CERTIFICATION OF APPROVAL

Of Research Project

Design of Modular Fixture for CNC Machining Center

by

MOHD ZUL AKMAL BIN ZAINAL ABIDIN

A project dissertation submitted to the Mechanical Engineering Programme UniversitiTeknologi PETRONAS in partial fulfilment of the requirement for the BACHELOR OF ENGINEERING (Hons) (MECHANICAL ENGINEERING)

Approved by,

(AP IR. DR. MOHD AMIN B. ABD MAJID)

UNIVERSITI TEKNOLOGI PETRONAS TRONOH, PERAK SEPTEMBER 2011

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the original work is my own except as specified in the references and acknowledgements, and that the original work contained herein have not been undertaken or done by unspecified sources or persons.

MOHD ZUL AKMAL BIN ZAINAL ABIDIN

Mechanical Engineering Department, UniversitiTeknologi PETRONAS

ABSTRACT

Recent practice to clamp workpiece for Mazak Variaxis 630 5x II is impractical since different clamping component or fixture is installed repeatedly such as jaw chuck and movable vise to clamp different shape of the workpiece. This practice has increase the setup time of the machine as it covers installing and uninstalling of the fixture. Therefore, in order to reduce the setup time of the machine, a new fixture is to be design to clamp variable shapes and dimensions of the workpiece using the same fixture.

To accomplish such criteria, a fixture with higher flexibility is needed where modular fixture suits with this kind of situation. Modular fixture is a workholding system which uses series of equipment like locators, supports, clamps, risers and other available equipment that can be attached to the fixture table. Modular fixture has high flexibility since the equipments can be positioned according to the shape and dimension of the workpiece.

The first step in designing a fixture is to determine the shape and dimensions of the workpiece. Then, the external forces need to be calculated where the cutting force and cutting torque are to be determine. After external forces are evaluated, the planning to position the equipment such as locator, support and clamps are performed. This is important elements in modular fixture are the layout planning of the modular equipment to ensure the workpiece is fully constraint when subjected to external forces such as 3-2-1 locating method.

After fixture planning is done, the design concept is generated by using several methods such as conceptual decomposition, functional decomposition, and morphological chart and lastly Pugh's concept selection to select the best and practical concept. Then, the design is analyzed especially the clamping force of the clamps.

Material selection process is performed after the analysis of the design is done. Next, manufacturing process is planned using the selected material and the dimensional tolerances of each part of the fixture. Then the final result is the detail design of each part is performed.

ACKNOWLEDGEMENT

First and foremost, highest gratitude to Allah the Almighty for upon His guidance and will, had blessed the author with good health and fresh mind, in order to complete the Final Year Project successfully on time.

The author wish to express his sincere and utmost appreciation to his project supervisor, AP Prof. Ir. Dr. Mohd Amin B. Abd Majid for having faith in guiding the author throughout the research progress and his continuous support since the beginning until the end of the research project.

The author's deepest appreciation to Mechanical Engineering Department, University Technology of PETRONAS (UTP) for excellent support in term of providing invaluable knowledge, information and laboratory facilities for the whole period of studies especially during the final year project research.

A million thanks to Mr. Hafiz and other technical staff whose contributions have help in completing the research project.

Special thanks to author's family and fellow colleagues for their support and help throughout the completion of this study.

Last but not least, to all who's involved in making this research project a success, thank you for your help, motivation and encouragement. This will be a memorable experience and the author hopes that it will bring beneficial output to others as well. The author sincerely appreciates all your kindness.

TABLE OF CONTENTS

CHAPTER 1:	INTF	INTRODUCTION		•	1
	1.1.	Background of Study	•		1
	1.2.	Problem Statements	•		2
	1.3.	Objective	•		3
	1.4.	Scope of Study	•		3
	1.5.	The Relevance of the Project .			3
	1.6.	The Feasibility of the Project .	·		3
CHAPTER 2:	LITE	CRATURE REVIEW	•		4
	2.1.	Computer Aided Fixture Design			4
	2.2.	Modular Fixture			5
	2.3.	Elements of Modular Fixture .	•	•	6
	2.4.	Mazak Variaxis 630 5x II .	•	•	8
	2.5.	Material Selection Process and			
		Dimensional Tolerances .			9
CHAPTER 3:	MET	HODOLOGY	•	•	13
	3.1.	Fixture Planning Model .			13
	3.2.	Details of Fixture Planning Model		•	14
	3.3.	Gantt Chart and Key Milestone			
		For FYP II			24

CHAPTER 4:	RESULTS AND DISCUSSION					•	•	•	25
	4.1.	Proj	posed Des	ign	•	•			25
	4.2.	Cla	mping For	ce aga	inst				
		Ext	ernal Ford	ce					31
	4.3.	Mat	erial Seleo	ction a	nd				
		Maı	nufacturin	g Proc	ess				33
	4.4	Din	nensional '	Tolera	nces	•	•		34
	4.5	Ass	embly Dra	awing	of Moo	lular			
		Fixt	ure.						35
	4.6	Det	ailed Desi	gn of I	Modula	ar			
		Fixt	ure Eleme	ents					36
CHAPTER 5:	CONCLUSION AND								
	RECOMMENDATION						62		
	5.1.	Con	clusion		•	•	•		62
	5.2.	Rec	ommenda	tion					63
REFERENCES	•	•	•	•	•	•	•	•	64
APPENDIX .		•	•	•	•	•	•	•	65

LIST OF FIGURES

Figure 2.1	Four Stages of Fixture Design	4
Figure 2.2	A Fixture Constructed From Modular Elements	5
Figure 2.3	3-2-1 Locating Principle	7
Figure 2.4	Ashby Material Selection Chart: Strength Vs Density	10
Figure 2.5	Dimensional Tolerances As A Function Of Part Size For Various Manufacturing Processes	12
Figure 3.1	Flowchart Of Design And Development Of Modular Fixture For CNC Machining Center	13
Figure 3.2	Rectangular and Cylindrical Wokpiece Dimensions	14
Figure 3.3	Direct Decomposition Of A Fixture Into Subassemblies And Components	19
Figure 3.4	Subfunctions of CNC Fixture	21
Figure 4.1	Modular fixture base	25
Figure 4.2	Cylindrical supports	26
Figure 4.3	Cylindrical locator	26
Figure 4.4	Clamp for rectangular workpiece	27
Figure 4.5	Clamp for cylindrical workpiece	27
Figure 4.6	Fixture Layout for Rectangular Workpiece	28
Figure 4.7	Fixture Layout for Rectangular Workpiece	29
Figure 4.8	Fixture Layout for Cylindrical Workpiece	30
Figure 4.9	Fixture Layout for Cylindrical Workpiece	31
Figure 4.10	Modular Fixture Assembly Drawing	35
Figure 4.11	Isometric View of Fixture Base	36
Figure 4.12	Side View of Fixture Base	37
Figure 4.13	Isometric View of Clamp Body	38
Figure 4.14	Top View of Clamp Body	39
Figure 4.15	Side View of Clamp Body	40
Figure 4.16	Isometric View of Clamp Head for Rectangular Workpiece	41
Figure 4.17	Top View of Clamp Head for Rectangular Workpiece	42
Figure 4.18	Side View of Clamp Head for Rectangular Workpiece	43
Figure 4.19	Isometric View of Clamp Head for Cylindrical Workpiece	44
Figure 4.20	Top View of Clamp Head for Cylindrical Workpiece	45
Figure 4.21	Side View of Clamp Head for Cylindrical Workpiece	46
Figure 4.22	Isometric View of Locator Body	47
Figure 4.23	Top View of Locator	48
Figure 4.24	Side View of Locator	49
Figure 4.25	Isometric View of Support Body	50
Figure 4.26	Top View of Support Body	51
Figure 4.27	Side View of Support Body	52
Figure 4.28	Isometric View of Clamp Screw	53
Figure 4.29	Top View of Clamp Screw	54
Figure 4.30	Side View of Clamp Screw	55
Figure 4.31	Isometric View of Screw Washer	56
Figure 4.32	Top View of Screw Washer	57

Figure 4.33	Side View of Screw Washer	58
Figure 4.34	Isometric View of Clamp Head Screw	59
Figure 4.35	Top View of Clamp Head Screw	60
Figure 4.36	Side View of Clamp Head Screw	61

LIST OF TABLES

Table 2.1	Mazak Variaxis 630-5x II Specifications	9			
Table 2.2	Performance Indices	10			
Table 2.3	Commercially Available Shapes Of Material	11			
Table 3.1	Feed Rate, Depth Of Cut And Spindle Speed Of End Milling And				
	Side Milling Carbide Cutting Tool				
	Calculation Process Of Power, Torque And Cutting Force Of				
Table 3.2	10mm Cutting Tool For Rectangular Wokpiece Using End Milling	17			
	Process				
	Results Of Power, Torque And Cutting Force Of 10mm And				
Table 3.3	20mm Diameter Cutting Tool For Rectangular Wokpiece For Each				
	Processes				
	Results Of Power, Torque And Cutting Force Of 10mm And				
Table 3.4	20mm Diameter Cutting Tool For Cylindrical Wokpiece For Each	18			
	Processes				
Table 3.5	Functionality of Devices of CNC Fixture	20			
Table 3.6	Morphological Chart of CNC Fixture	21			
Table 3.7	Pugh's Concept Selection of CNC Fixture	23			
Table 3.8	Gantt Chart for FYP II	24			
Table A-1	Diameters And Areas Of Coarse-Pitch And Fine-Pitch Metric	65			
	Threads	03			
Table A-2	Metric Mechanical-Propety Classes for Steel Bolts, Screw and				
	Studs				
Table A-3	Prima Selection Matrix Showing Which Materials And Processes	67			
	Are Usually Used in Practice	0/			