
STATUS OF THESIS

Title of thesis
An Efficient Frequent Itemset Mining Algorithm Using the

FP-DB Approach

I __

hereby allow my thesis to be placed at the Information Resource Center (IRC) of

Universiti Teknologi PETRONAS (UTP) with the following conditions:

1. The thesis becomes the property of UTP

2. The IRC of UTP may make copies of the thesis for academic purposes only.

3. This thesis is classified as

 Confidential

 Non-confidential

If this thesis is confidential, please state the reason:

The contents of the thesis will remain confidential for ___________ years.

Remarks on disclosure:

 Endorsed by

________________________________ __________________________

Signature of Author Signature of Supervisor

Permanent address: Name of Supervisor

Date : __________________________ Date : _____________________

CHEE CHIN HOONG

AP Dr. Jafreezal bin Jaafar

1742, Jalan Emas, Taman Bandar Baru,

31900 Kampar, Perak.

✓

UNIVERSITI TEKNOLOGI PETRONAS

AN EFFICIENT FREQUENT ITEMSET MINING ALGORITHM

USING THE FP-DB APPROACH

by

CHEE CHIN HOONG

The undersigned certify that they have read, and recommend to the Postgraduate

Studies Programme for acceptance of this thesis for the fulfillment of the

requirements for the degree stated.

Signature: ______________________________________

Main Supervisor: ______________________________________

Signature: ______________________________________

Co-Supervisor: ______________________________________

Signature: ______________________________________

Head of Department: ______________________________________

Date: ______________________________________

AP Dr. Jafreezal bin Jaafar

AP Dr. Izzatdin bin Abdul Aziz

Dr. Aliza binti Sarlan

AN EFFICIENT FREQUENT ITEMSET MINING ALGORITHM

USING THE FP-DB APPROACH

by

CHEE CHIN HOONG

A Thesis

Submitted to the Postgraduate Studies Programme

as a Requirement for the Degree of

DOCTOR OF PHILOSOPHY

INFORMATION TECHNOLOGY

UNIVERSITI TEKNOLOGI PETRONAS

BANDAR SERI ISKANDAR,

PERAK

MARCH 2020

iv

DECLARATION OF THESIS

Title of thesis
AN EFFICIENT FREQUENT ITEMSET MINING ALGORITHM

USING THE FP-DB APPROACH

I __

hereby declare that the thesis is based on my original work except for quotations and

citations which have been duly acknowledged. I also declare that it has not been

previously or concurrently submitted for any other degree at UTP or other institutions.

 Witnessed by

________________________________ __________________________

Signature of Author Signature of Supervisor

Permanent address: Name of Supervisor

Date : __________________________ Date : _____________________

CHEE CHIN HOONG

1742, Jalan Emas, Taman Bandar Baru,

31900 Kampar, Perak.

AP Dr. Jafreezal bin Jaafar

v

ACKNOWLEDGEMENTS

First and foremost, I would like to thank God for His blessings in completing my

research. Then, I would like to thank my supervisor, AP Dr. Jafreezal bin Jaafar, for

his guidance and advice throughout this research. In addition, I would also like to

thank my co-supervisor, AP Dr. Izzatdin bin Abdul Aziz, who has also given me

advice and guidance.

Apart from this, I would like to thank the Education Ministry of Malaysia and

Universiti Teknologi PETRONAS (UTP) for providing me the financial sponsorship

to support my studies throughout the past few years.

Last but not least, I would like to thank my wife, Joanne Yew, for all her love,

support and prayer. I am also grateful to my family for their encouragement and

support during the entire journey of this research.

vi

ABSTRACT

Data mining provides insights that offer vast benefits such as increased revenue,

cost cutting, and improved competitive advantage. However, the hidden patterns of

the frequent itemsets become more time consuming to be mined when the amount of

data is big. Moreover, significant memory consumption is needed in mining the

hidden patterns of the frequent itemsets due to its enormous combinations that are

required to be processed. Most of the current algorithms are still facing these two

problems because the frequent itemsets are mined into the main memory and the

storage space is quite limited for mining the entire data set. Therefore, an efficient

algorithm is necessary to be constructed for mining the hidden patterns of the frequent

itemsets especially when the amount of data is big. Frequent Itemset Mining (FIM)

and Association Rule Mining (ARM) are the two main steps in Frequent Pattern

Mining (FPM), and the focus of this research is in FIM. The objectives of this

research are as follows: (1) to design an algorithm that constructs a Frequent Pattern

Collection (FP-Collection) in a Frequent Pattern Database (FP-DB) for storing the

frequent patterns which need to be used for data analysis in FPM, (2) to develop an

algorithm that efficiently mines the frequent patterns within a shorter run time and

with less memory consumption even though the amount of data is big in the data

warehouse, and (3) to evaluate the algorithm in order to ensure that it is capable to

mine the frequent patterns within a shorter run time and with less memory

consumption for both the sparse and dense data sets. In this research, FP-NoSQL is

proposed and constructed as an algorithm for FIM using the Not Only Structured

Query Language (NoSQL) because NoSQL is able to support the mining of big data

set in a flexible manner. The experimental research method is used as the

methodology to implement this research. Four sets of data that are in the sparse or

dense structure have been utilized for experimental testing to evaluate the

performance of the algorithm. In order to further confirm that the algorithm is robust

enough for mining the frequent itemsets in an efficient manner, two sets of data have

vii

been mined to compare against the Apriori and Extended Frequent Pattern (EFP)

algorithms. The experiments conducted have proven that the FP-NoSQL algorithm is

able to mine the hidden patterns of the frequent itemsets within a shorter run time and

with less memory consumption even though the amount of data is big in the data

warehouse. The FP-NoSQL algorithm is also evaluated to having a linear, logarithmic

or log linear time complexity relationship through the Big-O notation. Apart from

this, the FP-NoSQL algorithm is able to selectively retrieve the frequent patterns that

matched the requirements of users from the FP-DB for generating the frequent

itemsets. Thus, it is not required to mine the entire data warehouse again for

identifying the frequent patterns even after a power failure.

viii

ABSTRAK

Perlombongan data menawarkan manfaat yang luas seperti peningkatan

pendapatan, pemotongan kos, dan kelebihan daya saing yang lebih baik. Walau

bagaimanapun, corak tersembunyi itemset yang kerap memerlukan lebih banyak masa

untuk dilombong apabila jumlah data adalah besar. Selain itu, penggunaan memori

yang banyak diperlukan dalam perlombongan corak tersembunyi itemset yang kerap

disebabkan oleh kombinasi besar yang perlu diproseskan. Kebanyakan algoritma yang

sedia ada masih menghadapi kedua-dua masalah ini kerana itemset yang kerap

dilombong ke dalam memori utama dan ruang penyimpanan adalah agak terhad untuk

melombong keseluruhan set data. Frequent Itemset Mining (FIM) dan Association

Rule Mining (ARM) adalah dua langkah yang penting di dalam proses Frequent

Pattern Mining (FPM), dan fokus penyelidikan ini adalah FIM. Oleh itu, suatu

algoritma yang cekap perlu dibina bagi perlombongan corak tersembunyi itemset

yang kerap terutamanya apabila jumlah data adalah besar. Objektif penyelidikan ini

adalah seperti berikut: (1) merangka suatu algoritma yang membina satu Frequent

Pattern Collection (FP-Collection) dalam satu Frequent Pattern Database (FP-DB)

untuk menyimpan corak kerap yang perlu digunakan untuk analisis data dalam FPM,

(2) membina suatu algoritma yang melombongkan corak kerap dalam jangka masa

yang lebih singkat dengan penggunaan memori yang kurang walaupun jumlah data

adalah besar, dan (3) menilai algoritma yang dibina untuk memastikan bahawa ia

mampu melombongkan corak kerap dalam masa yang lebih singkat dengan

penggunaan memori yang kurang untuk kedua-dua set data jarang dan padat. Dalam

penyelidikan ini, FP-NoSQL dicadang dan dibina sebagai algoritma untuk FIM

dengan menggunakan Not Only Structured Query Language (NoSQL) kerana NoSQL

dapat menyokong perlombongan data besar secara fleksibel. Kaedah penyelidikan

eksperimen digunakan sebagai metodologi untuk melaksanakan penyelidikan ini.

Empat set data yang berada dalam struktur jarang atau padat telah digunakan dalam

ujian eksperimen untuk menilai prestasi FP-NoSQL. Untuk mengesahkan bahawa FP-

ix

NoSQL adalah sesuai untuk perlombongan itemset yang kerap, dua set data telah

dilombong untuk dibandingkan dengan algoritma Apriori dan Extended Frequent

Pattern (EFP). Eksperimen yang dijalankan telah membuktikan bahawa FP-NoSQL

dapat melombong corak itemset yang kerap dalam masa yang lebih pendek dan

dengan penggunaan memori yang kurang walaupun jumlah data adalah besar.

Algoritma FP-NoSQL juga dipastikan mempunyai hubungan kompleksiti masa yang

linear, logaritma atau log linear melalui notasi Big-O. Selain itu, FP-NoSQL dapat

memilih corak kerap yang selaras dengan syarat pengguna dari FP-DB untuk

menghasilkan itemset yang kerap. Oleh itu, gudang data tidak perlu dilombong lagi

untuk menghasilkan corak yang kerap walaupun selepas kegagalan kuasa.

x

In compliance with the terms of the Copyright Act 1987 and the IP Policy of the

university, the copyright of this thesis has been reassigned by the author to the legal

entity of the university,

Institute of Technology PETRONAS Sdn Bhd.

Due acknowledgement shall always be made of the use of any material contained

in, or derived from, this thesis.

© CHEE CHIN HOONG, 2020

Institute of Technology PETRONAS Sdn Bhd

All rights reserved.

xi

TABLE OF CONTENT

ABSTRACT .. vi

ABSTRAK ..viii

LIST OF FIGURES ... xv

LIST OF TABLES ..xviii

LIST OF ABBREVIATIONS ... xix

LIST OF SYMBOLS .. xxi

CHAPTER 1 INTRODUCTION ... 1

1.1 Introduction.. 1

1.2 Motivation.. 6

1.3 Problem Background ... 7

1.4 Problem Statement ... 9

1.5 Research Questions .. 9

1.6 Research Objectives... 9

1.7 Scope of Research.. 10

1.8 Research Significance .. 11

1.9 Organization of Thesis ... 12

CHAPTER 2 LITERATURE REVIEW .. 15

2.1 Data Analytics ... 15

2.1.1 The Process of Knowledge Discovery in Databases 16

2.1.1.1 Data Selection .. 16

2.1.1.2 Data Preprocessing... 16

2.1.1.3 Data Transformation .. 17

2.1.1.4 Data Mining ... 17

2.1.1.5 Data Interpretation / Evaluation ... 18

2.2 Data Mining ... 19

2.2.1 Data Mining Techniques ... 20

2.2.1.1 Classification.. 20

2.2.1.2 Clustering ... 21

2.2.1.3 Outlier Detection .. 23

xii

2.2.1.4 Frequent Pattern Mining .. 23

2.2.2 Applications of Frequent Pattern Mining .. 26

2.2.2.1 Customer Analysis ... 26

2.2.2.2 Data Indexing and Retrieval .. 26

2.2.2.3 Web Data Mining ... 26

2.2.2.4 Software Bug Detection ... 27

2.2.2.5 Event Detection .. 27

2.2.2.6 Spatiotemporal Analysis .. 27

2.2.2.7 Image Processing ... 27

2.2.2.8 Chemical and Biological Analysis ... 27

2.2.2.9 Facilitator for Other Data Mining Solutions 28

2.2.3 Algorithms of Frequent Pattern Mining .. 28

2.2.3.1 Apriori Algorithm .. 28

2.2.3.2 FP-Growth Algorithm .. 31

2.2.3.3 EClaT Algorithm ... 33

2.2.3.4 TreeProjection Algorithm .. 35

2.2.3.5 COFI Algorithm ... 36

2.2.3.6 TM Algorithm .. 38

2.2.3.7 P-Mine Algorithm .. 39

2.2.3.8 LP-Growth Algorithm .. 41

2.2.3.9 Can-Mining Algorithm .. 42

2.2.3.10 EXTRACT Algorithm ... 43

2.2.3.11 HYBRID Algorithm .. 45

2.2.3.12 FPNR-Growth Algorithm .. 45

2.2.3.13 SSFIM Algorithm .. 47

2.2.3.14 PFIM Algorithm... 48

2.2.3.15 Comparison of Frequent Pattern Mining Techniques 48

2.3 Data Extraction .. 56

2.3.1 Data Extraction Techniques .. 56

2.3.1.1 Incremental ETL .. 56

2.3.1.2 Real-Time ETL .. 57

2.3.1.3 Parallel ETL ... 59

xiii

2.3.1.4 Script Automated ETL ... 60

2.3.1.5 Data Quality ETL ... 61

2.3.1.6 Scalable and High Performance ETL 63

2.3.1.7 Semantic ETL .. 64

2.3.1.8 Comparison of Data Extraction Techniques 65

2.4 Chapter Summary .. 68

CHAPTER 3 RESEARCH METHODOLOGY .. 69

3.1 Overview of Research and Types of Methodologies 69

3.2 Experimental Research Method ... 73

3.3 Research, Development and Evaluation .. 74

3.4 Chapter Summary .. 79

CHAPTER 4 FP-NOSQL: NOSQL-BASED FREQUENT PATTERN MINING

WITH FP-DB APPROACH .. 81

4.1 Flow Chart of FP-NoSQL Algorithm .. 81

4.2 Algorithm of Data Loader ... 83

4.3 Algorithm of Frequent Item Generator .. 87

4.4 Algorithm of Frequent Pattern Processor .. 91

4.5 Algorithm of FP-Collection Constructor ... 94

4.6 Algorithm of Frequent Pattern Analyzer ... 97

4.6.1 Procedure to Search All Items ... 99

4.6.2 Procedure to Search Specific Item .. 102

4.6.3 Procedure to Search Specific Pattern .. 104

4.6.4 Procedure to Mine Frequent Itemsets .. 106

4.7 Chapter Summary .. 109

CHAPTER 5 EXPERIMENT RESULTS AND DISCUSSION 111

5.1 Experiment Platform .. 111

5.2 Experiment Data Set .. 112

5.3 Evaluating FP-NoSQL on Different Data Sets .. 115

5.3.1 Experiment on Retail Data Set .. 117

5.3.2 Experiment on Connect Data Set .. 120

5.3.3 Experiment on Pumsb Data Set ... 123

5.3.4 Experiment on Kosarak Data Set .. 126

xiv

5.3.5 Summary of Experiment Results on Different Data Sets 129

5.4 Evaluating Run Time of FP-NoSQL by Comparing to Apriori and EFP 130

5.5 Evaluating Memory Usage of FP-NoSQL without FP-DB and with FP-DB 136

5.6 Evaluating FP-NoSQL with Big-O Notation ... 141

5.6.1 Constant Complexity – O(c) ... 142

5.6.2 Linear Complexity – O(n) ... 144

5.6.3 Quadratic Complexity – O(n^2) .. 145

5.6.4 Big-O Notation Analysis for FP-NoSQL .. 146

5.7 Chapter Summary .. 151

CHAPTER 6 CONCLUSION.. 153

6.1 Summary of Research .. 153

6.2 Research Contribution ... 155

6.3 Research Limitation ... 156

6.4 Direction for Future Work ... 156

xv

LIST OF FIGURES

Figure 1.1: Annual Size of the Global Datasphere (Reinsel et al., 2017) 2

Figure 1.2: Capabilities that Made CEOs' Company Stand Out (Raskino, 2015) 3

Figure 1.3: CEOs' Five-Year Investment Plan (Raskino, 2015) 3

Figure 1.4: Demand Statistics for Data Analytics Expertise (Columbus, 2017) 5

Figure 2.1: The Process of Knowledge Discovery in Databases (KDD) (Gullo, 2015)

.. 18

Figure 2.2: The Process of Extraction, Transformation and Loading for Data (Prema

& Pethalakshmi, 2013)... 19

Figure 2.3: An Example of Classification (J. Han, Kamber, & Pei, 2012a) 21

Figure 2.4: An Example of Clustering (J. Han, Kamber, & Pei, 2012b) 22

Figure 2.5: An Example of Outlier Detection (J. Han, Kamber, & Pei, 2012d) 23

Figure 2.6: Market Basket Analysis (J. Han, Kamber, & Pei, 2012c) 24

Figure 2.7: Generation of Candidate Itemsets and Frequent Itemsets (J. Han et al.,

2012c) .. 30

Figure 2.8: Frequent Pattern Tree (FP-Tree) (J. Han et al., 2012c) 32

Figure 2.9: Conditional FP-Tree Associated with Node I3 (J. Han et al., 2012c) 33

Figure 2.10: Lexicographic Tree (Agarwal et al., 2001) ... 36

Figure 2.11: COFI-Trees (El-Hajj & Za¨ıane, 2003) ... 37

Figure 2.12: Example of Transaction Mapping (Song & Rajasekaran, 2006)............. 39

Figure 2.13: Architecture of the P-Mine Algorithm (Baralis et al., 2013) 40

Figure 2.14: Structure of Linear Prefix Nodes (LPNs) (Pyun et al., 2014) 41

Figure 2.15: Architecture of the Can-Mining Algorithm (Hoseini et al., 2015) 43

Figure 2.16: Architecture of the EXTRACT Algorithm (Feddaoui et al., 2016) 44

Figure 2.17: Structure of the FPNR-Tree (Jiang & He, 2017)..................................... 46

Figure 2.18: Alternative Approaches for SSFIM (Djenouri et al., 2018) 47

Figure 2.19: Classification of Frequent Pattern Mining Algorithms 52

Figure 2.20: Matrix Representation of an Incremental Join (Jörg & Deßloch, 2008) . 57

Figure 2.21: Sample Sales Data Warehouse Schema (Santos & Bernardino, 2008) ... 59

xvi

Figure 2.22: A Flow with Three Functions in Three Processes (Thomsen & Pedersen,

2011) .. 60

Figure 2.23: Architecture of Script Automated ETL (Radhakrishna et al., 2012)....... 61

Figure 2.24: Architecture of Data Quality ETL (Endler, 2012) 62

Figure 2.25: Architecture of Scalable and High Performance ETL (K. Sun & Lan,

2012) .. 64

Figure 2.26: Architecture of Semantic ETL (Nath et al., 2015) 65

Figure 3.1: Generalized Process of Research (Prajapati et al., 2015) 70

Figure 3.2: Research Problem Formulation (Prajapati et al., 2015) 71

Figure 3.3: Process of Literature Review (Prajapati et al., 2015) 72

Figure 3.4: Research Work Flow ... 75

Figure 3.5: Integrated Development Environment of C++ in Microsoft Visual Studio

.. 77

Figure 3.6: MySQL Shell – The CLI Software for MySQL Database 78

Figure 3.7: MySQL Workbench – The GUI Software for MySQL Database 78

Figure 4.1: Flow Chart of the FP-NoSQL Algorithm .. 82

Figure 4.2: Transactional Data from Retail Data Set (Brijs, 1999) 84

Figure 4.3: Main Menu of FP-NoSQL ... 99

Figure 4.4: Procedure to Search All Items ... 102

Figure 4.5: Procedure to Search Specific Item .. 104

Figure 4.6: Procedure to Search Specific Pattern .. 106

Figure 4.7: Frequent Itemsets Related to Item 32 .. 108

Figure 5.1: Retail Data Set (Brijs, 1999) ... 113

Figure 5.2: Kosarak Data Set (Bodon, 2003) ... 114

Figure 5.3: Connect Data Set (Bayardo, 2007a) .. 114

Figure 5.4: Pumsb Data Set (Bayardo, 2007b) .. 115

Figure 5.5: Performance Profiler of Microsoft Visual Studio 116

Figure 5.6: Run Time Evaluation for Retail Data Set .. 119

Figure 5.7: Memory Usage Evaluation for Retail Data Set 120

Figure 5.8: Run Time Evaluation for Connect Data Set .. 122

Figure 5.9: Memory Usage Evaluation for Connect Data Set 123

Figure 5.10: Run Time Evaluation for Pumsb Data Set .. 125

xvii

Figure 5.11: Memory Usage Evaluation for Pumsb Data Set 126

Figure 5.12: Run Time Evaluation for Kosarak Data Set .. 128

Figure 5.13: Memory Usage Evaluation for Kosarak Data Set 129

Figure 5.14: Run Time Evaluation for T25I10D10K Data Set by Apriori and EFP

(Shang, 2005) ... 132

Figure 5.15: Run Time Evaluation for T25I10D10K Data Set by FP-NoSQL 133

Figure 5.16: Run Time Evaluation for T10I4D100K Data Set by EFP Algorithm

(Shang, 2005) ... 135

Figure 5.17: Run Time Evaluation for T10I4D100K Data Set by FP-NoSQL 135

Figure 5.18: Time and Space for HIL Strategy of GMiner Algorithm (Chon, Hwang,

& Kim, 2018) ... 136

Figure 5.19: Communication Costs and Performance of FPM Algorithms (Apiletti et

al., 2017) .. 137

Figure 5.20: Memory Usage of PRM and FP-Growth at Support = 10% (Abraham &

Joseph, 2016) ... 137

Figure 5.21: Memory Usage Evaluation for T25I10D10K Data Set 140

Figure 5.22: Memory Usage Evaluation for T10I4D100K Data Set 141

Figure 5.23: Constant Complexity (Malik, 2019) .. 143

Figure 5.24: Linear Complexity (Malik, 2019) ... 145

Figure 5.25: Quadratic Complexity (Malik, 2019) .. 146

Figure 5.26: Plot of Common Big-O Functions (Miller & Ranum, 2013) 151

xviii

LIST OF TABLES

Table 2.1: Sample of Transactional Data (J. Han et al., 2012c) 29

Table 2.2: Conditional Pattern Base and Conditional FP-Tree (J. Han et al., 2012c) . 33

Table 2.3: Sample of Transactional Data in Vertical Data Format (J. Han et al., 2012c)

.. 34

Table 2.4: 2-Itemsets in Vertical Data Format (J. Han et al., 2012c) 34

Table 2.5: 3-Itemsets in Vertical Data Format (J. Han et al., 2012c) 35

Table 2.6: Comparison of Frequent Pattern Mining Algorithms 53

Table 2.7: Comparison of Data Extraction Techniques ... 66

Table 4.1: Transaction Table for Retail Data Set .. 86

Table 4.2: Item Frequency Table for Retail Data Set .. 89

Table 4.3: Frequent Item Table for Retail Data Set ... 90

Table 4.4: Frequent Pattern Table for Retail Data Set ... 93

Table 4.5: Frequent Pattern Collection for Retail Data Set ... 96

Table 5.1: C++ Code to Measure Run Time of Algorithm .. 116

Table 5.2: Experiment Results for Retail Data Set .. 118

Table 5.3: Experiment Results for Connect Data Set .. 121

Table 5.4: Experiment Results for Pumsb Data Set ... 124

Table 5.5: Experiment Results for Kosarak Data Set .. 127

Table 5.6: Details of Four Experiment Data Sets .. 130

Table 5.7: Details of Two Experiment Data Sets .. 131

Table 5.8: Commonly Used Big-O Notations (Malik, 2019) 142

xix

LIST OF ABBREVIATIONS

ARM Association Rule Mining

BIA Business Intelligence and Analytics

Can-Tree Canonical-Order Tree

CDA Change Data Application

CDC Change Data Capture

CEO Chief Executive Official

CLI Command Line Interface

COFI Co-Occurrence Frequent Itemset

CPU Central Processing Unit

EClaT Equivalence Class Transformation

EFP Extended Frequent Pattern

ETL Extract, Transform and Load

FIM Frequent Itemset Mining

FIMI Frequent Itemset Mining Implementations

FP-Collection Frequent Pattern Collection

FP-DB Frequent Pattern Database

FP-Growth Frequent Pattern Growth

FPM Frequent Pattern Mining

FP-NoSQL Frequent Pattern NoSQL

FP-Tree Frequent Pattern Tree

GB Gigabytes

GUI Graphical User Interface

HDD Hard Disk Drive

HY-Tree Hybrid-Tree

IDC International Data Corporation

IDE Integrated Development Environment

IoT Internet of Things

IT Information Technology

LP-Growth Linear Prefix Growth

xx

LPN Linear Prefix Node

LP-Tree Linear Prefix Tree

MB Megabytes

No-SQL Not-Only Structured Query Language

OLAP Online Analytical Processing

PFIM Precomputation-Based Frequent Itemset Mining

POS Point-Of-Sale

RAM Random Access Memory

RDF Resource Description Framework

SETL Scalable and High Performance ETL

SQL Structured Query Language

SSFIM Single Scan Approach for Frequent Itemset Mining

TDQM Total Data Quality Management

TID Transaction Identifier

TM Transaction Mapping

xxi

LIST OF SYMBOLS

c Confidence

Cn Candidate n-Itemsets

D Data Warehouse

I Item

Ln Frequent n-Itemsets

min_sup Minimum Support

O(c) Constant Complexity

O(n) Linear Complexity

O(n^2) Quadratic Complexity

s Support

T Transaction

CHAPTER 1

INTRODUCTION

This chapter provides an introduction to the field of data analytics, specifically in

the area of Frequent Pattern Mining (FPM). First of all, an introduction and the

background about data analytics are given in Section 1.1 . Then, Section 1.2 describes

the motivation for conducting this research. Section 1.3 and 1.4 highlights the

problems that exist in the current FPM algorithms which need to be resolved. Section

1.5 lists down the questions that are required to be addressed and the objectives of this

research are presented in Section 1.6. Next, the scope of this research is defined in

Section 1.7 and the significance of this research is discussed in Section 1.8. Finally,

the organization of this thesis is presented in Section 1.9.

1.1 Introduction

In recent years, the amount of data throughout the entire world has been increased

exponentially because of the advanced technologies in digital sensors and storage

devices (Praveena & Bharathi, 2017). International Data Corporation (IDC) predicted

that the amount of data in the whole world may reach 163 zettabytes by the year 2025

as shown in Figure 1.1 (Reinsel, Gantz, & Rydning, 2017). Apart from this, the

invention of Cloud Computing and Internet of Things (IoT) have also further

promoted the growth of data in many areas (Hashem et al., 2015). This is because the

digital sensors in IoT enable data to be collected easily from various sources into the

cloud storage, and the technology of Cloud Computing enables data to be accessed in

a convenient manner through the internet. Therefore, many organizations in different

industries are strongly depending on data in order to obtain valuable insights that are

able to produce positive outcomes in the competitive business market.

2

Figure 1.1: Annual Size of the Global Datasphere (Reinsel et al., 2017)

According to a survey conducted by Gartner, data analytics has appeared to be

one of the top preferred capabilities of Information Technology (IT) for many Chief

Executive Officials (CEOs) (Raskino, 2015). The number of CEOs that support the

implementation of different IT capabilities in their companies is shown in Figure 1.2.

The support for data analytics to be implemented in an organization is 12%, which is

the highest rating among 23 IT capabilities being surveyed. This is because data

analytics enables the stakeholders of a company to make informed decision for their

business when knowledge or information is easily extracted from the data available in

the entire organization. As the stakeholders are able to make fact-based decision using

the capability of data analytics, the company will be capable of increasing revenue,

cutting cost, and gaining competitive advantage in the challenging market.

Moreover, data analytics is also listed by the CEOs as one of the top preferred IT

capabilities in the five-year investment plan of their companies (Raskino, 2015). The

percentage of CEOs that support the investment towards various IT capabilities in the

five-year plan of their companies is shown in Figure 1.3. The support to invest into

business or data analytics is 28%, which is the third highest rating among 26 IT

capabilities being surveyed. As a result, this survey has indicated that data analytics is

a very important IT capability that needs to be acquired by the business analysts and

stakeholders of any organization.

3

Figure 1.2: Capabilities that Made CEOs' Company Stand Out (Raskino, 2015)

Figure 1.3: CEOs' Five-Year Investment Plan (Raskino, 2015)

4

According to (Wixom & Watson, 2010), Business Intelligence and Analytics

(BIA) is “a broad category of technologies, applications, and processes used for

gathering, storing, accessing, and analyzing data to help its users make better

decisions”. Due to its popular demand by the CEOs, data analytics has been adopted

to support the operations in many businesses or industries like healthcare (McGlothlin

& Khan, 2013), electrical power supply (Qiu et al., 2013), manufacturing (Jesus &

Bernardino, 2014), railway safety management (Lira et al., 2014), financial service

(Chang, 2014), tourism (Rebón, Ocariz, Gerrikagoitia, & Alzua-Sorzabal, 2015),

education (Haupt, Scholtz, & Calitz, 2015) and even non-profit organizations

(Oakley, Iyer, & A.F.Salam, 2015).

Although data analytics is considered as one of the significant technologies in this

competitive business environment, the McKinsey Global Institute speculated that the

United States will be encountering a shortage of 140,000 to 190,000 professionals

with good analytical skills, and a lack of 1.5 million data-savvy managers who can

really analyze business data in order to make decision for their organizations

effectively (Manyika et al., 2011). It was predicted by International Business

Machines Corporation (IBM) that the demand for Data Scientist will soar 28% by the

year 2020 (Columbus, 2017). The demand of jobs related to data analytics are shown

in Figure 1.4 which includes the Data-Driven Decision Makers, Functional Analysts,

Data Systems Developers, Data Analysts, Data Scientists & Advanced Analysts, and

Analytics Managers. A total of 2,352,681 jobs related to data analytics are posted in

the year 2015, and it is estimated that this number will be raised to 2,716,425 in the

year 2020, with a demand increase of 363,744 jobs within 5 years. Since data

analytics is considered as a vital subject of many CEOs and there is a shortage of

professional in this area, a lot of research has been conducted for the field of data

analytics by both the academic and industrial researchers.

5

Figure 1.4: Demand Statistics for Data Analytics Expertise (Columbus, 2017)

Among various phases in the entire implementation process of data analytics, data

mining plays an important role for discovering the significant patterns that may exist

frequently in the data sets. This is because identifying the hidden patterns of a data set

enables users to make the appropriate decision and action especially in a critical

situation. In the midst of numerous data mining techniques, Frequent Pattern Mining

(FPM) is one of the most important techniques due to its ability to locate the repeating

relationships between different items in a data set and represent the hidden patterns in

the form of association rules. FPM has been extensively studied by many researchers

because of its abundant applications to a range of data mining tasks like classification,

clustering, and outlier analysis (C. C. Aggarwal, 2014b).

In order to improve the methods for classifying or clustering a set of data, and

detecting the outliers or anomalies set of data, FPM plays an important role in

performing many tasks for data mining. It is the fundamental step to identify the

hidden patterns that exist frequently in a data set for generating association rules to be

used in data analysis. Most of the time, it is used for market basket analysis where

deep insight into product associations can be identified for improving the

merchandising, promotions, personalization, and store layouts setup of products

(Lobel, 2014). Therefore, the Point-Of-Sale (POS) transaction data is considered as

6

the most valuable data for retailers of consumer products (Hage, 2017). Apart from

this, FPM has various applications in different domains like spatiotemporal data

analysis, biological data analysis, and software bug detection (C. C. Aggarwal,

2014b).

1.2 Motivation

In the scenario of a transactional data environment, a lot of patterns can be hidden

among the different sets of data in the organizations. The hidden patterns that exist

frequently among the data sets are called the frequent patterns. It is also called the

frequent itemsets because each transaction of data contains different number of

itemsets. Market Basket Analysis is a common case of Frequent Pattern Mining

(FPM) where the buying habits of customers are analyzed when the associations

between different items purchased by them are identified. At a retail store, a

transaction can contain multiple sets of items that are purchased by a customer at one

time of visit to the supermarket. It is a competitive advantage for a retail company to

be able to identify the purchasing habits of its customers because this enables them to

promote the right products to the right customers at the right time through their online

advertising campaign. In addition, this also allows the retail company to place the

products that are always purchased together by the customers at the same location so

that it will be more convenient to the customers who like to go for shopping in the

supermarket to locate the products easily.

Apart from implementing FPM for Market Basket Analysis, FPM can also be

used in other areas like Data Indexing and Retrieval (Nanopoulos & Manolopoulos,

2002), Web Data Mining (Kachhadiya & Patel, 2018), Software Bug Detection (C.

Liu, Yan, Yu, Han, & Yu, 2005), Event Detection (L. Wang, Cao, Wan, & Wang,

2017) and Spatiotemporal Analysis (A. Aggarwal & Toshniwal, 2018). This is

because identifying the hidden patterns that exist frequently among the data sets

enables users to gain valuable insights to make proper decisions for the business of

their organizations. Since a lot of benefits can be obtained when FPM is implemented

7

into the data analysis process of any organization, it is important to invest into the

research and development of a more robust FPM algorithm for data analysis.

1.3 Problem Background

Even though many algorithms have been proposed by different researchers

throughout the world to enhance the technique in Frequent Pattern Mining (FPM),

improvements are still required to be done towards the performance of the existing

FPM algorithms (Meenakshi, 2015). This is because most of the current algorithms

are not that efficient for mining a data set with a large amount of data (Chen et al.,

2015). In a dynamic business environment, it is vital for FPM algorithms to be

efficient in mining the frequent patterns of data (Dave, Rathod, Sheth, & Sakhapara,

2015). The two major challenges faced by most of the algorithms are shortening the

run time and reducing the memory consumption for executing the algorithm to mine

the hidden frequent patterns (Jamsheela & G., 2015). Since these are the two major

problems in FPM, many researchers in the area of data mining focus their attention on

developing algorithms that can produce better performance in FPM with shorter

execution run time and lower memory consumption (Meenakshi, 2015). Although

many algorithms have been proposed, some of the algorithms still require a lot of

computational time to mine the hidden frequent patterns in a data set especially when

the amount of data is large (Mittal, Nagar, Gupta, & Nahar, 2015). Apart from this,

some of the algorithms require more memory to mine the hidden frequent patterns in a

data set, even though they have a shorter computational time (Dave et al., 2015).

Therefore, there is a need to construct an algorithm that is able to mine the significant

frequent patterns within a data set in an efficient manner even if the amount of data

may be big in a data set.

The hidden patterns of the frequent itemsets become more time consuming to be

mined when the amount of data increases in a data set. This is because mining the

frequent itemsets from a huge data set will generate a great number of frequent

itemsets that satisfied the threshold of minimum support (min_sup), especially when

the min_sup is set to a very small value. The minimum support is a value set by the

8

users in order to determine the minimum occurrence that needs to be satisfied by any

item throughout the data set so that the item will be included into the mining process.

For example, if the min_sup is set to 10, an item has to occur at least 10 times in the

data set in order to be included into the mining process for identifying the hidden

patterns of data. At the same time, when the amount of data is big in a data set, it also

causes a large memory consumption for mining the hidden patterns of the frequent

itemsets due to a heavy computation by the data mining algorithm.

Apart from these, the frequent patterns that have been mined from a data set

previously, need to be mined again if there is a change for the value of min_sup

determined by the users. This is because the set of frequent patterns will not be the

same again when the value of min_sup is changed either to a lower or higher number

as well as percentage. For example, if the figure of min_sup is changed to a lower

value, more frequent patterns will be generated, whereas if the figure of min_sup is

changed to a higher value, less frequent patterns will be considered into the mining

process. Since a change of the min_sup value will cause the entire set of frequent

patterns to be totally different, the whole data set needs to be mined again in order to

produce the correct result of mining.

Furthermore, the frequent patterns are only mined into the main memory or

Random Access Memory (RAM) by most of the existing algorithms. In this case, the

entire process of Frequent Pattern Mining (FPM) has to be repeated if the system is

down or there is a power failure. It is required to be so because none of the frequent

patterns being mined previously are retained in the RAM. Therefore, it is necessary to

construct an algorithm that is capable of mining the hidden patterns of the frequent

itemsets within a shorter run time and with less memory consumption although the

amount of data is big in a data set. In addition, the algorithm should be performing

well for mining the hidden patterns of the frequent itemsets even though the min_sup

value may be changed by the users, the system may be down, or there may be a power

failure.

9

1.4 Problem Statement

First, the total number of frequent itemsets to be mined for n number of items can

be estimated based on the formula 2n – 1 (Meenakshi, 2015). For example, if there are

100 items, 1.2676 * 1030 itemsets will be generated. Then, the total number of

association rules to be generated for n number of items can be estimated based on the

formula 3n – 2n+1 + 1 (Meenakshi, 2015). For instance, if there are 100 items,

5.1537752 * 1047 rules will be generated. Therefore, as the amount of data increases

in a data set, the execution run time and memory consumption of the Frequent Pattern

Mining (FPM) algorithm will be definitely increased.

1.5 Research Questions

In order to solve the problems stated above, this research has been performed to

address the following questions:

(1) What needs to be constructed in order to retain the frequent patterns that have

been mined previously for data analysis in Frequent Pattern Mining?

(2) How can the frequent patterns be mined efficiently within a shorter run time even

though the amount of data is big in a data set?

(3) How can the memory consumption for mining the frequent itemsets be reduced

even though the amount of data is big in a data set?

1.6 Research Objectives

In this research, the following objectives have been achieved:

(1) To design an algorithm that constructs a Frequent Pattern Collection

(FP-Collection) in a Frequent Pattern Database (FP-DB) for storing the frequent

patterns which need to be used for data analysis in Frequent Pattern Mining

(FPM).

10

(2) To develop an algorithm that efficiently mines the frequent patterns within a

shorter run time and with less memory consumption even though the amount of

data is big in the data warehouse.

(3) To evaluate the algorithm in order to ensure that it is capable to mine the frequent

patterns within a shorter run time and with less memory consumption for both the

sparse and dense data sets.

1.7 Scope of Research

The action of Frequent Pattern Mining (FPM) can be divided into two main

sections as follows (Giacometti, Li, Marcel, & Soulet, 2014):

(1) Frequent Itemset Mining (FIM)

• FIM is the first step of FPM where the frequent itemsets that satisfied the

threshold of a minimum support value are generated by the FPM algorithm.

For example, in a database that consists of many transactions, each transaction

contains a set of different items and these items can be grouped into various

combinations of itemsets. The FIM algorithm generates the frequency of

occurrence for every combination of the itemsets by identifying the number of

transactions that contain them in the entire database. Finally, all the itemsets

that have a frequency of occurrence which fulfill the minimum support

threshold are to be discovered by the FIM algorithm.

(2) Association Rule Mining (ARM)

• ARM is the second step of FPM where the association rules that indicate

interesting relationships among the frequent itemsets are generated by the

FPM algorithm. Once the frequent itemsets that fulfill the minimum support

threshold are discovered by the FIM algorithm, it can be used to identify the

association rules that describe how those itemsets are related to one another.

The association rules found by the ARM algorithm which fulfill the minimum

confidence threshold are categorized as strong association rules.

11

The work of this research focus on the first step of FPM. An algorithm for FIM is

proposed to construct the frequent patterns and their support counts into a collection

in the database within a shorter run time and with lesser memory consumption even

though the amount of data is big in the data warehouse.

Apart from this, the work of this research focus on mining the transactional data

in a data warehouse where the IDs of transactions and records are processed by the

algorithm. In this research, the focus is to mine data in the form of text and numbers

because the data in these formats contain the most significant information that can be

retrieved if it is processed thoroughly. Therefore, mining the pattern of data from

image or video is out of the scope of this research.

Six sets of data that are specifically prepared for the purpose of FIM are

downloaded from the internet in order to conduct the experiments for evaluating the

algorithm. These data sets contain multiple transactions with multiple items in the

dense or sparse format. This is to ensure that the algorithm is able to mine the data

even though they are in different formats. The data is processed into a collection in

the NoSQL database for the frequent itemsets to be mined using the appropriate

NoSQL queries.

1.8 Research Significance

With the implementation of the proposed algorithm, the following benefits can be

gained for Frequent Pattern Mining (FPM):

(1) Retain the frequent patterns for further analysis

• All frequent patterns that have been mined can be retained for further analysis

using a Frequent Pattern Database (FP-DB). The FP-DB enables each unique

pattern that can be found from a data warehouse to be consolidated into a

Frequent Pattern Collection (FP-Collection) along with its frequency of

occurrence. As every pattern from a data warehouse is stored into the FP-DB,

the frequent patterns that have been mined can be retrieved anytime for further

analysis even after a power failure or the system is down.

12

(2) Mine the frequent patterns within a shorter run time

• The frequent patterns can be mined within a shorter run time because every

pattern that exists frequently in the data warehouse is inserted into a frequent

pattern table at the same time after they are being concatenated together.

Concatenating the frequent patterns together and inserting them into a frequent

pattern table at the same time helps to reduce the number of times for scanning

the data warehouse. When the number of times for scanning the data

warehouse is reduced in the FPM process, the total run time for constructing

all the frequent patterns can be reduced significantly.

(3) Mine the frequent itemsets using lesser memory consumption

• The frequent itemsets can be mined using lesser memory consumption since

every unique pattern that exists frequently in the data warehouse is

consolidated into the FP-DB together with its frequency of occurrence. In

order to discover the frequent itemsets that are related to a specific item, it is

not necessary to mine the entire data warehouse because only the frequent

patterns that matched the requirements of users are required to be retrieved for

generating the relevant frequent itemsets.

1.9 Organization of Thesis

The structure of this thesis is organized into six chapters and the remaining chapters

are briefly described as follows:

Chapter 2 presents the fundamental concept of Frequent Pattern Mining (FPM) and

reviews some state-of-the-art FPM algorithms by describing how each of them works.

The FPM algorithms are also classified into different categories and compared to

identify their advantages and disadvantages respectively. Apart from this, the

significant data extraction techniques are also reviewed in this chapter because it is a

necessary step to be implemented prior to data mining. Similarly, the data extraction

techniques are also compared to identify their advantages and disadvantages

respectively.

13

Chapter 3 discusses about the methodology used for conducting this research. All the

processes of the research methodology being selected are described in detail

throughout every stage of research, development and evaluation for the proposed

FPM algorithm. Apart from this, the tools used for conducting the research and

implementing the development for the proposed FPM algorithm are also described in

this chapter.

Chapter 4 describes how the proposed FPM algorithm works. The entire architecture

of the algorithm is presented in a flow chart and the pseudocode of the algorithm is

explained part by part in this chapter.

Chapter 5 presents the results of the experiment conducted to evaluate the

performance of the proposed FPM algorithm. The experiment results are discussed in

this chapter in order to verify that the algorithm is suitable to be used for Frequent

Pattern Mining (FPM) in a big data set.

Chapter 6 concludes the entire research into a brief summary and highlights the

significant contributions of this research. The potential future work that can be

conducted by other researchers is also discussed in this chapter.

14

CHAPTER 2

LITERATURE REVIEW

This chapter reviews several algorithms for Frequent Pattern Mining (FPM). First,

an overview of the entire implementation process of data analytics is given in Section

2.1. Then, the significant data mining techniques and the fundamental knowledge of

FPM are provided in Section 2.2. The previous research conducted on the

fundamental and significant FPM algorithms are presented in Section 2.2.3.1 to

Section 2.2.3.14. Next, Section 2.2.3.15 presents an organization chart that

categorizes the FPM algorithms into different groups. A table which provides a

comparison for the advantages and disadvantages of the FPM algorithms is given in

the same section. Last but not least, since extracting data is part of the tasks for data

mining to be conducted, some significant data extraction techniques are given in

Section 2.3. A table which provides a comparison for the advantages and

disadvantages of the data extraction techniques is given in Section 2.3.1.8.

2.1 Data Analytics

In the field of Business Intelligence and Analytics (BIA), the two terms that are

often used in an interchangeable manner are “data analysis” and “data analytics”

(Inteliment, 2016). But what is the major difference between them? The main

distinction between these two terms is this: data analysis presents data by only

looking at the past while data analytics tries to predict the future by using every data

that is available (Park, 2017). In order words, data analysis attempts to answer the

“What has happened?” question, whereas data analytics attempts to answer the “Why

did it happen and what will happen later?” question. Therefore, data analysis can also

be viewed as a detailed study of the data for any kind of decision-making situation,

16

while data analytics provides actionable insights for users to make the appropriate

decisions in the future apart from answering questions that have happened in the past.

2.1.1 The Process of Knowledge Discovery in Databases

Analyzing all the data that is collected in the data warehouse is definitely a

necessity for every enterprise because the proper decisions can be made for taking the

appropriate actions especially in a critical situation. In general, the entire

implementation process of data analytics that is in common practice is shown in

Figure 2.1 (Gullo, 2015) and it contains five important phases to select, pre-process,

transform, mine and evaluate or interpret the data as follows:

2.1.1.1 Data Selection

First, the data is required to be extracted from its original sources into various

target data sets in the data warehouse. This is a very important step because data can

be existing in multiple departments throughout the whole organization. Apart from

this, data can also be appearing in different formats like text files, spreadsheets,

databases, xml files and others (Kherdekar & Metkewar, 2016). In order to

completely analyze all data that is available in the entire organization, it is necessary

to consolidate the data from numerous sources into the data warehouse for pre-

processing, transformation, and mining before it can be interpreted or evaluated

properly as useful knowledge for business analysis and decision-making in the

organization.

2.1.1.2 Data Preprocessing

As the data is consolidated from various sources that are in different forms, it is

essential to preprocess the data so that it can be stored appropriately in the data

warehouse. This step is also necessary due to the problems of data quality like

missing data, noisy data, inconsistent data or even wrongly sampled data

17

(JayaramHariharakrishnan, Mohanavalli, Srividya, & Kumar, 2017). If the quality of

data is low, it may lead to wrong conclusions when the data is processed by any kind

of data mining techniques.

2.1.1.3 Data Transformation

After preprocessing the data, the processes of transformation are required to be

implemented towards the data so that it is formatted in the appropriate forms for data

mining to be conducted accordingly. This is usually the most time-consuming step

because constructing a data set that is suitable for analysis by consolidating data from

numerous tables and views in a database requires complicated queries to be written

properly (Chaudhari & Khanuja, 2015). The processes of extraction, transformation

and loading for data are shown in a summarized manner in Figure 2.2 (Prema &

Pethalakshmi, 2013).

2.1.1.4 Data Mining

When the data is transformed into the appropriate formats, it is ready for mining

in order to discover the hidden patterns that exist in the data set. In general, data

mining techniques can be categorized into four main categories, namely,

Classification, Clustering, Outlier Detection, and Frequent Pattern Mining (J. Han,

Kamber, & Pei, 2012e). Classification groups data into different classes using a

classifier that is constructed from a set of training data with some predefined class

labels, while Clustering groups data objects with high similarity into the same cluster

without using a classifier. Outlier Detection locates data with characteristics that are

very unusual compared to the common ones, and Frequent Pattern Mining locates the

hidden patterns that exist frequently in the data set.

18

2.1.1.5 Data Interpretation / Evaluation

In order for the data to be interpreted or evaluated as useful knowledge, one of the

methods to present data in an effective manner is to visualize the data in various

forms like graph visualization, text visualization, map visualization, and multivariate

data visualization (S. Liu, Cui, Wu, & Liu, 2014). This is because data and

information can be analyzed and understood by the human mind in an easier way

when it is represented in the appropriate visual form.

Figure 2.1: The Process of Knowledge Discovery in Databases (KDD) (Gullo, 2015)

19

Figure 2.2: The Process of Extraction, Transformation and Loading for Data

(Prema & Pethalakshmi, 2013)

2.2 Data Mining

Among the five steps in the entire process of data analytics, data mining is

considered as the most important step. This is because a tremendous amount of data is

captured everyday and there is a vital need to analyze it, so that valuable information

can be discovered from the data and be transformed into useful knowledge (J. Han,

Kamber, & Pei, 2012f). The dynamic growth of such a huge data volume is an

outcome of the computerization of the world and the fast invention of powerful tools

for data collection and storage. However, the ability to identify the significant patterns

in a set of data depends on the capability of the algorithm that is being implemented

for mining. Therefore, appropriate data mining algorithms and techniques should be

proposed in order to provide a suitable solution for extracting valuable information

from the vast amount of data available.

20

2.2.1 Data Mining Techniques

The massive volume of data that has grown exponentially has caused a lot of data

mining techniques to be developed (Henke et al., 2016). In general, data mining

techniques can be categorized into four main categories, namely, Classification,

Clustering, Outlier Detection, and Frequent Pattern Mining (J. Han et al., 2012e).

2.2.1.1 Classification

Classification is a data mining technique that groups data into different classes

using a classifier that is constructed from a set of training data with some predefined

class labels (Midha & Singh, 2015). It is useful in situations where a bank loan officer

may be interested to know which loan applicants are considered as “safe” or “risky”

for the bank, a marketing manager may like to know whether a customer with a

certain profile will buy a particular product, and a medical researcher may be

interested to identify which specific treatment a patient of breast cancer should

receive.

The process of classification consists of two steps for processing the data, namely

the learning step and the classification step as shown in Figure 2.3. In the learning

step, various sets of training data are analyzed by the classification algorithm in order

to construct a classifier in the form of classification rules, mathematical formulae or

decision trees. The training data is made up of some database records that are attached

with the appropriate class labels. Since a class label is available in every record of the

training data, classification is considered as a kind of supervised learning technique.

In the classification step, test data is used to estimate the accuracy of the classifier. If

the accuracy rate of the classifier is considered as acceptable, the classification

algorithm can be used to classify new data into the relevant classes.

21

Figure 2.3: An Example of Classification (J. Han, Kamber, & Pei, 2012a)

2.2.1.2 Clustering

Clustering is a data mining technique that groups data objects with high similarity

into the same cluster without using a classifier that is constructed from a set of

training data with some predefined class labels (Hruschka, Campello, Freitas, &

Carvalho, 2009). It is useful in a situation where there are a lot of customers that

purchase products from a company and it is quite impossible to categorize them into a

22

few strategic groups manually. Due to its ability to automatically identify the

groupings from a set of data, clustering is also called automatic classification.

The process of clustering groups the objects in a set of data into different

categories, having the objects with high similarity to be grouped into the same

category as shown in Figure 2.4. Clustering is considered as unsupervised learning

since the information of class labels is not available. Hence, it is a data mining

technique that is learning by observation instead of learning by examples. However,

different methods of clustering may group objects in the same data set into different

categories. Even though it may be so, clustering is still considered as a very useful

technique of data mining because it helps to discover groups that are unknown

previously within the data set.

Figure 2.4: An Example of Clustering (J. Han, Kamber, & Pei, 2012b)

23

2.2.1.3 Outlier Detection

Outlier Detection locates data with characteristics that are very unusual compared

to the common ones as shown in Figure 2.5. While the technique of Clustering is to

identify data with common patterns and group them into different categories, Outlier

Detection tries to identify those extraordinary data that deviates significantly from the

data with common patterns (Bansal, Gaur, & Narayan, 2016). The extraordinary data

can be categorized into three different types of outliers, namely Global Outlier,

Contextual Outlier, and Collective Outlier. Global Outlier deviates substantially from

all the other data sets, while Contextual Outlier deviates substantially depending on a

particular situation for the data. For Collective Outlier, the data deviates substantially

together as a whole from the entire data set.

Figure 2.5: An Example of Outlier Detection (J. Han, Kamber, & Pei, 2012d)

2.2.1.4 Frequent Pattern Mining

Among various techniques of data mining, Frequent Pattern Mining (FPM) is one

of the most important techniques because it has plentiful applications to a range of

data mining tasks in classification, clustering, and outlier analysis. In order to provide

users with information that is more useful for data analysis and decision-making, it is

important to mine and identify all the significant hidden patterns that exist frequently

in a data set. Therefore, the main focus of this research is to analyze a number of FPM

algorithms and propose an FPM algorithm that is able to mine a big data set within a

shorter run time and with less memory consumption.

24

Frequent Pattern Mining (FPM) locates repeating relationships in a data set (Garg

& Sharma, 2011). The patterns that exist frequently in a data set are called frequent

patterns. It can be appearing in the form of itemsets, subsequences or substructures. A

frequent itemset is a set of items that exist together frequently among the transactions

of a data set. For example, in the context of a supermarket, the items that are always

being purchased at the same time by the customers are bread and butter. In this case,

FPM can be conducted to perform market basket analysis so that the consumers

buying habits can be analyzed by locating the associations between different items

that have been purchased. The application of FPM for the scenario of market basket

analysis is illustrated in Figure 2.6.

Figure 2.6: Market Basket Analysis (J. Han, Kamber, & Pei, 2012c)

Let D be a data warehouse with a set of different items I = (I1, I2, … , Im). Then,

every transaction T is an itemset that is not empty in which T ⊆ I. An itemset is a set

of items. If it contains k items, then it is a k-itemset. For instance, the set (bread,

25

butter) is a 2-itemset. Every transaction contains one or more items and each

transaction is represented by a Transaction Identifier, TID.

The hidden patterns of a data set can be represented in the form of association

rules. An association rule is commonly denoted as A => B, having A ≠ Ø, B ≠ Ø, A ⊂

I, B ⊂ I, and A ∩ B = Ø. The interestingness of a rule is determined by two measures,

support s and confidence c, as stated in the following formulas:

support(A => B) = P(A ∪ B) ………………………………………………… [2.1]

confidence(A => B) = P(B | A) =
𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝐴 ∪ 𝐵)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝐴)
 …………………………. [2.2]

In this scenario, support s, indicates the percentage of T in D that consist of A ∪

B, whereas confidence c, indicates the percentage of T in D that consist of A also

consist of B. The values of s and c will occur between 0% and 100%. Normally, the

association rules are considered remarkable if they fulfill a minimum threshold for

both the support and confidence measures. Apart from support and confidence, a lot

of measures like coverage, prevalence, recall, specificity, accuracy and many others

can be used to quantify the interestingness of an association rule (Le & Lo, 2015).

However, it is out of the scope of this research for other types of measures to be

discussed in this thesis.

For the measures of support and confidence, in the situation of a computer

retailer, the data that shows consumers who buy laptop computers also tend to

purchase office software simultaneously can be represented as follows:

laptop computer => office software [support = 10%, confidence = 70%].

A value of 10% for support indicates that 10% of all the records under analysis

involve the purchase of laptop computer and office software at the same time,

whereas a value of 70% for confidence indicates that 70% of the consumers who

bought a laptop computer also purchased the office software.

26

2.2.2 Applications of Frequent Pattern Mining

Frequent Pattern Mining (FPM) is an important data mining technique that can be

applied into several areas as follows (C. C. Aggarwal, 2014a):

2.2.2.1 Customer Analysis

FPM is commonly used by companies that sell products to analyze the purchasing

behaviour of their customers (Wenzhe et al., 2017). By implementing FPM,

companies can identify which products are always being purchased at the same time

or by the same customers. With this capability, retailers are able to arrange their

products for display at the appropriate locations so that it can be easily found by the

customers. Apart from this, the relevant products can also be promoted to the right

customers at the right time. As a result, this helps to increase the sales of their

products.

2.2.2.2 Data Indexing and Retrieval

FPM is also used for data indexing and retrieval in which a concise representation

of the data is constructed (Nanopoulos & Manolopoulos, 2002). In this process, the

data are categorized into different groups based on its patterns in order to enable the

branch-and-bound search to be performed when the similarities-based queries are

processed.

2.2.2.3 Web Data Mining

One of the applications of FPM is in the area of web data mining where frequent

patterns are discovered in order to monitor the navigational behaviour of the users for

creating a more suitable advertising strategy (Kachhadiya & Patel, 2018).

27

2.2.2.4 Software Bug Detection

Another application of FPM is for identifying the bugs of software in which the

program executions are classified with some software behaviour graphs for

discovering the program sections that may cause the faulty executions (C. Liu et al.,

2005).

2.2.2.5 Event Detection

One of the most common applications of FPM in event detection is the use for

intrusion detection within a secure network where web logs are analyzed in order to

predict possible web attacks that are currently unknown (L. Wang et al., 2017).

2.2.2.6 Spatiotemporal Analysis

FPM is used for spatiotemporal analysis in which the frequent patterns of data are

mainly affected by the time and location of occurrence for the transactions (A.

Aggarwal & Toshniwal, 2018). In this scenario, the data is usually captured

continuously from the mobile phones of users.

2.2.2.7 Image Processing

Another application of FPM is for image classification where the features of

images are considered as attributes in the transactions and frequent patterns can be

identified from it in order to determine their important characteristics (Fernando,

Fromont, & Tuytelaars, 2012).

2.2.2.8 Chemical and Biological Analysis

FPM can also be used for chemical and biological analysis because most of the

chemical and biological data for chemical compounds, complex biological molecules,

28

microarrays or protein interaction networks are often represented as graphs. The

technique that can be used for identifying frequent patterns from chemical and

biological data is called frequent subgraph discovery (Kuramochi & Karypis, 2001).

2.2.2.9 Facilitator for Other Data Mining Solutions

The technique of FPM is closely related to other data mining techniques like

classification, clustering and outlier detection because it is the most fundamental

method that is required to be implemented before other data mining solutions can be

accomplished (Tiwari, Gupta, & Agrawal, 2010).

2.2.3 Algorithms of Frequent Pattern Mining

A lot of algorithms have been proposed to solve the problem of Frequent Pattern

Mining (FPM). Among all the FPM algorithms, the fundamental ones are the

algorithms of Apriori (Agrawal & Srikant, 1994), FP-Growth (J. Han, Pei, & Yin,

2000) and EClaT (Zaki, 2000). This section describes how the fundamental and

significant algorithms in FPM work and compares their advantages and disadvantages

respectively.

2.2.3.1 Apriori Algorithm

Apriori (Agrawal & Srikant, 1994) is an algorithm proposed by R. Agrawal and

R. Srikant to mine frequent itemsets for generating Boolean association rules. It uses

an iterative level-wise search technique to discover (k+1)-itemsets from k-itemsets.

First, the database is scanned to identify all the frequent 1-itemsets by counting each

of them and capturing those that satisfy the minimum support threshold. The result of

frequent 1-itemsets is represented as L1. Then, L1 is used to locate L2, the set of

frequent 2-itemsets, which is used to locate L3, and the rest, until no more frequent k-

itemsets is possible to be identified. The identification of each Lk requires of scanning

the entire database.

29

A sample of transactional data that consists of product items being purchased at

different transactions is shown in Table 2.1. In order to locate all the possible frequent

itemsets, the entire database is scanned multiple times for identifying the count of

each frequent itemset as described in Figure 2.7. The minimum support threshold used

in this example is ‘2’. Therefore, only the records that fulfill a minimum support

count of ‘2’ will be included into the next cycle of algorithm processing.

Table 2.1: Sample of Transactional Data (J. Han et al., 2012c)

In the first cycle, the algorithm scans the database to count the number of

occurrences of each item to produce the candidate 1-itemsets, C1. All the items in C1

are counted as the members of frequent 1-itemsets, L1 because every item satisfies the

minimum support count of ‘2’. Then, the algorithm joins L1 to itself in order to

generate the candidate 2-itemsets, C2 for further discovering the frequent 2-itemsets,

L2. In this step, no candidates are removed from C2 because every subset of the

candidates is also frequent in the database.

After generating C2, the database is scanned again to count the number of

occurrences of each item in C2. The items in C2 that fulfill a minimum support count

of ‘2’ are counted as the members of frequent 2-itemsets, L2. Then, the algorithm

30

continues to join L2 to itself in order to generate the candidate 3-itemsets, C3 for

further discovering the frequent 3-itemsets, L3. In this step, the actual result of having

L2 to be joined to itself is (I1, I2, I3), (I1, I2, I5), (I1, I3, I5), (I2, I3, I4), (I2, I3, I5),

and (I2, I4, I5). But the four latter candidates have been removed from C3 as they are

not frequent in the database. With the implementation of this level-wise search

technique, it saves the effort of calculating their support counts unnecessarily in the

next scanning of the database to determine L3.

Figure 2.7: Generation of Candidate Itemsets and Frequent Itemsets

(J. Han et al., 2012c)

After generating C3, the database is scanned again to count the number of

occurrences of each item in C3. The items in C3 that fulfill a minimum support count

of ‘2’ are counted as the members of frequent 3-itemsets, L3. Then the algorithm

31

continues to join L3 to itself in order to generate the candidate 4-itemsets, C4. In this

step, even though the join produces itemset (I1, I2, I3, I5), it is removed from C4

because one of its subsets (I2, I3, I5) is not frequent in the database. Therefore, C4 =

φ, and the algorithm is terminated at this point, having all of the frequent itemsets to

be discovered.

In many cases, the Apriori algorithm reduces the size of candidate item sets

significantly and provides a good performance gain. However, it is still suffering from

two critical limitations (J. Han et al., 2012c). First, a large number of candidate item

sets may still need to be generated if the total count of a frequent k-itemsets increases

(D. Sun, Teng, Zhang, & Zhu, 2007). Then, the entire database is required to be

scanned repeatedly and a huge set of candidate items are required to be verified using

the technique of pattern matching (F. Wang & Li, 2008).

2.2.3.2 FP-Growth Algorithm

Frequent Pattern Growth (FP-Growth) (J. Han et al., 2000) is an algorithm

proposed by Jiawei Han to mine frequent itemsets without a costly candidate

generation process. It implements a divide-and-conquer technique to compress the

frequent items into a Frequent Pattern Tree (FP-Tree) that retains the association

information of the frequent items. It is built by accessing the data set to retrieve one

transaction at a time and plotting each item of the transaction onto a path in the FP-

Tree (Kim, Lee, Kim, & Son, 2010). The FP-Tree is further divided into a set of

Conditional FP-Trees for each frequent item so that they can be mined separately.

An example of the FP-Tree that represents all the frequent items found from the

transactional data listed in Table 2.1 is shown in Figure 2.8. Similar to the Apriori

algorithm, the FP-Growth algorithm generates the frequent 1-itemsets and their

support counts at the first scan of the database. Then, the set of frequent items is

sorted in the descending order according to their support counts, having the frequent

itemsets L = ((I2: 7), (I1: 6), (I3: 6), (I4: 2), (I5: 2)). Next, the FP-Tree is built by

creating the root of the tree which is represented as “null”. The database will be

scanned a second time and the items in every transaction are processed into the FP-

32

Tree according to the descending order of support counts identified in L. For example,

the first transaction record, “T100: I1, I2, I5” will be reordered as “T100: I2, I1, I5”

and placed under the FP-Tree, with I2 to be linked to the root, I1 to be linked to I2,

and I5 to be linked to I1. To simplify the tree traversal, an item header table is

constructed so that every item can be linked to its positions in the FP-Tree through a

series of node-links. In this manner, the problem in mining frequent patterns from a

database is simplified to mining from the FP-Tree.

Figure 2.8: Frequent Pattern Tree (FP-Tree) (J. Han et al., 2012c)

The FP-Growth algorithm solves the problem of identifying long frequent patterns

by searching through smaller Conditional FP-Trees repeatedly. An example of the

Conditional FP-Tree associated with node I3 is shown in Figure 2.9, and the details of

all the Conditional FP-Trees found in Figure 2.8 are shown in Table 2.2. The

Conditional Pattern Base is a “sub-database” which consists of every prefix path in

the FP-Tree that co-occurs with every frequent length-1 item. It is used to construct

the Conditional FP-Tree and generate all the frequent patterns related to every

frequent length-1 item. In this way, the cost of searching for the frequent patterns is

33

substantially reduced. However, constructing the FP-Tree is time consuming if the

data set is very large (Meenakshi, 2015).

Figure 2.9: Conditional FP-Tree Associated with Node I3 (J. Han et al., 2012c)

Table 2.2: Conditional Pattern Base and Conditional FP-Tree (J. Han et al., 2012c)

2.2.3.3 EClaT Algorithm

Equivalence Class Transformation (EClaT) (Zaki, 2000) is an algorithm proposed

by Zaki to mine frequent itemsets efficiently using the vertical data format. The

vertical format of the data found in Table 2.1 is shown in Table 2.3. In this method of

data representation, all the transactions that contain a particular itemset are grouped

into the same record. For example, the transactions of T100, T400, T500, T700, T800,

and T900 are all the records that contain the I1 itemset in the database.

First, the EClaT algorithm transforms data from the horizontal format into the

vertical format by scanning the database once. The frequent (k+1)-itemsets are

34

generated by intersecting the transactions of the frequent k-itemsets. For instance,

when the itemsets of I1 and I2 are intersected with one another, the transactions that

are common in both itemsets will be included into the 2-itemset of (I1, I2) as T100,

T400, T800, and T900. This process repeats until all the frequent itemsets are

intersected with one another and no frequent itemsets can be found as shown in Table

2.4 and Table 2.5.

Table 2.3: Sample of Transactional Data in Vertical Data Format (J. Han et al., 2012c)

Table 2.4: 2-Itemsets in Vertical Data Format (J. Han et al., 2012c)

35

Table 2.5: 3-Itemsets in Vertical Data Format (J. Han et al., 2012c)

For the EClaT algorithm, the database is not required to be scanned multiple times

in order to identify the (k+1)-itemsets. The database is only scanned once to transform

data from the horizontal format into the vertical format. After scanning the database

once, the (k+1)-itemsets are discovered by just intersecting the k-itemsets with one

another. Apart from this, the database is also not required to be scanned multiple

times in order to identify the support count of every frequent itemset because the

support count of every itemset is simply the total count of transactions that contain the

particular itemset. However, the transactions involved in an itemset can be quite a lot,

making it to take extensive memory space and processing time for intersecting the

itemsets (Z. Zhang, Ji, & Tang, 2013).

2.2.3.4 TreeProjection Algorithm

TreeProjection is an algorithm that mines frequent itemsets through a few different

searching techniques for constructing a lexicographic tree, such as depth-first

(Agarwal, Aggarwal, & Prasad, 2000), breadth-first (Agarwal, Aggarwal, & Prasad,

2001), or a mixture of the two. In this algorithm, the support of each frequent itemset

in every transaction is counted and projected onto the lexicographic tree as a node.

This greatly improves the performance of calculating the total transactions that

contain a particular frequent itemset. An example of the lexicographic tree that

represents the frequent items is shown in Figure 2.10.

In the hierarchical structure of a lexicographic tree, only the subset of transactions

that can probably hold the frequent itemsets will be searched by the algorithm. The

search is performed by traversing the lexicographic tree with a top-down approach.

36

Apart from the lexicographic tree, a matrix structure is used to provide a more

efficient method for calculating the frequent itemsets that have very low level of

support count. In this way, cache implementations can be made available efficiently

for the execution of the algorithm. However, the main problem faced by this

algorithm is that different representations of the lexicographic tree present different

limitations in terms of efficiency at memory consumption (C. C. Aggarwal, Bhuiyan,

& Hasan, 2014).

Figure 2.10: Lexicographic Tree (Agarwal et al., 2001)

2.2.3.5 COFI Algorithm

Co-Occurrence Frequent Itemset (COFI) (El-Hajj & Za¨ıane, 2003) is an algorithm

that mines frequent itemsets using a pruning method that reduces the use of memory

space significantly. Its intelligent pruning method constructs relatively small trees

from the FP-Tree on the fly, and it is based on a special property that is derived from

the top-down approach mining technique of the algorithm (Hemalatha, Krishnan,

37

Senthamarai, & Hemamilini, 2005). Some examples of the COFI-Trees are shown in

Figure 2.11.

Figure 2.11: COFI-Trees (El-Hajj & Za¨ıane, 2003)

Comparing to the FP-Growth algorithm, the COFI algorithm is better mainly in

terms of memory consumption and occasionally in terms of execution run time. This

38

is because of the following two implementations: (1) A non-recursive method is used

during the process of mining to traverse through the COFI-Trees in order to generate

the entire set of frequent patterns. (2) The pruning method implemented in the

algorithm has removed all the non-frequent patterns, so only frequent patterns are left

in the COFI-Trees. However, if the threshold value of the minimum support is low,

the performance of the algorithm degrades in a sparse database (Gupta & Garg, 2011).

2.2.3.6 TM Algorithm

Transaction Mapping (TM) (Song & Rajasekaran, 2006) is an algorithm that mines

frequent itemsets using the vertical data representation like the EClaT algorithm. In

this algorithm, the transaction IDs of every itemset are transformed and mapped into a

list of transaction intervals at another location. Then, intersection will be performed

between the transaction intervals in a depth-first search order throughout the

lexicographic tree to count the itemsets. An example of the transaction mapping

technique is shown in Figure 2.12.

When the value of minimum support is high, the transaction mapping technique is

able to compress the transaction IDs into the continuous transaction intervals

significantly. As the itemsets are compressed into a list of transaction intervals, the

intersection time is greatly saved. The TM algorithm is proven to be able to gain

better performance over the FP-Growth and dEClaT algorithms on data sets that

contain short frequent patterns. Apart from this, it is suitable to be used for mining the

specifications of software from the traces of program execution (Jeevarathinam &

Thanamani, 2009). Even though it is so, the TM algorithm is still slower in terms of

processing speed compared to the FP-Growth* algorithm.

39

Figure 2.12: Example of Transaction Mapping (Song & Rajasekaran, 2006)

2.2.3.7 P-Mine Algorithm

P-Mine (Baralis, Cerquitelli, Chiusano, & Grand, 2013) is an algorithm proposed

by Elena Baralis to mine frequent itemsets using a parallel disk-based approach on a

multi-core processor. It decreases the time required to produce a dense version of the

data set on disk using the VLDBMine data structure. A Hybrid-Tree (HY-Tree) is

used in the VLDBMine data structure to store the entire data set and other information

required to support the data retrieval process. To enhance the efficiency for disk

access, a pre-fetching technique has been implemented to load multiple projections of

the data set into different processor cores for mining the frequent itemsets. Finally, the

results are gathered from each processor core and merged in order to construct the

entire frequent itemsets. The architecture of the P-Mine algorithm is shown in Figure

2.13.

40

Figure 2.13: Architecture of the P-Mine Algorithm (Baralis et al., 2013)

As the data set is represented in the VLDBMine data structure, the performance

and scalability of Frequent Itemset Mining (FIM) are further improved. This is

because the HY-Tree of the VLDBMine data structure enables the data to be

selectively accessed in order to effectively support the data-intensive loading process

with a minimized cost. Apart from this, when the process of FIM is executed across

different processor cores in parallel at the same time, the performance is optimized

locally on every node. However, the algorithm can only be optimized to the maximum

level when multiple cores are available in the processor.

41

2.2.3.8 LP-Growth Algorithm

Linear Prefix Growth (LP-Growth) (Pyun, Yun, & Ryu, 2014) is an algorithm

proposed by Gwangbum Pyun to mine frequent itemsets using arrays in a linear

structure. It minimizes the information required in the data mining process by

constructing a Linear Prefix Tree (LP-Tree) that is composed of arrays instead of

pointers. With this implementation, the efficiency in memory usage is increased since

the information of connection between different nodes is reduced significantly.

A structure of the Linear Prefix Nodes (LPNs) in the LP-Tree is shown in Figure

2.14. One LP-Tree is composed of multiple LPNs in a linear structure. Every set of

frequent items is stored into different nodes that are composed of multiple arrays. In

order to link all the arrays together, every array consists of a header in its first location

to indicate its parent array. If the LPN is the first node to be inserted in the LP-Tree,

the header of that LPN indicates the root of the LP-Tree.

Figure 2.14: Structure of Linear Prefix Nodes (LPNs) (Pyun et al., 2014)

42

The LP-Growth algorithm is able to generate the LP-Tree in a faster manner

compared to the FP-Growth algorithm. This is because a series of array operations are

used in the LP-Growth algorithm to create multiple nodes at the same time, while the

FP-Growth algorithm creates the nodes one at a time. As the nodes are saved in the

form of arrays, any parent or child nodes are accessible without using any pointers

while searching through the LP-Tree. In addition, it is also possible to traverse

through the LP-Tree in a faster manner because the corresponding memory locations

can be directly accessed when all the nodes are stored using the array structure. Apart

from this, when pointers are not utilized to link up all the nodes, the memory usage

for every node becomes comparatively less as well. However, the LP-Growth

algorithm has a limitation in the insertion process of nodes because the items from a

transaction may be saved in various LPNs (Jamsheela & G., 2015). Therefore, to

insert a transaction into the LP-Tree successfully, the memory needs to be freed

continuously.

2.2.3.9 Can-Mining Algorithm

Can-Mining (Hoseini, Shahraki, & Neysiani, 2015) is an algorithm that mines

frequent itemsets from a Canonical-Order Tree (Can-Tree) in an incremental manner.

Similar to the FP-Growth algorithm, a header table that contains information of all the

database items is used in the algorithm. The header table consists of the frequency of

each item and its pointers to the first and last nodes that contain the item in the Can-

Tree. In order to extract frequent patterns from the Can-Tree, a list of frequent items

is required for the algorithm to perform the mining operation. The Can-Mining

algorithm is able to reduce the time of mining in nested Can-Trees because only

frequent items are appended into the trees in a predefined order. When the minimum

support has a high threshold value, the Can-Mining algorithm is able to outperform

the FP-Growth algorithm. However, if the threshold value of the minimum support is

much lower, the FP-Growth algorithm is more efficient. The architecture of the Can-

Mining algorithm is shown in Figure 2.15.

43

Figure 2.15: Architecture of the Can-Mining Algorithm (Hoseini et al., 2015)

2.2.3.10 EXTRACT Algorithm

EXTRACT (Feddaoui, Felhi, & Akaichi, 2016) is an algorithm proposed by Ilhem

Feddaoui to mine frequent itemsets using the mathematical concept of Galois lattice.

The architecture of the EXTRACT algorithm is shown in Figure 2.16. It is partitioned

into four functions for calculating the support count, combining the itemsets,

eliminating the itemsets that are repeated, and extracting association rules from the

frequent itemsets.

First, EXTRACT calculates the support count of each frequent 1-itemset that

satisfied the minimum support determined by the user. All frequent 1-itemset that did

not satisfy the minimum support determined by the user will be removed from the

calculation. Then, EXTRACT will combine the itemsets to discover all the possible

combinations of frequent itemsets. After identifying all the frequent itemsets, the

combinations of frequent itemsets that are redundant will be eliminated. Once all the

44

unique frequent itemsets are mined, the association rules that satisfied the minimum

confidence determined by the user will be generated. All association rules that did not

satisfy the minimum confidence determined by the user will be removed from the rule

discovery process.

EXTRACT outperforms the Apriori algorithm for mining more than 300 objects

and 10 attributes with an execution time that does not exceed 1200 milliseconds.

However, since the frequent itemsets that have been mined are not stored in any disk

or database, the algorithm is required to be executed again in order to mine the new

set of frequent itemsets if there is a change in the data set.

Figure 2.16: Architecture of the EXTRACT Algorithm (Feddaoui et al., 2016)

45

2.2.3.11 HYBRID Algorithm

HYBRID (Zulkurnain & Shah, 2017) is an algorithm that combines the Improved

Apriori (Wei, Yang, & Liu, 2009) and FP-Growth (J. Han et al., 2000) algorithms for

mining the frequent itemsets of data. The unifying process has concatenated the

significant features of the two algorithms in order to produce a faster execution time

and lesser memory consumption in mining the frequent itemsets of data.

The first portion of the algorithm utilizes the Improved Apriori property to

identify all the maximal frequent itemsets that have a support value that is equivalent

to or more than the minimum support specified by the users. In this way, the data set

is pruned to become smaller and easier for traversing. The data set which has been

pruned serves as an input to the second portion of the algorithm for discovering all the

frequent-1 itemsets and removing all the infrequent-1 itemsets. Finally, the

transactions which have been pruned are used to construct an FP-Tree using the FP-

Growth algorithm.

HYBRID produced better results in execution time and memory consumption

compared to both the Improved Apriori and FP-Growth algorithms. This is because

the candidate itemsets are not required to be generated and the FP-Tree is constructed

for a pruned data set only. Therefore, the FP-Tree can be easily fit into the main

memory for mining the frequent itemsets of data. However, the execution time of

HYBRID is almost the same as FP-Growth for discovering the frequent itemsets with

a higher support count.

2.2.3.12 FPNR-Growth Algorithm

FPNR-Growth (Jiang & He, 2017) is an algorithm that is evolved from the FP-

Growth (J. Han et al., 2000) algorithm for mining the frequent itemsets of data. In this

algorithm, a structure like the FP-Tree is used to store the frequent patterns, which is

called the FPNR-Tree. The structure of an FPNR-Tree is shown in Figure 2.17. The

information about how a node is associated with another node is stored into an array,

which is called the FPNR-Array.

46

First, FPNR-Growth compress the data set into the FPNR-Tree in a slightly

different manner compared to FP-Growth. Every node in the FPNR-Tree has a pointer

that connects itself to the parent node, and every leaf node has a pointer that connects

itself to the next leaf node. Then, the FPNR-Array is constructed to store the

information about how a node is associated with another node in the FPNR-Tree. This

is accomplished by having every element in the FPNR-Array to hold the index of its

parent node in the array. Next, a HashTable is used to keep track of the location

information of every element in the FPNR-Array. Finally, the frequent itemsets are

mined from the FPNR-Tree and FPNR-Array with the referencing information of the

HashTable.

Figure 2.17: Structure of the FPNR-Tree (Jiang & He, 2017)

FPNR-Growth outperforms FP-Growth in terms of execution time and memory

consumption because a non-recursive method is used in mining the frequent itemsets

of data. However, the implementation of FPNR-Growth is more complicated because

different data structure like tree, array and table are used at the same time for the

mining of the frequent itemsets to be carried out.

47

2.2.3.13 SSFIM Algorithm

SSFIM (Djenouri, Djenouri, Lin, & Belhadi, 2018) is an algorithm that

implements a single scan approach for Frequent Itemset Mining (SSFIM). Alternative

approaches like heuristic (EA-SSFIM) and parallel implementation on the Hadoop

clusters (MR-SSFIM) are also implemented for the SSFIM algorithm. The

architecture of these alternative approaches for SSFIM is shown in Figure 2.18.

Figure 2.18: Alternative Approaches for SSFIM (Djenouri et al., 2018)

The transactions in a data set are processed only once by the SSFIM algorithm.

After the data set is scanned once by SSFIM, all the itemsets of every transaction and

their support counts are generated into a hash table by the algorithm. If an itemset has

already been generated at the processing of a previous transaction, its support count is

just incremented by one. Otherwise, the itemset will be inserted into the hash table

and its support count will be set to one. This process is repeated until every

transaction in the data set is processed.

In this way, SSFIM discovers all the frequent itemsets with just one scan of the

entire data set. SSFIM is able to outperform other algorithms because it does not need

to scan the data set multiple times in order to generate all the frequent itemsets.

48

However, a heavy computation is still required to be performed by SSFIM since the

candidate itemsets are still necessary to be generated for every transaction in the

whole data set.

2.2.3.14 PFIM Algorithm

Precomputation-Based Frequent Itemset Mining (PFIM) (X. Han et al., 2019) is

an algorithm that quickly computes the frequent itemsets on massive amount of data.

PFIM partitions the transaction table into two main parts, having a large table that

stores the historical data, and a relatively small table that stores the newly generated

data. The quasi-frequent itemsets on the large table that contains the historical data are

pre-constructed first by the algorithm. In this manner, PFIM managed to generate the

frequent itemsets on massive amount of data efficiently. In order to maintain such

efficiency, an incremental update technique is designed to merge the old table and the

new table to re-construct the quasi-frequent itemsets.

A number of experiments conducted on some synthetic and real-life data sets have

indicated that PFIM has a significant advantage and able to run two orders of

magnitude faster compared to other algorithms. This is because the frequent itemsets

are only required to be generated from the new table since the quasi-frequent itemsets

have already been pre-computed in the old table. However, if there are changes in the

historical data due to some updates or corrections, the PFIM is not able to generate the

frequent itemsets in an accurate manner.

2.2.3.15 Comparison of Frequent Pattern Mining Techniques

In general, the algorithms for Frequent Pattern Mining (FPM) can be classified

into three main categories (C. C. Aggarwal et al., 2014), namely Join-Based, Tree-

Based, and Pattern Growth as shown in Figure 2.19. First, the Join-Based algorithms

apply a bottom-up approach to identify the frequent items in a data set and expand

them into larger itemsets as long as those itemsets appear more than a minimum

threshold value defined by the user in the database. Then, the Tree-Based algorithms

49

use set-enumeration concepts to solve the problem of frequent itemset generation by

constructing a lexicographic tree that enables the items to be mined through a variety

of ways like the breadth-first or depth-first order. Finally, the Pattern Growth

algorithms implement a divide-and-conquer method to partition and project databases

depending on the presently identified frequent patterns and expand them into longer

ones in the projected databases.

The advantages and disadvantages of various significant FPM algorithms are

summarized in Table 2.6. The initial three most popular algorithms in FPM are

Apriori, FP-Growth and EClaT. Each of these algorithms has its strengths in mining

the frequent itemsets of data. For example, Apriori applies an iterative level-wise

search technique to identify (k+1)-itemsets from k-itemsets, and FP-Growth preserves

the information of how all itemsets are associated by utilizing an FP-Tree that

compresses the amount of data to be searched. Then, EClaT does not need to scan

through the entire database in order to determine the support count of (k+1)-itemsets.

However, each of these algorithms has its limitations in mining the frequent itemsets

of data too. For instance, Apriori needs to generate a lot of candidate sets if the k-

itemsets are large in numbers, and needs to scan the database repeatedly for

identifying the support count of the itemsets. For FP-Growth, building the FP-Tree is

time consuming if the data set is very large. Then, EClaT requires more memory

space and processing time for intersecting the long TID sets.

From these three most common algorithms in FPM, many algorithms have been

proposed or improved from them. Some of the significant ones are TreeProjection,

Co-Occurrence Frequent Itemset (COFI), Transaction Mapping (TM), P-Mine, Linear

Prefix Growth (LP-Growth), Can-Mining and EXTRACT. Similarly, each of these

algorithms has its strengths in mining the frequent itemsets of data. Among these

FPM algorithms, most of them are categorized as the Pattern Growth algorithms,

which include COFI, P-Mine, LP-Growth, Can-Mining and EXTRACT. COFI utilizes

a pruning technique to decrease the use of memory space significantly, and P-Mine

improves its performance and scalability by mining the frequent itemsets in parallel

using multiple processor cores. LP-Growth produces the LP-Tree in a faster way

because a series of array operations are implemented to construct multiple nodes

50

together, and Can-Mining is able to mine the frequent itemsets in a very fast manner

when the minimum support has a high threshold value. Then, EXTRACT is able to

mine more than 300 objects and 10 attributes with a run time that does not exceed

1200 milliseconds.

Nevertheless, these Pattern Growth algorithms have their limitations in mining the

frequent itemsets of data also. The mining performance of COFI is reduced in a sparse

database when the threshold value of the minimum support is low, while the mining

performance of P-Mine can only be optimized to the highest level when multiple

cores are available in the processor. LP-Growth needs to free the memory

continuously because the items from the same transaction can be stored in different

Linear Prefix Nodes (LPNs), and the mining run time of Can-Mining will become

longer if the threshold value of the minimum support becomes very low. Finally,

EXTRACT needs to be executed again in order to mine the new set of frequent

itemsets if there is a change in the data set.

Amongst the existing Pattern Growth algorithms, most of them are evolved from

the FP-Growth algorithm. This is because FP-Growth generates all the frequent

patterns using only two scans for the data set, representing the entire data set with a

compressed tree structure, and decreases the execution time by removing the need to

generate the candidate itemsets (Mittal et al., 2015). Although the existing FPM

algorithms are able to mine the frequent patterns in a data set by identifying the

association between different data items, a lengthy processing run time and a large

consumption of memory space are still the two major problems faced by FPM

especially when the amount of data is big in a data set.

In a situation where the threshold of the minimum support is set to a lower value,

the patterns of items that exist less frequently in the data set are also required to be

included into the FPM process. Consequently, more patterns need to be mined from

the data set and this causes the mining run time to be drastically increased. In order to

reduce the run time of mining, many existing algorithms prune the data to be mined

by ignoring the patterns that exist less frequently in the data set. However, this is not a

suitable technique to implement FPM because patterns that exist less frequently in the

51

data set do not mean that they are not important. Sometimes problems can happen as a

result of the pattern that exist less frequently in the data set.

Apart from this, most of the existing algorithms mine the frequent patterns into

the Random Access Memory (RAM). As the frequent patterns are mined into the

RAM, a problem of power failure or system down will cause all the frequent patterns

that have been mined previously to be lost. This is because whatever that is stored into

the RAM will not be retained after a power failure or system down situation. As a

result, all the frequent patterns that have been mined previously need to be mined

again whenever there is a problem of power failure or system down.

Therefore, a more robust and efficient FPM algorithm needs to be developed for

identifying the important frequent patterns in a big data set. The algorithm should be

able to mine the frequent patterns from a data set in a shorter run time using less

memory consumption, even though the threshold of minimum support is set to a lower

value. In addition, the algorithm should be able to retrieve the frequent patterns even

after a power failure or system down situation without the need to mine the entire data

set again.

52

Figure 2.19: Classification of Frequent Pattern Mining Algorithms

53

Table 2.6: Comparison of Frequent Pattern Mining Algorithms

FPM Algorithm Advantages Disadvantages

Apriori

(Agrawal & Srikant, 1994)

Uses an iterative level-wise search technique to

discover (k+1)-itemsets from k-itemsets.

Has to produce a lot of candidate sets if k-itemsets are

more in numbers.

Has to scan the database repeatedly to determine the

support count of the itemsets.

FP-Growth

(J. Han & Pei, 2000)

Preserves the association information of all itemsets.

Shrinks the amount of data to be searched.

Constructing the FP-Tree is time consuming if the data

set is very large.

EClaT

(Zaki, 2000)

Scanning the database to find the support count of

(k+1)-itemsets is not required.

More memory space and processing time are required

for intersecting long TID sets.

TreeProjection

(Agarwal et al., 2001)

Identifies the frequent itemsets in a fast manner

because only the subset of transactions that can

probably hold the frequent itemsets is searched by the

algorithm.

Different representations of the lexicographic tree

present different limitations in terms of efficiency for

memory consumption.

COFI

(El-Hajj & Za¨ıane, 2003)

Uses a pruning method to reduce the use of memory

space significantly by constructing smaller COFI-

Trees while mining for the frequent itemsets.

The performance of the algorithm degrades in a sparse

database if the threshold value of the minimum support

is low.

54

Table 2.6 continued: Comparison of Frequent Pattern Mining Algorithms

FPM Algorithm Advantages Disadvantages

TM

(Song & Rajasekaran, 2006)

Compresses the itemsets into a list of transaction

intervals in order to greatly save the intersection time

for mining the frequent itemsets.

Still slower in terms of processing speed compared to

the FP-Growth* algorithm.

P-Mine

(Baralis et al., 2013)

Optimizes performance and scalability by executing

the mining of frequent itemsets in parallel with

multiple processor cores.

The algorithm can only be optimized to the maximum

level when multiple cores are available in the processor.

LP-Growth

(Pyun et al., 2014)

Generates the LP-Tree in a faster manner as a series of

array operations are used to create multiple nodes

together.

Memory needs to be freed continuously as the items

from a transaction may be saved in various LPNs.

Can-Mining

(Hoseini et al., 2015)

Outperforms the FP-Growth algorithm when the

minimum support has a high threshold value.

Mining time is longer if the threshold value of the

minimum support is much lower.

EXTRACT

(Feddaoui et al., 2016)

Mines more than 300 objects and 10 attributes with an

execution time that does not exceed 1200

milliseconds.

The algorithm needs to be executed again in order to

mine the new set of frequent itemsets if there is a

change in the data set.

55

Table 2.6 continued: Comparison of Frequent Pattern Mining Algorithms

FPM Algorithm Advantages Disadvantages

HYBRID

(Zulkurnain & Shah, 2017)

The candidate itemsets are not required to be

generated and the FP-Tree is constructed for a pruned

data set only.

The execution time of HYBRID is almost the same as

FP-Growth for discovering the frequent itemsets with a

higher support count.

FPNR-Growth

(Jiang & He, 2017)

Outperforms FP-Growth in terms of execution time

and memory consumption because a non-recursive

method is used in mining the frequent itemsets of data.

Its implementation is more complicated because

different data structure like tree, array and table are

used at the same time for the mining of the frequent

itemsets to be carried out.

SSFIM

(Djenouri et al., 2018)

Outperforms other algorithms because it does not need

to scan the data set multiple times in order to generate

all the frequent itemsets.

A heavy computation is still required to be performed

by SSFIM since the candidate itemsets are still

necessary to be generated for every transaction in the

whole data set.

PFIM

(X. Han et al., 2019)

The frequent itemsets are only required to be

generated from the new table since the quasi-frequent

itemsets have already been pre-computed in the old

table.

If there are changes in the historical data due to some

updates or corrections, the PFIM is not able to generate

the frequent itemsets in an accurate manner.

56

2.3 Data Extraction

It is a normal situation in any company for data to be distributed at various parts

of the organization especially the corporation is composed of multiple branches in

different locations. In order to mine the data for identifying hidden trends that may

provide insights to business analysis and decision making, it is essential to extract,

transform and load (ETL) all the necessary data from a variety of sources into a data

warehouse.

2.3.1 Data Extraction Techniques

A number of ETL techniques are analyzed in this research for constructing a

useful data mining algorithm for Frequent Itemset Mining (FIM). This section

describes how the fundamental and significant techniques in ETL work and compares

their advantages and disadvantages respectively.

2.3.1.1 Incremental ETL

Incremental ETL (Jörg & Deßloch, 2008) is a technique for extracting,

transforming, and loading only the changed data from heterogeneous sources and

propagating it into the data warehouse. This technique is designed to be so due to the

increased data volumes and shortened data loading intervals of the organization. It is

surely an exhaustive way to extract all the data from different sources and reconstruct

the entire data warehouse in each ETL cycle. Thus, implementing incremental update

to any kind of corporate data is definitely more efficient than applying full update

because the volume of updated data is usually smaller compared to the entire data set.

The approaches used in this technique to gather the updates from the data sources

and refresh the data warehouse are the Change Data Capture (CDC) and Change Data

Application (CDA) methods. A matrix that represents the status of change data that

57

need to be reflected into the data warehouse with the following indications is shown

in Figure 2.20:

• represents records that have been inserted,

• represents records that have been deleted,

• represents the current state of records that have been updated,

• represents the initial state of records that have been updated.

Figure 2.20: Matrix Representation of an Incremental Join (Jörg & Deßloch, 2008)

2.3.1.2 Real-Time ETL

Real-Time ETL (Santos & Bernardino, 2008) is a technique that enables users to

make use of the data available in a data warehouse for business analysis and decision

making in a real time mode. The ETL tasks need to be implemented in real time

because most of the enterprises require the ability of decision support for their

business in a real time manner. As the size of a data warehouse increases, it becomes

very difficult to update the data warehouse efficiently in real-time. The

implementation of ETL for the transactional data in real-time will overload the server

due to its update frequency and data volume. As a result, the immense and complex

+

-

58

operation on the data warehouse will significantly degrade the performance of Online

Analytical Processing (OLAP).

In order to enable new information to be disseminated across an organization in

real-time while maintaining the capability of continuous data integration, Real-Time

ETL creates an exact structural replica of all the tables of the data warehouse with a

unique sequential identifier for the latest data to be stored as shown in Figure 2.21.

The temporary replicated tables are to be constructed without any data or settings like

index, primary key, foreign key, or constraints of any kind so that the insertion of data

can be performed much faster compared to the original big size tables. Moreover, this

enables users who wish to query only the most recent information to only query the

temporary replicated tables. The records in the temporary tables will be updated to the

data warehouse and the temporary tables will be recreated when the OLAP

performance becomes not that acceptable.

In a nutshell, the main contributions of Real-Time ETL are as follows:

1. Ensures the data to be up to date by integrating the most recent transactional data

into the data warehouse rapidly and efficiently;

2. Optimizes the performance of OLAP while performing continuous data

integration at the same time;

3. Maximizes the availability of the data warehouse by reducing its data synchronization

time, in which the access from OLAP application is not in use.

59

Figure 2.21: Sample Sales Data Warehouse Schema (Santos & Bernardino, 2008)

2.3.1.3 Parallel ETL

Parallel ETL (Thomsen & Pedersen, 2011) is a technique for extracting,

transforming, and loading data by parallelizing the typical tasks that need to be

performed in an ETL operation. The ETL tasks need to be implemented in parallel

because it is time consuming to construct and to execute an ETL program.

Parallelization of tasks is not an impossible implementation with the use of multi-core

Central Processing Units (CPUs) in a computer as they are designed with such

capability to enable true parallelism. However, not many programmers have exploited

the power of parallel processing in multi-core CPUs for the implementation of ETL

operations.

Parallel ETL pushes the ETL operations into separate processes and execute them

in parallel as shown in Figure 2.22. It enables a single database connection to be used

in parallel by sharing the ConnectionWrapper object to multiple processes using the

SharedConnectionWrapperClient object. This allows several tasks to be executed

together but only one operation is performed on the database at the same time. Hence,

60

by utilizing slightly more CPU time, the overall total time required to execute an ETL

program is decreased significantly.

Figure 2.22: A Flow with Three Functions in Three Processes

(Thomsen & Pedersen, 2011)

2.3.1.4 Script Automated ETL

Script Automated ETL (Radhakrishna, SravanKiran, & Ravikiran, 2012) is a

technique that utilizes the scripting method to automatically extract, transform, and

load data from heterogeneous sources into a data warehouse. This technique is

designed to be so due to the heavy manual tasks involved for executing the ETL

process throughout the entire organization. It is definitely an exhaustive job to

manually extract all the data from different sources, transform it according to some

requirements and load it into the data warehouse from time to time. Thus, automating

the ETL process with the relevant scripting technology is surely a more efficient

solution for consolidating all the data of an enterprise.

61

The architecture of the Script Automated ETL framework is shown in Figure 2.23.

In this technique, three different types of maps are generated for data extraction,

transformation and loading. Apart from this, information about errors and other

statistics are logged along the execution of the ETL process in order to ensure a

proper debugging to be conducted when any problem is encountered in the midst of

ETL execution. By automating the ETL process, the tasks of data processing and error

handling are simplified, human effort involvement is reduced, execution is made

faster, and performance is also improved for the entire system.

Figure 2.23: Architecture of Script Automated ETL (Radhakrishna et al., 2012)

2.3.1.5 Data Quality ETL

Data Quality ETL (Endler, 2012) is a technique for extracting, transforming, and

loading data into a data warehouse using the data quality approach so that the data

collected will be more useful for business analysis and decision making. It is

important to use a data quality approach to implement the ETL process because the

existence of invalid data will definitely affect the results of analysis for data (Cao,

62

Diao, Jiang, & Du, 2010). The data quality approach implemented in this technique is

the Total Data Quality Management (TDQM) practice that delivers high quality

information to users by treating data much like the products found in a manufacturing

environment of any industry (Fisher, Lauria, Chengalur-Smith, & Wang, 2012).

The architecture of the Data Quality ETL framework implemented in the

environment of a medical supply center is shown in Figure 2.24. The main features

available in this technique includes metrics measurement, rules verification, quality

requirements definition, cost estimation for resolving quality problems, and alarm

warning when data of insufficient quality is identified. To accomplish a more robust

data quality approach for implementing the ETL process, the system enables users to

define and verify the appropriate characteristics for data quality monitoring apart from

accessing the preset data quality features.

Figure 2.24: Architecture of Data Quality ETL (Endler, 2012)

63

2.3.1.6 Scalable and High Performance ETL

Scalable and High Performance ETL (SETL) (K. Sun & Lan, 2012) is a technique

that utilizes the subroutine attribute and data partition of the PERL programming

language to develop the ETL process for extracting, transforming and loading large

scale data from heterogeneous data sources into a data warehouse. It is a technique

that is developed to execute the ETL process in a distributed environment easily and

efficiently with high scalability as the removal or addition of an ETL job will not

affect the current active ETL jobs due to the flexible plug-in design. As a result, there

is no hindrance between different tasks that are involved in the entire ETL process.

The architecture of the SETL framework is shown in Figure 2.25. The SETL

system is primarily formed by three components, namely the job collector, job

dispatcher and ETL pipeline. The job collector is responsible to gather the ETL jobs

specified by the users, analyze its syntax, and verify its semantics. Then, the job

dispatcher is responsible to create the ETL pipelines and dispatch each ETL job to a

pipeline according to the configuration specified by the users. After each ETL job is

accomplished successfully, the data is loaded into the appropriate target database

accordingly.

64

Figure 2.25: Architecture of Scalable and High Performance ETL

(K. Sun & Lan, 2012)

2.3.1.7 Semantic ETL

Semantic ETL (Nath, Hose, & Pedersen, 2015) is a technique for extracting,

transforming, and loading data into a data warehouse semantically so that the data is

integrated in the right order. It is important to apply the semantic technology into the

ETL process because it is often desirable for enterprises to include external data from

different sources into their data warehouse in order to generate the required business

knowledge.

The architecture of the Semantic ETL framework is shown in Figure 2.26. First, it

integrates and processes data from different sources semantically with an ontology

defined by the users. Then, the data will be transformed into triples of the Resource

Description Framework (RDF) according to the ontology, and the created RDF

dataset will be loaded into a triple store to be queried by the internal users. Last but

not least, the created RDF dataset can also be connected to the external users for

information sharing purpose.

65

Figure 2.26: Architecture of Semantic ETL (Nath et al., 2015)

2.3.1.8 Comparison of Data Extraction Techniques

The advantages and disadvantages of various significant data extraction

techniques are summarized in Table 2.7. Each of these methods for data extraction,

transformation and loading consists of different capabilities that are useful for

consolidating data to be in the appropriate forms so that it can be easily processed by

the data mining algorithm.

66

Table 2.7: Comparison of Data Extraction Techniques

ETL Technique Advantages Disadvantages

Incremental ETL

(Jörg & Deßloch, 2008)

Being more efficient than applying full update

because the volume of updated data is usually

smaller.

Lacks of the functionality for implementing real-time

ETL in order to provide real-time decision support.

Real-Time ETL

(Santos & Bernardino, 2008)

Ensures the data to be up to date by integrating the

most recent transactional data into the data warehouse

rapidly and efficiently.

Lacks of the capability to implement data quality even

though real-time data can be retrieved for analysis

from the data warehouse.

Parallel ETL

(Thomsen & Pedersen, 2011)

Decreases the overall total time required to execute an

ETL program by pushing the ETL operations into

separate processes and execute them in parallel.

Lacks of the ability to scale the ETL process in a

distributed environment although the ETL jobs can be

separated into different processes for execution.

Script Automated

ETL

(Radhakrishna et al., 2012)

Being a more efficient solution for consolidating all

the data of an enterprise when the ETL process is

automated using the relevant scripting technology.

Lacks of the functionality for implementing the ETL

process in an incremental manner so that the volume

of data to be updated each time is reduced.

67

Table 2.7 continued: Comparison of Data Extraction Techniques

ETL Technique Advantages Disadvantages

Data Quality

ETL

(Endler, 2012)

Ensures the data collected to be more useful for business

analysis using a data quality approach.

Lacks of the capability to implement real-time ETL even

though quality data can be collected for analysis.

Scalable and High

Performance

ETL

(K. Sun & Lan,

2012)

Executes the ETL process in a distributed environment

easily and efficiently with high scalability using a flexible

plug-in design to manage the ETL jobs.

Lacks of the ability to implement data quality although the

ETL process can be scaled in a distributed environment

easily and efficiently.

Semantic

ETL

(Nath et al., 2015)

Integrates data in the right order when data is extracted,

transformed, and loaded into the data warehouse

semantically.

Lacks of the functionality to implement parallel execution

for the ETL jobs in different processes while applying the

semantic technology in the ETL process.

68

2.4 Chapter Summary

Several techniques for data mining and data extraction have been reviewed in this

chapter. The data mining techniques being discussed are Classification, Clustering,

Outlier Detection and Frequent Pattern Mining (FPM). FPM has been chosen as the

main topic of study in this research because it is the fundamental and significant step

that is required to be further enhanced in many areas of data mining. The significant

and recent algorithms in FPM that have been reviewed are Apriori, FP-Growth,

EClaT, TreeProjection, COFI, TM, P-Mine, LP-Growth, Can-Mining, EXTRACT,

HYBRID, FPNR-Growth, SSFIM, and PFIM. Since extracting, transforming and

loading (ETL) data from various sources are necessary before implementing data

mining, different types of ETL techniques are analyzed in this chapter. The significant

and recent ETL techniques that have been reviewed are Incremental ETL, Real-Time

ETL, Parallel ETL, Script Automated ETL, Data Quality ETL, Scalable and High

Performance ETL, and Semantic ETL. When the amount of data is big in a data set,

the two major problems faced by the existing FPM algorithms are a lengthy

processing time and a large consumption of memory space. Therefore, a more robust

FPM algorithm needs to be designed and implemented.

CHAPTER 3

RESEARCH METHODOLOGY

This chapter discusses about the methodology that has been selected to perform

the research of this study. First, an overview of research and the various types of

methodologies are presented in Section 3.1 for a suitable methodology to be selected

to conduct this research. Then, the selected research method for this study is described

in Section 3.2. Finally, the entire flow of research, development and evaluation

procedures of the selected research method are discussed in Section 3.3.

3.1 Overview of Research and Types of Methodologies

Adopting an appropriate methodology is vital for producing valuable results in

any research. Even though the ultimate aim of research is the same for all fields of

study in science and humanities, every field involves a specific application of the

methods which is useful for the research (Hassani, 2017). In general, the important

steps of research methodology in the field of computer science and engineering

includes the following steps as shown in Figure 3.1 (Prajapati, Dabhi, & Bhensdadia,

2015):

(a) Research Problem Formulation,

(b) Literature Review,

(c) Research in Action, and

(d) Research Communication.

70

Figure 3.1: Generalized Process of Research (Prajapati et al., 2015)

Research Problem Formulation is the most important step in research because it

identifies the problem to be resolved throughout the research. The problem that has

been identified should be a valid one which has a great impact on the field that is

being studied (Ellis & Levy, 2008). It can be a new problem that has not been

published in the literature or an existing problem that has been indicated in the future

work section of the relevant research papers. The step of Research Problem

Formulation is shown in Figure 3.2 where a particular subject of interest is scoped

down to a specific topic for a significant problem to be identified with the appropriate

research questions. The research problem can be further refined after conducting the

literature review in an exhaustive manner.

71

Figure 3.2: Research Problem Formulation (Prajapati et al., 2015)

The step of literature review conducts a thorough study and performs a critical

analysis on the relevant literature of the research topic. This is because the outcome of

a research can only be considered as valuable if it is a novel one. Therefore, all

researchers are required to ensure that the researches performed by them are

producing new contributions to the body of knowledge. In order to achieve this, the

researchers have to conduct a thorough study on the existing knowledge at the time of

research. The entire process of literature review is shown in Figure 3.3. After

formulating the problem, the researcher should collect the relevant sources from the

digital libraries or printed materials like journal papers, conference papers, books,

technical reports, and websites for research. Then, the sources collected needs to be

evaluated so that the materials for studying can be reduced and much attention can be

given to those that are more important.

When the sources are sorted out according to their relevance to the research topic,

a thorough study and critical analysis is to be conducted by the researcher on the

selected ones. Then, as the selected literatures are interpreted and synthesized by the

researcher, the appropriate results and conclusions can be drawn to highlight the

major issues that have been addressed and approaches of solution that have been

72

implemented by other researchers. Finally, the literature review should be presented

in a summarized manner to show the strengths and weaknesses of different related

work in order to identify the existing gaps that need to be filled.

Figure 3.3: Process of Literature Review (Prajapati et al., 2015)

Research in Action is the step where the research is designed, evaluated and

validated. As the research is designed, it comprises the steps of proposing a new

solution and putting it into implementation. After the proposed solution is

accomplished, it needs to be evaluated by comparing it with other recent works using

the appropriate metrics or measures. At this stage, the researcher should identify the

situations in which the proposed solution will produce the best or negative results, and

try to analyze the reasons for such scenarios to happen. Finally, the researcher needs

to validate the research by providing enough proofs to persuade other researchers that

the research conducted is valid. The validation can be done in an experimental manner

where the results of the research are compared with the best results that are available

in the existing literature, or in a theoretical manner where mathematical and analytical

evidences are provided for justification.

Last but not least, the final step of the general process of research is Research

Communication. It is a stage where the researcher should write some research papers

73

about the work that has been done and submit it to some conferences or journals for

publications if the research is being accepted. Publishing the work of research to a

conference or journal with a good reputation is also very important because it helps to

establish the validation of the research.

Computer Science is an area of research that has always been struggling with its

identity. This is because its foundation is drawn from various disciplines and it needs

to implement the concepts from many different areas of studies (Crnkovic, 2002). On

one hand, it is a field that is intensely rooted in Mathematics with complicated

theories, but on the other hand, it is a field that is intensely rooted in Engineering with

the approaches of quantification, measurement and comparison (Demeyer, 2011).

Therefore, in order to determine a more suitable research method to be used, various

kinds of research methods are reviewed. The different types of research

methodologies available are Field Study, Group Feedback Analysis, Opinion

Research, Participative Research, Case Study, Archival Research, Philosophical

Research, Math Modeling, Experimental Simulation, Laboratory Experiment, Free

Simulation, Field Experiment, and Adaptive Experiment (Jenkins, 1985). Among all

these research methodologies, the one being chosen to conduct this research is the

Experimental Research Method.

3.2 Experimental Research Method

Experimental Computer Science is a kind of study that implements the best

practices, methods, procedures, and techniques which help practitioners of computing

to move from the theoretical base towards an applied one in the field of Computer

Science (Hassani, 2017). Typically, it can be grouped into five categories, namely,

Feasibility Experiment, Trial Experiment, Field Experiment, Comparison Experiment,

and Controlled Experiment (Tedre & Moisseinen, 2014).

Feasibility Experiment is conducted when it is necessary to know how efficient,

reliable and feasible a research has been performed. Usually, a demonstration of the

technology being proposed is conducted to show that it can be implemented

successfully. For the Trial Experiment, it verifies many areas of a proposed

74

technology with different sets of variables in order to determine its qualities. The

experiments are conducted in a laboratory most of the time. But it can also be

performed in the real environment with some limitations. On the other hand, Field

Experiment conducts the tests for a technology out of the laboratory where it is

evaluated in a real environment to verify its robustness, usability or performance.

Comparison Experiment is performed to compare multiple solutions that are available

to implement a certain technology in order to identify the best solution for solving a

particular problem. Last but not least, the Controlled Experiment is a test that is

conducted under controlled conditions, in which one or more factors are modified at a

time, while all other factors remain the same.

In order to make the research in Computer Science to be more applicable to the

society, the Experimental research method is used to implement a number of

experiments which analyze and generate results from multiple real world data sets.

Furthermore, it is necessary to ensure that all the experiments conducted and results

presented should be reproducible if every step of the research is executed again

accordingly (Ayash, 2014).

3.3 Research, Development and Evaluation

The entire work flow of this research is presented in Figure 3.4. It includes the

five processes of literature review, data collection and analysis, design of the FPM

algorithm, implementation of the FPM algorithm, and evaluation of the FPM

algorithm. As shown in the diagram, the three objectives of this research are achieved

through the design, development and evaluation phases of the entire FPM algorithm.

Just like any other research, this research is started with the literature review

process. In the literature review process, the significant and recent algorithms for

Frequent Pattern Mining (FPM) are studied so that a more robust FPM algorithm can

be designed and developed. As the algorithms are being reviewed, the advantages and

disadvantages of each algorithm are analyzed in detail. The purpose of conducting

such a detailed analysis is to identify the strengths and weaknesses of every algorithm.

75

Figure 3.4: Research Work Flow

After discovering the strengths and limitations of all the significant and recent

FPM algorithms, a few sets of data are downloaded online from the Frequent Itemset

Mining Implementations (FIMI) Dataset Repository for testing the proposed FPM

algorithm (Goethals, 2004). These data sets contain data from a few different sources

as follows:

(a) Sales Data of Products from a Retail Store

(b) Network Connection Data from a Computer Server

(c) Census Data from the United States of America

(d) Click-Stream Data from a Hungarian Online News Portal

All the data are filtered accordingly before being processed by every algorithm that is

designed and developed in this research.

76

The first objective of this research is achieved at the design stage. When the data

is ready to be processed, the whole architecture of the FPM algorithm is designed

from the beginning to the end. The appropriate diagramming tools available in the

Microsoft Office 365 software (Microsoft, 2018c) are used to construct the flow chart

for the algorithm as shown in Figure 4.1. The flow chart describes how the data is

processed by all the algorithms throughout the entire architecture. In the flow chart,

the input, process, storage, and output of the algorithm are clearly identified in the

appropriate order.

The second objective of this research is achieved at the development stage. Once

the architecture of the algorithm is designed completely, all the algorithms are

implemented one after another using the C++ programming language

(CPlusPlus.com, 2018). C++ is utilized as the programming language for

development because it is a general-purpose programming language that has the

imperative and object-oriented functionalities, while providing the features for low-

level memory manipulation. Apart from this, the C++ programming language ensures

that variable declaration is compulsory to be implemented in any program to prevent

any variable from being used with the inappropriate data type. This is an important

feature because using the inappropriate data type for any variable in the program, may

cause invalid data to be captured for data mining, and having inaccurate results to be

produced. To make it more convenient for development, Microsoft Visual Studio

(Microsoft, 2018b) is used as the Integrated Development Environment (IDE) for

constructing the algorithms as shown in Figure 3.5.

Since this research focus on constructing an algorithm for Frequent Pattern

Mining (FPM), the algorithm is developed as a Windows Console Application

(Technopedia, 2018) to be executed under the Windows Command Prompt. This is

because a console application is suitable to be used as a proof-of-concept

demonstration of the functionalities that are potential to be implemented into a

desktop application in any platform of operating system (Microsoft, 2018a).

77

Figure 3.5: Integrated Development Environment of C++ in Microsoft Visual Studio

The database used to store the data sets is the MySQL Database (MySQL, 2018a).

Both the Structured Query Language (SQL) (Heller, 2017) and Not-Only Structured

Query Language (No-SQL) (Yegulalp, 2017) databases are utilized to support the

process of Frequent Itemset Mining (FIM) in this research. For data manipulation,

MySQL Shell (MySQL, 2018b) is the Command Line Interface (CLI) software used

to execute the SQL or NoSQL queries as shown in Figure 3.6. To make it more

convenient in manipulating the data, MySQL Workbench (MySQL, 2018c) is used as

the Graphical User Interface (GUI) software to access the databases as shown in

Figure 3.7.

78

Figure 3.6: MySQL Shell – The CLI Software for MySQL Database

Figure 3.7: MySQL Workbench – The GUI Software for MySQL Database

The third objective of this research is achieved at the evaluation stage. As all the

algorithms are completed successfully, each algorithm is executed on one of the data

sets in order to test its performance in mining the frequent patterns from the data. It is

done by measuring the run-time execution and memory consumption of the algorithm.

79

The purpose of conducting this evaluation is to verify that all the algorithms being

constructed are suitable to be used for FPM. In addition, to confirm that the

algorithms are really fit to be used for FPM, the algorithms are executed on multiple

data sets with a dense or sparse structure. Moreover, the proposed FPM algorithm is

also compared with the Apriori (Agrawal & Srikant, 1994) and EFP (Shang, 2005)

algorithms in order to ensure that it is capable to mine the frequent itemsets in a

shorter run time and with less memory consumption. The algorithm is compared

against Apriori and EFP because Apriori is the fundamental algorithm in FPM and

EFP utilized a similar approach of FPM using the database. Finally, if any part of the

algorithm is found to be not working properly, the design and implementation

processes are repeated until a robust FPM algorithm is constructed.

3.4 Chapter Summary

Among the various types of research methodologies, the Experimental Research

Method has been chosen to implement the research of this study. First, the step of

literature review is conducted to study the significant and recent algorithms for

Frequent Pattern Mining (FPM). Then, a few sets of data are downloaded online to be

used for testing the proposed FPM algorithm. Next, the architecture of the algorithm

is designed using the appropriate diagramming tools available in the Microsoft Office

365 software. After that, the algorithm is implemented with the C++ programming

language through the Integrated Development Environment (IDE) of Microsoft Visual

Studio. Then, the MySQL Database is utilized to store the data to be used for

Frequent Itemset Mining (FIM). Last but not least, the algorithm is evaluated on

different kinds of sparse and dense data sets.

80

CHAPTER 4

FP-NOSQL: NOSQL-BASED FREQUENT PATTERN MINING

WITH FP-DB APPROACH

This chapter discusses about the proposed algorithm in this research to solve the

problem of Frequent Pattern Mining (FPM) so that the hidden patterns of the frequent

itemsets can be mined within a shorter run time and with less memory consumption.

First, the entire architecture of the algorithm is illustrated in the form of a flowchart in

Section 4.1. Then, the different parts of the algorithm are described in detail from

Section 4.2 to Section 4.6 respectively.

4.1 Flow Chart of FP-NoSQL Algorithm

As discussed in Chapter 2, many algorithms have been proposed by different

researchers throughout the world to improve the method of Frequent Pattern Mining

(FPM). But most of the algorithms for FPM are designed to mine all the frequent

itemsets from a text file into the main memory or Random Access Memory (RAM).

Therefore, the data needs to be mined again if the system is down or there is a power

failure. This is because none of the frequent patterns are stored in such a manner so

that it can be retrieved later for further data analysis. To solve this problem,

FP-NoSQL is proposed in this research as an algorithm that mines the frequent

itemsets using the Frequent Pattern Database (FP-DB) approach. The flow chart of the

FP-NoSQL algorithm is shown in Figure 4.1 and it is constructed from several

algorithms as follows:

(a) Data Loader

(b) Frequent Item Generator

(c) Frequent Pattern Processor

(d) FP-Collection Constructor

(e) Frequent Pattern Analyzer

82

Figure 4.1: Flow Chart of the FP-NoSQL Algorithm

83

4.2 Algorithm of Data Loader

Most of the existing FPM algorithms mine the frequent patterns of data from a

text file rather than a database or data warehouse. However, almost every system of

an organization stores their data in a database or data warehouse for further analysis

(Gull & Pervaiz, 2018). Therefore, it is necessary to construct an FPM algorithm that

is able to mine the frequent patterns of data directly from the database or data

warehouse, so that the data does not need to be exported to text files for mining by the

algorithm. In order to construct such an FPM algorithm, the Data Loader algorithm is

designed to load the data from a text file into a data warehouse since most of the data

available for mining are stored in text files. The pseudocode of the Data Loader

algorithm is presented as Algorithm 1.

Algorithm 1: Data Loader

Function: Construction of Transaction Table

Input: Transactional Data in Text File

Output: Transactional Data in Data Warehouse

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Begin

Connect to Data Warehouse

Initialize TID to the first transaction to be processed

Open data file

While NOT End of File Do

 Read line from file

 Split line into items

 While NOT End of Line Do

 records += "(" + TID + "," + item + "),"

 End While

 TID++

End While

records = records.substr(0, records.length() - 1)

Insert records into Transaction table

Close data file

Disconnect from Data Warehouse

End

84

The Data Loader algorithm will construct a Transaction table when the data is

loaded from the text file into the data warehouse. Figure 4.2 shows a portion of the

transactional data from a retail store in the form of a text file. Each line represents a

transaction of purchase from a customer in the actual database of the retail store. In

every line, the numbers are separated with a space and they represent the item codes

of all products purchased by the customer in that transaction.

Figure 4.2: Transactional Data from Retail Data Set (Brijs, 1999)

When the algorithm is executed, it will connect to the data warehouse where

transactional data is stored permanently for analysis. Then, the Transaction ID (TID)

is set to the value of ‘1’ if the data is loaded for the first time from the text file into the

data warehouse, else it can be set to the next value of the current maximum TID. For

example, if the last TID in the data warehouse is ‘1000’, then the current TID can be

set to ‘1001’ to start the processes of Extract, Transform and Load (ETL) for the data.

85

The ETL processes establish the integration layer that consolidates data from various

sources into the appropriate targets through a set of processing steps (Kabiri &

Chiadmi, 2013). After initializing the value of TID, the relevant text file is accessed in

order to locate the data as input to the data warehouse.

As the algorithm accesses the text file, each line of transaction is read and split

into individual items. Next, all the items are concatenated into the records string with

the intention of inserting them together into the Transaction table in the data

warehouse. Then, the value of TID is incremented by 1 in order to proceed for

processing the next line of transaction. These three steps are repeated until the last

line of transaction in the text file is being processed. Before inserting the records, the

last comma (,) of the records string is removed, so that the query of the Structured

Query Language (SQL) can be executed successfully. Finally, the text file is closed

and the connection to the data warehouse is disconnected.

Table 4.1 shows a portion of the Transaction table created for the Retail data set.

The SQL query used to retrieve the records is as follows:

SELECT * FROM data_warehouse.transaction;

The table contains of three columns having the name ID, Item and Status. The ID

column stores the TIDs while the Item column stores the item codes of the products.

For the Status column, it will hold the value of ‘N’ if the data is newly inserted into

the table, and it will hold the value of ‘O’ if the data has been processed by the

Frequent Item Generator algorithm described in Section 4.3. Hence, the Status column

is used to keep track whether the data has been processed by the Frequent Item

Generator algorithm or not. In the next execution, only the items that contain the

value of ‘N’ for the Status column will be processed by the algorithm.

86

Table 4.1: Transaction Table for Retail Data Set

ID Item Status

1 0 N

1 1 N

1 2 N

1 3 N

1 4 N

1 5 N

1 6 N

1 7 N

1 8 N

1 9 N

1 10 N

1 11 N

1 12 N

1 13 N

1 14 N

1 15 N

1 16 N

1 17 N

1 18 N

1 19 N

1 20 N

1 21 N

1 22 N

1 23 N

1 24 N

1 25 N

1 26 N

1 27 N

1 28 N

1 29 N

2 30 N

2 31 N

2 32 N

3 33 N

3 34 N

3 35 N

87

4.3 Algorithm of Frequent Item Generator

Analyzing the frequent patterns of data is important because organizations need to

know what their customers would like to purchase by identifying which products are

relevant to one another (Tripathi, Vartak, Chaudhari, & Naik, 2018). To analyze the

patterns that exist frequently in a data warehouse, the frequency of occurrence for

each item at every transaction in the data warehouse needs to be determined.

Therefore, the Frequent Item Generator algorithm is designed to produce the list of

frequent items by arranging the items in every transaction according to the sequence

of the Item Frequency table. The Item Frequency table contains the frequency of

occurrence for each item that exists in every transaction throughout the entire data

warehouse. The pseudocode of the Frequent Item Generator algorithm is presented as

Algorithm 2 and an example of the Item Frequency table is given in Table 4.2.

Algorithm 2: Frequent Item Generator

Function: Construction of Frequent Item Table

Input: Transactions

Output: Frequent Items

1

2

3

4

5

6

7

8

9

Begin

Connect to Data Warehouse

Select maximum TID of old transactions into max_old_id

Select maximum TID of new transactions into max_new_id

start_id = max_old_id + 1

Insert items into FrequentItem table based on descending order

 of ItemFrequency table

Update transactions status between start_id and max_new_id

Disconnect from Data Warehouse

End

88

Before constructing the Frequent Item table, the Item Frequency table is required

to be built with the following SQL query:

INSERT INTO ItemFrequency

SELECT item, COUNT(*) FROM Transaction

GROUP BY item ORDER BY COUNT(*) DESC;

This SQL query calculates the frequency of every item in all the transactions by

grouping the records according to their item codes and arranging them in the

descending order of their frequencies. After calculating the frequencies of all the

items, the SQL query will store them into the Item Frequency table.

Table 4.2 shows a portion of the Item Frequency table generated for the Retail

data set, having Item 39 to be the one with the highest frequency among all the

transactions. The SQL query used to retrieve the records is as follows:

SELECT * FROM data_warehouse.itemfrequency;

The Total column indicates the frequency for each item in the entire data

warehouse. In this data set, 16470 unique items are found in it. The top three items

that are purchased the most by the customers are Item 39, Item 48 and Item 38, with

the frequencies of 50675, 42135 and 15596 respectively. The last few items in the

table are those items that exist the least in the entire data set, having each item to

appear only 1 time. The Item Frequency table can be updated from time to time in

order to ensure that the patterns of new data that have been added into the data

warehouse at a later time will also be mined by the algorithm.

89

Table 4.2: Item Frequency Table for Retail Data Set

Item Total

39 50675

48 42135

38 15596

32 15167

41 14945

65 4472

89 3837

225 3257

170 3099

237 3032

… …

12774 1

8285 1

12790 1

12806 1

6771 1

11160 1

12838 1

6819 1

6835 1

8413 1

The Frequent Item Generator algorithm will construct a Frequent Item table when

the data in the Transaction table is processed to generate the list of frequent items.

Once the algorithm is executed, it will connect to the data warehouse and select the

maximum TIDs of transactions that have the ‘O’ status and ‘N’ status respectively.

The records with an ‘O’ status are the data that has been processed by the algorithm

previously. Thus, the initial TID for producing the list of frequent items will be

equivalent to adding a value of ‘1’ to the maximum TID of transactions that have the

‘O’ status in the Transaction table. After setting the initial TID and maximum TID of

transactions that have the ‘N’ status, the algorithm will insert all the items into the

Frequent Item table according to the descending order of frequencies in the Item

Frequency table. Last but not least, the status of transactions that have been processed

currently are changed from ‘N’ to ‘O’ before the connection to the data warehouse is

90

disconnected. This is to prevent the transactions that have been processed from being

processed again in the next data pre-processing stage.

Table 4.3 shows a portion of the Frequent Item table created for the Retail data

set. The SQL query used to retrieve the records is as follows:

SELECT * FROM data_warehouse.frequentitem;

The records are arranged according to the sequence of the Item Frequency table.

In this case, all the items in every transaction are organized by having the item with

the highest frequency to be ranked first followed by others that have a lower

frequency. For example, in Transaction 2, Item 32 is having a higher frequency

compared to Item 31 and Item 30. The purpose for arranging the items in the

descending order of their frequencies is to enable the items that exist frequently to be

mined with a higher priority during the process of Frequent Itemset Mining (FIM).

Table 4.3: Frequent Item Table for Retail Data Set

TID Item Status

1 9 N

1 19 N

1 18 N

1 23 N

1 10 N

1 11 N

1 2 N

1 12 N

1 15 N

1 5 N

1 1 N

1 22 N

1 0 N

1 27 N

1 6 N

1 26 N

1 16 N

1 7 N

1 24 N

91

Table 4.3 continued: Frequent Item Table for Retail Data Set

TID Item Status

1 25 N

1 17 N

1 4 N

1 8 N

1 14 N

1 13 N

1 3 N

1 29 N

1 28 N

1 20 N

1 21 N

2 32 N

2 31 N

2 30 N

3 35 N

3 33 N

3 34 N

4.4 Algorithm of Frequent Pattern Processor

In a data warehouse, many patterns can exist in any data set because of the

improvement of technology for Internet of Things (IoT) that enables data to be

generated and collected easily (Chen et al., 2015). The pool of data can be retrieved

from different sources like websites, mobile applications, machine logs and sensor

data (Radhika, Kumar, Sailaja, & Gayatri, 2017). However, the huge amount of data

that has been captured is difficult to be processed and analyzed in reasonable amount

of time (Sharma, Sawai, & Surve, 2017). Furthermore, the patterns that exist may be

duplicated throughout the entire data set. Therefore, the Frequent Pattern Processor

algorithm is designed to discover all the patterns of data that exist in the data

warehouse by processing the Frequent Item table and consolidate them into a

Frequent Pattern table. The pseudocode of the Frequent Pattern Processor algorithm is

presented as Algorithm 3.

92

Algorithm 3: Frequent Pattern Processor

Function: Construction of Frequent Pattern Table

Input: Frequent Items

Output: Frequent Pattern Table

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Begin

Connect to Data Warehouse

Select TID and Item from FrequentItem and ItemFrequency

 tables that satisfied threshold of minimum support

While NOT End of Resultset Do

 If cur_id != pre_id Then

 con_path = "root"

 Else

 con_path += "~" + pre_item

 End If

 records += "(" + cur_item + ",'" + con_path + "'),"

 pre_id = cur_id

 pre_item = cur_item

End While

records = records.substr(0, records.length() - 1)

Insert records into FrequentPattern table

Disconnect from Data Warehouse

End

The Frequent Pattern Processor algorithm will construct a Frequent Pattern table

when the data in the Frequent Item table is processed to generate the list of frequent

patterns. When the algorithm is executed, it will connect to the data warehouse to

select the TIDs and items from the Frequent Item and Item Frequency tables. The

TIDs and items to be selected are those that satisfied the threshold of minimum

support. Minimum support is a value fixed by the user as the minimum frequency

which needs to be fulfilled for every item that is to be included into the Frequent

Pattern Mining (FPM) (Chaure & Singh, 2016).

After selecting the relevant TIDs and items, the TIDs and items are processed in

order to construct all the patterns that exist frequently in the data warehouse. If the

93

current TID (cur_id) is not equivalent to the previous TID (pre_id), then the

connection path (con_path) of an item will be set as “root”, else the previous item

(pre_item) is concatenated to the connection path of the current item (cur_item).

Then, the current item and its connection path are concatenated to the records string

for inserting into the Frequent Pattern table later. Next, the values of cur_id and

cur_item are stored into pre_id and pre_item so that they can be used in the following

loop for comparison purpose. This process is repeated until all the frequent patterns

are constructed from the Frequent Item table. Before inserting the records into the

Frequent Pattern table, the last comma (,) of the records string is removed so that the

SQL query can be executed successfully. Finally, the connection to the data

warehouse is disconnected.

Table 4.4 shows a portion of the Frequent Pattern table created for the Retail data

set. The SQL query used to retrieve the records is as follows:

SELECT * FROM data_warehouse.frequentpattern;

All the items in every transaction that satisfied the threshold of minimum support

fixed by the user are stored as the frequent patterns in this table. The minimum

support value set for this case is 0.01% of the entire data set which is equivalent to

about 90 times of occurrence. A total of 661856 frequent patterns are found from

908576 items in 88162 transactions.

Table 4.4: Frequent Pattern Table for Retail Data Set

Item ConnectionPath

9 root

19 root~9

18 root~9~19

23 root~9~19~18

10 root~9~19~18~23

11 root~9~19~18~23~10

2 root~9~19~18~23~10~11

12 root~9~19~18~23~10~11~2

15 root~9~19~18~23~10~11~2~12

5 root~9~19~18~23~10~11~2~12~15

94

Table 4.4 continued: Frequent Pattern Table for Retail Data Set

1 root~9~19~18~23~10~11~2~12~15~5

22 root~9~19~18~23~10~11~2~12~15~5~1

32 root

31 root~32

30 root~32~31

39 root

38 root~39

41 root~39~38

36 root~39~38~41

37 root~39~38~41~36

45 root~39~38~41~36~37

43 root~39~38~41~36~37~45

40 root~39~38~41~36~37~45~43

44 root~39~38~41~36~37~45~43~40

4.5 Algorithm of FP-Collection Constructor

Since many patterns may be duplicated in a data set within a data warehouse, it is

necessary to construct a collection of patterns and frequencies of occurrence for the

data so that a thorough analysis can be performed easily. The FP-Collection

Constructor algorithm is designed to construct a Not-Only Structured Query

Language (NoSQL) collection that consists of all the patterns and frequencies of data

by processing the Frequent Pattern table. The pseudocode of the FP-Collection

Constructor algorithm is presented as Algorithm 4. The NoSQL collection is utilized

to store all the unique patterns and frequencies of data because the schema less data

model is a better solution for managing the huge volume of data being captured and

processed at every moment in the organizations (Bhogal & Choksi, 2015).

The FP-Collection Constructor algorithm will construct a Frequent Pattern

Collection (FP-Collection) in the NoSQL database when the data in the Frequent

Pattern table is processed to calculate the frequencies of the patterns. Once the

algorithm is executed, it will connect to the data warehouse and the Frequent Pattern

Database (FP-DB) in which the FP-Collection will be created.

95

Algorithm 4: FP-Collection Constructor

Function: Construction of Frequent Pattern Collection

Input: Frequent Pattern Table

Output: Frequent Pattern Collection

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Begin

Connect to Data Warehouse

Connect to Frequent Pattern Database

pat_count = 0

Select pattern from FrequentPattern table

Sort pattern in ascending order

While NOT End of Resultset Do

 pat_count++

 If cur_pat != next_pat Then

 documents += "('{\"Item\":" + item

 + ",\"Frequency\":" + pat_count

 + ",\"Connection\":\"" + con_path + "\"}'),"

 pat_count = 0

 End If

End While

documents = documents.substr(0, documents.length() - 1)

Insert documents into FP-Collection

Disconnect from Data Warehouse

Disconnect from Frequent Pattern Database

End

After connecting to the data warehouse and FP-DB, all the frequent patterns will

be selected from the Frequent Pattern table into a list and sorted in the ascending

order. Then, the unique frequent patterns will be counted from the list by comparing

whether the current frequent pattern (cur_pat) is the same as the next frequent pattern

(next_pat). As the algorithm loops through the list, a counter (pat_count) is used to

count the unique frequent patterns. If cur_pat is not equivalent to next_pat, then the

value of pat_count is considered as the frequency of the frequent pattern. Next, the

current item (item) is concatenated with its connection path (con_path) and frequency

(pat_count) to the documents string for inserting into the FP-Collection later.

96

Subsequently, the value of pat_count is reset to zero for counting the following

unique frequent pattern in the list. This process is repeated until all the unique

frequent patterns are counted respectively from the list. Before inserting the

documents into the FP-Collection, the last comma (,) of the documents string is

removed so that the SQL query can be executed successfully. Finally, the connections

to the data warehouse and FP-DB are disconnected.

Table 4.5 shows a portion of the FP-Collection created for the Retail data set. The

SQL query used to retrieve the records is as follows:

SELECT * FROM frequentpattern_database.fp_collection;

Each document in the collection represents a unique frequent pattern. The

document with a Frequency value that is more than one represents a repeated pattern

in the data set. How every Item is connected to the root of the entire data set is

represented by the Connection string of alphanumeric characters.

Table 4.5: Frequent Pattern Collection for Retail Data Set

Document

{"Item": 1, "Frequency": 4, "Connection": "root"}

{"Item": 1, "Frequency": 1, "Connection": "root~101~179~23~622"}

{"Item": 1, "Frequency": 1, "Connection": "root~101~338~4336~643~652"}

{"Item": 1, "Frequency": 1, "Connection": "root~1020~3510"}

{"Item": 1, "Frequency": 1, "Connection": "root~1113~2673~1808"}

{"Item": 1, "Frequency": 1, "Connection": "root~1291"}

{"Item": 1, "Frequency": 1, "Connection": "root~161"}

{"Item": 1, "Frequency": 1, "Connection": "root~1714~1704~1214"}

{"Item": 1, "Frequency": 1, "Connection": "root~1714~2080~10444~12981"}

{"Item": 1, "Frequency": 1, "Connection": "root~185~365~423"}

{"Item": 1, "Frequency": 1, "Connection": "root~201~258~910~1444"}

{"Item": 1, "Frequency": 1, "Connection": "root~209"}

{"Item": 1, "Frequency": 1, "Connection": "root~2238~4994"}

{"Item": 1, "Frequency": 1, "Connection": "root~2353"}

{"Item": 1, "Frequency": 2, "Connection": "root~237"}

{"Item": 1, "Frequency": 1, "Connection":

"root~237~249~10515~405~10~1144~12~168~4685"}

{"Item": 1, "Frequency": 1, "Connection": "root~237~249~4685"}

97

Table 4.5 continued: Frequent Pattern Collection for Retail Data Set

{"Item": 1, "Frequency": 1, "Connection":

"root~237~31~30~856~1987~490~1842~805"}

{"Item": 1, "Frequency": 1, "Connection":

"root~310~161~3616~441~1239~345~2325~2215~8867"}

{"Item": 1, "Frequency": 2, "Connection": "root~32"}

{"Item": 1, "Frequency": 1, "Connection": "root~3270~2051"}

{"Item": 1, "Frequency": 1, "Connection":

"root~32~1393~201~1020~979~12943~1003~1282"}

{"Item": 1, "Frequency": 1, "Connection":

"root~32~237~310~249~783~10515~1144~856~694~1046~2633~168~718~234

~4685"}

{"Item": 1, "Frequency": 1, "Connection": "root~32~338"}

{"Item": 1, "Frequency": 1, "Connection":

"root~32~41~1393~78~2958~53~1677~4698"}

4.6 Algorithm of Frequent Pattern Analyzer

Once the Frequent Pattern Collection (FP-Collection) is constructed successfully

in the Frequent Pattern Database (FP-DB), Frequent Itemset Mining (FIM) can be

performed on the data using the appropriate Not-Only Structured Query Language

(NoSQL) queries (Marinov, Georgiev, & Popova, 2018). The Frequent Pattern

Analyzer algorithm is designed to analyze the patterns and frequencies of data by

processing the FP-Collection to generate the frequent itemsets. The pseudocodes of

the algorithm are presented from Section 4.6.1 to Section 4.6.4, and the main program

of the Frequent Pattern Analyzer algorithm is presented as Algorithm 5. First, the

algorithm will connect to the FP-DB and display a menu that consists of a few options

for the user to select in order to perform Frequent Pattern Mining (FPM).

The options available to perform FPM are shown in Figure 4.3 as follows:

(1) Search_All_Items()

• To search for all the patterns of every item that exists in the database.

(2) Search_Specific_Item()

• To search for all the patterns of a specific item that exists in the database.

(3) Search_Specific_Pattern()

• To search for a specific pattern that may exist in the database.

98

(4) Mine_Frequent_Itemsets()

• To mine all the frequent itemsets of a specific item that exists in the database.

Algorithm 5: Frequent Pattern Analyzer

Function: Generation of Frequent Itemsets

Input: Frequent Pattern Collection

Output: Frequent Itemsets

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Begin

Connect to Frequent Pattern Database

Do

 Display menu

 Get option

 Case option Of

 Case 1: Search_All_Items()

 Case 2: Search_Specific_Item()

 Case 3: Search_Specific_Pattern()

 Case 4: Mine_Frequent_Itemsets()

 Case 5: Exit

 Default: Prompt user to enter a valid option

 End Case

While (option != 5)

Disconnect from Frequent Pattern Database

End

99

Figure 4.3: Main Menu of FP-NoSQL

When an invalid value is entered, which is not within ‘1’ to ‘5’, the user will be

prompted to enter another valid value again. As a valid value is entered, the algorithm

will execute the appropriate procedure and return to the main menu if the user decided

to exit from the procedure. If the value of ‘5’ is entered by the user, the algorithm will

be terminated and disconnected from the FP-DB.

4.6.1 Procedure to Search All Items

When option ‘1’ is entered by the user, the algorithm will execute the procedure

to retrieve all the patterns of every item that exist in the database. The pseudocode of

this procedure is presented as Procedure 1. Initially, a few variables are set so that the

display of patterns can be controlled accordingly. The input variable is set as ‘c’ to

ensure that the do … while loop can be repeated until the user entered the character ‘e’

to terminate. Then, the rpd variable stands for “row per display”. It limits the number

of patterns to be displayed on screen at one time. This enables users to analyze a

smaller amount of patterns, instead of being overloaded with too much information.

For example, when the value ‘30’ is set to rpd, only 30 documents of patterns will be

displayed on screen. After displaying 30 documents of patterns on screen, the

algorithm will prompt the user to continue or exit. If the user enters the character ‘e’,

the algorithm will terminate, else it will continue to display the next 30 documents of

100

patterns from the database. Last but not least, the n variable is used to set the starting

position of the patterns to be displayed. For instance, when the value ‘0’ is set to rpd,

30 documents of patterns will be displayed starting from the first one being retrieved

into the dres document result set.

All the documents of patterns are sorted according to their frequencies of

occurrence in the descending order. This is because the ultimate aim of Frequent

Pattern Mining (FPM) is to identify the patterns that exist frequently in a data set and

analyze how they are related to one another. As the patterns are sorted in the

descending order of their frequencies, the ones that exist the most in the database will

be displayed on screen first. When the patterns of data are able to be discovered

according to their frequencies of appearance, many problems can be resolved by

studying the trend of the patterns in the database.

Procedure 1: Search_All_Items()

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Begin

input = 'c'

rpd = 30

n = 0

Do

 dres = col.find().sort("Frequency DESC").limit(rpd)

 .offset(n).execute()

 If (dres.count() > 0) Then

 While (doc = dres.fetchOne())

 Display doc

 End While

 n += rpd

 Display "Press 'e' to exit or other keys to

 continue: "

 Get input

 Else

 Display "No Records Found."

 End If

While (input != 'e')

End

101

A screenshot of the procedure to search all items from the FP-DB is shown in

Figure 4.4. In the Retail data set, item 39 is the item that exists the most in the entire

data set with a frequency of ‘50675’. The same item may consist of more than one

frequency value if it contains multiple patterns by relating to different number of

other items. For example, in the screenshot at Figure 4.4, item 38 contains 4 different

patterns as follows:

• {"Item": 38, "Frequency": 6102, "Connection": "root~39~48"}

• {"Item": 38, "Frequency": 4243, "Connection": "root~39"}

• {"Item": 38, "Frequency": 3409, "Connection": "root"}

• {"Item": 38, "Frequency": 1842, "Connection": "root~48"}

Among all the patterns of item 38, the first pattern (root~39~48) has the highest

frequency with a value of ‘6102’ and it is linked to item 39 and item 48. This pattern

indicated that item 38 appears the most at the same time with item 39 and item 48.

The second pattern (root~39) with a frequency of ‘4243’ indicated that item 38

appears such number of time with item 39 only, whereas the third pattern (root) with a

frequency of ‘3409’ indicated that item 38 appears on its own without the influence of

other items for such a number of occurrence.

102

Figure 4.4: Procedure to Search All Items

4.6.2 Procedure to Search Specific Item

As option ‘2’ is entered by the user, the algorithm will execute the procedure to

retrieve all the patterns of a specific item that exist in the database. The pseudocode of

this procedure is presented as Procedure 2. Similarly, a few variables are set so that

103

the display of patterns can be controlled accordingly. Before retrieving the patterns

from the database, the user will be prompted to enter the item that needs to be

analyzed. After capturing an Item ID from the user, the algorithm will retrieve all the

patterns in which the item is linked with. If there are no patterns that relate to the

specific item, the message of “No Records Found” will be displayed on screen. As the

patterns related to an item are able to be identified easily, it enables the user to solve a

problem that involves a particular item by locating all the other relevant items. A

screenshot of the procedure to retrieve all the patterns of a specific item in the Retail

data set from the FP-DB is shown in Figure 4.5. In this case, the patterns being

retrieved are linked with item 30.

Procedure 2: Search_Specific_Item()

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Begin

input = 'c'

rpd = 30

n = 0

Display "Enter Item ID for Specific Pattern Search: "

Get item

Do

 dres = col.find("Item=:param1").sort("Frequency DESC")

 .limit(rpd).offset(n).bind("param1", item)

 .execute()

 If (dres.count() > 0) Then

 While (doc = dres.fetchOne())

 Display doc

 End While

 n += rpd

 Display "Press 'e' to exit or other keys to

 continue: "

 Get input

 Else

 Display "No Records Found."

 End If

While (input != 'e')

End

104

Figure 4.5: Procedure to Search Specific Item

4.6.3 Procedure to Search Specific Pattern

Once option ‘3’ is entered by the user, the algorithm will execute the procedure to

retrieve all the patterns that exist in the database which contain a particular pattern.

The pseudocode of this procedure is presented as Procedure 3. Likewise, a few

variables are set so that the display of patterns can be controlled accordingly. Before

retrieving the patterns from the database, the user will be prompted to enter a specific

pattern that is of interest to be analyzed. After capturing a specific pattern from the

105

user, the algorithm will retrieve all the patterns that contain the particular pattern.

Similarly, if there are no patterns that relate to the specific pattern, the message of

“No Records Found” will be displayed on screen. When the patterns related to a

specific pattern are able to be located without much trouble, the problem that arises

due to a certain trend of data can be resolved easily. A screenshot of the procedure to

retrieve all the patterns which contain a particular pattern in the Retail data set from

the FP-DB is shown in Figure 4.6. In this case, the patterns being retrieved contain the

pattern of ‘root~39~48’.

Procedure 3: Search_Specific_Pattern()

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Begin

input = 'c'

rpd = 30

n = 0

Display "Enter Connection Path for Specific Pattern Search: "

Get con_path

con_path = "%" + con_path + "%"

Do

 dres = col.find("Connection LIKE :param1")

 .sort("Frequency DESC").limit(rpd).offset(n)

 .bind("param1", con_path.c_str()).execute()

 If (dres.count() > 0) Then

 While (doc = dres.fetchOne())

 Display doc

 End While

 n += rpd

 Display "Press 'e' to exit or other keys to

 continue: "

 Get input

 Else

 Display "No Records Found."

 End If

While (input != 'e')

End

106

Figure 4.6: Procedure to Search Specific Pattern

4.6.4 Procedure to Mine Frequent Itemsets

When option ‘4’ is entered by the user, the algorithm will execute the procedure

to retrieve all the patterns of a specific item that exist in the database, and generate all

the combination of frequent itemsets for the specific item together with their

107

frequencies. The pseudocode of this procedure is presented as Procedure 4. Similarly,

a few variables are set so that the display of patterns can be controlled accordingly.

Before retrieving the patterns from the database, the user will be prompted to enter the

item in which its frequent itemsets are required to be generated. After capturing an

Item ID from the user, the algorithm will retrieve all the patterns in which the item is

linked with, and export all the combination of frequent itemsets that are related to it

into a log file. Being able to generate all the relevant frequent itemsets helps the user

to identify which items are closely related to one another so that a problem in the data

set can be rectified as soon as possible. An example of the frequent itemsets generated

for Item 32 of the Retail data set is shown in Figure 4.7.

Procedure 4: Mine_Frequent_Itemsets()

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Begin

input = 'c'

rpd = 30

n = 0

Display "Enter Item ID for Frequent Itemset Search: "

Get item

Open log file for storing frequent itemsets

Do

 dres = col.find("Item = :param1").bind("param1", item)

 .execute()

 While (doc = dres.fetchOne())

 str_p = doc["Connection"]

 str = str_p

 boost::replace_all(str, "root~", " ")

 boost::replace_all(str, "~", " ")

 arr_pattern[total_pattern] = str + " "

 arr_frequency[total_pattern] = doc["Frequency"]

 total_pattern++

 End While

 dres = col.find("Item = :param1").limit(rpd).offset(n)

 .bind("param1", item).execute()

 If (dres.count() > 0) Then

 While (doc = dres.fetchOne())

108

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

 str_i = doc["Connection"]

 str = str_i

 boost::replace_all(str, "root~", "")

 boost::replace_all(str, "~", " ")

 stringstream ss(str)

 While (ss >> temp)

 arr_item[total_item] = temp

 total_item++

 End While

 For (total_combination = 1; total_combination <=

 total_item; total_combination++)

 Generate_Frequent_Itemsets()

 End For

 total_item = 0

 End While

 n += rpd

 Display "Press 'e' to exit or other keys to continue:"

 Get input

Else

 Display "No Records Found."

End If

While (input != 'e')

Close log file for storing frequent itemsets

End

Figure 4.7: Frequent Itemsets Related to Item 32

109

4.7 Chapter Summary

FP-NoSQL is proposed as an algorithm that mines the frequent itemsets using the

Frequent Pattern Database (FP-DB) approach. The algorithm is constructed from a

few modules to implement the respective task of Frequent Itemset Mining (FIM),

namely, Data Loader, Frequent Item Generator, Frequent Pattern Processor, FP-

Collection Constructor, and Frequent Pattern Analyzer. First, the Data Loader loads

the data from a text file into a data warehouse since most of the data available for

mining are stored in text files. Then, the Frequent Item Generator produces the list of

frequent items by arranging the items in every transaction according to the sequence

of the Item Frequency table. Frequent Pattern Processor discovers all the patterns of

data that exist in the data warehouse by processing the Frequent Item table and

consolidate them into a Frequent Pattern table. Next, the FP-Collection Constructor

constructs a Not-Only Structured Query Language (NoSQL) collection that consists

of all the patterns and frequencies of data by processing the Frequent Pattern table.

Finally, the Frequent Pattern Analyzer analyzes the patterns and frequencies of data

by processing the FP-Collection to generate the frequent itemsets.

110

CHAPTER 5

EXPERIMENT RESULTS AND DISCUSSION

This chapter presents the results of the experiments being conducted on six

different data sets in order to evaluate the performance of the FP-NoSQL algorithm.

Apart from presenting the experiment results, the computer platforms and data sets

used for conducting the experiments are also described in Section 5.1 and Section 5.2

respectively. The experiment results for mining four different data sets are presented

and discussed in Section 5.3. In Section 5.4, the experiment results for mining two

additional data sets are presented and discussed in order to compare the run time

performance of the FP-NoSQL algorithm with the Apriori and EFP algorithms. Then,

the FP-NoSQL algorithm is also compared with other algorithms in terms of memory

usage in Section 5.5. Last but not least, the performance of the FP-NoSQL algorithm

is evaluated with the Big-O Notation in Section 5.6.

5.1 Experiment Platform

The FP-NoSQL algorithm is executed for performance testing on the following

two platforms of computer hardware:

Computer Platform 1

Computer : DELL Laptop

Central Processing Unit (CPU) : Intel Core (TM) i7-7700HQ 2.8 GHz

Random Access Memory (RAM) : 16 GB

Hard Disk Drive (HDD) : 915 GB

112

Computer Platform 2

Computer : DELL Laptop

Central Processing Unit (CPU) : Intel (R) Core (TM) i5-2520M 2.5 GHz

Random Access Memory (RAM) : 4 GB

Hard Disk Drive (HDD) : 250 GB

The software that are used to develop and execute the FP-NoSQL algorithm on

both of the computer platforms above are as follows:

Operating System : Windows 10

Integrated Development Environment : Microsoft Visual Studio 2017

Programming Language : C++

Database Server : MySQL Server 5.7

Database Command Line Interface (CLI) : MySQL Shell 1.0

Database Graphical User Interface (GUI) : MySQL Workbench 6.3 CE

C++ to MySQL Connector : Connector C++ 1.1

5.2 Experiment Data Set

Four sets of data are downloaded from the internet in order to conduct the

experiments for evaluating the FP-NoSQL algorithm. Frequent Itemset Mining

Implementations (FIMI) Dataset Repository is the website where the data sets are

downloaded online (Goethals, 2004). The data sets are specifically prepared for the

purpose of Frequent Itemset Mining (FIM).

The four sets of data that have been downloaded online are the Retail, Connect,

Pumsb, and Kosarak data sets. The Retail data set is a set of product sales data from a

retail store, and the Connect data set is a set of network connection data from a

computer server. The Pumsb data set is a set of census data from the United States of

113

America (USA), and the Kosarak data set is a set of click-stream data from a

Hungarian online news portal.

The four sets of data can be categorized into two categories, namely as a sparse

data set or a dense data set. A sparse data set contains transactions that have different

number of items in each transaction, whereas a dense data set contains transactions

that have similar number of items in each transaction (Pyun et al., 2014). Retail and

Kosarak are considered as sparse data sets, while Connect and Pumsb are considered

as dense data sets. The examples of sparse data sets are shown in Figure 5.1 and

Figure 5.2 respectively for the Retail and Kosarak data sets, whereas the examples of

dense data sets are shown in Figure 5.3 and Figure 5.4 respectively for the Connect

and Pumsb data sets.

Figure 5.1: Retail Data Set (Brijs, 1999)

114

Figure 5.2: Kosarak Data Set (Bodon, 2003)

Figure 5.3: Connect Data Set (Bayardo, 2007a)

115

Figure 5.4: Pumsb Data Set (Bayardo, 2007b)

5.3 Evaluating FP-NoSQL on Different Data Sets

In order to verify that the FP-NoSQL algorithm is suitable to be used for Frequent

Pattern Mining (FPM), the algorithm is tested on four sets of data to evaluate its

performance based on two important criteria: run time and memory usage. The

objective of this evaluation is to confirm that the FP-NoSQL algorithm is able to mine

any kind of data set, whether it is a sparse one or a dense one. In a sparse data set,

every transaction has different number of items, whereas in a dense data set, every

transaction has similar number of items. As shown in Figure 5.5, the Performance

Profiler of Microsoft Visual Studio is used to monitor the run time and memory usage

of the algorithm during its execution. The run time is measured in seconds (s) at the

horizontal axis and the memory usage is measured in megabytes (MB) or gigabytes

(GB) at the vertical axis.

116

Figure 5.5: Performance Profiler of Microsoft Visual Studio

Since the execution of Performance Profiler will prolong the overall run time, a

block of code implemented with the C++ programming language is included into the

algorithm for measuring a more accurate run time as shown in Table 5.1. The code

captures the start time and end time of execution for the algorithm in order to

calculate its total run time. The run time is measured in microseconds so that a more

accurate reading can be obtained. Then, it is converted from microseconds to seconds

for easier analysis. After that, a log file is opened for the run time to be exported from

the algorithm. Last but not least, the log file is closed once the entire algorithm is

executed successfully.

Table 5.1: C++ Code to Measure Run Time of Algorithm

std::chrono::steady_clock::time_point begin = std::chrono::steady_clock::now();

std::chrono::steady_clock::time_point end = std::chrono::steady_clock::now();

ofstream log_file;

log_file.open("FrequentPatternProcessorLog.txt");

log_file << "Total Run Time : " << std::chrono::duration_cast

 <std::chrono::microseconds>(end - begin).count() << " microseconds";

log_file.close();

117

5.3.1 Experiment on Retail Data Set

The Retail data set is a set of product sales data from a retail store in the country

of Belgian. It was donated to the FIMI Dataset Repository by Tom Brijs (Brijs,

Swinnen, Vanhoof, & Wets, 1999). The data are gathered from three separated

periods. The first period is between the second half month of December 1999 to the

first half month of January 2000. Then, the second period is between January 2000 to

the starting of June 2000. Last but not least, the third and final period is between the

end of August 2000 to the end of November 2000. The data set contains 88162

transactions with a total amount of 908576 items. It is a sparse data set where every

transaction has different number of items. There are 16740 unique items in the entire

data set. Each transaction represents a purchase by a customer that visited the retail

store. The items in every transaction are the products purchased by the customers.

To evaluate the performance of the FP-NoSQL algorithm in FPM, the algorithms

of Frequent Pattern Processor and FP-Collection Constructor are executed on the

whole data set multiple times using different values of minimum support. The entire

experiment results for the Retail data set are recorded in Table 5.2. The experiment is

performed on the data set based on different values of minimum support ranging from

0.5 % down to 0.02 %, which are equivalent to the minimum support count of 4543

down to 182. At each execution of the algorithms on the data set with a different

value of minimum support, the Total Pattern, Unique Pattern, Run Time and Memory

Usage are recorded accordingly. Total Pattern indicates the total number of patterns

that can be located, whereas Unique Pattern represents the number of patterns that are

unique throughout the data set when the algorithm is executed on it at a specific value

of minimum support.

118

Table 5.2: Experiment Results for Retail Data Set

Minimum

Support

(%)

Minimum

Support

Count

Total

Pattern

Unique

Pattern

Run Time

(s)

Memory

Usage

(MB)

0.5 4543 138518 30 9.019413 35.3

0.2 1817 174780 2613 10.8903 45.4

0.1 909 233882 29289 19.492268 66.6

0.08 727 258307 46766 22.025137 76.2

0.06 545 295450 77554 25.1766 94.1

0.04 363 364876 140834 42.671708 124.4

0.02 182 515347 286341 71.942734 209.3

As the algorithms are executed on the Retail data set using different values of

minimum support, the run times recorded are between 9.02s to 71.94s as shown in

Figure 5.6. When the minimum support is set to 0.5 % or 4543 counts, the total run

time is only about 9.02s because the number of total patterns that can be located is

less comparatively, which is equivalent to 138518 patterns. Furthermore, the total

patterns are compressed into 30 unique patterns only. While the minimum support is

set to a lower value at each execution of the algorithms, the number of total patterns

and unique patterns that can be located from the data set are increasing gradually.

When the minimum support is set to 0.02 % or 182 counts, the algorithms mine

515347 patterns from the data set and compress them into 286341 unique patterns

around the time of 71.94s. Even though the number of unique patterns has been

drastically increased as the minimum support is set to a lower value, the run time for

each execution of the algorithms is increasing at a reasonable rate.

119

Figure 5.6: Run Time Evaluation for Retail Data Set

For memory usage, the consumptions are between 35.3 MB to 209.3 MB in

mining the Retail data set as shown in Figure 5.7. Since the number of total patterns

that can be located is less comparatively when the minimum support is set to 0.5 % or

4543 counts, the memory consumption for mining the data is also at a very less

amount of 35.3 MB only. When the minimum support is set to 0.02 % or 182 counts,

the algorithms mine 515347 patterns from the data set and compress them into

286341 unique patterns using about 209.3 MB of memory. Although the number of

unique patterns has been drastically increased when the minimum support is set to a

lower value, the memory consumption for each execution of the algorithms is

increasing at a reasonable rate.

120

Figure 5.7: Memory Usage Evaluation for Retail Data Set

Both graphs in Figure 5.6 and Figure 5.7 present a reasonable increase for the run

time and memory usage as the minimum support decreases to a lower value that

allows more patterns to be discovered. According to the experiment results, the

algorithms are able to mine 515347 patterns from the data set and compress them into

286341 unique patterns around the time of 71.94s using about 209.3 MB of memory

when the minimum support is set to 0.02 % or 182 counts. In other words, it is

equivalent to having the capability to mine around 7164 patterns within a second

using about 2.91 MB only. Therefore, this indicated that the algorithms are capable

enough to mine the data within a shorter run time using less memory consumption

although the total number of records is increased to a much greater value.

5.3.2 Experiment on Connect Data Set

The Connect data set is a set of network connection data from a computer server.

It was donated to the FIMI Dataset Repository by Roberto Bayardo who prepared it

from one of the data sets in the UCI Machine Learning Repository (Asuncion &

Newman, 2007). The data set contains 67557 transactions with a total amount of

121

2904951 items. It is a dense data set where every transaction has similar number of

items. There are only 129 unique items in the entire data set.

Similarly, the algorithms of Frequent Pattern Processor and FP-Collection

Constructor are executed on the whole data set multiple times using a different value

of minimum support. The entire experiment results for the Connect data set are

recorded in Table 5.3. The experiment is performed on the data set based on different

values of minimum support from 0.5 % down to 0.02 %, which are equivalent to the

minimum support count of 14525 down to 581.

Table 5.3: Experiment Results for Connect Data Set

Minimum

Support

(%)

Minimum

Support

Count

Total

Pattern

Unique

Pattern

Run Time

(s)

Memory

Usage

(GB)

0.5 14525 2627410 118715 159.63 1.3854

0.2 5810 2824055 279695 182.00 1.6347

0.1 2905 2871443 326014 190.63 1.6902

0.08 2324 2881850 336240 190.14 1.7021

0.06 1743 2885745 340104 192.59 1.7068

0.04 1162 2892423 346770 194.29 1.7156

0.02 581 2900616 354955 193.51 1.7530

As shown in Figure 5.8, the run time of the algorithms are between 159.63s to

193.51s when the algorithms are executed on the Connect data set using different

values of minimum support. Even though the minimum support is set to a lower value

at each execution of the algorithms, the run time for each execution of the algorithms

is quite consistent with one another. This is because the total amount of items

available in each transaction is very similar to one another in a dense data set.

122

Figure 5.8: Run Time Evaluation for Connect Data Set

For memory usage, the consumptions are between 1.3854 GB to 1.7530 GB in

mining the Connect data set as shown in Figure 5.9. When the minimum support is set

to 0.5 % or 14525 counts, the memory consumption for mining the data is at the

amount of 1.3854 GB. Comparing to the Retail data set, the memory consumption for

mining the Connect data set is much higher because the number of total patterns and

unique patterns that can be located from the data set are much more. However, the run

time for each execution of the algorithms on the Connect data set is just slightly

higher compared to mining the Retail data set.

123

Figure 5.9: Memory Usage Evaluation for Connect Data Set

Both graphs in Figure 5.8 and Figure 5.9 present a more stable differences of

values for the run time and memory usage as the minimum support decreases to a

lower value that allows more patterns to be identified. According to the experiment

results, the algorithms are able to mine 2900616 patterns from the data set and

compress them into 354955 unique patterns around the time of 193.51s using about

1.753 GB of memory when the minimum support is set to 0.02 % or 581 count. In

other words, it is equivalent to having the capability to process around 14990 patterns

within a second using about 9.28 MB only. Thus, this showed that the algorithms are

still able to mine the data within a short run time using reasonable memory

consumption even though the total number of records is increased to a much greater

value especially when the data set is in a dense structure.

5.3.3 Experiment on Pumsb Data Set

The Pumsb data set is a set of census data from the United States of America

(USA). It was donated to the FIMI Dataset Repository by Roberto Bayardo who

prepared it from one of the datasets in the UCI Machine Learning Repository

124

(Asuncion & Newman, 2007). The data set contains 49046 transactions with a total

amount of 3629404 items. It is a dense data set where every transaction has similar

number of items. There are 2113 unique items in the entire data set.

Likewise, the algorithms of Frequent Pattern Processor and FP-Collection

Constructor are executed on the whole data set multiple times using a different value

of minimum support. The entire experimental results for the Pumsb data set are

recorded into Table 5.4. The experiment is performed on the data set based on

different values of minimum support from 0.5 % down to 0.02 %, which are

equivalent to the minimum support count of 18147 down to 726.

Table 5.4: Experiment Results for Pumsb Data Set

Minimum

Support

(%)

Minimum

Support

Count

Total

Pattern

Unique

Pattern

Run Time

(s)

Memory

Usage

(GB)

0.5 18147 2557281 310484 225.28 2.1992

0.2 7259 3057326 586571 304.03 3.0000

0.1 3629 3205939 720525 327.07 3.5000

0.08 2904 3260587 772910 349.08 3.5000

0.06 2178 3302210 812542 369.88 3.7002

0.04 1452 3374315 884119 384.44 3.7998

0.02 726 3471736 981077 420.99 4.2002

As shown in Figure 5.10, the run time of the algorithms are between 225.28s to

420.99s when the algorithms are executed on the Pumsb data set using different

values of minimum support. Just like the Connect data set, although the minimum

support is set to a lower value at each execution of the algorithms, the run time for

each execution of the algorithms is quite consistent with one another for the Pumsb

data set. This is because the total amount of items available in every transaction in a

125

dense data set is quite similar with one another. When the minimum support count is

set to 0.5 % or 18147 counts, the run time of the algorithms is much lower compared

to the others because the number of unique pattern that can be identified is at a much

lesser amount.

Figure 5.10: Run Time Evaluation for Pumsb Data Set

For memory usage, the consumptions are between 2.1992 GB to 4.2002 GB in

mining the Pumsb data set as shown in Figure 5.11. When the minimum support is set

to 0.5 % or 18147 counts, the memory consumption for mining the data is at the

amount of 2.1992 GB. Similarly, comparing to a sparse data set, the memory

consumption for mining the Pumsb data set is much higher because more total

patterns and unique patterns can be located from a dense data set. Nevertheless, the

run time for each execution of the algorithms on the Pumsb data set is only slightly

higher compared to mining a sparse data set.

126

Figure 5.11: Memory Usage Evaluation for Pumsb Data Set

Both graphs in Figure 5.10 and Figure 5.11 present a more constant changes of

values for the run time and memory usage as the minimum support decreases to a

lower value that allows more patterns to be discovered. This is because the total

amount of items available in each transaction is very alike to one another. According

to the experiment results, the algorithms are able to mine 3471736 patterns from the

data set and compress them into 981077 unique patterns around the time of 420.99s

using about 4.2002 GB of memory when the minimum support is set to 0.02 % or 726

count. In other words, it is equivalent to having the capability to process around 8247

patterns within a second using about 10.22 MB only.

5.3.4 Experiment on Kosarak Data Set

The Kosarak data set is a set of click-stream data from a Hungarian online news

portal. It was donated to the FIMI Dataset Repository by Ferenc Bodon. The data set

contains 990002 transactions with a total amount of 8019015 items. It is a sparse data

set where every transaction has different number of items. There are 41270 unique

items in the entire data set. It is the biggest one among the four different data sets.

127

Similarly, the algorithms of Frequent Pattern Processor and FP-Collection

Constructor are executed on the whole data set multiple times using a different value

of minimum support. The entire experiment results for the Kosarak data set are

recorded into Table 5.5. The experiment is performed on the data set based on

different values of minimum support from 0.5 % down to 0.02 %, which are

equivalent to the minimum support count of 40095 down to 1604.

Table 5.5: Experiment Results for Kosarak Data Set

Minimum

Support

(%)

Minimum

Support

Count

Total

Pattern

Unique

Pattern

Run Time

(s)

Memory

Usage

(MB)

0.5 40095 2208696 3390 76.13 494.3

0.2 16038 2704833 140438 108.61 662.4

0.1 8019 3101903 422014 162.09 850.8

0.08 6415 3310181 598569 199.81 973.9

0.06 4811 3656279 894556 232.35 1208.4

0.04 3208 4107273 1316876 319.58 1608.3

0.02 1604 5227955 2327143 667.91 2867

As the algorithms are executed on the Kosarak data set using different values of

minimum support, the run times recorded are between 76.13s to 667.91s as shown in

Figure 5.12. When the minimum support is set to 0.5 % or 40095 counts, the total run

time is only about 76.13s because the number of total patterns that can be located is

less comparatively, which is equivalent to 2208696 patterns. Moreover, the total

patterns are compressed into 3390 unique patterns only. While the minimum support

is set to a lower value at each execution of the algorithms, the number of total patterns

and unique patterns that can be located from the data set are increasing gradually.

When the minimum support is set to 0.02 % or 1604 counts, the algorithms mine

5227955 patterns from the data set and compress them into 2327143 unique patterns

128

around the time of 667.91s. Although the number of unique patterns has been

drastically increased when the minimum support is set to a lower value, the run time

for each execution of the algorithms is increasing at a reasonable rate.

Figure 5.12: Run Time Evaluation for Kosarak Data Set

For memory usage, the consumptions are between 494.3 MB to about 2.8 GB in

mining the Kosarak data set as shown in Figure 5.13. Since the number of total

patterns that can be located is less comparatively when the minimum support is set to

0.5 % or 40095 counts, the memory consumption for mining the data is also at a very

less amount of 494.3 MB only. When the minimum support is set to 0.02 % or 1604

counts, the algorithms mine 5227955 patterns from the data set and compress them

into 2327143 unique patterns using about 2.8 GB of memory. Even though the

number of unique patterns has been drastically increased when the minimum support

is set to a lower value, the memory consumption for each execution of the algorithms

is increasing at a reasonable rate.

129

Figure 5.13: Memory Usage Evaluation for Kosarak Data Set

Both graphs in Figure 5.12 and Figure 5.13 indicate a reasonable rise for the run

time and memory usage as the minimum support decreases to a lower value that

allows more patterns to be identified. According to the experiment results, the

algorithms are able to mine 5227955 patterns from the data set and compress them

into 2327143 unique patterns around the time of 667.91s using about 2.8 GB of

memory when the minimum support is set to 0.02 % or 1604 count. In other words, it

is equivalent to having the capability to process around 7828 patterns within a second

using about 4.29 MB only.

5.3.5 Summary of Experiment Results on Different Data Sets

The purpose of executing the FP-NoSQL algorithm on four different sets of data

is to confirm that the algorithm is capable of mining the frequent itemsets from

various kind of data sets. Both the sparse and dense data sets used to conduct the

experiments consist of short and long patterns. Among the four data sets, the total

number of transactions are between 49 thousands to 0.990002 million records, while

130

the total number of items are between 0.908576 million to 8.019015 millions records.

The details of the four sets of experiment data are summarized in Table 5.6.

Table 5.6: Details of Four Experiment Data Sets

Data Set Type
Total

Transaction

Total

Item

Unique

Item

File Size

(MB)

Retail Sparse 88162 908576 16740 3.89

Connect Dense 67557 2904951 129 8.76

Pumsb Dense 49046 3629404 2113 15.8

Kosarak Sparse 990002 8019015 41270 30.5

For the sparse data sets (Retail and Kosarak), the FP-NoSQL algorithm is able to

mine the frequent patterns with a gradual increase of run time and memory usage even

though the minimum support is decreased to a lower percentage value. On the other

hand, for the dense data sets (Connect and Pumsb), the FP-NoSQL algorithm is able

to mine the frequent patterns with a more consistent run time and memory usage

although the minimum support is decreased to a lower percentage value. Therefore,

the experiments conducted have proven that the FP-NoSQL algorithm is able to mine

a big data set with a shorter run time and lesser memory usage since it is scalable

although the minimum support is set to a very low percentage value.

5.4 Evaluating Run Time of FP-NoSQL by Comparing to Apriori and EFP

In order to prove that the FP-NoSQL algorithm is able to mine the frequent

patterns using a shorter run time even though the size of a data set is increased, the

algorithm is executed on two additional sets of data that have been mined with the

Apriori and Extended Frequent Pattern (EFP) algorithms (Shang, 2005). The objective

of this evaluation is to confirm that the FP-NoSQL algorithm is able to outperform the

existing significant algorithms in Frequent Pattern Mining. The details of the two sets

131

of experiment data are summarized in Table 5.7. Figure 5.14 and Figure 5.16 show

the experiment results of the run time evaluation performed by the Apriori and EFP

algorithms. The experiment results of the run time evaluation performed by the FP-

NoSQL algorithm are presented in Figure 5.15 and Figure 5.17.

Table 5.7: Details of Two Experiment Data Sets

Data Set Type
Total

Transaction

Total

Item

Unique

Item

File Size

(MB)

T25I10D10K Sparse 9976 247148 929 0.92

T10I4D100K Sparse 100000 1010228 870 3.74

For the T25I10D10K data set in Figure 5.14 and Figure 5.15, when the values of

minimum support are set between 1 % (2471 counts) to 0.2 % (494 counts), the

Apriori algorithm is able to mine the frequent patterns within the range of 500

seconds to 20 thousands seconds. The Apriori algorithm is able to mine the frequent

patterns at a shorter run time of 500 seconds and 800 seconds, when the values of

minimum support are set to higher values of 1 % (2471 counts) and 0.75 % (1854

counts). However, the run time of the Apriori algorithm is drastically increased to 16

thousands seconds and 20 thousands seconds, when the values of minimum support

are set to lower values of 0.25 % (618 counts) and 0.2 % (494 counts). This is because

the Apriori algorithm needs to generate a large number of candidate itemsets

throughout the Frequent Pattern Mining (FPM) process by repeatedly scanning the

entire database to perform pattern matching.

On the other hand, with the same values of minimum support, the EFP algorithm

is able to mine the frequent patterns within the range of 1600 seconds to 8700

seconds. Although the values of minimum support are set to lower values of 0.25 %

(618 counts) and 0.2 % (494 counts), the EFP algorithm is still able to mine the

frequent patterns at 6900 seconds and 8700 seconds. This is because the EFP

algorithm does not need to perform the step of candidate itemsets generation and test.

132

Even though the run time of the EFP algorithm is significantly lower at a few

thousands seconds compared to the Apriori algorithm, the FP-NoSQL algorithm is

able to mine the frequent patterns at much shorter run times between 2.87 seconds and

16.47 seconds, using the same values of minimum support. EFP still requires a few

thousands seconds in mining the frequent patterns when the minimum support is low

because EFP mines the frequent patterns transaction by transaction and connects to

the database several times throughout the FPM process. But FP-NoSQL is able to

have such a powerful performance in mining the frequent patterns because the

frequent patterns are mined and stored into the Frequent Pattern Database (FP-DB) at

the same time. The data warehouse is only scanned once for retrieving all the data that

need to be mined. As the data is being processed, all the frequent patterns found are

concatenated together in the memory, so that it can be inserted into the FP-DB

concurrently. This method of mining the frequent patterns enables the run time to be

reduced significantly since only two database connections are required.

Figure 5.14: Run Time Evaluation for T25I10D10K Data Set by Apriori and EFP

(Shang, 2005)

133

Figure 5.15: Run Time Evaluation for T25I10D10K Data Set by FP-NoSQL

For the T10I4D100K data set, when the values of minimum support are set

between 1 % (10102 counts) to 0.02 % (202 counts), the Apriori algorithm is able to

mine the frequent patterns within the range of 1304 seconds to 20 thousands seconds

for the minimum supports between 1 % (10102 counts) to 0.1 % (1010 counts). When

the value of minimum support is set at 0.08 % (808 counts) or lower, mining of the

frequent patterns by the Apriori algorithm needs to be terminated due to its very long

run time for candidate itemset generation and test. In contrast, with the same values of

minimum support, the EFP algorithm is able to mine the frequent patterns within the

range of 2174 seconds to almost 70 thousands seconds. However, the FP-NoSQL

algorithm is able to mine the frequent patterns at much shorter run times between 5.69

seconds and 113.05 seconds, using the same values of minimum support.

Similarly, FP-NoSQL is capable of outperforming Apriori and EFP with such a

major difference of run time because FP-NoSQL mines the frequent patterns and

consolidates them into the FP-DB simultaneously, instead of inserting them one by

one through a repeating loop of database scanning. The following code is the method

used in Algorithm 4 of FP-NoSQL to concatenate the frequent patterns being mined

so that it can be imported into the FP-DB at the same time:

134

While NOT End of Resultset Do

 pat_count++

 If cur_pat != next_pat Then

 documents += "('{\"Item\":" + item

 + ",\"Frequency\":" + pat_count

 + ",\"Connection\":\"" + con_path

+ "\"}'),"

 pat_count = 0

 End If

End While

When the FP-NoSQL algorithm loops through the list of frequent patterns, a

counter (pat_count) is used to count the unique frequent patterns. If the current

frequent pattern (cur_pat) is not equivalent to the next frequent pattern (next_pat),

then the value of pat_count is considered as the frequency of the frequent pattern.

Then, the current item (item) is concatenated with its connection path (con_path) and

frequency (pat_count) to the documents string for inserting into the FP-Collection

after all the frequent patterns have been processed. Therefore, the total run time of

mining the frequent patterns can be greatly reduced since the data warehouse and FP-

DB are not being connected and accessed by the FP-NoSQL algorithm several times

during the entire FPM process.

135

Figure 5.16: Run Time Evaluation for T10I4D100K Data Set by EFP Algorithm

(Shang, 2005)

Figure 5.17: Run Time Evaluation for T10I4D100K Data Set by FP-NoSQL

136

5.5 Evaluating Memory Usage of FP-NoSQL without FP-DB and with FP-DB

To evaluate the performance of an algorithm, measuring the memory usage is

another common method apart from calculating its run time. In this study, three

experiments for measuring the memory usage of some existing Frequent Pattern

Mining (FPM) algorithms have been reviewed as shown in Figure 5.18, Figure 5.19

and Figure 5.20. These experiments indicated that the memory usage for mining the

frequent itemsets of data is increasing exponentially especially when the amount of

data is big. In Figure 5.18 and Figure 5.19, the algorithms of GMiner, BigFIM and

DistEclat increased the memory usage to a few gigabytes (GB) in order to obtain a

lower run time. This is because as the memory space for processing the data set is

expanded, the amount of frequent itemsets that can be mined are able to be increased

too. In Figure 5.20, the amount of memory usage for the Plausibility Rule Mining

(PRM) and FP-Growth algorithms are much lower at around 50 to 250 megabytes

(MB) compared to other algorithms in the two experiments because the pruning

technique is applied in mining the frequent itemsets. However, pruning is not a

suitable technique to decrease the run time of an algorithm for mining the frequent

itemsets because it may prevent some significant patterns from being discovered.

Figure 5.18: Time and Space for HIL Strategy of GMiner Algorithm

(Chon, Hwang, & Kim, 2018)

137

Figure 5.19: Communication Costs and Performance of FPM Algorithms

(Apiletti et al., 2017)

Figure 5.20: Memory Usage of PRM and FP-Growth at Support = 10%

(Abraham & Joseph, 2016)

138

Therefore, in order to verify that the FP-NoSQL algorithm is able to mine the

frequent itemsets using less memory consumption even though the size of a data set is

increased, the algorithm is executed on the T25I10D10K and T10I4D100K data sets.

The experiment results of the memory usage evaluation performed by the FP-NoSQL

algorithm for two different scenarios are presented in Figure 5.21 and Figure 5.22.

The first scenario is an FPM process that is conducted without an FP-DB, while the

second scenario is an FPM process that is conducted with an FP-DB.

For the T25I10D10K data set, when the values of minimum support are set

between 0.5 % (1236 counts) to 0.2 % (494 counts), in the first scenario where FPM

is performed without an FP-DB, the memory usage for mining the frequent itemsets

are within the range of 3.9 MB to 59.6 MB. But in the second scenario where FPM is

performed with an FP-DB, the memory usage for mining the frequent itemsets are

constantly maintained at 1.5 MB only.

For the T10I4D100K data set, when the values of minimum support are set

between 0.5 % (5051 counts) to 0.02 % (202 counts), in the first scenario where FPM

is performed without an FP-DB, the memory usage for mining the frequent itemsets

are within the range of 18.6 MB to 498 MB. But in the second scenario where FPM is

performed with an FP-DB, the memory usage for mining the frequent itemsets are

within the range of 1.3 MB to 1.5 MB only.

In both data sets, when an FP-DB is not utilized, the memory usage for mining the

frequent itemsets is increasing gradually from a few MB to a few hundreds MB as the

minimum support is set to a lower value. This is because the number of frequent

patterns that need to be mined will be increased when the minimum support is set to a

lower value. In such a situation, patterns that appear less frequently in the data

warehouse will also be included into the FPM process. Apart from this, the entire data

warehouse needs to be mined in order to discover the frequent itemsets. Thus, the

memory usage for mining the frequent itemsets is growing progressively as the

minimum support is set to a lower value especially if the size of the entire data set is

very large.

139

In contrast, when an FP-DB is implemented for both data sets, the memory usage

for mining the frequent itemsets is maintained consistently within the range of 1.3 MB

to 1.5 MB only. It is so since the entire data warehouse does not need to be mined

again in order to discover the frequent itemsets. The frequent itemsets can be mined

from the FP-DB directly because whatever that has been mined previously is retained

in it. Apart from this, users can specify the frequent patterns and itemsets that need to

be mined from the FP-DB using the appropriate NoSQL queries in the procedures of

the FP-NoSQL algorithm as follows:

(1) Search_All_Items()

• dres = col.find().sort("Frequency DESC").limit(rpd)

.offset(n).execute()

• The NoSQL query in this procedure restricts the number of frequent patterns

to be displayed to the users by having the ones with a higher frequency to be

shown first because these are the most interested patterns that are required by

the users.

(2) Search_Specific_Item()

• dres = col.find("Item=:param1").sort("Frequency

DESC").limit(rpd).offset(n).bind("param1",

item).execute()

• The NoSQL query in this procedure displays the frequent patterns that are

matched to a specific item determined by the users, so that they can focus their

analysis on the frequent patterns that are related to a particular item that is of

interest to them.

(3) Search_Specific_Pattern()

• dres = col.find("Connection LIKE :param1")

.sort("Frequency DESC").limit(rpd).offset(n)

.bind("param1", con_path.c_str()).execute()

140

• The NoSQL query in this procedure shows the frequent patterns that are

matched to a specific pattern provided by the users. This enables the users to

concentrate on analyzing the frequent patterns that consist of a particular

pattern that is of interest to them.

(4) Mine_Frequent_Itemsets()

• dres = col.find("Item = :param1").bind("param1",

item).execute()

• The NoSQL query in this procedure mines the frequent itemsets that are

related to an exact item requested by the users. This helps the users to retrieve

only the frequent itemsets that are relevant to a specific item for data analysis.

Therefore, since the users have flexibility to specify the relevant parts of frequent

patterns and itemsets for data analysis, the memory usage for mining the frequent

patterns and itemsets can be greatly reduced even though the minimum support is set

to a lower value in a very large data set.

Figure 5.21: Memory Usage Evaluation for T25I10D10K Data Set

141

Figure 5.22: Memory Usage Evaluation for T10I4D100K Data Set

5.6 Evaluating FP-NoSQL with Big-O Notation

Measuring the execution time of an algorithm is not enough to determine its

complexity because such metric depends upon the computer hardware being used for

executing the algorithm. The problem that exists in time measurement for evaluating

an algorithm is that different computers will record different values of run time. Even

though the algorithm is executed in the same computer, different values of run time

will be recorded when the algorithm is executed multiple times. Therefore, apart from

measuring the run time for executing the algorithm, the algorithm is evaluated using a

more objective analysis metrics, the Big-O Notation. The objective of this evaluation

is to confirm that the FP-NoSQL algorithm has been implemented in an optimized

manner to achieve a better performance in Frequent Pattern Mining (FPM).

Big-O Notation is one of the statistical measures that can be used to elaborate the

complexity of an algorithm (Malik, 2019). It estimates how the run time of an

algorithm grows as the size of input increases to a bigger value and allows us to

eventually determine the efficiency of algorithms (Vaz, Shah, Sawhney, & Deolekar,

2017). Instead of counting the time which is so variable, the number of operations that

the computer needs to perform are counted (Steele, 2019). The notation is represented

142

as a big “O” that is attached with a pair of opening and closing parenthesis. The

connection between the input of an algorithm and the steps executed by the algorithm

is represented using “n” inside the parenthesis.

The time complexity analysis with Big-O Notation is one of the most important

concepts for learning how to produce efficient programming codes (Barlowe & Scott,

2015). Some of the most commonly used Big-O functions are stated in Table 5.8. In

order to describe the evaluation of FP-NoSQL with the Big-O Notation, the

fundamental knowledge of Big-O Notation for Constant Complexity (O(c)), Linear

Complexity (O(n)) and Quadratic Complexity (O(n^2)) are briefly explained from

Section 5.6.1 to Section 5.6.3.

Table 5.8: Commonly Used Big-O Notations (Malik, 2019)

Name Big O

Constant O(c)

Linear O(n)

Quadratic O(n^2)

Cubic O(n^3)

Exponential O(2^n)

Logarithmic O(log(n))

Log Linear O(n log(n))

5.6.1 Constant Complexity – O(c)

The complexity of an algorithm is considered as constant if the steps required to

accomplish the execution of an algorithm remain the same even though the number of

inputs is changed. Constant Complexity is represented as O(c) and “c” is any object

that can pass a different value to the function at different time. However, although

different values are passed into the function at different times, the same number of

143

steps are processed by the function at every execution. For example, the following

function will continue to perform two steps for printing out the square value of the

first element in the array, irrespective of the input size, or the number of items in the

array. Therefore, the complexity of a constant function remains constant with almost

the same run time and memory consumption. An example of Constant Complexity for

an algorithm is shown in Figure 5.23.

Big-O Function Example 1:

def constant_algorithm(items):

result = items[0] * items[0]

print ()

constant_algorithm([1, 2, 3, 4, 5])

Figure 5.23: Constant Complexity (Malik, 2019)

144

5.6.2 Linear Complexity – O(n)

The complexity of an algorithm is considered as linear if the steps required to

complete the execution of an algorithm decreases or increases in a linear manner with

the number of inputs. Linear Complexity is represented as O(n) where “n” is any

object that passes different values to the function at different times and causes the

function to be executed with different number of iterations. For instance, the

following function will increase its number of iterations for the loop if the number of

items in the array is increased. Similarly, if the number of items in the array is

decreased, the number of iterations for the loop is also decreased. Thus, the

complexity of a linear function is having a linear relationship with the number of

inputs. This causes the total amount of run time and memory consumption for the

algorithm increases or decreases in a linear manner according to the number of inputs.

An example of Linear Complexity for an algorithm is shown in Figure 5.24.

Big-O Function Example 2:

def linear_algorithm(items):

for item in items:

print(item)

linear_algorithm([6, 7, 8, 9, 10])

145

Figure 5.24: Linear Complexity (Malik, 2019)

5.6.3 Quadratic Complexity – O(n^2)

The complexity of an algorithm is considered as quadratic if the steps required to

accomplish the execution of an algorithm are having a quadratic relationship with the

number of inputs. Quadratic Complexity is represented as O(n^2). Likewise, “n” is

any object that passes different values to the function at different times and causes the

function to be executed with different number of iterations. For example, the

following function will perform n * n number of steps, where an outer loop iterates

through every item of the input, followed by a nested inner loop that iterates through

each item of the input again. An example of Quadratic Complexity for an algorithm is

shown in Figure 5.25.

146

Big-O Function Example 3:

def quadratic_algorithm(items):

for item in items:

for item2 in items:

print(item, ' ' ,item)

quadratic_algorithm([2, 4, 6, 8, 10])

Figure 5.25: Quadratic Complexity (Malik, 2019)

5.6.4 Big-O Notation Analysis for FP-NoSQL

Generally, an algorithm consists of several functions for manipulating its input.

Therefore, to determine the complexity of an algorithm in a more accurate manner,

different parts of the algorithm need to be identified for its complexity. Every part of

147

the significant FP-NoSQL algorithms stated in Chapter 4 is evaluated with the Big-O

Notation as follows:

(1) Frequent Pattern Processor

The time complexity of the Frequent Pattern Processor algorithm is denoted as:

𝑇(𝑛) = 𝑂(1) + 𝑂(log(𝑛)) + 𝑂(𝑛(1 + 1 + 1 + 1)) + 𝑂(1) + 𝑂(log(𝑛)) + 𝑂(1)

 = 𝑂(3) + 𝑂(𝑛(4)) + 2𝑂(log(𝑛))

 = 𝑂(3) + 𝑂(4𝑛) + 2𝑂(log(𝑛))

148

 = 𝑂(𝑛) + 𝑂(log(𝑛))

(2) FP-Collection Constructor

The time complexity of the FP-Collection algorithm is denoted as:

𝑇(𝑛) = 𝑂(1 + 1 + 1) + 𝑂(log(𝑛)) + 𝑂(n log(𝑛)) + 𝑂(𝑛(1 + 1)) + 𝑂(1) +

 𝑂(log(𝑛)) + 𝑂(1 + 1)

 = 𝑂(6) + 𝑂(𝑛(2)) + 2𝑂(log(𝑛)) + 𝑂(𝑛 log(𝑛))

 = 𝑂(6) + 𝑂(2𝑛) + 2𝑂(log(𝑛)) + 𝑂(𝑛 log(𝑛))

149

 = 𝑂(𝑛) + 𝑂(log(𝑛)) + 𝑂(𝑛 log(𝑛))

When an algorithm is evaluated with the Big-O Notation, the output is always

expected to be having a smooth line or a curve with minor or static slope (Devi,

Selvam, & Rajagopalan, 2011). As both of the Frequent Pattern Processor and FP-

Collection Constructor algorithms are evaluated with the Big-O Notation, most parts

have a constant time complexity (𝑂(1)), whereas the parts that manipulate the data

have the linear (𝑂(𝑛)), logarithmic (𝑂(log (𝑛))), and log linear (𝑂(𝑛 log(𝑛))) time

complexities.

For the Frequent Pattern Processor algorithm, the parts that consist of a constant

time complexity (𝑂(1)) are the operations for connecting to the data warehouse,

generating the string of records to be inserted, and disconnecting from the data

warehouse. Selecting the items that satisfied the threshold of minimum support from

the data warehouse has the logarithmic time complexity (𝑂(log (𝑛))) because the

database table has been indexed. Inserting the records into the frequent pattern table

also has the logarithmic time complexity (𝑂(log (𝑛))) because all the records are

inserted into the database together at the same time. The part that consists of a linear

time complexity (𝑂(𝑛)) is the operation for constructing the frequent patterns. In the

Frequent Pattern Processor algorithm, the 𝑂(𝑛) operation consists of four 𝑂(1)

operations that determine how the frequent patterns should be constructed by

verifying the Transaction IDs and Item IDs of the data.

For the FP-Collection Constructor algorithm, the parts that consist of a constant

time complexity (𝑂(1)) are the operations for connecting to the data warehouse and

database, generating the string of documents to be inserted, and disconnecting from

the data warehouse and database. Selecting the frequent patterns from the database

table has the logarithmic time complexity (𝑂(log (𝑛))) because the database table has

been indexed. As the frequent patterns are sorted into the ascending order, it has the

log linear (𝑂(𝑛 log(𝑛))) time complexity. Similarly, inserting the documents into the

frequent pattern collection has the logarithmic time complexity (𝑂(log (𝑛))) because

all the documents are inserted into the data warehouse together at the same time. The

150

part that consists of a linear time complexity (𝑂(𝑛)) is the operation for counting the

frequent patterns and constructing its collection. In the FP-Collection algorithm, the

𝑂(𝑛) operation consists of two 𝑂(1) operations that count and construct the

documents of frequent patterns.

The overall performance of any algorithm evaluated with the Big-O Notation can

be represented in various forms as shown in Figure 5.26 (Miller & Ranum, 2013).

Generally, the growth of performance for an algorithm can be denoted as logarithmic,

linear, log linear, quadratic, cubic and exponential. When the number of inputs is

increased, the algorithms that possess an exponential growth for its performance are

considered as the worst implemented algorithms. This is because a minor increase for

the inputs will cause a major increase for the steps required to complete the execution

of the algorithms in processing all the data. On the other hand, when the number of

inputs is increased, the algorithms that possess a logarithmic growth for its

performance are considered as the best implemented algorithms. This is because a

major increase for the inputs will only cause a minor increase for the steps required to

complete the execution of the algorithms in processing all the data.

The total time complexity of the Frequent Pattern Processor algorithm is

evaluated to 𝑂(3) + 𝑂(4𝑛) + 2𝑂(log(𝑛)), while the total time complexity of the FP-

Collection Constructor algorithm is evaluated to 𝑂(6) + 𝑂(2𝑛) + 2𝑂(log(𝑛)) +

𝑂(𝑛 log(𝑛)). However, both of the total time complexities of the two algorithms can

be evaluated to 𝑂(𝑛) + 𝑂(log(𝑛)) and 𝑂(𝑛) + 𝑂(log(𝑛)) + 𝑂(𝑛 log(𝑛))

respectively. This is because when the size of inputs (n) grows to a bigger value, the

constants will become less and less important to the ultimate result. Since the FP-

NoSQL algorithm is evaluated to having a linear, logarithmic or log linear time

complexity relationship with its input, it can be considered as a robust algorithm for

mining the frequent itemsets of data.

151

Figure 5.26: Plot of Common Big-O Functions (Miller & Ranum, 2013)

5.7 Chapter Summary

The FP-NoSQL algorithm is evaluated with three experiments in this research.

First and foremost, four different sets of data are used to evaluate the algorithm in

order to ensure that it is able to mine any kind of data set, whether it is a sparse one or

a dense one. Then, another two additional sets of data are used to evaluate the

algorithm so that it can be confirmed that the FP-NoSQL algorithm is able to

outperform the Apriori and Extended Frequent Pattern (EFP) algorithms, which are

the existing significant algorithms for Frequent Pattern Mining (FPM). Finally, the

Big-O Notation is used to evaluate the FP-NoSQL algorithm in order to determine

that it has been implemented in an optimized manner to achieve a better performance

for mining the frequent itemsets of data. All the three experiments produced

reasonable results that confirm FP-NoSQL as a suitable algorithm to be used in the

area of FPM.

S
te

p
s

152

CHAPTER 6

CONCLUSION

This chapter concludes the entire work of research with a brief summary and

highlights the contribution and possible work of enhancement in the near future. In

Section 6.1, a summary of the research is given by addressing the research questions

and research objectives together as a whole. Then, Section 6.2 describes the

contribution and Section 6.3 explains the limitation of this research. Last but not least,

Section 6.4 provides some possible directions for the work of this research to be

further enhanced by anyone who is interested in conducting research for Frequent

Pattern Mining.

6.1 Summary of Research

There are three major research questions to be addressed in this work and they are

summarized into one as follows for easier discussion:

How can the frequent patterns and itemsets be mined efficiently within a shorter run

time using lesser memory consumption and be retained for further analysis even

though the amount of data is big in a data set?

In order to retain the frequent patterns that have been mined for further analysis, a

Frequent Pattern Database (FP-DB) needs to be utilized for executing the process of

Frequent Pattern Mining (FPM). The FP-DB is used for storing all the patterns that

can be found in a data warehouse. Each unique pattern of any item is stored into the

FP-DB along with its frequency of occurrence from the data warehouse. When every

pattern is consolidated from the data warehouse into a Frequent Pattern Collection

(FP-Collection) in the FP-DB, the frequent patterns that have been mined can be

retained for further analysis even after a power failure. This is because the frequent

154

patterns that have been mined by the FP-NoSQL algorithm are not only stored in the

Random Access Memory (RAM) but also in the database. Since the frequent patterns

are stored in the FP-DB, it can be retrieved anytime from the database whenever there

is a need to perform analysis on a particular set of data.

Then, for mining the frequent patterns within a shorter run time, every pattern that

exists frequently among the transactions of the data warehouse is concatenated

together to be inserted into the FrequentPattern table at the same time. The frequent

patterns are processed in such a manner so that the data warehouse does not need to

be scanned several times while the frequent patterns are stored into the FP-Collection

of the FP-DB. As the FP-DB is not scanned multiple times when the frequent patterns

are inserted into it, the time required to process all the frequent patterns have been

greatly reduced. It is so because scanning through the database frequently for

performing any operation of data manipulation is very costly. Apart from this, to

further reduce the time for mining frequent patterns from the data warehouse, each

frequent pattern is constructed directly from the FrequentItem table into the

FrequentPattern table. After the whole FrequentPattern table is built, all the frequent

patterns are sorted in the ascending order so that it can be quickly counted for storing

into the FP-Collection in the FP-DB.

Last but not least, mining the frequent itemsets using lesser memory consumption

is made possible with the FP-DB. This is because every unique pattern that exists

frequently in the data warehouse is stored in the FP-DB together with its frequency of

occurrence among all the transactions of data. Therefore, it is not necessary to mine

the entire data warehouse in order to discover the frequent itemsets that are related to

a specific item. Since every unique pattern that exists frequently in the data warehouse

has already been mined into the FP-DB, the FP-NoSQL algorithm is only required to

search through the FP-DB for frequent patterns that matched the requirements of users

so that the relevant frequent itemsets can be generated easily. Hence, the memory

usage for mining the frequent itemsets is significantly reduced as the amount of data

to be retrieved from the FP-DB has been set appropriately with the relevant NoSQL

query in the algorithm.

155

6.2 Research Contribution

Through this research, the following contributions have been accomplished:

(1) The frequent patterns that have been mined by the current algorithms are mainly

retained in the Random Access Memory (RAM). When the system is down or

there is a power failure, none of the frequent patterns can be retained for data

analysis. In this research, the frequent patterns that have been mined can be

retained for data analysis using a Frequent Pattern Database (FP-DB). This is

because the frequent patterns and their support counts are stored into a Frequent

Pattern Collection (FP-Collection) of the FP-DB and it can be retrieved again even

after the system is down or a power failure. Therefore, the entire data warehouse

is not required to be mined again in order to construct all the frequent patterns and

its support counts. Since the FP-Collection is storing the frequent patterns and

their support counts, data analysis can be conducted more often at anytime.

(2) The frequent itemsets that appear in a data set need to be mined with a longer run

time by the current algorithms especially if the amount of data is big. In this

research, the frequent itemsets can be mined within a shorter run time although the

amount of data is big in the data warehouse. This is because every pattern that

exists frequently in the data warehouse is inserted simultaneously into a frequent

pattern table after they are being concatenated together. In this way, it helps to

decrease the number of times for scanning the data warehouse. Hence, the total

run time for constructing all the frequent patterns can be greatly reduced. As the

total run time is greatly reduced, more data can be processed to identify the hidden

patterns for decision making in the organization.

(3) The frequent itemsets that appear in a data set need to be mined with more

memory consumption by the current algorithms especially if the amount of data is

big. In this research, the frequent itemsets can be mined with lesser memory usage

even though the amount of data is big in the data warehouse. The is because the

frequent patterns and their support counts can be located selectively from the

FP-Collection of the FP-DB using the appropriate NoSQL queries. Thus, with the

FP-Collection, only the frequent patterns that matched the requirements of the

users are needed to be mined to produce the frequent itemsets. At the same time,

this helps users to focus their analysis on the data that is of interest to them.

156

6.3 Research Limitation

Although the FP-NoSQL algorithm is able to mine the frequent itemsets within a

shorter run time with lesser memory usage, even if the amount of data is big in the

data warehouse, there are still some limitations that are faced by the algorithm. One of

the limitations in this research is where the entire FP-DB needs to be reconstructed if

there are changes towards the frequency of the patterns. This is because the results of

frequent itemset mining will no longer be accurate anymore as long as there are

changes towards the frequency of any pattern. In addition, the entire FP-DB also

needs to be reconstructed if some frequent patterns are no longer significant in the

data warehouse and need to be removed. Likewise, the results of frequent itemset

mining will not be accurate as well whenever the frequency of any pattern is changed,

whether it has been increased or decreased.

6.4 Direction for Future Work

In this research, the FP-NoSQL algorithm is designed and developed to perform

the work of Frequent Pattern Mining (FPM) using one unit of computer only. To

further improve the mining operations of FPM, it is still possible to reduce additional

speed and memory usage for the algorithm in mining the frequent itemsets of data.

Some of the methods that can be utilized to enhance the performance of the

FP-NoSQL algorithm are Parallel Computing and Distributed Computing. Parallel

Computing is a kind of processing in which many executions of processes are

accomplished at the same time so that a computational problem can be resolved in

lesser time and with greater accuracy (Kaminsky, 2016). It can be implemented within

a single machine if there is a multi-core processor, or across multiple machines that

are networked together to process the same task. In Parallel Computing, huge

computational problems are separated into tiny ones so that it can be fixed

simultaneously especially if the problems are very complicated. After a computational

task is broken down into multiple subtasks to be processed individually, the final

results are to be combined upon accomplishment of the entire process. Since Parallel

Computing is able to speed up the processing of a computational task, it is definitely

157

more useful to enhance the FP-NoSQL algorithm with the capability of parallelism in

mining the frequent itemsets of data. On the other hand, Distributed Computing is a

type of processing where multiple components are situated on different computers

that are connected together, in which communication and coordination of actions are

performed by exchanging messages with one another (Coulouris, Dollimore, &

Kindberg, 2011). Similarly, in Distributed Computing, a computational problem is

separated into many subtasks, having each task to be solved by one or more

computers. However, every processor in Distributed Computing has its own memory

and data is exchanged with one another by sending messages between the processors;

whereas in Parallel Computing, all processors are usually accessing a shared memory

to exchange data between different processors (Papadimitriou, 1994). Since

Distributed Computing consists of additional memory processing power in its

hardware architecture, it is surely more beneficial to improve FP-NoSQL as a

distributed algorithm in mining the frequent itemsets of data.

Apart from this, one more improvement that can be done for the FP-NoSQL

algorithm is to enable the support counts of the frequent patterns to be updated

without reconstructing the entire FP-DB when the frequent patterns are mined in more

than one FPM process. If the support count of every frequent pattern can be updated

without reconstructing the entire FP-DB, then the run time required to mine the

frequent itemsets from the FP-DB can be greatly reduced. In order to achieve this

capability, the relevant NoSQL queries and algorithms are required to be designed for

identifying the appropriate frequent patterns where their support counts are needed to

be updated. Once the relevant frequent patterns are identified, their support counts are

required to be increased or decreased accordingly.

Furthermore, another improvement that can be implemented for the FP-NoSQL

algorithm is to allow the frequent patterns that are no longer significant in the data

warehouse to be removed from the FP-DB without reconstructing the entire FP-DB. If

the unnecessary frequent patterns can be removed without reconstructing the entire

FP-DB, then additional space can be allocated to store the more significant frequent

patterns that are required to be mined. At the same time, this also helps to speed up

158

the mining process for the frequent itemsets since the search space of the frequent

patterns has been reduced to a smaller area.

Finally, if all these techniques can be implemented successfully into the

algorithm, the time and memory required to mine the frequent itemsets of data can be

significantly reduced even though the amount of data is big and continue to increase

in the data warehouse. This is because a huge data set can be divided into smaller data

sets so that it can be distributed to multiple different computers in the network for

mining the frequent itemsets in parallel. Performing continuous research in the area of

data analytics is undeniably important and of great value since it is a capability that

helps to optimize various processes of an organization in any industry like electric-

power (Qing, Boyu, & Qinqian, 2017), oil and gas (Alguliyev, Aliguliyev, &

Hajirahimova, 2016), restaurant (Mattera, 2018), railway engineering (Attoh-Okine,

2014), healthcare (Patil & Seshadri, 2014), media and entertainment (Suri & Singh,

2018), and finance (H. Zhang, Li, Shen, Sun, & Yang, 2015).

REFERENCES

[1] Abraham, S., & Joseph, S. (2016). A Coherent Rule Mining Method for

Incremental Datasets based on Plausibility. Procedia Technology, 24, 1292-

1299.

[2] Agarwal, R. C., Aggarwal, C. C., & Prasad, V. V. V. (2000). Depth First

Generation of Long Patterns. Paper presented at the Proceedings of the Sixth

ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, Boston, Massachusetts, USA.

[3] Agarwal, R. C., Aggarwal, C. C., & Prasad, V. V. V. (2001). A Tree

Projection Algorithm for Generation of Frequent Item Sets. Journal of

Parallel and Distributed Computing, 61(3), 350-371.

[4] Aggarwal, A., & Toshniwal, D. (2018). Spatio-Temporal Frequent Itemset

Mining on Web Data. Paper presented at the 2018 IEEE International

Conference on Data Mining Workshops (ICDMW), Singapore.

[5] Aggarwal, C. C. (2014a). Applications of Frequent Pattern Mining. In C. C.

Aggarwal & J. Han (Eds.), Frequent Pattern Mining (pp. 443-461).

Switzerland: Springer.

[6] Aggarwal, C. C. (2014b). An Introduction to Frequent Pattern Mining. In C. C.

Aggarwal & J. Han (Eds.), Frequent Pattern Mining (pp. 1-14). Switzerland:

Springer.

[7] Aggarwal, C. C., Bhuiyan, M. A., & Hasan, M. A. (2014). Frequent Pattern

Mining Algorithms: A Survey. In C. C. Aggarwal & J. Han (Eds.), Frequent

Pattern Mining (pp. 19-64). Switzerland: Springer.

[8] Agrawal, R., & Srikant, R. (1994). Fast Algorithms for Mining Association

Rules. Paper presented at the Proceedings of the 20th International Conference

on Very Large Data Bases, Santiago, Chile.

[9] Alguliyev, R. M., Aliguliyev, R. M., & Hajirahimova, M. S. (2016). Big Data

Integration Architectural Concepts for Oil and Gas Industry. Paper presented

at the 2016 IEEE 10th International Conference on Application of Information

and Communication Technologies (AICT), Baku, Azerbaijan.

160

[10] Apiletti, D., Baralis, E., Cerquitelli, T., Garza, P., Pulvirenti, F., & Venturini,

L. (2017). Frequent Itemsets Mining for Big Data: A Comparative Analysis.

Big Data Research, 9, 67-83.

[11] Asuncion, A., & Newman, D. (2007). UCI Machine Learning Repository.

Retrieved from https://archive.ics.uci.edu/ml/index.php

[12] Attoh-Okine, N. (2014). Big Data Challenges in Railway Engineering. Paper

presented at the 2014 IEEE International Conference on Big Data (Big Data),

Washington, DC, USA.

[13] Ayash, E. M. M. (2014). Research Methodologies in Computer Science and

Information Systems.

[14] Bansal, R., Gaur, N., & Narayan, S. (2016). Outlier Detection: Applications

and Techniques in Data Mining. Paper presented at the 2016 6th International

Conference - Cloud System and Big Data Engineering (Confluence), Noida,

India.

[15] Baralis, E., Cerquitelli, T., Chiusano, S., & Grand, A. (2013). P-Mine:

Parallel Itemset Mining on Large Datasets. Paper presented at the 2013 IEEE

29th International Conference on Data Engineering Workshops (ICDEW),

Brisbane, Australia.

[16] Barlowe, S., & Scott, A. (2015). O-Charts: Towards an Effective Toolkit for

Teaching Time Complexity. Paper presented at the 2015 IEEE Frontiers in

Education Conference (FIE), El Paso, TX, USA.

[17] Bayardo, R. (2007a). Connect Data Set. Retrieved from:

http://fimi.ua.ac.be/data/

[18] Bayardo, R. (2007b). Pumsb Data Set. Retrieved from:

http://fimi.ua.ac.be/data/

[19] Bhogal, J., & Choksi, I. (2015). Handling Big Data using NoSQL. Paper

presented at the 2015 IEEE 29th International Conference on Advanced

Information Networking and Applications Workshops, Gwangiu, South Korea.

[20] Bodon, F. (2003). Kosarak Data Set. Retrieved from: http://fimi.ua.ac.be/data/

[21] Brijs, T. (1999). Retail Data Set. Retrieved from: http://fimi.ua.ac.be/data/

[22] Brijs, T., Swinnen, G., Vanhoof, K., & Wets, G. (1999). The Use of

Association Rules for Product Assortment Decisions: A Case Study. Paper

https://archive.ics.uci.edu/ml/index.php
http://fimi.ua.ac.be/data/
http://fimi.ua.ac.be/data/
http://fimi.ua.ac.be/data/
http://fimi.ua.ac.be/data/

161

presented at the KDD '99 Proceedings of the Fifth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, San

Diego, California, USA.

[23] Cao, J., Diao, X., Jiang, G., & Du, Y. (2010). Data Lifecycle Process Model

and Quality Improving Framework for TDQM Practices. Paper presented at

the 2010 International Conference on E-Product, E-Service and E-

Entertainment, Henan.

[24] Chang, V. (2014). The Business Intelligence as a Service in the Cloud. Future

Generation Computer Systems, 37, 512-534.

[25] Chaudhari, A. A., & Khanuja, H. K. (2015). Database Transformation to

Build Data-Set for Data Mining Analysis - A Review. Paper presented at the

2015 International Conference on Computing Communication Control and

Automation, Pune, India.

[26] Chaure, T. M., & Singh, K. R. (2016). Frequent Itemset Mining Techniques -

A Technical Review. Paper presented at the 2016 World Conference on

Futuristic Trends in Research and Innovation for Social Welfare (WCFTR'16),

Coimbatore, India.

[27] Chen, F., Deng, P., Wan, J., Zhang, D., Vasilakos, A. V., & Rong, X. (2015).

Data Mining for the Internet of Things: Literature Review and Challenges.

International Journal of Distributed Sensor Networks, 2015, 1-14.

[28] Chon, K.-W., Hwang, S.-H., & Kim, M.-S. (2018). GMiner: A Fast GPU-

Based Frequent Itemset Mining Method for Large-Scale Data. Information

Sciences, 439–440, 19-38.

[29] Columbus, L. (2017, 13 May 2017). IBM Predicts Demand For Data Scientists

Will Soar 28% By 2020. Retrieved from

https://www.forbes.com/sites/louiscolumbus/2017/05/13/ibm-predicts-

demand-for-data-scientists-will-soar-28-by-2020/#57e8b54b7e3b

[30] Coulouris, G., Dollimore, J., & Kindberg, T. (2011). Distributed Systems:

Concepts and Design (5th Edition): Addison-Wesley.

[31] CPlusPlus.com. (2018). C++ Language. Retrieved from

http://www.cplusplus.com/doc/tutorial/

https://www.forbes.com/sites/louiscolumbus/2017/05/13/ibm-predicts-demand-for-data-scientists-will-soar-28-by-2020/#57e8b54b7e3b
https://www.forbes.com/sites/louiscolumbus/2017/05/13/ibm-predicts-demand-for-data-scientists-will-soar-28-by-2020/#57e8b54b7e3b
http://www.cplusplus.com/doc/tutorial/

162

[32] Crnkovic, G. D. (2002). Scientific Methods in Computer Science. Paper

presented at the Proceedings of the Conference for the Promotion of Research

in IT, Sweden, Sk¨ovde, Suecia.

[33] Dave, K., Rathod, M., Sheth, P., & Sakhapara, A. (2015). Comparing the

Performance of Frequent Itemsets Mining Algorithms. International Journal

of Innovative Research in Computer and Communication Engineering, 3(3),

1968-1972.

[34] Demeyer, S. (2011). Research Methods in Computer Science. Paper presented

at the 2011 27th IEEE International Conference on Software Maintenance

(ICSM), Williamsburg, VI, USA.

[35] Devi, S. G., Selvam, K., & Rajagopalan, S. P. (2011). An Abstract to

Calculate Big O Factors of Time and Space Complexity of Machine Code.

Paper presented at the International Conference on Sustainable Energy and

Intelligent Systems (SEISCON 2011), Chennai, India.

[36] Djenouri, Y., Djenouri, D., Lin, J. C.-W., & Belhadi, A. (2018). Frequent

Itemset Mining in Big Data With Effective Single Scan Algorithms. IEEE

Access, 6, 68013-68026.

[37] El-Hajj, M., & Za¨ıane, O. R. (2003). COFI-Tree Mining - A New Approach to

Pattern Growth with Reduced Candidacy Generation. Paper presented at the

Workshop on Frequent Itemset Mining Implementations (FIMI’03) in

conjunction with IEEE-ICDM, Melbourne, Florida, USA.

[38] Ellis, T. J., & Levy, Y. (2008). Framework of Problem-Based Research: A

Guide for Novice Researchers on the Development of a Research-Worthy

Problem. Informing Science: The International Journal of an Emerging

Transdiscipline, 11, 17-33.

[39] Endler, G. (2012). Data Quality and Integration in Collaborative

Environments. Paper presented at the SIGMOD/PODS 2012 PhD Symposium,

Scottsdale, AZ, USA.

[40] Feddaoui, I., Felhi, F., & Akaichi, J. (2016). EXTRACT: New Extraction

Algorithm of Association Rules from Frequent Itemsets. Paper presented at the

2016 IEEE/ACM International Conference on Advances in Social Networks

Analysis and Mining (ASONAM), San Francisco, CA, USA.

163

[41] Fernando, B., Fromont, E., & Tuytelaars, T. (2012). Effective Use of Frequent

Itemset Mining for Image Classification. Paper presented at the 12th European

Conference on Computer Vision, Florence, Italy.

[42] Fisher, C., Lauria, E., Chengalur-Smith, S., & Wang, R. (2012). Introduction

to Information Quality. Bloomington: AuthorHouse.

[43] Garg, D., & Sharma, H. (2011). Comparative Analysis of Various Approaches

Used in Frequent Pattern Mining. International Journal of Advanced

Computer Science and Applications (IJACSA), 141-147.

[44] Giacometti, A., Li, D. H., Marcel, P., & Soulet, A. (2014). 20 Years of Pattern

Mining: A Bibliometric Survey. ACM SIGKDD Explorations Newsletter,

15(1), 41-50.

[45] Goethals, B. (2004). Frequent Itemset Mining Implementations Repository.

[46] Gull, M., & Pervaiz, A. (2018). Customer Behavior Analysis Towards Online

Shopping using Data Mining. Paper presented at the 2018 5th International

Multi-Topic ICT Conference (IMTIC), Jamshoro, Pakistan.

[47] Gullo, F. (2015). From Patterns in Data to Knowledge Discovery: What Data

Mining Can Do. Physics Procedia 62, 18-22.

[48] Gupta, B., & Garg, D. (2011). FP-Tree Based Algorithms Analysis FPGrowth,

COFI-Tree and CT-PRO. International Journal on Computer Science and

Engineering, 3(7), 2691-2699.

[49] Hage, L. E. (2017). Driving Value with Retail POS Data: Using Dayparts and

Affinity Analytics to Deliver Enhanced Insights and Higher ROIs.

[50] Han, J., Kamber, M., & Pei, J. (2012a). Classification: Basic Concepts. In

Data Mining Concepts and Techniques (pp. 327-392). USA: Elsevier.

[51] Han, J., Kamber, M., & Pei, J. (2012b). Cluster Analysis: Basic Concepts and

Methods. In Data Mining Concepts and Techniques (pp. 443-496). USA:

Elsevier.

[52] Han, J., Kamber, M., & Pei, J. (2012c). Mining Frequent Patterns,

Associations, and Correlations: Basic Concepts and Methods. In Data Mining

Concepts and Techniques. USA: Elsevier.

[53] Han, J., Kamber, M., & Pei, J. (2012d). Outlier Detection. In Data Mining

Concepts and Techniques (pp. 543-584). USA: Elsevier.

164

[54] Han, J., Kamber, M., & Pei, J. (2012e). What Kinds of Patterns can be Mined?

In Data Mining Concepts and Techniques (pp. 15-22). USA: Elsevier.

[55] Han, J., Kamber, M., & Pei, J. (2012f). Why Data Mining? In Data Mining

Concepts and Techniques (pp. 1-8). USA: Elsevier.

[56] Han, J., & Pei, J. (2000). Mining Frequent Patterns by Pattern-Growth:

Methodology and Implications. ACM SIGKDD Explorations Newsletter -

Special issue on "Scalable Data Mining Algorithms", 2(2), 14-20.

[57] Han, J., Pei, J., & Yin, Y. (2000). Mining Frequent Patterns without Candidate

Generation. ACM SIGMOD Record, 29(2), 1-12.

[58] Han, X., Liu, X., Chen, J., Lai, G., Gao, H., & Li, J. (2019). Efficiently

Mining Frequent Itemsets on Massive Data. IEEE Access, 7, 31409-31421.

[59] Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Khan, S.

U. (2015). The Rise of “Big Data” on Cloud Computing: Review and Open

Research Issues. Information Systems, 47, 98-115.

[60] Hassani, H. (2017). Research Methods in Computer Science: The Challenges

and Issues. ArXiv, 1-16.

[61] Haupt, R., Scholtz, B., & Calitz, A. (2015). Using Business Intelligence to

Support Strategic Sustainability Information Management. Paper presented at

the 2015 Annual Research Conference on South African Institute of Computer

Scientists and Information Technologists, Stellenbosch, South Africa.

[62] Heller, M. (2017, 28 August 2017). What is SQL? Structured Query Language

Explained. Retrieved from

https://www.infoworld.com/article/3219795/sql/what-is-sql-structured-query-

language-explained.html

[63] Hemalatha, R., Krishnan, A., Senthamarai, C., & Hemamilini, R. (2005).

Frequent Pattern Discovery Based on Co-Occurrence Frequent Item Tree.

Paper presented at the Proceedings of 2005 International Conference on

Intelligent Sensing and Information Processing, Chennai, India.

[64] Henke, N., Bughin, J., Chui, M., Manyika, J., Saleh, T., Wiseman, B., &

Sethupathy, G. (2016). The Age of Analytics: Competing in a Data-Driven

World. Retrieved from

https://www.infoworld.com/article/3219795/sql/what-is-sql-structured-query-language-explained.html
https://www.infoworld.com/article/3219795/sql/what-is-sql-structured-query-language-explained.html

165

[65] Hoseini, M. S., Shahraki, M. N., & Neysiani, B. S. (2015). A New Algorithm

for Mining Frequent Patterns in CanTree. Paper presented at the International

Conference on Knowledge-Based Engineering and Innovation, Tehran, Iran.

[66] Hruschka, E. R., Campello, R. J. G. B., Freitas, A. A., & Carvalho, A. C. P. L.

F. d. (2009). A Survey of Evolutionary Algorithms for Clustering. IEEE

Transactions on Systems, Man, and Cybernetics, Part C (Applications and

Reviews), 39(2), 133-155.

[67] Inteliment. (2016, 12 August 2016). What’s The Difference Between Data

Analytics and Data Analysis? Retrieved from

https://www.inteliment.com/whats-the-difference-between-data-analytics-and-

data-analysis/

[68] Jamsheela, O., & G., R. (2015). Frequent Itemset Mining Algorithms: A

Literature Survey. Paper presented at the 2015 IEEE International Advance

Computing Conference (IACC), Banglore, India.

[69] JayaramHariharakrishnan, Mohanavalli, S., Srividya, & Kumar, K. B. S.

(2017). Survey of Pre-processing Techniques for Mining Big Data. Paper

presented at the IEEE International Conference on Computer, Communication,

and Signal Processing Chennai, India.

[70] Jeevarathinam, R., & Thanamani, A. S. (2009). Transaction Mapping Based

Approach for Mining Software Specifications. Paper presented at the 2009

World Congress on Nature & Biologically Inspired Computing (NaBIC),

Coimbatore, India.

[71] Jenkins, A. M. (1985). Research Methdologies And MIS Research. In

Research Methods in Information Systems (pp. 97-109). Amsterdam: Elsevier

Science Publishers.

[72] Jesus, E., & Bernardino, J. (2014). Open Source Business Intelligence in

Manufacturing. Paper presented at the 18th International Database

Engineering & Applications Symposium, Porto, Portugal.

[73] Jiang, H., & He, X. (2017). An Improved Algorithm for Frequent Itemsets

Mining. Paper presented at the 2017 Fifth International Conference on

Advanced Cloud and Big Data (CBD), Shanghai, China.

https://www.inteliment.com/whats-the-difference-between-data-analytics-and-data-analysis/
https://www.inteliment.com/whats-the-difference-between-data-analytics-and-data-analysis/

166

[74] Jörg, T., & Deßloch, S. (2008). Towards Generating ETL Processes for

Incremental Loading. Paper presented at the 2008 International Symposium on

Database Engineering & Applications, Coimbra, Portugal.

[75] Kabiri, A., & Chiadmi, D. (2013). Survey on ETL Processes. Journal of

Theoretical and Applied Information Technology, 54(2), 219-229.

[76] Kachhadiya, B. C., & Patel, B. (2018). A Survey on Sequential Pattern Mining

Algorithm for Web Log Pattern Data. Paper presented at the 2018 2nd

International Conference on Trends in Electronics and Informatics (ICOEI),

Tirunelveli, India.

[77] Kaminsky, A. (2016). Big CPU, Big Data: Solving the World's Toughest

Computational Problems with Parallel Computing: CreateSpace Independent

Publishing Platform.

[78] Kherdekar, V. A., & Metkewar, P. S. (2016). A Technical Comprehensive

Survey of ETL Tools. International Journal of Applied Engineering Research,

11(4), 2557-2559.

[79] Kim, G.-W., Lee, S. H., Kim, J. H., & Son, J. H. (2010). An Effective

Algorithm for Business Process Mining Based on Modified FP-Tree Algorithm.

Paper presented at the 2010 Second International Conference on

Communication Software and Networks, Singapore.

[80] Kuramochi, M., & Karypis, G. (2001). Frequent Subgraph Discovery. Paper

presented at the Proceedings 2001 IEEE International Conference on Data

Mining, San Jose, CA, USA.

[81] Le, T.-D. B., & Lo, D. (2015). Beyond Support and Confidence: Exploring

Interestingness Measures for Rule-Based Specification Mining. Paper

presented at the 2015 IEEE 22nd International Conference on Software

Analysis, Evolution, and Reengineering (SANER), Montreal, QC, Canada.

[82] Lira, W. P., Alves, R., Costa, J. M. R., Pessin, G., Galvão, L., Cardoso, A. C.,

& Souza, C. R. B. d. (2014). A Visual-Analytics System for Railway Safety

Management. IEEE Computer Graphics and Applications, 34(5), 52-57.

[83] Liu, C., Yan, X., Yu, H., Han, J., & Yu, P. S. (2005). Mining Behavior Graphs

for "Backtrace" of Noncrashing Bugs. Paper presented at the Proceedings of

167

the 2005 SIAM International Conference on Data Mining, Newport Beach,

USA.

[84] Liu, S., Cui, W., Wu, Y., & Liu, M. (2014). A Survey on Information

Visualization: Recent Advances and Challenges. The Visual Computer, 30(12),

1373-1393.

[85] Lobel, J. (2014). Discover Deep Insights with Frequent Pattern Mining (FPM).

Retrieved from http://www.swiftiq.com/blog/discover-deep-insights-with-

frequent-pattern-mining-fpm

[86] Malik, U. (2019, 21 January 2019). Big O Notation and Algorithm Analysis

with Python Examples. Retrieved from https://stackabuse.com/big-o-notation-

and-algorithm-analysis-with-python-examples/

[87] Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., &

Byers, A. H. (2011). Big Data: The Next Frontier for Innovation, Competition,

and Productivity. Retrieved from

[88] Marinov, M., Georgiev, G., & Popova, E. (2018). NoSQL Approach for Sensor

Data Storage and Retrieval. Paper presented at the 2018 41st International

Convention on Information and Communication Technology, Electronics and

Microelectronics (MIPRO), Opatija, Croatia.

[89] Mattera, M. (2018). SMEs Transformation through Usage and Understanding

of Big Data. Paper presented at the 2018 IEEE 3rd International Conference

on Big Data Analysis (ICBDA), Shanghai, China.

[90] McGlothlin, J. P., & Khan, L. (2013). Managing Evolving Code Sets and

Integration of Multiple Data Sources in Health Care Analytics. Paper

presented at the 2013 International Workshop on Data Management &

Analytics for Healthcare, San Francisco, CA, USA.

[91] Meenakshi, A. (2015). Survey of Frequent Pattern Mining Algorithms in

Horizontal and Vertical Data Layouts. International Journal of Advances in

Computer Science and Technology, 4(4), 48-58.

[92] Microsoft. (2018a). Console Applications in Visual C++. Retrieved from

https://msdn.microsoft.com/en-us/library/hh875011.aspx

[93] Microsoft. (2018b). Microsoft Visual Studio. Retrieved from

https://visualstudio.microsoft.com

http://www.swiftiq.com/blog/discover-deep-insights-with-frequent-pattern-mining-fpm
http://www.swiftiq.com/blog/discover-deep-insights-with-frequent-pattern-mining-fpm
https://stackabuse.com/big-o-notation-and-algorithm-analysis-with-python-examples/
https://stackabuse.com/big-o-notation-and-algorithm-analysis-with-python-examples/
https://msdn.microsoft.com/en-us/library/hh875011.aspx
https://visualstudio.microsoft.com/

168

[94] Microsoft. (2018c). Office 365 for Home. Retrieved from

https://products.office.com/en-us/explore-office-for-home

[95] Midha, N., & Singh, V. (2015). A Survey on Classification Techniques in

Data Mining. International Journal of Computer Science & Management

Studies (IJCSMS), 16(1), 9-12.

[96] Miller, B., & Ranum, D. (2013). Problem Solving with Algorithms and Data

Structures using Python.

[97] Mittal, A., Nagar, A., Gupta, K., & Nahar, R. (2015). Comparative Study of

Various Frequent Pattern Mining Algorithms. International Journal of

Advanced Research in Computer and Communication Engineering, 4(4), 550-

553.

[98] MySQL. (2018a). MySQL 5.7 Reference Manual.

[99] MySQL. (2018b, 16 November 2018). MySQL Shell 8.0. Retrieved from

https://dev.mysql.com/doc/mysql-shell/8.0/en/

[100] MySQL. (2018c, 20 November 2018). MySQL Workbench. Retrieved from

https://dev.mysql.com/doc/workbench/en/

[101] Nanopoulos, A., & Manolopoulos, Y. (2002). Efficient Similarity Search for

Market Basket Data. The VLDB Journal — The International Journal on Very

Large Data Bases, 11(2), 138-152.

[102] Nath, R. P. D., Hose, K., & Pedersen, T. B. (2015). Towards a Programmable

Semantic Extract-Transform-Load Framework for Semantic Data Warehouses.

Paper presented at the ACM Eighteenth International Workshop on Data

Warehousing and OLAP, Melbourne, VIC, Australia.

[103] Oakley, R. L., Iyer, L., & A.F.Salam. (2015). Examining the Role of Business

Intelligence in Non-Profit Organizations to Support Strategic Social Goals.

Paper presented at the 48th Hawaii International Conference on System

Sciences, Kauai, HI.

[104] Papadimitriou, C. (1994). Computational Complexity: Addison–Wesley.

[105] Park, D. (2017, 28 August 2017). Analysis vs. Analytics: Past vs. Future.

Retrieved from

https://www.eetimes.com/author.asp?section_id=36&doc_id=1332172

https://products.office.com/en-us/explore-office-for-home
https://dev.mysql.com/doc/mysql-shell/8.0/en/
https://dev.mysql.com/doc/workbench/en/
https://www.eetimes.com/author.asp?section_id=36&doc_id=1332172

169

[106] Patil, H. K., & Seshadri, R. (2014). Big Data Security and Privacy Issues in

Healthcare. Paper presented at the 2014 IEEE International Congress on Big

Data, Anchorage, AK, USA.

[107] Prajapati, H. B., Dabhi, V. K., & Bhensdadia, C. K. (2015). Taking a Deep

Breath before Jumping into Research in Computer Science and Engineering.

Paper presented at the 2015 Fifth International Conference on Advanced

Computing & Communication Technologies, Haryana, India.

[108] Praveena, M. D. A., & Bharathi, B. (2017). A Survey Paper on Big Data

Analytics. Paper presented at the International Conference on Information,

Communication & Embedded Systems (ICICES 2017), Chennai, India.

[109] Prema, A., & Pethalakshmi, A. (2013). Novel Approach in ETL. Paper

presented at the 2013 International Conference on Pattern Recognition,

Informatics and Mobile Engineering, Salem, India.

[110] Pyun, G., Yun, U., & Ryu, K. H. (2014). Efficient Frequent Pattern Mining

based on Linear Prefix Tree. Knowledge-Based Systems, 55, 125-139.

[111] Qing, L., Boyu, Z., & Qinqian, L. (2017). Impact of Big Data on Electric-

Power Industry. Paper presented at the 2017 IEEE 2nd International

Conference on Big Data Analysis (ICBDA), Beijing, China.

[112] Qiu, Q., Fleeman, J. A., Ball, D. R., Rackliffe, G., Hou, J., & Cheim, L. (2013).

Managing Critical Transmission Infrastructure with Advanced Analytics and

Smart Sensors. Paper presented at the 2013 IEEE Power & Energy Society

General Meeting, Vancouver, BC.

[113] Radhakrishna, V., SravanKiran, V., & Ravikiran, K. (2012). Automating ETL

Process with Scripting Technology. Paper presented at the 2012 Nirma

University International Conference On Engineering, Ahmedabad.

[114] Radhika, P., Kumar, P. P., Sailaja, S. L., & Gayatri, V. (2017). Confrontation

and Opportunities of Big Data - A Survey. Paper presented at the 2017

International Conference on Big Data Analytics and Computational

Intelligence (ICBDAC), Chirala, India.

[115] Raskino, M. (2015). 2015 CEO Survey: Committing to Digital. Retrieved

from https://www.gartner.com/doc/3026817/-ceo-survey-committing-digital

https://www.gartner.com/doc/3026817/-ceo-survey-committing-digital

170

[116] Rebón, F., Ocariz, G., Gerrikagoitia, J. K., & Alzua-Sorzabal, A. (2015).

Discovering insights within a Blue Ocean based on Business Intelligence.

Paper presented at the 3rd International Conference on Strategic Innovative

Marketing, Madrid, Spain.

[117] Reinsel, D., Gantz, J., & Rydning, J. (2017, 5 April 2017). Total WW Data to

Reach 163ZB by 2025. Retrieved from

https://www.storagenewsletter.com/2017/04/05/total-ww-data-to-reach-163-

zettabytes-by-2025-idc/

[118] Santos, R. J., & Bernardino, J. (2008). Real-Time Data Warehouse Loading

Methodology. Paper presented at the 2008 International Symposium on

Database Engineering & Applications, Coimbra, Portugal.

[119] Shang, X. (2005). SQL Based Frequent Pattern Mining.

[120] Sharma, N., Sawai, D., & Surve, G. (2017). Big Data Analytics: Impacting

Business in Big Way. Paper presented at the 2017 International Conference on

Data Management, Analytics and Innovation (ICDMAI), Pune, India.

[121] Song, M., & Rajasekaran, S. (2006). A Transaction Mapping Algorithm for

Frequent Itemsets Mining. IEEE Transactions on Knowledge and Data

Engineering, 18(4), 472-481.

[122] Steele, C. (2019). Complete Beginner's Guide to Big O Notation.

http://www.youtube.com.

[123] Sun, D., Teng, S., Zhang, W., & Zhu, H. (2007). An Algorithm to Improve the

Effectiveness of Apriori. Paper presented at the 6th IEEE International

Conference on Cognitive Informatics, Lake Tahoo, CA, USA.

[124] Sun, K., & Lan, Y. (2012). SETL: A Scalable and High Performance ETL

System. Paper presented at the 2012 3rd International Conference on System

Science, Engineering Design and Manufacturing Informatization, Cheng Du.

[125] Suri, M., & Singh, S. N. (2018). The Role of Big Data in the Media and

Entertainment Industry. Paper presented at the 2018 4th International

Conference on Computational Intelligence & Communication Technology

(CICT), Ghaziabad, India.

[126] Technopedia. (2018). What does Console Application mean? Retrieved from

https://www.techopedia.com/definition/25593/console-application-c

https://www.storagenewsletter.com/2017/04/05/total-ww-data-to-reach-163-zettabytes-by-2025-idc/
https://www.storagenewsletter.com/2017/04/05/total-ww-data-to-reach-163-zettabytes-by-2025-idc/
http://www.youtube.com/
https://www.techopedia.com/definition/25593/console-application-c

171

[127] Tedre, M., & Moisseinen, N. (2014). Experiments in Computing: A Survey.

The Scientific World Journal, 2014, 1-11.

[128] Thomsen, C., & Pedersen, T. B. (2011). Easy and Effective Parallel

Programmable ETL. Paper presented at the 14th International Workshop on

Data Warehousing and OLAP, Glasgow, Scotland, UK.

[129] Tiwari, A., Gupta, R. K., & Agrawal, D. P. (2010). A Survey on Frequent

Pattern Mining: Current Status and Challenging Issues. Information

Technology Journal, 9(7), 1278-1293.

[130] Tripathi, N., Vartak, D., Chaudhari, H., & Naik, S. (2018). Estimating

Frequent Products in Shopping Cart Using Data Mining. Paper presented at

the 2nd International Conference on Inventive Communication and

Computational Technologies (ICICCT 2018), Coimbatore, India.

[131] Vaz, R., Shah, V., Sawhney, A., & Deolekar, R. (2017). Automated Big-O

Analysis of Algorithms. Paper presented at the 2017 International Conference

on Nascent Technologies in the Engineering Field (ICNTE-2017), Navi

Mumbai, India.

[132] Wang, F., & Li, Y.-h. (2008). An Improved Apriori Algorithm Based on the

Matrix. Paper presented at the 2008 International Seminar on Future

BioMedical Information Engineering, Wuhan, Hubei, China.

[133] Wang, L., Cao, S., Wan, L., & Wang, F. (2017). Web Anomaly Detection

Based on Frequent Closed Episode Rules. Paper presented at the 2017 IEEE

Trustcom/BigDataSE/ICESS, Sydney, NSW, Australia.

[134] Wei, Y.-Q., Yang, R.-H., & Liu, P.-Y. (2009). An Improved Apriori Algorithm

for Association Rules of Mining. Paper presented at the 2009 IEEE

International Symposium on IT in Medicine & Education, Jinan, China.

[135] Wenzhe, L., Qian, W., Yu, W., Jiadong, R., Yongqiang, C., & Changzhen, H.

(2017). Mining Frequent Patterns for Item-Oriented and Customer-Oriented

Analysis. Paper presented at the 2017 14th Web Information Systems and

Applications Conference (WISA), Liuzhou, China.

[136] Wixom, B., & Watson, H. (2010). The BI-Based Organization. International

Journal of Business Intelligence Research, 1(1), 13-28.

172

[137] Yegulalp, S. (2017). What is NoSQL? NoSQL Databases Explained.

Retrieved from https://www.infoworld.com/article/3240644/nosql/what-is-

nosql-nosql-databases-explained.html

[138] Zaki, M. J. (2000). Scalable Algorithms for Association Mining. IEEE

Transactions on Knowledge and Data Engineering, 12(3), 372-390.

[139] Zhang, H., Li, Y., Shen, C., Sun, H., & Yang, Y. (2015). The Application of

Data Mining In Finance Industry Based on Big Data Background. Paper

presented at the 2015 IEEE 17th International Conference on High

Performance Computing and Communications, New York, NY, USA.

[140] Zhang, Z., Ji, G., & Tang, M. (2013). MREClaT: An Algorithm for Parallel

Mining Frequent Itemsets. Paper presented at the 2013 International

Conference on Advanced Cloud and Big Data, Nanjing, China.

[141] Zulkurnain, N. F., & Shah, A. (2017). HYBRID: An Efficient Unifying Process

to Mine Frequent Itemsets. Paper presented at the 2017 IEEE 3rd International

Conference on Engineering Technologies and Social Sciences (ICETSS),

Bangkok, Thailand.

https://www.infoworld.com/article/3240644/nosql/what-is-nosql-nosql-databases-explained.html
https://www.infoworld.com/article/3240644/nosql/what-is-nosql-nosql-databases-explained.html

173

LIST OF PUBLICATIONS

Journal

Author Chin-Hoong Chee, Jafreezal Jaafar, Izzatdin Abdul Aziz,

Mohd Hilmi Hasan, William Yeoh

Title Algorithms for Frequent Itemset Mining: A Literature Review

Journal Artificial Intelligence Review (2018)

Conference

Author Chin-Hoong Chee, Jafreezal Jaafar, Izzatdin Abdul Aziz

Title FP-NoSQL: An Efficient Frequent Itemset Mining Algorithm

Using the FB-DB Approach

Conference 2018 IEEE Conference on Big Data and Analytics (ICBDA),

Langkawi, Malaysia, 21st – 22nd November 2018

