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ABSTRACT 

 

 

An artificial neural network (ANN) has been created for the prediction of the 

hydrogen storage capacity of Mg based alloy hydrides as a function of the alloy 

composition, pressure and temperature. The aim of this study is to develop an ANN 

that able to predict the hydrogen storage capacity of Mg based hydrides accurately. In 

the present study, a total of 103 data were used to develop the ANN model. The 

architecture of the model consists of one hidden layer with 10 neurons and utilized 

Hyperbolic Tangent Sigmoid (tansig) transfer function. The neural network is trained 

using the Levenberg-Marquardt training algorithm. A regression analysis was 

conducted and showed that the developed model is able to predict accurate hydrogen 

storage capacity which is indicated by its overall regression coefficient of 0.92767. 

The neural network used to study the influence of composition of different alloying 

material, pressure and temperature on the hydrogen storage capacity. For the 

investigated alloy materials, the hydrogen storage capacity decrease with the increase 

of alloy composition. The hydrogen storage capacity also increases with the rise of 

temperature and pressure.  
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Background  

 

 In the International Energy Outlook 2019 (IEO2019), the U.S. Energy 

Information Administration (EIA) predicts that consumption of energy worldwide will 

increase by approximately 50% between the year 2018 and 2050 (Mostyn, 2019). The 

increase in energy demand maybe due to the rising of income, urbanization and 

increased access to electricity. Energy can fall into two main categories which are 

renewable and non-renewable. Currently, 84% of the world’s energy are being 

produced from a non-renewable source which is fossil fuel based on BP’s Statistical 

Review of World Energy 2020 (Rapier, 2020). However, burning fossil fuels to obtain 

energy has many disadvantages as this activity increases the emission of greenhouse 

gases which are carbon dioxide (CO2), followed by rising global average temperatures 

that eventually lead to global warming and causing unprecedented melting of polar sea 

ice and rising sea levels (Raj & Singh, 2012). This drives further renewable energy 

development and research to limit the CO2 emission. 

 

Hydrogen, which is the simplest natural element, can be found abundantly in 

the atmosphere. According to AZoCleantech (2008), the energy content of hydrogen 

is the highest compared to others common fuel by weight, thus making hydrogen a 

promising non-polluting energy carrier. Despite its many advantages, the biggest 

challenge faced is the storage of hydrogen (Jansa et al., 2020; Sang-Kun et al., 2017; 

Schüth, 2009). Conventional methods on storing hydrogen are either using high 

pressure to compress the hydrogen or using a low temperature to liquified hydrogen as  
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hydrogen is an extremely light, low-density gas that tends to strongly repel each other 

when in molecules form (Zarezadeh Mehrizi et al., 2020). However, these storage 

methods have many disadvantages such as it uses large volumes in order to store a 

sufficient amount of fuel, it cannot be stored for a long term and it is unsafe. Therefore, 

another method of hydrogen storage proposed is by using metal hydrides. 

 

The theory of storing and supplying hydrogen in the form of metal hydrides 

utilizes the reversible chemical reaction (Yartys et al., 2019). This reaction involves 

the formation of hydrogen-metal bonds when metal reacts with hydrogen gas and 

thermal decomposition of the hydride to gain the metal and pure hydrogen back 

(Dornheim, 2011; Lu et al., 2006). In storing of hydrogen, the hydrogen molecules will 

break into atomic hydrogen and these will be absorbed in the metallic hydride’s lattice 

under mild conditions - standard room temperatures and atmospheric pressure. This 

method of hydrogen storage ensures safe storage and reduces the volume required for 

storing large quantities of hydrogen. Moreover, hydrogen stored in metal hydrides 

does not have an expiry date as they do not self-discharge.  

 

Magnesium (Mg) has been studied as a potential material to store hydrogen 

since 50 years ago due to its light weight properties and it is widely available on Earth 

as Mg is the sixth most abundant metal element in the Earth's crust (Rivard et al., 2019; 

Webb, 2015; Yartys et al., 2019). Aside from affordability and high abundance, it's 

high gravimetric hydrogen capacity and energy density which are 7.6 wt% H2 and 

13.22 MJ/L respectively place magnesium as a feasible substance to store hydrogen 

(Mirabile Gattia et al., 2020; Ouyang et al., 2020). However, the practical application 

of MgH2 in its pure form as a hydrogen storage material has many drawbacks as it is 

hindered by the high dehydrogenation temperature (above 573 K) and slow adsorption 

and desorption kinetics, which are caused by high thermal stability and kinetics barrier 

(Bahou et al., 2020; Peng et al., 2017; Zhang et al., 2017). Studies showed that alloying 

with other elements can improve the adsorption and desorption kinetics at the expenses 

of hydrogen storage capacity. Therefore, this project aims to determine the best 

combination of Mg based alloy hydrides. 
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1.2 Problem Statement 

 

Currently, hydrogen storage is a major obstacle in developing the hydrogen 

economy. The conventional storage methods like pressurized gas or liquified hydrogen 

cannot fulfil the storage goals. In order to overcome the hydrogen storage problem, the 

storage of hydrogen in metal hydrides was proposed. Magnesium (Mg) -based 

hydrides are chosen as a feasible material for hydrogen storage as it can be found 

abundantly on Earth, making its cost to be relatively lower compared to other metals. 

Most importantly, Mg-based hydrides have adequately high hydrogen capacity which 

is up to 7.6 wt%. However, MgH2 in its pure form is not suitable to be used as hydrogen 

storage material as it has many drawbacks such as high dehydrogenation temperature 

(above 573 K) and slow adsorption and desorption kinetics. From the research done, 

it is determined that the combination of other elements with Mg hydride improved the 

adsorption and desorption kinetics. Commercial simulators are usually used to study 

hydrogen storage which they are based on partial differential governing equations but 

they are computationally expensive and complicated to be used while they are time-

consuming. However, there are only limited findings or researches on machine 

learning of hydrogen storage being performed in spite of the active studies being 

conducted on materials and structure for hydrogen storage in metal hydride. Therefore, 

in this project, an artificial neural network model will be present to estimate the best 

combination of Mg-based alloy hydrides for the performance of storage and the 

temperature and pressure of hydrogenation.  
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1.3 Objectives 

 

The purpose of this project first and foremost is to fulfil the Final Year Project 

(FYP) course requirement, where it is mandatory for all final year students to perform 

research or conduct a project/development in their respective discipline that can 

overcome real-world problems and produce practical solutions. Students are 

encouraged to use their available knowledge, techniques and tools to solve the 

problems encountered and enhancing their skills in applying knowledge and expanding 

thoughts through managing projects independently.   

  

The objectives of this project are as follow:  

• To present a reliable ANN model to predict the performance of hydrogen 

storage in Magnesium alloy hydrides at different temperature and pressure. 

• To offer the optimal composition for the storage using the developed ANN 

model. 

 

 

1.4 Scopes 

 

This project focuses on the Artificial Neural Network (ANN) modelling of Mg-

based alloy hydrides for hydrogen storage at different temperature and pressure. 

MATLAB software is used to create the model that able to predict the hydrogen 

storage capacity for Mg-based alloys in this project by entering data collected from the 

literature review. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

2.1 Hydrogen Energy 

 

  In today’s world, energy plays a vital part in our daily life. Unfortunately, most 

people take energy for granted while the energy crisis is on the rise. Energy crisis come 

from the foreseeable end of the cycle of fossil fuel (Solutions to the Energy Crisis: 

How to Achieve Sustainable Energy?, n.d.). Based on BP’s Statistical Review of World 

Energy 2020, 84% of the world’s energy is being generated from fossil fuel such as 

coal, petroleum, natural gas, and other heavy oils as shown in Figure 2.1 (Rapier, 

2020). Fossil fuels are finite meaning that long-run consumption may lead to depletion 

of resources (Chamoun et al., 2015). However, the energy demand continues to rise as 

reported by the U.S. Energy Information Administration (EIA) which predicts that the 

world energy consumption will increase by approximately 50% between the year of 

2018 and 2050 in the International Energy Outlook 2019 (Mostyn, 2019). The increase 

in energy demand and diminishing fossil fuel reserve pose danger to the global energy 

security. Moreover, burning fossil fuels to obtain energy has many downsides as this 

activity increases the emission of greenhouse gases, primarily carbon dioxide (CO2) 

and the global average temperatures which eventually led to global warming and 

causing unprecedented melting of polar sea ice and rising sea levels (Raj & Singh, 

2012). It is supported by Energy – United Nations Sustainable Development that stated 

that 60% of the global greenhouse gas emission is contributed by energy. These 

reasons encourage renewable energy development which aims to limit the CO2 

emission and reduce the current dependence on fossil fuels.
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Figure 2.1: Primary global energy consumption (Rapier, 2020) 

 

Hydrogen is highly appraised as a promising non-polluting energy carrier due 

to hydrogen molecules having these properties. Hydrogen is a non-toxic element that 

can be found abundantly as it makes up more than 90% of all atoms (Abe et al., 2019). 

Furthermore, hydrogen molecule has the highest energy content of any common fuel 

by weight as shown in Table 2.1 while being the lightest element, having a molecular 

weight of 2.016 (AZoCleantech, 2008; Bellosta von Colbe et al., 2019). Asides from 

that, hydrogen can be produced from both renewable such as hydro, wind, wave and 

solar and non-renewable sources such as coal, natural gas and nuclear energy while its 

waste product is only water when energy is derived from the reaction with oxygen 

(Montone et al., 2011). 

 

Align with the United Nation’s Sustainable Development Goals (SDG) goal 7 

which is affordable and clean energy, hydrogen energy can be seen as a sustainable 

solution to the current energy challenges such as energy security, economic 

competitiveness and environmental responsibility.  
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Table 2.1: Comparison of energy content of fuels (Abe et al., 2019) 

Fuel Energy contents [MJ/kg] 

Lower heating 

value 

Higher heating 

value 

Gaseous hydrogen 119.96 141.88 

Liquid hydrogen 120.04 141.77 

Natural gas 47.13 52.21 

Liquified Natural Gas (LNG) 48.62 55.19 

Still gas (in refineries) 46.89 50.94 

Crude oil 42.68 45.53 

Liquefied Petroleum Gas (LPG) 46.60 50.14 

Conventional gasoline 43.44 46.52 

Reformulated or Low-Sulfur Gasoline (RFG) 42.35 45.42 

Conventional diesel 42.78 45.76 

Low-Sulfur diesel 42.60 45.56 

Coal (wet basis) 22.73 23.96 

Bituminous coal (wet basis) 26.12 27.26 

Coking coal (wet basis) 28.60 29.86 

Methanol 20.09 22.88 

Ethanol 26.95 29.84 

 

2.2 Hydrogen Storage Requirement 

 

Despite hydrogen energy having many advantages, the biggest issue faced is 

the storage of hydrogen (Bellosta von Colbe et al., 2019; Sang-Kun et al., 2017; 

Schüth, 2009). Regardless of mobile and stationary application hydrogen storage 

system, both storage systems have their drawbacks. In stationary storage system, 

weight and volume issues are not as significant when compared to mobile storage 

system as for stationary application, it can occupy more space, operate at higher 

temperature and pressure in order to offset the slow kinetics (Abe et al., 2019). On the 

contrary, hydrogen storage for mobile application has a more exhaustive requirement. 

The United State DRIVE Partnership which is a partnership between the U.S. 

Department of Energy (DOE) and the U.S. Council for Automotive Research 

(USCAR) has summarized the technical performance goals for hydrogen storage 

systems for onboard light-duty vehicles as in Table 2.2. In Table 2.2, it can be seen 

that high value of gravimetric and volumetric capacity are highly preferred for 

hydrogen storage as the gravimetric capacity indicates the quantity of hydrogen that 

can be stored per weight of the storage tank while the volumetric capacity refers to the 

amount of hydrogen absorbed per volume of the storage tank. 
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Table 2.2: Overview of some selected parts of the U.S. DOE technical system goals 

for onboard hydrogen storage for light-duty vehicles (DOE Technical Targets for 

Onboard Hydrogen Storage for Light-Duty Vehicles | Department of Energy, n.d.) 

STORAGE PARAMETER UNITS 2020 2025 ULTIMATE 

System Gravimetric Capacity 

Usable, specific-energy from H2 (net 

useful energy/max system mass) b 

kWh/kg 

(kg H2/kg 

system) 

1.5 

(0.045) 

1.8 

(0.055) 

2.2 

(0.065) 

System Volumetric Capacity 

Usable energy density from H2 (net 

useful energy/max system volume) b 

kWh/L 

(kg H2/L 

system) 

1.0 

(0.030) 

1.3 

(0.040) 

1.7 

(0.050) 

Storage System Cost 

Storage system cost 
$/kWh net 

($/kg H2) 

10 

(333) 

9 

(300) 

8 

(266) 

Fuel cost c 
$/gge at 

pump 
4 4 4 

Durability/Operability 

Operating ambient temperature d °C 
-40/60 

(sun) 

-40/60 

(sun) 
-40/60 (sun) 

Min/max delivery temperature °C -40/85 -40/85 -40/85 

Operational cycle life (1/4 tank to full) cycles 1,500 1,500 1,500 

Min delivery pressure from storage 

system 
bar (abs) 5 5 5 

Max delivery pressure from storage 

system 
bar (abs) 12 12 12 

Onboard efficiency e % 90 90 90 

“Well” to power plant efficiency f % 60 60 60 

Charging/Discharging Rates 

System fill time g min 3–5 3–5 3–5 

Minimum full flow rate (e.g., 1.6 g/s 

target for 80 kW rated fuel cell power) 
(g/s)/kW 0.02 0.02 0.02 

Average flow rate (g/s)/kW 0.004 0.004 0.004 

Start time to full flow (20°C) s 5 5 5 

Start time to full flow (-20°C) s 15 15 15 

 

Other important hydrogen storage requirements are low pressure and low 

temperature of hydrogenation (dehydrogenation), low activation energy for charge and 

discharge of the material, good hydriding (dehydriding) kinetics, long cycle life, high 

safety under operating conditions and low cost (Malinova & Guo, 2004). 
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2.3 Hydrogen Storage 

 

Hydrogen, which is an extremely light, low-density gas, tends to repel each 

other strongly when in molecules form making it harder to store them. Based on 

Malinova & Guo (2004), hydrogen can be stored in three different state – gaseous 

state, liquid state and solid state. Conventional methods to store hydrogen are in 

gaseous and liquid states as shown in Figure 2.2. The gaseous state hydrogen storage 

system is the most well-established storage system in the physical state. In this system, 

hydrogen is compressed under high pressure between 35Mpa to 70Mpa and is stored 

as pressurized hydrogen gas (Breeze, 2018; Hua et al., 2011; Krishna et al., 2012). Due 

to the high pressure, a special storage tank that is made from material that can 

withstand high pressure such as steel and aluminium is required. On the contrary, 

liquid hydrogen storage system uses a very low temperature around 20 K or -253oC at 

atmospheric pressure to liquified hydrogen (Andersson & Grönkvist, 2019; Jain, 2009; 

Yanxing et al., 2019). This low temperature application needed continuous cooling to 

maintain its liquid state which will increase the operational cost. However, these 

storage methods have many disadvantages such as it used large volume to store enough 

fuel, it cannot be stored for a long period and it is unsafe on account of risk of leakage. 

Therefore, another method of hydrogen storage was proposed is in solid state by using 

metal hydrides. 

 

 

Figure 2.2: Hydrogen stored in gaseous (right) and liquid (left) state (Jain, 2009) 
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According to Barthelemy et al. (2017), hydrogen storage in solid state provides 

some advantages in terms of volumetric density compared to storage using high 

pressure and low temperature. In this project, hydrogen storage in the form of metallic 

hydrides is focused. The concept of storing and supplying hydrogen in the form of 

metal hydrides utilizing the reversible chemical reaction is shown as Equation 1 (Abe 

et al., 2019; Dornheim, 2011). 

𝑀𝑒 + 
𝑥

2
𝐻2 ↔ 𝑀𝑒𝐻𝑥 + 𝑄     (1) 

Where Me is the solid solution (a metal); MeHx is the respective hydride; x is the ratio 

of hydrogen to metal and Q is the heat of reaction. In the formation of metal hydride 

at ambient and elevated temperatures, the heat of reaction, Q is exothermic where the 

formation of new bond produces heat that must be released to the surrounding. In 

contrast, hydrogen desorption or discharge process is an endothermic reaction where 

the breaking of bonds requires heat from the environment (Dornheim, 2011; 

Rabienataj Darzi et al., 2016). 

  

According to Dornheim (2011) and Yartys et al. (2019), the reaction of 

hydrogen with metal is a hetero-phase transformation process where several reaction 

stages are involved as shown in Figure 2.3. Firstly, the hydrogen molecule is brought 

to the metal surface where they will have the first attractive interaction. The 

approaching hydrogen molecule will interact with the surface of metal via Van der 

Waals force, where the distance between the hydrogen molecule and metal surface is 

reduced by the power of 6. This will cause them to be in a physiosorbed state. The 

third step is known as dissociation and chemisorption, where the hydrogen molecule 

breaks into atomic hydrogen and the newly formed atomic hydrogen will have to 

overcome activation barrier to form the hydrogen metal bond, leading to become into 

chemisorbed state. The hydrogen atoms will penetrate the metal surface and diffuse 

into the bulk lattice to form metal hydride (Dornheim, 2011).  
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Figure 2.3: Reaction of a hydrogen molecule with a metal (Dornheim, 2011) 

 

Where: a) Transportation of hydrogen molecule to metal surface.  

            b)  Physiosorbed state 

            c)  Dissociation and chemisorption 

            d)  Diffusion into bulk lattice 

 

 

2.4 Magnesium Hydrides as Hydrogen Storage Material   

 

There are many different solid-state hydrogen storage materials such as lithium 

(Li), aluminium (Al) and boron (B). According to Andersson & Grönkvist (2019), 

most of the metallic elements able to form binary compounds such as elemental 

hydrides with hydrogen, but a lot of them are unfitting for hydrogen storage purpose 

due to thermodynamics, storage capacity or worst scenario, both. Magnesium hydride 

(MgH2) is considered as propitious elemental metal hydride for large-scale hydrogen 

storage (Ji et al., 2020; Webb, 2015).  

 

Magnesium (Mg) and magnesium hydride (MgH2) have been investigated 

intensively as hydrogen storage material since the late 1960s owing to its low cost as 

it can be obtained by using well-established technology and high volumetric and 

gravimetric storage capacity which is up to 7.6 wt% and 110g H2/L respectively 

(Bahou et al., 2020; Sun et al., 2020; Yartys et al., 2019). Asides from that, Mg is a 

non-toxic material that has high availability as it is the sixth most abundant metal 

element in the Earth’s crust. Furthermore, the operation of Mg in hydrogen storage 
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application is much safer compared to other light elements (Yartys et al., 2019). More 

importantly, MgH2 can be synthesized by hydrogenation of magnesium as shown in 

Equation 2 below with great reversibility (Sasaki et al., 2016; Sun et al., 2020).  

 

𝑀𝑔 +  𝐻2  → 𝑀𝑔𝐻2         ∆𝐻 = 76 𝑘𝐽/𝑚𝑜𝑙               (2) 

 

 

2.5 Alloying of Magnesium Hydrides   

 

The practical application of MgH2 in its pure form as a hydrogen storage 

material has many drawbacks as it is hindered by the high dehydrogenation 

temperature (above 573 K) and slow adsorption and desorption kinetics, which are 

caused by high thermal stability and kinetics barrier (Bahou et al., 2020; Peng et al., 

2017; Zhang et al., 2017). According to Zhang et al. (2017), the hydrogenation process 

of magnesium hydride is controlled by three steps, namely: 

 

a) Dissociation of hydrogen molecule into atoms on magnesium surface, 

b) Diffusion of hydrogen atoms into magnesium’s lattice,  

c) Formation of MgH2 molecules.  

 

The dissociation of hydrogen molecules is regarded to be the rate-limiting factor on 

account of the high energy required, which eventually leads to poor kinetics. This is 

because higher activation energy will cause the reaction to be slower as reactants 

needed to obtain sufficient energy to become unstable.  

 

A substantial amount of research has been performed to enhance the hydrogen 

sorption kinetics and reduce dehydrogenation temperature. From the research done, it 

is determined that combination of other elements such as transition metals and their 

alloys with magnesium hydride have improved the adsorption and desorption kinetics 

(Sakintuna et al., 2007; Sun et al., 2020; Wang et al., 2017; Webb, 2015). This 

statement is further supported by Zhang et al. (2017) who conducted the experiment 

of alloying Molybdenum disulfide (MoS2), where MgH2 indicated that the compound 

which the MoS2 is added to had developed a catalytic action on the hydrogen 
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absorption and further improved the hydrogen sorption kinetics. Additionally, the 

MoS2 particles are found to provide many pathways for the infiltration of hydrogen 

and active nucleation sites for the formation of MgH2. Although the addition of other 

elements play a vital role in improving hydriding kinetics, but, the presence of the 

added element, in this case, is MoS2 suffers a noticeable decrease in the maximum 

hydrogen absorption capacity due to the deadweight of MoS2. Therefore, the 

improvement of hydriding rate is caused by the addition of MoS2 with the cost of 

capacity loss. 

 

 



 

14 

CHAPTER 3 

 

METHODOLOGY 

 

 

3.1. Project Flow  

 

According to MATLAB, the work flow for a general neural network consists 

of 7 primary steps as shown in Figure 3.1.  

 

 

 

Figure 3.1: General project work flow 

Database Collection 

Development of Neural Network

Configure the Inputs and Outputs

Initialize the Weights and Biases

Training and Testing of Neural Network

Validation of the Trained Network

Improvement of Neural Network
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3.1.1 Data Collection 

 

 Data collection is the first step in developing an ANN model. As in this project, 

a total of 103 data were collected and they are chemical composition of Magnesium 

(Mg), Nickel (Ni), Copper (Cu), Lithium (Li) and Aluminium (Al) as well as pressure 

and temperature which are measured in bar and ℃ respectively and Hydrogen Storage 

Capacity (wt%). This information is obtained from the Hydrogen Storage Materials 

Database website as shown in Figure 3.2 which was created to retain data from the 

United State Department of Energy (DOE) Hydrogen Storage funded research. This 

database is made accessible to all research communities to encourage the development 

of advanced hydrogen storage materials (Lenahan, 2011).  

 

 

Figure 3.2: Hydrogen Storage Materials Database Website 

 

 

3.1.2 Development of Neural Network 

 

An ANN is a biologically inspired computational network consisting of 

interconnected processing units, also known as artificial neurons (Anghel et al., 2014). 

The ANN is designed and developed by using Neural Network Toolbox™ from 

MATLAB, a computer-aided engineering software. Figure 3.3 shows the MATLAB 

logo. By using this toolbox, a neural network can be constructed and trained in a less 

complex way due to the in-built functions that MATLAB provides. Before advancing 

to the development of neural network, effort and time are invested in learning the 

Neural Network Toolbox™ by performing research online. 
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Figure 3.3: MATLAB logo 

 

There are several types of neural networks such as feed forward neural 

network, modular neural network, Kohonen self organizing neural network, and 

recurrent neural network. For this dissertation, the feed forward neural network with 

backpropagation algorithm will be applied. The feed forward network is the most 

popular and most commonly used model among all artificial neural networks. In the 

feed forward network, there are different layers: input layer, hidden layer(s) and output 

layer. In this network, the information moves in one direction which is from the input 

layer to the hidden layer(s) and last stop at the output layer.  

 

The backpropagation algorithm which is a supervised learning method for the 

feed forward network works by altering the internal weightings of input signal to 

generated desired output (Brownlee, 2016). The internal weightings are modified using 

the error between the generated output and known output. The backpropagation of 

error is utilized to train the network. In MATLAB’s toolbox, there are several built-in 

training functions such as Levenberg-Marquardt (trainlm), BFGS Quasi-Newton 

(trainbfg), Scaled Conjugate Gradient (trainscg) and Fletcher-Powell Conjugate 

Gradient (traincgf). Liu (2010) indicates that Levenberg-Marquardt training algorithm 

is the most effective method for feed forward neural network with the respect to 

training precision. Hence, Levenberg-Marquardt training method is selected. 
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3.1.3 Configure Inputs and Outputs 

 

The neural network must be configured after it has been created. The 

configuration step involves inserting input and target data and setting the sizes of the 

input and output to match the data. In this project, the inputs and output data are the 

chemical composition of Magnesium (Mg), Nickel (Ni), Copper (Cu), Lithium (Li), 

Aluminium (Al), pressure and temperature and hydrogen storage capacity as shown in 

Figure 3.4. The output data is inserted as the target data. 

 

 

 

 

 

 

 

Figure 3.4: Inputs and output of the artificial neural network 

 

As MATLAB read matrix vertically instead of horizontally, it is necessary for 

the inserted matrix to be transposed to ensure that the size of the inputs and output is 

similar. The transpose of matrix interchanged the row and column index for each data 

and reflecting the data across the main diagonal. 

 

 

3.1.4 Initialize the Weights and Biases 

 

Weights and biases, also known w and b, are learnable parameters of ANN. 

The weights govern the strength of the connection between neurons while the biases 

are the additional input into the next layer. The biases are constant to ensure that there 

will be activation in the neurons even when the input is zero. In this project, the weights 

and biases are generated automatically by the built-in capabilities of MATLAB’s 

Neural Network Toolbox™.  
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Ni 

Mg 
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Li 
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3.1.5 Training and Testing of Neural Network 

 

The developed ANN are trained using the data collected in section 3.1.1. The 

103 data collected are separated into 3 different groups in the ratio of 70:15:15. The 

first group which have 70% of total data is used for the training of model while the 

second and third group is used for validation and testing respectively. The train group 

of data allows the model to obtain ideal values for parameters such the values of 

weights and biases. Conversely, the validation set aims to enhance the model’s ability 

to make generalizations and serves to stop the training process when validation error 

kept increasing for consecutive epochs. Lastly, the test set’s purpose is to evaluate the 

performance of the model by obtaining the unbiased prediction values using the 

unknown data. 

 

The training process occurs first and followed by the validation process and 

lastly is the testing process. As it is outlined in section 3.1.2, the training algorithm 

used is Levenberg-Marquardt algorithm for the feed forward neural network. Besides 

that, MATLAB provides built-in transfer functions such as linear (purelin), Hyperbolic 

Tangent Sigmoid (tansig) and Logistic Sigmoid (logsig) to generate output. The 

transfer function used in this project is tansig as it maintains the learning process even 

when it generate a value close to -1.0 whereas the logsig’s learning rate decrease when 

the output of hidden neuron close to zero. The Table 3.1 shows the graphical 

illustration and mathematical form of the transfer functions. 

 

Table 3.1: MATLAB’s built-in transfer functions (Al Shamisi et al., 2011) 

Function 

Name 

Graphical Illustration Mathematical form 

Linear 
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Hyperbolic 

Tangent 

Sigmoid 

 

 

Logistic 

Sigmoid 

 

 

  

 

3.1.6 Validation of Neural Network 

 

After the ANN model has been adequately trained, a statistical analysis will be 

performed to evaluate the validity of the network. The regression coefficient (R2) 

which measures the correlation between the actual and predicted value obtained from 

the developed neural network will be utilized to evaluate the performance of the ANN. 

The closer the R2 value is to 1, the higher the accuracy. The regression coefficient is 

calculated using Equation 3.  

 

𝑅2 = 1 − [
∑ (𝐻𝑊𝑃𝑒𝑥𝑝−𝐻𝑊𝑃𝑝𝑟𝑒𝑑)2𝑁

𝑖=1

∑ (𝐻𝑊𝑃𝑒𝑥𝑝−𝐻𝑊𝑃𝑚𝑒𝑎𝑛)2𝑁
𝑖=1

]  (3) 

Where: 

HWP exp: the actual experimental values of hydrogen storage capacity 

HWP pred: the model predicted values of hydrogen storage capacity 

HWP mean: the average value of the experimental data 
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3.1.7 Improvement and Use of Neural Network 

 

 If the error of validation lies outside of acceptable limits, improvement of ANN 

shall be made until the error falls within acceptable limits. According to the Nalbant 

et al. (2007), the neural network should have a prediction accuracy of above 90%. 

Since ANNs are data-driven models, the performance of the network can also be 

improved by increasing the number of data points used for the model development. 

However, data collection is limited by availability and accessibility of hydrogen 

storage data. Hence, another method which is by altering the network’s architecture is 

applied to improve the performance of model. Until the ANN model being developed 

meets the level of accuracy required, its network and architecture will continuously 

undergo modifications. Upon, modification, the training, testing and validation are 

repeated in a loop until the ANN model has reached adequate accuracy. 

 

 After the ANN is trained and validated, the model can be used to calculate the 

network response to any input.  

  



 

21 

CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

 

A total of 103 data points were used for the development of this ANN model. 

The ANN develop by using MATLAB’s Neural Network Toolbox™ will predict the 

output which is hydrogen storage capacity (wt%) using 7 input variables: composition 

formula of Magnesium (Mg), Nickel (Ni), Lithium (Li), Copper (Cu), Aluminium (Al), 

temperature and pressure.  

 

 

4.1 Optimization of Neural Network Architecture 

 

3 different ANN architectures are required and constructed in the present work. 

These ANNs have the common training function (trainlm) and performance function 

which are mean square error (MSE). To acquire the best predicted output that is closed 

to the expected output, the architecture of the ANNs is determined in the following 

approach: 

a) The transfer functions 

b) The number of neurons in the hidden layer 

 

 

4.1.1 Optimization of Transfer Functions in ANN 

 

 Based on Dorofki et al. (2012), the scalar input (p) is multiplied by the weight 

(w) and added with the bias (b). The combination is then passed to the summer. The 

summer output (n), also known as the net input enter the transfer function (f) to 

generate the scalar neuron output (a). The flow of input neuron is shown in Figure 4.1.  
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Figure 4.1: Flow of input neuron (Dorofki et al., 2012) 

 

 In this project, the MATLAB provides 3 different built-in transfer functions 

which are linear (purelin), Hyperbolic Tangent Sigmoid (tansig) and Logistic Sigmoid 

(logsig) to generate output. 3 ANNs are developed using different transfer function 

and trained with the same data set. The performance of the ANNs are evaluated using 

regression coefficient (R2) which is an indication of the similarity of the model’s 

predictions to their corresponding actual experimental values and compared in Table 

4.1. The closer regression value to 1, the smaller the difference between the predicted 

outputs and expected output. From Table 4.1, it can be concluded that the performance 

of network with tansig transfer function is found good in comparison to purelin and 

logsig.  

 

Table 4.1: Comparison of transfer functions 

Transfer 

Function 

Regression 

Value 

Overall Regression Plot 

Purelin 0.61796 
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Tansig 0.92767 

 

Logsig 0.88511 

 

 

 

4.1.2 Optimization of Number of Neurons in ANN 

 

 The layer in the ANN model consists of a parameterizable number of neurons. 

Determining the number of neurons in the hidden layer is a crucial part for the overall 

neural network as it affects the ability of the network to separate the data (Abraham, 

2005). Using a great number of hidden neurons will ensure correct learning and 

resulting in the network being able to predict the data accurately. However, it also 

causes several problems such as overfittings and compromises the performance on new 

data and the ability to generalize. Conversely, using too few hidden neurons in the 

hidden layer will lead to underfitting where the network may be unable to learn the 

relationships amongst the data (Abraham, 2005). Therefore, the number of hidden 

neurons in the hidden layer must be selected carefully. 
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The optimization of the number of neurons in the hidden layer is performed to 

determine the suitable number of hidden neurons. The number of neurons in the hidden 

layer is varied from 1 to 60 and the mean square error (MSE) values of each ANN 

model is calculated. Figure 4.2 shows the MSE of the train, validation and test sets as 

a function of the number of neurons in the hidden layer. From this figure, the optimum 

number of neurons in the hidden layer is 10 as it has the lowest MSE value for all train, 

validation and test sets and little to no variance between the 3 MSEs values. The MSE 

value closer to 0 indicate that the best performance can be obtained from the ANN 

with the selected number of neurons. 

 

Besides that, it is observed that the MSE value of all data sets are higher when 

the number of neurons is lower (1 – 9 neurons). This denoted that ANN model with 

the lower number of neurons is underfitted and produce errors. On the other hand, 

when the number of neurons is higher than 10, the MSE values rise indicating the 

model is overfitted as too many neurons is presented in the ANN.  

 

 

Figure 4.2: MSE values of data versus number of neurons 

Number of Neurons 

M
SE
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4.2 Development of Artificial Neural Network (ANN)  

 

 The ANN which is inspired by the biological neural network has 3 types of 

layers which are input, hidden and output. Every network has only 1 input and output 

layer. In the present study, the number of hidden layer is fixed as 1 as the number of 

datasets used is comparatively small. The developed ANN model is a feedforward 

ANN model as the layer feeds the input to the next layer in a feedforward manner with 

backpropagation algorithm. Furthermore, the training algorithm used is Levenberg-

Marquardt algorithm as it is the most commonly used algorithm. From section 4.1, it 

is agreed that the transfer function used is Hyperbolic Tangent Sigmoid (tansig) and 

number of neurons in the hidden layer is 10. Figure 4.3 shown the architecture of neural 

network developed.  

 

 

Figure 4.3: The architecture of neural network developed 

 

 



 

26 

4.3 Validation of Neural Network  

 

 The performance of the trained neural network is determined based on the 

accuracy of the output predicted by the model with the experimental output obtained 

from data collection. The statistical technique used to access the accuracy is regression 

coefficient (R2) and it is done by fitting a set of data points to a graph. In addition to 

that, R2 is an indication of the similarity of the model’s predictions to their 

corresponding actual experimental values. The comparison between the predicted 

output and the actual output values is illustrated in Figure 4.4 together with the best fit 

line. The nearer the data lie to the best fit line, the higher the similarity of the ANN’s 

predicted output and the expected output. From Figure 4.4, it can be seen that most of 

the data lie close to the best fit line.  

 

 

Figure 4.4: Comparison of predicted outputs and expected outputs 
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Further evaluation of the performance of the ANN model was performed by 

determining the regression values of the training, validation, test and overall sets. The 

regression plots and values can be obtained using Neural Network Toolbox in 

MATLAB after training the model. Figure 4.5 shown the regression plot and values of 

training, validation, test and overall sets. From Figure 4.5, the regression values for the 

training, validation, and testing sets are 0.9076, 0.97631 and 0.97098 respectively, 

resulting in an overall regression value of 0.92767. All data sets have regression values 

higher than 0.90. Hence, it can be concluded that the model is able to generate 

predictions with over 90% accuracy. 

 

 

Figure 4.5: Regression plots and values of ANN 
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4.4 Analysis of Inputs  

 

 Based on the results obtained in section 4.3, the developed ANN model is able 

to predict the hydrogen storage capacity of the Mg based hydrides using the inputs: 

composition of Magnesium (Mg), Nickel (Ni), Lithium (Li), Copper (Cu), Aluminium 

(Al), temperature and pressure. In order to understand the importance of each alloy 

materials on the predicted values, the ANN developed was used to examine the 

influence of varying the composition input while fixing the remaining parameters. In 

this study, the temperature and pressure are assumed to be 300℃ and 10 bar. Figure 

4.6 shows the effect of hydrogen storage capacity when the composition of Mg 

hydrides is varied from 0 to 1.  

 

 As shown in Figure 4.6, when the composition of Mg in the hydride is 0, it 

denotes that there is only Ni, Cu and Al present and their hydrogen storage capacity 

are 1.56wt%, 1.3wt% and 4.9wt% respectively. Conversely, when the composition of 

Mg in the hydride is 1, meaning that only Mg present in the system, it has the highest 

hydrogen storage capacity of 5.93wt%. However, pure Mg is not a suitable hydrogen 

storage material as it has many drawbacks such as the poor kinetics of the hydrogen 

charging/ decharging cycle (Bahou et al., 2020; Peng et al., 2017; Zhang et al., 2017; 

Čermák et al., 2008). 

 

 Based on Figure 4.6, the most promising hydrogen storage capacity result is 

obtained by alloying Mg with Ni as it has the second hydrogen storage capacity which 

is 5.91wt% when composition of Mg is 0.9 and Ni is 0.1. The reduce in hydrogen 

storage capacity is due to the addition of Ni for the purpose of lowering the formation 

enthalpy. According to Muthukumar et al. (2008), the Mg2Ni only have 3.4wt% of 

hydrogen whereas the predicted hydrogen storage capacity generated when Mg2Ni is 

3.1wt%, having very small error of 8.82% which is shown in Table 4.2. This small 

error proved the ability of ANN to predict accurate results.  

 

 In addition to that, a similar trend is expected for the alloy of Cu in Mg where 

the hydrogen capacity will decrease with the increase of composition of Cu. In Figure 

4.6, a decreasing trend in hydrogen storage capacity is observed as the composition of 
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Cu is increased, thus confirming the expected trend. This trend is further supported by 

Crivello et al. (2016) as the reduction in particle size for the sorption kinetics is at the 

expense of hydrogen storage capacity. The same trend goes to MgXAl1-X. when 

composition of Mg is from 0.78 to 1, the hydrogen storage capacity started to fluctuate 

before 0.78 composition of Mg. 

 

 

Figure 4.6: Graph of hydrogen storage capacity (wt%) with varying composition of 

Mg, Ni, Li, Cu, Al 

 

Table 4.2: Comparison between the actual value and predicted value 

Formula Actual Value (wt%) 
Predicted Value 

(wt%) 

Error 

(%) 

Mg2Ni 3.4 (Muthukumar et al.,2008) 3.1 8.82 

MgAl 4.6 (Wang et al., 2017) 4.47 2.83 

 

 



 

30 

As the Mg0.9Ni0.1 is discovered as the promising hydrogen storage material, the 

addition of a third component such as another transition metal (Cu) can further improve 

the hydrogenation kinetics of the storage systems and making it a better choice for 

hydrogen storage (Milanese et al., 2010). Hence, the effect on hydrogen storage 

capacity with the addition of Cu and Li in MgNi is investigated and shown in Figure 

4.7. From Figure 4.7, the hydrogen storage capacity decrease as the composition of the 

third component increase. The experiment research conducted by Milanese et al. 

(2010) had supported the trend as a rise in 10wt% of Cu in MgNi caused the maximum 

hydrogen capacity to be reduced by 1wt%. On top of that, the decrease in hydrogen 

capacity with increasing Li content is proven by Wu et al. (2019).  

 

 

Figure 4.7: Graph of hydrogen storage capacity (wt%) with varying composition of Li 

and Cu in MgNi 

 

 Through varying the composition of alloy materials in Mg hydride, it can be 

concluded that increasing the composition of alloy material led to a lower hydrogen 

storage capacity.  
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 Apart from evaluation of the effect of the material composition on predicted 

hydrogen storage capacity, the influence of pressure and temperature on the predicted 

hydrogen storage capacity is performed by fixing the remaining parameters such as 

composition of Magnesium (Mg), Nickel (Ni), Lithium (Li), Copper (Cu) and 

Aluminium (Al). Figure 4.8 and 4.9 illustrate the effect of varying pressure and 

temperature on the hydrogen storage capacity of Mg0.667Ni0.333. The ranges of pressure 

and temperature utilized for the development of the ANN model is 0.004 bar to 57 bar 

and 25℃ to 450℃ respectively. In order to ensure that the ANN model is able to make 

highly accurate predictions, the odd data is neglected. Hence, the ranges of pressure 

and temperature used to access their influence on the predicted hydrogen hydrogen 

storage capacity is 10 bar to 40 bar and 300℃ to 400℃. 

 

The expected trend for hydrogen storage in Mg based hydrides with respect to 

pressure is that increasing pressure would result in greater hydrogen storage capacity. 

Figure 4.8 shows that the hydrogen storage capacity increase with the rise of pressure, 

thus the expected trend is verified. 

 

 

Figure 4.8: Graph of hydrogen storage capacity (wt%) with varying pressure 
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The expected trend for hydrogen storage capacity in Mg based hydrides with 

respect to temperature is that increasing temperature would result in a higher hydrogen 

storage capacity. Figure 4.9 shows that the hydrogen storage capacity increase with 

the rise of temperature, thus the expected trend is verified. 

 

 

Figure 4.9: Graph of hydrogen storage capacity (wt%) with varying temperature 

 

 In summation, the results show that hydrogen storage capacity is depended on 

the parameters selected which are composition of Magnesium (Mg), Nickel (Ni), 

Lithium (Li), Copper (Cu), Aluminium (Al), temperature and pressure. Besides that, it 

is justified that ANN is a feasible tool for the prediction of hydrogen storage capacity 

of Mg based hydrides as the ANN developed is capable of generating accurate 

predictions of hydrogen storage capacity when the input parameters varied.  
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CHAPTER 5 

 

CONCLUSION AND RECOMMENDATION 

 

 

5.1 Conclusion  

 

An ANN model has been created for the prediction of the hydrogen storage 

capacity of Mg based alloy hydrides as a function of the alloy composition, pressure 

and temperature. The input parameters are the composition of Magnesium (Mg), 

Nickel (Ni), Lithium (Li), Copper (Cu), Aluminium (Al), temperature and pressure 

while the output parameter is hydrogen storage capacity. In the present study, a total 

of 103 data were used to develop the ANN model. The architecture of the model 

consists of one hidden layer with 10 neurons as it was found to have the lowest MSE 

and utilized tansig transfer function which has a higher regression value compared to 

other built-in transfer function. The regression analysis conducted showed that the 

developed model is able to predict accurate hydrogen storage capacity which is 

indicated by its overall regression coefficient of 0.92767. 

 

Besides that, the developed model is used to study the influence of the alloying 

elements, temperature and pressure on the hydrogen storage capacity. Increasing of 

the composition of alloying material results in a decrease in hydrogen storage capacity 

with the exception for Al in Mg as it fluctuated before Mg composition is 0.78. On the 

other hand, the hydrogen storage capacity rises with the increase of pressure and 

temperature. The results of this study prove that the ANN is a feasible tool for 

modelling the prediction of hydrogen storage capacity in Magnesium alloy hydrides at 

different temperature and pressure.  
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5.2 Recommendation  

 

 One of the limitations encountered in this study is the lack of availability of 

data points from the literature. This might limit the capability of ANN model to predict 

more accurate and reliable outcome as ANN is a data driven model. Therefore, the 

improvement of this developed ANN model can be made by increasing the number of 

data used. 
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APPENDICES 

 

APPENDIX A: Experimental data for model development 

Item 

No. 

Composition Formula 
Temperature 

(oC) 

Pressure 

(Atmospheres 

Absolute) bar 

Hydrogen 

Storage 

Capacity 

(wt%) Mg Ni Li Cu Al 

1 0.037 0 0 0.963 0 330 3.2 5.3 

2 0.0385 0.9615 0 0 0 323 3 5.7 

3 0.045 0 0 0 0.955 352 6 6.6 

4 0.09 0.91 0 0 0 292 1.3 7.2 

5 0.09 0.91 0 0 0 300 2 6.2 

6 0.09 0.91 0 0 0 335 9 3.6 

7 0.167 0.833 0 0 0 300 1.4 5.9 

8 0.167 0.833 0 0 0 323 2.9 7.4 

9 0.333 0.333 0 0 0.333 300 8 3.5 

10 0.333 0.333 0 0 0.333 300 17 3.7 

11 0.333 0.333 0 0 0.333 300 35 4 

12 0.333 0.333 0 0 0.333 300 27 3.86 

13 0.333 0.333 0 0 0.333 325 24 4.25 

14 0.333 0.333 0 0 0.333 325 20 4.2 

15 0.333 0.333 0 0 0.333 325 10 3.9 

16 0.333 0.333 0 0 0.333 325 34 4.4 

17 0.333 0.333 0 0 0.333 350 34 4.9 

18 0.333 0.333 0 0 0.333 350 10 4.2 

19 0.333 0.333 0 0 0.333 350 30 4.75 

20 0.333 0.333 0 0 0.333 350 26 4.7 

21 0.4 0 0 0 0.6 326 10 2.3 

22 0.4 0 0 0 0.6 335 11 2.6 

23 0.4 0 0 0 0.6 350 14 1.9 

24 0.5 0 0 0 0.5 280 5 3.34 

25 0.5 0 0 0 0.5 280 7 3.39 

26 0.5 0 0 0 0.5 280 22 3.46 

27 0.5 0 0 0 0.5 280 16 3.44 

28 0.5 0 0 0 0.5 280 4 3.17 

29 0.5 0.5 0 0 0 25 0.004 2 

30 0.5 0.5 0 0 0 140 0.7 1.6 

31 0.5 0.5 0 0 0 140 3 1.75 

32 0.5 0.5 0 0 0 300 1.1 4.6 

33 0.5 0 0 0 0.5 300 6 4.27 

34 0.5 0 0 0 0.5 300 25.9 4.83 

35 0.5 0 0 0 0.5 300 30 4.84 

36 0.5 0 0 0 0.5 300 16 4.7 

37 0.5 0.5 0 0 0 325 9.3 2.69 

38 0.5 0.5 0 0 0 325 6.7 2.53 

39 0.5 0.5 0 0 0 325 10.6 2.74 

40 0.5 0.5 0 0 0 325 14 2.8 

41 0.5 0 0 0 0.5 325 9.38 4.67 

42 0.5 0 0 0 0.5 325 12 4.8 

43 0.5 0 0 0 0.5 325 15.5 4.9 
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44 0.5 0 0 0 0.5 325 28 5.1 

45 0.5 0.5 0 0 0 350 36 2.9 

46 0.5 0.5 0 0 0 350 27.7 2.86 

47 0.5 0.5 0 0 0 350 12.3 2.63 

48 0.5 0.5 0 0 0 350 10.5 2.5 

49 0.5 0 0 0 0.5 350 23.3 5.2 

50 0.5 0 0 0 0.5 350 8.7 4.4 

51 0.5 0 0 0 0.5 350 18.3 5 

52 0.5 0 0 0 0.5 350 30 5.3 

53 0.5 0.5 0 0 0 375 40.16 3.04 

54 0.5 0.5 0 0 0 375 31.1 2.97 

55 0.5 0.5 0 0 0 375 19.5 2.83 

56 0.5 0.5 0 0 0 375 14 2.43 

57 0.5 0.5 0 0 0 400 36.3 3.13 

58 0.5 0.5 0 0 0 400 29.3 3.03 

59 0.5 0.5 0 0 0 400 24.74 2.9 

60 0.5 0.5 0 0 0 400 20 2.56 

61 0.556 0 0 0 0.444 326 7 5.4 

62 0.567 0.333 0 0 0.1 312 4.5 2.7 

63 0.59 0 0.05 0 0.36 310 0.7 1.8 

64 0.59 0.05 0 0 0.36 310 1.8 3.4 

65 0.593 0 0 0.296 0.111 330 3 3.2 

66 0.6 0 0 0 0.4 310 0.7 1 

67 0.6 0.4 0 0 0 300 3.7 2.6 

68 0.61 0 0.085 0 0.305 352 15 3.8 

69 0.615 0 0 0.308 0.077 330 3 3 

70 0.62 0 0 0 0.38 310 1.4 2.3 

71 0.636 0.364 0 0 0 300 4.5 2.8 

72 0.64 0.333 0 0 0.027 295 4 3.5 

73 0.64 0 0 0.32 0.04 330 11 2.8 

74 0.667 0.333 0 0 0 250 1.1 3.2 

75 0.667 0.25 0 0.083 0 250 1.2 3.2 

76 0.667 0 0 0.333 0 295 6 2.6 

77 0.667 0.333 0 0 0 299 3.2 3.6 

78 0.667 0.333 0 0 0 300 3.7 3.1 

79 0.667 0.333 0 0 0 300 2.2 3 

80 0.667 0.333 0 0 0 300 3.2 3.1 

81 0.667 0.333 0 0 0 300 3.1 3.1 

82 0.667 0.333 0 0 0 300 2.5 3.05 

83 0.667 0.333 0 0 0 300 2.6 3.07 

84 0.667 0.333 0 0 0 300 10.38 3.15 

85 0.667 0.333 0 0 0 300 14.7 3.19 

86 0.667 0.333 0 0 0 300 23.3 3.5 

87 0.667 0.333 0 0 0 300 30 3.9 

88 0.667 0.283 0 0 0.05 327 3 3.4 

89 0.667 0.333 0 0 0 450 57 3.7 

90 0.69 0.31 0 0 0 323 4.9 3.9 

91 0.7 0.1 0.1 0.1 0 310 1 1.6 

92 0.7 0 0.2 0.1 0 310 0.5 0.7 

93 0.708 0.292 0 0 0 301 3.2 3.9 

94 0.72 0 0.28 0 0 350 1.5 5.5 

95 0.75 0.1 0.1 0.05 0 310 1.6 1.9 



 

43 

96 0.75 0 0 0 0.25 350 6 3.5 

97 0.8 0.1 0.05 0.05 0 310 0.9 1.1 

98 0.8 0 0.1 0.1 0 310 0.6 0.9 

99 0.8 0.1 0.1 0 0 310 1.2 2 

100 0.8 0 0 0.1 0.1 310 1.6 1.5 

101 0.85 0.05 0 0.1 0 299 1.6 3.1 

102 0.85 0 0.05 0.1 0 310 0.4 0.5 

103 0.85 0.1 0.05 0 0 310 1 1.4 
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APPENDIX B: Milestones of the project 

 

 

 Milestone of FYP 1 

 

 

Milestone of FYP 2 

 

 

September

2020

• Consultation 
with 
supervisor 
regarding 
project

October

2020

• Research on 
literature 
review

• Data 
collection

• Proposal 
Defence

November

2020

• Writting 
and 
submission 
of Interim 
Report

December

2020

• End of 
FYP I

January

2021

• Consultatio
n with 
supervisor 
regarding 
the 
progress

February

2021

• Developement 
of ANN

• Optimization 
of ANN

March

2021

• Validation 
of ANN

• Writting 
and 
submission 
of 
Dissertation

April

2021

• Q&A

• End 
of 
FYP II
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APPENDIX C: Gantt chart of the project 

 

 

 


