Indoor Localization and Guidance using

Augmented Reality Toolbox

by

Muhammad Adib Idzam Bin Mohd Zamri
ID: 18456

Dissertation submitted in partial fulfilment of the
requirements for the

Bachelor of Engineering (Hons)
(Electrical & Electronic Engineering)
JANUARY 2017

Universiti Teknologi PETRONAS
Bandar Seri Iskandar
31750 Tronoh

Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Indoor Localization and Guidance using Augmented Reality
Toolbox

By

Muhammad Adib ldzam Bin Mohd Zamri
18456

A project dissertation submitted to the
Electrical & Electronic Programme

Universiti Teknologi PETRONAS
in partial fulfilment of the requirement for the
BACHELOR OF ENGINEERING (Hons)
(ELECTRICAL & ELECTRONIC)

Approved by,

(Patrick Sebastian)

UNIVERSITI TEKNOLOGI PETRONAS
TRONOH, PERAK
January 2006

CERTIFICATION OF ORIGINALITY

This is to certify that | am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and acknowledgements,
and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

MUHAMMAD ADIB IDZAM BIN MOHD ZAMRI

ABSTRACT

In this era, new technology were used to ease user. Outdoor guidance uses
Global Positioning System (GPS) to pin point one’s location and also and navigate him
through the map which downloaded from the Internet. Even so, outdoor guidance is not
effectively to apply to indoor guidance. The prime objective of this project is to develop
localized indoor guidance system which run in Augmented Reality (AR) mode. AR will
provide necessary information by overlaying them on the actual environment captured
by camera mounted on a smart glasses and able user to guide through a specific place.
Microcontroller Raspberry Pi is used to process the whole system. Instead just showing
user the directions, this project also focuses on embedded information on the markers
that generate AR images. This additional information can be obtained by user while
going through the navigation. This project also uses object detection to create indicators
that can lead the user to the markers. Using the object detection also, air-gesture system
will be created to replace the existing mouse and keyboard. This will increase the
mobility. Project had been tested at Universiti Teknologi PETRONAS’s Chancellor
Complex and showed the high mobility and functionality work as localized indoor

guidance.

ACKNOWLEDGEMENT

I would like to thank you to all persons that helped and guided me throughout
completing this project. First of all, I would like to thank to my supervisor, Mr. Patrick
Sebastian for his support and guidance in making this project successful. He has
contributed a lot in this project in term of giving idea and suggestions which to make the

project to be outstanding.

I also would like to thanks to my friends including post graduates students for

guiding me on how to setup OpenCV and the guide on how to use Raspberry Pi board.

Not forgotten, thank you also to my family members and other people who

supported me.

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL ... i
CERTIFICATION OF ORIGINALITY ..o i
ABSTRACT .. iv
ACKNOWLEDGEMENT ..o v
1 CHAPTER 1: INTRODUCTION ..ot 1
1.1 BaCKQrOUNdccooiiiiieiiee et 1
1.2 Problem STatemMEeNtccoiiiieiie e 2
1.3 ODJECLIVES ...ttt 2
1.4 SCOPE OF STUAY ..ot 3

2 CHAPTER 2: LITERATURE REVIEWcooiiiiiiie e 4
2.1 Augmented Reality (AR).......ccooiiiiiiiiieiisiseeee e 4
2.2 MaArker DEtECTION.cc.iiieiiiiiieiieieie e 4
2.3 Object Detection on Marker INAICAtOrS.ccoveveerviieiieneeie e 6
2.4 QR COAeU MArKEIS......ccveeiviiiieeciie et ettt ettt 7
2.5 CritiCal ANAIYSISccveeieiiecii ettt 9

3 CHAPTER 3: METHODOLOGY ..ottt 10
3.1 Project FIOWChArtccoveiuiiieiice e 10
3.2 EXperimental SELUPcc.ooveeiiie e 10
3.3 ACHIVILIES PIANNEM........oiiiiiiiiiece e 11
34 GANE CRANT ... 12
3.5 Project Key MIIESIONEScooiiieiiiiiieiie it 12
3.6 Identifying and obtaining the suitable components and software 13
3.6.1 COMPONENT ...t eree e 13
3.6.2 SOTEWAIE. ..ot 14

4 CHAPTER 4: OVERALL SYSTEM....coooiiiiiiieeeee e 15

4.1 Overall Completed SYSEM.......ccoviiiiiiiiiere e 15

4.2 1SSUES TACEA. .. .ottt 16

5 CHAPTER 5: RESULT AND DISCUSSION......c.cccoiiiiiiieinieeeeeeieiens 18
5.1 Perform Image filter for Marker Indicatorcccccooeiiiiiiiiiiicenn, 18
5.1.1 SEIUP PrOCESS: ...ciiiiiiiiie ittt 18
5.1.2 Flow-chart of Image filter for Marker Indicator.............c.cccceovenenne. 19
5.1.3 Result of Image filter for Marker Indicator............c.ccccooeiveieinenen. 21

5.2 Onair SeleCtion MENU........cccoiieieiiiiiee e 24
5.2.1 Result of on air Selection MeNUccccocveveeieiieene e 25

5.3 QR COUE SCANNELecitiiiieeitie it eetee et ste e re e steesreesreesbeeebeesbeesbaesbeesreens 25
5.3.1 SEIUP PIOCESS.eiiieeriiieeiiiesiieee st 25
5.3.2 Flow-chart of QR COUE SCANNET.cccveeiriiiiieiie e 26
5.3.3 Result of QR COde SCANNET.ocveiiiiieiiecieeie e 27

5.4 Coding for AR Indoor Localization and Guidancecccccoeevevveenenn. 31
5.4.1 SEIUP PIOCESS.eiiieeiiiiieiiiesie ettt 31
5.4.2 Flow-chart of AR Indoor Localization and Guidance...................... 32
5.4.3 Result of AR Indoor Localization and Guidance.cccceeveenee. 33

6 CONCLUSION AND RECOMMENDATION.......coceiiriiiieieniiseeeeieeens 35
7 REFERENGCES ...ttt 36
8 APPENDIX .. .ottt 37

vii

LIST OF FIGURES

FIGURE 1 ObjJeCt deteCIONc..oveeiiiiiieieeiieiee e 6
FIGURE 2 QR O SAMPIEccveeiieieciecr et 7
FIGURE 3 QR COdE MASKS........eeciviiiieciieeiie ettt st s svaesne v 8
FIGURE 4 QR COUE 0ECOUING ..ottt 9
FIGURE 5 Methodology - Project Flowchart............ccccoevviiieniiiniiinccen, 10
FIGURE 6 Grantt Chartccoviiiiiieniese e 12
FIGURE 7 Project Key MileStONES........cccccveviiiiiiicie e 12
FIGURE 8 Overall System FIOWCHAItcccooiiiiiiiiicieec e 15
FIGURE 9 Flowchart of Marker INdiCator............ccevviieiieiiee e 20
FIGURE 10 Marker INiCatorcccoiviieiieiieie e 22
FIGURE 11 Processed image of marker indicator..............cccoccevvvevieieiiciecniee, 23
FIGURE 12 Position of the marker indicatorcccoovvvniieneiininineeenn 23
FIGURE 13 On air menu SEIECtIONccovveieeieiieseee e 24
FIGURE 14 Flow chart of QR cOde SCANNErcccveveiieiieiecieneee e 26
FIGURE 15 QR COUE SCANNINGccveiiiiieiiieitieie et ste e sre e sre e 27
FIGURE 16 Console output for QR scanner program............ccccceevvevveveesieennenn 28
FIGURE 17 QR marker “qr_code utp home”ccooeiiiiiiiininineniseeens 30
FIGURE 18 Flow chart of AR Indoor Localization and Guidance 32
FIGURE 19 Location Of MArkers.........cccoceieiiiiiinieieieiese e 33
FIGURE 20 Marker “qr_code_library” showing direction to the right............... 34

LIST OF EQUATIONS

Equation 1 Gaussian derivative Kernel:...........cocovveiiiiiiiic e 5
Equation 2 Sobel Operation:ccceiiiiiie i 5
Equation 3 QR COUE VEISION:oviiiiiiiieiieiieie et 7

viii

file:///C:/Users/ADIB/Desktop/Final%20year%201st/FYP/HARD%20BOUND-%20Indoor%20Localization%20and%20Guidance%20using%20Augmented%20Reality%20Toolbox.docx%23_Toc481761135

LIST OF TABLES

TABLE 1 ENCOUING LYPE....vieiiiieitiecie ettt 8

TABLE 2 Activity PIanNned.........cccoooeiieiiec e 11

TABLE 3 Comparison between Arduino and Raspberry Pi microcontroller13

TABLE 4 Comparison of Raspberry Pi Model ..., 14

TABLE 5 HSV of marker indiCator...........ccooeviiiiiiiniiieieeese s 21

TABLE 6 Range X,y for menu Selection............ccccevvveviiveiieie e, 25

TABLE 7 QR CO0ES datahasecccueieerieieiieiesie et 29

TABLE 8 Location and marker NAME.........ccoocvereeieieereeie e e see e 33

TABLE Q ROULE ..ottt sttt 34
LIST OF ABBREVIATIONS

AR : Augmented Reality

IRC : Information Resource Centre

GPS : Global Positioning System

WLAN : Wireless Local Area Network

RFID : Radio Frequency Identification

UTP - Universiti Teknologi PETRONAS

QR : Quick Response

CH : Chancellor Complex

RANSAC : Random Sample Consensus

1 CHAPTER 1: INTRODUCTION

1.1 Background

The title of project is Indoor Localization and Guidance using Augmented
Reality Toolbox. Indoor localization is locating or real time tracking of physical body
inside a closed environment. Guidance here refers to navigation and methods. The
project aims to create an Augmented Reality (AR) based guiding system and able to
guide user indoor by tracking special markers. In addition, this project uses image
processing to identify marker indicator and shows their location. The marker will consist
of Quick Response (QR) code which contain embedded information. The markers
however will prompt AR image with additional information to guide user to find his
destination. Besides that, this project also implement on air selection menu which

replaces with conventional use of mouse.

1.2 Problem Statement

Current navigation tools such as Global Positioning System (GPS) unable to
pinpoint indoor destination accurately due to satellite signals being interrupted by walls
and structures. For indoor, wireless technology such as Global System for Mobile
(GSM), Bluetooth, infrared, Wireless Local Area Network (WLAN) and Radio
Frequency Identification (RFID) can be used. Even so, the comparison by [1] indicates
that these technologies are not suitable to be used in indoor guidance due to either their

accuracy, signal error rate or range.

Wireless technology has limitation on signal and area of coverage, therefore
indoor guidance still relies on non-interactive and conventional guidance such as map

and signboard.

1.3 Objectives
The objective of this project are:

To develop interactive localized indoor guidance system using raspberry pi
To develop AR in localized indoor guidance system
To develop long range marker indicator finder.

To develop on air menu selection.

o b w0 DN e

To develop embedded information in markers using QR code.

1.4 Scope of study
Project Location

This project conducted in indoor condition. The target location is at Universiti
Teknologi PETRONAS (UTP) Chancellor Complex. The area is divided into 3 sections
such as in FIGURE 14 and each sections are corresponds to actual point of interests
which are the UTP Information Resource Centre (UTP IRC), UTP Chancellor Complex
and UTP Chancellor Hall. These sections are named “Library”, “Home” and “CH”

respectively.
Image Capture

This project uses a web camera mounted on a smart glasses. The web camera is 5
megapixel. For earlier stage, the image captured was sent to a laptop for image
processing using Visual Studio 2013 software running with OpenCV version 2.4.13.
Later on, the image will be processed by microcontroller Raspberry Pi instead of using

laptop.
Software Development Kit (SDK)

This project uses open source SDK. Visual Studio 2013 is used as integrated
development environment (IDE). OpenCV SDK is used for image capturing and
processing. AR rendering uses ARToolkit SDK and ZBAR SDK is used for QR code

reader.

2 CHAPTER 2: LITERATURE REVIEW

2.1 Augmented Reality (AR)

Based on [2], AR is the user’s real time environment which integrates with
digital information. Compared to Virtual Reality (VR), VR creates an artificial
environment whereas AR overlays information on top of existing surrounding. This
project will use ARToolKIt to create AR. ARToolKIT is applicable on stereos and
optical see-through support. It is integrated with hardware such as smart glasses and new

devices.

Basic principal of this software is that it works by identifying specific squares
shape as tracking markers. When starting, image snapshot is captured by camera will be
processed by Visual Studio. The software will then scan and locate the stacking marker
squares. When the square is found, the distance between the square and the camera is
calculated. Comparing pattern with in memory templates, a 3D virtual object is
positioned aligned with the marker [2]. The image is rendered and streamed to the user

screen together with additional information.

2.2 Marker Detection

AR applications will detect marker and compare it with stored marker data. After
comparison, it will generate AR image based on the marker. Referring guide from [3],
[4] , there are 6 steps to detect marker using C++ algorithm. This method uses the
convolution of derivative of Gaussian to create an estimation component of the gradient
intensity on each scan line. Therefore, the black/white edges in the image is detected.
Edges can be found when local maxima which located along the scan lines is higher
value than a certain threshold.

Gaussian derivative kernel used [3]:

Equation 1 Gaussian derivative kernel:

[-3-5053]*A

Next, Sobel operation is used to identify the orientation of the edge. The Sobel

operator [4] :

Equation 2 Sobel operation:

+1 +2 +1 +1 0 -1
G,=[0 0 O0|*«A and G,=|4+2 0 -2]|xA
-1 -2 -1 +1 0 -1

Furthermore, the edge found earlier are combined together into line by using
Random Sample Consensus (RANSAC)-grouper [3], [4]. Orientation of the edges able
to give the line segments orientations. Next, the lines is extended along the edges to
detect the corner of the marker. Remove the lines without corner and chain the filtered
lines. Chain them together which consist of four lines and with four corners. The chain
will have black region inside and probably contain marker. From this, AR tool is used to

detect marker and create AR images.

2.3 Object Detection on Marker Indicators.

Finding marker’s location will be very easy with some indicators. In this project,
an object detection method will be used to identify the indicators. This indicator will
indicate that marker is very closely, which help user to spot the marker easier without
wondering around. For industrial use, detecting object location in digital image has

become very important use to save time and ease user [5].

This object detection uses colour processing. Image are captured by camera and
sent to the OpenCV and perform object recognition processing which undergoes Red
Green Blue (RGB) adjustment, elimination of unwanted colour, gray scaling and circular

Hough Transform [5]. Image shows the result of [5] object detection.

FIGURE 1 Obiject detection

Rosebrock [6] shown that using cv2.findContours in OpenCV to find the outline
of the object in binary mask. Referring to his guide in OpenCV program, object

detection and its movement can be traced for user to see.

2.4 QR Coded Markers

Compared to conventional marker, this project uses QR coded markers. QR code
was developed by Denso Wave and approved as an ISO international standard
(ISO/IEC18004) [7]. Nowadays, QR code is widely used in advertising by displaying
the code and using QR code reader software, user can scan the code and convert it to

useful form such as Uniform Resource Locator (URL) for a website [8].

FIGURE 2 QR code sample

QR code consist of 3 timing patterns (big black squares) in the corners except 1
side at bottom right. By this, the QR code in proper orientation is as shown in FIGURE
2. The version of the code is determined by total sum of modules across the QR code is
subtract by 17 and divided by 4 [9].

Equation 3 QR code version:

Version = (Sum of modules — 17) /4

After that, the code’s format is determined by 15 bit long: 5 bit for format
information and 10 bit for error correction. The first 5 bits of the format hold the error
correction level of 2 bits and data mask of 3 bits. The 5 bit XOR with 10101 and the last
3 bits is the mask number. To retrieve data, the computer unmasks the original data
bytes.

o= 1 =

Mask 000 Mask 001 Mask 010 Mask 011
(i+j1%ez=0 i%Z=0 j%3=0 [i+j1%3 =0
Mask 100 Mask 101 Mask 110 Mask 111

(if2 +jf3)%2=0 (*])%2+(i*)%3=0 ((i%)%3+*)1%2=0 ((i*)%3+i+))%2=0

FIGURE 3 QR Code Masks

The header contain encoding type and length of data byte is store. The encoding
type is stored bottom right of 4 bits, starting from bottom right and continues in zig-zag

motion from left to right [9].
For each encoding type, the number of bits as follows:

TABLE 1 Encoding type

Encoding Type Number of bits
Numeric 10
Alphanumeric 9

8-bit Byte 8

Then the bit length of the message is decoded then followed by characters in zig-

zag motion as shown in FIGURE 4.

B | rixed patterns
B rFormatinfo

Enc: Encoding mode
Len: Message length
E1: Error correction

Bit order (1 is MSB):
[271] [815T4)3] [&]
71211 [g
g47l2]1] |4
ﬁ|5 4|3 2]
this symbol, dark is
Doﬂ even rows,
1 on odd rows

]
= (L1 L (=

L (==

= mchn-

FIGURE 4 QR code decoding

2.5 Critical Analysis

Fadzly [1] uses AR to navigate user indoor. He uses ARToolKit as it is
compatible with Raspberry Pi operating system, Linux. This project almost similar to the
project, however this project focuses more on creating indicators for markers location,

QR coded marker, and on air menu selection.

3 CHAPTER 3: METHODOLOGY

3.1 Project Flowchart

e|nstallation of Window Visual Studio, OpenCV, ARToolKit.
e|nstallation of raspbian operating system

\
eStudy object tracking, marker recognition.
eStudy AR developmen on marker.
J
*Project development
*1) Recognise indicator
*2) Recognise pattern of marker and construct AR image with informations
*3) Air gesture mouse
8 Y,

FIGURE 5 Methodology - Project Flowchart

3.2 Experimental Setup

o To test object detection for indicator finder, OpenCV is used. Image captured
by camera is then processed. RGB is filtered. The image is adjusted the HSV
to filter out the target colour. The filtered image then undergo morphological
operation. The image either dilate or erode. After that, find the contor.

o To test AR, ARToolKit SDK is used along with OpenCV. From detected
marker, the QR code pattern is read and compared with database pattern.
Then, AR image is displayed on the marker corresponding to the marker.

o ZBAR SDK is used for QR code reader. From Scanned QR code, it then
decoded into string of characters.

o Visual Studio 2013 is used instead latest version due to capability issues.

10

3.3 Activities Planned

TABLE 2 Activity Planned
NO Activities WEEK
Project Topic
1 Selection, Cross 1
Referencing
Identifying and
obtaining the suitable
2 2-3
components and
software
3 Perform Image filter 4-9
for Marker Detectopm
4 QR code scanner 10-16
Coding for AR
5 Indoor Localization and | 16-21
Guidance
Develop On Air
6 Selection Menu using | 21-22
image processing.
Test run on
! Raspberry Pi. L
Full test run +
8 finalized 24
documentation.

11

3.4 Gantt Chart

Week

Activity

Progress
report

Pre-SEDEX
2 | poster
presentation

Draft report

Final Report

Technical
Paper

6 | FYP2 VIVA

FIGURE 6 Grantt Chart

3.5 Project Key Milestones

No. Activity Complete in
1 Progress report submit Week 8

2 Pre-SEDEX poster presentation Week 10

3 Draft report submit Week 13

4 Final Report submit Week 14

5 Technical Paper submit Week 14

6 | FYP2VIVA Week 15

FIGURE 7 Project Key Milestones

12

3.6 Identifying and obtaining the suitable components and software
3.6.1 Component

TABLE 3 Comparison between Arduino and Raspberry Pi microcontroller

Features
54 Digital pin Input/output (i/0) 26 General Purpose Input
Pin Output(GPIO)
X HDMI port v
X RCA video output e
X USB port ¥

Based on comparison TABLE 3, Arduino microcontroller lacks of features
compared to Raspberry Pi for this project. Raspberry Pi is more flexible to use since this
project will require to use USB webcam and require video output ports for video output.

13

TABLE 4 Comparison of Raspberry Pi Model

Raspberry Pi 1 Model A+ Model Raspberry Pi 1 Model B
700MHz Broadcom BCM2835 Processor 700MHz Broadcom BCM2835
512MB RAM 512MB

1 USB 2.0 port 2

40 GPIO 26

v HDMI v

Non-split RCA video output | Split audio and video

Based on the comparison TABLE 4, both model are usable for this project.
Model B has less input/output pin compared to model A. For this project, Model B is
easier to use because of the split of RCA for audio and video which can separately

connected to headphone and screen.
3.6.2 Software

This project uses Visual Studio 2013 and OpenCv version 2.4.13 library. In
Microsoft environment, Visual Studio (VS) is the software to be used for image
processing. In VS, the programming environments, building and debugging is handled
well. In addition, ARToolkit and ZBAR SDK is used for AR rendering and QR coder

reader respectively.

14

4 CHAPTER 4: OVERALL SYSTEM

D ker indi fi . " . .
| Detect mar de.r jdicatertions Display additional information
1stance

IGU
RE 8
sho v T
ws
the On air selection menu Create AR image on marker
over
all

: I
flow
of .

Scan QR codes marker > Compare with dataset

syste
m.
First] FIGURE 8 Overall System Flowchart

y user need to locate marker, which can be done more easily with the help of marker
indicator. Then, using on air selection menu, user choose his destination. After that, user
need to scan the QR coded markers. The system will filter the captured image and read
the marker definitions and compared it with database. Then, an image showing direction
is rendered on the marker. In addition, some information can be prompted on the screen

such as history of the location.

4.1 Overall Completed System

15

This section discuss about this project final progress. The project covers

following objectives:

To develop AR in localized indoor guidance system
To develop long range marker indicator finder.
To develop on air menu selection.

To develop embedded information in markers using QR code.

A A

To develop interactive localized indoor guidance system using raspberry pi

The project completed all above 4 objectives, however, for objective number 5, it
is not complete. The localized indoor guidance system developed is not yet user friendly
and it is not integrate with raspberry pi. The current progress of the interactive localized
indoor guidance system only developed in Visual Studio using actual markers and
colour indicators. Some adjustment needed in the coding so the system more user

friendly. In Chapter 5 we will discuss further regarding result of the project developed.

4.2 Issues faced

16

In the period of project development, some issues were found and solved.

Following are the issues that are encountered:

Issues

Action

Marker indicator detects multiple colours

Reduce the range of HSV value so filter

other colour completely

Markers, and colour indicators should not

be reflective.

Printed markers and colour indicators
should not laminated to avoid reflective

properties.

Error in program window’s name

Add“

_ITERATOR_DEBUG_LEVEL=0" in
Visual Studio Pre-processor under C/C++
property to solve problem in creating task
bar window and solve the missing

window name.

Too sensitive on air menu selection

Uses 2 colour indicator (red and blue) as
menu selector to avoid reading

surrounding colour.

Un-accurate marker reading

Recalibrate the camera and generate new
camera_para.dat file new camera

calibration values.

17

5 CHAPTERS5: RESULT AND DISCUSSION.,

5.1 Perform Image filter for Marker Indicator

A marker indicator is introduced because the camera is not high resolution thus
the captured image was pixilate and hard to detect marker from long distance. Having a

powerful camera can remove the dependency of this subsystem.

The marker indicator will indicate a marker nearby to it. This will ease user to

find the marker.

This subsystem, object detection of colour and shape is used to detect indicators
which indicate the position of the markers. The indicator is made of specific shape and
colour. This is to distinguish its property from surrounding and make identification

easier.

Based on study [10], the least popular colour is brown. Therefore for this project
we use brownish colour with HSV value in TABLE 5 to distinguish itself from
surrounding. In addition to make it more distinguish, the shape of the indicator also
determined which is circle. The indicator for this prototype is circle and HSV value of
TABLE 4. In future for improvement, more unique detail such as colour in pattern,
number of edges can be used so the indicator more accurate without affected by certain

condition.

5.1.1 Setup Process:
The setup process as follows:

1. Setup the window environment,

2. Create a new project in VS

3. Include the file dependencies for this project.

4. Add this line “ _ITERATOR_DEBUG_LEVEL=0" in Pre-processor
under C/C++ property to solve problem in creating task bar window and

solve the missing window name.

18

5. Create the program, build and test run. Please refer the code in the
appendix section.

5.1.2 Flow-chart of Image filter for Marker Indicator

19

Include library
Declare variable
Create trackbar

apture image from
camera

Convert RGE to
HSV
(cwCwiColor)

Y

inrange function

cvsmooth
function

p_seqCircles
function

cvGetSeqElem
function

show image
processed

rint center location on))
original image rint center location on
console

FIGURE 9 Flowchart of Marker Indicator

20

A w0

Program flow:

Include library, declare variable and create trackbar.

Image captured from webcam

Image feed changed from RGB to HSV using cvCvtColor

Use inrange function to identify if array elements lie between the
elements of two other arrays. This function filter all other HSV
value and left with desired value.

Use cvsmooth function to make the processed image smooth and
easier for next process.

Use p_seqCircles function to detect circle structure

cvGetSeqElem function read positions of the structure

Show the images and the position of the structure.

5.1.3 Result of Image filter for Marker Indicator

The image feed is converted from Red Green Blue (RGB) to Hue Saturation

Value (HSV). Track bar is adjusted to desired value. The inrange function will use this

values to filter out other value and left with the desired value.

From the value left, which here is brown in colour, the circle structure is

identified from the filtered colour and a centre is drawn. The centre location and its

radius is print. The effective range for this radius of 4.24cm object surface is 4m far

using 5SMP web cam under of range of 200-2016 lux of light luminance.

TABLE 5 HSV of marker indicator

Variable Value

Min Max
Hue 11 19
Saturation 139 181
Value 128 153

21

%1 Original =@ % |

FIGURE 10 Marker Indicator

FIGURE 10 shows the marker indicator that informs user the marker is nearby.

By having tight HSV range of values, the marker is distinct from surrounding.

22

% '| Processed 4

FIGURE 11 Processed image of marker indicator

\Windows\system32\cmd.exe i L S

387.0600006 . 123 .0660006 . 33.615471
379 .060000 . 121 .66600606 . 40.224369
379 .0660006 . 117.66600606 . 28.635643
381 .800000 . 115 .8600000 . 32.062439
379 .6600008 . 117.6660008 . 40.6078808
375 .800000 . 111 .860000. 21.6333088
377.6600000 . 119 .6660008 . 38.587563
365 .A00000 . 121.0600000. r 31.764761
367.0000006 . 115 .60660006 . 34.132895
379 .060000. 115 .66600606 . 41 .761227
381 .0600006 . 113 .66600606 . 13.152946
377.060000. 117.66600606 . 31.304953
391 .066006 . 121 .6660066 . 31.7808497
363 .800000 . 119 .860000 . 32.0815621
373.600008 . 121 .6660008 . 34.858773
377.800000 . 117.6600000 . 39.458839
379 .660000 . 119 .6660008 . 41.612192
361 .000000 . 113.6600000. r 28.1608255
379 .0660006 . 113 .60660006 . 35.355339
369 .060000 . 111 .96600606 . 33.978577
373 .0660006 . 187.6660006 . 31.896438
379 .060000. 113 .6660060 . 36.878178
377.0660006 . 165 .6660006 . 42 .426407
375 .800000 . 113 .6600000 . 42.7200820

position
position
position
position
position
position
position
position
position
position
position
position
position
position
position
position
position
position
position
position
position
position
position
position

L | (| (| (| 1 O 1 1
e e e e e e e e e ciec\a\s e
L | (| | (| | | (| 1 O [
L | | (| (| 1 Y [

XXXXXXXXXXXXXXXXXXXXXXXX

FIGURE 12 Position of the marker indicator

23

FIGURE 12 shows the position of the marker indicator in x and y axis and the
radius. Value x and y determines the center coordinate of the circle. This value is used
to draw the red circle around it corresponds to the value of radius. A string “Marker

Nearby Here” will be prompted centering to the x and y.

5.2 On air selection menu

Instead using mouse and keyboard to do menu selection, this project implements
on air selection menu. Using same method in Marker Indicator, the coordinate of the
centre of the red and blue circle as in FIGURE 13 is used as condition for the menu

selection.

" &7 Original L=

FIGURE 13 On air menu selection

24

5.2.1 Result of on air selection menu

TABLE 6 Range x,y for menu selection

Destination | x Range min y Range min X Range max y Range max
Library 0 60 200 90
Home 250 60 400 90
CH 450 60 800 90

For example, destination “Library” will be set if the coordinate for both red and

blue circle fall between 0<x<60 and 200<y<90.

5.3 QR code scanner.

For this project, QR codes as markers for AR display are used. This project
require ZBAR SDK to identify QR codes and decode into strings of characters. After
that we will compare the string of characters with our database and print information.
For this project, we will use 3 QR code marker as prototype. The QR codes are

generated using online QR code generator from http://www.gr-code-generator.com/.

5.3.1 Setup Process

1. Install ZBAR from :
http://sourceforge.net/projects/zbar/files/zbar/0.10/zbar-0.10-

setup.exe/download

2. Invisual studio project, open system properties. Import headers (.h files) and
libraries (.lib) at “Additional Dependencies” under VC++ directories tab.

3. Copy libzbar-0.dll into the project directory folder.

4. Run test program.

5. Modify coding to compare string read from QR code and database to print

information from database.

25

http://www.qr-code-generator.com/
http://sourceforge.net/projects/zbar/files/zbar/0.10/zbar-0.10-setup.exe/download
http://sourceforge.net/projects/zbar/files/zbar/0.10/zbar-0.10-setup.exe/download

5.3.2 Flow-chart of QR code scanner.

Include headers Obtain image data using
and lib files webcam
Wrap image
data

Scan image for
QR code

Extract result

Printinformation from
A database

ompare result of strind
with database

database”

At “no data available from

FIGURE 14 Flow chart of QR code scanner

26

5.3.3 Result of QR code scanner.

FIGURE 15 QR code scanning

FIGURE 15 show the captured frame. In this frame, the QR code is detected. The
area inside the blue square is processed using Zbar library to decode the QR code.

27

§ ° ChUsers\ADIB\Documents\Visual Studio 20124Projects\ZBAR\Debug\ZBAR.exe
QR—Code symbhol “http: - ulibrary.utp.
QR—Code symbol “http:~ - ulibrary.utp.
QR—Code symbol “http:~ - ulibrary.utp.
QR—Code symbol “http:~ - ulibrary.utp.
QR—Code symbol “http:~ - ulibrary.utp.
QR—Code symbol “http:~ - ulibrary.utp.
QR—Code symbol “http:~ - ulibrary.utp.
QR—Code symbol “http:~ - ulibrary.utp.
QR—Code symbol “http:~ - ulibrary.utp.
QR—Code symbol “http:~ - ulibrary.utp.
QR—Code symbol “http:~ - ulibrary.utp.

QR—Code symbol “http:~ - ulibrary.utp.

FIGURE 16 Console output for QR scanner program
FIGURE 16 shows the result of decoded QR code. In this, a string is printed as

the output. The string will be compared with available data. If matched, a sequence of
information will be printed such as the name of marker, current location, points of

interest at that location and etc.

28

QR code markers generated as follows:

TABLE 7 QR codes database

Link QR Code Marker Name

https://www.utp.edu.my/SitePag qr_code_utp_home

es/Home.aspx

http://ulibrary.utp.edu.my/ gr_code_library

qr_code_student(ch

)

https://www.utp.edu.my/Student

s/SitePages/Home.aspx

29

FIGURE 17 QR marker “qr_code utp home”

FIGURE 17 is the photoshoped image of earlier QR code for “qr_code utp
home”. The condition for the marker must be bordered by 2-3 cm black border for easier
recognition of the marker. The size of the marker is 6cmx6cm. The marker then

processed into .pat file using ARToolkit marker generator [11].

30

5.4 Coding for AR Indoor Localization and Guidance

Using ARToolkit, AR library is used to generate images over QR code markers.
This section discuss the steps for AR image rendering on markers. The AR image
rendered on markers show the direction for user to follow to reach destination.

5.4.1 Setup Process

1) Download from https://artoolkit.org/ and Install ARToolKit.

2) Setup environment variables

3) Include AR .lib files and .bin files to property sheet.
4) Develop code

5) Build and test run.

31

https://artoolkit.org/

5.4.2 Flow-chart of AR Indoor Localization and Guidance.

Start

Include headers
file

Frame capture
and load markers
database

Detect markerin
a frame

vy

Calculate
camera
transformation

Draw virtual
object

End

FIGURE 18 Flow chart of AR Indoor Localization and Guidance

32

5.4.3 Result of AR Indoor Localization and Guidance.

For this project, 3 markers were each used for 3 locations respectively. The
locations are named Library, Home and CH. TABLE 8 and FIGURE 19 show

arrangements.

TABLE 8 Location and marker name

Location Marker placed

Library qr_code_library

Home gr_code utp_home

CH gr_code_student(ch)
Library Home CH

FIGURE 19 Location of markers

33

TABLE 9 Route

Current Position
Destination Library Home CH
Library Arrive Left Left
Home Right Arrive Left
CH Right Right Arrive

TABLE 9 shows that direction is shown differently for each selection of
destination. For example, if user wants to go to CH, he will prompted by image show
that he need to go to “Right” at Library and Home position. FIGURE 16 is the image

prompted for current situation at location Library.

X UHome Actions v '-5'4

FIGURE 20 Marker “gr_code_library” showing direction to the right

34

6 CONCLUSION AND RECOMMENDATION

To sum up, Indoor Localization and Guidance using Augmented Reality Toolbox will
create a new concept of indoor navigation to replace the existing conventional method.
A marker indicator is used to ease user to find marker’s location. Air selection menu
removes the need for mouse and keyboard and QR coded markers now hold more
information rather than conventional markers. In future, this technology can improved
by adding more functional subsystem such as implementing communication service

inside the system and audio navigation.

35

1]

2]

3]

4]

5]

6]

7]

8]

REFERENCES

F. Malek, "AUGMENTED REALITY BASED INDOOR POSITIONING
NAVIGATION TOOL," Tronoh, 2016.

M. Rouse, "augmented reality (AR)," February 2016. [Online]. Available:
http://whatis.techtarget.com/definition/augmented-reality-AR. [Accessed 14
OCTOBER 2016].

Corné, "Marker Detection for AR Applications,” infi, 2 April 2010.
[Online]. Available: https://infi.nl/nieuws/marker-detection-for-augmented-reality-
applications/. [Accessed 20 OCTOBER 2016].

M. Hirzer, "Marker Detection for Augmented," computer graphics & vision,
Austria, 2008.

R. Hussin, M. R. Jubari, N. W. Kang, R. C. Ismail and A. Kamarudin,
"Digital Image Processing Techniques for Object Detection From Complex

Background Image,” Procedia Engineering, no. 41, pp. 340-344, 2012.

A. Rosebrock, "OpenCV Track Object Movement,” pyimagesearch, 21
September 2015. [Online]. Available:
http://www.pyimagesearch.com/2015/09/21/opencv-track-object-movement/.
[Accessed 20 OCTOBER 2016].

"Information Technology — Automatic identification and data capture
techniques — Bar code symbology — QR Code, ISO/IEC 18004," in Int’l
Organization for Standardization, 2000.

E. Kang, "A rectification method for quick response code image,” in The
18th IEEE International Symposium on Consumer Electronics (ISCE 2014), 2014.

A. Fuller, "Decoding small QR codes by hand," Solder and Flux, [Online].
Available: http://blog.qgartis.com/decoding-small-gr-codes-by-hand/. [Accessed 1

36

9] MARCH 2017].

S. Work, "True Colors — Breakdown of Color Preferences by Gender,"
10] KISSmetrics, [Online]. Available: https://blog.kissmetrics.com/gender-and-color/.
[Accessed 22 FEBUARY 2017].

"Marker’s” Generator Online Released!," [Online]. Available:

11] http://flash.tarotaro.org/blog/2009/07/12/mgo2/. [Accessed 25 DECEMBER 2016].

8 APPENDIX

37

Obiject Detect

ion Code:

38

“#include <iostream:

#include<opencv/cvaux.h>
#include<opencv/highgui.hz>
#include<opencv/cxcore.h>

#include <sstream:
#include <string>

#include <opencvicv.h>

#include<stdio.h>
#include<stdlib.hz

// Need to include this for serial port communication
#include <Windows.h:>

LELETEE TR AT EE AT E TR LT LT E LR T i i i ity

int H MIN = @;
int H MAX = 256;
int 5 MIN = @;
int 5 _MAX = 256;
int V_MIN = @;
int V_MAX = 256;

using namespace cv;

const string trackbarWindowName = "Trackbars";

39

—lwveid on_trackbar(int, woid*)
-1{//This function gets called whenever a
/f trackbar position is changed

1

—lvoid createTrackbars(){
ffcreate window for trackbars

namedWindow(trackbarWindowName,@);
ffcreate memory to store trackbar name on window
char TrackbarName[58];
sprintf(TrackbarName, "H_MIN", H_MIN);
sprintf(TrackbarName, "H_MAX™, H_MAX);
sprintf(TrackbarName, "S_MIN", 5_MIN);
sprintf(TrackbarName, "S5 _MAX", S_MAX);
sprintf(TrackbarName, "V_MIN", V_MIN);
sprintf(TrackbarName, "V_MAX", V_MAX);
- ffcreate trackbars and insert them into window
//3 parameters are: the address of the variable that is changing when the trackbar is moved(eg.H_LOW),
J//the max value the trackbar can move (eg. H_HIGH),
ffand the function that is called whenewver the trackbar is moved(eg. on_trackbar)
1 -3 -3 ----»
createTrackbar("H_MIN", trackbarWindowName, &H_MIN, H_MAX, on_trackbar);
createTrackbar("H_MaX", trackbarWindowName, &H MAX, H_MAX, on_trackbar);

— T T T
kreateTrackbar("5_MIN", trackbarWindowName, &5 _MIN, S_MAX, on_trackbar);
createTrackbar("S_MAX", trackbarWindowName, &5_MAX, S_MAX, on_trackbar);
createTrackbar("V_MIN", trackbarWindowName, &/_MIN, V_MAX, on_trackbar);
createTrackbar("V_MAX", trackbarWindowName, &V _MAX, V_MAX, on_trackbar);

[

FELEREREEELLRTTETEELTLTE LA ERLTIT L ERELTTSL TR ERE L di LT i ddddiiriisdddddirifidiidissiiii’

ht main(int argc, char® argv[])

// Setup serial port connection and needed variables.
HANDLE hserial = CreateFile(L"COM2", GEMERIC_READ | GENERIC_WRITE, @, @, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, @);

if (hSerial !=INVALID_HANDLE_VALUE)

5

printf("Port opened! \n");
DCE dcbSerialParams;
GetCommState(hSerial, &dchSerialParams);

dchSerialParams.BaudRate = CBR_O6E8;
dcbSerialParams.ByteSize = 8;
dchSerialParams.Parity = NOPARITY;
dcbSerialParams.StopBits = ONESTOPBIT;

SetCommState(hSerial, &dcbSerialParams);

40

Else
1

if (GetLastError() == ERROR_FILE_NOT_FOUND)

printf("Serial port doesn't exist! \n");

printf("Error while setting up serial port! ‘n");

char outputChars[] = "c";
DWORD btsIO;

// Setup OpenCV variables and structures

Cvsize sizeB4@x48@ = cvSize(64@, 488); // use a 648 x 488 size for all windows, also make sure your webcam is set to 648x488 !!
CvCapture* p_capWebcam; [/ we will assign our web cam video stream to this later .

IplImage* p_imgOriginal; // pointer to an image structure, this will be the input image from webcam

IplImage* p_imgProcessed; // pointer to an image structure, this will be the processed image

IplImage* p_imgHSV; // pointer to an image structure, this will hold the image after the color has been changed from RGE to HSV

// IPL is short for Intel Image Processing Library, this is the structure used in OpenCV 1.x to work with images

=

CvMemStorage™ p_strStorage; // necessary storage variable to pass into cvHoughCircles()

Cvseq* p_seqCircles; // pointer to an OpenCV sequence, will be returned by cvHough Circles() and will contain all circles
//f call cvGetSeqElem(p_seqCircles, i) will return a 3 element array of the ith circle (see next variable)

float* p_fltXYRadius; // pointer to a 3 element array of floats
// [8] =» x position of detected object

int i; // loop counter
char charCheckForEsckey; /I char for checking key press (Esc exits program)

p_capWebcam = cvCaptureFromCAM(@); // @ => use 1st webcam, may have to change to a different number if you have multiple cameras

if(p_capWebcam == NULL) { // if capture was not successful

printf("error: capture is NULL “n"); // error message to standard out

getchar(); // getchar() to pause for user see message

return(-1); // exit program
¥

// declare 2 windows

cvNamedWindow("0Original™, CV_WINDOW_AUTOSIZE); // original image from webcam
cvNamedWindow("Processed”, CV_WINDOW_AUTOSIZE); // the processed image we will use for detecting circles

createTrackbars();

p_imgProcessed = cvCreateImage(sizec48x488, // 648 x 488 pixels (CvSize struct from earlier)
IPL_DEPTH_&U, // 8-bit color depth
1); /# 1 channel (grayscale), if this was a color image, use 3

p_imgHSV = cvCreateImage(size64@x458, IPL_DEPTH_BU, 3);

// Main program loop

while(1) { /f for each frame .
p_imgoriginal = cvQueryFrame(p_capwWebcam); // get frame from webcam
if(p_imgOriginal == NULL) { // if frame was not captured successfully .
printf("error: frame is NULL \n"); // error message to std out
getchar(};
break;
¥

/f Change the color model from RGE (BGR) to HSV. This makes it easier to choose a color based on Hue
cvCvtColor(p_imgoOriginal, p_imgHSv, CV_BGR2ZHSV);

cvInRangeS{p_imgHSV, // functien input
cvScalar{H_MIN, S _MIN, V_MIN), /f min filtering walue (if color is greater than or equal to this)
cvScalar{H_MAX, S_MAX, V_MAX), /f max filtering walue (if color is less than this)
p_imgProcessed); // function output

p_strstorage = cvCreateMemStorage(@); /f allocate necessary memory storage variable to pass inte cvHoughCircles()

// smooth the processed image, this will make it easier for the next function to pick out the circles

cvSmooth(p_imgProcessed, // functien input
p_imgProcessed, // function output
CV_GAUSSTAN, // use Gaussian filter (average nearby pixels, with closest pixels weighted more)
9, // smoothing filter window width
9); // smoothing filter window height

// fill sequential structure with all circles in processed image

41

p_seqCircles = cvHoughCircles(p_imgProcessed, // input image, nothe that this has to be grayscale (no color)

p_strstorage, // provide function with memory storage, makes function return a pointer to a CvSeq
CV_HOUGH_GRADIENT, // two-pass algorithm for detecting circles, this is the only choice available

2, // size of image / 2 = "accumulator resolution™, i.e. accum = res = size of image / 2
p_imgProcessed->height / 4, // min distance in pixels between the centers of the detected circles

lee, /f high thresheld of Canny edge detector, called by cvHoughCircles

5@, // low threshold of Canny edge detector, called by cvHoughCircles

18, /e // min circle radius, in pixels

480) ; Jf max circle radius, in pixels

// Run this if the camera can see at least one circle
f/for(i=@; i < p_seqCircles->total; i++) { [/ for each element in sequential circles structure (i.e. for each ocbject detected)
if (p_seqCircles->total == 1)

p_fltXYRadius = (float*)cvGetSeqElem(p_seqCircles, 1); // from the sequential structure, read the ith value intc a pointer to a float
printf(“ball position x = %f, y = %f, r = %f \n", p_fltXvRadius[®], // % position of center point of circle

p_TliXvRadius[1], // y position of center point of circle
p_fltxXvRadius[2]); // radius of circle

FELEETEEEELETTETERTTT I ERTRTIEEd T Ed i idiiiiiiidiiiiiiiid

// draw a small green circle at center of detected object

cvCircle(p_imgOriginal, // draw on the original image
cvPoint(cvRound(p_fltXyRadius[@]), cvRound(p_fltXYRadius[1])), // center point of circle
3, // 3 pixel radius of circle
CV_RGEB(@,255,8), // draw pure green
CV_FILLED); // thickness, fill in the circle

// draw a red circle around the detected object

cvCircle(p_imgOriginal, // draw on the original image
cvPoint{cvRound(p_fltXyRadius[@]), cvRound(p_fltXYRadius[1])), /{ center point of circle
cvRound (p_fltXyRadius[2]), // radius of circle in pixels
CV_RGB(255,8,8), // draw pure red
3); // thickness of circle in pixels

} // end for

cvShowImage("Original®™, p_imgOriginal); // original image with detectec ball overlay
cvShowImage("Processed”, p_imgProcessed); // image after processing

cvReleaseMemStorage (&p_strStorage); // deallocate necessary storage variable to pass into cvHoughCircles
charCheckForEsckey = cviWaitkey(1@); // delay (in ms), and get key press, if any

if(charCheckForEsckey == 27) break; // if Esc key (ASCII 27) was pressed, jump out of while loop

} // end while

cvReleaseCapture(&p_caplebcam); // release memory as applicable

cvDestroyWindow("Original™);
cvDestroywWindow("Processed™);

// This closes the Serial Port
CloseHandle(hSerial);

return(@);

42

QR scanner program code snip:

/J/ start of Main Loop

F e e
ing wain (int acge, char **grgy)
{

¥ideptapturs SARtursle);

f/Mat image = jmceadiarcgu[1]);

Mat image;

ifC capture. is0pened(}) { cerr << ™ ERR: Unable find input video source.™
<< gndl;

CEfyCn -1;
1

f/step : Capture a frame from Image Input for creating and initializing
manipulation variables

J/Info @ Inbuilt functions from Qpency

{fNote @

SARLUCE »» image;
iflimage.empivi)){ cere << "ERR: Unable to gquery image from capture
device.n™ << endl;
return -1;
1

// Creation of Intermediate "Image’ Objects required later

Mat grav{image.sizel), CV_MAKETYPE(image.depth(), 1}); /i To
hold Grayscale Image
Mat gdges(image.sizel), CV_MAKETYPE(Imags.depth(), 12); HoTo

hold Grayscale Image
Mat traceslimage.siza(), Cv_8Uc3);
// For Debug visuals

Mat Qr.@L.CaN.aC. EraN.ar thres;

yectorsvector<Point> » contours;

NEsborsvec4is hierarchy;
Nector<Point» pointsseq; S/used to save the approximated sides of each
contour

int mark,A,B,C,top,right,bottom,medianl,median2,outlier;
flaal As,BC,CA, dist,slope, aresi.arsar.arsab, large, padding;

int alisn,prientation;:
int DEG=1; /{ Debug Flag

ink key = &;
whilelkey 1= "g") £/ While loop to query for Image
Input frame

{

traces = Scalar(90,0,0);

gr_raw = Mat::zeros(100, 100, CV_8UC3);
gr = Mat::zeros(1ee, 1@, CV_8UC3);
gr_gray = Mat::zeros(1e0, 100, CV_8UC1);
gr_thres = Mat::zeros(100, 100, CV_8UC1);

43

capture »>» image; // Capture Image from Image Input

cyiColor{image,gray,CV_RGBIGRAY); /¢ Convert Image captured
from Image Input to gravscale
Cannyigray, edges, 1l2e , 2848, 3); Jf Aapply Canny edge

detection on the gray image

findContours{ edges, comtours, hierarchy, RETR_TREE,
CHAIN_APPROX_SIMPLE); // Find comtours with hierarchy

mark = 8; i
Reset all detected marker count for this frame

i Get Moments for all Contours and the mass centers
YeEriprghoments> muigontours.sizelll;
¥ERiprsrointafy molgontours.sizell);
forl int i = 8 1 < confpurs.size(); i++)
{ mpufi] = moments{ contours[i], false);
meli] Point2f{ me[i].mig/mu[i] .m88 , muli).m8l/mu[i].maa };

i

[/ start processing the contour data

f// Find Three repeatedly enclosed contours A B,C

S/ WOTE: 1. Comtour enclosing other contours is assumed to be the
three alignment markings of the QR code.

S/ 2. Alternately, the Ratio of areas of the "concentric" sguares
can also be used for identifying base alignment markers.

!/ Ihe below demonstrates the first method

forl int i = 8 1 < confours.size(l; i++)
{
J/Find the approximated polygon of the contour we are
examining

apprasealypelcontours[i], peointssed, acskengthi{contours[i],
true}*e.82, true);

if (pointsseq.size() == 4) {f only guadrilaterals
contours are examined
i
ink k=1i;
ing c=8;
whileihierarchy[k][2] != -1}
{
= hierarchy[k]1[2] ;
C = C+l;
1
ifthierarchy[k][2] != -1)
C = C+l;
if (c »=5)
{
if (mark == @) A= 1;

else if (mark == 1) B
is already found, assign current contour to B

]
.
.

// i.e., A

44

glse if (mark == 2) C = 1} fri.e., A
and B are already found, assign current contour to C

mack = mark + 1 ;

1
K
1
if (mark »= 3} [/ Ensure we have (gtlesst 2; namely
A,B,C) "Alignment Markers' discovered
i

/¢ We have found the 3 markers for the QR code; MNow we need
to determine which of them are 'top', 'right' and 'bottom' markers

/4 petermining the 'top' marker
S/ vertex of the triangle NOT involved inm the longest side is
the "outlier®

AB = gy distance(mc[A]l,mc[B]);

BC = gy distancelmc[B],mc[C]);

A = cy distance(mc[C],mc[A]);

If (8B » BC && AB > CA)

‘ gutlier = C; medianl=A; median2=E;
;;;; if (CA > AR BR CA » BC)

‘ gutlier = B; medianl=A; median2=C;
;1;; if (BC » AR && BC » CA)

i guilier = &; medianl=B; median2=_;

top = outlier;
/f The obvious choice

dist = cy . lineEquatignimc[medianl], mc[medianz],
mc[outlier]); // aet the Perpendicular distance of the outlier from the longest
s5ide
slope = gy lingslope(mc[medianl], mc[median2],align};
/7 Aalso calculate the slope of the longest side

/# Wow that we have the orientation of the line formed
medianl & median2 and we also have the position of the owtlier w.r.t. the line
£ Deferming the "right' and "bottom' markers

if (8lign == &)

{
botiom = medianl;
risht = medianz;
1
else if (slope < @ &% dist < @) S/ orientation -
north
{

bottom = medianl;
risht = medianz;

45

prientation = CV_QR_NORTH;

1
glse if (slope > @ && gdist < @) f/J/ orientation -
East
{
right = medianl;
botiom = medianz;
grisntation = CV_QR_EAST;
1
glse if (slope < @ &% gdist = @) £/ orientation -
South
{
right = medianl;
botiom = median2;
grientaticn = CV_QR_SOUTH;
1
glse if (slope > @ && gdist = @) f/J/ orientation -
West
{
botiom = medianl;
right = medianz;
grisntation = CV_QR_WEST;
1

J/ Ip ensure any unintended valuwes do not sneak up when QR
code is not present

floaf ares ftop.area.righi. area. bottom;

if{ top < gontours.zize() && right < confours.size() &&
bottom <« contours.size() && contourArea(contours[topl) » 18 &%
contourarealcontours[right]) » 18 && contourareg(contours[bottom]) » 18)

{

MERTArgFoint2fx L,M,0, fempl.temom.temeds
Point2f N;

vECtorgrointaf» sre.dst; /I s - source

Points basically the 4 end co-ordinates of the overlay image

ff dst - Destination Points to transform overlay image

Mat warp matrix;

fy updatecornerorforientation, fempl, L);
// Re-arrange marker corners w.r.t orientation of the QR code

sy updateCornerdrlorientation, fempM, M);

// Re-arrange marker corners w.r.t orientation of the QR code
fy updatecorngrorforientation, fempo, 0);

// Re-arrange marker corners w.r.t orientation of the QR code

int iflag =
geflntersectionPoint(M[1],M[2],0[3],0[2],N};

src.push_back(L[@]);
src.push_back(M[1]);
src.push_back(N);

src.push_back(0[3]);

46

dsf.push _back(Fointzf(a,8));

dsk.push back(Fointafigr.cols,e));
dsf.push bagk(Foint2f{gr.cols, Qr.cowshl;
dst.push back(Fointaf(e, qr.rows)l;

if (srg.5ize() == 4 &k dsf.zize() == 4)
/f Failsafe for WarpMatrix Calculation to have only 4 Points with src and

dst ;
warp. matrix = geiPerspectiveTransformisce,

warpPerspectivelimage, ar. raw, warp matrix,

dskd;

size(gr.cols, gr.rows)l;
sepyMakeBorderl qrorae, 4, 12, 1@, 1,
18, BORDER_COWSTANT, Scalar(255,255,255))3

sykcgloniqr,qr_gray,CV_RGBE2GRAY)
thresholdlar_gray, ar.thres, 127, 255,
CV_THRESH_BINARY):

fifhresholdlar sray, ac.thres, @, 255,

fifgrl ink d=8 ; d < 4 5 d++){
src.pop back(}; dst.pop back{): ¥
1

CV_THRESH_OTSUY;

J/o0raw contours on the image

drawiontours(image, comtours, top ,
scalar{2s5,288,8), 2, %, hierarchy, @ };

drawContoyrs{ image, contours, right ,
Scalar{@,®,255), 2, 8, hierarchy, &);

drawtontoursl image, contours, bottom ,
Scalar{255,8,18a8), 2, &, hierarchy, @ };

/¢ Insert Debug instructions here
ifipBE==1}
1
[/ Debug Prints
S/ viswalizations for ease of understanding
if (slope » 5}
circlei{ traces, Point(le,28) , 5 ,
Scalar(e,®,255), -1, 8, @ };
glse if (slope < -5)
circlei{ traces, Point(le,28) , 5 ,
scalar(255,255,255), -1, &, @ 13

[/ Draw contours on Trace image for analysis

drawContours(traces, contours, top ,
Scalar{255,a,188), 1, %, hierarchy, @ };

drawContours(traces, contours, right ,
Scalar{2ss,@,18a), 1, &, hierarchy, @ };

drawlonteurs(traces, contours, bottom ,
Scalar{2s5,8,18a8), 1, &, hierarchy, @ };

[/ Draw points (4 corners) on Trace image for each Identification marker
circlef traces, L[®], 2, Scalar(255,255,8), -1, 8, @ };

circle(traces, L[1], 2, Scalar(e,255,0), -1, 8, 0);

47

circlef traces, L[2], 2, Scalar{@,®,255), -1, &, @);
circlel traces, L[3], 2, Scalar{l2s,128,128), -1, 8, @ };

circlef traces, M[e], 2, Scalar{255,255,8), -1, 8, @);
circlel traces, M[1], 2, Scalar{e,235,8), -1, &, @ };
circlef traces, M[2], 2, Scalar{®,8,255), -1, &, @);
circlel traces, M[3], 2, Scalar{l2&,128,128), -1, &, @ };

circlef traces, o[e], 2, Scalar{255,255,8)}, -1, 8, @)3
circlef traces, ©[1], 2, Scalar{e,255,8), -1, &, @ };
circlel traces, o[2], 2, Scalar{e,8,255), -1, &, @ };
circlef traces, 0[3], 2, Scalar{128,128,128), -1, 8, @);

// Draw peoint of the estimated 4th Corner of (entire) QR Code
circlef traces, W, 2, Scalar(2585,255,255), -1, 8, 8)}

/¢ Draw the lines used for estimating the 4th Corner of QR Code

line(traces.M[1],M.50a1a0(0,8,255),1,8,8);
line(traces.0(3],M.50ala0(0,8,255),1,8,8);

// Show the orientation of the QR Code wri to 20 Image Space
int foniFace = FONT_HERSHEY PLAIN;

ifforientation == CV_QR_MORTH)

{
putTexi(traces, "NORTH", Point(2@,38), fontFace, 1, Scalar(®, 255, @), 1, B);
T
glse if (orientation == CV_QR_EAST)
{
putText{traces, "EAST", PFoint{2e,38), foniFzce, 1, Scalar{e, 255, @), 1, &);
b

glse if {orientation == CV_QR_SOUTH)

i
puiText{traces, "SOUTH", Point(2&,38), foniFsce, 1, Scalar{®, 255, &), 1, 8);

r
glse if {orientation == CV_QR_WEST)
{
putText{traces, "WEST", Point{2e,36), foniFace, 1, Scalar{e, 255, @), 1, 8);
H

[/ Debug Prints

b

imshoy "Image", image);
imshgw ¢ "Traces”, traces };
imzhoy (“QR code®, gr.thres);

if (waitkev(3@) == 27) //wait for 'esc' key press for 3ems. If
'esc' key is pressed, break loop

{
cput << "esc key is pressed by user™ << gndl;
breaks
i
} // End of 'while' loop
return 0;

48

AR Rendering program code snip:

static void

{

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifndef _ APPLE__
ifdef WIN32

include <windows.h>
endif

include <GL/glut.h>
#else

include <GLUT/glut.h»
#endif

#include <AR/ar.h>
#include <AR/gsub.h>
#include <AR/video.h>
#include <AR/arMulti.h>

#define CPARA_NAME
#define CONFIG_NAME
ARHandle *arHandle;
AR2DHandle *¥ar3DHandle;
ARGViewportHandle *vp;
ARMultiMarkerInfoT *config;

int robustFlag = @
int count;

ARParamLT *gCparamlLT = NULL;

int universal;
int destination=1;

"Data/camera_para.dat”
"Data/multi2/marker.dat”

init(int argc, char *argv[]);

static void
static void cleanup(void);
static void mainlLoop(void);

static void
static void

int main{int argc, char *argv[])
{
glutInit(&argc, argv);
init(argc, argv);

argSetDispFunc(mainLoop, 1);
argSetkKeyFunc(keyEvent);
count = 8;
arVideoCapStart();
arUtilTimerReset();
argMainLoop();

return (8);

int debug;
int thresh;

keyEvent(unsigned char key,

draw(ARdouble trans1[3][4], ARdouble trans2[3][4],
keyEvent(unsigned char key, int x, int y);

int x, int y)

/* quit if the ESC key is pressed */

if (key == exib) {|

49

int

mode) ;

ARLOG("*** %f (frame/sec)\n", (double)count / arUtilTimer());
cleanup();
exit(e);

}

if (key == 'd") {
arGetDebugMode (arHandle, &debug);
debug = 1 - debug;
arSetDebugMode (arHandle, debug);
}

if (key == "1") {

arGetDebugMode (arHandle, &debug);

if (debug) {
arGetLabelingThresh(arHandle, &thresh);
thresh -= 5;
if (thresh < @) thresh = @;
arSetlLabelingThresh(arHandle, thresh);
ARLOG("thresh = &d\n", thresh);

}

}
if (key == '2") {
arGetDebugMode (arHandle, &debug);
if (debug) {
arGetLabelingThresh(arHandle, &thresh);
thresh += 5;
if (thresh » 255) thresh = 255;
arSetLabelingThresh({arHandle, thresh);
ARLOG("thresh = ¥d\n", thresh);

}
}
if (key == " ") {
robustFlag = 1 - robustFlag;
if (robustFlag) ARLOG("Robust estimation mode.\n");
else ARLOG("Normal estimation mode.\n"};
}

}

/* main loop */
static void mainLoop(void)

{
ARUintE *dataPtr;
ARMarkerInfo *marker_info;
int marker_num;
int imageProcMode;
int debugMode;
double err;
int i;

/* grab a video frame */

if ((dataPtr = (ARUiIntE *)arVideoGetImage()) == NULL) {
arutilsleep(2);
return;

}

if (count == 1@@) {
ARLOG("*** %f (frame/sec)\n", (double)count / arUtilTimer());

50

arUtilTimerReset();
count = 8;
}

count++;

/* detect the markers in the video frame */
if (arDetectMarker(arHandle, dataPtr) < @) {
cleanup();
exit(@);
1
marker_num = arGetMarkerNum(arHandle);
marker_info = arGetMarker(arHandle);
//printf("marker num= %i \n",marker_num);

argDrawMode2D(vp);

arGetDebugMode (arHandle, &debugMode});

if (debugMode == @) {
argDrawImage(dataPtr);

}
else {
arGetImageProcMode(arHandle, &imageProcMode);
if (imageProcMode == AR_IMAGE_PROC_FRAME_IMAGE) {
argDrawImage(arHandle->labelInfo.bwImage);
}
else {
argDrawImageHalf(arHandle->labelInfo.bwImage);
}
glColor3f(1.8f, 08.8f, @.8f);
gliLineWidth(2.ef);
for (1 = 8; 1 < marker_num; i++) {
argDrawSquareByIdealPos(marker_info[i].vertex);
gliinewidth(1.ef);
}

if (robustfFlag) {
err = arGetTransMatMultiSquareRobust(ar3DHandle, marker_info, marker_num,
config);

else {
err = arGetTransMatMultiSquare(ar2DHandle, marker_info, marker_num,
config);
1
if (config->prevF == @) {
argSwapBuffers();
return;

1
//ARLOGd ("err = %f\n", err);

argDrawMode3D(vp);
glClearDepth(1.8);
glClear(GL_DEPTH_BUFFER_BIT);
for (1 = @; 1 < config-»>marker_num; i++) {
if (config-»marker[i].visible >= @)
{
draw(config->trans, config->»marker[i].trans, @);
printf("marker [1] = %1 \n", 1);

51

switch (destination)

{

case 1:

{
printf("Library \n");
if (i == @) universal = 8;
if (i == 1) universal = 1;
if (i == 2) universal = 1;
break;

}

case 2:

{
printf("HOME “n");
if (i == 8) universal = 2;
if (i == 1) universal = 8;
if (i 2) universal = 1;
break;

}

case 3

{
printf("CH \n");
if (i 8) universal = 2;
if (i 1) universal = 2;
if (i == 2) universal = 8;
break;

1

//if (1 == @) universal = 1;
}
}
else draw(config-»trans,
config->marker[i].trans, 1);

argSwapBuffers();
}
static void init(int argc, char *argv[])
{
ARParam cparam;
ARGViewport viewport;
ARPattHandle *arPattHandle;
char vconf[512];
char configName[512];
int xsize, ysize;
AR_PIXEL_FORMAT pixFormat;
int i;

configName[@] = "\@';
voonf[@] = '\e';
for (1 =1; 1 < argc; i++) {
if (strncmp(argv[i], "-config=", 8) == 8) {
strepy(configName, &argv[i][81]);

}
else {

if (vconf[@] != '\@') strcat(vconf, " ");
strcat(veonf, argv[il);

52

}
if (configName[@] == '\@') strcpy(configName, CONFIG_NAME);

/* open the video path */

if (arVideoOpen(vconf) < @) exit(@);

/* find the size of the window */

if (arVideoGetSize(&xsize, &ysize) < B) exit(e);
ARLOGL("Image size (x,y) = (%d,%d)\n", xsize, ysize);
if ((pixFormat = arVideoGetPixelFormat()) < @) exit(e);

/* set the initial camera parameters */

if (arParamlLoad(CPARA_NAME, 1, &cparam) < @) {
ARLOGe ("Camera parameter load error !l\n");
exit(e);

}

arParamChangeSize(&cparam, xsize, ysize, &cparam);

ARLOG("*** Camera Parameter **¥\n");

arParamDisp(&cparam);

if ((gCparamLT = arParamLTCreate(&cparam, AR_PARAM_LT_DEFAULT_OFFSET)) == NULL) {
ARLOGe ("Error: arParamLTCreate.\n");
exit(-1);

}

if ((arHandle = arCreateHandle(gCparamLT)) == NULL) {
ARLOGe ("Error: arCreateHandle.\n");
exit(a);

if (arSetPixelFormat(arHandle, pixFormat) < @) {
ARLOGe ("Error: arSetPixelFormat.\n");

exit(@);

}

if ((ar3DHandle = ar3DCreateHandle{&cparam)) == NULL) {
ARLOGe ("Error: ar3DCreateHandle.\n");
exit(e);

}

if ((arPattHandle = arPattCreateHandle()) == NULL) {
ARLOGe ("Error: arPattCreateHandle.\n");
exit(e);

arPattAttach(arHandle, arPattHandle);

if ((config = arMultiReadConfigFile(configName, arPattHandle)) == NULL) {
ARLOGe ("config data load error !I\n");
exit(@);

1
if (config->patt_type == AR_MULTI_PATTERN DETECTION_ MODE_TEMPLATE) {
arSetPatternDetectionMode(arHandle, AR TEMPLATE MATCHING COLOR):

else it (contig->patt_type == AR_MULTI_PATTERN_DETECTION_MODE_MATRIX) {
arSetPatternDetectionMode(arHandle, AR_MATRIX_ CODE_DETECTION);

}
else { // AR_MULTI_PATTERN_DETECTION_MODE_TEMPLATE_AND_MATRIX
arSetPatternDetectionMode(arHandle, AR_TEMPLATE_MATCHING_COLOR_AND_MATRIX);

}

53

/* open the graphics window */

viewport.sx = @;

viewport.sy = @;

viewport.xsize = xsize;

viewport.ysize = ysize;

if ((vp = argCreateViewport(&viewport)) == NULL) exit(8);
argViewportSetCparam(vp, &cparam);
argViewportSetPixFormat(vp, pixFormat);

}

/* cleanup function called when program exits */
static void cleanup(void)

{
arParamLTFree(&gCparamlLT);
arVideoCapStop():
arVideoClose();
argCleanup();

1

static void draw(ARdouble transi[3][4], ARdouble trans2[3][4], int mode)
{
ARdouble gl_para[16];
GLfloat light_position[] =
GLfloat light_ambi[] = { @.
GLfloat light_celor[] =
GLfloat mat_flash[] = {
¥

{ 1ee.ef, -200.8f, 2868.8Ff, 0.0f };
1, ©.1f, 0.1f, @.8f };
{ 1.ef, 1.ef, 1.ef, e.ef };
1.8f, 1.ef, 1.8f, 8.0f };
GLfloat mat_flash_shiny[] = { 5@.8f };
GLfloat mat_diffuse[] { e.ef, 8.8f, 1.8f, 1.ef };
GLfloat mat_diffusel[] = { 1.8f, 8.8f, 8.8f, 1.8f };
int debugMode;

glEnable(GL_DEPTH_TEST);
glDepthFunc(GL_LEQUAL);

/* load the camera transformation matrix */
glMatrixMode (GL_MODELVIEW);
argConvGlpara(transl, gl para);
#ifdef ARDOUBLE_IS_FLOAT
glioadMatrixf(gl_para);
#else
glloadMatrixd(gl_para);
#endif
argConvGlpara(trans2, gl _para);
#ifdef ARDOUBLE_IS_FLOAT
glMultMatrixf(gl_para);
#else
glMultMatrixd(gl_para);
#endif

glEnable(GL_LIGHTING);

glEnable(GL_LIGHT®);

gliightModeli(GL_LIGHT MODEL_LOCAL_VIEWER, 1);
gliightfv(GL_LIGHT®, GL_POSITION, light_position);
gliightfv(GL_LIGHT®, GL_AMBIENT, light_ambi);
gliightfv(GL_LIGHT®, GL_DIFFUSE, light_color);
gliightfv(GL_LIGHT®, GL_SPECULAR, light_color);
glMaterialfv(GL_FRONT, GL_SPECULAR, mat_flash);
glMaterialfv(GL_FRONT, GL_SHININESS, mat_flash_shiny);

54

if (mode == @) {
glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffuse);
glMaterialfv(GL_FRONT, GL_AMBIENT, mat_diffuse);

else {
glMaterialfv(GL_FRONT, GL_DIFFUSE, mat_diffusel);
glMaterialfv(GL_FRONT, GL_AMBIENT, mat_ diffusel);

}
FELEEEIEETETIEEE R AL i iiiiiiirssrdffdraw
glMatrixMode (GL_MODELVIEW);
glPushMatrix();
glTranslatef(e.ef, @.ef, 28.8f);
if (universal==1)
glRotatef(98.8, 1.8, -90.8, 8.0); //kiri
if (universal == 2)

glRotatef(90.8, 1.8, 90.8, ©.8); //kanan
else

glRotatef(98.8, 1.0, 98.8, ©0.0); //home
//glRotatef(5@, 1.8, 98.8, @.08); //kanan
arGetDebugMode (arHandle, &debugMode);
if (debugMode == @) glutSolidCone(16.8,48.9,28,24);
else glutireCube(48.8);
glPopMatrix();

glDisable(GL_LIGHT®);

glDisable(GL_LIGHTING);
glDisable(GL_DEPTH_TEST);

55

