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ABSTRACT 

 

 
 

Flood is one of the disastrous events that lead to economic and properties loss which frequently 

impact Perak, Malaysia. The landscapes of Perak have significantly changed throughout the 

year due to the population expansion and development. Considering the effect of land use 

changes is important to develop flood risks map for planning mitigation approaches. The 

objectives of this study were to identify flood causative factors using Geographic 

Information System (GIS), to predict land use changes using GIS and Artificial Neural 

Network (ANN), and to develop flood risk maps using GIS. Maximum Likelihood 

Classification in ArcGIS was implemented for monitoring land use changes, whereas 

Artificial Neural Network Cellular Automata (ANN-CA) modeling using Quantum 

Geographic Information Systems (QGIS) has been implemented to predict the future land use 

changes. This study examined the land use changes in Perak for the years 2001, 2011, and 

2021. The study also delivers predictions of future changes for the years 2031, 2041, and 

2051. Furthermore, Analytical Hierarchy Process (AHP) was applied in this study to compare 

the relative importance of flood causative factors based on pairwise matrix in which eight 

relevant factors have been selected namely, rainfall intensity, drainage density, topographic 

wetness index, slope, elevation, land use, normalized difference vegetation index and soil 

types. Then, this study extend to present spatial analysis for the estimation of flood risk areas. 

The weightage comparison gained in AHP was input in the ArcGIS by using Weighted 

Overlay method. The flood risk maps for the year 2001 – 2051 were prepared for Perak region.  

The findings from ANN-CA simulation demonstrated that urban areas will grew rapidly and 

have a significant rise by 4555.10 km2 to 4980.42 km2, for 2031 – 2051. However, in the 

simulated years, the area of dense forests will reduce  from 15087.61 km2 to 14795.43 km2. 

Based on the flood risk maps generated by AHP-GIS, it reveals that the area which have high 

and very high flood risk level were identified in the south-west part of Perak particularly at 

Manjung, Perak Tengah and Hilir Perak. The findings of this study provide critical 

information that could aid in the development of upcoming sustainable planning and 

management, along with helping the authorities in making assessments to enhance 

environmental and ecological conditions.   
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CHAPTER 1 

INTRODUCTION 

 

 

 

1.1 OVERVIEW 

 The chapter herein discuss about the introduction of this project which includes 

background of study, problem statement, objectives and scope of study. It begins with a 

summary of the flood events as the background of study and goes ahead to summarize the 

relationship between the land use changes and flood risks within the study area of Perak, 

Malaysia. This study is concerned with the development of future land use changes and 

flood risk maps using Artificial Neural Network-Cellular Automata (ANN-CA) model 

and Geographic Information System (GIS) integrated with Analytical Hierarchy Process 

(AHP).  

1.2 BACKGROUND OF STUDY 

 
Floods are the most common type of natural disaster in the world and happen when 

an overflow of water inundates land that is normally dry. According to World Health 

Organization (n.d.), floods have affected more than 2 billion people worldwide for the 

period between year 1998 – 2017. It is also estimated that 75% of drowning deaths are 

due to flood disasters. The frequency of flooding issues that many relate it with climate 

change has risen particularly in the last few decades especially in Asia and Pacific 

countries (Asian Development Bank, 2013). Concurrently, sharply increasing number of 

populations in these developing countries have resulted to millions of people moving to 

marginal lands along low-lying coasts and flood-risk areas in cities (Asian Development 

Bank, 2013). As a result, floods have caused extreme harm to both lives and properties. 
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Flood is not a new occasion, and it is the primary hazard affecting Malaysia. 

According to Department of Irrigation and Drainage (2019), the flood prone area in 

Malaysia are approximately 10.1% (33,298km²) of the land area of the country, 5.7 

million people are affected due to floods and the average annual flood damage is estimated 

RM1.15 billion. In the annual flood report by Department of Irrigation and Drainage 

(2019), all states in Malaysia experienced floods throughout 2019. The information 

regarding to flood events in all states of Malaysia have been tabulated as in Table 1.1. 

TABLE 1.1. Information of Flood Events All Over Malaysia for Year 2019 (DID, 2019) 

 
State Number 

of flood 

incidents 

by 

district 

Maximum 

average 

daily 

rainfall 

(mm) 

Maximum 

period of 

flood 

events 

(day) 

Total 

evacuation 

of flood 

victims 

(people) 

Estimated 

losses (RM) 

Maximum 

flood 

depth (m) 

Perlis 7 91 1 146 - 0.6 

Kedah 53 82 1 1,114 2,840,000.00 1.5 

Pulau 

Pinang 

31 111 1 388 - 2.9 

Perak 65 91 1 2,279 - 1.2 

Kelantan 18 82 7 18,683 18,290,400.00 2.0 

Terengganu 9 180 8 11,384 2,305,000.00 3.0 

Pahang 28 119 1 904 - 1.1 

Selangor 93 85 1 537 - 1.0 

Melaka 12 124 1 1,131 - 0.9 

Negeri 

Sembilan 

16 90 1.5 50 3,145,000.00 1.2 

Johor 30 152 3 3,562 - 1.5 

Sabah 39 143 8 7,443 5,000.00 2.8 

Sarawak 118 117 20 1,328 - 3.7 

WP Kuala 

Lumpur 

10 99 1 212 - 0.9 

WP Labuan 6 122 1 0 - 1.5 

Total 535   49,161 26,585,400.00  
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Many reports have been filed in Malaysia due to flooding since 1920s. Large 

floods usually occur in the Northern states of Malaysia causes by prolonged rainfall, 

especially in the convening months of November and December which severely impacted 

the state of Perak. In fact, during the latest 2019 floods in Perak, the flood occurred due 

to continuous heavy rainfall exceeding 80 mm in 1-2 hours in a day as well as the problem 

of the river blocking the flow of water (DID, 2019). In 2019, there have been a total of 65 

flood events throughout the state of Perak as shown in Table 1.2. 

TABLE 1.2. Frequency of Floods by District in Perak in 2019 (DID, 2019). 

 
District Frequency of Flood 

Kuala Kangsar 7 

Hulu Perak 3 

Perak Tengah 8 

Kerian 1 

Manjung 1 

Taiping 6 

Kinta 13 

Kampar 3 

Batang Padang 9 

Hilir Perak 14 

TOTAL 65 

Other than that, land use increase significantly with the number of populations in 

Perak. The land use changes have a significant effect on the flood risk especially in the 

area of urbanization, deforestation and cultivation. Hence, rapid development such as 

uncontrolled residential buildings and expansion of agricultural lands should be 

supervised to prevent any destructive effect in the future. The land use changes impact the 

climate systems which in turn affect the frequency and characteristics of the rainfall 

(Szwagrzyk et al., 2018). Thus, many relate the flood issues with the climate change (Asian 

Development Bank, 2013). Moreover, land use influence the formation of runoff from the 

rainfall events and affects the hydraulic flow of river channels which will cause the flood to 

happen in that area. 
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By implementing the flood management system with the adoption of many new 

technologies discovered nowadays, quick response or emergency alert can be provided. 

This will ensure the risk of fatalities are reduced and minimizing the property and 

environmental damages. Fortunately, advances in computer technology and the use of 

Landsat satellites have made it easier to track down land use changes and progress during 

the last several years. The application of remote sensing technology in combination with 

Geographic Information System (GIS) has revealed to be beneficial in discovering a 

variety of environmental features. In compared to other traditional procedures and 

surveys, remote sensing and GIS techniques have been found to recommend more precise 

and cost-effective data evaluation. Many models have been developed in recent years for 

the prediction of land use, such as Cellular Automata (CA), Markov models, Artificial 

Neural Network (ANN), binary logistic regression, and fractal models. In this study, the 

combination of ANN and CA was utilized to predict the future land use. The advantage 

of using this model is it could predict the multi-directional change and give better results 

compared to the non-combination model (Ullah et al., 2019). 

Since floods are inescapable, and in some flood-prone places, they may occur 

repeatedly. Many strategies have been used to lessen flood occurrences and their impact 

under these conditions. Flood forecasting, according to Asokan and Nakulraj (2020), is a 

method of evaluating and predicting the amount, timing, and duration of floods based on 

known features of a river basin. Due to its ability to manage spatial data, GIS is critical in 

the development of flood risk maps (Ogato et al., 2020). 

Saaty's Analytical Hierarchy Process (AHP), which he established in the 1980s, is 

among the best potent Multi Criteria Analysis (MCA) methodologies in the field of flood 

risk management. The benefits of AHP include direct involvement in decision-making, 

the use of a comprehensive GIS and criteria evaluation uniformity (Luu et al., 2017). This 

study proposes the integrated AHP–GIS analysis comprised of eight causative factors in 

the flood risk assessment: rainfall, drainage density, topographic wetness index, soil types, 

elevation, slope, normalized differential vegetation index and land use. The satellite 

information will be used together with the AHP-GIS analysis. 
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1.3 PROBLEM STATEMENT 

Flood events have been reported to be getting more frequent in recent years which 

has caused many people suffered catastrophic experience. In the year 2014, Perak has 

been hit by the worst flood events since 1967. According to Looi S. (2014), the number 

of flood victims in Perak that are forced to leave their homes are 7,587 victims from 1,031 

families. It is undoubtedly shows that the flood leaves many negative impacts and 

damages to the society and their properties besides the economic losses. 

Therefore, flood assessment method should be employed to predict flood risk 

areas and to control flood disaster in Perak. The advancement of technologies in current 

years have significantly contributes to the use of engineering in flood disaster 

management. Various methods have been discussed to develop and evaluate the flood 

model. It is important to utilize new ensemble models to improve the accuracy of flood risk 

maps and this can be done by using machine learning algorithms such as ANN. Many 

studies have employed the ANN-CA model to predict the future land use of a certain area. 

This model has significantly proven to yield a good prediction result. Recent study 

conducted by Zeshan, Mustafa and Baig (2021) have managed to predict the future land 

use of Perak up to year of 2050 by using the same model. However, the study does not 

correlate the land use prediction with the possibility of flood risk occurrence in that area. 

Therefore, in this study, ANN-CA is used to predict the future land use of Perak 

for 2031, 2041 and 2051. Then, the prediction maps are further analyzed to generate the 

flood risk maps by using integrated AHP and GIS. Moreover, different flood causative 

factors such as elevation, slope, topographic wetness index, normalized differential 

vegetation index, rainfall intensity, drainage density and types of soil have been prepared 

for this study to compare the significance weightage in a pairwise matrix using AHP 

method. The AHP-GIS is implemented as spatial forecasting tools to map the flood risk 

areas in Perak according to their weights. Thus, this will increase the accuracy of 

generated flood risk map as other factors that contributes to flooding  in Perak have also 

been considered.   
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1.4 OBJECTIVES 

 
The main purpose of this study is to identify flood causative factors, to investigate the 

land use changes and to develop the flood risk map for Perak. 

The specific objectives of the study are: 

 
i. To identify the flood causative factors using Geographic Information System 

(GIS)  

ii. To predict the land use changes using Geographic Information System (GIS) and 

Artificial Neural Network (ANN). 

iii. To develop a flood risk map using the integrated Analytical Hierarchy Process 

(AHP) and Geographic Information System (GIS). 

 

1.5 SCOPE OF STUDY 

 
The objective of this study is to predict the land use changes using GIS and ANN, 

and to develop flood risk maps using GIS. This study investigate the land use changes for 

the years 2001, 2011, and 2021 by using Maximum Likelihood Classification in ArcGIS. 

The study also provides predictions of future land use changes for the years 2031, 2041, 

and 2051. The prediction was performed by applying ANN-CA modeling in QGIS. 

Furthermore, AHP was implemented in this study to compare the relative importance of 

flood causative factors based on pairwise matrix in which eight relevant factors have been 

selected namely, rainfall intensity, drainage density, topographic wetness index, slope, 

elevation, land use, normalized difference vegetation index and types of soil. Then, this 

study extend to present spatial analysis for the estimation of flood risk areas. The 

weightage comparison gained in AHP was input in the ArcGIS by using Weighted 

Overlay method. The flood risk maps for the year 2001 – 2051 were prepared for Perak 

region.
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CHAPTER 2 

LITERATURE REVIEW 

 

 

 

2.1 OVERVIEW  

 This chapter discuss about the finding information which related to the scope of 

the project. The literature review was carried out to study the approach of similar studies 

done by other researchers in detecting flood risk areas in Malaysia as well as in other parts 

of the world. The initial focus of the study was to understand the basic fundamental 

knowledge available on flood, the approach and extent of achievements obtained from 

similar studies carried out by previous researchers. The literature review was focused on 

the following topics: flood, flood management, flood causative factors, land use changes 

Artificial Neural Network-Cellular Automata (ANN-CA), Geographic Information 

System (GIS) and Analytical Hierarchy Process (AHP). 

2.2 FLOOD 

 
2.2.1 Introduction 

 
Flood is a common natural catastrophe that resulted to severe damages and 

harms. Severe floods have been on the rise around the world. Due to rapid 

economic progress, flood damage has become even more aggravated. In Malaysia, 

floods are the main natural hazards as the country is influenced by monsoon floods 

as well as flash floods and tidal floods (Chan, 2015). Adding to that, the study 

area, Perak state, has been reported to be hit by numerous of flood events. These 

occurrences have affected population, frequency, areal extent, and socio-economic 

damage (Kia et al., 2012). The flood situation in Perak during 2019 can be seen in 

Figure 2.1 and 2.2. 
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FIGURE 2.1 & 2.2. Flood situation in Perak (Malaysia Kini, 2019) 

 

  Flood-related damages have reached unprecedented levels due to a lack of 

preparedness in many parts of the world, including Malaysia, as well as the 

growing influence of climate change (Munawar et al., 2021). Flooding incidents 

have been on the rise around the world, necessitating the need to establish 

appropriate risk management strategies in the face of calamities (Zou et al., 2012). 

Flooding disasters have caused the loss of lives, crops, infrastructure, and 

economic resources (Zhang, Jindapetch & Buranapanichkit, 2019). According to 

Wang et al. (2013), the risks and losses related to floods are greater than those 

associated with any other climatic disaster. Flooding has become more common 

as a consequence of population growth and climate change (Yu et al., 2017). The 

development of settlements in coastal areas and river basins, which are certainly 

susceptible to flooding, has resulted from the expansion of commercial and 

residential sectors. Land use and essential infrastructure are also major aspects in 

determining the magnitude of floods and their propagation.   

 In many parts of the world, rising urbanization has resulted in flood plains 

among residential neighborhoods, increasing the flood dangers (Witherow et al., 

2019). Several studies have been conducted to assess flood risks in a country or 

region. However, as technology advances, innovations in data-driven models and 

their contributions to flood risk management need more examination. Flood 

danger is currently mapped on a worldwide scale utilizing satellite imagery and 

remote sensing technology (Wedajo, 2017).  
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2.2.2 Flood Management 

 
Flood management is a crucial process to guide the related locality and 

disaster agencies at all levels to formulate and employ their specific plans (Asian 

Development Bank, 2013). According to Munawar et al. (2021), the main 

practices implemented in flood management can be categorized as Flood 

Prediction, Flood Detection, Flood Mapping and Flood Hazard (Risk 

Assessment).  

Currently, the focus of flood risk management systems is mostly on 

forecasting floods and producing maps to verify disaster-prone areas. There are 

two categories of flood management which many past analyses tend to emphasis 

on: pre or post disaster phases. Pre-flood studies generally focus on flood 

mitigation, planning, risk assessment, and hazard analysis, and post-disaster flood 

management studies are focusing on flood detection, mapping, damage 

assessment, and evacuation planning. (Munawar et al., 2021). 

In addition, the constant growth of modern technology can help in 

managing real-time data which to be used for area of flood risk management. The 

strategy for both pre- and post-disaster flood management is based on image 

processing and machine learning. Machine learning algorithms were combined 

with data analysis in the pre-disaster phase to produce predictions about the 

likelihood of flood occurrences, their severity, and potential future loss. 

(Hernandez, 2014). Nevertheless, in the post-disaster phase, image processing 

have been used along with techniques based on machine learning to map inundated 

areas and make judgements associated to relief and rescue procedures (Arslan et 

al., 2017). 
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2.3 FLOOD CAUSATIVE FACTORS 

 
Flood causative factors are related to numerous weather factors such as heavy rain, 

storm surges, and other factors like inadequate drainage systems and structural failures of 

dams (Zahari & Hashim, 2017). Understanding the flood causative factors and the 

interaction between them are crucial in developing the flood model (Kia et al., 2012). In 

past studies, various of flood causative factors have been utilized in developing the flood 

modelling such as elevation, soil types, land use, flow direction, flow accumulation, 

curvature, rainfall intensity, Topography Wetness Index (TWI), Normalized Differential 

Vegetation Index (NDVI) and historical flood density (Pradhan, 2009; Kia et al., 2012; 

Roslee, Tongkul, Mariappan & Simon, 2018; Khoirunisa, Ku & Liu, 2021). 

However, the specific guideline has not been provided for selecting flood 

causative factors that affect flooding as it depends on the natural and physical properties 

of the study area (Ullah & Zhang, 2020). The chosen factors need to be the most applicable 

for flood risk assessment in the location of study location (Dang, Babel and Luong 2011). 

In determining the flood causative factors, a few steps need to be considered. According 

to Dang, Babel and Luong (2011), the criterion, its components, and indicators must define 

the nature of flood risk. Other than that, the data must be accessible and consistent for 

every component and should be easily understood to describe the complexness of the 

flood risk concept. Finally, the components should be quantifiable, recognizable, and 

measurable (Dang, Babel & Luong, 2011). 

Common flood causative factors that have been used in past studies are rainfall 

intensity, drainage density, slope, land use and type of soil (Mandviwala, Joshi & Prakash, 

2016; Cao et al., 2016; Dung et al., 2020; Ullah & Zhang, 2020). Furthermore, other 

factors have been chosen in the studies such as elevation, TWI, NDVI (Kia et al., 2012; 

Ullah & Zhang, 2020; Khoirunisa, Ku & Liu, 2021). These factors have a great influenced 

in conducting flood risk assessment for the reason that elevation affect the movement of 

the overflow direction and in the depth of the water level (Ogato et al., 2020), TWI is a 

physical interpretation of flood areas, which is an essential factor of a river catchment 

(Khoirunisa, Ku & Liu, 2021) and NDVI is a useful indicator in evaluating vegetation 

coverage and its  effect on flooding in a basin (Ullah & Zhang, 2020). 
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2.4 LAND USE CHANGES 

Change detection is the process of determining differences in any process by 

examining data over multiple time intervals (Singh, 2010). Over time, humans have made 

significant changes to the earth's surface. The effect of land use changes on hydrological 

activities has been brought to the attention of land use administrators and academics as a 

result of these considerable changes (Fei et al., 2018). Land use managers and decision 

makers can gain a better understanding of the interaction between human and natural 

activity by analyzing the pattern in change detection. 

At the global scale, the vast growth in population is the most critical element in the 

transformation of land use (Lopez et al., 2001). The transformation of natural regions into 

industrial or agricultural fields is chiefly responsible for the significant variances in land 

cover, particularly in emerging countries (Jat, Garg & Khare, 2008). The loss of natural 

land, thick forests, and watersheds exerts significant strain on river basin hydrological 

regimes and mechanisms (Guerra, Puig & Chaume, 1998). It is critical to provide multi-

temporal data sets for evaluating changes in land spatial features (Lu et al., 2004). The 

use of multi-temporal datasets simplifies the explanation of crucial land use changes and 

patterns (Roy & Inamdar, 2019). The introduction of Landsat satellites, as well as 

advances in computer technology, have made it easier to track changes and advancements 

over the last several decades. The combination of remote sensing technologies and a GIS 

has demonstrated to be efficient in recognizing a wide range of environmental variables. 

(Helmer, Brown & Cohen, 2000). 

In order to examine land use changes, decision support systems are used (Matthews, 

1999; De Kok et al., 2001, Fan et al., 2008; West and Turner, 2014; Yu et al., 2018). 

Decision support systems, which are evolving at a rapid pace, have permitted the active 

work of technology in management and planning. This study used an Artificial Neural 

Network (ANN) technique, which is one of the decision support systems. When the ANN 

technique (Atkinson and Tatnall, 1997; Hsu et al., 1997) is combined with GIS (Al-

Kodmanyu, 2002; Prasannakumar et al., 2011), which is previously capable of creating 

highly powerful solutions, more stable and successful models can be generated (Olden et 

al., 2004). 
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Several models based on simulations have been created during the last two decades 

and are used to model land cover changes all around the world. This includes Markov 

chain analysis (MCA) or Markov models, Cellular Automata (CA), Cellular Automata–

Markov models (CA–Markov), Artificial Neural Networks (ANN), Binary Logistic 

Regression, and Fractal models (Zeshan, Mustafa & Baig , 2021). 

 

2.5 ARTIFICIAL NEURAL NETWORK (ANN) 

 
2.5.1 Introduction 

 
ANN is a computational model inspired and constructed to replicate 

biological nervous systems which are efficient to perform detailed information- 

processing activities such as data categorization and pattern recognition (Gopal, 

2017). The function of an ANN is dictated by network structure and connection 

strengths, and it is composed of different simple processing nodes (Gopal, 2017). 

Same as biological neural networks, ANN can develop understanding by a learning 

process. 

A wide variety of real-world problems can be addressed by using neural 

networks. According to Gopal (2017), neural networks are capable to be taught 

through experience to develop their performance and dynamically adjust to 

differences in the environment. Moreover, they are capable to handle the fuzzy or 

insufficient information and noisy data, and can be very useful, especially in 

conditions where it is not likely to specify the rules or steps that lead to the 

resolution of a problem. Consequently, they are fault tolerant. Furthermore, the 

ANN information-processing model is fundamentally parallel. Nowadays, ANNs 

are utilized in a range of specialties involving engineering, finance, artificial 

perception, and control and simulation (Gopal, 2017). 
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2.5.2 Artificial Neural Network – Cellular Automata (ANN-CA) 

The use of ANN and CA together proposes a system that can predict   

multi-directional change and produce high-quality outcomes. The ANN-CA 

model, a nonlinear tool, has been effectively employed to simulate land use 

changes (Mahajan & Venkatachalam 2009; Pijanowski et al. 2014). 

CA serves as a bottom-up simulation framework in the model. The 

transition rules of land use changes for CA are mined using ANN as data mining 

tools; this means that ANN is utilized to comprehend the underlying patterns in 

land use data (Yang, Chen & Zheng, 2016). By simulating the brain's ability to 

sort patterns through interconnected systems of numerous neurons, ANN has the 

benefit of being able to perceive interactions in data (Arekhi & Jafarzadeh 2014; 

Tayyebi & Pijanowski 2014). It is a good global parametric model for modelling 

land use changes, but different spatial drivers simulate land transformation in a 

non-linear way. 

Furthermore, ANN is particularly useful at processing faulty and inferior 

data, as well as capturing non-linear, complex aspects in modelling procedures. 

As a result, it is widely believed that they are capable of producing improved 

modelling outcomes (Li & Yeh, 2002). Tayyebi et al. (2014b, 2014c) examined 

land transformation models based on ANN, classification, and regression tree, as 

well as the multivariate adaptive regression spline model, and found that ANN 

surpassed other models in both temporal and spatial accuracies. 
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2.6 GEOGRAPHIC INFORMATION SYSTEM (GIS) 

 All sorts of geographic and spatial data can be saved, retrieved, managed, 

presented, and evaluated with Geographic Information System (GIS). GIS data combines 

digital data with actual-world elements such as roads, land use, elevation, trees, and 

waterways. Discrete objects and continuous fields are two abstractions for real objects. For 

both types of concepts mapping references, raster images and vector images are utilized to 

save data in GIS. Mapped location attribute references are made up of points, lines, and 

polygons. Identifying point clouds, which integrate three-dimensional points with RGB 

information at each location to produce a 3D color image, is a new hybrid technique of 

storing data. Thematic maps created with GIS are more graphically descriptive of what 

they are trying to illustrate or establish. 

 GIS recognizes and analyses the spatial relationships that exist throughout digitally 

stored spatial data. GIS and remote sensing are trustworthy techniques that may be used to 

assess geo-environmental disasters by giving a cost-effective synoptic coverage of a large 

area. In recent years, advancements in GIS and remote sensing have been incorporated into 

the evaluation of environmental disasters, greatly facilitating flood risk mapping, flood 

risk assessment, and flood management (Arun & Premalatha, 2020). 

 The flood mapping application of GIS can be divided into three functions: 

information database, analytical tools, and decision support system (Kamarudin, 2020). As 

a result, the technique of multi-criteria evaluation is required for the GIS to integrate the 

criterion in order to build a more accurate flooding map, as GIS is capable of handling the 

geomorphological characteristics easily (Jain, Singh, & Seth, 2000). Not only that, but GIS 

tools can also categorize several levels of hazard, such as very high, high, moderate, low, 

and very low (Kourgialas & Karatzas, 2011). This demonstrates the effectiveness of using 

GIS for flood mapping. 
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2.7 ANALYTICAL HIERARCHY PROCESS (AHP) 

In the 1980s, Analytical Hierarchy Process (AHP) was developed by Thomas Saaty 

to simplify and enhance the decision-making cycle. It is a statistical model which has the 

most effective methods of Multi-Criteria Analysis (MCA) in the area of flood risk 

management (Koem, 2020). Luu et al. (2017) stated that the direct involvement of decision-

makers, the utilization of a complete geographic information system (GIS), and the 

consistency of criterion evaluation are all advantages of AHP. Certainly, AHP's use in 

analyzing diverse geo-hazards challenges, such as flood and landslide susceptibility, slope 

failure, groundwater vulnerability, and urban seismic vulnerability has been acknowledged 

by researchers, practitioners, and decision-makers (Dano et al., 2019). 

In developing AHP for flood risk mapping, a pairwise comparison matrix will be 

used to rank various flood causative factors based on their impact level. The chosen 

methodological framework expresses the cumulative character of each criterion, making it 

useful for creating flood data at the local, regional, and national scales. However, AHP has 

two limitations: it relies on expertise and judgement, and it necessitates a large number of 

pairwise comparisons (Thanh and De Smedt, 2011). Furthermore, bias may emerge when 

the criterion and sub-criteria are related. 

Hence, various studies were consulted in order to determine the primary flood 

evaluation criteria. For example, Sharir, Roslee and Mariappan (2019) considered eight 

parameters: rainfall, slope gradient, elevation, drainage density, land use, soil textures, 

slope curvatures and flow accumulation in their study to analyze the flood susceptibility at 

Kg. Kolopis area, Penampang, Sabah, Malaysia. Moreover, Elsheikh, Ouerghi and Elhag 

(2015) used four parameters including annual rainfall, basin slope, drainage network and 

the type of soil to map the flood risk in Terengganu, Malaysia. Whereas Sulaiman et al. 

(2015) has chosen six parameters: rainfall distribution, slope, distance from river, land use, 

drainage density and road density to conduct the flood hazard zoning and risk assessment 

for Bandar Segamat, Johor, Malaysia. 
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According to Saaty (1980), AHP represents an issue using hierarchical structures, 

and later develops priorities for solutions depending on the user's judgement which is based 

on paired comparisons. The importance of the evaluation criteria and their weights must 

be decided. There are six steps in the procedure (Saaty, 1980).  

1. Analyzing a complex, unstructured situation into its constituent elements. 

2. Formation of the AHP. 

3. Matrix of paired comparisons based on imposed judgments. 

4. Calculate the relative weights of each criterion by assigning values to subjective 

assessments. 

5. Combine judgments to discover the most important variables. 

6. Verify that assessments and judgements are consistent. 

Calculating the consistency ratio is the most important aspects of AHP (Saaty 1980). 

The matrix in question can be judged acceptable if the consistency ratio is less than 0.1. 
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CHAPTER 3 

METHODOLOGY 

 

 

 

3.1 OVERVIEW  

 This chapter aim to discuss about the method and design used for this project, 

including all the materials used. It explains how the method of the study was carried out, 

and the data involved. This chapter also outlines the procedures, process and software that 

were used to prepare the data necessary to accomplish the objectives of this study. 

3.2 STUDY AREA 

 
The study area is located at Perak, North-West of Peninsular Malaysia which 

occupies an area of 21,035 km2. Perak lies at longitude of 101.0901° E and latitude of 

4.5921° N with an elevation of 42 m above sea level. This state has a tropical climate with 

the average annual temperature of 26.4 °C. The second-largest river basin in peninsular 

Malaysia which is Perak River basin, is situated inside the study area. Perak River that 

flows from Hulu Perak originates from the Titiwangsa Mountains  to the Beting Beras 

Basah, Bagan Datoh has a river length of roughly 400 km. The total catchment area of 

Perak River is 14,908 km² which cover up about 70% of Perak state. The main tributaries 

in the surrounding area are Pelus River, Kinta River, Batang Padang River and Bidor 

River. As the study area is located at tropical climate, there is significant rainfall 

throughout the year. The recorded average annual rainfall at the Northeast part, 

particularly in the upper Temenggor Dam catchment is between 2400 mm to 3200 mm. 

The average annual rainfall increases between 2600 mm to 3400 mm at the Southeast part 

while the average annual rainfall of the whole study area is approximately 2300 mm. 
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FIGURE 3.1. Study Area 
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3.3 PROJECT FLOWCHART 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

 

  FIGURE 3.2. Project Flowchart 
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3.4 FLOOD CAUSATIVE FACTORS 

 
Investigating the flood causative factors are the primary step in generating the flood 

risks map. These factors are determined by using the information obtained from the 

literature review. The selection of these factors are based on their interactions which is 

related to the flood history of Perak. There are eight flood causative  factors that will be 

utilized in flood risk map which includes elevation, slope, TWI, soil types, land use, 

NDVI, rainfall intensity and drainage density. 

3.5 PREPARATION OF DATA AND GEOSPATIAL LAYER 

 
All data obtained in this study were added to ArcGIS to generate the flood causative 

factors maps. The ArcGIS 10.3 software package was employed for the analysis. All maps 

in this study were projected using the World Geodetic System 1984 Universal Transverse 

Mercator (WGS 1984 UTM) with the coordinate system of zone 47. 

3.5.1 Study area 

 

The shapefile of the study area was obtained from a website providing Data-

Interpolating Variational Analysis (DIVA-GIS) from which the study area was 

clipped in ArcGIS. 

3.5.2 Digital Elevation Model (DEM) 

 
The United States Geological Survey (USGS) Earth Explorer website was 

used for acquiring the Digital Elevation Model (DEM) SRTM 1 Arc-Second 

Global. The data obtained in TIF format were divided into six images which 

covered the whole Perak. These images were layered together in ArcGIS to 

become a mosaic image. Then, it was extracted based on the boundary of Perak. 

DEMs are a valuable resource for determining topographic parameters that 

influence flood activity in a given area. Factors including slope, drainage density 

and TWI were extracted from the DEM, with a resolution of 30 m. 
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3.5.2.1     Slope 

The slope analysis from spatial analyst tool (ArcToolbox in ArcGIS) 

was applied to generate the slope. The slope measurement was set to be in 

degree.  

3.5.2.2      Drainage Density 

Flow direction and flow accumulation raster dataset were prepared 

prior to creating a drainage density. These were done by applying hydrology 

analysis from spatial analyst tool. The flow direction will give information 

about the flow direction of water from the highest to the lowest elevation by 

each cell. While the flow accumulation represents the stream network by 

categorization of pixel values. Then, the drainage density was created by 

using line density from spatial analyst tool. 

3.5.2.3       Topographic Wetness Index (TWI) 

To produce TWI, flow accumulation and slope raster dataset were 

used by applying the Equation 3.1 as shown: 

𝑇𝑊𝐼 = ln
𝛼

tan 𝛽 + 0.01
 

where 𝛼 is flow accumulation and 𝛽 is slope angle in degree. This equation 

was applied in raster calculator under spatial analyst tool. 

3.5.3 Landsat Images 

 
Four Landsat images were acquired from Landsat 8 OLI/TIRS Collection 1 

Level 1 for 2021 while Landsat 5 TM Collection 2 Level 2 for 2001 and 2011. The  

images were obtained from USGS Earth Explorer website, have a resolution of 30 

m, was employed to generate the NDVI and land use maps.  

 

 

(3.1) 
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3.5.3.1     Normalized Differential Vegetation Index (NDVI) 

False color composites and indexes of vegetation were produced 

with normalized differences. For improved visualization, the mixture of 

green, near-infrared (NIR), and red bands (R) was the false color composite 

that was utilized. NDVI were created for all images by using Equation 3.2: 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 

where NIR and R indicate the reflectance of the surface over nearly 0.8 µm 

and visible band (0.6 µm) in the spectrum of light, respectively (Zeshan, 

Mustafa and Baig, 2021). False color images helped in detection and 

visualization of different land characteristics, while NDVI was used to 

distinguish the vegetative in the study area. To create NDVI, this equation 

was applied in raster calculator under spatial analyst tool. For Landsat 8 

image, Band 5 (NIR) and Band 4 (R) were applied while Band 4 (NIR) and 

Band 3 (R) were used for Landsat 5 images.  

3.5.3.2     Land Use 

The visible bands (red, green, and  blue) were selected for land use 

classification. The bands selected for Landsat 5 classification were 3, 4, and 

5, whereas 4, 5, and 6 bands were selected for Landsat 8 image classification 

using Path/Row 127/56,127/57, 128/56 and 128/57 based on Perak state 

dataset. The images obtained from the satellite were sensed at various times 

of the year and all had the same spatial resolution of 30m as shown in Table 

3.1. After verifying the Landsat scene by date, the subsequent four images 

were layered together before extracting it based on the study area. 

To prepare the land use, image classification process was conducted 

by preparing training samples. This samples were chosen by identifying 

polygons across the delegate locations for each of the predetermined land use 

types. The study area has been classified into five classes which are forests, 

agriculture lands, urban areas, water bodies and barren lands.  

(3.2) 
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After preparing the training samples, the signature file was created. 

The supervised classification technique has been used effectively in the case 

of spectral variability in individual types of cover, and hence it was utilized 

for the digital classification of Landsat images. In this study, the maximum- 

likelihood supervised classification method was applied.  

 

TABLE 3.1. Detailed data for the Landsat images used for the study area 

 

Year Landsat scene ID Path Row Date acquired 

Landsat 5 

 

2001 
 

LT51270562000237BKT00 
 

127 
 

56 
 

24/08/2000 

 LT51270572000077BKT00 127 57 17/03/2000 

 LT51280562000020DKI00 128 56 20/01/2000 

 LT51280571998062BKT00 128 57 03/03/1998 

Landsat 5 

2011 LT51270562007144BKT00 127 56 24/05/2007 

 LT51270572011187BKT00 127 57 06/07/2011 

 LT51280562011098BKT01 128 56 08/04/2011 

 LT51280572010047BKT00 128 57 16/02/2010 

Landsat 8 

 

2021 
 

LC81270562020068LGN00 
 

127 
 

56 
 

08/03/2020 

LC81270572021038LGN00 127 57 07/02/2021 

LC81280562021045LGN00 128 56 14/02/2021 

LC81280572020059LGN00 128 57 28/02/2020 
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3.5.4 Soil data 

 

The soil vector dataset was obtained from Food and Agriculture Organization, 

FAO-UNESCO Soil Map of the World website. The digital soil map of the world 

in ESRI shapefile format has been downloaded from the website and was added 

in ArcGIS. This data was clipped to the study area in. The soil types was 

categorized based on DOMSOIL classification under the symbology option.  

 

3.5.5 Rainfall data 

 
The list of rainfall stations in Perak were acquired from Department of 

Irrigation and Drainage (DID) while the average monthly rainfall data was 

generated from Prediction of Worldwide Energy Resource (POWER) from the 

year 2010 – 2020. There were 28 rainfall stations which has been identified in the 

study area with the details of it are shown in the Appendix A. 

The average monthly rainfall data obtained was tabulated accordingly in 

Microsoft Excel similar to the table in Appendix A. This Excel file was then added 

to the ArcGIS. The rainfall intensity map was generated by using median rainfall 

through Inverse Distance Weighting (IDW) Interpolation in spatial analyst tool of 

ArcGIS. 

 

3.6 LAND USE PREDICTION 

 ArcGIS was used for monitoring land use changes in Perak for the years 2001, 

2011, and 2021. Then, Artificial Neural Network Cellular Automata (ANN-CA) modeling 

using Quantum Geographic Information Systems (QGIS) was implemented for the 

prediction of land use changes for the year 2031, 2041, and 2051. 

 
3.6.1 Artificial Neural Networks Cellular Automata (ANN-CA) Modeling 

 

 ANN is considered as black-box method that tries to imitate the biological 

neural network. According to Kia et al. (2012), it is a mathematical model inspired 

by the structure and functions of human observation that can be instructed to 

perform a specific task using existing empirical data. 
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 ANN algorithms are more accurate than other algorithms. Hence, it was 

used to train the transition potential model of land use. In recent decades, ANNs 

have become most common in remote sensing for proper land use modeling and 

classification. The most popular form of ANN is the multilayer perceptron (MLP). 

The MLP-ANN preprocesses the provided data from land use groups such as water 

bodies, forest, agricultural lands, urban areas and barren lands. 

 In this study, a combination of ANN and CA was managed to simulate and 

estimate the land use trends of Perak up to the year 2051 using open source QGIS 

software version 2.18.25. The CA feature in QGIS is based on the Markov chain 

algorithm. It relies on the present state of land use rather than the previous state. 

This model generates the output data in the form of tables and maps by combining 

previous and current land use maps with spatial input parameters. The spatial input 

parameters used in this study are elevation and slope. Based on that data, Modules 

for Land Use Change Simulations  (MOLUSCE) plugin within QGIS software was 

used to train the model.  

3.6.2 Transition Potential Modelling Using ANN 

 The transition potential modelling was trained using ANN with a 

momentum of 0.050, 1 pixel of neighborhood classification, hidden layers of 10 

and a learning rate of 0.001 for the stabilization of learning graph. Furthermore, the 

number of iterations was set to 120 to prevent the issue of overfitting in the model. 

The land use transition matrix, which is an input for the ANN to obtain the 

transition probability, was created using changes in the area of different classes. 

Based on the transition potential model and geographical parameters, an ANN-CA 

simulation was used to simulate land use changes for 2021. 

3.6.3 Validation of ANN-CA 

 Validation of model was conducted after the ANN-CA simulation, which 

allows for verifying, comparing, and validating the outcomes achieved. The 

method of validation was carried out by comparing simulated outcomes to the 

reference data which in this study, is the image classification for land use 2021. 
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 Calibration and validation processes are critical factors in validating a 

simulation model. The kappa coefficient and percentage of correctness were used 

to statistically validate the simulation results. The predicted map of 2021 was 

obtained by inserting classified maps of 2011 and 2021 as input data. The predicted 

map of 2021 was matched with the image classification map of 2021 to assess the 

degree of agreement between the pixels of both maps. The overall kappa coefficient 

was calculated, the value of which ranges from 0 to 1. The high degree of 

agreement and satisfactory value of kappa coefficient indicated the validation of 

the simulation model. This validated simulation model formed the basis for future 

predicted maps of 2031, 2041, and 2051 by performing multiple iterations. 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3.3. ANN-CA Flowchart 
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3.7 ANALYTICAL HIERARCHY PROCESS (AHP) 

 

The selection of acceptable and sufficient criteria, as well as their standard 

processing and scale, determine the comprehensive hazard information (Dewan, 2013). 

Using Multi-Criteria Analysis (MCA), several research determined flood risk mapping 

(Bathrellos et al., 2016; Elkhrachy, 2015; Hoque et al., 2019). One of the most potent 

ways of MCA in the area of flood risk management is AHP, which was presented by Saaty 

in the 1980s. The advantages of AHP include direct involvement in decision-making, a 

full GIS combination, and criteria evaluation consistency (Luu et al., 2017). 

The integrated AHP–GIS analysis, which comprises of three methodological 

approach was employed in this study. First, eight flood causative factors were determined:  

rainfall, drainage density, TWI, NDVI, land use, elevation, slope and soil types. The 

thematic layers of the factors were developed by using ArcGIS. The classification and  

sensitivity score of each factor was allocated based on recent studies.  

Second, AHP was utilized to weigh all the causative factors. This was done by using 

Excel AHP template obtained from Goepel, K.D. (2012). The comparative value of flood 

causative factors have been evaluated in pairwise matrix to acquire the weighting 

coefficient from the eigenvectors of these factors during the process of AHP. Every factor 

has been allocated a value between 1-9, varying on its importance, (Saaty, 1980) which 

can be referred to Table 3.2. 
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TABLE 3.2. The definition of each intensity value assigned 

Intensity Definition Explanation 

1 Equal importance Two elements contribute equally to the objective 

3 Moderate 

importance 

Experience and judgement slightly favor one 

element over another 

5 Strong importance Experience and judgement strongly favor one 

element over another 

7 Very strong 

importance 

One element is favored very strongly over another, 

its dominance is demonstrated in the practice 

9 Extreme 

importance 

The evidence favoring one element over another is 

of the highest possible order of affirmation 

2, 4, 6, 8 can be used to express intermediate values 

 

Next, a consistency test was performed by verifying the consistency ratio (CR) in 

the pairwise comparison matrix. The ration of CR value was obtained by applying 

Equation 3.3 as shown: 

𝐶𝑅 =  
𝐶𝐼

𝑅𝐼
 

where CI is Consistency Index, RI is Random Inconsistency Index. The CI is expressed 

by using Equation 3.4: 

𝐶𝐼 =
𝜆𝑚𝑎𝑥 − 𝑛

𝑛 − 1
 

where n is the number of parameters (flood causative factors) used. RI can be obtained 

as shown in Table 3.3 and it depends on the n value (Saaty, 1980). To ensure the matrix 

is consistent, the value of CR must be equal or less than 0.1 or 10%.  

TABLE 3.3. RI value 

Number of 

parameters (n) 

2 3 4 5 6 7 8 9 10 11 

Assigned RI 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 1.51 

 

(3.3) 

(3.4) 
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3.8 FLOOD RISK MAP 

AHP was utilized as spatial forecasting tools to map the flood risk areas in Perak 

according to their significance weights. The thematic layer of each flood causative factors 

was mapped in raster format into the ArcGIS. Reclassification of every factor’s category 

was done by using spatial analyst tool. The importance of the factors and their sub-

categories was computed based on the Weighted Overlay Method with evaluation scale 

of 1 to 5 by 1. This method overlays several rasters using a common measurement scale 

and weights each according to its value. The input weightage of each factor was according 

to AHP result.  

The flood risk map produced was categorized into five categories: very low, low, 

moderate, high and very high  by using Jenks Natural Breaks Classification. Then, the 

area and its percentage for all categories were calculated to compare the changes of flood 

risk level throughout 2001 – 2051.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3.4. AHP Flowchart 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 
 

 

4.1 OVERVIEW 

This chapter is concerned with the data interpretations and presentations of results. 

All the results that have been developed throughout this study will be include in this 

chapter. It comprises of the discussion of every flood causative factors and their 

contribution to the flood issues. Furthermore, the chapter will further discuss about the 

analysis of land use prediction and flood risks maps that have been generated in this study. 

Analysis conducted was in accordance with the study aim and objectives. 

4.2 FLOOD CAUSATIVE FACTORS 

 

4.2.1 Elevation 

Elevation plays a significant part in regulating the movement of the 

overflow path and in the depth of the water level (Ogato et al., 2020). The elevation 

map is a visualization of altitude (Khoirunisa, Ku & Liu, 2021). According to Cao 

et al. (2016), the flow of water is from higher to lower elevation, and the flood risks 

will increase at the low elevation areas. Perak region is mostly made up of 

moderate, extended highlands with mild to steep slopes and elevations ranging 

from 27 to 2168 m above sea level (MSL). Figure 4.1 shows that the highest 

elevation rates above MSL are found in places to the North, such as Hulu Perak, 

Kuala Kangsar, Kinta, and Batang Padang. The steepness of slopes is directly 

related to the elevation of the study area, which has a direct relationship with soil 

erosion rate. 



31  

 
 

FIGURE 4.1. Elevation Map 

 4.2.2 Slope 

 
Slope is a fundamental factor in flood studies as it regulates the surface 

water flow (Ullah & Zhang, 2020). Kia et al. (2012) defined that slope is the angle 

between the surface and horizontal datum which the velocity and runoff are 

induced by gravity. The relationship between slope and the surface velocity have 

positive correlation, and the surface runoff will increase significantly with higher 

magnitude of slope resulting to decrease of rainfall infiltration (Khoirunisa, Ku & 

Liu, 2021). Thus, the area with lower slope is prone to flood disaster situation as 

the water becomes stationary. 

The steepness of Perak was estimated using a slope map. Five separate 

steepness classifications were generated from the slope map as indicated in Figure 

4.2. The study area's topographical attributes were used to determine the steepness 

variation. The rate of soil erosion, soil stability, and sedimentation are all 

influenced by the slope steepness factor. The amount of soil erosion increases as 

the slope gradient increases due to a rise in surface runoff velocity. 
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FIGURE 4.2. Slope Map 

 

4.2.3 Drainage Density 

 
Drainage density is described as the fraction of the overall span of the 

watershed  channels to the entire region of the basin (Ullah & Zhang, 2020). This 

factor is affected by permeability, erodibility of surface materials, vegetation, 

slope and time (Ogato et al., 2020). Various reported floods happened due to 

accumulation of large quantity of water in low drainage density area. This factor 

is proven by a survey that have been conducted by Sahabat Alam Malaysia (2016) 

which found that the flood events that often hit some area at Perak was due to the 

drainage system in the area is not functioning well. As indicated in Figure 4.3, the 

drainage density of the study area is divided into five classes. High drainage 

density ratings favor runoff and, as a result, indicate a low flood risk. Flood risk 

will be reduced in basins with bigger drainage density values (Ajin.R.S. et 

al,2013). 
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FIGURE 4.3. Drainage Density Map 

 
 

4.2.4 TWI 

 
The TWI is a natural interpretation of flood areas, which is a significant 

factor for the catchment of river. The TWI of a catchment implies two kinds of 

computations: flat lands and hydrographic positions. The TWI is usually utilized 

to evaluate topographic control of hydrological activities (Khoirunisa, Ku & Liu, 

2021). The regions with high TWI have a high exposure to flooding while the 

regions with low TWI have lower flood risk (Ullah & Zhang, 2020). 

In this study, TWI is another flood causative factor as it demonstrates the 

quantity of flow accumulation and the potential of the water to move  downslope 

due to gravity. This factor is associated to soil moisture condition. The TWI map 

of the study area was created and ranged into five classes which are 2.11 – 5.58, 

5.58 - 6.97, 6.97 – 8.75, 8.75 – 11.22 and 11.22 – 21.79 as shown in Figure 4.4. 
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FIGURE 4.4. TWI Map 

 
 

4.2.5 Rainfall 

 
Extreme rainfall will result to floods. In Perak, flood occurrence usually 

happened  after heavy rainfall. Ullah and Zhang (2020) point out that rainfall has a 

direct correlation with river flow and a significant amount of rainfall in a brief 

time can cause floods in semi-arid region. 

The rainfall map was developed by using the rainfall data from 28 rainfall 

stations  located in the study area. The rainfall distribution has a range of average 

monthly rainfall of 172 - 187 mm. From Figure 4.5, it can be observed that the 

north side area, Hulu Perak Kuala Kangsar, Kerian, Larut, Matang and Selama 

have the lowest rainfall distribution of 172 – 175 mm. The region at Perak Tengah 

has the highest rainfall distribution of 184 – 187 mm per month. 
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FIGURE 4.5. Average Monthly Rainfall Map for year 2010 – 2020 

 

4.2.6 Soil types 

The rainfall-runoff process is directly influenced by soil properties in a 

watershed, such as soil layer thickness, permeability, infiltration rate, and the 

degree of moisture in the soil prior to a rain event. (Zhiyu et al.,2013; Rimba et 

al., 2017). The composition and infiltration capability of soils will have a 

considerable impact on the soil's ability to absorb water. Different soils have 

different capacities. The likelihood of flooding increases when soil infiltration 

capacity decreases, resulting in increased surface runoff. When water is given at a 

rate that exceeds the soil's infiltration capacity, it runs down the slope as runoff 

and can create flooding on sloping area. (Ouma and Tateishi, 2014). 

The classification of soil types for the study area are as shown in Table 4.1. 

The study area is described by seven types of soil series according to DOMSOI 

classification in ArcGIS. The spatial distribution of the soil types is shown in 

Figure 4.6. The most dominant type of soil is Orthic Acrisol which comprises of 
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71.21% and was discovered at the north until northeast of the study area. This 

followed by Eutric Gleysols (15.66%), Dystric Histosols (5.69%) and Ferric 

Acrisol (3.39%). These soil series were found in the northwest and south part of 

the region. Whereas small areas of Thionic Fluvisols (1.74%) and Eutric Fluvisols 

(0.004%) were found south and north part of the study area, respectively.  

TABLE 4.1: Types of soil classification 

 

No. DOMSOI Soil name Area (km2) Percent (%) 

1. Ao Orthic Acrisol 14724.40 71.21 

2. Ge Eutric Gleysols 3238.51 15.66 

3. Od Dystric Histosols 1176.67 5.69 

4. Af Ferric Acrisol 701.89 3.39 

5. I Lithosols 475.93 2.30 

6. Jt Thionic Fluvisols 360.47 1.74 

7. Je Eutric Fluvisols 0.76 0.004 

FIGURE 4.6. Soil Map 
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4.2.7 NDVI 

 
NDVI is a frequently used vegetation index for analyzing worldwide 

vegetation coverage using satellite data. (Khoirunisa, Ku & Liu, 2021). It is a good 

tool for assessing vegetation cover and its impact on flooding in a basin. (Ullah & 

Zhang, 2020). 

The NDVI map of the study area was developed for the year 2001, 2011 and 

2021. The maps were classified into five categories namely, water bodies, barren 

lands, grasslands, unhealthy vegetation and healthy vegetation (dense forest) as 

shown in the Figure 4.7 (a), (b) and (c). The categories were classified using a 

natural break method in ArcGIS. The NDVI value was generally in the range of -

1 to +1. Negative values signify water, while positive ones reflect vegetation, 

hence NDVI has a negative association with flooding: higher NDVI values 

indicate a lower danger of flooding, while lower NDVI values indicate a higher 

risk of flooding (Khosravi et al., 2016).  
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FIGURE 4.7. (a) 2001; (b) 2011; (c) 2021 NDVI Maps 
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4.2.8 Land Use Classification 

According to Zeshan, Mustafa, and Baig (2021), the increase in barren and 

urban lands has resulted in a high danger of soil erosion in the watershed. Initially, the 

deep forests were turned to non-agricultural fields, and then to urban areas. Since 

flood occurrence is inversely proportional to vegetation density, some land use areas, 

in contrast to grassland areas, produce more storm runoff (Kia et al., 2012). By using 

Maximum Likelihood classification, the land use map of the study area for the year 

2001, 2011 and 2021 were prepared as shown in the Figure 4.9 (a), (b) and (c). The 

maps were defined into five classes as descripted in Table 4.2. 

          TABLE 4.2. The classification scheme for land use 
 

No. Class Description 

1. Waterbodies Rivers, open water, lakes, ponds, and reservoirs. 

2. Forest Natural forest, mangrove, and plantation forest. 

3. Agricultural lands Mainly composed of grass, vegetation, crop 

plants, cultivated lands, and shrub lands. 

4. Urban areas Residential and developed areas. 

5. Barren lands Land areas of exposed soil 

 

Calculating the area of each class and its percentage cover in the study area 

was used to examine changes in land use patterns of various classifications 

throughout time (Zeshan, Mustafa & Baig, 2021).  The details of land use changes 

are given in the Table 4.3, Table 4.4 and Figure 4.8. In the year 2001, the major land 

cover in the study area was occupied by forests comprising 79.09% of the total area, 

followed by agricultural lands (10.27%), barren lands (5.24%), waterbodies (1.62%) 

and urban areas (2.05%). Compared to the year 2001, in 2011, the land cover 

experienced a decrease in forests (71.90%), followed by  a considerable increase in 

barren lands (9.23%), urban areas (4.13%), agricultural lands (12.43%) as well as a 

slight decrease in the area of waterbodies (2.31%). However, for the year 2021, the 

observed land use changes were dominated by a sizeable increase in the urban areas 

(20.67%), a slight increase in forests (72.20%), followed by a decrease in barren 

lands (2.85%), agricultural lands (2.31%) and waterbodies (1.97%). 
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TABLE 4.3. The area of each class and its percentage for 2001, 2011 & 2021 
 

Year 2001 2011 2021 

Land Use 

(Area) 

Area 

(km²) 

Percent 

(%) 

Area 

(km²) 

Percent 

(%) 

Area 

(km²) 

Percent 

(%) 

Forest 16568.13 79.09 15063.78 71.90 15126.53 72.20 

Agriculture 2152.10 10.27 2605.38 12.43 483.34 2.31 

Water bodies 700.87 3.35 484.96 2.31 412.37 1.97 

Urban area 430.46 2.05 865.13 4.13 4329.45 20.67 

Barren land 1097.97 5.24 1932.98 9.23 597.84 2.85 

 
TABLE 4.4. Changes in area and percentage cover of land use classes for 2001 - 2021 

 

Year 2001 - 2011 2011 - 2021 

Land Use (Area) Area (km²) Percent (%) Area (km²) Percent (%) 

Forest -1504.35 -7.19 62.76 0.31 

Agriculture 453.27 2.16 -2122.04 -10.13 

Water bodies -215.92 -1.03 -72.58 -0.35 

Urban area 434.66 2.07 3464.32 16.54 

Barren land 835.01 3.98 -1335.14 -6.37 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4.8. Land use change graph for 2001, 2011, and 2021
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FIGURE 4.9. (a) 2001; (b) 2011; (c) 2021 Land Use Maps 
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4.3 PREDICTION OF LAND USE CHANGES 

 

 The spatial prediction of land use map for the year 2031, 2041 and 2051 are as 

shown in the Figure 4.11 (a), (b) and (c). The maps were defined into five classes as 

mentioned in Table 4.2.  

 The predicted maps of 2031, 2041, and 2051 were obtained by implementing 

multiple iterations of the validated simulation results of 2021. The percentage correctness 

of the simulation was 88.55% and the overall kappa coefficient, kappa histogram and 

kappa location were 0.75, 0.91 and 0.83, respectively. The percentage of correctness 

suggests that there would be 88.55% chance of correctness in predicted outcomes of 2031, 

2041, and 2051 simulations when compared with the actual land use maps of 2031, 2041, 

and 2051. It also indicates that if the current land use changes would proceed in the same 

trend, then the future land use pattern for the Perak region would be comparable to the 

maps shown in Figure 4.11 (a), (b) and (c). 

 In the year 2031, the major land use in the study area are predicted to be occupied 

by forests comprising 72.02% of the total area, followed by urban areas (21.74%), barren 

lands (2.97%), waterbodies (1.76%) and agricultural lands (1.5%). Compared to the year 

2031, in 2041, it is predicted that the land cover experienced an increase in urban areas 

and barren lands, 22.74% and 3.05%, respectively.  The outcomes are followed by a slight 

decrease in forest (71.36%), water bodies (1.61%) and agricultural lands (1.23%). For the 

year 2051, the observed prediction of land use changes are the continuous increase in the 

urban areas (23.77 %) and barren lands (3.09%). The same trend is observed in 2051 as 

there are slight decrease in the area for forest (70.62%), waterbodies (1.49%) and 

agricultural lands (1.02 %), as shown in the Table 4.5 and Table 4.6. The increase in the 

land use changes for urban areas and barren lands might be due to the expected increase 

in commercial, residential, and industrial areas. 
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        TABLE 4.5. The area of each class and its percentage for 2031, 2041 & 2051 

 

 

TABLE 4.6. Changes in area and percentage of land use classes for 2031 – 2051  

 

Year 2031 - 2041 2041 - 2051 

Land Use (Area) Area (km²) Percent (%) Area (km²) Percent (%) 

Forest -137.59 -0.66 -154.58 -0.74 

Water bodies -31.64 -0.15 -26.48 -0.13 

Agriculture -56.72 -0.27 -43.84 -0.21 

Urban areas 209.81 1.00 215.51 1.03 

Barren lands 16.15 0.08 9.40 0.04 

 

 

 

FIGURE 4.10. Land use change graph for 2031, 2041, and 2051 

Year 2031 2041 2051 

Land Use 

(Area) 

Area 

(km²) 

Percent 

(%) 

Area 

(km²) 

Percent 

(%) 

Area 

(km²) 

Percent 

(%) 

Forest 15087.61 72.02 14950.02 71.36 14795.43 70.62 

Water bodies 369.57 1.76 337.92 1.61 311.44 1.49 

Agriculture 314.50 1.50 257.79 1.23 213.95 1.02 

Urban areas 4555.10 21.74 4764.91 22.74 4980.42 23.77 

Barren lands 622.76 2.97 638.91 3.05 648.30 3.09 
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FIGURE 4.11. (a) 2031; (b) 2041; (c) 2051 Land Use Prediction Maps  
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4.4 FLOOD RISK MAP  

 

The AHP analysis in this study includes eight flood causative factors in the 

assessment of flood risks across Perak: rainfall, drainage density, TWI, land use, NDVI, 

elevation, slope and soil types. An 8 x 8 pairwise matrix was created utilizing these factors 

to compare the relative significance and weight of each factor. 

The significance level of each factor was rated using nine fundamental scale as 

shown in Table 3.2. Table 4.7 shows the pairwise comparison matrix developed for this 

study. The value of each row in the matrix define the importance between two factors. 

The relevance of rainfall in comparison to other characteristics is presented in the first 

row of the table. Rainfall, for example, is equally important to the drainage density, thus 

it is given a value of 1. The row contains the pairwise inverse values. As a result, the 

drainage density’s worth is divided by one. Whereas Table 4.8 indicates the normalized 

pairwise comparison matrix. It is calculated by dividing all the column components by the 

sum of the column in the pairwise comparison matrix. 

Rainfall (24.1%) and drainage density (24.1%) were defined as the most important 

factors to cause flooding in Perak as mentioned in the flood report by DID (2019). TWI 

(20.3%) was considered as second significant factor as flooded areas are mostly located 

at wet areas. Land use (10.6%) and NDVI (6.9%) were regard as strongly significant while 

elevation (5.0%) and slope (6.2%) were moderate significant. Finally, soil types (2.8%) is 

described as lower significant. 

After generating pairwise comparison matrix, the relative relevance of each criterion 

was estimated using the AHP. The consistency check of the AHP analysis was conducted. 

CR value in this study is 0.035, which is less than 0.1. As a result, the pairwise comparison 

is both valid and consistent. Then, the flood risk map was developed after applying the 

weighting total of all causative criteria. The sensitivity score of each factor’s sub-

categories can be referred in the Appendix B. Table 4.9 indicates the weightage of each 

factor generated from AHP. 
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TABLE 4.7. Pairwise comparison matrix 

Factor Rainfall  Drainage 

density 

TWI Land 

use 

NDVI Elevation  Slope Soil 

Rainfall 1     1     1     3     4     5     5     6     

Drainage 

density 
1     1     1     3     4     5     5     6     

TWI 1     1     1     2     3     4     4     5     

Land use  1/3  1/3  1/2 1     1     3     3     4     

NDVI  1/4  1/4  1/3 1     1     2      1/2 3     

Elevation   1/5  1/5  1/4  1/3  1/2 1     1     3     

Slope   1/5  1/5  1/4  1/3 2     1     1     3     

Soil  1/6  1/6  1/5  1/4  1/3  1/3  1/3 1     

Total 3.2 3.2 3.5 7.9 11.8 16.3 14.8 3.2 

 

  



47  

TABLE 4.8. Normalized pairwise comparison matrix 

Factor R  DD  TWI LU NDVI E  Sl S Weight 

Rainfall, R 0.32 0.32 0.28 0.38 0.34 0.31 0.34 0.24 0.241 

Drainage 

density, DD 0.32 0.32 0.28 0.38 0.34 0.31 0.34 0.24 0.241 

TWI 0.32 0.32 0.28 0.25 0.25 0.24 0.27 0.20 0.203 

Land use, LU 0.11 0.11 0.14 0.13 0.08 0.18 0.20 0.16 0.106 

NDVI 0.08 0.08 0.09 0.13 0.08 0.12 0.03 0.12 0.069 

Elevation, E  0.06 0.06 0.07 0.04 0.04 0.06 0.07 0.12 0.050 

Slope, Sl  0.06 0.06 0.07 0.04 0.17 0.06 0.07 0.12 0.062 

Soil, S 0.05 0.05 0.06 0.03 0.03 0.02 0.02 0.04 0.028 

 

TABLE 4.9. Weightage of each factor 

No. Factors Weights (%) 

1. Rainfall 24.1 

2. Drainage density 24.1 

3. TWI 20.3 

4. Land use 10.6 

5. NDVI 6.9 

6. Elevation 5.0 

7. Slope 6.2 

8. Soil types 2.8 
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4.4.1 Flood Risk Maps for 2001, 2011 and 2021 

  

 
FIGURE 4.12. (a) 2001; (b) 2011; (c) 2021 Flood Risk Maps 
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TABLE 4.10. The area of each risk level and its percentage for 2001, 2011 & 2021 

 

Year 2001 2011 2021 

Risk Level 

Area 

(km²) 

Percent 

(%) 

Area 

(km²) 

Percent 

(%) 

Area 

(km²) 

Percent 

(%) 

Very low 227.36 1.12 278.36 1.37 245.26 1.21 

Low 9027.04 44.37 9183.31 45.12 9213.70 45.32 

Moderate 8763.33 43.08 8783.95 43.16 8721.55 42.90 

High 2277.38 11.19 2062.50 10.13 2101.57 10.34 

Very high 48.84 0.24 43.41 0.21 47.75 0.23 

 

TABLE 4.11. Changes in area and percentage of risk level for 2001 – 2021  

 

Year 2001 - 2011 2011 - 2021 

Risk Level Area (km²) Percent (%) Area (km²) Percent (%) 

Very low 51.01 0.25 -33.10 -0.16 

Low 156.27 0.75 30.39 0.20 

Moderate 20.62 0.09 -62.40 -0.26 

High -214.88 -1.06 39.07 0.20 

Very high -5.43 -0.03 4.34 0.02 

 

 

  

FIGURE 4.13. Changes of the flood risk level for 2001, 2011 and 2021 

4.4.2 Flood Risk Map for 2031, 2041 and 2051 
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FIGURE 4.14. (a) 2031; (b) 2041; (c) 2051 Flood Risk Maps 

TABLE 4.12. The area of each risk level and its percentage for 2031, 2041 & 2051 
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Year 2031 2041 2051 

Risk Level 

Area 

(km²) 

Percent 

(%) 

Area 

(km²) 

Percent 

(%) 

Area 

(km²) 

Percent 

(%) 

Very low 238.75 1.17 237.67 1.17 237.67 1.17 

Low 9220.22 45.35 9239.75 45.45 9244.63 45.47 

Moderate 8751.39 43.05 8749.76 43.04 8755.73 43.07 

High 2074.98 10.21 2057.62 10.12 2050.02 10.08 

Very high 44.49 0.22 45.04 0.22 41.78 0.21 

 

TABLE 4.13. Changes in area and percentage of risk level for 2031 – 2051  

Year 2031 - 2041 2041 - 2051 

Risk Level Area (km²) Percent (%) Area (km²) Percent (%) 

Very low -1.09 -0.01 0.00 0.00 

Low 19.53 0.10 4.88 0.02 

Moderate -1.63 -0.01 5.97 0.03 

High -17.36 -0.09 -7.60 -0.04 

Very high 0.54 0.00 -3.26 -0.02 

 

 
 

FIGURE 4.15. Changes of the flood risk level for 2031, 2041 and 2051 

4.4.3 Analysis of Flood Risk Map 
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The flood risk maps were created using thematic mapping and AHP. It was then 

categorized using the natural break method in the ArcGIS environment, displaying five 

major flood risk classes, ranging from very low to very high.  

By referring to the results obtained from Table 4.10 and 4.11, the outcomes show 

that the area of very low flood risk level (Level 1) increase from 227.36 km2 to 278.36 

km2 during 2001 until 2011. Then the area experienced decrease to 245.26 km2 during 

2021. Next, the area of low flood risk level (Level 2) increase from 9027.04 km2 to 

9183.31 km2 during 2001 until 2011 which continuously increase to 9213.70 km2 during 

2021. While for the moderate flood risk level (Level 3), it shows that there  is a slight 

increase of area from 8763.33 km2 to 8783.95 km2 during 2001 until 2011 then decrease 

to 8721.55 km2 during 2021. However, for the high flood risk level (Level 4), it appears 

that there  is a significant decrease of area from 2277.38 km2 to 2062.50 km2 during 2001 

until 2011 then during 2021, the area increase to 2101.57 km2. Finally, for the very high 

flood risk level (Level 5), the change of area seems to be in the same trend as Level 4. 

There  is a small decrease of area from 48.84 km2 to 43.41 km2 during 2001 until 2011 

then during 2021, the area increase to 47.75 km2. 

As for the prediction of flood risk maps in the year 2031 until 2051, the results can 

be found in Table 4.12 and Table 4.13. The results reveals that the area of very low flood 

risk level (Level 1) experienced a minor decrease from 238.75 km2 to 237.67 km2 during 

2031 until 2041. For the year 2041 until 2051, the result presents that there is no changes 

in the area for Level 1 flood. Then, the area of low flood risk level (Level 2) increase from 

9220.22 km2 to 9239.75 km2 during 2031 until 2041 which will be continuously increase 

to 9244.63 km2 during 2051. While for the moderate flood risk level (Level 3), it indicates 

that there is a slight decrease of area from 8751.39 km2 to 8749.76 km2 during 2031 until 

2041 then a little increase to 8755.73 km2 during 2051. Whereas for the high flood risk 

level (Level 4), there will be a continuous decrease in the area from 2074.98 km2, 2057.62 

km2 to 2050.02 km2 throughout 2031, 2041 and 2051, respectively. Lastly, for the very 

high flood risk level (Level 5), the area is expected to be increase a bit from 44.49 km2 to 

45.04 km2 during 2031 until 2041 then during 2051, the area decrease to 41.78 km2. 

The spatial distribution of flood events at Perak which has been classified into five 
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risk level are shown in Figure 4.13 (a), (b) and (c) for 2001 – 2021, and Figure 4.14 (a), 

(b) and (c) for 2031 – 2051. From the results, it can be concluded that the flood occurrence 

for all the flood risk level happened in the same area of distribution throughout 2001 – 

2051. The very low and low flood risk level (Level 1 and 2) are found in the North and 

North-East side of Perak. This includes Hulu Perak, east side of Larut and Matang, 

Selama, Kuala Kangsar, east side of Kinta and Batang Padang. The area has less rainfall 

intensity, high drainage density and TWI. The elevation is very high while the slope is 

very steep as the areas are noticeably located at mountainous region and are mostly 

covered with vegetation or forest. Hence, the flood risk level at these areas are low. 

The moderate flood risk level (Level 3) are found mostly at West side until South 

part of Perak which are Kerian, Larut and Matang, Manjung, Perak Tengah, Hilir Perak, 

Kinta, Batang Padang and central part of Kuala Kangsar. From the land use classification, 

it can be observed that the area is mainly consist of agricultural lands, and the wetness 

level is moderately high due to the plantation purpose. The rainfall intensity and drainage 

density are fairly distributed within these areas. Moreover, the areas are at low elevation 

and the surface from ground level is very gentle.  

The high and very high flood risk level (Level 4 and 5) are identified at South part 

of Perak particularly at Manjung, Perak Tengah and Hilir Perak. These areas have high 

rainfall intensity. Although there are high drainage density, these areas are close to the 

river and remarkably situated at developed land that has low elevation and the surface 

from ground level is very gentle. Thus, the flood risk level at these areas increased.  
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

 
 

This study successfully investigate the flood causative factors for Perak state which 

are rainfall intensity, drainage density, topographic wetness index, slope, elevation, land 

use, normalized difference vegetation index and soil types.  

The ANN-CA model has been effectively created for the prediction of land use 

changes for Perak. The findings of this study reveals that urban areas will grew rapidly and 

have a significant rise, by 4555.10 km2 to 4980.42 km2, for 2031 – 2051. Moreover, the 

barren lands will also experience some increase in the areas. The expansion in the land use 

changes for urban areas and barren lands might be due to the expected growth in 

commercial, residential, and industrial areas. However, the forest in Perak will encounter 

degradation in the area from 15087.61 km2 to 14795.43 km2, for 2031 – 2051. Minimal 

decreases were revealed in the classes of water bodies and agricultural lands. 

Next, the relative importance of the flood causative factors have been compared in a 

pairwise comparison matrix to gain the weight values during the process of AHP. To 

accomplish the objective of this study, AHP-GIS was used as spatial forecasting tools to 

map the flood risk areas in Perak according to their weights. Based on the results, the high 

and very high flood risk level were identified in the South-West part of Perak particularly 

at Manjung, Perak Tengah and Hilir Perak. 

As for the recommendations, additional parameters that influenced the land use 

changes such as aspect, distance from the road and population density, can be used as 

spatial input variables when training the ANN model to get  more accurate prediction result. 

Next, the validation of flood risk map can be done by using Area Under the Curve (AUC) 

method to verify the accuracy of the AHP-GIS model. 
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APPENDICES 

 

APPENDIX A. Average monthly rainfall data for year 2010 – 2020  

 

Station no. Station name Longitude Latitude Rainfall (mm) 

3814158 Sg. Bil 101.4994 3.8186 180.62 

3814159 Sg. Slim 101.4086 3.8257 180.62 

3814160 Ulu Slim 101.4972 3.8967 180.62 

3901001 Changkat Jong 101.1151 3.9866 180.62 

3907103 JPS. Bagan Datoh 100.7653 3.9882 181.49 

3913148 Kg. Klah Baru 101.3324 3.9812 180.62 

4010098 Hospital Telok Intan 101.0227 4.0309 180.62 

4011144 Rumah JPS Chui Chak 101.1714 4.0418 180.62 

4109094 Kg. Gajah 100.9419 4.1848 180.62 

4207048 Pejabat JPS Sitiawan 100.6999 4.2186 181.49 

4209093 JPS. Telok Sena 100.8995 4.2556 187.96 

4312001 Kg Sahom 101.2152 4.3862 177.80 

4411120 Gua Tempurung di Gopeng 101.1898 4.4343 177.80 

4205101 Pulau Pangkor 100.5621 4.2066 181.49 

4409092 Sg. Perak di Parit 100.9054 4.4722 187.96 

4511111 Politeknik Ungku Omar 101.1228 4.5879 177.80 

4911077 Sg. Plus di Kg. Lintang 101.1004 4.9400 172.10 

4809001 Jambatan Iskandar 100.9717 4.8193 172.10 

4807016 Bkt. Larut di Taiping 100.8359 4.8512 173.53 

4907020 Batu 14 Batu Kurau 100.7794 4.9778 173.53 

5006180 Bkt. Merah 100.6546 5.0310 173.53 

5005005 Sungai Samagagah 100.5373 5.0667 173.53 

5003028 Stn. Petak Ujian Tg. Piandang 100.3846 5.0700 173.53 

5108005 Ibu Bekalan Ulu Ijok 100.8056 5.1224 173.53 

5210069 Stn. Pemeriksaan Hutan Lawin 101.0574 5.2977 174.06 

5411066 Kuala Kenderong 101.1549 5.4160 174.06 

5513001 Tasik Banding 101.3531 5.5502 174.06 

5610063 Kg. Lalang di Grik 101.0683 5.6041 174.06 



 

APPENDIX B. Sensitivity score of each factor 

Factor Class Score 

Rainfall 172 – 175 mm 

175 – 178 mm 

178 -181 mm 

181 – 184 mm 

184 – 187 mm 

1 (Very Low Risk) 

2 (Low Risk) 

3 (Moderate Risk) 

4 (High Risk) 

5 (Very High Risk) 

Drainage density 0 – 10.32 km2 

10.33 – 18.62 km2 

18.63 – 26.48 km2 

26.49 – 35 km2 

35.01 – 57.22 km2 

1 (Very Low Risk) 

2 (Low Risk) 

3 (Moderate Risk) 

4 (High Risk) 

5 (Very High Risk) 

TWI 2.11 – 5.58 

5.58 – 6.97 

6.97 – 8.75 

8.75 – 11.22 

11.22 – 21.79 

1 (Very Low Risk) 

2 (Low Risk) 

3 (Moderate Risk) 

4 (High Risk) 

5 (Very High Risk) 

Land use Forest 

Agricultural lands 

Water bodies 

Urban areas 

Barren lands 

4 (High Risk) 

4 (High Risk) 

5 (Very High Risk) 

1 (Very Low Risk) 

3 (Moderate Risk) 

NDVI Water areas 

Urban and Barren lands 

Shrubs 

Unhealthy vegetation 

Healthy vegetation 

5 (Very High Risk) 

4 (High Risk) 

3 (Moderate Risk) 

2 (Low Risk) 

1 (Very Low Risk) 

Elevation -27 – 196 m 

196 – 504 m 

504 – 828 m 

828 – 1203 m 

1203 – 2168 m 

5 (Very High Risk) 

4 (High Risk) 

3 (Moderate Risk) 

2 (Low Risk) 

1 (Very Low Risk) 



 

Slope Very gentle (0 – 5˚) 

Gentle (5 – 10˚) 

Moderate (10 – 25˚) 

Steep (25 – 35˚) 

Very steep (>35˚) 

5 (Very High Risk) 

4 (High Risk) 

3 (Moderate Risk) 

2 (Low Risk) 

1 (Very Low Risk) 

Soil types Orthic Acrisol 

Eutric Gleysols 

Dystric Hystosols 

Ferric Acrisol 

Lithosols 

Thionic Fluvisols 

Eutric Fluvisols 

1 (Very Low Risk) 

5 (Very High Risk) 

4 (High Risk) 

1 (Very Low Risk) 

2 (Low Risk) 

3 (Moderate Risk) 

3 (Moderate Risk) 

 

 


