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ABSTRACT 

Data mining provides insights that offer vast benefits such as increased revenue, 

cost cutting, and improved competitive advantage. However, the hidden patterns of 

the frequent itemsets become more time consuming to be mined when the amount of 

data is big. Moreover, significant memory consumption is needed in mining the 

hidden patterns of the frequent itemsets due to its enormous combinations that are 

required to be processed. Most of the current algorithms are still facing these two 

problems because the frequent itemsets are mined into the main memory and the 

storage space is quite limited for mining the entire data set. Therefore, an efficient 

algorithm is necessary to be constructed for mining the hidden patterns of the frequent 

itemsets especially when the amount of data is big. Frequent Itemset Mining (FIM) 

and Association Rule Mining (ARM) are the two main steps in Frequent Pattern 

Mining (FPM), and the focus of this research is in FIM. The objectives of this 

research are as follows: (1) to design an algorithm that constructs a Frequent Pattern 

Collection (FP-Collection) in a Frequent Pattern Database (FP-DB) for storing the 

frequent patterns which need to be used for data analysis in FPM, (2) to develop an 

algorithm that efficiently mines the frequent patterns within a shorter run time and 

with less memory consumption even though the amount of data is big in the data 

warehouse, and (3) to evaluate the algorithm in order to ensure that it is capable to 

mine the frequent patterns within a shorter run time and with less memory 

consumption for both the sparse and dense data sets. In this research, FP-NoSQL is 

proposed and constructed as an algorithm for FIM using the Not Only Structured 

Query Language (NoSQL) because NoSQL is able to support the mining of big data 

set in a flexible manner. The experimental research method is used as the 

methodology to implement this research. Four sets of data that are in the sparse or 

dense structure have been utilized for experimental testing to evaluate the 

performance of the algorithm. In order to further confirm that the algorithm is robust 

enough for mining the frequent itemsets in an efficient manner, two sets of data have 
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been mined to compare against the Apriori and Extended Frequent Pattern (EFP) 

algorithms. The experiments conducted have proven that the FP-NoSQL algorithm is 

able to mine the hidden patterns of the frequent itemsets within a shorter run time and 

with less memory consumption even though the amount of data is big in the data 

warehouse. The FP-NoSQL algorithm is also evaluated to having a linear, logarithmic 

or log linear time complexity relationship through the Big-O notation. Apart from 

this, the FP-NoSQL algorithm is able to selectively retrieve the frequent patterns that 

matched the requirements of users from the FP-DB for generating the frequent 

itemsets. Thus, it is not required to mine the entire data warehouse again for 

identifying the frequent patterns even after a power failure.  
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ABSTRAK 

Perlombongan data menawarkan manfaat yang luas seperti peningkatan 

pendapatan, pemotongan kos, dan kelebihan daya saing yang lebih baik. Walau 

bagaimanapun, corak tersembunyi itemset yang kerap memerlukan lebih banyak masa 

untuk dilombong apabila jumlah data adalah besar. Selain itu, penggunaan memori 

yang banyak diperlukan dalam perlombongan corak tersembunyi itemset yang kerap 

disebabkan oleh kombinasi besar yang perlu diproseskan. Kebanyakan algoritma yang 

sedia ada masih menghadapi kedua-dua masalah ini kerana itemset yang kerap 

dilombong ke dalam memori utama dan ruang penyimpanan adalah agak terhad untuk 

melombong keseluruhan set data. Frequent Itemset Mining (FIM) dan Association 

Rule Mining (ARM) adalah dua langkah yang penting di dalam proses Frequent 

Pattern Mining (FPM), dan fokus penyelidikan ini adalah FIM. Oleh itu, suatu 

algoritma yang cekap perlu dibina bagi perlombongan corak tersembunyi itemset 

yang kerap terutamanya apabila jumlah data adalah besar. Objektif penyelidikan ini 

adalah seperti berikut: (1) merangka suatu algoritma yang membina satu Frequent 

Pattern Collection (FP-Collection) dalam satu Frequent Pattern Database (FP-DB) 

untuk menyimpan corak kerap yang perlu digunakan untuk analisis data dalam FPM, 

(2) membina suatu algoritma yang melombongkan corak kerap dalam jangka masa 

yang lebih singkat dengan penggunaan memori yang kurang walaupun jumlah data 

adalah besar, dan (3) menilai algoritma yang dibina untuk memastikan bahawa ia 

mampu melombongkan corak kerap dalam masa yang lebih singkat dengan 

penggunaan memori yang kurang untuk kedua-dua set data jarang dan padat. Dalam 

penyelidikan ini, FP-NoSQL dicadang dan dibina sebagai algoritma untuk FIM 

dengan menggunakan Not Only Structured Query Language (NoSQL) kerana NoSQL 

dapat menyokong perlombongan data besar secara fleksibel. Kaedah penyelidikan 

eksperimen digunakan sebagai metodologi untuk melaksanakan penyelidikan ini. 

Empat set data yang berada dalam struktur jarang atau padat telah digunakan dalam 

ujian eksperimen untuk menilai prestasi FP-NoSQL. Untuk mengesahkan bahawa FP-
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NoSQL adalah sesuai untuk perlombongan itemset yang kerap, dua set data telah 

dilombong untuk dibandingkan dengan algoritma Apriori dan Extended Frequent 

Pattern (EFP). Eksperimen yang dijalankan telah membuktikan bahawa FP-NoSQL 

dapat melombong corak itemset yang kerap dalam masa yang lebih pendek dan 

dengan penggunaan memori yang kurang walaupun jumlah data adalah besar. 

Algoritma FP-NoSQL juga dipastikan mempunyai hubungan kompleksiti masa yang 

linear, logaritma atau log linear melalui notasi Big-O. Selain itu, FP-NoSQL dapat 

memilih corak kerap yang selaras dengan syarat pengguna dari FP-DB untuk 

menghasilkan itemset yang kerap. Oleh itu, gudang data tidak perlu dilombong lagi 

untuk menghasilkan corak yang kerap walaupun selepas kegagalan kuasa.  
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CHAPTER 1 

INTRODUCTION 

This chapter provides an introduction to the field of data analytics, specifically in 

the area of Frequent Pattern Mining (FPM). First of all, an introduction and the 

background about data analytics are given in Section 1.1 . Then, Section 1.2 describes 

the motivation for conducting this research. Section 1.3 and 1.4 highlights the 

problems that exist in the current FPM algorithms which need to be resolved. Section 

1.5 lists down the questions that are required to be addressed and the objectives of this 

research are presented in Section 1.6. Next, the scope of this research is defined in 

Section 1.7 and the significance of this research is discussed in Section 1.8. Finally, 

the organization of this thesis is presented in Section 1.9. 

1.1 Introduction 

In recent years, the amount of data throughout the entire world has been increased 

exponentially because of the advanced technologies in digital sensors and storage 

devices (Praveena & Bharathi, 2017). International Data Corporation (IDC) predicted 

that the amount of data in the whole world may reach 163 zettabytes by the year 2025 

as shown in Figure 1.1 (Reinsel, Gantz, & Rydning, 2017). Apart from this, the 

invention of Cloud Computing and Internet of Things (IoT) have also further 

promoted the growth of data in many areas (Hashem et al., 2015). This is because the 

digital sensors in IoT enable data to be collected easily from various sources into the 

cloud storage, and the technology of Cloud Computing enables data to be accessed in 

a convenient manner through the internet. Therefore, many organizations in different 

industries are strongly depending on data in order to obtain valuable insights that are 

able to produce positive outcomes in the competitive business market. 
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Figure 1.1: Annual Size of the Global Datasphere (Reinsel et al., 2017) 

 

According to a survey conducted by Gartner, data analytics has appeared to be 

one of the top preferred capabilities of Information Technology (IT) for many Chief 

Executive Officials (CEOs) (Raskino, 2015). The number of CEOs that support the 

implementation of different IT capabilities in their companies is shown in Figure 1.2. 

The support for data analytics to be implemented in an organization is 12%, which is 

the highest rating among 23 IT capabilities being surveyed. This is because data 

analytics enables the stakeholders of a company to make informed decision for their 

business when knowledge or information is easily extracted from the data available in 

the entire organization. As the stakeholders are able to make fact-based decision using 

the capability of data analytics, the company will be capable of increasing revenue, 

cutting cost, and gaining competitive advantage in the challenging market. 

Moreover, data analytics is also listed by the CEOs as one of the top preferred IT 

capabilities in the five-year investment plan of their companies (Raskino, 2015). The 

percentage of CEOs that support the investment towards various IT capabilities in the 

five-year plan of their companies is shown in Figure 1.3. The support to invest into 

business or data analytics is 28%, which is the third highest rating among 26 IT 

capabilities being surveyed. As a result, this survey has indicated that data analytics is 

a very important IT capability that needs to be acquired by the business analysts and 

stakeholders of any organization. 
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Figure 1.2: Capabilities that Made CEOs' Company Stand Out (Raskino, 2015) 

 

 

Figure 1.3: CEOs' Five-Year Investment Plan (Raskino, 2015) 
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According to (Wixom & Watson, 2010), Business Intelligence and Analytics 

(BIA) is “a broad category of technologies, applications, and processes used for 

gathering, storing, accessing, and analyzing data to help its users make better 

decisions”. Due to its popular demand by the CEOs, data analytics has been adopted 

to support the operations in many businesses or industries like healthcare (McGlothlin 

& Khan, 2013), electrical power supply (Qiu et al., 2013), manufacturing (Jesus & 

Bernardino, 2014), railway safety management (Lira et al., 2014), financial service 

(Chang, 2014), tourism (Rebón, Ocariz, Gerrikagoitia, & Alzua-Sorzabal, 2015), 

education (Haupt, Scholtz, & Calitz, 2015) and even non-profit organizations 

(Oakley, Iyer, & A.F.Salam, 2015). 

Although data analytics is considered as one of the significant technologies in this 

competitive business environment, the McKinsey Global Institute speculated that the 

United States will be encountering a shortage of 140,000 to 190,000 professionals 

with good analytical skills, and a lack of 1.5 million data-savvy managers who can 

really analyze business data in order to make decision for their organizations 

effectively (Manyika et al., 2011). It was predicted by International Business 

Machines Corporation (IBM) that the demand for Data Scientist will soar 28% by the 

year 2020 (Columbus, 2017). The demand of jobs related to data analytics are shown 

in Figure 1.4 which includes the Data-Driven Decision Makers, Functional Analysts, 

Data Systems Developers, Data Analysts, Data Scientists & Advanced Analysts, and 

Analytics Managers. A total of 2,352,681 jobs related to data analytics are posted in 

the year 2015, and it is estimated that this number will be raised to 2,716,425 in the 

year 2020, with a demand increase of 363,744 jobs within 5 years. Since data 

analytics is considered as a vital subject of many CEOs and there is a shortage of 

professional in this area, a lot of research has been conducted for the field of data 

analytics by both the academic and industrial researchers. 
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Figure 1.4: Demand Statistics for Data Analytics Expertise (Columbus, 2017) 

 

Among various phases in the entire implementation process of data analytics, data 

mining plays an important role for discovering the significant patterns that may exist 

frequently in the data sets. This is because identifying the hidden patterns of a data set 

enables users to make the appropriate decision and action especially in a critical 

situation. In the midst of numerous data mining techniques, Frequent Pattern Mining 

(FPM) is one of the most important techniques due to its ability to locate the repeating 

relationships between different items in a data set and represent the hidden patterns in 

the form of association rules. FPM has been extensively studied by many researchers 

because of its abundant applications to a range of data mining tasks like classification, 

clustering, and outlier analysis (C. C. Aggarwal, 2014b). 

In order to improve the methods for classifying or clustering a set of data, and 

detecting the outliers or anomalies set of data, FPM plays an important role in 

performing many tasks for data mining. It is the fundamental step to identify the 

hidden patterns that exist frequently in a data set for generating association rules to be 

used in data analysis. Most of the time, it is used for market basket analysis where 

deep insight into product associations can be identified for improving the 

merchandising, promotions, personalization, and store layouts setup of products 

(Lobel, 2014). Therefore, the Point-Of-Sale (POS) transaction data is considered as 
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the most valuable data for retailers of consumer products (Hage, 2017). Apart from 

this, FPM has various applications in different domains like spatiotemporal data 

analysis, biological data analysis, and software bug detection (C. C. Aggarwal, 

2014b). 

1.2 Motivation 

In the scenario of a transactional data environment, a lot of patterns can be hidden 

among the different sets of data in the organizations. The hidden patterns that exist 

frequently among the data sets are called the frequent patterns. It is also called the 

frequent itemsets because each transaction of data contains different number of 

itemsets. Market Basket Analysis is a common case of Frequent Pattern Mining 

(FPM) where the buying habits of customers are analyzed when the associations 

between different items purchased by them are identified. At a retail store, a 

transaction can contain multiple sets of items that are purchased by a customer at one 

time of visit to the supermarket. It is a competitive advantage for a retail company to 

be able to identify the purchasing habits of its customers because this enables them to 

promote the right products to the right customers at the right time through their online 

advertising campaign. In addition, this also allows the retail company to place the 

products that are always purchased together by the customers at the same location so 

that it will be more convenient to the customers who like to go for shopping in the 

supermarket to locate the products easily. 

Apart from implementing FPM for Market Basket Analysis, FPM can also be 

used in other areas like Data Indexing and Retrieval (Nanopoulos & Manolopoulos, 

2002), Web Data Mining (Kachhadiya & Patel, 2018), Software Bug Detection (C. 

Liu, Yan, Yu, Han, & Yu, 2005), Event Detection (L. Wang, Cao, Wan, & Wang, 

2017) and Spatiotemporal Analysis (A. Aggarwal & Toshniwal, 2018). This is 

because identifying the hidden patterns that exist frequently among the data sets 

enables users to gain valuable insights to make proper decisions for the business of 

their organizations. Since a lot of benefits can be obtained when FPM is implemented 
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into the data analysis process of any organization, it is important to invest into the 

research and development of a more robust FPM algorithm for data analysis. 

1.3 Problem Background 

Even though many algorithms have been proposed by different researchers 

throughout the world to enhance the technique in Frequent Pattern Mining (FPM), 

improvements are still required to be done towards the performance of the existing 

FPM algorithms (Meenakshi, 2015). This is because most of the current algorithms 

are not that efficient for mining a data set with a large amount of data (Chen et al., 

2015). In a dynamic business environment, it is vital for FPM algorithms to be 

efficient in mining the frequent patterns of data (Dave, Rathod, Sheth, & Sakhapara, 

2015). The two major challenges faced by most of the algorithms are shortening the 

run time and reducing the memory consumption for executing the algorithm to mine 

the hidden frequent patterns (Jamsheela & G., 2015). Since these are the two major 

problems in FPM, many researchers in the area of data mining focus their attention on 

developing algorithms that can produce better performance in FPM with shorter 

execution run time and lower memory consumption (Meenakshi, 2015). Although 

many algorithms have been proposed, some of the algorithms still require a lot of 

computational time to mine the hidden frequent patterns in a data set especially when 

the amount of data is large (Mittal, Nagar, Gupta, & Nahar, 2015). Apart from this, 

some of the algorithms require more memory to mine the hidden frequent patterns in a 

data set, even though they have a shorter computational time (Dave et al., 2015). 

Therefore, there is a need to construct an algorithm that is able to mine the significant 

frequent patterns within a data set in an efficient manner even if the amount of data 

may be big in a data set. 

The hidden patterns of the frequent itemsets become more time consuming to be 

mined when the amount of data increases in a data set. This is because mining the 

frequent itemsets from a huge data set will generate a great number of frequent 

itemsets that satisfied the threshold of minimum support (min_sup), especially when 

the min_sup is set to a very small value. The minimum support is a value set by the 
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users in order to determine the minimum occurrence that needs to be satisfied by any 

item throughout the data set so that the item will be included into the mining process. 

For example, if the min_sup is set to 10, an item has to occur at least 10 times in the 

data set in order to be included into the mining process for identifying the hidden 

patterns of data. At the same time, when the amount of data is big in a data set, it also 

causes a large memory consumption for mining the hidden patterns of the frequent 

itemsets due to a heavy computation by the data mining algorithm. 

Apart from these, the frequent patterns that have been mined from a data set 

previously, need to be mined again if there is a change for the value of min_sup 

determined by the users. This is because the set of frequent patterns will not be the 

same again when the value of min_sup is changed either to a lower or higher number 

as well as percentage. For example, if the figure of min_sup is changed to a lower 

value, more frequent patterns will be generated, whereas if the figure of min_sup is 

changed to a higher value, less frequent patterns will be considered into the mining 

process. Since a change of the min_sup value will cause the entire set of frequent 

patterns to be totally different, the whole data set needs to be mined again in order to 

produce the correct result of mining. 

Furthermore, the frequent patterns are only mined into the main memory or 

Random Access Memory (RAM) by most of the existing algorithms. In this case, the 

entire process of Frequent Pattern Mining (FPM) has to be repeated if the system is 

down or there is a power failure. It is required to be so because none of the frequent 

patterns being mined previously are retained in the RAM. Therefore, it is necessary to 

construct an algorithm that is capable of mining the hidden patterns of the frequent 

itemsets within a shorter run time and with less memory consumption although the 

amount of data is big in a data set. In addition, the algorithm should be performing 

well for mining the hidden patterns of the frequent itemsets even though the min_sup 

value may be changed by the users, the system may be down, or there may be a power 

failure. 
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1.4 Problem Statement 

First, the total number of frequent itemsets to be mined for n number of items can 

be estimated based on the formula 2n – 1 (Meenakshi, 2015). For example, if there are 

100 items, 1.2676 * 1030 itemsets will be generated. Then, the total number of 

association rules to be generated for n number of items can be estimated based on the 

formula 3n – 2n+1 + 1 (Meenakshi, 2015). For instance, if there are 100 items, 

5.1537752 * 1047 rules will be generated. Therefore, as the amount of data increases 

in a data set, the execution run time and memory consumption of the Frequent Pattern 

Mining (FPM) algorithm will be definitely increased. 

1.5 Research Questions 

In order to solve the problems stated above, this research has been performed to 

address the following questions: 

(1) What needs to be constructed in order to retain the frequent patterns that have 

been mined previously for data analysis in Frequent Pattern Mining? 

 

(2) How can the frequent patterns be mined efficiently within a shorter run time even 

though the amount of data is big in a data set? 

 

(3) How can the memory consumption for mining the frequent itemsets be reduced 

even though the amount of data is big in a data set? 

1.6 Research Objectives 

In this research, the following objectives have been achieved: 

(1) To design an algorithm that constructs a Frequent Pattern Collection 

(FP-Collection) in a Frequent Pattern Database (FP-DB) for storing the frequent 

patterns which need to be used for data analysis in Frequent Pattern Mining 

(FPM). 
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(2) To develop an algorithm that efficiently mines the frequent patterns within a 

shorter run time and with less memory consumption even though the amount of 

data is big in the data warehouse. 

 

(3) To evaluate the algorithm in order to ensure that it is capable to mine the frequent 

patterns within a shorter run time and with less memory consumption for both the 

sparse and dense data sets. 

1.7 Scope of Research 

The action of Frequent Pattern Mining (FPM) can be divided into two main 

sections as follows (Giacometti, Li, Marcel, & Soulet, 2014): 

(1) Frequent Itemset Mining (FIM) 

• FIM is the first step of FPM where the frequent itemsets that satisfied the 

threshold of a minimum support value are generated by the FPM algorithm. 

For example, in a database that consists of many transactions, each transaction 

contains a set of different items and these items can be grouped into various 

combinations of itemsets. The FIM algorithm generates the frequency of 

occurrence for every combination of the itemsets by identifying the number of 

transactions that contain them in the entire database. Finally, all the itemsets 

that have a frequency of occurrence which fulfill the minimum support 

threshold are to be discovered by the FIM algorithm. 

(2) Association Rule Mining (ARM) 

• ARM is the second step of FPM where the association rules that indicate 

interesting relationships among the frequent itemsets are generated by the 

FPM algorithm. Once the frequent itemsets that fulfill the minimum support 

threshold are discovered by the FIM algorithm, it can be used to identify the 

association rules that describe how those itemsets are related to one another. 

The association rules found by the ARM algorithm which fulfill the minimum 

confidence threshold are categorized as strong association rules. 
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The work of this research focus on the first step of FPM. An algorithm for FIM is 

proposed to construct the frequent patterns and their support counts into a collection 

in the database within a shorter run time and with lesser memory consumption even 

though the amount of data is big in the data warehouse. 

Apart from this, the work of this research focus on mining the transactional data 

in a data warehouse where the IDs of transactions and records are processed by the 

algorithm. In this research, the focus is to mine data in the form of text and numbers 

because the data in these formats contain the most significant information that can be 

retrieved if it is processed thoroughly. Therefore, mining the pattern of data from 

image or video is out of the scope of this research. 

Six sets of data that are specifically prepared for the purpose of FIM are 

downloaded from the internet in order to conduct the experiments for evaluating the 

algorithm. These data sets contain multiple transactions with multiple items in the 

dense or sparse format. This is to ensure that the algorithm is able to mine the data 

even though they are in different formats. The data is processed into a collection in 

the NoSQL database for the frequent itemsets to be mined using the appropriate 

NoSQL queries. 

1.8 Research Significance 

With the implementation of the proposed algorithm, the following benefits can be 

gained for Frequent Pattern Mining (FPM): 

(1) Retain the frequent patterns for further analysis 

• All frequent patterns that have been mined can be retained for further analysis 

using a Frequent Pattern Database (FP-DB). The FP-DB enables each unique 

pattern that can be found from a data warehouse to be consolidated into a 

Frequent Pattern Collection (FP-Collection) along with its frequency of 

occurrence. As every pattern from a data warehouse is stored into the FP-DB, 

the frequent patterns that have been mined can be retrieved anytime for further 

analysis even after a power failure or the system is down. 
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(2) Mine the frequent patterns within a shorter run time 

• The frequent patterns can be mined within a shorter run time because every 

pattern that exists frequently in the data warehouse is inserted into a frequent 

pattern table at the same time after they are being concatenated together. 

Concatenating the frequent patterns together and inserting them into a frequent 

pattern table at the same time helps to reduce the number of times for scanning 

the data warehouse. When the number of times for scanning the data 

warehouse is reduced in the FPM process, the total run time for constructing 

all the frequent patterns can be reduced significantly. 

 

(3) Mine the frequent itemsets using lesser memory consumption 

• The frequent itemsets can be mined using lesser memory consumption since 

every unique pattern that exists frequently in the data warehouse is 

consolidated into the FP-DB together with its frequency of occurrence. In 

order to discover the frequent itemsets that are related to a specific item, it is 

not necessary to mine the entire data warehouse because only the frequent 

patterns that matched the requirements of users are required to be retrieved for 

generating the relevant frequent itemsets. 

1.9 Organization of Thesis 

The structure of this thesis is organized into six chapters and the remaining chapters 

are briefly described as follows: 

Chapter 2 presents the fundamental concept of Frequent Pattern Mining (FPM) and 

reviews some state-of-the-art FPM algorithms by describing how each of them works. 

The FPM algorithms are also classified into different categories and compared to 

identify their advantages and disadvantages respectively. Apart from this, the 

significant data extraction techniques are also reviewed in this chapter because it is a 

necessary step to be implemented prior to data mining. Similarly, the data extraction 

techniques are also compared to identify their advantages and disadvantages 

respectively. 
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Chapter 3 discusses about the methodology used for conducting this research. All the 

processes of the research methodology being selected are described in detail 

throughout every stage of research, development and evaluation for the proposed 

FPM algorithm. Apart from this, the tools used for conducting the research and 

implementing the development for the proposed FPM algorithm are also described in 

this chapter. 

Chapter 4 describes how the proposed FPM algorithm works. The entire architecture 

of the algorithm is presented in a flow chart and the pseudocode of the algorithm is 

explained part by part in this chapter. 

Chapter 5 presents the results of the experiment conducted to evaluate the 

performance of the proposed FPM algorithm. The experiment results are discussed in 

this chapter in order to verify that the algorithm is suitable to be used for Frequent 

Pattern Mining (FPM) in a big data set. 

Chapter 6 concludes the entire research into a brief summary and highlights the 

significant contributions of this research. The potential future work that can be 

conducted by other researchers is also discussed in this chapter. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter reviews several algorithms for Frequent Pattern Mining (FPM). First, 

an overview of the entire implementation process of data analytics is given in Section 

2.1. Then, the significant data mining techniques and the fundamental knowledge of 

FPM are provided in Section 2.2. The previous research conducted on the 

fundamental and significant FPM algorithms are presented in Section 2.2.3.1 to 

Section 2.2.3.14. Next, Section 2.2.3.15 presents an organization chart that 

categorizes the FPM algorithms into different groups. A table which provides a 

comparison for the advantages and disadvantages of the FPM algorithms is given in 

the same section. Last but not least, since extracting data is part of the tasks for data 

mining to be conducted, some significant data extraction techniques are given in 

Section 2.3. A table which provides a comparison for the advantages and 

disadvantages of the data extraction techniques is given in Section 2.3.1.8. 

2.1 Data Analytics 

In the field of Business Intelligence and Analytics (BIA), the two terms that are 

often used in an interchangeable manner are “data analysis” and “data analytics” 

(Inteliment, 2016). But what is the major difference between them? The main 

distinction between these two terms is this: data analysis presents data by only 

looking at the past while data analytics tries to predict the future by using every data 

that is available (Park, 2017). In order words, data analysis attempts to answer the 

“What has happened?” question, whereas data analytics attempts to answer the “Why 

did it happen and what will happen later?” question. Therefore, data analysis can also 

be viewed as a detailed study of the data for any kind of decision-making situation, 
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while data analytics provides actionable insights for users to make the appropriate 

decisions in the future apart from answering questions that have happened in the past. 

2.1.1 The Process of Knowledge Discovery in Databases 

Analyzing all the data that is collected in the data warehouse is definitely a 

necessity for every enterprise because the proper decisions can be made for taking the 

appropriate actions especially in a critical situation. In general, the entire 

implementation process of data analytics that is in common practice is shown in 

Figure 2.1 (Gullo, 2015) and it contains five important phases to select, pre-process, 

transform, mine and evaluate or interpret the data as follows: 

2.1.1.1 Data Selection 

First, the data is required to be extracted from its original sources into various 

target data sets in the data warehouse. This is a very important step because data can 

be existing in multiple departments throughout the whole organization. Apart from 

this, data can also be appearing in different formats like text files, spreadsheets, 

databases, xml files and others (Kherdekar & Metkewar, 2016). In order to 

completely analyze all data that is available in the entire organization, it is necessary 

to consolidate the data from numerous sources into the data warehouse for pre-

processing, transformation, and mining before it can be interpreted or evaluated 

properly as useful knowledge for business analysis and decision-making in the 

organization. 

2.1.1.2 Data Preprocessing 

As the data is consolidated from various sources that are in different forms, it is 

essential to preprocess the data so that it can be stored appropriately in the data 

warehouse. This step is also necessary due to the problems of data quality like 

missing data, noisy data, inconsistent data or even wrongly sampled data 
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(JayaramHariharakrishnan, Mohanavalli, Srividya, & Kumar, 2017). If the quality of 

data is low, it may lead to wrong conclusions when the data is processed by any kind 

of data mining techniques. 

2.1.1.3 Data Transformation 

After preprocessing the data, the processes of transformation are required to be 

implemented towards the data so that it is formatted in the appropriate forms for data 

mining to be conducted accordingly. This is usually the most time-consuming step 

because constructing a data set that is suitable for analysis by consolidating data from 

numerous tables and views in a database requires complicated queries to be written 

properly (Chaudhari & Khanuja, 2015). The processes of extraction, transformation 

and loading for data are shown in a summarized manner in Figure 2.2 (Prema & 

Pethalakshmi, 2013). 

2.1.1.4 Data Mining 

When the data is transformed into the appropriate formats, it is ready for mining 

in order to discover the hidden patterns that exist in the data set. In general, data 

mining techniques can be categorized into four main categories, namely, 

Classification, Clustering, Outlier Detection, and Frequent Pattern Mining (J. Han, 

Kamber, & Pei, 2012e). Classification groups data into different classes using a 

classifier that is constructed from a set of training data with some predefined class 

labels, while Clustering groups data objects with high similarity into the same cluster 

without using a classifier. Outlier Detection locates data with characteristics that are 

very unusual compared to the common ones, and Frequent Pattern Mining locates the 

hidden patterns that exist frequently in the data set. 
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2.1.1.5 Data Interpretation / Evaluation 

In order for the data to be interpreted or evaluated as useful knowledge, one of the 

methods to present data in an effective manner is to visualize the data in various 

forms like graph visualization, text visualization, map visualization, and multivariate 

data visualization (S. Liu, Cui, Wu, & Liu, 2014). This is because data and 

information can be analyzed and understood by the human mind in an easier way 

when it is represented in the appropriate visual form. 

 

 

Figure 2.1: The Process of Knowledge Discovery in Databases (KDD) (Gullo, 2015) 
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Figure 2.2: The Process of Extraction, Transformation and Loading for Data 

(Prema & Pethalakshmi, 2013) 

2.2 Data Mining 

Among the five steps in the entire process of data analytics, data mining is 

considered as the most important step. This is because a tremendous amount of data is 

captured everyday and there is a vital need to analyze it, so that valuable information 

can be discovered from the data and be transformed into useful knowledge (J. Han, 

Kamber, & Pei, 2012f). The dynamic growth of such a huge data volume is an 

outcome of the computerization of the world and the fast invention of powerful tools 

for data collection and storage. However, the ability to identify the significant patterns 

in a set of data depends on the capability of the algorithm that is being implemented 

for mining. Therefore, appropriate data mining algorithms and techniques should be 

proposed in order to provide a suitable solution for extracting valuable information 

from the vast amount of data available. 
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2.2.1 Data Mining Techniques 

The massive volume of data that has grown exponentially has caused a lot of data 

mining techniques to be developed (Henke et al., 2016). In general, data mining 

techniques can be categorized into four main categories, namely, Classification, 

Clustering, Outlier Detection, and Frequent Pattern Mining (J. Han et al., 2012e). 

2.2.1.1 Classification 

Classification is a data mining technique that groups data into different classes 

using a classifier that is constructed from a set of training data with some predefined 

class labels (Midha & Singh, 2015). It is useful in situations where a bank loan officer 

may be interested to know which loan applicants are considered as “safe” or “risky” 

for the bank, a marketing manager may like to know whether a customer with a 

certain profile will buy a particular product, and a medical researcher may be 

interested to identify which specific treatment a patient of breast cancer should 

receive. 

The process of classification consists of two steps for processing the data, namely 

the learning step and the classification step as shown in Figure 2.3. In the learning 

step, various sets of training data are analyzed by the classification algorithm in order 

to construct a classifier in the form of classification rules, mathematical formulae or 

decision trees. The training data is made up of some database records that are attached 

with the appropriate class labels. Since a class label is available in every record of the 

training data, classification is considered as a kind of supervised learning technique. 

In the classification step, test data is used to estimate the accuracy of the classifier. If 

the accuracy rate of the classifier is considered as acceptable, the classification 

algorithm can be used to classify new data into the relevant classes. 
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Figure 2.3: An Example of Classification (J. Han, Kamber, & Pei, 2012a) 

2.2.1.2 Clustering 

Clustering is a data mining technique that groups data objects with high similarity 

into the same cluster without using a classifier that is constructed from a set of 

training data with some predefined class labels (Hruschka, Campello, Freitas, & 

Carvalho, 2009). It is useful in a situation where there are a lot of customers that 

purchase products from a company and it is quite impossible to categorize them into a 
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few strategic groups manually. Due to its ability to automatically identify the 

groupings from a set of data, clustering is also called automatic classification. 

The process of clustering groups the objects in a set of data into different 

categories, having the objects with high similarity to be grouped into the same 

category as shown in Figure 2.4. Clustering is considered as unsupervised learning 

since the information of class labels is not available. Hence, it is a data mining 

technique that is learning by observation instead of learning by examples. However, 

different methods of clustering may group objects in the same data set into different 

categories. Even though it may be so, clustering is still considered as a very useful 

technique of data mining because it helps to discover groups that are unknown 

previously within the data set. 

 

 

Figure 2.4: An Example of Clustering (J. Han, Kamber, & Pei, 2012b) 
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2.2.1.3 Outlier Detection 

Outlier Detection locates data with characteristics that are very unusual compared 

to the common ones as shown in Figure 2.5. While the technique of Clustering is to 

identify data with common patterns and group them into different categories, Outlier 

Detection tries to identify those extraordinary data that deviates significantly from the 

data with common patterns (Bansal, Gaur, & Narayan, 2016). The extraordinary data 

can be categorized into three different types of outliers, namely Global Outlier, 

Contextual Outlier, and Collective Outlier. Global Outlier deviates substantially from 

all the other data sets, while Contextual Outlier deviates substantially depending on a 

particular situation for the data. For Collective Outlier, the data deviates substantially 

together as a whole from the entire data set. 

 

Figure 2.5: An Example of Outlier Detection (J. Han, Kamber, & Pei, 2012d) 

2.2.1.4 Frequent Pattern Mining 

Among various techniques of data mining, Frequent Pattern Mining (FPM) is one 

of the most important techniques because it has plentiful applications to a range of 

data mining tasks in classification, clustering, and outlier analysis. In order to provide 

users with information that is more useful for data analysis and decision-making, it is 

important to mine and identify all the significant hidden patterns that exist frequently 

in a data set. Therefore, the main focus of this research is to analyze a number of FPM 

algorithms and propose an FPM algorithm that is able to mine a big data set within a 

shorter run time and with less memory consumption. 
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Frequent Pattern Mining (FPM) locates repeating relationships in a data set (Garg 

& Sharma, 2011). The patterns that exist frequently in a data set are called frequent 

patterns. It can be appearing in the form of itemsets, subsequences or substructures. A 

frequent itemset is a set of items that exist together frequently among the transactions 

of a data set. For example, in the context of a supermarket, the items that are always 

being purchased at the same time by the customers are bread and butter. In this case, 

FPM can be conducted to perform market basket analysis so that the consumers 

buying habits can be analyzed by locating the associations between different items 

that have been purchased. The application of FPM for the scenario of market basket 

analysis is illustrated in Figure 2.6. 

 

 

Figure 2.6: Market Basket Analysis (J. Han, Kamber, & Pei, 2012c) 

 

Let D be a data warehouse with a set of different items I = (I1, I2, … , Im). Then, 

every transaction T is an itemset that is not empty in which T ⊆ I. An itemset is a set 

of items. If it contains k items, then it is a k-itemset. For instance, the set (bread, 
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butter) is a 2-itemset. Every transaction contains one or more items and each 

transaction is represented by a Transaction Identifier, TID. 

The hidden patterns of a data set can be represented in the form of association 

rules. An association rule is commonly denoted as A => B, having A ≠ Ø, B ≠ Ø, A ⊂ 

I, B ⊂ I, and A ∩ B = Ø. The interestingness of a rule is determined by two measures, 

support s and confidence c, as stated in the following formulas: 

support(A => B) = P(A ∪ B) ………………………………………………… [2.1] 

confidence(A => B) = P(B | A) = 
𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝐴 ∪ 𝐵)

𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝐴)
 …………………………. [2.2] 

In this scenario, support s, indicates the percentage of T in D that consist of A ∪ 

B, whereas confidence c, indicates the percentage of T in D that consist of A also 

consist of B. The values of s and c will occur between 0% and 100%. Normally, the 

association rules are considered remarkable if they fulfill a minimum threshold for 

both the support and confidence measures. Apart from support and confidence, a lot 

of measures like coverage, prevalence, recall, specificity, accuracy and many others 

can be used to quantify the interestingness of an association rule (Le & Lo, 2015). 

However, it is out of the scope of this research for other types of measures to be 

discussed in this thesis. 

For the measures of support and confidence, in the situation of a computer 

retailer, the data that shows consumers who buy laptop computers also tend to 

purchase office software simultaneously can be represented as follows: 

laptop computer => office software [support = 10%, confidence = 70%]. 

A value of 10% for support indicates that 10% of all the records under analysis 

involve the purchase of laptop computer and office software at the same time, 

whereas a value of 70% for confidence indicates that 70% of the consumers who 

bought a laptop computer also purchased the office software. 
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2.2.2 Applications of Frequent Pattern Mining 

Frequent Pattern Mining (FPM) is an important data mining technique that can be 

applied into several areas as follows (C. C. Aggarwal, 2014a): 

2.2.2.1 Customer Analysis 

FPM is commonly used by companies that sell products to analyze the purchasing 

behaviour of their customers (Wenzhe et al., 2017). By implementing FPM, 

companies can identify which products are always being purchased at the same time 

or by the same customers. With this capability, retailers are able to arrange their 

products for display at the appropriate locations so that it can be easily found by the 

customers. Apart from this, the relevant products can also be promoted to the right 

customers at the right time. As a result, this helps to increase the sales of their 

products. 

2.2.2.2 Data Indexing and Retrieval 

FPM is also used for data indexing and retrieval in which a concise representation 

of the data is constructed (Nanopoulos & Manolopoulos, 2002). In this process, the 

data are categorized into different groups based on its patterns in order to enable the 

branch-and-bound search to be performed when the similarities-based queries are 

processed. 

2.2.2.3 Web Data Mining 

One of the applications of FPM is in the area of web data mining where frequent 

patterns are discovered in order to monitor the navigational behaviour of the users for 

creating a more suitable advertising strategy (Kachhadiya & Patel, 2018). 
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2.2.2.4 Software Bug Detection 

Another application of FPM is for identifying the bugs of software in which the 

program executions are classified with some software behaviour graphs for 

discovering the program sections that may cause the faulty executions (C. Liu et al., 

2005). 

2.2.2.5 Event Detection 

One of the most common applications of FPM in event detection is the use for 

intrusion detection within a secure network where web logs are analyzed in order to 

predict possible web attacks that are currently unknown (L. Wang et al., 2017). 

2.2.2.6 Spatiotemporal Analysis 

FPM is used for spatiotemporal analysis in which the frequent patterns of data are 

mainly affected by the time and location of occurrence for the transactions (A. 

Aggarwal & Toshniwal, 2018). In this scenario, the data is usually captured 

continuously from the mobile phones of users. 

2.2.2.7 Image Processing 

Another application of FPM is for image classification where the features of 

images are considered as attributes in the transactions and frequent patterns can be 

identified from it in order to determine their important characteristics (Fernando, 

Fromont, & Tuytelaars, 2012). 

2.2.2.8 Chemical and Biological Analysis 

FPM can also be used for chemical and biological analysis because most of the 

chemical and biological data for chemical compounds, complex biological molecules, 
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microarrays or protein interaction networks are often represented as graphs. The 

technique that can be used for identifying frequent patterns from chemical and 

biological data is called frequent subgraph discovery (Kuramochi & Karypis, 2001). 

2.2.2.9 Facilitator for Other Data Mining Solutions 

The technique of FPM is closely related to other data mining techniques like 

classification, clustering and outlier detection because it is the most fundamental 

method that is required to be implemented before other data mining solutions can be 

accomplished (Tiwari, Gupta, & Agrawal, 2010). 

2.2.3 Algorithms of Frequent Pattern Mining 

A lot of algorithms have been proposed to solve the problem of Frequent Pattern 

Mining (FPM). Among all the FPM algorithms, the fundamental ones are the 

algorithms of Apriori (Agrawal & Srikant, 1994), FP-Growth (J. Han, Pei, & Yin, 

2000) and EClaT (Zaki, 2000). This section describes how the fundamental and 

significant algorithms in FPM work and compares their advantages and disadvantages 

respectively. 

2.2.3.1 Apriori Algorithm 

Apriori (Agrawal & Srikant, 1994) is an algorithm proposed by R. Agrawal and 

R. Srikant to mine frequent itemsets for generating Boolean association rules. It uses 

an iterative level-wise search technique to discover (k+1)-itemsets from k-itemsets. 

First, the database is scanned to identify all the frequent 1-itemsets by counting each 

of them and capturing those that satisfy the minimum support threshold. The result of 

frequent 1-itemsets is represented as L1. Then, L1 is used to locate L2, the set of 

frequent 2-itemsets, which is used to locate L3, and the rest, until no more frequent k-

itemsets is possible to be identified. The identification of each Lk requires of scanning 

the entire database. 
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A sample of transactional data that consists of product items being purchased at 

different transactions is shown in Table 2.1. In order to locate all the possible frequent 

itemsets, the entire database is scanned multiple times for identifying the count of 

each frequent itemset as described in Figure 2.7. The minimum support threshold used 

in this example is ‘2’. Therefore, only the records that fulfill a minimum support 

count of ‘2’ will be included into the next cycle of algorithm processing. 

 

Table 2.1: Sample of Transactional Data (J. Han et al., 2012c) 

 

 

In the first cycle, the algorithm scans the database to count the number of 

occurrences of each item to produce the candidate 1-itemsets, C1. All the items in C1 

are counted as the members of frequent 1-itemsets, L1 because every item satisfies the 

minimum support count of ‘2’. Then, the algorithm joins L1 to itself in order to 

generate the candidate 2-itemsets, C2 for further discovering the frequent 2-itemsets, 

L2. In this step, no candidates are removed from C2 because every subset of the 

candidates is also frequent in the database. 

After generating C2, the database is scanned again to count the number of 

occurrences of each item in C2. The items in C2 that fulfill a minimum support count 

of ‘2’ are counted as the members of frequent 2-itemsets, L2. Then, the algorithm 
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continues to join L2 to itself in order to generate the candidate 3-itemsets, C3 for 

further discovering the frequent 3-itemsets, L3. In this step, the actual result of having 

L2 to be joined to itself is (I1, I2, I3), (I1, I2, I5), (I1, I3, I5), (I2, I3, I4), (I2, I3, I5), 

and (I2, I4, I5). But the four latter candidates have been removed from C3 as they are 

not frequent in the database. With the implementation of this level-wise search 

technique, it saves the effort of calculating their support counts unnecessarily in the 

next scanning of the database to determine L3. 

 

 

Figure 2.7: Generation of Candidate Itemsets and Frequent Itemsets 

(J. Han et al., 2012c) 

 

After generating C3, the database is scanned again to count the number of 

occurrences of each item in C3. The items in C3 that fulfill a minimum support count 

of ‘2’ are counted as the members of frequent 3-itemsets, L3. Then the algorithm 
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continues to join L3 to itself in order to generate the candidate 4-itemsets, C4. In this 

step, even though the join produces itemset (I1, I2, I3, I5), it is removed from C4 

because one of its subsets (I2, I3, I5) is not frequent in the database. Therefore, C4 = 

φ, and the algorithm is terminated at this point, having all of the frequent itemsets to 

be discovered. 

In many cases, the Apriori algorithm reduces the size of candidate item sets 

significantly and provides a good performance gain. However, it is still suffering from 

two critical limitations (J. Han et al., 2012c). First, a large number of candidate item 

sets may still need to be generated if the total count of a frequent k-itemsets increases 

(D. Sun, Teng, Zhang, & Zhu, 2007). Then, the entire database is required to be 

scanned repeatedly and a huge set of candidate items are required to be verified using 

the technique of pattern matching (F. Wang & Li, 2008). 

2.2.3.2 FP-Growth Algorithm 

Frequent Pattern Growth (FP-Growth) (J. Han et al., 2000) is an algorithm 

proposed by Jiawei Han to mine frequent itemsets without a costly candidate 

generation process. It implements a divide-and-conquer technique to compress the 

frequent items into a Frequent Pattern Tree (FP-Tree) that retains the association 

information of the frequent items. It is built by accessing the data set to retrieve one 

transaction at a time and plotting each item of the transaction onto a path in the FP-

Tree (Kim, Lee, Kim, & Son, 2010). The FP-Tree is further divided into a set of 

Conditional FP-Trees for each frequent item so that they can be mined separately. 

An example of the FP-Tree that represents all the frequent items found from the 

transactional data listed in Table 2.1 is shown in Figure 2.8. Similar to the Apriori 

algorithm, the FP-Growth algorithm generates the frequent 1-itemsets and their 

support counts at the first scan of the database. Then, the set of frequent items is 

sorted in the descending order according to their support counts, having the frequent 

itemsets L = ((I2: 7), (I1: 6), (I3: 6), (I4: 2), (I5: 2)). Next, the FP-Tree is built by 

creating the root of the tree which is represented as “null”. The database will be 

scanned a second time and the items in every transaction are processed into the FP-
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Tree according to the descending order of support counts identified in L. For example, 

the first transaction record, “T100: I1, I2, I5” will be reordered as “T100: I2, I1, I5” 

and placed under the FP-Tree, with I2 to be linked to the root, I1 to be linked to I2, 

and I5 to be linked to I1. To simplify the tree traversal, an item header table is 

constructed so that every item can be linked to its positions in the FP-Tree through a 

series of node-links. In this manner, the problem in mining frequent patterns from a 

database is simplified to mining from the FP-Tree. 

 

 

Figure 2.8: Frequent Pattern Tree (FP-Tree) (J. Han et al., 2012c) 

 

The FP-Growth algorithm solves the problem of identifying long frequent patterns 

by searching through smaller Conditional FP-Trees repeatedly. An example of the 

Conditional FP-Tree associated with node I3 is shown in Figure 2.9, and the details of 

all the Conditional FP-Trees found in Figure 2.8 are shown in Table 2.2. The 

Conditional Pattern Base is a “sub-database” which consists of every prefix path in 

the FP-Tree that co-occurs with every frequent length-1 item. It is used to construct 

the Conditional FP-Tree and generate all the frequent patterns related to every 

frequent length-1 item. In this way, the cost of searching for the frequent patterns is 
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substantially reduced. However, constructing the FP-Tree is time consuming if the 

data set is very large (Meenakshi, 2015). 

 

 

Figure 2.9: Conditional FP-Tree Associated with Node I3 (J. Han et al., 2012c) 

 

Table 2.2: Conditional Pattern Base and Conditional FP-Tree (J. Han et al., 2012c) 

 

2.2.3.3 EClaT Algorithm 

Equivalence Class Transformation (EClaT) (Zaki, 2000) is an algorithm proposed 

by Zaki to mine frequent itemsets efficiently using the vertical data format. The 

vertical format of the data found in Table 2.1 is shown in Table 2.3. In this method of 

data representation, all the transactions that contain a particular itemset are grouped 

into the same record. For example, the transactions of T100, T400, T500, T700, T800, 

and T900 are all the records that contain the I1 itemset in the database. 

First, the EClaT algorithm transforms data from the horizontal format into the 

vertical format by scanning the database once. The frequent (k+1)-itemsets are 
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generated by intersecting the transactions of the frequent k-itemsets. For instance, 

when the itemsets of I1 and I2 are intersected with one another, the transactions that 

are common in both itemsets will be included into the 2-itemset of (I1, I2) as T100, 

T400, T800, and T900. This process repeats until all the frequent itemsets are 

intersected with one another and no frequent itemsets can be found as shown in Table 

2.4 and Table 2.5. 

 

Table 2.3: Sample of Transactional Data in Vertical Data Format (J. Han et al., 2012c) 

 

 

Table 2.4: 2-Itemsets in Vertical Data Format (J. Han et al., 2012c) 

 

 

 



 

35 

Table 2.5: 3-Itemsets in Vertical Data Format (J. Han et al., 2012c) 

 

 

For the EClaT algorithm, the database is not required to be scanned multiple times 

in order to identify the (k+1)-itemsets. The database is only scanned once to transform 

data from the horizontal format into the vertical format. After scanning the database 

once, the (k+1)-itemsets are discovered by just intersecting the k-itemsets with one 

another. Apart from this, the database is also not required to be scanned multiple 

times in order to identify the support count of every frequent itemset because the 

support count of every itemset is simply the total count of transactions that contain the 

particular itemset. However, the transactions involved in an itemset can be quite a lot, 

making it to take extensive memory space and processing time for intersecting the 

itemsets (Z. Zhang, Ji, & Tang, 2013). 

2.2.3.4 TreeProjection Algorithm 

TreeProjection is an algorithm that mines frequent itemsets through a few different 

searching techniques for constructing a lexicographic tree, such as depth-first 

(Agarwal, Aggarwal, & Prasad, 2000), breadth-first (Agarwal, Aggarwal, & Prasad, 

2001), or a mixture of the two. In this algorithm, the support of each frequent itemset 

in every transaction is counted and projected onto the lexicographic tree as a node. 

This greatly improves the performance of calculating the total transactions that 

contain a particular frequent itemset. An example of the lexicographic tree that 

represents the frequent items is shown in Figure 2.10. 

In the hierarchical structure of a lexicographic tree, only the subset of transactions 

that can probably hold the frequent itemsets will be searched by the algorithm. The 

search is performed by traversing the lexicographic tree with a top-down approach. 
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Apart from the lexicographic tree, a matrix structure is used to provide a more 

efficient method for calculating the frequent itemsets that have very low level of 

support count. In this way, cache implementations can be made available efficiently 

for the execution of the algorithm. However, the main problem faced by this 

algorithm is that different representations of the lexicographic tree present different 

limitations in terms of efficiency at memory consumption (C. C. Aggarwal, Bhuiyan, 

& Hasan, 2014). 

 

 

Figure 2.10: Lexicographic Tree (Agarwal et al., 2001) 

2.2.3.5 COFI Algorithm 

Co-Occurrence Frequent Itemset (COFI) (El-Hajj & Za¨ıane, 2003) is an algorithm 

that mines frequent itemsets using a pruning method that reduces the use of memory 

space significantly. Its intelligent pruning method constructs relatively small trees 

from the FP-Tree on the fly, and it is based on a special property that is derived from 

the top-down approach mining technique of the algorithm (Hemalatha, Krishnan, 
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Senthamarai, & Hemamilini, 2005). Some examples of the COFI-Trees are shown in 

Figure 2.11. 

 

 

Figure 2.11: COFI-Trees (El-Hajj & Za¨ıane, 2003) 

 

Comparing to the FP-Growth algorithm, the COFI algorithm is better mainly in 

terms of memory consumption and occasionally in terms of execution run time. This 
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is because of the following two implementations: (1) A non-recursive method is used 

during the process of mining to traverse through the COFI-Trees in order to generate 

the entire set of frequent patterns. (2) The pruning method implemented in the 

algorithm has removed all the non-frequent patterns, so only frequent patterns are left 

in the COFI-Trees. However, if the threshold value of the minimum support is low, 

the performance of the algorithm degrades in a sparse database (Gupta & Garg, 2011). 

2.2.3.6 TM Algorithm 

Transaction Mapping (TM) (Song & Rajasekaran, 2006) is an algorithm that mines 

frequent itemsets using the vertical data representation like the EClaT algorithm. In 

this algorithm, the transaction IDs of every itemset are transformed and mapped into a 

list of transaction intervals at another location. Then, intersection will be performed 

between the transaction intervals in a depth-first search order throughout the 

lexicographic tree to count the itemsets. An example of the transaction mapping 

technique is shown in Figure 2.12. 

When the value of minimum support is high, the transaction mapping technique is 

able to compress the transaction IDs into the continuous transaction intervals 

significantly. As the itemsets are compressed into a list of transaction intervals, the 

intersection time is greatly saved. The TM algorithm is proven to be able to gain 

better performance over the FP-Growth and dEClaT algorithms on data sets that 

contain short frequent patterns. Apart from this, it is suitable to be used for mining the 

specifications of software from the traces of program execution (Jeevarathinam & 

Thanamani, 2009). Even though it is so, the TM algorithm is still slower in terms of 

processing speed compared to the FP-Growth* algorithm. 
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Figure 2.12: Example of Transaction Mapping (Song & Rajasekaran, 2006) 

2.2.3.7 P-Mine Algorithm 

P-Mine (Baralis, Cerquitelli, Chiusano, & Grand, 2013) is an algorithm proposed 

by Elena Baralis to mine frequent itemsets using a parallel disk-based approach on a 

multi-core processor. It decreases the time required to produce a dense version of the 

data set on disk using the VLDBMine data structure. A Hybrid-Tree (HY-Tree) is 

used in the VLDBMine data structure to store the entire data set and other information 

required to support the data retrieval process. To enhance the efficiency for disk 

access, a pre-fetching technique has been implemented to load multiple projections of 

the data set into different processor cores for mining the frequent itemsets. Finally, the 

results are gathered from each processor core and merged in order to construct the 

entire frequent itemsets. The architecture of the P-Mine algorithm is shown in Figure 

2.13. 
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Figure 2.13: Architecture of the P-Mine Algorithm (Baralis et al., 2013) 

 

As the data set is represented in the VLDBMine data structure, the performance 

and scalability of Frequent Itemset Mining (FIM) are further improved. This is 

because the HY-Tree of the VLDBMine data structure enables the data to be 

selectively accessed in order to effectively support the data-intensive loading process 

with a minimized cost. Apart from this, when the process of FIM is executed across 

different processor cores in parallel at the same time, the performance is optimized 

locally on every node. However, the algorithm can only be optimized to the maximum 

level when multiple cores are available in the processor. 
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2.2.3.8 LP-Growth Algorithm 

Linear Prefix Growth (LP-Growth) (Pyun, Yun, & Ryu, 2014) is an algorithm 

proposed by Gwangbum Pyun to mine frequent itemsets using arrays in a linear 

structure. It minimizes the information required in the data mining process by 

constructing a Linear Prefix Tree (LP-Tree) that is composed of arrays instead of 

pointers. With this implementation, the efficiency in memory usage is increased since 

the information of connection between different nodes is reduced significantly. 

A structure of the Linear Prefix Nodes (LPNs) in the LP-Tree is shown in Figure 

2.14. One LP-Tree is composed of multiple LPNs in a linear structure. Every set of 

frequent items is stored into different nodes that are composed of multiple arrays. In 

order to link all the arrays together, every array consists of a header in its first location 

to indicate its parent array. If the LPN is the first node to be inserted in the LP-Tree, 

the header of that LPN indicates the root of the LP-Tree. 

 

 

Figure 2.14: Structure of Linear Prefix Nodes (LPNs) (Pyun et al., 2014) 
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The LP-Growth algorithm is able to generate the LP-Tree in a faster manner 

compared to the FP-Growth algorithm. This is because a series of array operations are 

used in the LP-Growth algorithm to create multiple nodes at the same time, while the 

FP-Growth algorithm creates the nodes one at a time. As the nodes are saved in the 

form of arrays, any parent or child nodes are accessible without using any pointers 

while searching through the LP-Tree. In addition, it is also possible to traverse 

through the LP-Tree in a faster manner because the corresponding memory locations 

can be directly accessed when all the nodes are stored using the array structure. Apart 

from this, when pointers are not utilized to link up all the nodes, the memory usage 

for every node becomes comparatively less as well. However, the LP-Growth 

algorithm has a limitation in the insertion process of nodes because the items from a 

transaction may be saved in various LPNs (Jamsheela & G., 2015). Therefore, to 

insert a transaction into the LP-Tree successfully, the memory needs to be freed 

continuously. 

2.2.3.9 Can-Mining Algorithm 

Can-Mining (Hoseini, Shahraki, & Neysiani, 2015) is an algorithm that mines 

frequent itemsets from a Canonical-Order Tree (Can-Tree) in an incremental manner. 

Similar to the FP-Growth algorithm, a header table that contains information of all the 

database items is used in the algorithm. The header table consists of the frequency of 

each item and its pointers to the first and last nodes that contain the item in the Can-

Tree. In order to extract frequent patterns from the Can-Tree, a list of frequent items 

is required for the algorithm to perform the mining operation. The Can-Mining 

algorithm is able to reduce the time of mining in nested Can-Trees because only 

frequent items are appended into the trees in a predefined order. When the minimum 

support has a high threshold value, the Can-Mining algorithm is able to outperform 

the FP-Growth algorithm. However, if the threshold value of the minimum support is 

much lower, the FP-Growth algorithm is more efficient. The architecture of the Can-

Mining algorithm is shown in Figure 2.15. 
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Figure 2.15: Architecture of the Can-Mining Algorithm (Hoseini et al., 2015) 

2.2.3.10 EXTRACT Algorithm 

EXTRACT (Feddaoui, Felhi, & Akaichi, 2016) is an algorithm proposed by Ilhem 

Feddaoui to mine frequent itemsets using the mathematical concept of Galois lattice. 

The architecture of the EXTRACT algorithm is shown in Figure 2.16. It is partitioned 

into four functions for calculating the support count, combining the itemsets, 

eliminating the itemsets that are repeated, and extracting association rules from the 

frequent itemsets. 

First, EXTRACT calculates the support count of each frequent 1-itemset that 

satisfied the minimum support determined by the user. All frequent 1-itemset that did 

not satisfy the minimum support determined by the user will be removed from the 

calculation. Then, EXTRACT will combine the itemsets to discover all the possible 

combinations of frequent itemsets. After identifying all the frequent itemsets, the 

combinations of frequent itemsets that are redundant will be eliminated. Once all the 
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unique frequent itemsets are mined, the association rules that satisfied the minimum 

confidence determined by the user will be generated. All association rules that did not 

satisfy the minimum confidence determined by the user will be removed from the rule 

discovery process. 

EXTRACT outperforms the Apriori algorithm for mining more than 300 objects 

and 10 attributes with an execution time that does not exceed 1200 milliseconds. 

However, since the frequent itemsets that have been mined are not stored in any disk 

or database, the algorithm is required to be executed again in order to mine the new 

set of frequent itemsets if there is a change in the data set. 

 

 

Figure 2.16: Architecture of the EXTRACT Algorithm (Feddaoui et al., 2016) 
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2.2.3.11 HYBRID Algorithm 

HYBRID (Zulkurnain & Shah, 2017) is an algorithm that combines the Improved 

Apriori (Wei, Yang, & Liu, 2009) and FP-Growth (J. Han et al., 2000) algorithms for 

mining the frequent itemsets of data. The unifying process has concatenated the 

significant features of the two algorithms in order to produce a faster execution time 

and lesser memory consumption in mining the frequent itemsets of data. 

The first portion of the algorithm utilizes the Improved Apriori property to 

identify all the maximal frequent itemsets that have a support value that is equivalent 

to or more than the minimum support specified by the users. In this way, the data set 

is pruned to become smaller and easier for traversing. The data set which has been 

pruned serves as an input to the second portion of the algorithm for discovering all the 

frequent-1 itemsets and removing all the infrequent-1 itemsets. Finally, the 

transactions which have been pruned are used to construct an FP-Tree using the FP-

Growth algorithm. 

HYBRID produced better results in execution time and memory consumption 

compared to both the Improved Apriori and FP-Growth algorithms. This is because 

the candidate itemsets are not required to be generated and the FP-Tree is constructed 

for a pruned data set only. Therefore, the FP-Tree can be easily fit into the main 

memory for mining the frequent itemsets of data. However, the execution time of 

HYBRID is almost the same as FP-Growth for discovering the frequent itemsets with 

a higher support count. 

2.2.3.12 FPNR-Growth Algorithm 

FPNR-Growth (Jiang & He, 2017) is an algorithm that is evolved from the FP-

Growth (J. Han et al., 2000) algorithm for mining the frequent itemsets of data. In this 

algorithm, a structure like the FP-Tree is used to store the frequent patterns, which is 

called the FPNR-Tree. The structure of an FPNR-Tree is shown in Figure 2.17. The 

information about how a node is associated with another node is stored into an array, 

which is called the FPNR-Array. 
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First, FPNR-Growth compress the data set into the FPNR-Tree in a slightly 

different manner compared to FP-Growth. Every node in the FPNR-Tree has a pointer 

that connects itself to the parent node, and every leaf node has a pointer that connects 

itself to the next leaf node. Then, the FPNR-Array is constructed to store the 

information about how a node is associated with another node in the FPNR-Tree. This 

is accomplished by having every element in the FPNR-Array to hold the index of its 

parent node in the array. Next, a HashTable is used to keep track of the location 

information of every element in the FPNR-Array. Finally, the frequent itemsets are 

mined from the FPNR-Tree and FPNR-Array with the referencing information of the 

HashTable. 

 

 

Figure 2.17: Structure of the FPNR-Tree (Jiang & He, 2017) 

 

FPNR-Growth outperforms FP-Growth in terms of execution time and memory 

consumption because a non-recursive method is used in mining the frequent itemsets 

of data. However, the implementation of FPNR-Growth is more complicated because 

different data structure like tree, array and table are used at the same time for the 

mining of the frequent itemsets to be carried out. 
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2.2.3.13 SSFIM Algorithm 

SSFIM (Djenouri, Djenouri, Lin, & Belhadi, 2018) is an algorithm that 

implements a single scan approach for Frequent Itemset Mining (SSFIM). Alternative 

approaches like heuristic (EA-SSFIM) and parallel implementation on the Hadoop 

clusters (MR-SSFIM) are also implemented for the SSFIM algorithm. The 

architecture of these alternative approaches for SSFIM is shown in Figure 2.18. 

 

 

Figure 2.18: Alternative Approaches for SSFIM (Djenouri et al., 2018) 

 

The transactions in a data set are processed only once by the SSFIM algorithm. 

After the data set is scanned once by SSFIM, all the itemsets of every transaction and 

their support counts are generated into a hash table by the algorithm. If an itemset has 

already been generated at the processing of a previous transaction, its support count is 

just incremented by one. Otherwise, the itemset will be inserted into the hash table 

and its support count will be set to one. This process is repeated until every 

transaction in the data set is processed. 

In this way, SSFIM discovers all the frequent itemsets with just one scan of the 

entire data set. SSFIM is able to outperform other algorithms because it does not need 

to scan the data set multiple times in order to generate all the frequent itemsets. 
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However, a heavy computation is still required to be performed by SSFIM since the 

candidate itemsets are still necessary to be generated for every transaction in the 

whole data set. 

2.2.3.14 PFIM Algorithm 

Precomputation-Based Frequent Itemset Mining (PFIM) (X. Han et al., 2019) is 

an algorithm that quickly computes the frequent itemsets on massive amount of data. 

PFIM partitions the transaction table into two main parts, having a large table that 

stores the historical data, and a relatively small table that stores the newly generated 

data. The quasi-frequent itemsets on the large table that contains the historical data are 

pre-constructed first by the algorithm. In this manner, PFIM managed to generate the 

frequent itemsets on massive amount of data efficiently. In order to maintain such 

efficiency, an incremental update technique is designed to merge the old table and the 

new table to re-construct the quasi-frequent itemsets. 

A number of experiments conducted on some synthetic and real-life data sets have 

indicated that PFIM has a significant advantage and able to run two orders of 

magnitude faster compared to other algorithms. This is because the frequent itemsets 

are only required to be generated from the new table since the quasi-frequent itemsets 

have already been pre-computed in the old table. However, if there are changes in the 

historical data due to some updates or corrections, the PFIM is not able to generate the 

frequent itemsets in an accurate manner. 

2.2.3.15 Comparison of Frequent Pattern Mining Techniques 

In general, the algorithms for Frequent Pattern Mining (FPM) can be classified 

into three main categories (C. C. Aggarwal et al., 2014), namely Join-Based, Tree-

Based, and Pattern Growth as shown in Figure 2.19. First, the Join-Based algorithms 

apply a bottom-up approach to identify the frequent items in a data set and expand 

them into larger itemsets as long as those itemsets appear more than a minimum 

threshold value defined by the user in the database. Then, the Tree-Based algorithms 
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use set-enumeration concepts to solve the problem of frequent itemset generation by 

constructing a lexicographic tree that enables the items to be mined through a variety 

of ways like the breadth-first or depth-first order. Finally, the Pattern Growth 

algorithms implement a divide-and-conquer method to partition and project databases 

depending on the presently identified frequent patterns and expand them into longer 

ones in the projected databases. 

The advantages and disadvantages of various significant FPM algorithms are 

summarized in Table 2.6. The initial three most popular algorithms in FPM are 

Apriori, FP-Growth and EClaT. Each of these algorithms has its strengths in mining 

the frequent itemsets of data. For example, Apriori applies an iterative level-wise 

search technique to identify (k+1)-itemsets from k-itemsets, and FP-Growth preserves 

the information of how all itemsets are associated by utilizing an FP-Tree that 

compresses the amount of data to be searched. Then, EClaT does not need to scan 

through the entire database in order to determine the support count of (k+1)-itemsets. 

However, each of these algorithms has its limitations in mining the frequent itemsets 

of data too. For instance, Apriori needs to generate a lot of candidate sets if the k-

itemsets are large in numbers, and needs to scan the database repeatedly for 

identifying the support count of the itemsets. For FP-Growth, building the FP-Tree is 

time consuming if the data set is very large. Then, EClaT requires more memory 

space and processing time for intersecting the long TID sets. 

From these three most common algorithms in FPM, many algorithms have been 

proposed or improved from them. Some of the significant ones are TreeProjection, 

Co-Occurrence Frequent Itemset (COFI), Transaction Mapping (TM), P-Mine, Linear 

Prefix Growth (LP-Growth), Can-Mining and EXTRACT. Similarly, each of these 

algorithms has its strengths in mining the frequent itemsets of data. Among these 

FPM algorithms, most of them are categorized as the Pattern Growth algorithms, 

which include COFI, P-Mine, LP-Growth, Can-Mining and EXTRACT. COFI utilizes 

a pruning technique to decrease the use of memory space significantly, and P-Mine 

improves its performance and scalability by mining the frequent itemsets in parallel 

using multiple processor cores. LP-Growth produces the LP-Tree in a faster way 

because a series of array operations are implemented to construct multiple nodes 
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together, and Can-Mining is able to mine the frequent itemsets in a very fast manner 

when the minimum support has a high threshold value. Then, EXTRACT is able to 

mine more than 300 objects and 10 attributes with a run time that does not exceed 

1200 milliseconds. 

Nevertheless, these Pattern Growth algorithms have their limitations in mining the 

frequent itemsets of data also. The mining performance of COFI is reduced in a sparse 

database when the threshold value of the minimum support is low, while the mining 

performance of P-Mine can only be optimized to the highest level when multiple 

cores are available in the processor. LP-Growth needs to free the memory 

continuously because the items from the same transaction can be stored in different 

Linear Prefix Nodes (LPNs), and the mining run time of Can-Mining will become 

longer if the threshold value of the minimum support becomes very low. Finally, 

EXTRACT needs to be executed again in order to mine the new set of frequent 

itemsets if there is a change in the data set. 

Amongst the existing Pattern Growth algorithms, most of them are evolved from 

the FP-Growth algorithm. This is because FP-Growth generates all the frequent 

patterns using only two scans for the data set, representing the entire data set with a 

compressed tree structure, and decreases the execution time by removing the need to 

generate the candidate itemsets (Mittal et al., 2015). Although the existing FPM 

algorithms are able to mine the frequent patterns in a data set by identifying the 

association between different data items, a lengthy processing run time and a large 

consumption of memory space are still the two major problems faced by FPM 

especially when the amount of data is big in a data set. 

In a situation where the threshold of the minimum support is set to a lower value, 

the patterns of items that exist less frequently in the data set are also required to be 

included into the FPM process. Consequently, more patterns need to be mined from 

the data set and this causes the mining run time to be drastically increased. In order to 

reduce the run time of mining, many existing algorithms prune the data to be mined 

by ignoring the patterns that exist less frequently in the data set. However, this is not a 

suitable technique to implement FPM because patterns that exist less frequently in the 
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data set do not mean that they are not important. Sometimes problems can happen as a 

result of the pattern that exist less frequently in the data set. 

Apart from this, most of the existing algorithms mine the frequent patterns into 

the Random Access Memory (RAM). As the frequent patterns are mined into the 

RAM, a problem of power failure or system down will cause all the frequent patterns 

that have been mined previously to be lost. This is because whatever that is stored into 

the RAM will not be retained after a power failure or system down situation. As a 

result, all the frequent patterns that have been mined previously need to be mined 

again whenever there is a problem of power failure or system down. 

Therefore, a more robust and efficient FPM algorithm needs to be developed for 

identifying the important frequent patterns in a big data set. The algorithm should be 

able to mine the frequent patterns from a data set in a shorter run time using less 

memory consumption, even though the threshold of minimum support is set to a lower 

value. In addition, the algorithm should be able to retrieve the frequent patterns even 

after a power failure or system down situation without the need to mine the entire data 

set again. 
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Figure 2.19: Classification of Frequent Pattern Mining Algorithms 
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Table 2.6: Comparison of Frequent Pattern Mining Algorithms 

FPM Algorithm Advantages Disadvantages 

Apriori 

(Agrawal & Srikant, 1994) 

Uses an iterative level-wise search technique to 

discover (k+1)-itemsets from k-itemsets. 

Has to produce a lot of candidate sets if k-itemsets are 

more in numbers. 

Has to scan the database repeatedly to determine the 

support count of the itemsets. 

FP-Growth 

(J. Han & Pei, 2000) 

Preserves the association information of all itemsets. 

Shrinks the amount of data to be searched. 

Constructing the FP-Tree is time consuming if the data 

set is very large. 

EClaT 

(Zaki, 2000) 

Scanning the database to find the support count of 

(k+1)-itemsets is not required. 

More memory space and processing time are required 

for intersecting long TID sets. 

TreeProjection 

(Agarwal et al., 2001) 

Identifies the frequent itemsets in a fast manner 

because only the subset of transactions that can 

probably hold the frequent itemsets is searched by the 

algorithm. 

Different representations of the lexicographic tree 

present different limitations in terms of efficiency for 

memory consumption. 

COFI 

(El-Hajj & Za¨ıane, 2003) 

Uses a pruning method to reduce the use of memory 

space significantly by constructing smaller COFI-

Trees while mining for the frequent itemsets. 

The performance of the algorithm degrades in a sparse 

database if the threshold value of the minimum support 

is low. 
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Table 2.6 continued: Comparison of Frequent Pattern Mining Algorithms 

FPM Algorithm Advantages Disadvantages 

TM 

(Song & Rajasekaran, 2006) 

Compresses the itemsets into a list of transaction 

intervals in order to greatly save the intersection time 

for mining the frequent itemsets. 

Still slower in terms of processing speed compared to 

the FP-Growth* algorithm. 

P-Mine 

(Baralis et al., 2013) 

Optimizes performance and scalability by executing 

the mining of frequent itemsets in parallel with 

multiple processor cores. 

The algorithm can only be optimized to the maximum 

level when multiple cores are available in the processor. 

LP-Growth 

(Pyun et al., 2014) 

Generates the LP-Tree in a faster manner as a series of 

array operations are used to create multiple nodes 

together. 

Memory needs to be freed continuously as the items 

from a transaction may be saved in various LPNs. 

Can-Mining 

(Hoseini et al., 2015) 

Outperforms the FP-Growth algorithm when the 

minimum support has a high threshold value. 

Mining time is longer if the threshold value of the 

minimum support is much lower. 

EXTRACT 

(Feddaoui et al., 2016) 

Mines more than 300 objects and 10 attributes with an 

execution time that does not exceed 1200 

milliseconds. 

The algorithm needs to be executed again in order to 

mine the new set of frequent itemsets if there is a 

change in the data set. 

 



 

55 

Table 2.6 continued: Comparison of Frequent Pattern Mining Algorithms 

FPM Algorithm Advantages Disadvantages 

HYBRID 

(Zulkurnain & Shah, 2017) 

The candidate itemsets are not required to be 

generated and the FP-Tree is constructed for a pruned 

data set only. 

The execution time of HYBRID is almost the same as 

FP-Growth for discovering the frequent itemsets with a 

higher support count. 

FPNR-Growth 

(Jiang & He, 2017) 

Outperforms FP-Growth in terms of execution time 

and memory consumption because a non-recursive 

method is used in mining the frequent itemsets of data. 

Its implementation is more complicated because 

different data structure like tree, array and table are 

used at the same time for the mining of the frequent 

itemsets to be carried out. 

SSFIM 

(Djenouri et al., 2018) 

Outperforms other algorithms because it does not need 

to scan the data set multiple times in order to generate 

all the frequent itemsets. 

A heavy computation is still required to be performed 

by SSFIM since the candidate itemsets are still 

necessary to be generated for every transaction in the 

whole data set. 

PFIM 

(X. Han et al., 2019) 

The frequent itemsets are only required to be 

generated from the new table since the quasi-frequent 

itemsets have already been pre-computed in the old 

table. 

If there are changes in the historical data due to some 

updates or corrections, the PFIM is not able to generate 

the frequent itemsets in an accurate manner. 
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2.3 Data Extraction 

It is a normal situation in any company for data to be distributed at various parts 

of the organization especially the corporation is composed of multiple branches in 

different locations. In order to mine the data for identifying hidden trends that may 

provide insights to business analysis and decision making, it is essential to extract, 

transform and load (ETL) all the necessary data from a variety of sources into a data 

warehouse. 

2.3.1 Data Extraction Techniques 

A number of ETL techniques are analyzed in this research for constructing a 

useful data mining algorithm for Frequent Itemset Mining (FIM). This section 

describes how the fundamental and significant techniques in ETL work and compares 

their advantages and disadvantages respectively. 

2.3.1.1 Incremental ETL 

Incremental ETL (Jörg & Deßloch, 2008) is a technique for extracting, 

transforming, and loading only the changed data from heterogeneous sources and 

propagating it into the data warehouse. This technique is designed to be so due to the 

increased data volumes and shortened data loading intervals of the organization. It is 

surely an exhaustive way to extract all the data from different sources and reconstruct 

the entire data warehouse in each ETL cycle. Thus, implementing incremental update 

to any kind of corporate data is definitely more efficient than applying full update 

because the volume of updated data is usually smaller compared to the entire data set. 

The approaches used in this technique to gather the updates from the data sources 

and refresh the data warehouse are the Change Data Capture (CDC) and Change Data 

Application (CDA) methods. A matrix that represents the status of change data that 
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need to be reflected into the data warehouse with the following indications is shown 

in Figure 2.20: 

•        represents records that have been inserted, 

•        represents records that have been deleted, 

•        represents the current state of records that have been updated, 

•         represents the initial state of records that have been updated. 

 

Figure 2.20: Matrix Representation of an Incremental Join (Jörg & Deßloch, 2008) 

2.3.1.2 Real-Time ETL 

Real-Time ETL (Santos & Bernardino, 2008) is a technique that enables users to 

make use of the data available in a data warehouse for business analysis and decision 

making in a real time mode. The ETL tasks need to be implemented in real time 

because most of the enterprises require the ability of decision support for their 

business in a real time manner. As the size of a data warehouse increases, it becomes 

very difficult to update the data warehouse efficiently in real-time. The 

implementation of ETL for the transactional data in real-time will overload the server 

due to its update frequency and data volume. As a result, the immense and complex 

+ 

-  
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operation on the data warehouse will significantly degrade the performance of Online 

Analytical Processing (OLAP). 

In order to enable new information to be disseminated across an organization in 

real-time while maintaining the capability of continuous data integration, Real-Time 

ETL creates an exact structural replica of all the tables of the data warehouse with a 

unique sequential identifier for the latest data to be stored as shown in Figure 2.21. 

The temporary replicated tables are to be constructed without any data or settings like 

index, primary key, foreign key, or constraints of any kind so that the insertion of data 

can be performed much faster compared to the original big size tables. Moreover, this 

enables users who wish to query only the most recent information to only query the 

temporary replicated tables. The records in the temporary tables will be updated to the 

data warehouse and the temporary tables will be recreated when the OLAP 

performance becomes not that acceptable. 

In a nutshell, the main contributions of Real-Time ETL are as follows: 

1. Ensures the data to be up to date by integrating the most recent transactional data 

into the data warehouse rapidly and efficiently; 

2. Optimizes the performance of OLAP while performing continuous data 

integration at the same time; 

3. Maximizes the availability of the data warehouse by reducing its data synchronization 

time, in which the access from OLAP application is not in use. 
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Figure 2.21: Sample Sales Data Warehouse Schema (Santos & Bernardino, 2008) 

2.3.1.3 Parallel ETL 

Parallel ETL (Thomsen & Pedersen, 2011) is a technique for extracting, 

transforming, and loading data by parallelizing the typical tasks that need to be 

performed in an ETL operation. The ETL tasks need to be implemented in parallel 

because it is time consuming to construct and to execute an ETL program. 

Parallelization of tasks is not an impossible implementation with the use of multi-core 

Central Processing Units (CPUs) in a computer as they are designed with such 

capability to enable true parallelism. However, not many programmers have exploited 

the power of parallel processing in multi-core CPUs for the implementation of ETL 

operations. 

Parallel ETL pushes the ETL operations into separate processes and execute them 

in parallel as shown in Figure 2.22. It enables a single database connection to be used 

in parallel by sharing the ConnectionWrapper object to multiple processes using the 

SharedConnectionWrapperClient object. This allows several tasks to be executed 

together but only one operation is performed on the database at the same time. Hence, 
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by utilizing slightly more CPU time, the overall total time required to execute an ETL 

program is decreased significantly. 

 

 

Figure 2.22: A Flow with Three Functions in Three Processes 

(Thomsen & Pedersen, 2011) 

2.3.1.4 Script Automated ETL 

Script Automated ETL (Radhakrishna, SravanKiran, & Ravikiran, 2012) is a 

technique that utilizes the scripting method to automatically extract, transform, and 

load data from heterogeneous sources into a data warehouse. This technique is 

designed to be so due to the heavy manual tasks involved for executing the ETL 

process throughout the entire organization. It is definitely an exhaustive job to 

manually extract all the data from different sources, transform it according to some 

requirements and load it into the data warehouse from time to time. Thus, automating 

the ETL process with the relevant scripting technology is surely a more efficient 

solution for consolidating all the data of an enterprise. 
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The architecture of the Script Automated ETL framework is shown in Figure 2.23. 

In this technique, three different types of maps are generated for data extraction, 

transformation and loading. Apart from this, information about errors and other 

statistics are logged along the execution of the ETL process in order to ensure a 

proper debugging to be conducted when any problem is encountered in the midst of 

ETL execution. By automating the ETL process, the tasks of data processing and error 

handling are simplified, human effort involvement is reduced, execution is made 

faster, and performance is also improved for the entire system. 

 

 

Figure 2.23: Architecture of Script Automated ETL (Radhakrishna et al., 2012) 

2.3.1.5 Data Quality ETL 

Data Quality ETL (Endler, 2012) is a technique for extracting, transforming, and 

loading data into a data warehouse using the data quality approach so that the data 

collected will be more useful for business analysis and decision making. It is 

important to use a data quality approach to implement the ETL process because the 

existence of invalid data will definitely affect the results of analysis for data (Cao, 
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Diao, Jiang, & Du, 2010). The data quality approach implemented in this technique is 

the Total Data Quality Management (TDQM) practice that delivers high quality 

information to users by treating data much like the products found in a manufacturing 

environment of any industry (Fisher, Lauria, Chengalur-Smith, & Wang, 2012). 

The architecture of the Data Quality ETL framework implemented in the 

environment of a medical supply center is shown in Figure 2.24. The main features 

available in this technique includes metrics measurement, rules verification, quality 

requirements definition, cost estimation for resolving quality problems, and alarm 

warning when data of insufficient quality is identified. To accomplish a more robust 

data quality approach for implementing the ETL process, the system enables users to 

define and verify the appropriate characteristics for data quality monitoring apart from 

accessing the preset data quality features. 

 

 

Figure 2.24: Architecture of Data Quality ETL (Endler, 2012) 
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2.3.1.6 Scalable and High Performance ETL 

Scalable and High Performance ETL (SETL) (K. Sun & Lan, 2012) is a technique 

that utilizes the subroutine attribute and data partition of the PERL programming 

language to develop the ETL process for extracting, transforming and loading large 

scale data from heterogeneous data sources into a data warehouse. It is a technique 

that is developed to execute the ETL process in a distributed environment easily and 

efficiently with high scalability as the removal or addition of an ETL job will not 

affect the current active ETL jobs due to the flexible plug-in design. As a result, there 

is no hindrance between different tasks that are involved in the entire ETL process. 

The architecture of the SETL framework is shown in Figure 2.25. The SETL 

system is primarily formed by three components, namely the job collector, job 

dispatcher and ETL pipeline. The job collector is responsible to gather the ETL jobs 

specified by the users, analyze its syntax, and verify its semantics. Then, the job 

dispatcher is responsible to create the ETL pipelines and dispatch each ETL job to a 

pipeline according to the configuration specified by the users. After each ETL job is 

accomplished successfully, the data is loaded into the appropriate target database 

accordingly. 

 



 

64 

 

Figure 2.25: Architecture of Scalable and High Performance ETL 

(K. Sun & Lan, 2012) 

2.3.1.7 Semantic ETL 

Semantic ETL (Nath, Hose, & Pedersen, 2015) is a technique for extracting, 

transforming, and loading data into a data warehouse semantically so that the data is 

integrated in the right order. It is important to apply the semantic technology into the 

ETL process because it is often desirable for enterprises to include external data from 

different sources into their data warehouse in order to generate the required business 

knowledge. 

The architecture of the Semantic ETL framework is shown in Figure 2.26. First, it 

integrates and processes data from different sources semantically with an ontology 

defined by the users. Then, the data will be transformed into triples of the Resource 

Description Framework (RDF) according to the ontology, and the created RDF 

dataset will be loaded into a triple store to be queried by the internal users. Last but 

not least, the created RDF dataset can also be connected to the external users for 

information sharing purpose. 



 

65 

 

Figure 2.26: Architecture of Semantic ETL (Nath et al., 2015) 

2.3.1.8 Comparison of Data Extraction Techniques 

The advantages and disadvantages of various significant data extraction 

techniques are summarized in Table 2.7. Each of these methods for data extraction, 

transformation and loading consists of different capabilities that are useful for 

consolidating data to be in the appropriate forms so that it can be easily processed by 

the data mining algorithm. 
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Table 2.7: Comparison of Data Extraction Techniques 

ETL Technique Advantages Disadvantages 

Incremental ETL 

(Jörg & Deßloch, 2008) 

Being more efficient than applying full update 

because the volume of updated data is usually 

smaller. 

Lacks of the functionality for implementing real-time 

ETL in order to provide real-time decision support. 

Real-Time ETL 

(Santos & Bernardino, 2008) 

Ensures the data to be up to date by integrating the 

most recent transactional data into the data warehouse 

rapidly and efficiently. 

Lacks of the capability to implement data quality even 

though real-time data can be retrieved for analysis 

from the data warehouse. 

Parallel ETL 

(Thomsen & Pedersen, 2011) 

Decreases the overall total time required to execute an 

ETL program by pushing the ETL operations into 

separate processes and execute them in parallel. 

Lacks of the ability to scale the ETL process in a 

distributed environment although the ETL jobs can be 

separated into different processes for execution. 

Script Automated 

ETL 

(Radhakrishna et al., 2012) 

Being a more efficient solution for consolidating all 

the data of an enterprise when the ETL process is 

automated using the relevant scripting technology. 

Lacks of the functionality for implementing the ETL 

process in an incremental manner so that the volume 

of data to be updated each time is reduced. 
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Table 2.7 continued: Comparison of Data Extraction Techniques 

ETL Technique Advantages Disadvantages 

Data Quality 

ETL 

(Endler, 2012) 

Ensures the data collected to be more useful for business 

analysis using a data quality approach. 

Lacks of the capability to implement real-time ETL even 

though quality data can be collected for analysis. 

Scalable and High 

Performance 

ETL 

(K. Sun & Lan, 

2012) 

Executes the ETL process in a distributed environment 

easily and efficiently with high scalability using a flexible 

plug-in design to manage the ETL jobs. 

Lacks of the ability to implement data quality although the 

ETL process can be scaled in a distributed environment 

easily and efficiently. 

Semantic 

ETL 

(Nath et al., 2015) 

Integrates data in the right order when data is extracted, 

transformed, and loaded into the data warehouse 

semantically. 

Lacks of the functionality to implement parallel execution 

for the ETL jobs in different processes while applying the 

semantic technology in the ETL process. 
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2.4 Chapter Summary 

Several techniques for data mining and data extraction have been reviewed in this 

chapter. The data mining techniques being discussed are Classification, Clustering, 

Outlier Detection and Frequent Pattern Mining (FPM). FPM has been chosen as the 

main topic of study in this research because it is the fundamental and significant step 

that is required to be further enhanced in many areas of data mining. The significant 

and recent algorithms in FPM that have been reviewed are Apriori, FP-Growth, 

EClaT, TreeProjection, COFI, TM, P-Mine, LP-Growth, Can-Mining, EXTRACT, 

HYBRID, FPNR-Growth, SSFIM, and PFIM. Since extracting, transforming and 

loading (ETL) data from various sources are necessary before implementing data 

mining, different types of ETL techniques are analyzed in this chapter. The significant 

and recent ETL techniques that have been reviewed are Incremental ETL, Real-Time 

ETL, Parallel ETL, Script Automated ETL, Data Quality ETL, Scalable and High 

Performance ETL, and Semantic ETL. When the amount of data is big in a data set, 

the two major problems faced by the existing FPM algorithms are a lengthy 

processing time and a large consumption of memory space. Therefore, a more robust 

FPM algorithm needs to be designed and implemented. 

 

  



 

CHAPTER 3 

RESEARCH METHODOLOGY 

This chapter discusses about the methodology that has been selected to perform 

the research of this study. First, an overview of research and the various types of 

methodologies are presented in Section 3.1 for a suitable methodology to be selected 

to conduct this research. Then, the selected research method for this study is described 

in Section 3.2. Finally, the entire flow of research, development and evaluation 

procedures of the selected research method are discussed in Section 3.3. 

3.1 Overview of Research and Types of Methodologies 

Adopting an appropriate methodology is vital for producing valuable results in 

any research. Even though the ultimate aim of research is the same for all fields of 

study in science and humanities, every field involves a specific application of the 

methods which is useful for the research (Hassani, 2017). In general, the important 

steps of research methodology in the field of computer science and engineering 

includes the following steps as shown in Figure 3.1 (Prajapati, Dabhi, & Bhensdadia, 

2015): 

(a) Research Problem Formulation, 

(b) Literature Review, 

(c) Research in Action, and 

(d) Research Communication. 
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Figure 3.1: Generalized Process of Research (Prajapati et al., 2015) 

 

Research Problem Formulation is the most important step in research because it 

identifies the problem to be resolved throughout the research. The problem that has 

been identified should be a valid one which has a great impact on the field that is 

being studied (Ellis & Levy, 2008). It can be a new problem that has not been 

published in the literature or an existing problem that has been indicated in the future 

work section of the relevant research papers. The step of Research Problem 

Formulation is shown in Figure 3.2 where a particular subject of interest is scoped 

down to a specific topic for a significant problem to be identified with the appropriate 

research questions. The research problem can be further refined after conducting the 

literature review in an exhaustive manner. 
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Figure 3.2: Research Problem Formulation (Prajapati et al., 2015) 

 

The step of literature review conducts a thorough study and performs a critical 

analysis on the relevant literature of the research topic. This is because the outcome of 

a research can only be considered as valuable if it is a novel one. Therefore, all 

researchers are required to ensure that the researches performed by them are 

producing new contributions to the body of knowledge. In order to achieve this, the 

researchers have to conduct a thorough study on the existing knowledge at the time of 

research. The entire process of literature review is shown in Figure 3.3. After 

formulating the problem, the researcher should collect the relevant sources from the 

digital libraries or printed materials like journal papers, conference papers, books, 

technical reports, and websites for research. Then, the sources collected needs to be 

evaluated so that the materials for studying can be reduced and much attention can be 

given to those that are more important. 

When the sources are sorted out according to their relevance to the research topic, 

a thorough study and critical analysis is to be conducted by the researcher on the 

selected ones. Then, as the selected literatures are interpreted and synthesized by the 

researcher, the appropriate results and conclusions can be drawn to highlight the 

major issues that have been addressed and approaches of solution that have been 
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implemented by other researchers. Finally, the literature review should be presented 

in a summarized manner to show the strengths and weaknesses of different related 

work in order to identify the existing gaps that need to be filled. 

 

 

Figure 3.3: Process of Literature Review (Prajapati et al., 2015) 

 

Research in Action is the step where the research is designed, evaluated and 

validated. As the research is designed, it comprises the steps of proposing a new 

solution and putting it into implementation. After the proposed solution is 

accomplished, it needs to be evaluated by comparing it with other recent works using 

the appropriate metrics or measures. At this stage, the researcher should identify the 

situations in which the proposed solution will produce the best or negative results, and 

try to analyze the reasons for such scenarios to happen. Finally, the researcher needs 

to validate the research by providing enough proofs to persuade other researchers that 

the research conducted is valid. The validation can be done in an experimental manner 

where the results of the research are compared with the best results that are available 

in the existing literature, or in a theoretical manner where mathematical and analytical 

evidences are provided for justification. 

Last but not least, the final step of the general process of research is Research 

Communication. It is a stage where the researcher should write some research papers 
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about the work that has been done and submit it to some conferences or journals for 

publications if the research is being accepted. Publishing the work of research to a 

conference or journal with a good reputation is also very important because it helps to 

establish the validation of the research. 

Computer Science is an area of research that has always been struggling with its 

identity. This is because its foundation is drawn from various disciplines and it needs 

to implement the concepts from many different areas of studies (Crnkovic, 2002). On 

one hand, it is a field that is intensely rooted in Mathematics with complicated 

theories, but on the other hand, it is a field that is intensely rooted in Engineering with 

the approaches of quantification, measurement and comparison (Demeyer, 2011). 

Therefore, in order to determine a more suitable research method to be used, various 

kinds of research methods are reviewed. The different types of research 

methodologies  available are Field Study, Group Feedback Analysis, Opinion 

Research, Participative Research, Case Study, Archival Research, Philosophical 

Research, Math Modeling, Experimental Simulation, Laboratory Experiment, Free 

Simulation, Field Experiment, and Adaptive Experiment (Jenkins, 1985). Among all 

these research methodologies, the one being chosen to conduct this research is the 

Experimental Research Method. 

3.2 Experimental Research Method 

Experimental Computer Science is a kind of study that implements the best 

practices, methods, procedures, and techniques which help practitioners of computing 

to move from the theoretical base towards an applied one in the field of Computer 

Science (Hassani, 2017). Typically, it can be grouped into five categories, namely, 

Feasibility Experiment, Trial Experiment, Field Experiment, Comparison Experiment, 

and Controlled Experiment (Tedre & Moisseinen, 2014). 

Feasibility Experiment is conducted when it is necessary to know how efficient, 

reliable and feasible a research has been performed. Usually, a demonstration of the 

technology being proposed is conducted to show that it can be implemented 

successfully. For the Trial Experiment, it verifies many areas of a proposed 



 

74 

technology with different sets of variables in order to determine its qualities. The 

experiments are conducted in a laboratory most of the time. But it can also be 

performed in the real environment with some limitations. On the other hand, Field 

Experiment conducts the tests for a technology out of the laboratory where it is 

evaluated in a real environment to verify its robustness, usability or performance. 

Comparison Experiment is performed to compare multiple solutions that are available 

to implement a certain technology in order to identify the best solution for solving a 

particular problem. Last but not least, the Controlled Experiment is a test that is 

conducted under controlled conditions, in which one or more factors are modified at a 

time, while all other factors remain the same. 

In order to make the research in Computer Science to be more applicable to the 

society, the Experimental research method is used to implement a number of 

experiments which analyze and generate results from multiple real world data sets. 

Furthermore, it is necessary to ensure that all the experiments conducted and results 

presented should be reproducible if every step of the research is executed again 

accordingly (Ayash, 2014). 

3.3 Research, Development and Evaluation 

The entire work flow of this research is presented in Figure 3.4. It includes the 

five processes of literature review, data collection and analysis, design of the FPM 

algorithm, implementation of the FPM algorithm, and evaluation of the FPM 

algorithm. As shown in the diagram, the three objectives of this research are achieved 

through the design, development and evaluation phases of the entire FPM algorithm. 

Just like any other research, this research is started with the literature review 

process. In the literature review process, the significant and recent algorithms for 

Frequent Pattern Mining (FPM) are studied so that a more robust FPM algorithm can 

be designed and developed. As the algorithms are being reviewed, the advantages and 

disadvantages of each algorithm are analyzed in detail. The purpose of conducting 

such a detailed analysis is to identify the strengths and weaknesses of every algorithm. 
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Figure 3.4: Research Work Flow 

 

After discovering the strengths and limitations of all the significant and recent 

FPM algorithms, a few sets of data are downloaded online from the Frequent Itemset 

Mining Implementations (FIMI) Dataset Repository for testing the proposed FPM 

algorithm (Goethals, 2004). These data sets contain data from a few different sources 

as follows: 

(a) Sales Data of Products from a Retail Store 

(b) Network Connection Data from a Computer Server 

(c) Census Data from the United States of America 

(d) Click-Stream Data from a Hungarian Online News Portal 

All the data are filtered accordingly before being processed by every algorithm that is 

designed and developed in this research. 
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The first objective of this research is achieved at the design stage. When the data 

is ready to be processed, the whole architecture of the FPM algorithm is designed 

from the beginning to the end. The appropriate diagramming tools available in the 

Microsoft Office 365 software (Microsoft, 2018c) are used to construct the flow chart 

for the algorithm as shown in Figure 4.1. The flow chart describes how the data is 

processed by all the algorithms throughout the entire architecture. In the flow chart, 

the input, process, storage, and output of the algorithm are clearly identified in the 

appropriate order. 

The second objective of this research is achieved at the development stage. Once 

the architecture of the algorithm is designed completely, all the algorithms are 

implemented one after another using the C++ programming language 

(CPlusPlus.com, 2018). C++ is utilized as the programming language for 

development because it is a general-purpose programming language that has the 

imperative and object-oriented functionalities, while providing the features for low-

level memory manipulation. Apart from this, the C++ programming language ensures 

that variable declaration is compulsory to be implemented in any program to prevent 

any variable from being used with the inappropriate data type. This is an important 

feature because using the inappropriate data type for any variable in the program, may 

cause invalid data to be captured for data mining, and having inaccurate results to be 

produced. To make it more convenient for development, Microsoft Visual Studio 

(Microsoft, 2018b) is used as the Integrated Development Environment (IDE) for 

constructing the algorithms as shown in Figure 3.5. 

Since this research focus on constructing an algorithm for Frequent Pattern 

Mining (FPM), the algorithm is developed as a Windows Console Application 

(Technopedia, 2018) to be executed under the Windows Command Prompt. This is 

because a console application is suitable to be used as a proof-of-concept 

demonstration of the functionalities that are potential to be implemented into a 

desktop application in any platform of operating system (Microsoft, 2018a). 
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Figure 3.5: Integrated Development Environment of C++ in Microsoft Visual Studio 

 

The database used to store the data sets is the MySQL Database (MySQL, 2018a). 

Both the Structured Query Language (SQL) (Heller, 2017) and Not-Only Structured 

Query Language (No-SQL) (Yegulalp, 2017) databases are utilized to support the 

process of Frequent Itemset Mining (FIM) in this research. For data manipulation, 

MySQL Shell (MySQL, 2018b) is the Command Line Interface (CLI) software used 

to execute the SQL or NoSQL queries as shown in Figure 3.6. To make it more 

convenient in manipulating the data, MySQL Workbench (MySQL, 2018c) is used as 

the Graphical User Interface (GUI) software to access the databases as shown in 

Figure 3.7. 
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Figure 3.6: MySQL Shell – The CLI Software for MySQL Database 

 

 

Figure 3.7: MySQL Workbench – The GUI Software for MySQL Database 

 

The third objective of this research is achieved at the evaluation stage. As all the 

algorithms are completed successfully, each algorithm is executed on one of the data 

sets in order to test its performance in mining the frequent patterns from the data. It is 

done by measuring the run-time execution and memory consumption of the algorithm. 



 

79 

The purpose of conducting this evaluation is to verify that all the algorithms being 

constructed are suitable to be used for FPM. In addition, to confirm that the 

algorithms are really fit to be used for FPM, the algorithms are executed on multiple 

data sets with a dense or sparse structure. Moreover, the proposed FPM algorithm is 

also compared with the Apriori (Agrawal & Srikant, 1994) and EFP (Shang, 2005) 

algorithms in order to ensure that it is capable to mine the frequent itemsets in a 

shorter run time and with less memory consumption. The algorithm is compared 

against Apriori and EFP because Apriori is the fundamental algorithm in FPM and 

EFP utilized a similar approach of FPM using the database. Finally, if any part of the 

algorithm is found to be not working properly, the design and implementation 

processes are repeated until a robust FPM algorithm is constructed. 

3.4 Chapter Summary 

Among the various types of research methodologies, the Experimental Research 

Method has been chosen to implement the research of this study. First, the step of 

literature review is conducted to study the significant and recent algorithms for 

Frequent Pattern Mining (FPM). Then, a few sets of data are downloaded online to be 

used for testing the proposed FPM algorithm. Next, the architecture of the algorithm 

is designed using the appropriate diagramming tools available in the Microsoft Office 

365 software. After that, the algorithm is implemented with the C++ programming 

language through the Integrated Development Environment (IDE) of Microsoft Visual 

Studio. Then, the MySQL Database is utilized to store the data to be used for 

Frequent Itemset Mining (FIM). Last but not least, the algorithm is evaluated on 

different kinds of sparse and dense data sets. 

 

 

 

 



 

80 

 

 

 

 

 

  



 

CHAPTER 4 

FP-NOSQL: NOSQL-BASED FREQUENT PATTERN MINING 

WITH FP-DB APPROACH 

This chapter discusses about the proposed algorithm in this research to solve the 

problem of Frequent Pattern Mining (FPM) so that the hidden patterns of the frequent 

itemsets can be mined within a shorter run time and with less memory consumption. 

First, the entire architecture of the algorithm is illustrated in the form of a flowchart in 

Section 4.1. Then, the different parts of the algorithm are described in detail from 

Section 4.2 to Section 4.6 respectively. 

4.1 Flow Chart of FP-NoSQL Algorithm 

As discussed in Chapter 2, many algorithms have been proposed by different 

researchers throughout the world to improve the method of Frequent Pattern Mining 

(FPM). But most of the algorithms for FPM are designed to mine all the frequent 

itemsets from a text file into the main memory or Random Access Memory (RAM). 

Therefore, the data needs to be mined again if the system is down or there is a power 

failure. This is because none of the frequent patterns are stored in such a manner so 

that it can be retrieved later for further data analysis. To solve this problem, 

FP-NoSQL is proposed in this research as an algorithm that mines the frequent 

itemsets using the Frequent Pattern Database (FP-DB) approach. The flow chart of the 

FP-NoSQL algorithm is shown in Figure 4.1 and it is constructed from several 

algorithms as follows: 

(a) Data Loader 

(b) Frequent Item Generator 

(c) Frequent Pattern Processor 

(d) FP-Collection Constructor 

(e) Frequent Pattern Analyzer
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Figure 4.1: Flow Chart of the FP-NoSQL Algorithm 
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4.2 Algorithm of Data Loader 

Most of the existing FPM algorithms mine the frequent patterns of data from a 

text file rather than a database or data warehouse. However, almost every system of 

an organization stores their data in a database or data warehouse for further analysis 

(Gull & Pervaiz, 2018). Therefore, it is necessary to construct an FPM algorithm that 

is able to mine the frequent patterns of data directly from the database or data 

warehouse, so that the data does not need to be exported to text files for mining by the 

algorithm. In order to construct such an FPM algorithm, the Data Loader algorithm is 

designed to load the data from a text file into a data warehouse since most of the data 

available for mining are stored in text files. The pseudocode of the Data Loader 

algorithm is presented as Algorithm 1. 

 

Algorithm 1: Data Loader 

Function: Construction of Transaction Table 

Input: Transactional Data in Text File 

Output: Transactional Data in Data Warehouse 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

Begin 

Connect to Data Warehouse 

Initialize TID to the first transaction to be processed 

Open data file 

While NOT End of File Do 

 Read line from file 

 Split line into items 

 While NOT End of Line Do 

  records += "(" + TID + "," + item + ")," 

 End While 

 TID++ 

End While 

records = records.substr(0, records.length() - 1) 

Insert records into Transaction table 

Close data file 

Disconnect from Data Warehouse 

End 
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The Data Loader algorithm will construct a Transaction table when the data is 

loaded from the text file into the data warehouse. Figure 4.2 shows a portion of the 

transactional data from a retail store in the form of a text file. Each line represents a 

transaction of purchase from a customer in the actual database of the retail store. In 

every line, the numbers are separated with a space and they represent the item codes 

of all products purchased by the customer in that transaction. 

 

 

Figure 4.2: Transactional Data from Retail Data Set (Brijs, 1999) 

 

When the algorithm is executed, it will connect to the data warehouse where 

transactional data is stored permanently for analysis. Then, the Transaction ID (TID) 

is set to the value of ‘1’ if the data is loaded for the first time from the text file into the 

data warehouse, else it can be set to the next value of the current maximum TID. For 

example, if the last TID in the data warehouse is ‘1000’, then the current TID can be 

set to ‘1001’ to start the processes of Extract, Transform and Load (ETL) for the data. 
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The ETL processes establish the integration layer that consolidates data from various 

sources into the appropriate targets through a set of processing steps (Kabiri & 

Chiadmi, 2013). After initializing the value of TID, the relevant text file is accessed in 

order to locate the data as input to the data warehouse. 

As the algorithm accesses the text file, each line of transaction is read and split 

into individual items. Next, all the items are concatenated into the records string with 

the intention of inserting them together into the Transaction table in the data 

warehouse. Then, the value of TID is incremented by 1 in order to proceed for 

processing the next line of transaction. These three steps are repeated until the last 

line of transaction in the text file is being processed. Before inserting the records, the 

last comma (,) of the records string is removed, so that the query of the Structured 

Query Language (SQL) can be executed successfully. Finally, the text file is closed 

and the connection to the data warehouse is disconnected. 

Table 4.1 shows a portion of the Transaction table created for the Retail data set. 

The SQL query used to retrieve the records is as follows: 

SELECT * FROM data_warehouse.transaction; 

The table contains of three columns having the name ID, Item and Status. The ID 

column stores the TIDs while the Item column stores the item codes of the products. 

For the Status column, it will hold the value of ‘N’ if the data is newly inserted into 

the table, and it will hold the value of ‘O’ if the data has been processed by the 

Frequent Item Generator algorithm described in Section 4.3. Hence, the Status column 

is used to keep track whether the data has been processed by the Frequent Item 

Generator algorithm or not. In the next execution, only the items that contain the 

value of ‘N’ for the Status column will be processed by the algorithm. 
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Table 4.1: Transaction Table for Retail Data Set 

ID Item Status 

1 0 N 

1 1 N 

1 2 N 

1 3 N 

1 4 N 

1 5 N 

1 6 N 

1 7 N 

1 8 N 

1 9 N 

1 10 N 

1 11 N 

1 12 N 

1 13 N 

1 14 N 

1 15 N 

1 16 N 

1 17 N 

1 18 N 

1 19 N 

1 20 N 

1 21 N 

1 22 N 

1 23 N 

1 24 N 

1 25 N 

1 26 N 

1 27 N 

1 28 N 

1 29 N 

2 30 N 

2 31 N 

2 32 N 

3 33 N 

3 34 N 

3 35 N 
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4.3 Algorithm of Frequent Item Generator 

Analyzing the frequent patterns of data is important because organizations need to 

know what their customers would like to purchase by identifying which products are 

relevant to one another (Tripathi, Vartak, Chaudhari, & Naik, 2018). To analyze the 

patterns that exist frequently in a data warehouse, the frequency of occurrence for 

each item at every transaction in the data warehouse needs to be determined. 

Therefore, the Frequent Item Generator algorithm is designed to produce the list of 

frequent items by arranging the items in every transaction according to the sequence 

of the Item Frequency table. The Item Frequency table contains the frequency of 

occurrence for each item that exists in every transaction throughout the entire data 

warehouse. The pseudocode of the Frequent Item Generator algorithm is presented as 

Algorithm 2 and an example of the Item Frequency table is given in Table 4.2. 

 

Algorithm 2: Frequent Item Generator 

Function: Construction of Frequent Item Table 

Input: Transactions 

Output: Frequent Items 

1 

2 

3 

4 

5 

6 

 

7 

8 

9 

Begin 

Connect to Data Warehouse 

Select maximum TID of old transactions into max_old_id 

Select maximum TID of new transactions into max_new_id 

start_id = max_old_id + 1 

Insert items into FrequentItem table based on descending order 

 of ItemFrequency table 

Update transactions status between start_id and max_new_id 

Disconnect from Data Warehouse 

End 
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Before constructing the Frequent Item table, the Item Frequency table is required 

to be built with the following SQL query: 

INSERT INTO ItemFrequency 

SELECT item, COUNT(*) FROM Transaction 

GROUP BY item ORDER BY COUNT(*) DESC; 

This SQL query calculates the frequency of every item in all the transactions by 

grouping the records according to their item codes and arranging them in the 

descending order of their frequencies. After calculating the frequencies of all the 

items, the SQL query will store them into the Item Frequency table. 

Table 4.2 shows a portion of the Item Frequency table generated for the Retail 

data set, having Item 39 to be the one with the highest frequency among all the 

transactions. The SQL query used to retrieve the records is as follows: 

SELECT * FROM data_warehouse.itemfrequency; 

The Total column indicates the frequency for each item in the entire data 

warehouse. In this data set, 16470 unique items are found in it. The top three items 

that are purchased the most by the customers are Item 39, Item 48 and Item 38, with 

the frequencies of 50675, 42135 and 15596 respectively. The last few items in the 

table are those items that exist the least in the entire data set, having each item to 

appear only 1 time. The Item Frequency table can be updated from time to time in 

order to ensure that the patterns of new data that have been added into the data 

warehouse at a later time will also be mined by the algorithm. 
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Table 4.2: Item Frequency Table for Retail Data Set 

Item Total 

39 50675 

48 42135 

38 15596 

32 15167 

41 14945 

65 4472 

89 3837 

225 3257 

170 3099 

237 3032 

… … 

12774 1 

8285 1 

12790 1 

12806 1 

6771 1 

11160 1 

12838 1 

6819 1 

6835 1 

8413 1 

 

The Frequent Item Generator algorithm will construct a Frequent Item table when 

the data in the Transaction table is processed to generate the list of frequent items. 

Once the algorithm is executed, it will connect to the data warehouse and select the 

maximum TIDs of transactions that have the ‘O’ status and ‘N’ status respectively. 

The records with an ‘O’ status are the data that has been processed by the algorithm 

previously. Thus, the initial TID for producing the list of frequent items will be 

equivalent to adding a value of ‘1’ to the maximum TID of transactions that have the 

‘O’ status in the Transaction table. After setting the initial TID and maximum TID of 

transactions that have the ‘N’ status, the algorithm will insert all the items into the 

Frequent Item table according to the descending order of frequencies in the Item 

Frequency table. Last but not least, the status of transactions that have been processed 

currently are changed from ‘N’ to ‘O’ before the connection to the data warehouse is 
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disconnected. This is to prevent the transactions that have been processed from being 

processed again in the next data pre-processing stage. 

Table 4.3 shows a portion of the Frequent Item table created for the Retail data 

set. The SQL query used to retrieve the records is as follows: 

SELECT * FROM data_warehouse.frequentitem; 

The records are arranged according to the sequence of the Item Frequency table. 

In this case, all the items in every transaction are organized by having the item with 

the highest frequency to be ranked first followed by others that have a lower 

frequency. For example, in Transaction 2, Item 32 is having a higher frequency 

compared to Item 31 and Item 30. The purpose for arranging the items in the 

descending order of their frequencies is to enable the items that exist frequently to be 

mined with a higher priority during the process of Frequent Itemset Mining (FIM). 

 

Table 4.3: Frequent Item Table for Retail Data Set 

TID Item Status 

1 9 N 

1 19 N 

1 18 N 

1 23 N 

1 10 N 

1 11 N 

1 2 N 

1 12 N 

1 15 N 

1 5 N 

1 1 N 

1 22 N 

1 0 N 

1 27 N 

1 6 N 

1 26 N 

1 16 N 

1 7 N 

1 24 N 
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Table 4.3 continued: Frequent Item Table for Retail Data Set 

TID Item Status 

1 25 N 

1 17 N 

1 4 N 

1 8 N 

1 14 N 

1 13 N 

1 3 N 

1 29 N 

1 28 N 

1 20 N 

1 21 N 

2 32 N 

2 31 N 

2 30 N 

3 35 N 

3 33 N 

3 34 N 

4.4 Algorithm of Frequent Pattern Processor 

In a data warehouse, many patterns can exist in any data set because of the 

improvement of technology for Internet of Things (IoT) that enables data to be 

generated and collected easily (Chen et al., 2015). The pool of data can be retrieved 

from different sources like websites, mobile applications, machine logs and sensor 

data (Radhika, Kumar, Sailaja, & Gayatri, 2017). However, the huge amount of data 

that has been captured is difficult to be processed and analyzed in reasonable amount 

of time (Sharma, Sawai, & Surve, 2017). Furthermore, the patterns that exist may be 

duplicated throughout the entire data set. Therefore, the Frequent Pattern Processor 

algorithm is designed to discover all the patterns of data that exist in the data 

warehouse by processing the Frequent Item table and consolidate them into a 

Frequent Pattern table. The pseudocode of the Frequent Pattern Processor algorithm is 

presented as Algorithm 3. 
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Algorithm 3: Frequent Pattern Processor 

Function: Construction of Frequent Pattern Table 

Input: Frequent Items 

Output: Frequent Pattern Table 

1 

2 

3 

 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

Begin 

Connect to Data Warehouse 

Select TID and Item from FrequentItem and ItemFrequency 

 tables that satisfied threshold of minimum support 

While NOT End of Resultset Do 

 If cur_id != pre_id Then 

  con_path = "root" 

 Else 

  con_path += "~" + pre_item 

 End If 

 records += "(" + cur_item + ",'" + con_path + "')," 

 pre_id = cur_id 

 pre_item = cur_item 

End While 

records = records.substr(0, records.length() - 1) 

Insert records into FrequentPattern table 

Disconnect from Data Warehouse 

End 

 

The Frequent Pattern Processor algorithm will construct a Frequent Pattern table 

when the data in the Frequent Item table is processed to generate the list of frequent 

patterns. When the algorithm is executed, it will connect to the data warehouse to 

select the TIDs and items from the Frequent Item and Item Frequency tables. The 

TIDs and items to be selected are those that satisfied the threshold of minimum 

support. Minimum support is a value fixed by the user as the minimum frequency 

which needs to be fulfilled for every item that is to be included into the Frequent 

Pattern Mining (FPM) (Chaure & Singh, 2016). 

After selecting the relevant TIDs and items, the TIDs and items are processed in 

order to construct all the patterns that exist frequently in the data warehouse. If the 
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current TID (cur_id) is not equivalent to the previous TID (pre_id), then the 

connection path (con_path) of an item will be set as “root”, else the previous item 

(pre_item) is concatenated to the connection path of the current item (cur_item). 

Then, the current item and its connection path are concatenated to the records string 

for inserting into the Frequent Pattern table later. Next, the values of cur_id and 

cur_item are stored into pre_id and pre_item so that they can be used in the following 

loop for comparison purpose. This process is repeated until all the frequent patterns 

are constructed from the Frequent Item table. Before inserting the records into the 

Frequent Pattern table, the last comma (,) of the records string is removed so that the 

SQL query can be executed successfully. Finally, the connection to the data 

warehouse is disconnected. 

Table 4.4 shows a portion of the Frequent Pattern table created for the Retail data 

set. The SQL query used to retrieve the records is as follows: 

SELECT * FROM data_warehouse.frequentpattern; 

All the items in every transaction that satisfied the threshold of minimum support 

fixed by the user are stored as the frequent patterns in this table. The minimum 

support value set for this case is 0.01% of the entire data set which is equivalent to 

about 90 times of occurrence. A total of 661856 frequent patterns are found from 

908576 items in 88162 transactions. 

 

Table 4.4: Frequent Pattern Table for Retail Data Set 

Item ConnectionPath 

9 root 

19 root~9 

18 root~9~19 

23 root~9~19~18 

10 root~9~19~18~23 

11 root~9~19~18~23~10 

2 root~9~19~18~23~10~11 

12 root~9~19~18~23~10~11~2 

15 root~9~19~18~23~10~11~2~12 

5 root~9~19~18~23~10~11~2~12~15 
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Table 4.4 continued: Frequent Pattern Table for Retail Data Set 

1 root~9~19~18~23~10~11~2~12~15~5 

22 root~9~19~18~23~10~11~2~12~15~5~1 

32 root 

31 root~32 

30 root~32~31 

39 root 

38 root~39 

41 root~39~38 

36 root~39~38~41 

37 root~39~38~41~36 

45 root~39~38~41~36~37 

43 root~39~38~41~36~37~45 

40 root~39~38~41~36~37~45~43 

44 root~39~38~41~36~37~45~43~40 

4.5 Algorithm of FP-Collection Constructor 

Since many patterns may be duplicated in a data set within a data warehouse, it is 

necessary to construct a collection of patterns and frequencies of occurrence for the 

data so that a thorough analysis can be performed easily. The FP-Collection 

Constructor algorithm is designed to construct a Not-Only Structured Query 

Language (NoSQL) collection that consists of all the patterns and frequencies of data 

by processing the Frequent Pattern table. The pseudocode of the FP-Collection 

Constructor algorithm is presented as Algorithm 4. The NoSQL collection is utilized 

to store all the unique patterns and frequencies of data because the schema less data 

model is a better solution for managing the huge volume of data being captured and 

processed at every moment in the organizations (Bhogal & Choksi, 2015). 

The FP-Collection Constructor algorithm will construct a Frequent Pattern 

Collection (FP-Collection) in the NoSQL database when the data in the Frequent 

Pattern table is processed to calculate the frequencies of the patterns. Once the 

algorithm is executed, it will connect to the data warehouse and the Frequent Pattern 

Database (FP-DB) in which the FP-Collection will be created. 
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Algorithm 4: FP-Collection Constructor 

Function: Construction of Frequent Pattern Collection 

Input: Frequent Pattern Table 

Output: Frequent Pattern Collection 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

 

 

11 

12 

13 

14 

15 

16 

17 

18 

Begin 

Connect to Data Warehouse 

Connect to Frequent Pattern Database 

pat_count = 0 

Select pattern from FrequentPattern table 

Sort pattern in ascending order 

While NOT End of Resultset Do 

 pat_count++ 

 If cur_pat != next_pat Then 

  documents += "('{\"Item\":" + item 

   + ",\"Frequency\":" + pat_count 

   + ",\"Connection\":\"" + con_path + "\"}')," 

  pat_count = 0 

 End If 

End While 

documents = documents.substr(0, documents.length() - 1) 

Insert documents into FP-Collection 

Disconnect from Data Warehouse 

Disconnect from Frequent Pattern Database 

End 

 

After connecting to the data warehouse and FP-DB, all the frequent patterns will 

be selected from the Frequent Pattern table into a list and sorted in the ascending 

order. Then, the unique frequent patterns will be counted from the list by comparing 

whether the current frequent pattern (cur_pat) is the same as the next frequent pattern 

(next_pat). As the algorithm loops through the list, a counter (pat_count) is used to 

count the unique frequent patterns. If cur_pat is not equivalent to next_pat, then the 

value of pat_count is considered as the frequency of the frequent pattern. Next, the 

current item (item) is concatenated with its connection path (con_path) and frequency 

(pat_count) to the documents string for inserting into the FP-Collection later. 
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Subsequently, the value of pat_count is reset to zero for counting the following 

unique frequent pattern in the list. This process is repeated until all the unique 

frequent patterns are counted respectively from the list. Before inserting the 

documents into the FP-Collection, the last comma (,) of the documents string is 

removed so that the SQL query can be executed successfully. Finally, the connections 

to the data warehouse and FP-DB are disconnected. 

Table 4.5 shows a portion of the FP-Collection created for the Retail data set. The 

SQL query used to retrieve the records is as follows: 

SELECT * FROM frequentpattern_database.fp_collection; 

Each document in the collection represents a unique frequent pattern. The 

document with a Frequency value that is more than one represents a repeated pattern 

in the data set. How every Item is connected to the root of the entire data set is 

represented by the Connection string of alphanumeric characters. 

 

Table 4.5: Frequent Pattern Collection for Retail Data Set 

Document 

{"Item": 1, "Frequency": 4, "Connection": "root"} 

{"Item": 1, "Frequency": 1, "Connection": "root~101~179~23~622"} 

{"Item": 1, "Frequency": 1, "Connection": "root~101~338~4336~643~652"} 

{"Item": 1, "Frequency": 1, "Connection": "root~1020~3510"} 

{"Item": 1, "Frequency": 1, "Connection": "root~1113~2673~1808"} 

{"Item": 1, "Frequency": 1, "Connection": "root~1291"} 

{"Item": 1, "Frequency": 1, "Connection": "root~161"} 

{"Item": 1, "Frequency": 1, "Connection": "root~1714~1704~1214"} 

{"Item": 1, "Frequency": 1, "Connection": "root~1714~2080~10444~12981"} 

{"Item": 1, "Frequency": 1, "Connection": "root~185~365~423"} 

{"Item": 1, "Frequency": 1, "Connection": "root~201~258~910~1444"} 

{"Item": 1, "Frequency": 1, "Connection": "root~209"} 

{"Item": 1, "Frequency": 1, "Connection": "root~2238~4994"} 

{"Item": 1, "Frequency": 1, "Connection": "root~2353"} 

{"Item": 1, "Frequency": 2, "Connection": "root~237"} 

{"Item": 1, "Frequency": 1, "Connection": 

"root~237~249~10515~405~10~1144~12~168~4685"} 

{"Item": 1, "Frequency": 1, "Connection": "root~237~249~4685"} 
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Table 4.5 continued: Frequent Pattern Collection for Retail Data Set 

{"Item": 1, "Frequency": 1, "Connection": 

"root~237~31~30~856~1987~490~1842~805"} 

{"Item": 1, "Frequency": 1, "Connection": 

"root~310~161~3616~441~1239~345~2325~2215~8867"} 

{"Item": 1, "Frequency": 2, "Connection": "root~32"} 

{"Item": 1, "Frequency": 1, "Connection": "root~3270~2051"} 

{"Item": 1, "Frequency": 1, "Connection": 

"root~32~1393~201~1020~979~12943~1003~1282"} 

{"Item": 1, "Frequency": 1, "Connection": 

"root~32~237~310~249~783~10515~1144~856~694~1046~2633~168~718~234 

~4685"} 

{"Item": 1, "Frequency": 1, "Connection": "root~32~338"} 

{"Item": 1, "Frequency": 1, "Connection": 

"root~32~41~1393~78~2958~53~1677~4698"} 

4.6 Algorithm of Frequent Pattern Analyzer 

Once the Frequent Pattern Collection (FP-Collection) is constructed successfully 

in the Frequent Pattern Database (FP-DB), Frequent Itemset Mining (FIM) can be 

performed on the data using the appropriate Not-Only Structured Query Language 

(NoSQL) queries (Marinov, Georgiev, & Popova, 2018). The Frequent Pattern 

Analyzer algorithm is designed to analyze the patterns and frequencies of data by 

processing the FP-Collection to generate the frequent itemsets. The pseudocodes of 

the algorithm are presented from Section 4.6.1 to Section 4.6.4, and the main program 

of the Frequent Pattern Analyzer algorithm is presented as Algorithm 5. First, the 

algorithm will connect to the FP-DB and display a menu that consists of a few options 

for the user to select in order to perform Frequent Pattern Mining (FPM). 

The options available to perform FPM are shown in Figure 4.3 as follows: 

(1) Search_All_Items() 

• To search for all the patterns of every item that exists in the database. 

(2) Search_Specific_Item() 

• To search for all the patterns of a specific item that exists in the database. 

(3) Search_Specific_Pattern() 

• To search for a specific pattern that may exist in the database. 
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(4) Mine_Frequent_Itemsets() 

• To mine all the frequent itemsets of a specific item that exists in the database. 

 

Algorithm 5: Frequent Pattern Analyzer 

Function: Generation of Frequent Itemsets 

Input: Frequent Pattern Collection 

Output: Frequent Itemsets 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

Begin 

Connect to Frequent Pattern Database 

Do 

 Display menu 

 Get option 

 Case option Of 

  Case 1: Search_All_Items() 

  Case 2: Search_Specific_Item() 

  Case 3: Search_Specific_Pattern() 

  Case 4: Mine_Frequent_Itemsets() 

  Case 5: Exit 

  Default: Prompt user to enter a valid option 

 End Case 

While (option != 5) 

Disconnect from Frequent Pattern Database 

End 
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Figure 4.3: Main Menu of FP-NoSQL 

 

When an invalid value is entered, which is not within ‘1’ to ‘5’, the user will be 

prompted to enter another valid value again. As a valid value is entered, the algorithm 

will execute the appropriate procedure and return to the main menu if the user decided 

to exit from the procedure. If the value of ‘5’ is entered by the user, the algorithm will 

be terminated and disconnected from the FP-DB. 

4.6.1 Procedure to Search All Items 

When option ‘1’ is entered by the user, the algorithm will execute the procedure 

to retrieve all the patterns of every item that exist in the database. The pseudocode of 

this procedure is presented as Procedure 1. Initially, a few variables are set so that the 

display of patterns can be controlled accordingly. The input variable is set as ‘c’ to 

ensure that the do … while loop can be repeated until the user entered the character ‘e’ 

to terminate. Then, the rpd variable stands for “row per display”. It limits the number 

of patterns to be displayed on screen at one time. This enables users to analyze a 

smaller amount of patterns, instead of being overloaded with too much information. 

For example, when the value ‘30’ is set to rpd, only 30 documents of patterns will be 

displayed on screen. After displaying 30 documents of patterns on screen, the 

algorithm will prompt the user to continue or exit. If the user enters the character ‘e’, 

the algorithm will terminate, else it will continue to display the next 30 documents of 
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patterns from the database. Last but not least, the n variable is used to set the starting 

position of the patterns to be displayed. For instance, when the value ‘0’ is set to rpd, 

30 documents of patterns will be displayed starting from the first one being retrieved 

into the dres document result set. 

All the documents of patterns are sorted according to their frequencies of 

occurrence in the descending order. This is because the ultimate aim of Frequent 

Pattern Mining (FPM) is to identify the patterns that exist frequently in a data set and 

analyze how they are related to one another. As the patterns are sorted in the 

descending order of their frequencies, the ones that exist the most in the database will 

be displayed on screen first. When the patterns of data are able to be discovered 

according to their frequencies of appearance, many problems can be resolved by 

studying the trend of the patterns in the database. 

 

Procedure 1: Search_All_Items() 

1 

2 

3 

4 

5 

6 

 

7 

8 

9 

10 

11 

12 

 

13 

14 

15 

16 

17 

18 

Begin 

input = 'c' 

rpd = 30 

n = 0 

Do 

 dres = col.find().sort("Frequency DESC").limit(rpd) 

  .offset(n).execute() 

 If (dres.count() > 0) Then 

  While (doc = dres.fetchOne()) 

   Display doc 

  End While 

  n += rpd 

  Display "Press 'e' to exit or other keys to 

   continue: " 

  Get input 

 Else 

  Display "No Records Found." 

 End If 

While (input != 'e') 

End 
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A screenshot of the procedure to search all items from the FP-DB is shown in 

Figure 4.4. In the Retail data set, item 39 is the item that exists the most in the entire 

data set with a frequency of ‘50675’. The same item may consist of more than one 

frequency value if it contains multiple patterns by relating to different number of 

other items. For example, in the screenshot at Figure 4.4, item 38 contains 4 different 

patterns as follows: 

• {"Item": 38, "Frequency": 6102, "Connection": "root~39~48"} 

• {"Item": 38, "Frequency": 4243, "Connection": "root~39"} 

• {"Item": 38, "Frequency": 3409, "Connection": "root"} 

• {"Item": 38, "Frequency": 1842, "Connection": "root~48"} 

Among all the patterns of item 38, the first pattern (root~39~48) has the highest 

frequency with a value of ‘6102’ and it is linked to item 39 and item 48. This pattern 

indicated that item 38 appears the most at the same time with item 39 and item 48. 

The second pattern (root~39) with a frequency of ‘4243’ indicated that item 38 

appears such number of time with item 39 only, whereas the third pattern (root) with a 

frequency of ‘3409’ indicated that item 38 appears on its own without the influence of 

other items for such a number of occurrence. 
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Figure 4.4: Procedure to Search All Items 

4.6.2 Procedure to Search Specific Item 

As option ‘2’ is entered by the user, the algorithm will execute the procedure to 

retrieve all the patterns of a specific item that exist in the database. The pseudocode of 

this procedure is presented as Procedure 2. Similarly, a few variables are set so that 
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the display of patterns can be controlled accordingly. Before retrieving the patterns 

from the database, the user will be prompted to enter the item that needs to be 

analyzed. After capturing an Item ID from the user, the algorithm will retrieve all the 

patterns in which the item is linked with. If there are no patterns that relate to the 

specific item, the message of “No Records Found” will be displayed on screen. As the 

patterns related to an item are able to be identified easily, it enables the user to solve a 

problem that involves a particular item by locating all the other relevant items. A 

screenshot of the procedure to retrieve all the patterns of a specific item in the Retail 

data set from the FP-DB is shown in Figure 4.5. In this case, the patterns being 

retrieved are linked with item 30. 

 

Procedure 2: Search_Specific_Item() 

1 

2 

3 

4 

5 

6 

7 

8 

 

 

9 

10 

11 

12 

13 

14 

 

15 

16 

17 

18 

19 

20 

Begin 

input = 'c' 

rpd = 30 

n = 0 

Display "Enter Item ID for Specific Pattern Search: " 

Get item 

Do 

 dres = col.find("Item=:param1").sort("Frequency DESC") 

  .limit(rpd).offset(n).bind("param1", item) 

  .execute() 

 If (dres.count() > 0) Then 

  While (doc = dres.fetchOne()) 

   Display doc 

  End While 

  n += rpd 

  Display "Press 'e' to exit or other keys to 

   continue: " 

  Get input 

 Else 

  Display "No Records Found." 

 End If 

While (input != 'e') 

End 
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Figure 4.5: Procedure to Search Specific Item 

4.6.3 Procedure to Search Specific Pattern 

Once option ‘3’ is entered by the user, the algorithm will execute the procedure to 

retrieve all the patterns that exist in the database which contain a particular pattern. 

The pseudocode of this procedure is presented as Procedure 3. Likewise, a few 

variables are set so that the display of patterns can be controlled accordingly. Before 

retrieving the patterns from the database, the user will be prompted to enter a specific 

pattern that is of interest to be analyzed. After capturing a specific pattern from the 
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user, the algorithm will retrieve all the patterns that contain the particular pattern. 

Similarly, if there are no patterns that relate to the specific pattern, the message of 

“No Records Found” will be displayed on screen. When the patterns related to a 

specific pattern are able to be located without much trouble, the problem that arises 

due to a certain trend of data can be resolved easily. A screenshot of the procedure to 

retrieve all the patterns which contain a particular pattern in the Retail data set from 

the FP-DB is shown in Figure 4.6. In this case, the patterns being retrieved contain the 

pattern of ‘root~39~48’. 

 

Procedure 3: Search_Specific_Pattern() 

1 

2 

3 

4 

5 

6 

7 

8 

9 

 

 

10 

11 

12 

13 

14 

15 

 

16 

17 

18 

19 

20 

21 

Begin 

input = 'c' 

rpd = 30 

n = 0 

Display "Enter Connection Path for Specific Pattern Search: " 

Get con_path 

con_path = "%" + con_path + "%" 

Do 

 dres = col.find("Connection LIKE :param1") 

  .sort("Frequency DESC").limit(rpd).offset(n) 

  .bind("param1", con_path.c_str()).execute() 

 If (dres.count() > 0) Then 

  While (doc = dres.fetchOne()) 

   Display doc 

  End While 

  n += rpd 

  Display "Press 'e' to exit or other keys to 

   continue: " 

  Get input 

 Else 

  Display "No Records Found." 

 End If 

While (input != 'e') 

End 
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Figure 4.6: Procedure to Search Specific Pattern 

4.6.4 Procedure to Mine Frequent Itemsets 

When option ‘4’ is entered by the user, the algorithm will execute the procedure 

to retrieve all the patterns of a specific item that exist in the database, and generate all 

the combination of frequent itemsets for the specific item together with their 
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frequencies. The pseudocode of this procedure is presented as Procedure 4. Similarly, 

a few variables are set so that the display of patterns can be controlled accordingly. 

Before retrieving the patterns from the database, the user will be prompted to enter the 

item in which its frequent itemsets are required to be generated. After capturing an 

Item ID from the user, the algorithm will retrieve all the patterns in which the item is 

linked with, and export all the combination of frequent itemsets that are related to it 

into a log file. Being able to generate all the relevant frequent itemsets helps the user 

to identify which items are closely related to one another so that a problem in the data 

set can be rectified as soon as possible. An example of the frequent itemsets generated 

for Item 32 of the Retail data set is shown in Figure 4.7. 

 

Procedure 4: Mine_Frequent_Itemsets() 

1 

2 

3 

4 

5 

6 

7 

8 

9 

 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

 

20 

21 

Begin 

input = 'c' 

rpd = 30 

n = 0 

Display "Enter Item ID for Frequent Itemset Search: " 

Get item 

Open log file for storing frequent itemsets 

Do 

 dres = col.find("Item = :param1").bind("param1", item) 

  .execute() 

 While (doc = dres.fetchOne()) 

  str_p = doc["Connection"] 

  str = str_p 

  boost::replace_all(str, "root~", " ") 

  boost::replace_all(str, "~", " ") 

  arr_pattern[total_pattern] = str + " " 

  arr_frequency[total_pattern] = doc["Frequency"] 

  total_pattern++ 

 End While 

 dres = col.find("Item = :param1").limit(rpd).offset(n) 

  .bind("param1", item).execute() 

 If (dres.count() > 0) Then 

  While (doc = dres.fetchOne()) 
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22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

  str_i = doc["Connection"] 

  str = str_i 

  boost::replace_all(str, "root~", "") 

  boost::replace_all(str, "~", " ") 

  stringstream ss(str) 

  While (ss >> temp) 

   arr_item[total_item] = temp 

   total_item++ 

  End While 

  For (total_combination = 1; total_combination <= 

   total_item; total_combination++) 

   Generate_Frequent_Itemsets() 

  End For 

  total_item = 0 

 End While 

 n += rpd 

 Display "Press 'e' to exit or other keys to continue:" 

 Get input 

Else 

 Display "No Records Found." 

End If 

While (input != 'e') 

Close log file for storing frequent itemsets 

End 

 

 

Figure 4.7: Frequent Itemsets Related to Item 32 
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4.7 Chapter Summary 

FP-NoSQL is proposed as an algorithm that mines the frequent itemsets using the 

Frequent Pattern Database (FP-DB) approach. The algorithm is constructed from a 

few modules to implement the respective task of Frequent Itemset Mining (FIM), 

namely, Data Loader, Frequent Item Generator, Frequent Pattern Processor, FP-

Collection Constructor, and Frequent Pattern Analyzer. First, the Data Loader loads 

the data from a text file into a data warehouse since most of the data available for 

mining are stored in text files. Then, the Frequent Item Generator produces the list of 

frequent items by arranging the items in every transaction according to the sequence 

of the Item Frequency table. Frequent Pattern Processor discovers all the patterns of 

data that exist in the data warehouse by processing the Frequent Item table and 

consolidate them into a Frequent Pattern table. Next, the FP-Collection Constructor 

constructs a Not-Only Structured Query Language (NoSQL) collection that consists 

of all the patterns and frequencies of data by processing the Frequent Pattern table. 

Finally, the Frequent Pattern Analyzer analyzes the patterns and frequencies of data 

by processing the FP-Collection to generate the frequent itemsets. 
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CHAPTER 5 

EXPERIMENT RESULTS AND DISCUSSION 

This chapter presents the results of the experiments being conducted on six 

different data sets in order to evaluate the performance of the FP-NoSQL algorithm. 

Apart from presenting the experiment results, the computer platforms and data sets 

used for conducting the experiments are also described in Section 5.1 and Section 5.2 

respectively. The experiment results for mining four different data sets are presented 

and discussed in Section 5.3. In Section 5.4, the experiment results for mining two 

additional data sets are presented and discussed in order to compare the run time 

performance of the FP-NoSQL algorithm with the Apriori and EFP algorithms. Then, 

the FP-NoSQL algorithm is also compared with other algorithms in terms of memory 

usage in Section 5.5. Last but not least, the performance of the FP-NoSQL algorithm 

is evaluated with the Big-O Notation in Section 5.6. 

5.1 Experiment Platform 

The FP-NoSQL algorithm is executed for performance testing on the following 

two platforms of computer hardware: 

Computer Platform 1 

Computer     : DELL Laptop 

Central Processing Unit (CPU)  : Intel Core (TM) i7-7700HQ 2.8 GHz 

Random Access Memory (RAM)  : 16 GB 

Hard Disk Drive (HDD)   : 915 GB 
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Computer Platform 2 

Computer     : DELL Laptop 

Central Processing Unit (CPU)  : Intel (R) Core (TM) i5-2520M 2.5 GHz 

Random Access Memory (RAM)  : 4 GB 

Hard Disk Drive (HDD)   : 250 GB 

 

The software that are used to develop and execute the FP-NoSQL algorithm on 

both of the computer platforms above are as follows: 

Operating System    : Windows 10 

Integrated Development Environment : Microsoft Visual Studio 2017 

Programming Language   : C++ 

Database Server    : MySQL Server 5.7 

Database Command Line Interface (CLI) : MySQL Shell 1.0 

Database Graphical User Interface (GUI) : MySQL Workbench 6.3 CE 

C++ to MySQL Connector   : Connector C++ 1.1 

5.2 Experiment Data Set 

Four sets of data are downloaded from the internet in order to conduct the 

experiments for evaluating the FP-NoSQL algorithm. Frequent Itemset Mining 

Implementations (FIMI) Dataset Repository is the website where the data sets are 

downloaded online (Goethals, 2004). The data sets are specifically prepared for the 

purpose of Frequent Itemset Mining (FIM). 

The four sets of data that have been downloaded online are the Retail, Connect, 

Pumsb, and Kosarak data sets. The Retail data set is a set of product sales data from a 

retail store, and the Connect data set is a set of network connection data from a 

computer server. The Pumsb data set is a set of census data from the United States of 
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America (USA), and the Kosarak data set is a set of click-stream data from a 

Hungarian online news portal. 

The four sets of data can be categorized into two categories, namely as a sparse 

data set or a dense data set. A sparse data set contains transactions that have different 

number of items in each transaction, whereas a dense data set contains transactions 

that have similar number of items in each transaction (Pyun et al., 2014). Retail and 

Kosarak are considered as sparse data sets, while Connect and Pumsb are considered 

as dense data sets. The examples of sparse data sets are shown in Figure 5.1 and 

Figure 5.2 respectively for the Retail and Kosarak data sets, whereas the examples of 

dense data sets are shown in Figure 5.3 and Figure 5.4 respectively for the Connect 

and Pumsb data sets. 

 

 

Figure 5.1: Retail Data Set (Brijs, 1999) 
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Figure 5.2: Kosarak Data Set (Bodon, 2003) 

 

 

Figure 5.3: Connect Data Set (Bayardo, 2007a) 
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Figure 5.4: Pumsb Data Set (Bayardo, 2007b) 

5.3 Evaluating FP-NoSQL on Different Data Sets 

In order to verify that the FP-NoSQL algorithm is suitable to be used for Frequent 

Pattern Mining (FPM), the algorithm is tested on four sets of data to evaluate its 

performance based on two important criteria: run time and memory usage. The 

objective of this evaluation is to confirm that the FP-NoSQL algorithm is able to mine 

any kind of data set, whether it is a sparse one or a dense one. In a sparse data set, 

every transaction has different number of items, whereas in a dense data set, every 

transaction has similar number of items. As shown in Figure 5.5, the Performance 

Profiler of Microsoft Visual Studio is used to monitor the run time and memory usage 

of the algorithm during its execution. The run time is measured in seconds (s) at the 

horizontal axis and the memory usage is measured in megabytes (MB) or gigabytes 

(GB) at the vertical axis. 
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Figure 5.5: Performance Profiler of Microsoft Visual Studio 

 

Since the execution of Performance Profiler will prolong the overall run time, a 

block of code implemented with the C++ programming language is included into the 

algorithm for measuring a more accurate run time as shown in Table 5.1. The code 

captures the start time and end time of execution for the algorithm in order to 

calculate its total run time. The run time is measured in microseconds so that a more 

accurate reading can be obtained. Then, it is converted from microseconds to seconds 

for easier analysis. After that, a log file is opened for the run time to be exported from 

the algorithm. Last but not least, the log file is closed once the entire algorithm is 

executed successfully. 

 

Table 5.1: C++ Code to Measure Run Time of Algorithm 

std::chrono::steady_clock::time_point begin = std::chrono::steady_clock::now(); 

std::chrono::steady_clock::time_point end = std::chrono::steady_clock::now(); 

ofstream log_file; 

log_file.open("FrequentPatternProcessorLog.txt"); 

log_file << "Total Run Time : " << std::chrono::duration_cast 

 <std::chrono::microseconds>(end - begin).count() << " microseconds"; 

log_file.close(); 
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5.3.1 Experiment on Retail Data Set 

The Retail data set is a set of product sales data from a retail store in the country 

of Belgian. It was donated to the FIMI Dataset Repository by Tom Brijs (Brijs, 

Swinnen, Vanhoof, & Wets, 1999). The data are gathered from three separated 

periods. The first period is between the second half month of December 1999 to the 

first half month of January 2000. Then, the second period is between January 2000 to 

the starting of June 2000. Last but not least, the third and final period is between the 

end of August 2000 to the end of November 2000. The data set contains 88162 

transactions with a total amount of 908576 items. It is a sparse data set where every 

transaction has different number of items. There are 16740 unique items in the entire 

data set. Each transaction represents a purchase by a customer that visited the retail 

store. The items in every transaction are the products purchased by the customers. 

To evaluate the performance of the FP-NoSQL algorithm in FPM, the algorithms 

of Frequent Pattern Processor and FP-Collection Constructor are executed on the 

whole data set multiple times using different values of minimum support. The entire 

experiment results for the Retail data set are recorded in Table 5.2. The experiment is 

performed on the data set based on different values of minimum support ranging from 

0.5 % down to 0.02 %, which are equivalent to the minimum support count of 4543 

down to 182. At each execution of the algorithms on the data set with a different 

value of minimum support, the Total Pattern, Unique Pattern, Run Time and Memory 

Usage are recorded accordingly. Total Pattern indicates the total number of patterns 

that can be located, whereas Unique Pattern represents the number of patterns that are 

unique throughout the data set when the algorithm is executed on it at a specific value 

of minimum support. 
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Table 5.2: Experiment Results for Retail Data Set 

Minimum 

Support 

(%) 

Minimum 

Support 

Count 

Total 

Pattern 

Unique 

Pattern 

Run Time 

(s) 

Memory 

Usage 

(MB) 

0.5 4543 138518 30 9.019413 35.3 

0.2 1817 174780 2613 10.8903 45.4 

0.1 909 233882 29289 19.492268 66.6 

0.08 727 258307 46766 22.025137 76.2 

0.06 545 295450 77554 25.1766 94.1 

0.04 363 364876 140834 42.671708 124.4 

0.02 182 515347 286341 71.942734 209.3 

 

As the algorithms are executed on the Retail data set using different values of 

minimum support, the run times recorded are between 9.02s to 71.94s as shown in 

Figure 5.6. When the minimum support is set to 0.5 % or 4543 counts, the total run 

time is only about 9.02s because the number of total patterns that can be located is 

less comparatively, which is equivalent to 138518 patterns. Furthermore, the total 

patterns are compressed into 30 unique patterns only. While the minimum support is 

set to a lower value at each execution of the algorithms, the number of total patterns 

and unique patterns that can be located from the data set are increasing gradually. 

When the minimum support is set to 0.02 % or 182 counts, the algorithms mine 

515347 patterns from the data set and compress them into 286341 unique patterns 

around the time of 71.94s. Even though the number of unique patterns has been 

drastically increased as the minimum support is set to a lower value, the run time for 

each execution of the algorithms is increasing at a reasonable rate. 
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Figure 5.6: Run Time Evaluation for Retail Data Set 

 

For memory usage, the consumptions are between 35.3 MB to 209.3 MB in 

mining the Retail data set as shown in Figure 5.7. Since the number of total patterns 

that can be located is less comparatively when the minimum support is set to 0.5 % or 

4543 counts, the memory consumption for mining the data is also at a very less 

amount of 35.3 MB only. When the minimum support is set to 0.02 % or 182 counts, 

the algorithms mine 515347 patterns from the data set and compress them into 

286341 unique patterns using about 209.3 MB of memory. Although the number of 

unique patterns has been drastically increased when the minimum support is set to a 

lower value, the memory consumption for each execution of the algorithms is 

increasing at a reasonable rate. 
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Figure 5.7: Memory Usage Evaluation for Retail Data Set 

 

Both graphs in Figure 5.6 and Figure 5.7 present a reasonable increase for the run 

time and memory usage as the minimum support decreases to a lower value that 

allows more patterns to be discovered. According to the experiment results, the 

algorithms are able to mine 515347 patterns from the data set and compress them into 

286341 unique patterns around the time of 71.94s using about 209.3 MB of memory 

when the minimum support is set to 0.02 % or 182 counts. In other words, it is 

equivalent to having the capability to mine around 7164 patterns within a second 

using about 2.91 MB only. Therefore, this indicated that the algorithms are capable 

enough to mine the data within a shorter run time using less memory consumption 

although the total number of records is increased to a much greater value. 

5.3.2 Experiment on Connect Data Set 

The Connect data set is a set of network connection data from a computer server. 

It was donated to the FIMI Dataset Repository by Roberto Bayardo who prepared it 

from one of the data sets in the UCI Machine Learning Repository (Asuncion & 

Newman, 2007). The data set contains 67557 transactions with a total amount of 
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2904951 items. It is a dense data set where every transaction has similar number of 

items. There are only 129 unique items in the entire data set. 

Similarly, the algorithms of Frequent Pattern Processor and FP-Collection 

Constructor are executed on the whole data set multiple times using a different value 

of minimum support. The entire experiment results for the Connect data set are 

recorded in Table 5.3. The experiment is performed on the data set based on different 

values of minimum support from 0.5 % down to 0.02 %, which are equivalent to the 

minimum support count of 14525 down to 581. 

 

Table 5.3: Experiment Results for Connect Data Set 

Minimum 

Support 

(%) 

Minimum 

Support 

Count 

Total 

Pattern 

Unique 

Pattern 

Run Time 

(s) 

Memory 

Usage 

(GB) 

0.5 14525 2627410 118715 159.63 1.3854 

0.2 5810 2824055 279695 182.00 1.6347 

0.1 2905 2871443 326014 190.63 1.6902 

0.08 2324 2881850 336240 190.14 1.7021 

0.06 1743 2885745 340104 192.59 1.7068 

0.04 1162 2892423 346770 194.29 1.7156 

0.02 581 2900616 354955 193.51 1.7530 

 

As shown in Figure 5.8, the run time of the algorithms are between 159.63s to 

193.51s when the algorithms are executed on the Connect data set using different 

values of minimum support. Even though the minimum support is set to a lower value 

at each execution of the algorithms, the run time for each execution of the algorithms 

is quite consistent with one another. This is because the total amount of items 

available in each transaction is very similar to one another in a dense data set. 
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Figure 5.8: Run Time Evaluation for Connect Data Set 

 

For memory usage, the consumptions are between 1.3854 GB to 1.7530 GB in 

mining the Connect data set as shown in Figure 5.9. When the minimum support is set 

to 0.5 % or 14525 counts, the memory consumption for mining the data is at the 

amount of 1.3854 GB. Comparing to the Retail data set, the memory consumption for 

mining the Connect data set is much higher because the number of total patterns and 

unique patterns that can be located from the data set are much more. However, the run 

time for each execution of the algorithms on the Connect data set is just slightly 

higher compared to mining the Retail data set. 
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Figure 5.9: Memory Usage Evaluation for Connect Data Set 

 

Both graphs in Figure 5.8 and Figure 5.9 present a more stable differences of 

values for the run time and memory usage as the minimum support decreases to a 

lower value that allows more patterns to be identified. According to the experiment 

results, the algorithms are able to mine 2900616 patterns from the data set and 

compress them into 354955 unique patterns around the time of 193.51s using about 

1.753 GB of memory when the minimum support is set to 0.02 % or 581 count. In 

other words, it is equivalent to having the capability to process around 14990 patterns 

within a second using about 9.28 MB only. Thus, this showed that the algorithms are 

still able to mine the data within a short run time using reasonable memory 

consumption even though the total number of records is increased to a much greater 

value especially when the data set is in a dense structure. 

5.3.3 Experiment on Pumsb Data Set 

The Pumsb data set is a set of census data from the United States of America 

(USA). It was donated to the FIMI Dataset Repository by Roberto Bayardo who 

prepared it from one of the datasets in the UCI Machine Learning Repository 
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(Asuncion & Newman, 2007). The data set contains 49046 transactions with a total 

amount of 3629404 items. It is a dense data set where every transaction has similar 

number of items. There are 2113 unique items in the entire data set. 

Likewise, the algorithms of Frequent Pattern Processor and FP-Collection 

Constructor are executed on the whole data set multiple times using a different value 

of minimum support. The entire experimental results for the Pumsb data set are 

recorded into Table 5.4. The experiment is performed on the data set based on 

different values of minimum support from 0.5 % down to 0.02 %, which are 

equivalent to the minimum support count of 18147 down to 726. 

 

Table 5.4: Experiment Results for Pumsb Data Set 

Minimum 

Support 

(%) 

Minimum 

Support 

Count 

Total 

Pattern 

Unique 

Pattern 

Run Time 

(s) 

Memory 

Usage 

(GB) 

0.5 18147 2557281 310484 225.28 2.1992 

0.2 7259 3057326 586571 304.03 3.0000 

0.1 3629 3205939 720525 327.07 3.5000 

0.08 2904 3260587 772910 349.08 3.5000 

0.06 2178 3302210 812542 369.88 3.7002 

0.04 1452 3374315 884119 384.44 3.7998 

0.02 726 3471736 981077 420.99 4.2002 

 

As shown in Figure 5.10, the run time of the algorithms are between 225.28s to 

420.99s when the algorithms are executed on the Pumsb data set using different 

values of minimum support. Just like the Connect data set, although the minimum 

support is set to a lower value at each execution of the algorithms, the run time for 

each execution of the algorithms is quite consistent with one another for the Pumsb 

data set. This is because the total amount of items available in every transaction in a 



 

125 

dense data set is quite similar with one another. When the minimum support count is 

set to 0.5 % or 18147 counts, the run time of the algorithms is much lower compared 

to the others because the number of unique pattern that can be identified is at a much 

lesser amount. 

 

 

Figure 5.10: Run Time Evaluation for Pumsb Data Set 

 

For memory usage, the consumptions are between 2.1992 GB to 4.2002 GB in 

mining the Pumsb data set as shown in Figure 5.11. When the minimum support is set 

to 0.5 % or 18147 counts, the memory consumption for mining the data is at the 

amount of 2.1992 GB. Similarly, comparing to a sparse data set, the memory 

consumption for mining the Pumsb data set is much higher because more total 

patterns and unique patterns can be located from a dense data set. Nevertheless, the 

run time for each execution of the algorithms on the Pumsb data set is only slightly 

higher compared to mining a sparse data set. 
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Figure 5.11: Memory Usage Evaluation for Pumsb Data Set 

 

Both graphs in Figure 5.10 and Figure 5.11 present a more constant changes of 

values for the run time and memory usage as the minimum support decreases to a 

lower value that allows more patterns to be discovered. This is because the total 

amount of items available in each transaction is very alike to one another. According 

to the experiment results, the algorithms are able to mine 3471736 patterns from the 

data set and compress them into 981077 unique patterns around the time of 420.99s 

using about 4.2002 GB of memory when the minimum support is set to 0.02 % or 726 

count. In other words, it is equivalent to having the capability to process around 8247 

patterns within a second using about 10.22 MB only. 

5.3.4 Experiment on Kosarak Data Set 

The Kosarak data set is a set of click-stream data from a Hungarian online news 

portal. It was donated to the FIMI Dataset Repository by Ferenc Bodon. The data set 

contains 990002 transactions with a total amount of 8019015 items. It is a sparse data 

set where every transaction has different number of items. There are 41270 unique 

items in the entire data set. It is the biggest one among the four different data sets. 
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Similarly, the algorithms of Frequent Pattern Processor and FP-Collection 

Constructor are executed on the whole data set multiple times using a different value 

of minimum support. The entire experiment results for the Kosarak data set are 

recorded into Table 5.5. The experiment is performed on the data set based on 

different values of minimum support from 0.5 % down to 0.02 %, which are 

equivalent to the minimum support count of 40095 down to 1604. 

 

Table 5.5: Experiment Results for Kosarak Data Set 

Minimum 

Support 

(%) 

Minimum 

Support 

Count 

Total 

Pattern 

Unique 

Pattern 

Run Time 

(s) 

Memory 

Usage 

(MB) 

0.5 40095 2208696 3390 76.13 494.3 

0.2 16038 2704833 140438 108.61 662.4 

0.1 8019 3101903 422014 162.09 850.8 

0.08 6415 3310181 598569 199.81 973.9 

0.06 4811 3656279 894556 232.35 1208.4 

0.04 3208 4107273 1316876 319.58 1608.3 

0.02 1604 5227955 2327143 667.91 2867 

 

As the algorithms are executed on the Kosarak data set using different values of 

minimum support, the run times recorded are between 76.13s to 667.91s as shown in 

Figure 5.12. When the minimum support is set to 0.5 % or 40095 counts, the total run 

time is only about 76.13s because the number of total patterns that can be located is 

less comparatively, which is equivalent to 2208696 patterns. Moreover, the total 

patterns are compressed into 3390 unique patterns only. While the minimum support 

is set to a lower value at each execution of the algorithms, the number of total patterns 

and unique patterns that can be located from the data set are increasing gradually. 

When the minimum support is set to 0.02 % or 1604 counts, the algorithms mine 

5227955 patterns from the data set and compress them into 2327143 unique patterns 
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around the time of 667.91s. Although the number of unique patterns has been 

drastically increased when the minimum support is set to a lower value, the run time 

for each execution of the algorithms is increasing at a reasonable rate. 

 

 

Figure 5.12: Run Time Evaluation for Kosarak Data Set 

 

For memory usage, the consumptions are between 494.3 MB to about 2.8 GB in 

mining the Kosarak data set as shown in Figure 5.13. Since the number of total 

patterns that can be located is less comparatively when the minimum support is set to 

0.5 % or 40095 counts, the memory consumption for mining the data is also at a very 

less amount of 494.3 MB only. When the minimum support is set to 0.02 % or 1604 

counts, the algorithms mine 5227955 patterns from the data set and compress them 

into 2327143 unique patterns using about 2.8 GB of memory. Even though the 

number of unique patterns has been drastically increased when the minimum support 

is set to a lower value, the memory consumption for each execution of the algorithms 

is increasing at a reasonable rate. 
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Figure 5.13: Memory Usage Evaluation for Kosarak Data Set 

 

Both graphs in Figure 5.12 and Figure 5.13 indicate a reasonable rise for the run 

time and memory usage as the minimum support decreases to a lower value that 

allows more patterns to be identified. According to the experiment results, the 

algorithms are able to mine 5227955 patterns from the data set and compress them 

into 2327143 unique patterns around the time of 667.91s using about 2.8 GB of 

memory when the minimum support is set to 0.02 % or 1604 count. In other words, it 

is equivalent to having the capability to process around 7828 patterns within a second 

using about 4.29 MB only. 

5.3.5 Summary of Experiment Results on Different Data Sets 

The purpose of executing the FP-NoSQL algorithm on four different sets of data 

is to confirm that the algorithm is capable of mining the frequent itemsets from 

various kind of data sets. Both the sparse and dense data sets used to conduct the 

experiments consist of short and long patterns. Among the four data sets, the total 

number of transactions are between 49 thousands to 0.990002 million records, while 
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the total number of items are between 0.908576 million to 8.019015 millions records. 

The details of the four sets of experiment data are summarized in Table 5.6. 

 

Table 5.6: Details of Four Experiment Data Sets 

Data Set Type 
Total 

Transaction 

Total 

Item 

Unique 

Item 

File Size 

(MB) 

Retail Sparse 88162 908576 16740 3.89 

Connect Dense 67557 2904951 129 8.76 

Pumsb Dense 49046 3629404 2113 15.8 

Kosarak Sparse 990002 8019015 41270 30.5 

 

For the sparse data sets (Retail and Kosarak), the FP-NoSQL algorithm is able to 

mine the frequent patterns with a gradual increase of run time and memory usage even 

though the minimum support is decreased to a lower percentage value. On the other 

hand, for the dense data sets (Connect and Pumsb), the FP-NoSQL algorithm is able 

to mine the frequent patterns with a more consistent run time and memory usage 

although the minimum support is decreased to a lower percentage value. Therefore, 

the experiments conducted have proven that the FP-NoSQL algorithm is able to mine 

a big data set with a shorter run time and lesser memory usage since it is scalable 

although the minimum support is set to a very low percentage value. 

5.4 Evaluating Run Time of FP-NoSQL by Comparing to Apriori and EFP 

In order to prove that the FP-NoSQL algorithm is able to mine the frequent 

patterns using a shorter run time even though the size of a data set is increased, the 

algorithm is executed on two additional sets of data that have been mined with the 

Apriori and Extended Frequent Pattern (EFP) algorithms (Shang, 2005). The objective 

of this evaluation is to confirm that the FP-NoSQL algorithm is able to outperform the 

existing significant algorithms in Frequent Pattern Mining. The details of the two sets 
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of experiment data are summarized in Table 5.7. Figure 5.14 and Figure 5.16 show 

the experiment results of the run time evaluation performed by the Apriori and EFP 

algorithms. The experiment results of the run time evaluation performed by the FP-

NoSQL algorithm are presented in Figure 5.15 and Figure 5.17. 

 

Table 5.7: Details of Two Experiment Data Sets 

Data Set Type 
Total 

Transaction 

Total 

Item 

Unique 

Item 

File Size 

(MB) 

T25I10D10K Sparse 9976 247148 929 0.92 

T10I4D100K Sparse 100000 1010228 870 3.74 

 

For the T25I10D10K data set in Figure 5.14 and Figure 5.15, when the values of 

minimum support are set between 1 % (2471 counts) to 0.2 % (494 counts), the 

Apriori algorithm is able to mine the frequent patterns within the range of 500 

seconds to 20 thousands seconds. The Apriori algorithm is able to mine the frequent 

patterns at a shorter run time of 500 seconds and 800 seconds, when the values of 

minimum support are set to higher values of 1 % (2471 counts) and 0.75 % (1854 

counts). However, the run time of the Apriori algorithm is drastically increased to 16 

thousands seconds and 20 thousands seconds, when the values of minimum support 

are set to lower values of 0.25 % (618 counts) and 0.2 % (494 counts). This is because 

the Apriori algorithm needs to generate a large number of candidate itemsets 

throughout the Frequent Pattern Mining (FPM) process by repeatedly scanning the 

entire database to perform pattern matching. 

On the other hand, with the same values of minimum support, the EFP algorithm 

is able to mine the frequent patterns within the range of 1600 seconds to 8700 

seconds. Although the values of minimum support are set to lower values of 0.25 % 

(618 counts) and 0.2 % (494 counts), the EFP algorithm is still able to mine the 

frequent patterns at 6900 seconds and 8700 seconds. This is because the EFP 

algorithm does not need to perform the step of candidate itemsets generation and test. 
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Even though the run time of the EFP algorithm is significantly lower at a few 

thousands seconds compared to the Apriori algorithm, the FP-NoSQL algorithm is 

able to mine the frequent patterns at much shorter run times between 2.87 seconds and 

16.47 seconds, using the same values of minimum support. EFP still requires a few 

thousands seconds in mining the frequent patterns when the minimum support is low 

because EFP mines the frequent patterns transaction by transaction and connects to 

the database several times throughout the FPM process. But FP-NoSQL is able to 

have such a powerful performance in mining the frequent patterns because the 

frequent patterns are mined and stored into the Frequent Pattern Database (FP-DB) at 

the same time. The data warehouse is only scanned once for retrieving all the data that 

need to be mined. As the data is being processed, all the frequent patterns found are 

concatenated together in the memory, so that it can be inserted into the FP-DB 

concurrently. This method of mining the frequent patterns enables the run time to be 

reduced significantly since only two database connections are required. 

 

 

Figure 5.14: Run Time Evaluation for T25I10D10K Data Set by Apriori and EFP 

(Shang, 2005) 
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Figure 5.15: Run Time Evaluation for T25I10D10K Data Set by FP-NoSQL 

 

For the T10I4D100K data set, when the values of minimum support are set 

between 1 % (10102 counts) to 0.02 % (202 counts), the Apriori algorithm is able to 

mine the frequent patterns within the range of 1304 seconds to 20 thousands seconds 

for the minimum supports between 1 % (10102 counts) to 0.1 % (1010 counts). When 

the value of minimum support is set at 0.08 % (808 counts) or lower, mining of the 

frequent patterns by the Apriori algorithm needs to be terminated due to its very long 

run time for candidate itemset generation and test. In contrast, with the same values of 

minimum support, the EFP algorithm is able to mine the frequent patterns within the 

range of 2174 seconds to almost 70 thousands seconds. However, the FP-NoSQL 

algorithm is able to mine the frequent patterns at much shorter run times between 5.69 

seconds and 113.05 seconds, using the same values of minimum support. 

Similarly, FP-NoSQL is capable of outperforming Apriori and EFP with such a 

major difference of run time because FP-NoSQL mines the frequent patterns and 

consolidates them into the FP-DB simultaneously, instead of inserting them one by 

one through a repeating loop of database scanning. The following code is the method 

used in Algorithm 4 of FP-NoSQL to concatenate the frequent patterns being mined 

so that it can be imported into the FP-DB at the same time: 
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While NOT End of Resultset Do 

 pat_count++ 

 If cur_pat != next_pat Then 

  documents += "('{\"Item\":" + item 

   + ",\"Frequency\":" + pat_count 

   + ",\"Connection\":\"" + con_path 

+ "\"}')," 

  pat_count = 0 

 End If 

End While 

When the FP-NoSQL algorithm loops through the list of frequent patterns, a 

counter (pat_count) is used to count the unique frequent patterns. If the current 

frequent pattern (cur_pat) is not equivalent to the next frequent pattern (next_pat), 

then the value of pat_count is considered as the frequency of the frequent pattern. 

Then, the current item (item) is concatenated with its connection path (con_path) and 

frequency (pat_count) to the documents string for inserting into the FP-Collection 

after all the frequent patterns have been processed. Therefore, the total run time of 

mining the frequent patterns can be greatly reduced since the data warehouse and FP-

DB are not being connected and accessed by the FP-NoSQL algorithm several times 

during the entire FPM process. 
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Figure 5.16: Run Time Evaluation for T10I4D100K Data Set by EFP Algorithm 

(Shang, 2005) 

 

 

Figure 5.17: Run Time Evaluation for T10I4D100K Data Set by FP-NoSQL 
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5.5 Evaluating Memory Usage of FP-NoSQL without FP-DB and with FP-DB 

To evaluate the performance of an algorithm, measuring the memory usage is 

another common method apart from calculating its run time. In this study, three 

experiments for measuring the memory usage of some existing Frequent Pattern 

Mining (FPM) algorithms have been reviewed as shown in Figure 5.18, Figure 5.19 

and Figure 5.20. These experiments indicated that the memory usage for mining the 

frequent itemsets of data is increasing exponentially especially when the amount of 

data is big. In Figure 5.18 and Figure 5.19, the algorithms of GMiner, BigFIM and 

DistEclat increased the memory usage to a few gigabytes (GB) in order to obtain a 

lower run time. This is because as the memory space for processing the data set is 

expanded, the amount of frequent itemsets that can be mined are able to be increased 

too. In Figure 5.20, the amount of memory usage for the Plausibility Rule Mining 

(PRM) and FP-Growth algorithms are much lower at around 50 to 250 megabytes 

(MB) compared to other algorithms in the two experiments because the pruning 

technique is applied in mining the frequent itemsets. However, pruning is not a 

suitable technique to decrease the run time of an algorithm for mining the frequent 

itemsets because it may prevent some significant patterns from being discovered. 

 

 

Figure 5.18: Time and Space for HIL Strategy of GMiner Algorithm 

(Chon, Hwang, & Kim, 2018) 
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Figure 5.19: Communication Costs and Performance of FPM Algorithms 

(Apiletti et al., 2017) 

 

 

Figure 5.20: Memory Usage of PRM and FP-Growth at Support = 10% 

(Abraham & Joseph, 2016) 
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Therefore, in order to verify that the FP-NoSQL algorithm is able to mine the 

frequent itemsets using less memory consumption even though the size of a data set is 

increased, the algorithm is executed on the T25I10D10K and T10I4D100K data sets. 

The experiment results of the memory usage evaluation performed by the FP-NoSQL 

algorithm for two different scenarios are presented in Figure 5.21 and Figure 5.22. 

The first scenario is an FPM process that is conducted without an FP-DB, while the 

second scenario is an FPM process that is conducted with an FP-DB. 

For the T25I10D10K data set, when the values of minimum support are set 

between 0.5 % (1236 counts) to 0.2 % (494 counts), in the first scenario where FPM 

is performed without an FP-DB, the memory usage for mining the frequent itemsets 

are within the range of 3.9 MB to 59.6 MB. But in the second scenario where FPM is 

performed with an FP-DB, the memory usage for mining the frequent itemsets are 

constantly maintained at 1.5 MB only. 

For the T10I4D100K data set, when the values of minimum support are set 

between 0.5 % (5051 counts) to 0.02 % (202 counts), in the first scenario where FPM 

is performed without an FP-DB, the memory usage for mining the frequent itemsets 

are within the range of 18.6 MB to 498 MB. But in the second scenario where FPM is 

performed with an FP-DB, the memory usage for mining the frequent itemsets are 

within the range of 1.3 MB to 1.5 MB only. 

In both data sets, when an FP-DB is not utilized, the memory usage for mining the 

frequent itemsets is increasing gradually from a few MB to a few hundreds MB as the 

minimum support is set to a lower value. This is because the number of frequent 

patterns that need to be mined will be increased when the minimum support is set to a 

lower value. In such a situation, patterns that appear less frequently in the data 

warehouse will also be included into the FPM process. Apart from this, the entire data 

warehouse needs to be mined in order to discover the frequent itemsets. Thus, the 

memory usage for mining the frequent itemsets is growing progressively as the 

minimum support is set to a lower value especially if the size of the entire data set is 

very large. 
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In contrast, when an FP-DB is implemented for both data sets, the memory usage 

for mining the frequent itemsets is maintained consistently within the range of 1.3 MB 

to 1.5 MB only. It is so since the entire data warehouse does not need to be mined 

again in order to discover the frequent itemsets. The frequent itemsets can be mined 

from the FP-DB directly because whatever that has been mined previously is retained 

in it. Apart from this, users can specify the frequent patterns and itemsets that need to 

be mined from the FP-DB using the appropriate NoSQL queries in the procedures of 

the FP-NoSQL algorithm as follows: 

(1) Search_All_Items() 

• dres = col.find().sort("Frequency DESC").limit(rpd) 

.offset(n).execute() 

• The NoSQL query in this procedure restricts the number of frequent patterns 

to be displayed to the users by having the ones with a higher frequency to be 

shown first because these are the most interested patterns that are required by 

the users. 

(2) Search_Specific_Item() 

• dres = col.find("Item=:param1").sort("Frequency 

DESC").limit(rpd).offset(n).bind("param1", 

item).execute() 

• The NoSQL query in this procedure displays the frequent patterns that are 

matched to a specific item determined by the users, so that they can focus their 

analysis on the frequent patterns that are related to a particular item that is of 

interest to them. 

(3) Search_Specific_Pattern() 

• dres = col.find("Connection LIKE :param1") 

.sort("Frequency DESC").limit(rpd).offset(n) 

.bind("param1", con_path.c_str()).execute() 
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• The NoSQL query in this procedure shows the frequent patterns that are 

matched to a specific pattern provided by the users. This enables the users to 

concentrate on analyzing the frequent patterns that consist of a particular 

pattern that is of interest to them. 

(4) Mine_Frequent_Itemsets() 

• dres = col.find("Item = :param1").bind("param1", 

item).execute() 

• The NoSQL query in this procedure mines the frequent itemsets that are 

related to an exact item requested by the users. This helps the users to retrieve 

only the frequent itemsets that are relevant to a specific item for data analysis. 

Therefore, since the users have flexibility to specify the relevant parts of frequent 

patterns and itemsets for data analysis, the memory usage for mining the frequent 

patterns and itemsets can be greatly reduced even though the minimum support is set 

to a lower value in a very large data set. 

 

 

Figure 5.21: Memory Usage Evaluation for T25I10D10K Data Set 
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Figure 5.22: Memory Usage Evaluation for T10I4D100K Data Set 

5.6 Evaluating FP-NoSQL with Big-O Notation 

Measuring the execution time of an algorithm is not enough to determine its 

complexity because such metric depends upon the computer hardware being used for 

executing the algorithm. The problem that exists in time measurement for evaluating 

an algorithm is that different computers will record different values of run time. Even 

though the algorithm is executed in the same computer, different values of run time 

will be recorded when the algorithm is executed multiple times. Therefore, apart from 

measuring the run time for executing the algorithm, the algorithm is evaluated using a 

more objective analysis metrics, the Big-O Notation. The objective of this evaluation 

is to confirm that the FP-NoSQL algorithm has been implemented in an optimized 

manner to achieve a better performance in Frequent Pattern Mining (FPM). 

Big-O Notation  is one of the statistical measures that can be used to elaborate the 

complexity of an algorithm (Malik, 2019). It estimates how the run time of an 

algorithm grows as the size of input increases to a bigger value and allows us to 

eventually determine the efficiency of algorithms (Vaz, Shah, Sawhney, & Deolekar, 

2017). Instead of counting the time which is so variable, the number of operations that 

the computer needs to perform are counted (Steele, 2019). The notation is represented 
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as a big “O” that is attached with a pair of opening and closing parenthesis. The 

connection between the input of an algorithm and the steps executed by the algorithm 

is represented using “n” inside the parenthesis. 

The time complexity analysis with Big-O Notation is one of the most important 

concepts for learning how to produce efficient programming codes (Barlowe & Scott, 

2015). Some of the most commonly used Big-O functions are stated in Table 5.8. In 

order to describe the evaluation of FP-NoSQL with the Big-O Notation, the 

fundamental knowledge of Big-O Notation for Constant Complexity (O(c)), Linear 

Complexity (O(n)) and Quadratic Complexity (O(n^2)) are briefly explained from 

Section 5.6.1 to Section 5.6.3. 

 

Table 5.8: Commonly Used Big-O Notations (Malik, 2019) 

Name Big O 

Constant O(c) 

Linear O(n) 

Quadratic O(n^2) 

Cubic O(n^3) 

Exponential O(2^n) 

Logarithmic O(log(n)) 

Log Linear O(n log(n)) 

5.6.1 Constant Complexity – O(c) 

The complexity of an algorithm is considered as constant if the steps required to 

accomplish the execution of an algorithm remain the same even though the number of 

inputs is changed. Constant Complexity is represented as O(c) and “c” is any object 

that can pass a different value to the function at different time. However, although 

different values are passed into the function at different times, the same number of 
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steps are processed by the function at every execution. For example, the following 

function will continue to perform two steps for printing out the square value of the 

first element in the array, irrespective of the input size, or the number of items in the 

array. Therefore, the complexity of a constant function remains constant with almost 

the same run time and memory consumption. An example of Constant Complexity for 

an algorithm is shown in Figure 5.23. 

 

Big-O Function Example 1: 

def constant_algorithm(items): 

result = items[0] * items[0] 

print () 

constant_algorithm([1, 2, 3, 4, 5]) 

 

 

Figure 5.23: Constant Complexity (Malik, 2019) 
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5.6.2 Linear Complexity – O(n) 

The complexity of an algorithm is considered as linear if the steps required to 

complete the execution of an algorithm decreases or increases in a linear manner with 

the number of inputs. Linear Complexity is represented as O(n) where “n” is any 

object that passes different values to the function at different times and causes the 

function to be executed with different number of iterations. For instance, the 

following function will increase its number of iterations for the loop if the number of 

items in the array is increased. Similarly, if the number of items in the array is 

decreased, the number of iterations for the loop is also decreased. Thus, the 

complexity of a linear function is having a linear relationship with the number of 

inputs. This causes the total amount of run time and memory consumption for the 

algorithm increases or decreases in a linear manner according to the number of inputs. 

An example of Linear Complexity for an algorithm is shown in Figure 5.24. 

 

Big-O Function Example 2: 

def linear_algorithm(items): 

for item in items: 

print(item) 

linear_algorithm([6, 7, 8, 9, 10]) 
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Figure 5.24: Linear Complexity (Malik, 2019) 

5.6.3 Quadratic Complexity – O(n^2) 

The complexity of an algorithm is considered as quadratic if the steps required to 

accomplish the execution of an algorithm are having a quadratic relationship with the 

number of inputs. Quadratic Complexity is represented as O(n^2). Likewise, “n” is 

any object that passes different values to the function at different times and causes the 

function to be executed with different number of iterations. For example, the 

following function will perform n * n number of steps, where an outer loop iterates 

through every item of the input, followed by a nested inner loop that iterates through 

each item of the input again. An example of Quadratic Complexity for an algorithm is 

shown in Figure 5.25. 
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Big-O Function Example 3: 

def quadratic_algorithm(items): 

for item in items: 

for item2 in items: 

print(item, ' ' ,item) 

quadratic_algorithm([2, 4, 6, 8, 10]) 

 

 

Figure 5.25: Quadratic Complexity (Malik, 2019) 

5.6.4 Big-O Notation Analysis for FP-NoSQL 

Generally, an algorithm consists of several functions for manipulating its input. 

Therefore, to determine the complexity of an algorithm in a more accurate manner, 

different parts of the algorithm need to be identified for its complexity. Every part of 
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the significant FP-NoSQL algorithms stated in Chapter 4 is evaluated with the Big-O 

Notation as follows: 

(1) Frequent Pattern Processor 

 

The time complexity of the Frequent Pattern Processor algorithm is denoted as: 

𝑇(𝑛) =  𝑂(1) + 𝑂(log(𝑛)) + 𝑂(𝑛(1 + 1 + 1 + 1)) + 𝑂(1) + 𝑂(log(𝑛)) + 𝑂(1)  

         =  𝑂(3) +  𝑂(𝑛(4)) +  2𝑂(log(𝑛)) 

         =  𝑂(3) + 𝑂(4𝑛) + 2𝑂(log(𝑛)) 
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         =  𝑂(𝑛) + 𝑂(log(𝑛)) 

(2) FP-Collection Constructor 

 

The time complexity of the FP-Collection algorithm is denoted as: 

𝑇(𝑛) =  𝑂(1 + 1 + 1) + 𝑂(log(𝑛)) + 𝑂(n log(𝑛)) + 𝑂(𝑛(1 + 1)) + 𝑂(1) +

                𝑂(log(𝑛)) + 𝑂(1 + 1)  

         =  𝑂(6) + 𝑂(𝑛(2)) + 2𝑂(log(𝑛)) + 𝑂(𝑛 log(𝑛)) 

         =  𝑂(6) + 𝑂(2𝑛) + 2𝑂(log(𝑛)) + 𝑂(𝑛 log(𝑛)) 



 

149 

         =  𝑂(𝑛) + 𝑂(log(𝑛)) + 𝑂(𝑛 log(𝑛)) 

 

When an algorithm is evaluated with the Big-O Notation, the output is always 

expected to be having a smooth line or a curve with minor or static slope (Devi, 

Selvam, & Rajagopalan, 2011). As both of the Frequent Pattern Processor and FP-

Collection Constructor algorithms are evaluated with the Big-O Notation, most parts 

have a constant time complexity (𝑂(1)), whereas the parts that manipulate the data 

have the linear (𝑂(𝑛)), logarithmic (𝑂(log (𝑛))), and log linear (𝑂(𝑛 log(𝑛))) time 

complexities. 

For the Frequent Pattern Processor algorithm, the parts that consist of a constant 

time complexity (𝑂(1)) are the operations for connecting to the data warehouse, 

generating the string of records to be inserted, and disconnecting from the data 

warehouse. Selecting the items that satisfied the threshold of minimum support from 

the data warehouse has the logarithmic time complexity (𝑂(log (𝑛))) because the 

database table has been indexed. Inserting the records into the frequent pattern table 

also has the logarithmic time complexity (𝑂(log (𝑛))) because all the records are 

inserted into the database together at the same time. The part that consists of a linear 

time complexity (𝑂(𝑛)) is the operation for constructing the frequent patterns. In the 

Frequent Pattern Processor algorithm, the 𝑂(𝑛)  operation consists of four 𝑂(1) 

operations that determine how the frequent patterns should be constructed by 

verifying the Transaction IDs and Item IDs of the data. 

For the FP-Collection Constructor algorithm, the parts that consist of a constant 

time complexity (𝑂(1)) are the operations for connecting to the data warehouse and 

database, generating the string of documents to be inserted, and disconnecting from 

the data warehouse and database. Selecting the frequent patterns from the database 

table has the logarithmic time complexity (𝑂(log (𝑛))) because the database table has 

been indexed. As the frequent patterns are sorted into the ascending order, it has the 

log linear (𝑂(𝑛 log(𝑛))) time complexity. Similarly, inserting the documents into the 

frequent pattern collection has the logarithmic time complexity (𝑂(log (𝑛))) because 

all the documents are inserted into the data warehouse together at the same time. The 
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part that consists of a linear time complexity (𝑂(𝑛)) is the operation for counting the 

frequent patterns and constructing its collection. In the FP-Collection algorithm, the 

𝑂(𝑛)  operation consists of two 𝑂(1)  operations that count and construct the 

documents of frequent patterns. 

The overall performance of any algorithm evaluated with the Big-O Notation can 

be represented in various forms as shown in Figure 5.26 (Miller & Ranum, 2013). 

Generally, the growth of performance for an algorithm can be denoted as logarithmic, 

linear, log linear, quadratic, cubic and exponential. When the number of inputs is 

increased, the algorithms that possess an exponential growth for its performance are 

considered as the worst implemented algorithms. This is because a minor increase for 

the inputs will cause a major increase for the steps required to complete the execution 

of the algorithms in processing all the data. On the other hand, when the number of 

inputs is increased, the algorithms that possess a logarithmic growth for its 

performance are considered as the best implemented algorithms. This is because a 

major increase for the inputs will only cause a minor increase for the steps required to 

complete the execution of the algorithms in processing all the data. 

The total time complexity of the Frequent Pattern Processor algorithm is 

evaluated to 𝑂(3) + 𝑂(4𝑛) + 2𝑂(log(𝑛)), while the total time complexity of the FP-

Collection Constructor algorithm is evaluated to 𝑂(6) + 𝑂(2𝑛) + 2𝑂(log(𝑛)) +

𝑂(𝑛 log(𝑛)). However, both of the total time complexities of the two algorithms can 

be evaluated to 𝑂(𝑛) + 𝑂(log(𝑛)) and 𝑂(𝑛) + 𝑂(log(𝑛)) + 𝑂(𝑛 log(𝑛)) 

respectively. This is because when the size of inputs (n) grows to a bigger value, the 

constants will become less and less important to the ultimate result. Since the FP-

NoSQL algorithm is evaluated to having a linear, logarithmic or log linear time 

complexity relationship with its input, it can be considered as a robust algorithm for 

mining the frequent itemsets of data. 

 



 

151 

 

Figure 5.26: Plot of Common Big-O Functions (Miller & Ranum, 2013) 

5.7 Chapter Summary 

The FP-NoSQL algorithm is evaluated with three experiments in this research. 

First and foremost, four different sets of data are used to evaluate the algorithm in 

order to ensure that it is able to mine any kind of data set, whether it is a sparse one or 

a dense one. Then, another two additional sets of data are used to evaluate the 

algorithm so that it can be confirmed that the FP-NoSQL algorithm is able to 

outperform the Apriori and Extended Frequent Pattern (EFP) algorithms, which are 

the existing significant algorithms for Frequent Pattern Mining (FPM). Finally, the 

Big-O Notation is used to evaluate the FP-NoSQL algorithm in order to determine 

that it has been implemented in an optimized manner to achieve a better performance 

for mining the frequent itemsets of data. All the three experiments produced 

reasonable results that confirm FP-NoSQL as a suitable algorithm to be used in the 

area of FPM. 
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CHAPTER 6 

CONCLUSION 

This chapter concludes the entire work of research with a brief summary and 

highlights the contribution and possible work of enhancement in the near future. In 

Section 6.1, a summary of the research is given by addressing the research questions 

and research objectives together as a whole. Then, Section 6.2 describes the 

contribution and Section 6.3 explains the limitation of this research. Last but not least, 

Section 6.4 provides some possible directions for the work of this research to be 

further enhanced by anyone who is interested in conducting research for Frequent 

Pattern Mining. 

6.1 Summary of Research 

There are three major research questions to be addressed in this work and they are 

summarized into one as follows for easier discussion: 

How can the frequent patterns and itemsets be mined efficiently within a shorter run 

time using lesser memory consumption and be retained for further analysis even 

though the amount of data is big in a data set? 

In order to retain the frequent patterns that have been mined for further analysis, a 

Frequent Pattern Database (FP-DB) needs to be utilized for executing the process of 

Frequent Pattern Mining (FPM). The FP-DB is used for storing all the patterns that 

can be found in a data warehouse. Each unique pattern of any item is stored into the 

FP-DB along with its frequency of occurrence from the data warehouse. When every 

pattern is consolidated from the data warehouse into a Frequent Pattern Collection 

(FP-Collection) in the FP-DB, the frequent patterns that have been mined can be 

retained for further analysis even after a power failure. This is because the frequent 
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patterns that have been mined by the FP-NoSQL algorithm are not only stored in the 

Random Access Memory (RAM) but also in the database. Since the frequent patterns 

are stored in the FP-DB, it can be retrieved anytime from the database whenever there 

is a need to perform analysis on a particular set of data. 

Then, for mining the frequent patterns within a shorter run time, every pattern that 

exists frequently among the transactions of the data warehouse is concatenated 

together to be inserted into the FrequentPattern table at the same time. The frequent 

patterns are processed in such a manner so that the data warehouse does not need to 

be scanned several times while the frequent patterns are stored into the FP-Collection 

of the FP-DB. As the FP-DB is not scanned multiple times when the frequent patterns 

are inserted into it, the time required to process all the frequent patterns have been 

greatly reduced. It is so because scanning through the database frequently for 

performing any operation of data manipulation is very costly. Apart from this, to 

further reduce the time for mining frequent patterns from the data warehouse, each 

frequent pattern is constructed directly from the FrequentItem table into the 

FrequentPattern table. After the whole FrequentPattern table is built, all the frequent 

patterns are sorted in the ascending order so that it can be quickly counted for storing 

into the FP-Collection in the FP-DB. 

Last but not least, mining the frequent itemsets using lesser memory consumption 

is made possible with the FP-DB. This is because every unique pattern that exists 

frequently in the data warehouse is stored in the FP-DB together with its frequency of 

occurrence among all the transactions of data. Therefore, it is not necessary to mine 

the entire data warehouse in order to discover the frequent itemsets that are related to 

a specific item. Since every unique pattern that exists frequently in the data warehouse 

has already been mined into the FP-DB, the FP-NoSQL algorithm is only required to 

search through the FP-DB for frequent patterns that matched the requirements of users 

so that the relevant frequent itemsets can be generated easily. Hence, the memory 

usage for mining the frequent itemsets is significantly reduced as the amount of data 

to be retrieved from the FP-DB has been set appropriately with the relevant NoSQL 

query in the algorithm. 
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6.2 Research Contribution 

Through this research, the following contributions have been accomplished: 

(1) The frequent patterns that have been mined by the current algorithms are mainly 

retained in the Random Access Memory (RAM). When the system is down or 

there is a power failure, none of the frequent patterns can be retained for data 

analysis. In this research, the frequent patterns that have been mined can be 

retained for data analysis using a Frequent Pattern Database (FP-DB). This is 

because the frequent patterns and their support counts are stored into a Frequent 

Pattern Collection (FP-Collection) of the FP-DB and it can be retrieved again even 

after the system is down or a power failure. Therefore, the entire data warehouse 

is not required to be mined again in order to construct all the frequent patterns and 

its support counts. Since the FP-Collection is storing the frequent patterns and 

their support counts, data analysis can be conducted more often at anytime. 

(2) The frequent itemsets that appear in a data set need to be mined with a longer run 

time by the current algorithms especially if the amount of data is big. In this 

research, the frequent itemsets can be mined within a shorter run time although the 

amount of data is big in the data warehouse. This is because every pattern that 

exists frequently in the data warehouse is inserted simultaneously into a frequent 

pattern table after they are being concatenated together. In this way, it helps to 

decrease the number of times for scanning the data warehouse. Hence, the total 

run time for constructing all the frequent patterns can be greatly reduced. As the 

total run time is greatly reduced, more data can be processed to identify the hidden 

patterns for decision making in the organization. 

(3) The frequent itemsets that appear in a data set need to be mined with more 

memory consumption by the current algorithms especially if the amount of data is 

big. In this research, the frequent itemsets can be mined with lesser memory usage 

even though the amount of data is big in the data warehouse. The is because the 

frequent patterns and their support counts can be located selectively from the 

FP-Collection of the FP-DB using the appropriate NoSQL queries. Thus, with the 

FP-Collection, only the frequent patterns that matched the requirements of the 

users are needed to be mined to produce the frequent itemsets. At the same time, 

this helps users to focus their analysis on the data that is of interest to them. 
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6.3 Research Limitation 

Although the FP-NoSQL algorithm is able to mine the frequent itemsets within a 

shorter run time with lesser memory usage, even if the amount of data is big in the 

data warehouse, there are still some limitations that are faced by the algorithm. One of 

the limitations in this research is where the entire FP-DB needs to be reconstructed if 

there are changes towards the frequency of the patterns. This is because the results of 

frequent itemset mining will no longer be accurate anymore as long as there are 

changes towards the frequency of any pattern. In addition, the entire FP-DB also 

needs to be reconstructed if some frequent patterns are no longer significant in the 

data warehouse and need to be removed. Likewise, the results of frequent itemset 

mining will not be accurate as well whenever the frequency of any pattern is changed, 

whether it has been increased or decreased. 

6.4 Direction for Future Work 

In this research, the FP-NoSQL algorithm is designed and developed to perform 

the work of Frequent Pattern Mining (FPM) using one unit of computer only. To 

further improve the mining operations of FPM, it is still possible to reduce additional 

speed and memory usage for the algorithm in mining the frequent itemsets of data. 

Some of the methods that can be utilized to enhance the performance of the 

FP-NoSQL algorithm are Parallel Computing and Distributed Computing. Parallel 

Computing is a kind of processing in which many executions of processes are 

accomplished at the same time so that a computational problem can be resolved in 

lesser time and with greater accuracy (Kaminsky, 2016). It can be implemented within 

a single machine if there is a multi-core processor, or across multiple machines that 

are networked together to process the same task. In Parallel Computing, huge 

computational problems are separated into tiny ones so that it can be fixed 

simultaneously especially if the problems are very complicated. After a computational 

task is broken down into multiple subtasks to be processed individually, the final 

results are to be combined upon accomplishment of the entire process. Since Parallel 

Computing is able to speed up the processing of a computational task, it is definitely 
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more useful to enhance the FP-NoSQL algorithm with the capability of parallelism in 

mining the frequent itemsets of data. On the other hand, Distributed Computing is a 

type of processing where multiple components are situated on different computers 

that are connected together, in which communication and coordination of actions are 

performed by exchanging messages with one another (Coulouris, Dollimore, & 

Kindberg, 2011). Similarly, in Distributed Computing, a computational problem is 

separated into many subtasks, having each task to be solved by one or more 

computers. However, every processor in Distributed Computing has its own memory 

and data is exchanged with one another by sending messages between the processors; 

whereas in Parallel Computing, all processors are usually accessing a shared memory 

to exchange data between different processors (Papadimitriou, 1994). Since 

Distributed Computing consists of additional memory processing power in its 

hardware architecture, it is surely more beneficial to improve FP-NoSQL as a 

distributed algorithm in mining the frequent itemsets of data. 

Apart from this, one more improvement that can be done for the FP-NoSQL 

algorithm is to enable the support counts of the frequent patterns to be updated 

without reconstructing the entire FP-DB when the frequent patterns are mined in more 

than one FPM process. If the support count of every frequent pattern can be updated 

without reconstructing the entire FP-DB, then the run time required to mine the 

frequent itemsets from the FP-DB can be greatly reduced. In order to achieve this 

capability, the relevant NoSQL queries and algorithms are required to be designed for 

identifying the appropriate frequent patterns where their support counts are needed to 

be updated. Once the relevant frequent patterns are identified, their support counts are 

required to be increased or decreased accordingly. 

Furthermore, another improvement that can be implemented for the FP-NoSQL 

algorithm is to allow the frequent patterns that are no longer significant in the data 

warehouse to be removed from the FP-DB without reconstructing the entire FP-DB. If 

the unnecessary frequent patterns can be removed without reconstructing the entire 

FP-DB, then additional space can be allocated to store the more significant frequent 

patterns that are required to be mined. At the same time, this also helps to speed up 
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the mining process for the frequent itemsets since the search space of the frequent 

patterns has been reduced to a smaller area. 

Finally, if all these techniques can be implemented successfully into the 

algorithm, the time and memory required to mine the frequent itemsets of data can be 

significantly reduced even though the amount of data is big and continue to increase 

in the data warehouse. This is because a huge data set can be divided into smaller data 

sets so that it can be distributed to multiple different computers in the network for 

mining the frequent itemsets in parallel. Performing continuous research in the area of 

data analytics is undeniably important and of great value since it is a capability that 

helps to optimize various processes of an organization in any industry like electric-

power (Qing, Boyu, & Qinqian, 2017), oil and gas (Alguliyev, Aliguliyev, & 

Hajirahimova, 2016), restaurant (Mattera, 2018), railway engineering (Attoh-Okine, 

2014), healthcare (Patil & Seshadri, 2014), media and entertainment (Suri & Singh, 

2018), and finance (H. Zhang, Li, Shen, Sun, & Yang, 2015). 
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