

Integration of Image Processing Algorithm and Path Planning for

Search and Rescue Robot

by

Wong Chun Yew

19984

Dissertation submitted in partial fulfilment of

the requirements for the

Bachelor of Engineering (Hons)

(Electrical and Electronics Engineering)

JANUARY 2017

Universiti Teknologi PETRONAS,

32610, Bandar Seri Iskandar,

Perak Darul Ridzuan.

i

CERTIFICATION OF APPROVAL

Integration of Image Processing Algorithm and Path Planning for

Search and Rescue Robot

by

Wong Chun Yew

19984

A project dissertation submitted to the

Electrical & Electronics Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(ELECTRICAL & ELECTRONICS ENGINEERING)

Approved by,

(AP Dr. Tun Zainal Azni bin Zulkifli)

UNIVERSITI TEKNOLOGI PETRONAS

BANDAR SERI ISKANDAR, PERAK

January 2017

ii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

WONG CHUN YEW

vi

ABSTRACT

The focus of this project was to explore algorithms and techniques used in

motion detection, object recognition and facial recognition, path finding as well as

obstacle avoidance. To apply these algorithms, OpenCV was used. In terms of

hardware, Raspberry Pi were used to perform image processing and robot movement.

To perform image processing various OpenCV commands, such as cv2.GreyScale

followed by cv2.GaussianBlur and cv2.DetectContour were combined. Path finding

and obstacle avoidance were done by integrating an ultrasonic sensor into the system.

Path finding is done by utilizing the coordinates of the bounding box. As a result, the

robot turned around, 90 degree each time, to have a view of each of the four directions,

in search of the target. Once motion was detected, the robot would stop at that direction

and approach until the ultrasonic detected something. The robot would then run a scan

on the target using facial recognition to determine whether it is human. If the result

turned out to be negative, the robot would move towards its right side, and began

scanning for motion again. In a nutshell, with the integration of image processing,

robots had certainly increased their efficiency as well as accuracy in carrying out

designated tasks. With the integration of image processing, the robot was set to

perform search and rescue missions with higher reliability and accuracy.

vii

ACKNOWLEDGEMENTS

 I would like to express my great appreciation for those who had provided

assistance and advices to me throughout the completion of this dissertation. First of all,

I would like to express my deepest gratitude and appreciation to my Final Year Project

supervisor, AP Dr. Tun Zainal Azni bin Zulkifli for his continuous guidance

throughout the process. I have also embedded Dr.Tun’s advice and comments into this

project.

 Besides, I would like to acknowledge the effort of Final Year Project

Coordinator for Electrical & Electronics Engineering Department, Dr. Norashikin bt

Yahya for her constant coordination throughout the entire course and provided us with

proper guidelines in completing this dissertation.

 Last but not least, my utmost appreciation goes to my family and friends who

have been continuously giving support and motivation throughout my final year

project journey.

vi

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL ii

CERTIFICATION OF ORIGINALITY iii

ABSTRACT iv

ACKNOWLEDGEMENTS v

LIST OF FIGURES viii

LIST OF TABLES ix

CHAPTER 1: INTRODUCTION

 1.1 Background Study 1

 1.2 Problem Statement 2

 1.3 Objective 3

 1.4 Scope of Study 3

 1.5 Relevancy and Feasibility 4

CHAPTER 2: LITERATURE REVIEW

 2.1 Introduction to Search and Rescue Robot 5

 2.2 Sensors 6

 2.3 Methods of Facial Detection 7

 2.3.1 Correlation 7

 2.3.2 Eigenfaces 8

 2.3.3 Linear Subspaces 9

 2.3.4 Fisherfaces 10

 2.3.5 Cascade Classifier 13

CHAPTER 3: METHODOLOGY

 3.1 Process Flow of Project 14

 3.1.1 Research and Study 15

 3.1.2 Data Gathering and Analysis 15

 3.1.3 Preliminary Design 15

 3.1.4 Components Assembling 16

 3.1.5 Coding 16

 3.1.6 Testing 16

 3.2 Motion Detection 17

vii

 3.3 Facial Recognition 20

 3.4 Integrated Image Processing 22

 3.5 Key Milestone 31

 3.6 Project Timeline (Gantt Chart) 32

CHAPTER 4: RESULTS AND DISCUSSION

 4.1 Motion Detection 34

 4.2 Facial Recognition 37

CHAPTER 5: CONCLUSION AND RECOMMENDATION 40

CHAPTER 6: REFERENCES 41

APPENDICES

viii

LIST OF FIGURES

Figure 2.1 Comparison of PCA and LFD.

Figure 3.1 Process flow of project.

Figure 3.2 Flowchart of motion detection.

Figure 3.3 Flowchart of facial recognition.

Figure 4.1 First frame captured.

Figure 4.2 Room status unoccupied even with motion.

Figure 4.3 Room status occupied.

Figure 4.4 Straight and still face.

Figure 4.5 Side face.

Figure 4.6 Side face.

Figure 4.7 Tilted head.

ix

LIST OF TABLES

Table 2.1 Summary of available sensors.

Table 3.1 List of cv2 commands used and their functions.

Table 3.2 Project key milestone.

Table 3.3 Project Gantt Chart for FYP I.

Table 3.4 Project Gantt Chart for FYP II.

1

CHAPTER 1

INTRODUCTION

1.1 Background Study

 In 1941 and 1942, the Three Laws of Robotics were created by Isaac Asimov.

Following these laws, George Devol, in 1954, came up with the first programmable

robot. From this point onwards, technology in robotic industry has escalated to what

we see in modern days.

To completely take human out of the equation in search and rescue missions,

the robot, first of all, has to be autonomous. Autonomous, a word describing the ability

and freedom to act independently, is used with associations with robot (Bourdieu,

2001). An autonomous robot implies its capability to carry out specific tasks without

the guidance of a person. Based on algorithms, an autonomous robot is capable of

making decisions, as long as human permits. In order to acquire information, an

autonomous robot has to be equipped with sensors, such as cameras, ultrasonic sensors,

touch sensors, light sensors, etc., just like how humans receive stimulations from the

surrounding through our sensory organ.

 The most reliable sensory organ of humans is our eyes. For that reason, it could

be of great advantage if robots could share the same vision. With the surface of image

processing, which gave rise to computer vision, has provided autonomous robots with

a whole new dimension of sensing ability. Computer vision, a field which allows

images or videos to be understood by the computer, just like the humans do (Szeliski,

2011). Methods for extracting, processing, analyzing and gaining intellect of digital

images to provide sufficient knowledge and information in making decisions are part

of the computer vision field. The word understanding in this context, gives the

meaning of changing pixels and data into meaningful information, instead of just

numbers, to aid in the process of delivering desired output.

 Scientifically, computer vision is concerned with the theory behind artificial

systems that extract information from images. Videos, images, real-time footage,

scanners and sensors are all one of many forms of image data capable of supplying the

https://en.wikipedia.org/wiki/Image_sensor
https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Image_analysis

2

information needed in the field of computer vision. Technologically, computer vision

seeks to apply its theories and models for the construction of computer vision systems.

Sub-domains of computer vision include scene reconstruction, event detection, video

tracking, object recognition, object pose estimation, learning, indexing, motion

estimation, and image restoration.

 Object detection is the process of identifying real-world objects. Examples are

faces, bicycles, buildings, trees, chairs, tables and fruits in images or videos. Object

detection has its own specifically constructed algorithms. These algorithms are used

to extract features (Amit, 2002). Other than harvesting information from images or

videos, learning algorithms are applied to decide which category of object the targeted

object falls into. Some of the common applications are image retrieval, security system,

surveillance camera, and automated vehicle parking systems.

1.2 Problem Statement

In high-risk operations such as a search and rescue mission, whereby human lives

are highly at stake, autonomous robots are the more favorable options as they are

expendable. The amount of stress a human has to handle in these operations is

immense. When humans work under stress, they have a higher likelihood to make the

wrong decision (Van Heugten, 2011). Robots, on the other hand, have no emotions.

They operate based on programmed logics. It seems to be robots are better than

humans working under stressful conditions. However, the question is, are autonomous

robots are as good as humans while performing search and rescue missions, in which

these missions require the ability to extract sufficient information from the surrounding

to successfully complete the task? The answer to that depends on whether or not the

following problems can be solved:

1) Will an autonomous robot be able to accurately identify targeted objects?

2) How effective can an autonomous robot maneuver around a field with

obstacles?

3) Can an autonomous robot extract the target back to safety after locating it?

4) How does the robot differentiate between passage and the wall?

https://en.wikipedia.org/wiki/Video_tracking
https://en.wikipedia.org/wiki/Video_tracking
https://en.wikipedia.org/wiki/Object_recognition
https://en.wikipedia.org/wiki/Motion_estimation
https://en.wikipedia.org/wiki/Motion_estimation
https://en.wikipedia.org/wiki/Image_restoration

3

5) What technique is used to identify the targeted object?

Frankly speaking, using image processing alone without the help of any other

sensors to accomplish search and rescue task might not be the best solution. However,

with minimal aid from other sensors, other than cameras, provides the opportunity to

explore the limitations of image processing and how computer vision can be improved.

It also opens the doorway to explore the efficiency of 2D and 3D image processing.

1.3 Objective

The main objectives of this project are:

1. To design a Search and Rescue Robot (SeRaBot) capable of identifying

targets using motion detection technique as its main target detection

method.

2. To differentiate between human and object using facial recognition.

3. To implement path finding and obstacle avoidance through image

processing.

1.4 Scope of Study

The focus of this project is to explore the capabilities of image processing.

Functions such as thresholding, contouring, edge detection, object detection and facial

recognition will be some, but not all of the algorithms used. Prior to doing all the

mentioned above, a certain level of familiarization towards cv2 commands is required.

Hence, study of cv2 commands and their functions is within the scope of study. Other

than that, testing these commands out and using them in relation to each other to

generate image processing techniques should also be one of the focus of the project.

Related algorithms will be exploited in order to meet the objectives of this project,

which are to maneuver across the field without bumping into obstacles while only

using image processing, identify targets using facial recognition, object detection and

motion detection as well as successfully carrying out search and rescue mission.

4

1.5 Relevancy and Feasibility

 For image processing to be implemented on a robot, the controller used has to

be Raspberry Pi because clearly Arduino does not have that level of processing

capability. The Raspberry Pi has to be installed with OpenCV software, which is where

most of the image processing algorithms are pre-installed. OpenCV is an open source

software which can be easily obtained through downloading online. Motion detection

is done by comparing one frame with another frame through thresholding. By applying

the thresholding function, the pixel value difference between the two frames will be

identified, hence, theoretically, motion is detected. Some readily available facial

recognition algorithms could be found on the Internet. By understanding and fine

tuning the code, facial recognition will not be a problem as long as a camera is present.

5

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction to Search and Rescue Robot

The ability to work in harsh environment is the main focus of search and rescue

mission robots because that is the most likely situation and scenario search and rescue

robots will face once they are out in the field. Undebatably, the main criterion in a

search and rescue robot design is to be able to avoid obstacles during its maneuver.

The environment that requires this type of robots are the ones that may be difficult for

humans or dogs to search (Sam et al., 2009).

In post-catastrophic events such as earthquake, tsunami, volcano eruption,

flood, typhoon, and the list goes on, search and rescue robots are the more reliable and

humane option to carry out missions on fields whereby the number of life-taking

uncertainties are tremendous. Accidents such as chemical leakage where humans are

prone to the exposure of hazardous chemicals which might result in long term harm,

search and rescue robots will prove their values. With proper engineering, design and

planning, robots built can meet the objectives of missions by carrying out

investigations and inspections under collapsed structures, or maybe access places

inaccessible by humans (Search and Rescue Robot: What is it all about?, n.d.). Other

than their contribution in any rescue missions that involves harsh environment, the

advancements of robotics industry nowadays had contributed towards all kinds of aid

and act as a helping hand in the heavy industry.

6

2.2 Sensors

Vision is the most used sense for detection of human presence. It has made its

proof with humans, so it is one of the most effective (S. Burion, 2004). Therefore, the

advancement of technology in camera to provide vision to machines and computers

has brought to us many variations of cameras. As listed in the table above, there are

12 types of sensors and a third of them are cameras. The cheapest vision sensor of all,

is the liner camera, but of course, given its price, there is no high expectation of its

capability in detecting human presence. Color camera itself has a couple of versions.

USB cameras equipped with CMOS sensors, due to the nature of the sensor, are the

cheaper ones while cameras with CCD sensors are, as expected, more expensive. Some

of the advantages of the pricy cameras are higher sensitivity and efficiency in detecting

presence of human. Unfortunately, there is a big disadvantage, which is high-level

image processing skills are required in order to put this type of camera into action.

Stereo vision utilizes two color cameras. The difference between images can

be extracted to provide information on depth. Given the same properties as one camera,

with similar advantages in detecting human presence, its price tag increment is due to

the fact that it can provide additional information.

To detect human presence, infrared camera captures human body heat. This

may be the best solution. As the human body temperature is highly unlikely to be the

same as his surrounding temperature, this method is theoretically and clinically proven

to be efficient. Although infrared camera is the most expensive vision sensor, they

seem to be essential to a robust and efficient solution for human finding.

7

Table 2.1: Summary of available sensors (Burion, 2004)

2.3 Methods of facial detection

2.3.1 Correlation

This is the simplest classification method. Based on the closest pixel, an image

is used to be tested on. The perfect match is indicated when there is zero mean and

variance after comparison, which is normalization. However, also, due to the

normalization process, light source intensity is independent and there is a gain control

which is automatically control based on the normalization process.

Other than advantages, this method has a few disadvantages. First of all, images in test

set cannot be set to have a big range of lighting difference. This is to prevent sample

8

points to have a vast distribution. Secondly, it is expensive. In order to carry out

recognition, there must be a correlation between the test image and the sample images.

Expensive VLSI hardware are used to reduce time computationally. Lastly, learning

or sample set takes a lot of space in the storage.

2.3.2 Eigenfaces

Principal components analysis (PCA), also known as Karhunen-Loeve

methods, uses reduced dimensionality to optimize scatter of all samples. If N sample

images have values in a n-dimensional image space, assuming all

images fall under one of the c-class . Considering also a linear

transformation, which maps the original n-dimensional image space into an m-

dimensional feature space, where m < n. , new feature vectors, are defined by

the following linear transformation:

 (1)

where (matrix with orthonormal columns).

defines the total scatter matrix, where n is the number of sample images, and

is the mean image of all samples. upon application of linear transformation WT, the

scatter of the transformed feature vectors is . In PCA, the

projection Wopt is chosen to maximize the determinant of the total scatter matrix of the

projected samples, i.e.,

 (2)

where set of n-dimensional eigenvectors of ST corresponding to

the m largest eigenvalues.

If m is equal to N, Eigenface method is then equal to the correlation method.

One of the down side of this method is when a cluster is formed, it might include

unwanted pixels as well. Recall the comment by Moses et al. [9]: Much of the variation

from one image to the next is due to illumination changes. Therefore, if variation of

lighting is put into the equation for PCA, the projection matrix, Wopt will contain

principal components lighting-caused variation. Consequently, bad classification will

occur. Lighting variation effects can be reduced by removing three main components.

However, it is not utterly likely that the first several principal components correspond

9

solely to variation in lighting, which as a consequence, useful information might be

lost (Turk & Pentland, 1991).

2.3.3 Linear Subspaces

Correlation and Eigenface method are not good at handling lighting direction

variation. The reason they fail is both of them did not exploit an observation. This

observation is the images of a face which exists in 3D linear subspace for a Lambertian

surface without shadowing. For example, a Lambertian surface with point p shined on

by a light source. Let be a column vector representing the product of the light

source intensity with the unit vector for the light source direction. When the surface is

viewed by a camera, the resulting image intensity of the point p is given by

 (3)

where n(p) is the unit inward normal vector to the surface at the point p, and a(p) is

the albedo of the surface at p. This shows that the image intensity of the point p is

linear on . Therefore, in the absence of shadowing, given three images of

Lambertian surface from the same viewpoint taken under three known, linearly

independent light source directions, the albedo and surface normal can be recovered;

this is the well-known method of photometric stereo. Alternatively, one can

reconstruct the image of the surface under an arbitrary lighting direction by a linear

combination of the three original images. For classification, this fact has great

importance. It shows that, for a fixed viewpoint, the images of a Lambertian surface

lie in a 3D linear subspace of the high-dimensional imagespace. This observation

suggests a simple classification algorithm to recognize Lambertian surfaces—

insensitive to a wide range of lighting conditions. For each face, use three or more

images taken under different lighting directions to construct a 3D basis for the linear

subspace. Note that the three basis vectors have the same dimensionality as the training

images and can be thought of as basis images (Cheng et. Al, 1991).

To perform recognition, we simply compute the distance of a new image to each linear

subspace and choose the face corresponding to the shortest distance. We call this

recognition scheme the Linear Subspace method. We should point out that this method

is a variant of the photometric alignment method proposed, and is a special case of the

more elaborate recognition method described. Subsequently, Nayar and Murase have

10

exploited the apparent linearity of lighting to augment their appearance manifold. If

there is no noise or shadowing, the Linear Subspace algorithm would achieve error

free classification under any lighting conditions, provided the surfaces obey the

Lambertian reflectance model.

Nevertheless, there are several compelling reasons to look elsewhere. First, due to self-

shadowing, specularities, and facial expressions, some regions in images of the face

have variability that does not agree with the linear subspace model. Given enough

images of faces, we should be able to learn which regions are good for recognition and

which regions are not. Second, to recognize a test image, we must measure the distance

to the linear subspace for each person. While this is an improvement over a correlation

scheme that needs a large number of images to represent the variability of each class,

it is computationally expensive. Finally, from a storage standpoint, the Linear

Subspace algorithm must keep three images in memory for every person.

4. Fisherfaces

The previous algorithm takes advantage of the fact that, under admittedly idealized

conditions, the variation within class lies in a linear subspace of the image space.

Hence, the classes are convex, and, therefore, linearly separable. One can perform

dimensionality reduction using linear projection and still preserve linear separability.

This is a strong argument in favor of using linear methods for dimensionality reduction

in the face recognition problem, at least when one seeks insensitivity to lighting

conditions. Since the learning set is labeled, it makes sense to use this information to

build a more reliable method for reducing the dimensionality of the feature space. Here

we argue that using class specific linear methods for dimensionality reduction and

simple classifiers in the reduced feature space, one may get better recognition rates

than with either the Linear Subspace method or the Eigenface method. Fisher’s Linear

Discriminant (FLD) is an example of a class specific method, in the sense that it tries

to “shape” the scatter in order to make it more reliable for classification. This method

selects W in [1] in such a way that the ratio of the between-class scatter and the within-

class scatter is maximized. Let the between-class scatter matrix be defined as

 (4)

and the within-class scatter matrix be defined as

11

 (5)

where µi is the mean image of class Xi , and Ni is the number of samples in class Xi . If

SW is nonsingular, the optimal projection Wopt is chosen as the matrix with orthonormal

columns which maximizes the ratio of the determinant of the between-class scatter

matrix of the projected samples to the determinant of the within-class scatter matrix of

the projected samples, i.e.,

 (6)

where is the set of generalized eigenvectors of SB and SW

corresponding to the m largest generalized eigenvalues , i.e.,

 (7)

Note that there are at most c - 1 nonzero generalized eigenvalues, and so an upper

bound on m is c - 1, where c is the number of classes.

Figure 2.1: Comparison of PCA and LFD (Pentland, 1991)

12

To illustrate the benefits of class specific linear projection, we constructed a low

dimensional analogue to the classification problem in which the samples from each

class lie near a linear subspace. Fig. 1 is a comparison of PCA and FLD for a two-class

problem in which the samples from each class are randomly perturbed in a direction

perpendicular to a linear subspace. For this example, N = 20, n = 2, and m = 1. So, the

samples from each class lie near a line passing through the origin in the 2D feature

space. Both PCA and FLD have been used to project the points from 2D down to 1D.

Comparing the two projections in the figure, PCA actually smears the classes together

so that they are no longer linearly separable in the projected space. It is clear that,

although PCA achieves larger total scatter, FLD achieves greater between-class scatter,

and, consequently, classification is simplified. In the face recognition problem, one is

confronted with the difficulty that the within-class scatter matrix is always

singular. This stems from the fact that the rank of SW is at most N - c, and, in general,

the number of images in the learning set N is much smaller than the number of pixels

in each image n. This means that it is possible to choose the matrix W such that the

within-class scatter of the projected samples can be made exactly zero. In order to

overcome the complication of a singular SW, we propose an alternative. This method,

which we call Fisherfaces, avoids this problem by projecting the image set to a lower

dimensional space so that the resulting within-class scatter matrix SW is nonsingular.

This is achieved by using PCA to reduce the dimension of the feature space to N - c,

and then applying the standard FLD defined to reduce the dimension to c - 1. More

formally, Wopt is given by

 (8)

Note that the optimization for Wpca is performed over n x (N - c) matrices with

orthonormal columns, while the optimization for Wfld is performed over (N - c) x m

matrices with orthonormal columns. In computing Wpca, we have thrown away only

the smallest c - 1 principal components. There are certainly other ways of reducing the

withinclass scatter while preserving between-class scatter. For example, a second

method which we are currently investigating chooses W to maximize the between-

13

class scatter of the projected samples after having first reduced the withinclass scatter.

Taken to an extreme, we can maximize the between-

class scatter of the projected samples after having first reduced the withinclass scatter.

Taken to an extreme, we can maximize the between-class scatter of the projected

samples subject to the constraint that the within-class scatter is zero, i.e.,

---(8)

where is the set of n x m matrices with orthonormal columns contained in the

kernel of SW (Fisher, 1936).

2.3.5 Cascade Classifier

In a paper by Paul Viola and Michael Jones, the advantages of using a feature-

based system over a pixel-based system were discussed. The main advantages are

efficiency and accuracy. Three different type of features are used: difference in sum

of pixels in two rectangular regions horizontally or vertically, difference between the

middle rectangle with the two rectangular regions on both sides, and four rectangles

with none of their neighboring regions having the same value with themselves.

Rectangle features are comparatively better than steerable features, with higher

sensitivity to edges and basic image structures, but relatively coarser, and less flexible.

Training a cascade of classifiers requires more computational time, while achieving

higher accuracy and vice versa. There is a trade-off and getting the optimum balance

between the two are extremely difficult in practice. Hence, a simple framework is

utilized to come up with an efficient classifier. This classifier is then eventually used

to detect object in images. Accuracy is up to 95%.

14

CHAPTER 3

METHODOLOGY

3.1 Process Flow of Project

Figure 3.1: Process flow of project.

Research and
study

Data gathering
and analysis

Preliminary
design

Components
assembling

Coding

Testing

Final
demonstration

15

3.1.1 Research and study

The key element in this project is the robot’s ability to make use of its vision (camera)

through image processing. In depth research and study has been conducted in order to

learn how to program the Raspberry Pi (for image processing) as well as the Arduino

(for maneuvering). This exploration also allows the goal of this project to be set,

whether or not it will be too ambitious, based on the image processing knowledge

acquired. In order to execute image processing in the simplest way, OpenCV software

is a must have. It comes with commands which run algorithms to easily process images

and videos with their parameters set. Thresholding, contouring, edge detection, center

detection, facial recognition and color manipulation are just some of the skills used in

image processing to achieve bigger objectives.

3.1.2 Data gathering and analysis

Data will be gathered through trials and errors. As much as image processing is

concerned, 2D image processing is not capable of sensing depth of an image, leading

to the incapability to determine distance of object from the autonomous robot.

However, through tests, the size of the object in the image reflects its actual distance

from the point the image is taken. Hence, distance can be estimated. Under different

lighting conditions, thresholding requires different pixel values as well. This is utterly

important as contouring and edge detection are based on thresholding. Error in

thresholding will result in utter failure.

3.1.3 Preliminary design

The robot design includes:

1) Raspberry Pi as controller

2) Platform, to install Raspberry Pi

3) Wheels, to maneuver around the field

4) Camera, to provide vision for the robot

5) Ultrasonic sensor, to detect distance with object

The design is just a simple 4-wheel autonomous robot with a gripper. It is true that

wheels are not the best in maneuvering around real-life post-catastrophe surroundings,

16

but it is irrelevant in this case to go beyond this simple design as a replica of the real-

life post-catastrophe field is too costly.

3.1.4 Components assembling

All the components are brought together to be assembled, namely Raspberry Pi,

platform with wheels, ultrasonic sensor, and camera.

3.1.5 Coding

Firstly, the code is written in Python programming language. It involves OpenCV as

well. At the start of the code, various libraries which provide support for image

processing will be imported. Next up, the code will access the camera, which provides

a real-time footage. Thresholding will be done to identify the walls through color

identification to make decision on the direction of movement. This will then send

signal to the motors to maneuver across the field once a movement is noticed. Once

the target has been identified through facial recognition, signal will be sent out. The

coding is targeted to be able to perform the operation mentioned above. Variables

include size of the object which reflects its distance from the robot and the surrounding

lighting conditions need to be taken into account while setting up the parameters

during coding.

Prior to any coding, some installations need to be done on the Raspberry Pi to enable

OpenCV. The list of commands can be found in Appendix A.

3.1.6 Testing

Testing is done to gain information on the suitable size of the object in the image as

well as the proper pixel value range to increase accuracy in processing the image.

Minor adjustments on the robot’s movement are also necessary.

17

3.2 Motion Detection

Figure 3.2: Flowchart of motion detection

18

Below is the code used for motion detection, broken down into multiple parts for

explanation purpose. The full code is available in Appendix B.

In the initial part of the code, some packages are imported. Next, setup argument parser,

activate the camera, and declare a variable firstFrame. Noted that the sleep time for the

camera is 0.25 second to allow the camera to warm up before any frame is captured.

19

Firstly, grab a frame and show the text to be unoccupied (first frame captured is always

unoccupied). Next, resize the frame, convert the color from RGB to Gray to apply

GaussianBlur function. Noted mentioned above, to apply GaussianBlur function, the

image has to be in Gray. Subsequently, compute the absolute difference between pixels

in two frames and apply thresholding. From the results of thresholding, compute the

contour and draw it out. Put the text as occupied if contour is present.

Lastly, show the results in separate windows. Stop code execution if “q” key is pressed

and destroy all user-open-windows.

20

3.3 Facial Recognition

Figure 3.3: Flowchart of facial recognition

21

Below is the code used for motion detection, broken down into multiple parts for

explanation purpose. The full code is available in Appendix C.

In the initial part of the code, some packages are imported. Next, setup argument parser

and activate the camera. Declare variable fd to utilize the imported package

FaceDetector.

Firstly, resize the frame. Next, convert frame color from RGB to gray. Using the gray

frame, detect face. When a face is detected, clone the frame. Find contour on the frame

and draw the contour out.

Show the results in a window called “Face”. If the “Q” key is pressed, destroy all

22

windows opened, in this case, window “Face”, deactivate the camera and stop code

execution.

3.4 Integrated Image Processing

Figure 3.4: Flowchart of integrated image processing

23

Table 3.1: List of cv2 commands used and their functions

No. Command Function

1 Cv2.VideoCapture To capture a video.

Its argument can be either the device index or

the name of a video file. Device index is just the

number to specify which camera.

cv2.VideoCapture(0)

2 Cv2.cvtColor Converts an image from one color space to

another.

In case of a transformation to-from RGB color

space, the order of the channels should be

specified explicitly (RGB or BGR). Note that

the default color format in OpenCV is often

referred to as RGB but it is actually BGR (the

bytes are reversed). So the first byte in a

standard (24-bit) color image will be an 8-bit

Blue component, the second byte will be Green,

and the third byte will be Red. The fourth, fifth,

and sixth bytes would then be the second pixel

(Blue, then Green, then Red), and so on.

cv2. cvtColor(frame, cv2.COLOR_BGR2HSV)

3 Cv2.GaussianBlur Blurs an image using a Gaussian filter.

specify the width and height of kernel which

should be positive and odd. User also should

specify the standard deviation in X and Y

direction, sigmaX and sigmaY respectively. If

only sigmaX is specified, sigmaY is taken as

same as sigmaX. If both are given as zeros, they

are calculated from kernel size. Gaussian

24

blurring is highly effective in removing

gaussian noise from the image.

cv2.GaussianBlur(img,(5,5),0)

4 Cv2.absdiff Calculates the per-element absolute difference

between two arrays or between an array and a

scalar.

5 Cv2.threshold If pixel value is greater than a threshold value, it

is assigned one value (may be white), else it is

assigned another value (may be black).

First argument is the source image,

which should be a grayscale image. Second

argument is the threshold value which is used to

classify the pixel values. Third argument is the

maxVal which represents the value to be given

if pixel value is more than (sometimes less than)

the threshold value.

6 Cv2.FindCountours To find a contour.

there are three arguments in this function, first

one is source image, second is contour retrieval

mode, third is contour approximation method.

And it outputs the contours and hierarchy.

contours is a Python list of all the contours in

the image. Each individual contour is a Numpy

array of (x,y) coordinates of boundary points of

the object.

7 Cv2.boundingRect Create bounding box.

It is a straight rectangle, it doesn't consider the

rotation of the object. So area of the bounding

rectangle won't be minimum.

25

8 Cv2.countourArea Calculates a contour area.

9 Cv2.imshow
To display an image in a window. The window

automatically fits to the image size.

First argument is a window name which is a

string. Second argument is the image. User can

create as many windows as he wishes, but with

different window names.

cv2.imshow('image',img)

10 Cv2.putText Draws a text string.

11 Cv2.waitKey A keyboard binding function. Its argument is

the time in milliseconds. The function waits for

specified milliseconds for any keyboard event.

If user presses any key in that time, the program

continues. If 0 is passed, it waits indefinitely for

a key stroke. It can also be set to detect specific

key strokes like, if key a is pressed, etc.

It also processes many other GUI events, so it is

necessary to have this function to display image.

cv2.waitKey(0)

12 Cv2.imwrite To save an image.

First argument is the file name, second

argument is the image you want to save.

cv2.imwrite('messigray.png',img)

13 Cv2.destroyAllWindows Destroys all windows created.

There is a special case where user can already

create a window and load image to it later. In

that case, user can specify whether window is

26

resizable or not. It is done with the function

cv2.namedWindow(). By default, the flag is

cv2.WINDOW_AUTOSIZE. But if user

specifies flag to be cv2.WINDOW_NORMAL,

he can resize window. It will be helpful when

image is too large in dimension and adding

track bar to windows.

cv2.destroyAllWindows()

14 Cv2.dilate Dilates an image by using a specific structuring

element.

Source code explanation

Below is the code used for motion detection, broken down into multiple parts for

explanation purpose. The full code is available in Appendix D.

This part of the code imports necessary packages. All packages are pretty straight

forward except imutils, which is a set of convenience functions to make basic image

processing tasks easier, and FaceDetector, which is the file containing algorithms to

perform facial recognition.

27

The path to FaceDetector file is required upon activation of the code, hence the setting

of argument parse for it. Minimum area is defined --min-area, which is the

minimum size (in pixels) for a region of an image to be considered actual “motion”.

Small regions of an image that have changed substantially happens quite often, likely

due to noise or changes in lighting conditions. In reality, these small regions are not

actual motion at all. Therefore, a minimum size of a region is defined to combat and

filter out these false-positives.

Setting up the GPIO pins to follow BOARD numbering. Declaration of the parameters

and variables used in the following code as well as activating the camera.

In the body of the code, first start an infinite loop which continues until the letter “q”

is pressed. This part of the code captures a frame as make it as the reference. After

28

converting the color of the frame from RGB to GRAY, blurring is applied. If

previously no frame was taken as reference, which in this case is true, the filtered frame

named “gray” will be the reference frame. At this point, the robot is stationary.

Continue to filter the frame and apply thresholding to compare the pixel offset for the

following frames. If any offset is detected and the area covered is larger than the

default minimum area, it will be regarded as motion. A green bounding box will

appear on that area. Text “Occupied” will be updated and the robot will move

forward.

29

This is where the facial recognition kicks in. While the motion is detected, the robot

will start to detect for faces, once a face is detected, a new pop up window will

appear to showcase the detected face with a green bounding box around it.

30

When a face is detected, the image will be automatically saved into a directory

named TempImage. Once the frame is done, it will be uploaded onto Dropbox.

If all the above happened without any motion detected, the robot will turn right and a

new reference frame will be initiated. If there’s no motion detected after 4 times of

checking, the robot will move forward and repeat the cycle. All windows will be

cleansed if the button “q” is pressed.

31

3.5 Key Milestone

Table 3.2: Project key milestone.

Period (Date) Description

5/9/16 Selection of FYP title.

12/9/16 – 14/10/16 Completion of extended proposal and pre-submission to

supervisor for evaluation.

15/10/16 – 27/10/16 Correction of extended proposal report.

28/10/16 Submission of extended proposal report to supervisor.

29/10/16 – 10/11/16 Completion and presentation for proposal defense.

14/11/16 – 2/12/16 Completion of interim report.

2/1/17 – 22/1/17 Starting of preliminary work: OpenCV familiarization

1/3/17 Submission of progress report.

10/3/17 Completion of motion detection.

21/3/17 Submission of poster to supervisor for checking.

22/3/17 Pre-Sedex (Poster Presentation)

27/3/17 Completion of facial recognition, prototype aseembly

29/3/17 Submission of draft report to supervisor.

30/3/17 – 3/4/17 Correction for draft report.

17/4/17 Submission of soft bound dissertation.

17/4/17 Submission of technical paper to supervisor for checking.

20/4/17 Completion of presentation slides.

25/4/17 Viva Oral Presentation.

2/5/17 Submission of hard bound dissertation.

32

3.6 Project Gantt Chart

Table 3.3: Project Gantt Chart for FYP I.

Task/Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Meeting with supervisor

Write an abstract of the study

Perform background study

Identify problem statement, objectives and

scope of study

Completion of literature review

Completion of methodology

Submission of Extended Proposal

Preparation for Proposal Defense

Proposal Defense

Completion of Interim Report

33

Table 3.4: Project Gantt Chart for FYP II.

Activity

Week

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Improve image processing accuracy
✔

Acquire suitable path planning algorithms ✔

Explore advanced algorithms in image

processing
 ✔ ✔ ✔

Combine motion detection and facial recognition

algorithms
 ✔ ✔ ✔ ✔

Setup appropriate testing field ✔

Testing, troubleshooting and improving ✔ ✔ ✔ ✔

34

CHAPTER 4

RESULTS AND DISCUSSION

 The final results were captured using the integrated image processing code,

which consists of motion detection, facial recognition and communication with

Dropbox. In this chapter, the results for were captured and discussed.

4.1 Motion Detection

Figure 4.1: First frame captured

35

Figure 4.2: Room status unoccupied even with motion

Figure 4.3: Room status occupied

36

When the camera was first activated, it captured a frame (Figure 4.1) and set

it as the reference frame. Any succeeding frame would be threshold and compared

with this frame. However, in Figure 4.2, it was clear that there was a difference as

compared to Figure 4.1, but the text was still “Unoccupied”. The reason was, the

pixel difference in Figure 4.2 did not cover an area which exceeded the minimum

area declared. Hence, it was considered as no motion. In this case, people might

argue that defining a minimum area affects the accuracy of the result. It is utterly

true, but in a positive way. Defining a minimum area to be considered as motion

filters small changes in a frame, which may be caused by spikes in the hardware, or a

slight change in ambient light. However, the down side of using a pre-defined

minimum area is when the target is too far away, causing the motion detected to be

smaller than the defined minimum area.

In Figure 4.3, motion was detected, as indicated by the green bounding box,

and the text has changed from “Unoccupied” to “Occupied”. Looking at the green

bounding box in Figure 4.3, the lower half of the image was totally bounded while

the only significant difference between Figure 4.3 and 4.1 was the presence of two

fingers. This was because their presence has caused the focus of the camera to

change, consequently changing the ambient light intensity captured. Remember the

function calculates absolute difference in pixel value. When the surrounding lighting

changes, the pixel value captured would definitely be affected as well. Hence,

resulting in the result presented in Figure 4.3.

One problem with this motion detection technique is, once the camera is

activated, the robot captures the first frame as its background. Any changes to the

frame will result in motion detected, including movement of the robot itself. Hence,

the robot has to be stationary upon camera activation, or the camera has to be turned

off prior to robot movement. Failure to do so will result in the whole frame be

detected as motion.

37

4.2 Facial Recognition

Figure 4.4: Straight and still face

Figure 4.5: Side face

38

Figure 4.6: Side face

Figure 4.7: Tilted head

In Figure 4.4, a green bounding box was drawn around the face, indicating a

face has been detected. The facial recognition technique used here detects any object

which resembles a human face. It was not restricted to only certain individual’s face.

However, even though the same face was recorded in Figure 4.5, 4.6 and 4.7,

the results were different. No green bounding box around the face. This was because

in Figure 4.5 and 4.6, the face was captured sideways whereas in Figure 4.7, the head

was tilted. This means that the subject has to be captured with a straight face in order

to be recognized by the robot. The reason behind this is the FaceDetector algorithm

39

uses samples presented the same way as Figure 4.4. The angle a face is captured will

also cause failure to recognize.

40

CHAPTER 5

CONCLUSION AND RECOMMENDATION

 The first objective of this project is to design a robot capable of using motion

detection technique as its primary target detection method. As proven in the result,

motion was detected via comparison of pixel values between frames captured. This

motion detection method is also capable of filtering out minor motions, improving the

accuracy of detection. The accuracy of the result was further enhanced by using facial

recognition to detect faces.

 Basic path finding was also integrated into the robot by using coordinates of

bounding box as inputs to formula, to calculate the exact location of the target, instead

of just the direction. The calculated values were then used to control the robot

movement, turning it at a certain angle.

 For future work, I would recommend continuing the quest to explore other

motion detection and facial recognition techniques, as clearly the ones used have their

own flaws as well. Hopefully in the near future, with exploration of new techniques,

these flaws can be overcome. Apart from that, image processing algorithms as a whole

should continue to be researched, improved and utilized. The limitations should

continue to be pushed and boundaries would be extended.

41

CHAPTER 6

REFERENCES

 [1] R. Chellappa, C. Wilson, and S. Sirohey, “Human and Machine

 Recognition of Faces: A Survey,” Proc. IEEE, vol. 83, no. 5, pp. 705-

 740, 1995.

[2] A. Samal and P. Iyengar, “Automatic Recognition and Analysis of

 Faces and Facial Expressions: A Survey,” Pattern Recognition,

 vol. 25, pp. 65-77, 1992.

[3] P. Viola and M. Jones, “Rapid Object Detection Using A Boosted Cascade of

Simple Features,” Proc. IEEE Conf. on Computer Vision and Pattern

Recognition, 2001.

[4] A. Shashua, “Geometry and Photometry in 3D Visual Recognition,”

 PhD thesis, Massachusetts Institute of Technology, 1992.

[5] R. Duda and P. Hart, Pattern Classification and Scene Analysis. New

 York: Wiley, 1973.

[6] R.A. Fisher, “The Use of Multiple Measures in Taxonomic Problems,”

 Ann. Eugenics, vol. 7, pp. 179-188, 1936.

[7] L. Sirovitch and M. Kirby, “Low-Dimensional Procedure for the

 Characterization of Human Faces,” J. Optical Soc. of Am. A, vol. 2,

 pp. 519-524, 1987.

[8] M. Turk and A. Pentland, “Eigenfaces for Recognition,” J. Cognitive

 Neuroscience, vol. 3, no. 1, 1991.

[9] M. Turk and A. Pentland, “Face Recognition Using Eigenfaces,”

 Proc. IEEE Conf. on Computer Vision and Pattern Recognition, 1991,

 pp. 586-591.

[10] Y. Moses, Y. Adini, and S. Ullman, “Face Recognition: The Problem of

Compensating for Changes in Illumination Direction,” European Conf.

Computer Vision, 1994, pp. 286-296.

[11] Y. Cheng, K. Liu, J. Yang, Y. Zhuang, and N. Gu, “Human Face Recognition

Method Based on the Statistical Model of Small Sample Size,” SPIE Proc.

Intelligent Robots and Computer Vision X: Algorithms and Technology, 1991,

pp. 85-95.

[12] S. Baker and S.K. Nayar, “Pattern Rejection,” Proc. IEEE Conf. Computer

Vision and Pattern Recognition, 1996, pp. 544-549.

42

[13] P.N. Belhumeur, J.P. Hespanha, and D.J. Kriegman, “Eigenfaces vs.

Fisherfaces: Recognition Using Class Specific Linear Projection,” European

Conf. Computer Vision, 1996, pp. 45-58.

[14] Y. Cui, D. Swets, and J. Weng, “Learning-Based Hand Sign Recognition Using

SHOSLIF-M,” Int’l Conf. on Computer Vision, 1995, pp. 631-636.

[15] P. Hallinan, “A Low-Dimensional Representation of Human Faces for

Arbitrary Lighting Conditions,” Proc. IEEE Conf. Computer Vision and

Pattern Recognition, 1994, pp. 995-999.

[16] P. Hallinan, “A Deformable Model for Face Recognition Under Arbitrary

Lighting Conditions,” PhD thesis, Harvard Univ., 1995.

[17] R. Brunelli and T. Poggio, “Face Recognition: Features vs. Templates,” IEEE

Trans. Pattern Analysis and Machine Intelligence, vol. 15, no. 10, pp. 1,042-

1,053, Oct. 1993.

[18] J.M. Gilbert and W. Yang, “A Real-Time Face Recognition System Using

Custom VLSI Hardware,” Proc. IEEE Workshop on Computer Architectures

for Machine Perception, 1993, pp. 58-66.

[19] B.K.P. Horn, Computer Vision. Cambridge, Mass.: MIT Press, 1986.

[20] W.M. Silver, Determining Shape and Reflectance Using Multiple Images, PhD

thesis, Massachusetts Institute of Technology, 1980.

43

APPENDICES

Appendix A

44

45

Appendix B

46

47

Appendix C

48

Appendix D

49

50

51

