





## Numerical Study of Nonlinear Wave Groups In Shallow Water

Presented By: Fong Kai Chuen (19000374)

Supervised By: Dr Mohamed Latheef

#### TABLE OF CONTENTS





~~\_\_\_\_\_

- Investigating waves numerically in shallow waters
- Most of the studies are done for no linear effects on deep water
- In addition, deep water consist of more research due to its readured application in offshore works
- Shallow water is rarely researched
- Non-linearity effects is where we include higher order of waves and combine them into a single waves



~~^//~\_

5

 One study bKatsardand Swan (2011) highlight the difference of dee and shallow water

- Waves of water at deep water and shallow water provide different results and patterns
- In deep water, waves have a big elevation at one point, while shallow water have more larger waves throughout
- This difference are due to the higher order wave notinearities



\_\_\_\_\_

- Deep Water: Energy are transferred from peak to higher frequencies
- Shallow WateEngergyfrom low and high frequencies transferred to the peak
- Caused by higher order effects



\_\_\_\_\_

- All the research in the past have been mostly 2 dimensional, with wave energy propagating in one direction
- No studies that was found that go in depth to multiple propagating wave in different directions, at shallow water, through nohnearities wave
- To accurately simulate the record conditions, the 3 points are needed
- Spectrum defines the distribution of energy with frequency





8

## PROBLEM STATEMENT



- Lack of research on shoutested waves in shallow waters
- Lack of research on multiple wave components at shallow water
- Directionally spread spectrum, non linear effects in shallow water does not exist yet



# MAIN OBJECTIVE



- To quantify the effects of higher order non-linearities on crest elevations in directional sea states when compared to uni-directional sea states in shallow water
- To quantify the higher order effects in directional sea states between shallow and deep water



## SCOPE OF WORK

- Research spectrum to be limited to Jonswappectrum
- Breaking waves would not be considered



#### LITERATURE REVIEW

m

- Category 1: Articles that focusses on wave statistics, short term statistics on wave height and crest height for ndinear effects
- These articles are useful to determine the wave conditions in a simulation in order to mimic the similar conditions recorded in the real-world
- These articles provides us with the required statistics to mimic the real shallow water conditions

#### Cited Articles

(Karmpadakis et al., 2020, Katsardi and Swan, 2011, Schubert et al., 2020, Wu et al., 2016)

#### LITERATURE REVIEW

------

- Category 2: Articles that highlights the importance of modelling of ndinear waves
- A study done bChatziioannouKatsardi andMistakidis(2015) highlights the importance of nonlinear wave modelling
- Discrepancies up to 30% in predicted loads if nonlinear modelling is not used
- This highlights the importance of Norear wave modelling



#### LITERATURE REVIEW

- Category 3: Articles that highlights-non linear evolution of waves groups in shallow water in terms of 2 dimensional and 3 dimensional
- For 3 dimensional, only 1 article are found and it is only limited to 3 components
- However, our main goal for this research is to include more components that incorporate all gbnswap'spectrum
- Most of these articles focusses on 2 dimensional waves, with only a few components
- Thus our research would be focussing on Jonswappectrum, for waves propagating in all direction, at shallow water

#### Cited Articles

(Katsardi and Swan, 2011, Karmpadakis and Swan, 2020, Liu and Xie, 2019, Vyzikas et al., 2018, Xu et al., 2012)



### METHODOLOGY

~~~//~\_

- Simulation of directional and Uni directional with different sea state parameters
- To compare and analyse between the directional and Undirectional
- Model would be referred to Bateman, Swan & Taylor (2001, 2003)
  - Model can be utilize to simulate fully nonlinear waves
  - Highly Accurate
  - Efficient





#### **FLOW CHART**



#### GANTT CHART

|                                                        | FYP 1 (weeks) |   |   |   |    |   |   |   |   |    |    |    |
|--------------------------------------------------------|---------------|---|---|---|----|---|---|---|---|----|----|----|
|                                                        | 1             | 2 | 3 | 4 | 5  | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| Study on Hydrodynamics.<br>Regular and Irregular waves |               |   |   |   |    |   |   |   |   |    |    |    |
| Introduction to MATLAB                                 |               |   |   |   |    |   |   |   |   |    |    |    |
| Literature Review                                      |               |   |   |   |    |   |   |   |   |    |    |    |
| Scope, Objective, Problem<br>Statement                 | 1             |   |   |   |    |   |   |   |   |    |    |    |
| Developing Methodology                                 |               |   |   |   |    |   |   |   |   |    |    |    |
| Proposal Defense                                       |               |   |   |   |    |   |   |   |   |    |    |    |
| Interim Report                                         |               |   |   |   |    |   |   |   |   |    |    |    |
|                                                        |               |   |   |   | 18 |   |   |   |   |    |    |    |

#### GANTT CHART

|                                                               | FYP 2 (weeks) |   |   |   |    |   |   |   |   |    |    |    |
|---------------------------------------------------------------|---------------|---|---|---|----|---|---|---|---|----|----|----|
|                                                               | 1             | 2 | 3 | 4 | 5  | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| Validate BST Model                                            |               |   |   |   |    |   |   |   |   |    |    |    |
| Generate Wave Groups in 2D o<br>3D                            | &             |   |   |   |    |   |   |   |   |    |    |    |
| AnalysisOf 3D and 2D shallow<br>water                         |               |   |   |   |    |   |   |   |   |    |    |    |
| Analysisof 3D deep water and shallow water                    |               |   |   |   |    |   |   |   |   |    |    |    |
| Fourier Analysis to understand<br>non-linear wave interaction |               |   |   |   |    |   |   |   |   |    |    |    |
| Reporting and Evaluation                                      |               |   |   |   |    |   |   |   |   |    |    |    |
|                                                               |               | • |   |   |    |   |   |   |   | •  |    |    |
|                                                               |               |   |   |   | 19 |   |   |   |   |    |    |    |



### Ē

#### VALIDATION

~~^//~\_

- To validate produced figures against Katsaldand Swan (2011)
- To prove the accuracy of our generated model against a published and widely known paper







#### Validation of Energy Spectrum

\_\_\_\_\_



#### NONLINEAR WAVES

- Surface elevation increase in deep water and decrease in shallow water
- Concentrated wave in deep water and spread waves in shallow water



#### NONLINEAR WAVES

- In deep water, waves becoming concentrated forming a high peak elevation
- In shallow water, waves remainsspreaded throughout



#### Amplitude Spectrum

#### In deep water

 energy were transferred towards higher frequencies over time, decreasing peak amplitude

Shallow water consist of 2 stage effects.

- Stage 1: energy transferred towards peak, lower and higher frequencies
- Stage 2: Energy transferred away from the peak



## Ē

### **Spectral Bandwidth**

~~//~\_

26

In deep water

- Energy gradually become spread ur the peak
- In shallow water
  - Energy starts aspreaded began to be concentrated, and at t = 82s, energy became spread.



#### **Directional Waves**

 $-\sqrt{}$ 

27

#### In directional seas

- Peak surface elevation were higher than the starting elevation of 5m. The opposite effect in ni-directional seas
- Directional waters remain focussed comparison touni-directional. Very similar to deep water





#### **Evolutions of Waves**





#### **Evolution of Amplitude Spectrum**

- Energy were transferred towards higher and lower frequencies overtime and reaches its peak at t = 85.209s
- At maximum surface elevation, energy transferred from x axis and y axis towards the peak, high and low frequencies. This meant that directional waves play a big role
- A similar reaction towardsuai-directional deep water. Thus, the two stage effects observed inuni-direction disappears.





#### CONCLUSION

- The research is to compare betweendirectional and directional wave conditions in shallow water u non-linear waves.
- Surface elevation higher than starting elevation in directional waves
- Two stage effects imi-directional waves were not seen in directional waves
- Directional shallow water acts more similarly towa uni-directional deep water waves
- Recommendations: To research on more angles, real world studies, to do on different spectrums



#### REFERENCES

Nuwer, R. (2014) *foral Reefs Absorb 97 Percent of the Energy From Waves Headed Toward Shore* Smithsonian Magazine. https://www.smithsonianmag.com/seven/coralreefsabsorbalmostall-energy crashingwavesheadedtowardshore180951462/

Bateman, WKatsardi V., & Swan, C. (2012). Extreme ocean waves. Part I. The practical application of fully nonlinear wave modelling *pplied Ocean Resear 6* , 209224.

ChatziioannouK.KatsardiV., & MistakidisE. (2015). The importance of accurate calculation of the nonlinear extreme wave kinematics in the design of offshore platforms.

Karmpadakisl., & Swan, C. (2020). On the average shape of the largest waves in finite water. *Physical Oceanograp*/*bj0*(4), 1023043.

Karmpadakisl., Swan, C., & Christou, M. (2020). Assessment of wave height distributions using an extensive field database*Coastal Engineerint* 7103630.

Katsardi V., & Swan, C. (2011). The evolution of latige atking waves in intermediate and shallow water. I. Numerical calculations of indirectional seas?roceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences (2127), 7-8605.

#### REFERENCES

\_\_\_\_\_\_

Katsardi V., & Swan, C. (2011). An experimental study of shallow water wave statistics on mild bed slopes. International Conference on Offshore Mechanics and Arctic Engineering,

Liu, Z., & ie, D. (2019). Finite plitude steadystate wave groups with multiple needs on ances in finite water depth. *Journal of Fluid Mechan B37*, 348373.

Schubert, M., Wu, Tychsen, J.Dixen, M., Faber, M. Sternsen, J. D., & Jonathan, P. (2020). On the distribution of maximum crest and wave height at intermediate water depter *Agrees* Engineering 17107485.

VyzikasT.StagonasD.BuldakovE., & Greaves, D. (2018). The evolution of free and bound waves during dispersive focusing in a numerical and physical floorestal Engineerint 3295109.

Wu, Y., Randell, D., Christo E, Man, S., & Jonathan, P. (2016). On the distribution of wave height in shallow water. *Coastal Engineering*, 3949.

Xu, D., Lin, Z., Liao, StiassnieM. (2012). On the steathte fully resonant progressive waves in water of finite depth *Journal of Fluid Mechanicts*03794/8.



Any questions?

#### **ETA ODD in Directional Waves**

- Energy were transferred towards higher and lower frequencies overtime and reaches its peak at t = 85.209s
- At maximum surface elevation, energy transferred from x axis and y axis towards the peak, high and low frequencies. This meant that directional waves play a big role
- A similar reaction towardsuai-directional deep water. Thus, the two stage effects observed inuni-direction disappears.

