. At least twaelkpoints are required, the first
point and the last point of original data. Inputades divided into segments based
on initial set of breakpoints. A segment is set aif points between two
consecutive breakpoints. We have to fit each segm&ing cubic Bézier curve.
Now the fitting process begins. We generatepoints (approximated data)
Q = {q1,92, ..., qn} USINg cubic Bezier interpolation such that cub&zigr curve
passes through breakpoints. Then we measure tbe leetween original and

approximated (fitted) data.

When approximated data is not close enough toraiglata, limit of error bound
is violated then an existing segment is split (kyaato two segments at a point
called new breakpoint. After splitting, number efgments are increased by one
(splitted segment is replaced by two new segmehtginber of breakpoints are
also increased by one (new breakpoint is addedarset of existing breakpoints).
The point where the error is maximum between oalgand approximated data is

selected as new breakpoint and this point is add#te set of breakpoints.
After splitting, repeat the same fitting procedui®ing updated set of segments

and breakpoints until error is less than or eqoalimit of error. We call this

technique as fittingpreak and fitstrategy.
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2.12 Quadtree and Parametric Line Fitting

Quadtree is a data structure that is widely used ifmage storage,
representation and processing [17, 18]. Quadtreeost often used to partition a
2-D space by recursively subdividing it into fouragirants or blocks until each
guadrant contains only pixels of one color or luamoe. Recursive subdivision
may result a quadrant contains only single pixdlisTconventional quadtree
decomposition has following drawbacks:

(1) The overhead of representing a single pixejjlgdtree is not desirable
for image compression. It may take more space poesent a single
pixel by quadtree that without using it.

(2) Due to subdividing criteria, even if a singlxegd in a quadrant is of
different color or luminance then quadtree decontioos would
divide that quadrant into four quadrants.

As a consequence of this, there may be three guzdvéith same luminance
value. In other words, the boundaries between quesirdoes not necessary
represent quadrant of different luminance. To owere the first drawback; in our
method we imposed a constraint of minimum blockesian quadtree
decomposition. It means that a quadrant would mofuother divided into four
quadrants if its size is equal to the predefinedimim block size. The constraint
of minimum block size safeguards our method from dkierhead of representing
very small quadrants (quadrants of size less thef) 4y a quadtree. The
constraint based quadtree decomposition resuttgartypes of quadrants:

(a) Homogeneous quadrants: quadrants that contain mrbls of one
color or luminance

(b) Non-homogeneous quadrants: quadrants that contaghs pof more
than one color or luminance

We represented only homogeneous quadrants usirdjrggaNon-homogeneous

quadrants are represented by parametric line [19].
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Parametric line is essentially a straight lineagiegd by linear interpolation
between two points (control points). To generateparametric line that
interpolatesk + 1 points, k line segments are used. Equation;j8f segment

between pointg; andp;,, can be written as follows:

q;(t) =1 —-0t)p; +tpjs1, tE[0L], 1<j<Kk, (2.45)

where q;(t) is an interpolated point between control poiptsand p;.; at
parameter valug. To generaten points betweerp; and p;,; inclusive, the
parametert is divided inton — 1 intervals between 0 and 1 inclusive such that
q;(0) =p; and q;(1) = pj4;. In order to represent the non-homogeneous
guadrants, we scanned the image data row wiseitted the parametric line to
pixels of non-homogeneous quadrants. Parametre fiting helps to further
reduce the data size in two ways. First, the pamdenéne fitting helps to
represent the pixels of one color/luminance withaléen data set. Second, the
parametric line fitting merges the data of a rowlohg to more than one non-
homogeneous quadrant, as a single data set. Hgke sherged row removes the
artificial boundaries between quadrants that hagenbimposed by quadtree
decomposition. It is very likely that at the bounda of two adjacent non-
homogeneous quadrants, pixels have same lumin@ycenerging quadrants,
large number of pixels can be represented by smdfput data obtained from
parametric line fitting. This also solves the seatairawback of conventional

quadtree representation of image [19].

2.13 Application: A New Method For Video Data Compession By

Quadratic Bézier Curve Fitting

The input points are approximated using quadragzi® least square
fitting. The output data consists of quadratic Béziontrol points and difference
between original and fitted data. In order to ustlerd how quadratic Bézier

curve can be used to fit video data, we need terstand the nature of video
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data. Digital video data consists of sequence afmé&s which is images. Each
frame consists of rectangular 2-D array of pix@ls.important factor in fitting of

data via quadratic Bézier curve is finding leaghber of control points [20].

Fitting process is applied to temporal data of eggditial location(x, y)
individually. Letn is the number of frames in a video sequencd)leindH are
width and height of a frame respectively. At framevherel <i < n, letp; as
luminance or color value of a spatial locationy). We have to approximate the
n values of each spatial location by quadratic Bézigrve. As an input to
algorithm the user specifies breakpoint inte@aluminance or color values of a
spatial location after ever§™ frames are taken as a breakpoint (control point).
The fitting process divides the data into segmewdsed on breakpoints. A
segment is a set of all points (luminance or collues) between two adjacent
breakpoints. Each segment is fitted (approximabgda quadratic Bézier curve.
The first and the last breakpoints of a segmentaken as end control points, for
exampleP, and P,of quadratic Bézier curve, while middle control moiP;is
obtained by least square method. Once all the tbomérol points,P,, P; and
P,are known, then approximated data of a segmeng i#zier curve is obtained

using following equation:

Q(tl) = (1 - ti)ZPO + Ztl(l - ti)Pl + tl-ZPZ (246)

Note that the first and last points of input datal @nterpolated data are always
same, because(t; = 0) = P, andQ(t; = 1) = P,. Interpolated points other than
first and last points may or may not have the saatges as corresponding points
of input data. In order to reconstruct the origivialeo data without any loss, first
interpolated frames are generated using keyfrarhea control points (KFE)

and keyframes of middle control points (KFM), theadding the difference

between original and quadratic Bézier approximdtetérpolated) frames other
than keyframes, frame difference (FD) to interpadaframes reproduces the

original video frames.
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The most important application of the method isadeabmpression. A
fundamental approach of prevalent video data cossgya techniques such as
MPEG-1, MPEG-2 and H.263 [21, 22] is to reduce #wropy of data by
applying Discrete Cosine Transform. Data with retlentropy can be encoded
with less number of bits. In this method, the ollematropy of KFE, KFM and FD
is much less than the entropy of original videcad&o, it can be encoded with
less number of bits. This less entropy of outpua ds mainly due to the fact that
quadratic Bézier curve approximates the origindewi data with quite good level

of accuracy.

2.14 Application: An Innovative Scheme For EffectubFingerprint Data

Compression Using Bézier Curve Representation

This kind of application utilizes the Bézier curvepresentations for
effective compression of fingerprint image. It ss@jned in a way to preserve the
fine details in the fingerprint image such as ridgelings and bifurcations. It is
employed for achieving better compression with sooost to quality. A
fingerprint image can have hundreds of ridges dwshng its own structure. In
the proposed scheme, each ridge is visualized @ashi@ Bézier curve and it's
Bézier control points are determined. The set afr fBézier control points
determined, serve as compressed form of an indaviddge. So every fingerprint
image with n ridges can be compressed into a @ilgaining 4*n Bézier control
points. A desirable property of these curves i$ the curve can be translated and
rotated by performing these operations on the obmoints. It is sufficient to
store all the four Bézier control points insteadstdfring the actual Bézier curve
(ridge). The original ridge can be reproduced frilvese stored control points by
the properties of Beézier curve. Thus, the proposetdeme for fingerprint
compression achieves an effective reduction imkenory space required to store

the fingerprint [23].
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CHAPTER 3
METHODOLOGY

3.1 Procedure Identification

Reviewing the Literature

Gathering Data

A 4
Understanding Bézier Curves and Surfac

Theory Properties

| |
¥

Solving Equation

\ 4

MATLAB Simulation

A 4
Interpolation

Data Approximation

A

Quadtree Decomposition Parametric Line Fitting

Image Compression

Figure 5: Flowchart of The Project
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3.2

Tools used

3.2.1 Software

e MATLAB 7.4.0 (R2007a)
e GPL Ghostscript 8.64
e GSview 4.9
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CHAPTER 4
RESULTS AND DISCUSSION

4.1 Linear Bézier Curve
The following figures show the examples of lineazr curve. The following
figures vary from its control points. The compandmetween the equation and the

coding are as followed:

EquationB(t) = (1 — t)b, + tb, (4.1)
Coding:px(i) = (1 —t)*cx(1) + t*cx(2)

So, we can see that the differenbjs= cx(1) andb; = cx(2)

> Linear Curve

Figure 6: Linear Curve
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> Linear Curve

Figure 7: Linear Curve

> Linear Curve

Figure 8: Linear Curve
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> Linear Curve

Figure 9: Linear Curve
4.2 Quadratic Bézier Curve
The following figures show the examples of quadraBézier curve. The
following figures vary from its control points. Theomparison between the

equation and the coding are as followed:

EquationB(t) = (1 — t)?by + 2(1 — t)tb, + t%b, (4.2)
Coding:px (i) =(1-t)"2*cx(1)+2*(1-t)*t*cx(2)+t" 2*cx(3)

So, we can see that the differenbjs= cx(1), b; = cx(2), andb, = cx(3)

35



» Quadratic Curve

Figure 10: Quadratic Curve

» Quadratic Curve

Figure 11: Quadratic Curve
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» Quadratic Curve

Figure 12: Quadratic Curve

» Quadratic Curve

Figure 13: Quadratic Curve
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4.3 Cubic Bézier Curve

The following figures show the examples of cubiczigé curve. The following
figures vary from its control points. The compandmetween the equation and the

coding are as followed:

EquationB(t) = (1 — t)3by + 3(1 — t)%tb; + 3(1 — t)t?b, + t3b; (4.3)
Coding:cx(1)*(1-t) "3+ 3*cx(2)*t*(1-t) "2+ 3*cx(3)*(1-t) *t" 2+ cx(4) *t"3
So, we can see that the differenbjs= cx(1), b; = cx(2), b, = cx(3), and

b; = cx(4)

> Cubic Curve

Figure 14: Cubic Curve
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> Cubic Curve

Figure 15: Cubic Curve

» Cubic Curve

Figure 16: Cubic Curve
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> Cubic Curve

Figure 17: Cubic Curve
4.4  Bilinear Bézier Surface
The following figures show the examples of bilineBézier surface. The
following figures vary from its control points. Thdifference between the

equation and coding is from its control points esgntation:

bObO = CX(].,].), b0b1 = CX(].,Z), b1b0 = CX(Z,].), andb1b1 = CX(Z,Z)
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> Bilinear Surface

Figure 18: Bilinear Surface

> Bilinear Surface

Figure 19: Bilinear Surface
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> Bilinear Surface
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Figure 20: Bilinear Surface

> Bilinear Surface

Figure 21: Bilinear Surface
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4.5  Biquadrtic Bézier Surface

The following figures show the examples of biquédrd&ézier surface. The
following figures vary from its control points. Thdifference between the

equation and coding is from its control points esgntation:
bobo = Cx(l,l), bObl = Cx(l,Z), bobz = Cx(1,3), blbO = Cx(z,l),
blbl = CX(Z,Z), blbz = Cx(2,3), bzbo = Cx(3,1), bzbl = Cx(3,2), and

bzbz = CX(3,3)

» Biquadratic Surface

Figure 22: Biquadratic Surface
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» Biquadratic Surface

Figure 23: Biquadratic Surface

» Biquadratic Surface

Figure 24: Biquadratic Surface
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» Biquadratic Surface
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Figure 25: Biquadratic Surface

4.6 Bicubic Bézier Surface

The following figures show the examples of bicuBézier surface. The following
figures vary from its control points. The differenbetween the equation and

coding is from its control points representation:

byb, = cx(1,1), byb; = cx(1,2), byb, = cx(1,3), bob; = cx(1,4),
b,by = ¢x(2,1), b;b; = cx(2,2), byb, = cx(2,3), bybs = cx(2,4),
b,b, = cx(3,1), b,b; = cx(3,2), b,b, = cx(3,3), b,b; = cx(3,4),
b;b, = cx(4,1), bsb; = cx(4,2), bsb, = cx(4,3), andb;b; = cx(4,4)
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> Bicubic Surface

Figure 26: Bicubic Surface

> Bicubic Surface

Figure 27: Bicubic Surface
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> Bicubic Surface

Figure 28: Bicubic Surface

> Bicubic Surface
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Figure 29: Bicubic Surface
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4.7 Bernstein Polynomial of degree 2

This figure displayed the Bernstein Polynomial efee 2.
» Degree 2

Figure 30: Bernstein Polynomial of Degree 2

4.8 Convex Hull Property (CHP)

» Convex Hull (The curve lies in the control polygoriy]

Figure 31: Convex Hull Property
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4.9 Rotation of Cubic Bézier Curve

Consider a cubic Bézier curve with vertidgg1,0), b;(2,3), b,(5,4), and
bs(2,1). [3]
Apply a rotation through an angl’é/4 about the origin in the anticlockwise

direction to the curve.

101 s T 0.707 0.707 1.0
CcoS Sin

231 _ 7{4 ,/4 8 _[-0.707 3536 1.0 (4.4)

5 4 1| —sin"/q cos™/y 1 0.707 6.364 1.0 '

211 0 0 0.707 2.121 1.0

The control points of the rotated curve dg(0.707,0.707), b;(—0.707,3.536),
b,(0.707,6.364), andb;(0.707,2.121). The curve and its rotated image are

illustrated in Figure 32.

> Rotation of Cubic Curve

Figure 32: Rotation of Cubic Curve
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4.10 Cubic Bézier curve with loop

» Loop (It self-intersects) [7]

Figure 33: Loop

4.11 Cubic Bézier curve with two inflection points

» Two inflection points [7]

Figure 34: Two Inflection Points
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4.12 Cubic Bézier curve with cusp

» Cusp (Points where the first derivative vector gaes) [7]

Figure 35: Cusp

4.13 Variation Diminishing Property

» Variation Diminishing Property [7]

Figure 36: Variation Diminishing Property
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4.14 Combination of Bézier Curve

» 8 segments of Cubic Curve

Figure 37: 8 Segments of Cubic Curve

» 2 segments of Cubic Curve

Figure 38: 2 Segments of Cubic Curve
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» 4 segments of Quadratic, 2 segments of Linear Curve

Figure 39: 4 Segments of Quadratic, 2 Segmentsnafalr Curve

4.15 Combination of Bézier Surface

» 2 segments of Biquadratic Surface
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Figure 40: 2 Segments of Biquadratic Surface
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4.16 Utah Teapot

The teapot data was created in 1975 by early caenguaphics researcher
Martin Newell, a member of the pioneering graphiogpam at the University of
Utah. Newell needed a moderately simple mathematiodel of a familiar object
for his work, and his wife’s teapot (a Melitta) pided a convenient solution. The
shape contains a number of elements that make el iflor the graphics
experiments of the time. Its round, contains sagdiets, has a concave element
(the hole in the handle), and looks reasonable vaigiayed without a complex
surface texture [24].

Newell made the mathematical data which describesdapot’s geometry
(largely a set of three-dimensional coordinatedjliply available and soon other
researches needed something with roughly the sdaeaderistics that Newell
had, and using the teapot data meant they didnve ha laboriously enter
geometric data for some other object. The actwddeis about 30% taller than
many of its computer-generated images becauseatiaewhs originally recorded
for the rectangular pixels of early displays [24].

The following figures showed the Utah teapot whimking generated by
MATLAB. The model is designed by using 32 bicubiézier surfaces [25].

Another images for Utah teapot are attached inmaghipes (refer Appendix C)

» Utah Teapot

Figure 41: Utah Teapot
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4.17 Cubic Interpolation

Let thep; be given by

vo=[ol w=[] w=[] »=[]

and set; = é Then the matrix M for our linear system becomes

NESES
SVINY|H~O
oVl VI NO
| K el

Now we inverse the matrix M becomes

1.0000 0 0 0
M-l = —0.8333 3.0000 —1.5000 0.3333 (4.5)
0.3333 —1.5000 3.0000 —0.8333 '
0 0 0 1.0000
With thep; given above, first we solve far coordinate
—1.0000
s | 11667
B, =M""P, = _11667 (4.6)
1.0000
Then fory- coordinate
0
_ 4.5
By =M7'P, = | % (4.7)
0
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Thus, the Bézi

b0=[_01]' bi=1"45

er ponts for interpolating cubic are

1.1667

3 1.1667]’ b2=[__4_5 ’ b3=[

This example is outlined in Figure 42 below:

4 P : e | m— Bezier curve [
o . . .
b,e™ .| = @ = Control polygon
5 i i i i ;
-1.5 -1 -0.5 0 0.5 1 15

4.18 Image
> Lake.tif

Figure 42: Cubic Bézier Interpolation

Rescaling Using Bilinear Interpolation

Original image

100 200 300 400 500 600 700

Figure 43: Original Image Lake.tif
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Rescaled image, bilinear interpolation, 33%

50 100 150 200

Figure 44: Rescale 33%

Rescaled image, bilinear interpolation, 200%

200 400 600 800 1000 1200 1400

Figure 45: Rescale 200%
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» Mosque.jpg

Original image

50 100 150 200 250 300 350 400 450

500

Figure 46: Original Image Mosque.jpg

Rescaled image, bilinear interpolation, 33%
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Figure 47: Rescale 33%
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Rescaled image, bilinear interpolation, 200%

’ & v W2h
-] S dEmwm T .

100 200 300 400 500 600 700 800 900 1000

Figure 48: Rescale 200%

The comparison of WxH and file size for each imagesshowed as follow:

Table 1: Quantitative Analysis for Image Rescaling

Image Lake.tif Mosque.jpg
Original Image WxH 720x540 500x350
File Size 2.25 MB 1.01 MB
Rescale 33% WxH 238x178 165x116
File Size 264 KB 122 KB
Rescale 200% WxH 140x1080 1000x700
File Size 8.98 MB 4.04 MB
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4.19 Bézier Curve Least Square Fitting

» Circle Approximation [16]

05

1561

0.5r

= Original Data
== Fitted Data
©O Break Points

0.5

1 1.5

» Sine Approximation (sin (x)) [16]

Figure 49: Circle Approximation
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Figure 50: Sine Approximation
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» Five Text Approximation [16]

400 -

350 ]

300
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250

200

oo = QOriginal Data

Fitted Data
100 w ) ‘ ‘ O Break Points
280 300 320 340 360 380 400 420

Figure 51: Five Text Approximation

» Tangent Approximation (tan (x))

100
= Qriginal Data
8ol Fitted Dafa o
O Break Points
60+
40
20+
O r—@
-20 -
_40 1 1 1 1 1 1 1 1
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Figure 52: Tangent Approximation
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4.20 RGB Quadtree Decomposition and Parametric Lin&itting
4.20.1 Uniform Threshold Variation
» Peppers.tiff

— .

i i S R . o
50 100 150 200 250 300 350 400 450 500

Figure 53: Original Image Peppers.tiff

a0 100 150 200 250 300 350 400 450 500

Figure 54: Decoded Image Peppers.tiff Threshol8l, @.3, 0.3)

=
a0

Figure 55: Decoded Image Peppers.tiff Threshols, @5, 0.5)
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> Baboon.tiff

a0 100 180 2000 250 300 350 400 480 400

Figure 56: Original Image Baboon.tiff

Figure 57: Decoded Image Baboon.tiff Threshold,(0.3, 0.3)

100 180 2000 280 300 350 400 450 500

Figure 58: Decoded Image Baboon.tiff Threshold,(0.5, 0.5)
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» Airplane.tiff
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Figure 59: Original Image Airplane.tiff

50 100 150 2000 250 300 350 400 450 &00

Figure 60: Decoded Image Airplane.tiff ThresholB(®.3, 0.3)

i

a0 100 180 2000 280 300 350 400 450 500

Figure 61: Decoded Image Airplane.tiff Thresholdb(®.5, 0.5)
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» Lena.png

150 2000 250 300 ED 400 450 500

Figure 62: Original Image Lena.png

50 100 180 2000 250 300 D 400 450 500

Figure 63: Decoded Image Lena.png Threshold (033,003)

Figure 64: Decoded Image Lena.png Threshold (0%5,005)

65



» Threshold (0.3, 0.3, 0.3)
Table 2: Quantitative Analysis for Threshold (03, 0.3)

Image Peppers.tiff Baboon.tiff Airplane.tiff Lena.png
MSE R 56.0000 54.0000 56.0000 63.0000
G 68.0000 56.0000 63.0000 60.0000
B 63.0000 57.0000 58.0000 66.0000
RMSE R 7.4833 7.3485 7.4833 7.93738
G 8.2462 7.4833 7.9373 7.746(0
B 7.9373 7.5498 7.6158 8.1240
PSNR R 30.6489 30.8069 30.6489 30.1374
G 29.8057 30.6489 30.1374 30.3493
B 30.1374 30.5721 30.4965 29.9354
File Size Original 35.7 KB 54.7 KB 33.7 KB 34.3 KB
Decoded 34.0 KB 50.2 KB 30.9 KB 31.7 KB

» Threshold (0.5, 0.5, 0.5)
Table 3: Quantitative Analysis for Threshold (05, 0.5)

Image Peppers.tifff Baboon.tiff Airplane.tiff Lenag
MSE R 107.0000 97.0000 101.000(0 102.0000
G 112.0000 98.0000 108.000(0 106.0000
B 99.0000 103.0000 81.0000 100.0000
RMSE R 10.3441 9.8489 10.0499 10.0995
G 10.5830 9.8995 10.3923 10.2956
B 9.9499 10.1489 9.0000 10.0000
PSNR R 27.8370 28.2631 28.0876 28.0448
G 27.6386 28.2185 27.7966 27.8777
B 28.1745 28.0024 29.0460 28.1308
File Size| Original 35.7 KB 54.7 KB 33.7KB 41.2 KB
Decoded 32.8 KB 41.3 KB 28.5 KB 35.9 KB

From the quantitative analysis in two tables abowe, can see the
comparison of value for MSE, RMSE and PSNR for eRE&B channel and also
file size for original and decoded of the imagese Tcompression ratio for
threshold (0.3, 0.3, 0.3) is 1.43 and for thresh@db, 0.5, 0.5) is 2.00 for all
images. From the above value, we can observe stedmuilt by looking at lowest
MSE and RMSE value and highest PSNR value. Thedb&E and RMSE and
highest PSNR determine the best quality of imagapression. From the four

tested image, we can see that the best resultdedetiff and if we observe the

image itself, we can see the quality is better faihers.
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4.20.2 Non-uniform Threshold Variation
For the non-uniform threshold variation, there dheee patterns of
variation being used to examine and analyze thétgud the image. The lists of

non-uniform threshold being used are as followed:

Table 4: Non-uniform Threshold Variation

First Pattern Second Pattern Third Pattern
0.3,0.5,0.7 0.8,0.3,0.3 0.8,0.8,0.3
0.3,0.7,0.5 0.3,0.8,0.3 0.3,0.8,0.8
0.5,0.3,0.7 0.3,0.3,0.8 0.8,0.3,0.8
0.5,0.7,0.3

0.7,0.30.5

0.7,0.5,0.3

The images of Peppers.tiff, Baboon.tiff, Airplarfé.and Lena.png with

the non-uniform threshold variation are as followed

» Peppers.tiff

S L 1 o 1 i 215 -
50 100 160 200 280 300 350 400 450 500

Figure 65: Decoded Image Peppers.tiff Threshol8, @5, 0.7)
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Figure 66: Decoded Image Peppers.tiff Threshol8l, @.7, 0.5)
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Figure 67: Decoded Image Peppers.tiff Threshols, @.3, 0.7)

soofl -

. e
i oo 150 2000 250 300

450 500

=,

350 400

Figure 68: Decoded Image Peppers.tiff Threshols, @.7, 0.3)
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Figure 69: Decoded Image Peppers.tiff Threshold, @23, 0.5)
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Figure 70: Decoded Image Peppers.tiff Threshold, @5, 0.3)

a0 100 180 2000 250 300 350 400 450 500

Figure 71: Decoded Image Peppers.tiff Threshol@, @.3, 0.3)
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Figure 72: Decoded Image Peppers.tiff Threshol8, @38, 0.3)

al o0 180 2000 260 300 3580 400 450 400

Figure 74: Decoded Image Peppers.tiff Threshol@, @38, 0.3)

70



300

3500

400

450

500

L o L

- 2 : o,
a0 100 150 2000 250 300 350 400 450 500

Figure 76: Decoded Image Peppers.tiff Threshol@, @.3, 0.8)

> Baboon.tiff

Figure 77: Decoded Image Baboon.tiff Threshold,(0.8, 0.7)
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Figure 78: Decoded Image Baboon.tiff Threshold,(0.3, 0.5)

Figure 79: Decoded Image Baboon.tiff Threshold,(0.8, 0.7)

a0 o0 150 200 250 300 350 400 450 500

Figure 80: Decoded Image Baboon.tiff Threshold,(0.3, 0.3)
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50 100 1580 200 250 300 350 400 450 500

Figure 81: Decoded Image Baboon.tiff Threshold,(0.3, 0.5)

Figure 82: Decoded Image Baboon.tiff Threshold,(0.3, 0.3)

a0 100 1s0 200 2850 300 350 400 450 500

Figure 83: Decoded Image Baboon.tiff Threshold,(0.8, 0.3)
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Figure 84: Decoded Image Baboon.tiff Threshold,(0.8, 0.3)

a0 100 180 200 250 300 350 400 450 500

Figure 85: Decoded Image Baboon.tiff Threshold,(0.3, 0.8)

Figure 86: Decoded Image Baboon.tiff Threshold,(0.8, 0.3)
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Figure 87: Decoded Image Baboon.tiff Threshold,(0.8, 0.8)

Figure 88: Decoded Image Baboon.tiff Threshold,(0.8, 0.8)

» Airplane.tiff
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Figure 89: Decoded Image Airplane.tiff ThresholB(®.5, 0.7)

75



Figure 92: Decoded Image Airplane.tiff Thresholdb(®.7, 0.3)
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Figure 94: Decoded Image Airplane.tiff Threshold’(®.5, 0.3)

Figure 95: Decoded Image Airplane.tiff ThresholB(®.3, 0.3)
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Figure 98: Decoded Image Airplane.tiff ThresholB(®.8, 0.3)
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Figure 100: Decoded Image Airplane.tiff Threshd@d( 0.3, 0.8)

» Lena.png

e i
a0 o0 180 2000 250 300 350 400 450 500

Figure 101: Decoded Image Lena.png Threshold (053,0.7)
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Figure 102: Decoded Image Lena.png Threshold (073,0.5)

a0 o0 150 200 250 300 350 400 450 500

Figure 103: Decoded Image Lena.png Threshold (03%,0.7)
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Figure 104: Decoded Image Lena.png Threshold (075,0.3)
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Figure 105: Decoded Image Lena.png Threshold (037,0.5)

Figure 106: Decoded Image Lena.png Threshold (057,0.3)
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Figure 107: Decoded Image Lena.png Threshold (03,0.3)
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Figure 108: Decoded Image Lena.png Threshold (083,0.3)

a0 100 180 2000 250 300 350 400 450 &00

Figure 109: Decoded Image Lena.png Threshold (033,0.8)
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Figure 110: Decoded Image Lena.png Threshold (083,0.3)
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a0 100 180 200 250 300 350 400 450 500

Figure 111: Decoded Image Lena.png Threshold (083,0.8)

D 100 160 2000 250 300 D 400 450 500

Figure 112: Decoded Image Lena.png Threshold (03,0.8)

For all of the images with the twelve variation direshold, the
guantitative analysis have been made including MB¥ESE, PSNR, File size and

CR. The analysis has been arranged in the tabileeonext page as followed:
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> Peppers.tiff

Table 5: MSE, RMSE and PSNRHeppers.tiff

No. Threshold MSE RMSE PSNR

R| G| B| R| G| B R G B R G B
1 [03/05]/0.7| 62 | 111| 145| 7.874 | 10.536 12.042| 30.2069| 27.6776| 26.5171
2 10.3/0.7|/05( 62 | 157|112| 7.874 | 12.53| 10.58830.2069| 26.1718| 27.6386
3 10.5/0.3]0.7]107| 71 | 128| 10.3441| 8.4261| 11.314| 27.837 | 29.6182 27.0587
4 105/0.7/0.3|107|157| 68 | 10.3441 12.53 | 8.2464 27.837 | 26.1718 29.8057
5 10.7/03|05(134| 71 | 99| 11.5758 8.4261| 9.9499| 26.8598| 29.6182| 28.1745
6 | 0.7/05|0.3[134|112| 63 | 11.5758 10.583| 7.9373| 26.8598| 27.6386| 30.1374
7 10.8/0.3]/0.3]|148| 71 | 63| 12.1655 8.4261| 7.9373| 26.4282| 29.6182| 30.1374
8 103/08|03] 62| 157 66 | 7.874| 1253 8.124 30.20626.1718| 29.9354
9 10.3/0.3/0.8( 56| 68| 128 7.4833 | 8.2462 11.314| 30.6489| 29.8057| 27.0587
10 [ 0.8/ 0.8]0.3]158| 158 | 68 | 12.5698 12.57 | 8.24624 26.1442| 26.1442| 29.8057
11 |1 0.3/0.8/0.8| 62 | 163| 161| 7.874 | 12.767 12.689| 30.2069| 26.0089| 26.0625
12 1 0.8/ 0.3/0.8(148| 71 | 128| 12.1655| 8.4261| 11.314| 26.4282| 29.6182| 27.0587

Table 6: File Size and CR for Pepp#is.t
No. Threshold File Size CR
R G B | Original| Decodeq R G B

1] 03] 05| 0.7 357KB 33.3KB 1.43 2.0( 3.33

2|1 03] 07| 05| 357KB 33.2KB 1.43 3.33 2.00

31 05| 03] 07| 357KB 33.2KB 2.00 1.43 3.33

4 1 05| 07| 03| 357KB 334KB 2.00 3.33 1.43

51 07| 03] 05| 357KB 33.4KB 3.33 1.43 2.00

6 | 07| 05| 0.3] 357KB 33.3KB 3.33 2.0( 1.43

7 ] 08| 03| 03| 357KB 33.7KB 5.00 1.43 1.43

8 | 0.3| 08| 0.3] 357KB 33.9KB 1.43 5.0( 1.43

9 | 03| 0.3| 08| 357KB 33.6KB 1.43 1.43 5.00

10| 0.8 0.8] 0.3 357KB 33.0KB 5.00 5.00 1.43

11| 0.3] 0.8| 0.8 357KB 32.4KB 1.43 5.00 5.00

12 0.8 0.3] 0.8/ 357KB 33.0KB 5.00 1.43 5.00
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> Baboon.tiff

Table 7: MSE, RMSE and PSNR for Babutifin.

No. Threshold MSE RMSE PSNR
R| G| B| R| G R G B R G B
1 103/05|0.7| 60 | 101| 132| 7.746 | 10.0499 11.4891| 30.3493| 28.0876| 26.9251
2 [0.3/0.7/0.5| 58 | 109| 103| 7.6158 | 10.440310.1489| 30.4965| 27.7565| 28.0024
3 105/03[0.7| 97| 60| 121 9.8489| 7.746 11 28.263130.3493| 27.3029
4 [05/0.7/0.3] 97 | 104| 61 | 9.8489| 10.198 7.810R 28.268327.9605| 30.2775
5 [0.7/0.3|0.5|105| 60 | 102| 10.247 | 7.746| 10.099527.9189| 30.3493| 28.0448
6 [0.7/05|0.3[114| 98 | 62| 10.6771 9.8995| 7.874| 27.561828.2185| 30.2069
7 [08/0.3/0.3|105| 56 | 57| 10.247, 7.4833 7.5498 27.918%80.6489| 30.5721
8 [03/08{03|54| 84| 61| 7.3485 9.1652 7.81Q02 30.806928.888 | 30.277%
9 [0.3/0.3/0.8| 54| 60| 108 7.3485| 7.746| 10.392330.8069| 30.3493| 27.7966
10 | 0.8/ 0.8/ 0.3|140| 135| 62 | 11.8322 11.619| 7.874| 26.669526.8275| 30.2069
111 0.3/ 0.8/ 0.8| 60 | 136| 153| 7.746 | 11.6619 12.3693| 30.3493| 26.7954| 26.2839
121 0.8/ 0.3|0.8|105| 60 | 121| 10.247| 7.746 11 27.918980.3493| 27.3029
Table 8: File Size and CR for Baiaiff
No. Threshold File Size CR
R G B | Original| Decodeq R G B

1 03| 05| 0.7 54.7KB 45.3KB 1.43 2.0( 3.38

2 03| 0.7 05| 54.7KB 46.2KB 1.43 3.33 2.00

3| 05| 03] 07| 547KB 48.1KB 2.00 1.43 3.33

4 | 05| 0.7 03| 547KB 47.9KB 2.00 3.33 1.43

5 07| 03| 05| 547KB 48.1KB 3.33 1.43 2.00

6 [ 07| 05| 03| 54.7KB 48.0KB 3.33 2.0( 1.43

7 08| 03| 03| 54.7KB 49.7 KB 5.00 1.43 1.43

8 | 03| 0.8| 03| 54.7KB 49.6 KB 1.43 5.0( 1.483

9 03| 03| 0.8| 54.7KB 48.7 KB 1.43 1.43 5.00

10| 0.8 0.8| 0.3| 54.7KB 47.7 KB 5.00 5.00 1.43

11| 03| 0.8| 0.8 54.7KB 45.0KB 1.43 5.00 5.00

12| 0.8 0.3| 0.8 54.7KB 48.1KB 5.00 1.43 5.00
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» Airplane.tiff

Table 9: MSE, RMSE and PSNR for Airplane.tiff

No. Threshold MSE RMSE PSNR
R| G| Bl R G B R G B R G B
1 103/05|0.7] 61| 107 81 | 7.8102 10.3441 9 30.2775 27.837 | 29.046
2 [0.3/0.7/05| 61 | 134|107 7.8102| 11.5758| 10.3441| 30.2775| 26.8598| 27.837
3 105/03[0.71 99| 63| 88| 9.9499 7.9373| 9.3808] 28.174530.1374| 28.686
4 105[0.7/0.3[ 98 | 109| 58 [ 9.8995 10.4403| 7.6158 | 28.218% 27.7565| 30.4965
5 [0.7/03{05( 99| 63| 63| 9.9499 7.9373| 7.9373] 28.174530.1374| 30.1374
6 [0.7/]05(0.3| 95| 102| 58 | 9.7468 10.0995| 7.6158 | 28.3536¢ 28.0448| 30.4965
7 (080303 99| 63| 58| 9.9499 7.9373| 7.6158] 28.174530.1374| 30.4965
8 [0.3/08/0.3| 61| 105/ 58 | 7.8102 10.247 | 7.6158 30.277527.9189| 30.4965
9 [03/03/{08|56| 63| 58| 7.4838 7.9373| 7.6158 30.648930.1374| 30.4965
10 0.8/ 0.8 0.3|118| 121| 58 | 10.863 11 7.6158| 27.412 27.302980.4965
111 0.3/ 0.8{0.8| 61 | 137| 107| 7.8102| 11.7047| 10.3441| 30.2775| 26.7636| 27.837
121 0.8/0.3/0.8] 99 | 63| 91| 9.9499 7.9373| 9.5394 28.174530.1374| 28.5404
Table 10: File Size and CR for Airpldiie
No. Threshold File Size CR
R G B | Original| Decoded R G B

1 03| 05| 0.7 33.7KB 30.6 KB 1.43 2.0( 3.33

2 03| 0.7 05| 33.7KB 30.6 KB 1.43 3.33 2.00

3 05| 03| 0.7 33.7KB 30.9KB 2.00 1.43 3.33

4 05| 0.7 0.3| 33.7KB 28.6 KB 2.00 3.33 1.43

5 0.7| 03| 05| 33.7KB 30.9KB 3.33 1.43 2.00

6 0.7| 05| 0.3| 33.7KB 28.3KB 3.33 2.0( 1.43

7 0.8 | 03| 0.3 33.7KB 30.9KB 5.00 1.43 1.43

8 0.3 | 08| 0.3 33.7KB 30.7KB 1.43 5.0( 1.43

9 03| 03| 0.8 33.7KB 30.9KB 1.43 1.43 5.00

10| 0.8 0.8| 0.3 33.7KB 28.0KB 5.00 5.00 1.43

11| 03| 08| 0.8 33.7KB 30.6 KB 1.43 5.00 5.00

12| 08| 0.3| 0.8 33.7KB 30.9KB 5.00 1.43 5.00
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» Lena.png

Table 11: MSE, RMSE and PSNR for Lpng.

No. Threshold MSE RMSE PSNR
R| G| B| R G| B R G B R G B
1 103/05][0.7| 63| 99| 91f 7.9373| 9.9499 | 9.5394 30.1374| 28.1745| 28.5404
2 [03{0.7/05( 63 | 130{ 99| 7.9373| 11.4018| 9.9499| 30.1374| 26.9914| 28.1745
3 [05/030.7( 92| 62| 73]9.5917| 7.874 | 8.544| 28.492P30.2069| 29.4976
4 105/0.7/0.3|106|133| 66| 10.296| 11.5326| 8.124 | 27.8777 26.8923| 29.9354
5 [0.7/03|05( 92| 62| 73] 9.5917| 7.874 | 8.544| 28.492P30.2069| 29.4976
6 [0.7/05/0.3(124|106| 66| 11.136| 10.2956| 8.124 | 27.1966 27.8777| 29.9354
7 108/03|03| 92| 61| 66[9.5917| 7.8102| 8.124| 28.492930.2775| 29.9354
8 [0.3{0.8/0.3[ 63| 99| 66| 7.9373| 9.9499 | 8.124| 30.137428.1745| 29.9354
9 [0.3/{0.3/08| 63| 62| 73|7.9373| 7.874 | 8.544| 30.137430.2069| 38.8142
101 0.8/ 0.8 0.3]|124|133| 66| 11.136| 11.5326| 8.124 | 27.1966 26.8923| 29.9354
111 0.3/0.8/0.8| 63 | 130/ 99| 7.9373| 11.4018| 9.9499( 30.1374| 26.9914| 28.1745
12 10.8/0.3{0.8| 92 | 62| 73[9.5917| 7.874 | 8.544| 28.492930.2069| 29.4976
Table 12: File Size and CR for Lemng.
No. Threshold File Size CR
R G B | Original| Decodeq R G B

1 03| 05| 0.7 34.3KB 30.1KB 1.43 2.0( 3.33

2 03| 0.7 05| 343KB 30.1KB 1.43 3.33 2.00

3 05| 03| 0.7 343KB 31.6KB 2.00 1.43 3.33

4 05| 0.7 03| 343KB 30.7KB 2.00 3.33 1.43

5 0.7| 03| 05| 343KB 31.6KB 3.33 1.43 2.00

6 0.7| 05| 03| 34.3KB 30.5KB 3.33 2.0( 1.43

7 0.8 | 03| 03| 343KB 31.7KB 5.00 1.43 1.43

8 0.3| 08| 03| 343KB 31.2KB 1.43 5.0( 1.43

9 03| 03| 0.8 343KB 31.6KB 1.43 1.43 5.00

10| 08| 0.8| 0.3 34.3KB 30.4KB 5.00 5.00 1.43

11| 03| 08| 0.8 34.3KB 29.9KB 1.43 5.00 5.00

12| 08| 03| 0.8 343KB 31.6KB 5.00 1.43 5.00
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In this non-uniform threshold variation, we want ftod which colour
channel most contribute to the error. We will comepthe average MSE and
threshold value. By knowing this, we will considiat the threshold for that
colour channel (highest average MSE) should beldiwest compared to other
colour channels to get the better quality of im&ge, the average MSE for each
variation of threshold for each images have beé&ulzed as followed:

Table 13: Comparison of Threshold and Average MSE

No. Threshold Average MSE

R G B | Peppers.tiff Baboon.tiff | Airplane.tiff | Lena.png
1 0.3 0.5 0.7 106 98 83 84
2 0.3 0.7 0.5 110 90 101 97
3 0.5 0.3 0.7 102 93 83 76
4 0.5 0.7 0.3 166 87 88 102
5 0.7 0.3 0.5 101 89 75 76
6 0.7 0.5 0.3 103 91 85 99
7 0.8 0.3 0.3 94 73 73 73
8 0.3 0.8 0.3 95 66 75 76
9 0.3 0.3 0.8 84 74 59 66
10 0.8 0.8 0.3 128 112 99 108
11 0.3 0.8 0.8 129 116 102 97
12 0.8 0.3 0.8 116 95 84 76

Then, we analyze the comparison between thresmolchaerage MSE for
each images; Peppers.tiff, Baboon.tiff, Airplarieaind Lena.png. The average
MSE being arranged in descending order, so we baerge the highest threshold

belongs to which colour channel.
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» Peppers.tiff

R G B Average MSE
0.5 0.7 0.3 166

0.3 0.7 0.5 110
0.3 0.5 0.7 106

0.7 0.5 0.3 103

0.5 0.3 0.7 102

0.7 0.3 0.5 101

R G B Average MSE
0.3 0.8 0.8 129

0.8 0.8 0.3 128

0.8 0.3 0.8 116

R G B Average MSE
0.3 0.8 0.3 95
0.8 0.3 0.3 94
0.3 0.3 0.8 84

- For Peppers.tiff, the Green channel contributeshijhest error when its
threshold value is highest.
- So, to obtain better quality of image, the thredhalue for Green channel

should be lowest compared with Red and Blue channel
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> Baboon.tiff

R G B Average MSE
0.3 0.5 0.7 98

0.5 0.3 0.7 93

0.7 0.5 0.3 91

0.3 0.7 0.5 90

0.7 0.3 0.5 89

0.5 0.7 0.3 87

R G B Average MSE
0.3 0.3 0.8 74

0.8 0.3 0.3 73

0.3 0.8 0.3 66

R G B Average MSE
0.3 0.8 0.8 116

0.8 0.8 0.3 112

0.8 0.3 0.8 95

- For Baboon.tiff, the Blue channel contributes thghbst error when its
threshold value is highest.
- So, to obtain better quality of image, the thredhalue for Blue channel

should be lowest compared with Red and Green channe
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» Airplane.tiff

R G B Average MSE
0.3 0.7 0.5 101

0.5 0.7 0.3 88

0.7 0.5 0.3 85

0.5 0.3 0.7 83

0.3 0.5 0.7 83

0.7 0.3 0.5 75

R G B Average MSE
0.3 0.8 0.3 75

0.8 0.3 0.3 73

0.3 0.3 0.8 59

R G B Average MSE
0.3 0.8 0.8 102

0.8 0.8 0.3 99

0.8 0.3 0.8 84

- For Airplane.tiff, the Green channel contributes thighest error when its
threshold value is highest.
- So, to obtain better quality of image, the thregdhalue for Green channel

should be lowest compared with Red and Blue channel
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» Lena.png

R G B Average MSE
0.5 0.7 0.3 102

0.7 0.5 0.3 99

0.3 0.7 0.5 97

0.3 0.5 0.7 84

0.5 0.3 0.7 76

0.7 0.3 0.5 76

R G B Average MSE
0.3 0.8 0.3 76

0.8 0.3 0.3 73

0.3 0.3 0.8 66

R G B Average MSE
0.8 0.8 0.3 108

0.3 0.8 0.8 97

0.8 0.3 0.8 76

- For Lena.png, the Green channel contributes thaesigerror when its
threshold value is highest.

- So, to obtain better quality of image, the thregdhalue for Green channel
should be lowest compared with Red and Blue channel
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From the analyses that have been made for nonrumifthreshold
variation, we also can determine the best non-umifihreshold combination. We
can do the comparison between threshold combinatidrRMSE and also PSNR.
The average values of RMSE and PSNR have beenlai@duo determine the

best non-uniform threshold combination.

As we know, the values of MSE and RMSE are diregilgportional
between each other’'s and the values of MSE and P8Bversely proportional
between each other’'s. From the quantitative arglyse quality of images being
determined by the lowest values of MSE and RMSEaglest value of PSNR.
The average MSE and PSNR values with the respetttigehold combination are

as followed:

Table 14: Comparison of Threshold and Average RMESE\R

No. Threshold Peppers.tiff Baboon.tiff Airplane.tif th&.png

R | G| B | RMSEl PSNR| RMSE | PSNR| RMSE | PSNR| RMSE | PSNR
1 /0.3/05/0.7| 10.15| 28.13 9.76] 28.4p 9.05 29.05 9.14 28
2 103/0.7/05]| 10.33| 28.01] 9.40f 2876 991 28383 9.76 28
3 105/03|0.7] 10.03| 28.17] 9.53| 28.64 9.09 29.00 8.67 29
4 105/0.7/0.3| 10.37| 27.94 9.29] 28.83 9.32 2882 998 28
5 |10.7/03]05| 9.98 | 28.07] 9.36] 28.7fy 861 29.84 8.67 29
6 |0.7/05/0.3] 10.03| 28.21] 9.48 286p 9.15 2897 9.85 28
7 108/03]03] 951 | 28.73] 843 29.71 850 29.60 8.51 29
8 103/08|03] 954 | 28.77/ 8.11| 30.00 856 2956 8.67 29
9 103/03/08| 9.01 | 29.17] 850 2966 768 3043 8.12 33
10 |1 0.8/ 0.8/ 0.3| 11.13 | 27.37] 1044 2790 9.83 28.40 10/26 28
11 /1 0.3/0.8/0.8| 11.11 | 27.43 10.6Q0 27.81 9.95 289 9.76 28
12 1 0.8/ 0.3/ 0.8| 10.64 | 27.70, 9.66| 2852 9.14 2895 8.67 29

The graph of threshold combination versus RMSE & R$s plotted as in
the next page. From the plotted graph, we can vestie best combination of

non-uniform threshold.
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» Peppers.tiff

35
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15 4= RMSE
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RMSE & PSNR

1 2 3 4 5 6 7 8 9 10 11 12

Threshold Combination

Figure 113: Threshold Combination versus RMSE & R3bl Peppers.tiff

> Baboon.tiff

35

= = = = = S——

25

20

15 =¢—RMSE

10 ‘—W— == PSNR

RMSE & PSNR

1 2 3 4 5 6 7 8 9 10 11 12

Threshold Combination

Figure 114: Threshold Combination versus RMSE & RSbdlr Baboon.tiff
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» Airplane.tiff

35

SRl == O g S SR

25
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15 =¢—RMSE

RMSE & PSNR

10 == PSNR
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Threshold Combination

Figure 115: Threshold Combination versus RMSE & R3bt Airplane.tiff

» Lena.png
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Figure 116: Threshold Combination versus RMSE & RSbdl Lena.png
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From the plotted graph in the previous pagesitierPeppers.tiff image,
from Figure 113, we can see the threshold comlunatvhich achieves lowest
RMSE and highest PSNR is the ninth combinationgciviis 0.3, 0.3, 0.8. For the
Baboon.tiff image, from Figure 114, we can seettiteshold combination which
achieves lowest RMSE and PSNR is the eighth cortibmawhich is 0.3, 0.8,
0.3. For the Airplane.tiff image, from Figure 11&e can see the threshold
combination which achieves lowest RMSE and PSNEasninth combination,
which is 0.3, 0.3, 0.8. For the Lena.png imagemfiiéigure 116, we can see the
threshold combination which achieves lowest RMSH &S8NR is the ninth
combination, which is 0.3, 0.3, 0.8.

For the RGB Quadtree Decomposition and Parameinie Eitting method
for image compression, from the analysis and outpages of variation threshold
in uniform and non-uniform patterns, we can seeqtnaity of image Baboon.tiff
is better than others even all the Red, Green doeé Bhannels are at high
threshold. The Baboon.tiff image looks clear arg$ IBlur. The reason is we can
see the pure colours of the image Baboon.tifffitslich contains all of the RGB

colour components.
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CHAPTER 5
CONCLUSION AND RECOMMENDATION

51 Conclusion

In summary, to define a Bézier curve of degreewe need to choose
n + 1 control points in spacg?, wheres = 2 or 3) so that they roughly indicate
the shape of the desired curve while to define zieBé&urface, we need to choose
(n+ 1)(m+ 1) control points [26]. The concept of Bézier methadluding
Bézier curves, Bézier surfaces, theory, properdied applications have been
generated and proved by MATLAB simulation. The dueel decomposition and
parametric line fitting method for image compressaso have been proved by
MATLAB simulation. For the image compression, wencsee the quality of
image Baboon.tiff is better than others even a@lRed, Green and Blue channels
are at high threshold. The reason is we can se@uble colours of the image

Baboon.tiff itself which contains all of the RGBloar components.

5.2 Recommendation

For the extension and future works, there are fesommendations that

can be done:

e For image compression using the quadtree deconmposiand
parametric line fitting, we can try to use highegcee of line fitting
such as quadratic or cubic instead of parametrecfitting.

« We can try to apply filtering such as using waveBor 3.5 or
Gaussian for the input image or output image ofgienaompression

using quadtree decomposition and parametric litiedimethod.
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APPENDIX A: BEZIER DEMO

In the following figures, we can see the changih8ézier curve by changing the

control points.
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APPENDIX B: IMAGE RESCALING USING BILINEAR
INTERPOLATION

Original image

Original Image

Rescaled image, bilinear interpolation, 60%

20 40 60 80 100 120 140 160 180 200

Rescaling 60%

Rescaled image, bilinear interpolation, 400%

200 400 600 800 1000 1200

Rescaling 400%
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APPENDIX C: UTAH TEAPOT

Utah Teapot 1

Utah Teapot 2

Utah Teapot 3
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