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ABSTRACT 

 

 

 Predictive modelling through machine learning is utilized to accurately 

determine the predictive variables for a given target variable in the operation of a 

Vacuum Distillation Unit in a lubricant base oil plant. This is done by training the 

model using 70% of the past plant data from 2018 to 2020 and enables the model to 

capture the correlations between the target variables and the predictor variables. The 

algorithms, such as XGBoost, Random Forest and Decision Tree, have different 

approaches for training the model and their correlations but XGBoost has emerged as 

the best of the rest. In this report, two source codes were developed, one using 

XGBoost algorithm and the other using Random Forest algorithm. The breakdown of 

the source code development is explained in depth and some of the functions and 

packages used were also highlighted. Upon generating the model, the remaining 30% 

of the plant data is used as the test dataset to analyse the performance of the models. 

Based on the results obtained, it is identified that 19 out of the 21 models developed 

showed good fit with the data whereas the two variables, namely V2SS Density and 

V2SS Sulphur have fluctuations in its data, thus making it difficult to determine the 

outliers and selectively remove them. Comparison with the Random Forest models 

further enforces that the target variables except V2SS Density and V2SS Sulphur show 

excellent fit with the data. When the predictions of XGBoost and Random Forest are 

compared against each other, it can be observed that Kinematic Viscosity@100℃, 

Nitrogen and Aromatic content of all three side streams shows agreeable result. Further 

work could be done to fine tune certain parameters in the XGBoost to improve its 

performance comparable to that of Random Forest since XGBoost has the best 

computing performance. One such way is to use exhaustive tuning to vet through all 

through possible options which would take extremely long if Random Forest algorithm 

were to be used. Obtaining recent plant data could also help in analysing the 

performance and reliability of the developed models.  
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Background  

 

 This project entitled “Machine Learning Predictive Model Development for 

Vacuum Distillation Unit in Lubricant Base Oil Production” is a collaborative project 

between Malaysian Refining Company Sdn. Bhd. (MRCSB) and Centre for Process 

Systems Engineering (CPSE), Universiti Teknologi PETRONAS.  

 

 Figure 1.1 provides a brief overview of the processes within MRCSB. A Crude 

Distillation Unit (CDU) fractionates the crude into fuel gases, Liquified Petroleum Gas 

(LPG), naphtha, kerosene and diesel. The crude residue is then sent to an intermediary 

tank. Referring to Figure 1.2, the Low Sulphur Waxy Residue (LSWR) from the CDU 

makes up the hot feed and the LSWR from the intermediate tank represents the cold 

feed. Throughout the operation of the shown units, two modes are run, namely MG3 

and Non-MG3 where the first is a combination of both the hot and cold feed and the 

latter constitutes of only cold feed from the intermediate tank. The feed then enters 

into a Vacuum Distillation Unit (VDU) (Unit 18) where it is further separated into light 

ends, light vapor gas oil (LVGO), medium vapor gas oil (MVGO), vapor residue (VR) 

and three side draws (V1SS, V2SS and V3SS). These three side draws are then stored 

in an intermediate tank before being blended and further processed in Unit 19 to form 

Group III base oil. 
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Figure 1.1: Overview of the processes within MRCSB. 

 

 

 

 

 

 

 

 

 

Figure 1.2: Overview of the Vacuum Distillation Unit (Unit 18). 

 

 Extensive work was done on developing and modifying the source code for 

predicting the predictor variables for respective target variables of the VDU which will 

be explained further in Chapter 3. 

  



3 

1.2 Problem Statement 

 

 The primary problem that we are trying to solve through this project is to 

identify the key predictor variables which influence the physical properties such as 

density, kinematic viscosity, pour point and etc. of the desired streams within the 

lubricant base oil production process, especially for the CDU and VDU. This would 

be crucial in understanding the process better and possibly setting up better control 

structures to maintain optimal value of the product physical properties, which could 

produce high quality products consistently, thus maximising profitability. 

 

 

1.3 Objectives 

 

 The main objectives of this project include:  

 

i. Development of predictive models for the Vacuum Distillation Unit. 

 

 Predictive models for target variables in the vacuum distillation unit will be 

developed through XGBoost algorithm only using R. These models are to be 

developed based on a set number of input variables, such as draw temperature of the 

streams, pump around flow rates, feed flow rates and etc., to predict and understand 

the correlation between these input variables and the target variables.  

 

ii. Comparison between algorithms using available dataset. 

 

 Source codes for machine learning algorithms (Decision Tree, Random Forest 

and Extreme Gradient Boosting) will be developed and these algorithms are compared 

in terms of their computation time, accuracy of the prediction and other relevant data 

as deemed necessary for a set number of target variables. This will serve as a 

benchmark for further machine learning works with regards to the refinery processes 

property prediction. 
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1.4 Scope of Study 

 

 The scope of this project is limited to: 

i. Developing the source codes to produce predictive models for 21 target variables 

within the Vacuum Distillation Unit using both XGBoost and Random Forest 

algorithms and perform necessary hyperparameter tuning to achieve better 

predictive performance of the model. 

ii. Analysing and comparing the results from both algorithms and recommend 

appropriate measures for future work. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

 In this project, multivariable regression is used to develop the model based on 

the target variables. However, the selection of the appropriate algorithm is key in 

developing the regression model. Among the most common algorithms which are used 

in the era of machine learning includes Decision Tree, Random Forest and Extreme 

Gradient Boost. Each of these algorithms are further explained below. 

 

 

2.1 Decision Tree 

 

 Decision Tree, specifically the Classification and Regression Tree (CART) is 

the most common type of data mining method used to develop prediction algorithms. 

This method classifies a given data into a flowchart-like tree structure with a root node, 

internal node and a leaf node. The root node splits all of the data into two or more 

specific subsets based on the feature that has the best split and the internal node splits 

the current tree level into respective subdivisions similarly. The leaf node represents 

the terminal node and contains the output label. In order to identify the right feature 

with the best split at each node, Gini Index is used. (Song & Lu, 2015) 

 Gini Index is a measure of impurity (the amount of inaccuracy in separating 

the data) and lower Gini index value shows better separation of the data using a 

particular feature. The feature with the lowest Gini Index becomes the root of the 

decision tree. Then, each node of the root is further separated using a feature that has 

the lowest Gini index in splitting the node. However, if the Gini index of the node is 
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much lower as compared to that of the feature with the lowest score, then the separation 

of the node is not needed. (Saxena, 2017) Since the Decision Tree forms a single tree 

and depends on the lowest Gini Index to determine the respective features on the nodes 

of tree, the results of the Decision Tree model would be skewed for datasets with 

significant outliers and noise. The model also would only work well for a small sample 

size, thus making this algorithm undesirable for this study. 

 

 

2.2 Random Forest 

 

 Random Forest is a widely used machine learning algorithm and could be used 

to develop both regression and classification type models. For a given dataset, Random 

Forest algorithm first randomly extracts rows of data from the primary dataset with 

replacement and adds them into a bootstrap dataset. Since the samples are taken 

randomly with replacements, the bootstrap data would roughly contain about 60% of 

the actual rows from the primary dataset and have several duplicate rows. Following 

this, the algorithm would randomly select a number of features (or columns) from the 

bootstrap dataset to create individual trees. This method of bootstrapping and 

aggregating the data is known as “bagging”. 

 The number of trees (ntree) is generally defined by the user and a higher 

number of tree would result in a better prediction accuracy at the expense of 

computation time. The final result of the algorithm is done based on a majority vote of 

the output values when a test data is introduced. Thus, Random Forest algorithm 

generally performs better in classification type models. (Nikulski, 2016)  

 Aside from ntree, another variable that is important in Random Forest is mtry, 

which represents the number of random variables used in each tree within the 

ensemble. Fine tuning both these values allows us to obtain a fairly accurate model in 

most situations. Bhalla (n.d.) has stated the optimal way to tune a Random Forest 

model is by using default mtry value and manipulating the ntree value to achieve a low 

Out-of-Bag (OOB) error. Upon achieving a stable OOB error rate, a number of mtry 

tuning values are used to find the optimal mtry value where the OOB error is at the 
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minimum. Initial mtry values can be approximated to be the square root of the number 

of total input variables or predictors, half of the square root value and twice of the 

square root value. The OOB error stated earlier is Random Forest algorithm’s way of 

performing internal model validation. It utilises the data which are not taken into the 

bootstrap dataset (the bootstrap data is analogous to a bag) and performs cross 

validation of the model to compute the performance of the model. 

 One other variable that impacts the performance of the Random Forest model 

is the node size. Node size is the minimum size of the tree nodes and represents the 

minimum number of sample or data points that it can hold at the node. Having a high 

node size would result in a less complex and shallow tree while a lower node size 

would create a complex and deep tree. Altogether, the optimal value of these three 

parameters could produce a model that is robust against noise and outliers present in 

the data and produces accurate predictions. (Boehmke & Greenwell, 2020) 

 

 

2.3 Extreme Gradient Boost (XGBoost) 

 

 XGBoost which was introduced by Tianqi Chen and Carlos Guestrin in 2016 

is a relatively new algorithm which is based on “boosting” where weak learners are 

used sequentially to develop the final model. It uses the second-order Taylor’s 

approximation to simplify the objective loss function. This function is then minimised 

and produces an output value for the residuals on respective leaf nodes. To minimise 

split loss, XGBoost calculates the gain of respective nodes and this is controlled by the 

hyperparameter, gamma for pruning of the tree. XGBoost is ought to be the best 

performing predictive model algorithm available as of now based on its computing 

performance and prediction accuracy. (Leventis, 2018) One benefit of using XGBoost 

is that upon constructing the model, it is relatively simple to extract the importance 

scores of respective features, which are used to develop the model. This enables the 

user to identify the predictor variables with the highest contribution factor or gain value 

and understand its significance in a process.  

 



8 

Gain = Output (Parent Node) - (Output (Left Node) + Output (Right Node)) (1) 

 

 Wu (2018) has suggested that XGBoost resulted in the lowest Mean Absolute 

Error with Random Forest up next for the prediction of marine debris using the data 

from International Coastal Cleanup based on Table 2.1.  

 

Table 2.1: Modelling Results for Predicting Marine Debris (Wu,2018). 

Models 

Ordinary 

Least 

Square 

Decision 

Tree 

Random 

Forest 

Generalized 

Boosted 

Model 

Extreme 

Gradient 

Boosting 

MAE 1382.50 998.29 836.01 910.00 807.83 

 

This superior performance by the XGBoost algorithm is made possible by a number 

of enhancements which improved its computation speed and model development 

performance, which are tabulated in Table 2.2. (Chen & Guestrin, 2016) (Morde & 

Setty, 2019) 
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Table 2.2: Attributes of XGBoost algorithm. 

Attributes 
Description 

Exact Greedy Algorithm 
For manageable data sizes, the algorithm identifies the 

best split of data by running through every datapoint. 

Approximate Greedy 

Algorithm 

Most trees use exact greedy algorithm to identify the 

best split of data and to minimise losses. However, this 

poses a difficulty when the file size is large and it does 

not fit in the system memory for computations. This is 

where approximate greedy algorithm kicks in where 

instead of enumerating all the data points, it selects 

splitting points based on percentile of feature 

distribution.  

Weighted Quantile 

Sketch 

To identify the optimal splitting point, an evenly 

distributed data could be split into percentile of 1/n 

using the quantile sketch to identify the splitting points. 

However, there is no quantile sketch for weighted 

datasets and this addition to XGBoost allows it to 

handle weighted datasets. 

Sparsity-aware Split 

Finding 

In real world, the dataset would be filled with missing 

values and the XGBoost algorithm is developed to 

recognise this missing value and get around to the non-

missing data. 

Cache-aware Access 

Limits the size of data within a block based on the 

available CPU cache to balance the cache property and 

parallelisation 

Out-of-core Computation 

Optimises the algorithm to maximise the usage of the 

device’s hardware. It allows the data which does not fit 

into the system memory to be compressed or sharded 

into multiple blocks to the disks and runs an algorithm 

to read the data from the respective disks. 

Regularization 
Penalizes complex models using both Lasso and Ridge 

regression using alpha and gamma values respectively. 

Built-in Cross Validation 

Cross validation partitions the training dataset into n 

number and trains the model using n-1 partitions and 

runs a test using the untrained data. The model is trained 

and tested for n number of times and the hyperparameter 

tunes could be retrieved. 
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CHAPTER 3 

 

METHODOLOGY / PROJECT WORK 

 

 

3.1 Softwares and Tools Used 

 

The list of software used throughout the project period is described in Table 3.1. 

 

Table 3.1: List of Softwares. 

No. Software Description 

1 

Microsoft Office  

(Microsoft Word, Microsoft 

PowerPoint, Microsoft Excel) 

A collection of softwares used for 

documentations, data analysis, data 

visualisation using graphs and tables, and 

presentation slides.  

2 Adobe Acrobat Reader 
A software used to view and print digital 

documents.  

3 
RStudio 

Version 4.0.3 (2020-10-10) 

An interactive interface to develop and run R-

based source codes  

 

 

3.2 Packages and Key Functions 

 

 Upon installation, RStudio runs of a base package which contains a large 

number of basic functions. However, this is not sufficient to achieve the desired result. 

Thus, additional packages could be installed as needed from RStudio itself or from the 

Comprehensive R Archive Network (CRAN) repository. Some of the key packages 

and functions which are used in this project are described in Table 3.2. 
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Table 3.2: List of Packages and Functions. 

No. Packages Functions and Description 

1 

caret 

(Miscellaneous functions for 

training and plotting 

classification and regression 

models) 

• createDataPartition 

Used to split the data into training and testing 

datasets 

• confusionMatrix 

Calculates a cross-tabulation of observed and 

predicted values with associated statistics 

2 

mice 

(Multivariate Imputation 

using Chained Equations) 

• mice 

Performs imputation (replaces missing 

data with predicted data) 

3 
xgboost 

(Extreme Gradient Boosting) 

• xgboost 

Running the XGBoost algorithm and 

generates a model 

• xgb.importance 

Creates an importance list with the gains of 

each predictor variables with respect to the 

target variable 

• xgb.importance.plot 

Plots an importance plot that represents the 

gains of respective predictor variables 

• xgb.save 

Save XGBoost model in a binary model 

file 

• xgb.load 

Load XGBoost model from the binary 

model file 

4 

mlr 

(Interface to a large number 

of classification and 

regression techniques) 

• makeRegrTask 

Create a regression task 

• makeLearner 

Create learner object 

• train 

Train a learning algorithm 

• makeTuneControlRandom 

Create control object for hyperparameter 

tuning with random search 

• makeResampleDesc 

Create a description object for a 

resampling strategy 

• tuneParams 

Hyperparameter tuning 

5 randomForest 

• randomForest 

Generates the Random Forest model. 

• varImpPlot 

Generates the importance plot for the 

Random Forest model 

6 parallelMap 
• parallelStartSocket 

Enables parallelization backend 
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 An important aspect to take note here is that the sequence of the packages 

matters especially when two or more packages to be used has the same function name. 

Figure 3.1 displays an example where the function “train” is present in both the caret 

and mlr packages. Since the mlr package is added after the caret package, the “train” 

function from the caret package is masked and it could only be used if the caret 

package is re-added. In this situation, the “train” function from the mlr package is 

utilised. 

 

 

 

 

Figure 3.1: Snapshot of function masking when adding packages. 

 

 The arguments within the XGBoost function also requires special attention as 

each parameter is critical in developing a good model. Table 3.3 describes the common 

hyperparameters which are defined in the XGBoost algorithm. Only nrounds is 

required to be defined by the user and other parameters have default values when the 

algorithm is run. However, the default values could lead to overfitting models in some 

cases which could result in poor prediction. Thus, hyperparameter tuning is significant 

to achieve a model with the ability to predict with high accuracy. (XGBoost 

Parameters, n.d.) 
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Table 3.3: Hyperparameter description. 

No Hyperparameters Description 

1 nrounds 
Maximum number of iteration/ trees grown 

Value: Must be user defined 

2 eta 
Learning rate of the model based on the tree output 

Default value: 0.3 (Range: 0 – 1) 

3 gamma 
Pruning of the leave nodes 

Default value: 0 (Range: 0 – Inf) 

4 max_depth 

Depth of the tree 

Default value: 6 (Range: 0 – Inf) 

*Deeper trees tend to overfit 

5 min_child_weight 
Minimum number of residuals on each leaf node 

Default value: 1 (Range: 0 – Inf) 

6 subsample 
Number of samples (rows) supplied to the tree 

Default value: 1 (Range: 0 – 1) 

7 colsample_bytree 
Number of features (column) supplied to the tree 

Default value: 1 (Range: 0 – 1) 

8 lambda 
L2 regularization (Ridge regression) 

Default value: 0 (Range: 0 – Inf) 

9 alpha 
L1 regularization (Lasso regression) 

Default value: 1 (Range: 0 – Inf) 

 

 When the algorithm builds each tree and works on achieving the best model, it 

requires an objective to develop a classification or regression model and an evaluation 

metric to compare the actual data and the output of the tree to improve on and build a 

tree with a better fit. Table 3.4 and Table 3.5 displays some of the types of objectives 

and evaluation metrics respectively. (XGBoost Parameters, n.d.) 
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Table 3.4: Learning Task Parameters – “objective”. 

No Options Description 

1 reg:squarederror Regression with squared loss 

2 reg:squaredlogerror Regression with squared log loss 

3 reg:logistic Logistic regression 

4 reg:pseudohubererror Regression with Pseudo Huber loss 

5 binary:logistic 
Logistic regression with binary classification. 

Outputs probability 

6 binary:hinge 
Hinge loss for binary classification. Outputs 0 or 1 

instead of probabilities 

7 rank:pairwise 
Performs pairwise ranking where pairwise loss is 

minimised 

8 rank:map 
Perform list-wise ranking where Mean Average 

Precision is maximised 

 

Table 3.5: Learning Task Parameters – “eval_metric”. 

No Options Description 

1 rmse 
Root mean square error 

Default metric for reg:squaredloss 

2 rmsle 
Root mean square log error 

Default metric for reg:squaredlogloss 

3 mae Mean absolute error 

4 mphe 
Mean Pseudo Huber error 

Default metric for reg:pseudohubererror 

5 error 
Binary classification error rate where split occurs at 

0.5 
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6 error@t 
Binary classification error rate where split occurs at 

“t” (user-defined value) 

7 map Mean Average Precision 

 

 

3.3 Source Code Overview 

 

 The developed source code (refer Appendix IV) initially starts off with the 

packages specifically XGBoost and mlr packages. The data is read from a comma-

separated value file (.csv) and irrelevant variables are removed from the RStudio 

environment. The input variables (Appendix II) and one of the output variable or target 

variable (Appendix III) is extracted from the master dataset and added into a new 

dataset. The data from the new dataset is then split into training and testing dataset 

with a ratio of 70:30. Following that, a regression task for training and testing dataset 

is created alongside a learner object which results in a model. This model, however, is 

derived from the mlr package and uses the argument “reg:xgboost” in the learner to 

execute the XGBoost algorithm for a regression model. Then, the hyperparameter 

boundary limits were set and the control structure was set to run 200 random 

combinations of hyperparameters with a 10-fold cross validation. Upon the completion 

of the hyperparameter tuning, a XGBoost model was developed using the tuned 

hyperparameter values. The results from the model and the actual test data were stored 

in a .csv file and a residual plot is made to identify the coefficient of determination or 

R2 value of the predicted values. A plot of predicted against actual was also made for 

each target variable to check for the fit of the model using a test data. An importance 

plot, which displays the key predictor variables, is also attained before the XGBoost 

model was saved as a binary model file. Figure 3.2 highlights the key steps within the 

source code.  

 To develop the Random Forest model, similar source code to that of XGBoost 

is used and the relevant parameters are specified with their boundaries set to perform 

parameter tuning before generating the model. The test data is run through the model 

and the results are saved as a CSV file in Excel before further analysis are performed.  
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Figure 3.2: Flowchart of the Source Code. 

Install appropriate packages as 
needed.

Read data and data pre-
processing.

Splitting into Training and Test Sets 
(70:30).

Created test and training tasks, an 
XGBoost learner.

Hyperparameter tuning of the 
model using 200 combinations.

Use the best tuning with lowest 
rmse to develop an XGBoost 

model.

Export the predicted and actual 
values to Excel file to compute R2 

value.

View the gain of each predictor 
variable using the importance plot 
to identify the major contributor.

Save the model as a binary model 
file (.model).
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CHAPTER 4 

 

RESULTS AND DISCUSSION 

 

 

4.1 XGBoost Model Results 

 

4.1.1 Predictive Model Fit 

 

 In this project, 21 predictive models are developed using the Extreme Gradient 

Boosting (XGBoost) algorithm for the target variables shown in Table 4.1 using 33 

input variables as stated in Chapter 3. The list of abbreviations could be referred in 

Appendix I. Based on Table 4.1, the total feed flow rate, f and the Low Sulphur Waxy 

Residue (LSWR) simulated distillation at 70%, LSWR_70 are seen to be the primary 

predictor for a number of target variables. However, both V2SS_Density and 

V2SS_Sulphur models show poor coefficient of determination, R2 when the test data 

is passed through the developed model. 
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Table 4.1: Coefficient of Determination, Main Feature and Gain for Respective Target 

Variables using XGBoost. 

Target Variable R2 Main Feature / Predictor Variable Gain 

fv1ss 0.96 f 0.69 

fv2ss 0.94 f 0.68 

fv3ss 0.68 V2SS_PA71 0.18 

y1 0.69 tlvgo 0.23 

y2 0.83 LSWR_5 0.19 

y3 0.75 f 0.24 

V1SS_Density15 0.872 LSWR_Combined_40 0.91 

V2SS_Density15 0.0001 LVGO_PA34 0.27 

V3SS_Density15 0.9283 LSWR_Combined_Density15 0.25 

V1SS_kv100 0.9469 LSWR_20 0.40 

V2SS_kv100 0.8443 tmvgo 0.22 

V3SS_kv100 0.9037 tmvgo 0.28 

V1SS_Sulphur 0.8619 LVGO_PA34 0.18 

V2SS_Sulphur 0.0015 tv1ss 0.21 

V3SS_Sulphur 0.83 V3SS_PA87 0.13 

V1SS_Nitrogen 0.9181 LSWR_90 0.24 

V2SS_Nitrogen 0.9409 LSWR_70 0.46 

V3SS_Nitrogen 0.9364 LSWR_70 0.42 

V1SS_Aromatic 0.9436 LSWR_70 0.38 

V2SS_Aromatic 0.962 LSWR_70 0.41 

V3SS_Aromatic 0.9387 LSWR_50 0.22 
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4.1.2 Importance Plots 

 

 The XGBoost algorithm develops a tree ensemble and is able to identify the 

gain value or contribution factor of respective input variables by removing or adding 

the features and observing whether the accuracy of the model increases or decreases. 

These variables are then sequenced in terms of the gain values in descending order in 

an importance plot such as the example shown in Figure 4.1 for all of the target 

variables of side stream V1SS. The importance plot highlights the gain, cover and the 

frequency. Gain represents the contribution of a feature as explained previously; cover 

represents the relative number of observations related to a feature; and frequency is 

the number of times an input variable is used at the node to split the data. 

 

 

(a) V1SS Flowrate 
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(b) V1SS Yield 

 

 

(c) V1SS Density 
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(d) V1SS Kinematic Viscosity 

 

 

(e) V1SS Sulphur 
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(f) V1SS Nitrogen 

 

 

(g) V1SS Aromatic 

Figure 4.1: Importance plots of V1SS using XGBoost. 
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4.1.3 Predicted vs Actual Plots 

 

 Upon developing the models, the models are tested using a test data to observe 

its performance. Figure 4.2 shows the actual against predicted graph of target variable 

y1, where the data points follow the 45˚ reference line which indicates that the 

predicted data closely approximates the actual data of y1. The data has a coefficient of 

determination, R2 value of 0.6923 as shown in Table 4.1. 

Figure 4.2: Graph of Predicted vs Actual of V1SS Yield using XGBoost. 

 

 Figure 4.3 displays the actual versus predicted graphs of all the other 20 

variables besides y1. All of these graphs except Figure 4.3 (g) and Figure 4.3 (m) 

highlights that the model has a good fit with the data and is reliable in terms of its 

prediction and accuracy. However, for Figure 4.3 (g) and Figure 4.3 (m), the 

discrepancy in the data of density and sulphur content respectively has resulted in a 

poor model fit. These values were not treated as outliers since the large values occurred 

several times within the dataset. 
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(a) V1SS Flowrate (b) V2SS Flowrate 

(c) V3SS Flowrate (d) V2SS Yield 

(e) V3SS Yield (f) V1SS Density 

(g) V2SS Density (h) V3SS Yield 

(i) V1SS kv100 (j) V2SS kv100 
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Figure 4.3: Graphs of Predicted vs Actual using XGBoost. 

(k) V3SS kv100 (l) V1SS Sulphur 

(m) V2SS Sulphur 

(o) V1SS Nitrogen 

(n) V3SS Sulphur 

(p) V2SS Nitrogen 

(q) V3SS Nitrogen (r) V1SS Aromatic 

s) V2SS Aromatic t) V3SS Aromatic 
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4.2 Random Forest Results 

 

4.2.1 Predictive Model Fit 

 

 Table 4.2 shows the coefficient of determination, R2 value of the respective 

target variables for the Random Forest models. However, both V1SS Density and 

V2SS Density models show poor coefficient of determination, R2 when the test data is 

passed through the developed model. V2SS Sulphur displays a good fit using the 

Random Forest algorithm but further tests with new test data is needed to verify this 

model. 

 

Table 4.2: Coefficient of Determination for Respective Target Variables using 

Random Forest. 

Target Variable R2 

fv1ss 0.9907 

fv2ss 0.9921 

fv3ss 0.9559 

y1 0.9825 

y2 0.9722 

y3 0.9483 

V1SS_Density15 0.0001 

V2SS_Density15 0.0009 

V3SS_Density15 0.9915 

V1SS_kv100 0.9940 

V2SS_kv100 0.9761 

V3SS_kv100 0.9872 

V1SS_Sulphur 0.9773 

V2SS_Sulphur 0.9589 

V3SS_Sulphur 0.9703 

V1SS_Nitrogen 0.9857 

V2SS_Nitrogen 0.9908 

V3SS_Nitrogen 0.9879 
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V1SS_Aromatic 0.9908 

V2SS_Aromatic 0.9937 

V3SS_Aromatic 0.9909 

 

 

4.2.2 Predictive vs Actual Plots 

 

 When the models are developed using the Random Forest algorithm, the trends 

shown by the models are similar to that of XGBoost where all of the target variables 

except V1SS Density and V2SS Density show good performance. This can be 

attributed to the poor dataset that is obtained for the specific target variables. Figure 

4.4 shows the graph of actual versus predicted of V1SS Yield using the Random Forest 

algorithm which shows a better fit and has a better R2 value. 

 

 

Figure 4.4: Graph of Predicted vs Actual of V1SS Yield using Random Forest. 

 

 

 

 

  



28 

 

 

(a) V1SS Flowrate (b) V2SS Flowrate 

(c) V3SS Flowrate (d) V2SS Yield 

(f) V1SS Density 

(h) V3SS Density 

(e) V3SS Yield 

(i) V1SS kv100 (j) V2SS kv100 

(g) V2SS Density 
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(k) V3SS kv100 (l) V1SS Sulphur 

(m) V2SS Sulphur (n) V3SS Sulphur 

(o) V1SS Nitrogen (p) V2SS Nitrogen 

(q) V3SS Nitrogen (r) V1SS Aromatic 

(s) V2SS Aromatic (t) V3SS Aromatic 
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Figure 4.5: Graphs of Predicted vs Actual using Random Forest. 

 

 

4.3 Comparison between XGBoost and Random Forest 

 

 Based on Figure 4.6, it could be observed that the Random Forest algorithm is 

able to achieve better R2 values due to its ability in randomly subsampling the data 

during training which prevents overfitting of the model towards the training data. Thus, 

Random Forest is a better option if it was to be used with minimal hyperparameter 

tuning. XGBoost has the advantage in terms of computing power and the overfitting 

issue could be corrected by introducing a lower sampling rate of columns and features 

to build each tree to avoid any overfitting. Referring to Figure 4.7, both algorithms 

achieved similar performance in predicting the kinematic viscosity at 100℃ and the 

aromatic content of all three streams, V1SS, V2SS and V3SS as shown by charts (j), 

(k), (l), (s), (t) and (u). 

 

Figure 4.6: Chart of R2 for XGBoost and Random Forest. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
2

Target Variables

xgboost R2 random forest R2



31 

 

(a) V1SS Flowrate 

(c) V3SS Flowrate (d) V1SS Yield 

(b) V2SS Flowrate 

(e) V2SS Yield (f) V3SS Yield 

(g) V1SS Density (h) V2SS Density 

(i) V3SS Density (j) V1SS kv100 
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(k) V2SS kv100 (l) V3SS kv100 

(m) V1SS Sulphur (n) V2SS Sulphur 

(o) V3SS Sulphur 

(q) V2SS Nitrogen (r) V3SS Nitrogen 

(s) V1SS Aromatic 

(p) V1SS Nitrogen 

(t) V2SS Aromatic 
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Figure 4.7: Graphs of Random Forest vs XGBoost 

 

 

 

(u) V3SS Aromatic 
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CHAPTER 5 

 

CONCLUSION AND RECOMMENDATIONS 

 

 

5.1 Conclusion 

 

 

 This project, which is based on the refinery in MRCSB is focused on 

developing predictive model for the VDU using the XGBoost algorithm. Through 

literatures, the superior performance of the XGBoost algorithm in terms of 

computation time and prediction accuracy over other algorithms such as Random 

Forest and Decision Tree algorithms is emphasised. In this report, the researcher has 

primarily worked on the first research objective, which is to develop and modify the 

source code to develop the predictive models. A detailed breakdown of the source 

code, major functions and packages used were also highlighted. The outputs of the 

developed model were explained, where the both the Random Forest and XGBoost 

models show good fit to 19 out of the 21 target variables. When the predicted results 

of XGBoost was compared against the predicted results from Random Forest, the 

Kinematic Viscosity@100℃, Nitrogen and Aromatic content values of streams V1SS, 

V2SS and V3SS closely approximate each other. 
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5.2 Recommendation 

 

 The performance of both the algorithm is not entirely conclusive since the test 

data is limited and is from the actual data itself. Thus, recent plant data is required to 

test the performance of these models and their accuracy in prediction as well as to 

analyse their reliability in predicting live data.  

 

 Another recommendation would be to explore the route of exhaustive 

hyperparameter tuning to obtain the best coefficient of determination. XGBoost is the 

appropriate algorithm to be used for this case since sufficient computing power is 

needed if such task was to be taken and Random Forest is not recommended because 

of its slow computing performance. Aside from that, the detailed understanding of the 

effects of manipulating each hyperparameter is one aspect to be considered for having 

a detailed analysis. 
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APPENDICES 

 

Appendix A: List of Abbreviations 
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APPENDIX B: Input Variables 
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APPENDIX C: Output Variables 
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APPENDIX D: Gantt Chart (FYP I) 

 

Task 1 2 3 4 5 6 7 8 9 10 11 12 13 

Context setting and briefing              

Work on literature review 

regarding XGBoost 
             

Develop the source code to 

develop XGBoost models 
             

Develop predictive model for 94 

target variables 
             

Report Preparation              

Developed model submission              

Report Submission and 

Presentation 
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APPENDIX E: Gantt Chart (FYP II) 

 

Task 1 2 3 4 5 6 7 8 9 10 11 12 13 

Develop Random Forest model              

Trial run on 60/40 data split for 

training and test data 
             

Correlation studies              

Draft Dissertation Submission              

Develop predictive model for 21 

target variables 
             

Report Submission and 

Presentation 
             

 

 

Milestones: 

1 – Develop a source code that could generate predictive model for XGBoost and Random Forest 

2 – Identify correlations between features wherever applicable 

3 – Submit the developed models in a .zip file as well as the finalised report and other related documents.  
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APPENDIX F: Source Code (XGBoost) 

 

#Prakash Saravanan 

 

# Packages 

library(tidyverse) # data manipulation 

library(caret) 

library(mlr)       # ML package (also some data manipulation) 

library(knitr)     # just using this for kable() to make pretty tables 

library(xgboost) 

library(caTools) 

require(fastmatch) 

# Data preparation 

 

#For version 2 of the data 

 

# Importing the dataset 

dataset = read.csv('C:\\Users\\User\\Desktop\\UTP_Intern\\Source_Code\\Dataset_Latest_v2_1.csv') 

dataset$mode<-as.factor(dataset$mode) 

#dataset<-na.omit(dataset)#Remove rows with missing data 

dataset<-dataset[,-c(1,2)] #Used for current code to remove only sequence, date,  

dataset = select(dataset,"V3SS_kv100",1:10,13:29,121:126) #Dataset for inputs only. Target variable to be added in the 

beginning 

 

str(dataset) 

summary(dataset) 

 

mydata1<-dataset  

mydata1<-mydata1[,-c(34)]  

 

# Splitting the dataset into the Training set and Test set 

set.seed(12345) 

split1=createDataPartition(mydata1$V3SS_kv100,p=0.7,list=FALSE) 

train1 <- mydata1[split1,] 

test1 <- mydata1[-split1,] 

 

#fitting XGBoost to the training set 
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trainTask1 <- makeRegrTask(data = train1, target = "V3SS_kv100") 

testTask1 <- makeRegrTask(data = test1, target = "V3SS_kv100") 

 

# Timer 

start_time = Sys.time() 

Sys.sleep(0.5) 

 

#set.seed(1) 

# Create an xgboost learner that is classification based and outputs 

# labels (as opposed to probabilities) 

xgb_learner <- makeLearner( 

  "regr.xgboost", 

  predict.type = "response", 

  par.vals = list( 

    objective = "reg:squarederror", 

    eval_metric = "error", 

    nrounds = 200 

  ) 

) 

 

# Create a model 

xgb_model1 <- train(xgb_learner, task = trainTask1) 

result1 <- predict(xgb_model1, testTask1) 

 

head(result1$data) %>% 

  kable() 

 

 

 

# XGBoost hyperparameter tuning 

xgb_params <- makeParamSet( 

  # The number of trees in the model (each one built sequentially) 

  makeIntegerParam("nrounds", lower = 500, upper = 2000), 

  # Number of splits in each tree 

  makeIntegerParam("max_depth", lower = 1, upper = 6), 

  # "shringkage" - prevents overfitting 

  makeNumericParam("eta", lower = .1, upper = .5), 
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  # L2 regularization - prevents overfitting 

  makeNumericParam("lambda", lower = -1, upper = 0, trafo = function(x) 10^x) 

) 

 

control <- makeTuneControlRandom(maxit = 200) 

 

# Create a description of the resampling plan 

resample_desc <- makeResampleDesc("CV", iters = 10) 

 

tuned_params1 <- tuneParams( 

  learner = xgb_learner, 

  task = trainTask1, 

  resampling = resample_desc, 

  par.set = xgb_params, 

  control = control 

) 

 

#view importance 

classifier1 = xgboost(data = as.matrix(train1[-1]), 

                     label = train1$V3SS_kv100,  

                     nrounds = 125000, 

                     max_depth = tuned_params1$x$max_depth, 

                     eta = tuned_params1$x$eta, 

                     lambda = tuned_params1$x$lambda, 

                     seed = 1, 

                     nfolds =10, 

                     eval_metric = "rmse", 

                     objective = "reg:squarederror", 

                     early_stopping_rounds = 10 

) 

print(c(tuned_params1$x$max_depth,tuned_params1$x$eta,tuned_params1$x$lambda, classifier1$best_score)) 

importance_matrix1 <- xgb.importance(model = classifier1) 

print(importance_matrix1) 

xgb.plot.importance(importance_matrix = importance_matrix1,top_n = 20) 

 

# save model to binary local file 

xgb.save(classifier1 , "Project_Unsorted_V3SS_kv100.model") 
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end_time = Sys.time() 

end_time - start_time 

 

#Used for model retrieval and residual plot 

#classifier1<-xgb.load("Project_MG3_QuenchBottom_103.model")#Load developed model 

 

num<-1 

num 

testlabel1<-as.matrix(test1[,num]) 

test1<-test1[,-num] 

 

y_pred1 <- predict(classifier1, as.matrix(test1)) 

y_pred1 = as.data.frame(y_pred1) 

df_VDU1 = data.frame( Actual = testlabel1 , Predicted = y_pred1$y_pred1) 

write.csv(df_VDU1, 'Project_Unsorted_V3SS_kv100.csv') 

 

 

 

 

 

summary(y_pred1) 

mean(testlabel1) 

mean(y_pred1$y_pred1) 

y_pred1<-as.integer(y_pred1>mean(y_pred1$y_pred1)) 

testlabel1<-as.integer(testlabel1>mean(testlabel1)) 

confusionMatrix(as.factor(y_pred1),as.factor(testlabel1)) 
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APPENDIX G: Source Code (Random Forest) 

 

#Prakash Saravanan 

#28/8/2020 

 

# Packages 

library(tidyverse) # data manipulation 

library(caret) 

library(mlr)       # ML package (also some data manipulation) 

library(knitr)     # just using this for kable() to make pretty tables 

library(parallelMap) 

library(parallel) 

library(caTools) 

library(ranger) 

library(tuneRanger) 

require(fastmatch) 

library(randomForest) 

 

#Parallel computing 

no_cores <- detectCores()-0 

 

.onLoad = function(libname, pkgname) { 

  configureMlr() 

  backports::import(pkgname) 

} 

 

.onAttach = function(libname, pkgname) { 

  configureMlr() 

  parallelRegisterLevels(package = "mlr", levels = c("benchmark", "resample", "selectFeatures", "tuneParams", "ensemble")) 

} 

 

parallelStartSocket( cpu = no_cores , level = "mlr.resample") 

 

 

#For version 2 of the data 

#Check the working directory to save files 

getwd() 

setwd("C:\\Users\\User\\Desktop\\UTP_Intern\\Output_Dataset_U18_V3_ZAP_MAF_V3") 
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# Importing the dataset 

dataset = read.csv('C:\\Users\\User\\Desktop\\UTP_Intern\\Source_Code\\Dataset_U18_V3_ZAP_MAF_V3_1.csv') 

dataset$mode<-as.factor(dataset$mode) 

#dataset<-na.omit(dataset)#Remove rows with missing data 

dataset<-dataset[,-c(1,2)] #Used for current code to remove only sequence, date, Nitrogen and Sulphur  

dataset1 = select(dataset,"V3SS_Sulphur",1:10,13:29,121:126) #Dataset for inputs only. Target variable to be added in the 

beginning 

 

set.seed(12345) 

split1=createDataPartition(dataset1$V3SS_Sulphur,p=0.7,list=FALSE) 

train1 <- dataset1[split1,] 

test1 <- dataset1[-split1,] 

 

trainTask1 <- makeRegrTask(data = train1, target = "V3SS_Sulphur") 

testTask1 <- makeRegrTask(data = test1, target = "V3SS_Sulphur") 

 

rf_learner <- makeLearner( 

  "regr.randomForest", 

  predict.type = "response", 

  par.vals = list( 

    ntree=2000, 

    importance=TRUE, 

    proximity=TRUE 

  ) 

) 

 

 

 

rf_model1 <- train(rf_learner, task = trainTask1) 

 

result1 <- predict(rf_model1, testTask1) 

 

getParamSet(rf_learner) 

 

rf_params <- makeParamSet( 

  # The number of columns sampled in each tree 

  makeIntegerParam("mtry", lower = 2, upper = 10), 
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  # Observations in terminal nodes 

  makeIntegerParam("nodesize", lower = 10, upper = 50)#, 

  # Number of trees 

  #makeNumericParam("ntree", lower = 500, upper = 2000) 

) 

 

control <- makeTuneControlRandom(maxit = 200) 

 

resample_desc <- makeResampleDesc("CV", iters = 10L) 

 

 

tuned_params1 <- tuneParams( 

  learner = rf_learner, 

  task = trainTask1, 

  resampling = resample_desc, 

  par.set = rf_params, 

  control = control 

) 

 

 

rf1 <- randomForest( 

  dataset1$V3SS_Sulphur ~ ., 

  data=as.matrix(dataset1), 

  ntree=2000, 

  mtry=tuned_params1$x$mtry, 

  nodesize=tuned_params1$x$nodesize, 

  importance=TRUE, 

  proximity=TRUE 

) 

 

plot(importance(rf3)) 

varImpPlot(rf3) 

print(rf3) 

MDSplot(rf1,dataset1$y1) 

proximity.plot( 

  rf2,  

  dim.x = 1,  

  dim.y = 2,  
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  legend.loc = c("top", "bottom", "left", "right"),  

  point.size = 2,  

  circle.size = 8,  

  circle.border = 1,  

  hull.alpha = 0.3,  

  plot = TRUE 

  ) 

 

 

pred1 <-predict(rf1, as.matrix(test1)) 

 

num<-1 

num 

testlabel1<-as.matrix(test1[,num]) 

test1<-test1[,-num] 

actual1<-testlabel1 

predicted1<-pred1 

R2_1 <- 1 - (sum((actual1-predicted1)^2)/sum((actual1-mean(actual1))^2)) 

df_VDU1 = data.frame( Actual = testlabel1 , Predicted = pred1, R2_1) 

write.csv(df_VDU1, 'RandomForest_V3SS_Sulphur.csv') 


