
MACHINE LEARNING PREDICTIVE MODEL DEVELOPMENT

FOR VACUUM DISTILLATION UNIT IN

LUBRICANT BASE OIL PRODUCTION

PRAKASH SARAVANAN

CHEMICAL ENGINEERING

UNIVERSITI TEKNOLOGI PETRONAS

JANUARY 2021

Machine Learning Predictive Model Development for Vacuum Distillation Unit

in Lubricant Base Oil Production

by

Prakash Saravanan

24394

Dissertation submitted in partial fulfilment of

the requirements for the

Bachelor of Engineering (Hons)

(Chemical Engineering)

JANUARY 2021

Universiti Teknologi PETRONAS,

32610, Bandar Seri Iskandar,

Perak Darul Ridzuan

ii

CERTIFICATION OF APPROVAL

Machine Learning Predictive Model Development for Vacuum Distillation Unit
in Lubricant Base Oil Production

by

Prakash Saravanan

24394

Dissertation submitted to the

Chemical Engineering Programme

Universiti Teknologi PETRONAS

in partial fulfilment of the requirement for the

BACHELOR OF ENGINEERING (Hons)

(CHEMICAL ENGINEERING)

Approved by,

Ir Dr Khor Cheng Seong

UNIVERSITI TEKNOLOGI PETRONAS

BANDAR SERI ISKANDAR, PERAK

January 2021

iii

CERTIFICATION OF ORIGINALITY

This is to certify that I am responsible for the work submitted in this project, that the

original work is my own except as specified in the references and acknowledgements,

and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

PRAKASH SARAVANAN

iv

ABSTRACT

 Predictive modelling through machine learning is utilized to accurately

determine the predictive variables for a given target variable in the operation of a

Vacuum Distillation Unit in a lubricant base oil plant. This is done by training the

model using 70% of the past plant data from 2018 to 2020 and enables the model to

capture the correlations between the target variables and the predictor variables. The

algorithms, such as XGBoost, Random Forest and Decision Tree, have different

approaches for training the model and their correlations but XGBoost has emerged as

the best of the rest. In this report, two source codes were developed, one using

XGBoost algorithm and the other using Random Forest algorithm. The breakdown of

the source code development is explained in depth and some of the functions and

packages used were also highlighted. Upon generating the model, the remaining 30%

of the plant data is used as the test dataset to analyse the performance of the models.

Based on the results obtained, it is identified that 19 out of the 21 models developed

showed good fit with the data whereas the two variables, namely V2SS Density and

V2SS Sulphur have fluctuations in its data, thus making it difficult to determine the

outliers and selectively remove them. Comparison with the Random Forest models

further enforces that the target variables except V2SS Density and V2SS Sulphur show

excellent fit with the data. When the predictions of XGBoost and Random Forest are

compared against each other, it can be observed that Kinematic Viscosity@100℃,

Nitrogen and Aromatic content of all three side streams shows agreeable result. Further

work could be done to fine tune certain parameters in the XGBoost to improve its

performance comparable to that of Random Forest since XGBoost has the best

computing performance. One such way is to use exhaustive tuning to vet through all

through possible options which would take extremely long if Random Forest algorithm

were to be used. Obtaining recent plant data could also help in analysing the

performance and reliability of the developed models.

v

ACKNOWLEDGEMENTS

 Throughout my journey in completing this dissertation, I am grateful to have

received support and assistance from lecturers, friends and family. First and foremost,

I would like to extend my utmost gratitude to Ir Dr Khor Cheng Seong, my project

supervisor who has provided me with valuable resources and information for me to

execute this project successfully. His constant supervision on my progress and his keen

interest on my weekly findings has kept me motivated to continue pushing myself

further and contribute the best I could for this project.

 I would also like to extend my gratitude to Dr Mohd Hilmi bin Noh and Dr

Mohd Dzul Hakim bin Wirzal for their support in arranging the relevant seminars to

aid us in the project and their coordination and guidance throughout this project.

Without their assistance, it would have been a difficult journey achieving what I had

achieved now with the tight deadlines.

 Next, I would like to extend my deepest gratitude towards the data science

community for providing the resources and the fundamental knowledge regarding

machine learning and data science available for public use. Their contributions have

helped beginners like me to understand machine learning and data science with ease

and allow us to challenge ourselves further knowing that the community could support

in times of need. Finally, I would like to convey my appreciation to my family and

friends for their moral support and motivation throughout executing this project.

vi

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL ii

CERTIFICATION OF ORIGINALITY iii

ABSTRACT iv

ACKNOWLEDGEMENTS v

LIST OF FIGURES viii

LIST OF TABLES ix

LIST OF APPENDICES x

CHAPTER 1: INTRODUCTION 1

 1.1 Background 1

 1.2 Problem Statement 3

 1.3 Objectives 3

 1.4 Scope of Study 4

CHAPTER 2: LITERATURE REVIEW 5

 2.1 Decision Tree 5

 2.2 Random Forest 6

 2.3 Extreme Gradient Boost (XGBoost) 7

CHAPTER 3: METHODOLOGY/PROJECT WORK 10

 3.1 Softwares and Tools Used 10

 3.2 Packages and Key Functions 10

 3.3 Source Code Overview 15

CHAPTER 4 RESULTS AND DISCUSSION 17

 4.1 XGBoost Model Results 17

 4.1.1 Predictive Model Fit 17

 4.1.2 Importance Plots 19

 4.1.3 Predicted vs Actual Plots 23

 4.2 Random Forest Model Results 26

vii

 4.2.1 Predictive Model Fit 26

 4.2.2 Predicted vs Actual Plots 27

 4.3 Comparison between XGBoost and Random

Forest

30

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 34

 5.1 Conclusion 34

 5.2 Recommendations 35

REFERENCES 36

APPENDICES 38

viii

LIST OF FIGURES

Figure 1.1 Overview of the processes within MRCSB. 2

Figure 1.2 Overview of the Vacuum Distillation Unit (Unit 18). 2

Figure 3.1 Snapshot of function masking when adding packages. 12

Figure 3.2 Flowchart of the Source Code. 16

Figure 4.1 Importance plots of V1SS using XGBoost. 19

Figure 4.2 Graph of Predicted vs Actual of V1SS Yield using

XGBoost.

23

Figure 4.3 Graphs of Predicted vs Actual using XGBoost. 24

Figure 4.4 Graph of Predicted vs Actual of V1SS Yield using

Random Forest.

27

Figure 4.5 Graphs of Predicted vs Actual using Random Forest. 28

Figure 4.6 Chart of R2 for XGBoost and Random Forest. 30

Figure 4.7 Graphs of Random Forest vs XGBoost. 31

ix

LIST OF TABLES

Table 2.1 Modelling Results for Predicting Marine Debris

(Wu, 2018).

8

Table 2.2 Attributes of XGBoost Algorithm. 9

Table 3.1 List of Softwares. 10

Table 3.2 List of Packages and Functions. 11

Table 3.3 Hyperparameter description. 13

Table 3.4 Learning Task Parameters – “objective”. 14

Table 3.5 Learning Task Parameters – “eval_metric”. 14

Table 4.1 Coefficient of Determination, Main Feature and

Gain for Respective Target Variables using XGBoost.

18

Table 4.2 Coefficient of Determination for Respective Target

Variables using Random Forest.

26

x

LIST OF APPENDICES

Appendix A List of Abbreviations 38

Appendix B Input Variables 42

Appendix C Output Variables 43

Appendix D Gantt Chart (FYP I) 44

Appendix E Gantt Chart (FYP II) 45

Appendix F Source Code (XGBoost) 46

Appendix G Source Code – Random Forest 50

1

CHAPTER 1

INTRODUCTION

1.1 Background

 This project entitled “Machine Learning Predictive Model Development for

Vacuum Distillation Unit in Lubricant Base Oil Production” is a collaborative project

between Malaysian Refining Company Sdn. Bhd. (MRCSB) and Centre for Process

Systems Engineering (CPSE), Universiti Teknologi PETRONAS.

 Figure 1.1 provides a brief overview of the processes within MRCSB. A Crude

Distillation Unit (CDU) fractionates the crude into fuel gases, Liquified Petroleum Gas

(LPG), naphtha, kerosene and diesel. The crude residue is then sent to an intermediary

tank. Referring to Figure 1.2, the Low Sulphur Waxy Residue (LSWR) from the CDU

makes up the hot feed and the LSWR from the intermediate tank represents the cold

feed. Throughout the operation of the shown units, two modes are run, namely MG3

and Non-MG3 where the first is a combination of both the hot and cold feed and the

latter constitutes of only cold feed from the intermediate tank. The feed then enters

into a Vacuum Distillation Unit (VDU) (Unit 18) where it is further separated into light

ends, light vapor gas oil (LVGO), medium vapor gas oil (MVGO), vapor residue (VR)

and three side draws (V1SS, V2SS and V3SS). These three side draws are then stored

in an intermediate tank before being blended and further processed in Unit 19 to form

Group III base oil.

2

Figure 1.1: Overview of the processes within MRCSB.

Figure 1.2: Overview of the Vacuum Distillation Unit (Unit 18).

 Extensive work was done on developing and modifying the source code for

predicting the predictor variables for respective target variables of the VDU which will

be explained further in Chapter 3.

3

1.2 Problem Statement

 The primary problem that we are trying to solve through this project is to

identify the key predictor variables which influence the physical properties such as

density, kinematic viscosity, pour point and etc. of the desired streams within the

lubricant base oil production process, especially for the CDU and VDU. This would

be crucial in understanding the process better and possibly setting up better control

structures to maintain optimal value of the product physical properties, which could

produce high quality products consistently, thus maximising profitability.

1.3 Objectives

 The main objectives of this project include:

i. Development of predictive models for the Vacuum Distillation Unit.

 Predictive models for target variables in the vacuum distillation unit will be

developed through XGBoost algorithm only using R. These models are to be

developed based on a set number of input variables, such as draw temperature of the

streams, pump around flow rates, feed flow rates and etc., to predict and understand

the correlation between these input variables and the target variables.

ii. Comparison between algorithms using available dataset.

 Source codes for machine learning algorithms (Decision Tree, Random Forest

and Extreme Gradient Boosting) will be developed and these algorithms are compared

in terms of their computation time, accuracy of the prediction and other relevant data

as deemed necessary for a set number of target variables. This will serve as a

benchmark for further machine learning works with regards to the refinery processes

property prediction.

4

1.4 Scope of Study

 The scope of this project is limited to:

i. Developing the source codes to produce predictive models for 21 target variables

within the Vacuum Distillation Unit using both XGBoost and Random Forest

algorithms and perform necessary hyperparameter tuning to achieve better

predictive performance of the model.

ii. Analysing and comparing the results from both algorithms and recommend

appropriate measures for future work.

5

CHAPTER 2

LITERATURE REVIEW

 In this project, multivariable regression is used to develop the model based on

the target variables. However, the selection of the appropriate algorithm is key in

developing the regression model. Among the most common algorithms which are used

in the era of machine learning includes Decision Tree, Random Forest and Extreme

Gradient Boost. Each of these algorithms are further explained below.

2.1 Decision Tree

 Decision Tree, specifically the Classification and Regression Tree (CART) is

the most common type of data mining method used to develop prediction algorithms.

This method classifies a given data into a flowchart-like tree structure with a root node,

internal node and a leaf node. The root node splits all of the data into two or more

specific subsets based on the feature that has the best split and the internal node splits

the current tree level into respective subdivisions similarly. The leaf node represents

the terminal node and contains the output label. In order to identify the right feature

with the best split at each node, Gini Index is used. (Song & Lu, 2015)

 Gini Index is a measure of impurity (the amount of inaccuracy in separating

the data) and lower Gini index value shows better separation of the data using a

particular feature. The feature with the lowest Gini Index becomes the root of the

decision tree. Then, each node of the root is further separated using a feature that has

the lowest Gini index in splitting the node. However, if the Gini index of the node is

6

much lower as compared to that of the feature with the lowest score, then the separation

of the node is not needed. (Saxena, 2017) Since the Decision Tree forms a single tree

and depends on the lowest Gini Index to determine the respective features on the nodes

of tree, the results of the Decision Tree model would be skewed for datasets with

significant outliers and noise. The model also would only work well for a small sample

size, thus making this algorithm undesirable for this study.

2.2 Random Forest

 Random Forest is a widely used machine learning algorithm and could be used

to develop both regression and classification type models. For a given dataset, Random

Forest algorithm first randomly extracts rows of data from the primary dataset with

replacement and adds them into a bootstrap dataset. Since the samples are taken

randomly with replacements, the bootstrap data would roughly contain about 60% of

the actual rows from the primary dataset and have several duplicate rows. Following

this, the algorithm would randomly select a number of features (or columns) from the

bootstrap dataset to create individual trees. This method of bootstrapping and

aggregating the data is known as “bagging”.

 The number of trees (ntree) is generally defined by the user and a higher

number of tree would result in a better prediction accuracy at the expense of

computation time. The final result of the algorithm is done based on a majority vote of

the output values when a test data is introduced. Thus, Random Forest algorithm

generally performs better in classification type models. (Nikulski, 2016)

 Aside from ntree, another variable that is important in Random Forest is mtry,

which represents the number of random variables used in each tree within the

ensemble. Fine tuning both these values allows us to obtain a fairly accurate model in

most situations. Bhalla (n.d.) has stated the optimal way to tune a Random Forest

model is by using default mtry value and manipulating the ntree value to achieve a low

Out-of-Bag (OOB) error. Upon achieving a stable OOB error rate, a number of mtry

tuning values are used to find the optimal mtry value where the OOB error is at the

7

minimum. Initial mtry values can be approximated to be the square root of the number

of total input variables or predictors, half of the square root value and twice of the

square root value. The OOB error stated earlier is Random Forest algorithm’s way of

performing internal model validation. It utilises the data which are not taken into the

bootstrap dataset (the bootstrap data is analogous to a bag) and performs cross

validation of the model to compute the performance of the model.

 One other variable that impacts the performance of the Random Forest model

is the node size. Node size is the minimum size of the tree nodes and represents the

minimum number of sample or data points that it can hold at the node. Having a high

node size would result in a less complex and shallow tree while a lower node size

would create a complex and deep tree. Altogether, the optimal value of these three

parameters could produce a model that is robust against noise and outliers present in

the data and produces accurate predictions. (Boehmke & Greenwell, 2020)

2.3 Extreme Gradient Boost (XGBoost)

 XGBoost which was introduced by Tianqi Chen and Carlos Guestrin in 2016

is a relatively new algorithm which is based on “boosting” where weak learners are

used sequentially to develop the final model. It uses the second-order Taylor’s

approximation to simplify the objective loss function. This function is then minimised

and produces an output value for the residuals on respective leaf nodes. To minimise

split loss, XGBoost calculates the gain of respective nodes and this is controlled by the

hyperparameter, gamma for pruning of the tree. XGBoost is ought to be the best

performing predictive model algorithm available as of now based on its computing

performance and prediction accuracy. (Leventis, 2018) One benefit of using XGBoost

is that upon constructing the model, it is relatively simple to extract the importance

scores of respective features, which are used to develop the model. This enables the

user to identify the predictor variables with the highest contribution factor or gain value

and understand its significance in a process.

8

Gain = Output (Parent Node) - (Output (Left Node) + Output (Right Node)) (1)

 Wu (2018) has suggested that XGBoost resulted in the lowest Mean Absolute

Error with Random Forest up next for the prediction of marine debris using the data

from International Coastal Cleanup based on Table 2.1.

Table 2.1: Modelling Results for Predicting Marine Debris (Wu,2018).

Models

Ordinary

Least

Square

Decision

Tree

Random

Forest

Generalized

Boosted

Model

Extreme

Gradient

Boosting

MAE 1382.50 998.29 836.01 910.00 807.83

This superior performance by the XGBoost algorithm is made possible by a number

of enhancements which improved its computation speed and model development

performance, which are tabulated in Table 2.2. (Chen & Guestrin, 2016) (Morde &

Setty, 2019)

9

Table 2.2: Attributes of XGBoost algorithm.

Attributes
Description

Exact Greedy Algorithm
For manageable data sizes, the algorithm identifies the

best split of data by running through every datapoint.

Approximate Greedy

Algorithm

Most trees use exact greedy algorithm to identify the

best split of data and to minimise losses. However, this

poses a difficulty when the file size is large and it does

not fit in the system memory for computations. This is

where approximate greedy algorithm kicks in where

instead of enumerating all the data points, it selects

splitting points based on percentile of feature

distribution.

Weighted Quantile

Sketch

To identify the optimal splitting point, an evenly

distributed data could be split into percentile of 1/n

using the quantile sketch to identify the splitting points.

However, there is no quantile sketch for weighted

datasets and this addition to XGBoost allows it to

handle weighted datasets.

Sparsity-aware Split

Finding

In real world, the dataset would be filled with missing

values and the XGBoost algorithm is developed to

recognise this missing value and get around to the non-

missing data.

Cache-aware Access

Limits the size of data within a block based on the

available CPU cache to balance the cache property and

parallelisation

Out-of-core Computation

Optimises the algorithm to maximise the usage of the

device’s hardware. It allows the data which does not fit

into the system memory to be compressed or sharded

into multiple blocks to the disks and runs an algorithm

to read the data from the respective disks.

Regularization
Penalizes complex models using both Lasso and Ridge

regression using alpha and gamma values respectively.

Built-in Cross Validation

Cross validation partitions the training dataset into n

number and trains the model using n-1 partitions and

runs a test using the untrained data. The model is trained

and tested for n number of times and the hyperparameter

tunes could be retrieved.

10

CHAPTER 3

METHODOLOGY / PROJECT WORK

3.1 Softwares and Tools Used

The list of software used throughout the project period is described in Table 3.1.

Table 3.1: List of Softwares.

No. Software Description

1

Microsoft Office

(Microsoft Word, Microsoft

PowerPoint, Microsoft Excel)

A collection of softwares used for

documentations, data analysis, data

visualisation using graphs and tables, and

presentation slides.

2 Adobe Acrobat Reader
A software used to view and print digital

documents.

3
RStudio

Version 4.0.3 (2020-10-10)

An interactive interface to develop and run R-

based source codes

3.2 Packages and Key Functions

 Upon installation, RStudio runs of a base package which contains a large

number of basic functions. However, this is not sufficient to achieve the desired result.

Thus, additional packages could be installed as needed from RStudio itself or from the

Comprehensive R Archive Network (CRAN) repository. Some of the key packages

and functions which are used in this project are described in Table 3.2.

11

Table 3.2: List of Packages and Functions.

No. Packages Functions and Description

1

caret

(Miscellaneous functions for

training and plotting

classification and regression

models)

• createDataPartition

Used to split the data into training and testing

datasets

• confusionMatrix

Calculates a cross-tabulation of observed and

predicted values with associated statistics

2

mice

(Multivariate Imputation

using Chained Equations)

• mice

Performs imputation (replaces missing

data with predicted data)

3
xgboost

(Extreme Gradient Boosting)

• xgboost

Running the XGBoost algorithm and

generates a model

• xgb.importance

Creates an importance list with the gains of

each predictor variables with respect to the

target variable

• xgb.importance.plot

Plots an importance plot that represents the

gains of respective predictor variables

• xgb.save

Save XGBoost model in a binary model

file

• xgb.load

Load XGBoost model from the binary

model file

4

mlr

(Interface to a large number

of classification and

regression techniques)

• makeRegrTask

Create a regression task

• makeLearner

Create learner object

• train

Train a learning algorithm

• makeTuneControlRandom

Create control object for hyperparameter

tuning with random search

• makeResampleDesc

Create a description object for a

resampling strategy

• tuneParams

Hyperparameter tuning

5 randomForest

• randomForest

Generates the Random Forest model.

• varImpPlot

Generates the importance plot for the

Random Forest model

6 parallelMap
• parallelStartSocket

Enables parallelization backend

12

 An important aspect to take note here is that the sequence of the packages

matters especially when two or more packages to be used has the same function name.

Figure 3.1 displays an example where the function “train” is present in both the caret

and mlr packages. Since the mlr package is added after the caret package, the “train”

function from the caret package is masked and it could only be used if the caret

package is re-added. In this situation, the “train” function from the mlr package is

utilised.

Figure 3.1: Snapshot of function masking when adding packages.

 The arguments within the XGBoost function also requires special attention as

each parameter is critical in developing a good model. Table 3.3 describes the common

hyperparameters which are defined in the XGBoost algorithm. Only nrounds is

required to be defined by the user and other parameters have default values when the

algorithm is run. However, the default values could lead to overfitting models in some

cases which could result in poor prediction. Thus, hyperparameter tuning is significant

to achieve a model with the ability to predict with high accuracy. (XGBoost

Parameters, n.d.)

13

Table 3.3: Hyperparameter description.

No Hyperparameters Description

1 nrounds
Maximum number of iteration/ trees grown

Value: Must be user defined

2 eta
Learning rate of the model based on the tree output

Default value: 0.3 (Range: 0 – 1)

3 gamma
Pruning of the leave nodes

Default value: 0 (Range: 0 – Inf)

4 max_depth

Depth of the tree

Default value: 6 (Range: 0 – Inf)

*Deeper trees tend to overfit

5 min_child_weight
Minimum number of residuals on each leaf node

Default value: 1 (Range: 0 – Inf)

6 subsample
Number of samples (rows) supplied to the tree

Default value: 1 (Range: 0 – 1)

7 colsample_bytree
Number of features (column) supplied to the tree

Default value: 1 (Range: 0 – 1)

8 lambda
L2 regularization (Ridge regression)

Default value: 0 (Range: 0 – Inf)

9 alpha
L1 regularization (Lasso regression)

Default value: 1 (Range: 0 – Inf)

 When the algorithm builds each tree and works on achieving the best model, it

requires an objective to develop a classification or regression model and an evaluation

metric to compare the actual data and the output of the tree to improve on and build a

tree with a better fit. Table 3.4 and Table 3.5 displays some of the types of objectives

and evaluation metrics respectively. (XGBoost Parameters, n.d.)

14

Table 3.4: Learning Task Parameters – “objective”.

No Options Description

1 reg:squarederror Regression with squared loss

2 reg:squaredlogerror Regression with squared log loss

3 reg:logistic Logistic regression

4 reg:pseudohubererror Regression with Pseudo Huber loss

5 binary:logistic
Logistic regression with binary classification.

Outputs probability

6 binary:hinge
Hinge loss for binary classification. Outputs 0 or 1

instead of probabilities

7 rank:pairwise
Performs pairwise ranking where pairwise loss is

minimised

8 rank:map
Perform list-wise ranking where Mean Average

Precision is maximised

Table 3.5: Learning Task Parameters – “eval_metric”.

No Options Description

1 rmse
Root mean square error

Default metric for reg:squaredloss

2 rmsle
Root mean square log error

Default metric for reg:squaredlogloss

3 mae Mean absolute error

4 mphe
Mean Pseudo Huber error

Default metric for reg:pseudohubererror

5 error
Binary classification error rate where split occurs at

0.5

15

6 error@t
Binary classification error rate where split occurs at

“t” (user-defined value)

7 map Mean Average Precision

3.3 Source Code Overview

 The developed source code (refer Appendix IV) initially starts off with the

packages specifically XGBoost and mlr packages. The data is read from a comma-

separated value file (.csv) and irrelevant variables are removed from the RStudio

environment. The input variables (Appendix II) and one of the output variable or target

variable (Appendix III) is extracted from the master dataset and added into a new

dataset. The data from the new dataset is then split into training and testing dataset

with a ratio of 70:30. Following that, a regression task for training and testing dataset

is created alongside a learner object which results in a model. This model, however, is

derived from the mlr package and uses the argument “reg:xgboost” in the learner to

execute the XGBoost algorithm for a regression model. Then, the hyperparameter

boundary limits were set and the control structure was set to run 200 random

combinations of hyperparameters with a 10-fold cross validation. Upon the completion

of the hyperparameter tuning, a XGBoost model was developed using the tuned

hyperparameter values. The results from the model and the actual test data were stored

in a .csv file and a residual plot is made to identify the coefficient of determination or

R2 value of the predicted values. A plot of predicted against actual was also made for

each target variable to check for the fit of the model using a test data. An importance

plot, which displays the key predictor variables, is also attained before the XGBoost

model was saved as a binary model file. Figure 3.2 highlights the key steps within the

source code.

 To develop the Random Forest model, similar source code to that of XGBoost

is used and the relevant parameters are specified with their boundaries set to perform

parameter tuning before generating the model. The test data is run through the model

and the results are saved as a CSV file in Excel before further analysis are performed.

16

Figure 3.2: Flowchart of the Source Code.

Install appropriate packages as
needed.

Read data and data pre-
processing.

Splitting into Training and Test Sets
(70:30).

Created test and training tasks, an
XGBoost learner.

Hyperparameter tuning of the
model using 200 combinations.

Use the best tuning with lowest
rmse to develop an XGBoost

model.

Export the predicted and actual
values to Excel file to compute R2

value.

View the gain of each predictor
variable using the importance plot
to identify the major contributor.

Save the model as a binary model
file (.model).

17

CHAPTER 4

RESULTS AND DISCUSSION

4.1 XGBoost Model Results

4.1.1 Predictive Model Fit

 In this project, 21 predictive models are developed using the Extreme Gradient

Boosting (XGBoost) algorithm for the target variables shown in Table 4.1 using 33

input variables as stated in Chapter 3. The list of abbreviations could be referred in

Appendix I. Based on Table 4.1, the total feed flow rate, f and the Low Sulphur Waxy

Residue (LSWR) simulated distillation at 70%, LSWR_70 are seen to be the primary

predictor for a number of target variables. However, both V2SS_Density and

V2SS_Sulphur models show poor coefficient of determination, R2 when the test data

is passed through the developed model.

18

Table 4.1: Coefficient of Determination, Main Feature and Gain for Respective Target

Variables using XGBoost.

Target Variable R2 Main Feature / Predictor Variable Gain

fv1ss 0.96 f 0.69

fv2ss 0.94 f 0.68

fv3ss 0.68 V2SS_PA71 0.18

y1 0.69 tlvgo 0.23

y2 0.83 LSWR_5 0.19

y3 0.75 f 0.24

V1SS_Density15 0.872 LSWR_Combined_40 0.91

V2SS_Density15 0.0001 LVGO_PA34 0.27

V3SS_Density15 0.9283 LSWR_Combined_Density15 0.25

V1SS_kv100 0.9469 LSWR_20 0.40

V2SS_kv100 0.8443 tmvgo 0.22

V3SS_kv100 0.9037 tmvgo 0.28

V1SS_Sulphur 0.8619 LVGO_PA34 0.18

V2SS_Sulphur 0.0015 tv1ss 0.21

V3SS_Sulphur 0.83 V3SS_PA87 0.13

V1SS_Nitrogen 0.9181 LSWR_90 0.24

V2SS_Nitrogen 0.9409 LSWR_70 0.46

V3SS_Nitrogen 0.9364 LSWR_70 0.42

V1SS_Aromatic 0.9436 LSWR_70 0.38

V2SS_Aromatic 0.962 LSWR_70 0.41

V3SS_Aromatic 0.9387 LSWR_50 0.22

19

4.1.2 Importance Plots

 The XGBoost algorithm develops a tree ensemble and is able to identify the

gain value or contribution factor of respective input variables by removing or adding

the features and observing whether the accuracy of the model increases or decreases.

These variables are then sequenced in terms of the gain values in descending order in

an importance plot such as the example shown in Figure 4.1 for all of the target

variables of side stream V1SS. The importance plot highlights the gain, cover and the

frequency. Gain represents the contribution of a feature as explained previously; cover

represents the relative number of observations related to a feature; and frequency is

the number of times an input variable is used at the node to split the data.

(a) V1SS Flowrate

20

(b) V1SS Yield

(c) V1SS Density

21

(d) V1SS Kinematic Viscosity

(e) V1SS Sulphur

22

(f) V1SS Nitrogen

(g) V1SS Aromatic

Figure 4.1: Importance plots of V1SS using XGBoost.

23

4.1.3 Predicted vs Actual Plots

 Upon developing the models, the models are tested using a test data to observe

its performance. Figure 4.2 shows the actual against predicted graph of target variable

y1, where the data points follow the 45˚ reference line which indicates that the

predicted data closely approximates the actual data of y1. The data has a coefficient of

determination, R2 value of 0.6923 as shown in Table 4.1.

Figure 4.2: Graph of Predicted vs Actual of V1SS Yield using XGBoost.

 Figure 4.3 displays the actual versus predicted graphs of all the other 20

variables besides y1. All of these graphs except Figure 4.3 (g) and Figure 4.3 (m)

highlights that the model has a good fit with the data and is reliable in terms of its

prediction and accuracy. However, for Figure 4.3 (g) and Figure 4.3 (m), the

discrepancy in the data of density and sulphur content respectively has resulted in a

poor model fit. These values were not treated as outliers since the large values occurred

several times within the dataset.

24

(a) V1SS Flowrate (b) V2SS Flowrate

(c) V3SS Flowrate (d) V2SS Yield

(e) V3SS Yield (f) V1SS Density

(g) V2SS Density (h) V3SS Yield

(i) V1SS kv100 (j) V2SS kv100

25

Figure 4.3: Graphs of Predicted vs Actual using XGBoost.

(k) V3SS kv100 (l) V1SS Sulphur

(m) V2SS Sulphur

(o) V1SS Nitrogen

(n) V3SS Sulphur

(p) V2SS Nitrogen

(q) V3SS Nitrogen (r) V1SS Aromatic

s) V2SS Aromatic t) V3SS Aromatic

26

4.2 Random Forest Results

4.2.1 Predictive Model Fit

 Table 4.2 shows the coefficient of determination, R2 value of the respective

target variables for the Random Forest models. However, both V1SS Density and

V2SS Density models show poor coefficient of determination, R2 when the test data is

passed through the developed model. V2SS Sulphur displays a good fit using the

Random Forest algorithm but further tests with new test data is needed to verify this

model.

Table 4.2: Coefficient of Determination for Respective Target Variables using

Random Forest.

Target Variable R2

fv1ss 0.9907

fv2ss 0.9921

fv3ss 0.9559

y1 0.9825

y2 0.9722

y3 0.9483

V1SS_Density15 0.0001

V2SS_Density15 0.0009

V3SS_Density15 0.9915

V1SS_kv100 0.9940

V2SS_kv100 0.9761

V3SS_kv100 0.9872

V1SS_Sulphur 0.9773

V2SS_Sulphur 0.9589

V3SS_Sulphur 0.9703

V1SS_Nitrogen 0.9857

V2SS_Nitrogen 0.9908

V3SS_Nitrogen 0.9879

27

V1SS_Aromatic 0.9908

V2SS_Aromatic 0.9937

V3SS_Aromatic 0.9909

4.2.2 Predictive vs Actual Plots

 When the models are developed using the Random Forest algorithm, the trends

shown by the models are similar to that of XGBoost where all of the target variables

except V1SS Density and V2SS Density show good performance. This can be

attributed to the poor dataset that is obtained for the specific target variables. Figure

4.4 shows the graph of actual versus predicted of V1SS Yield using the Random Forest

algorithm which shows a better fit and has a better R2 value.

Figure 4.4: Graph of Predicted vs Actual of V1SS Yield using Random Forest.

28

(a) V1SS Flowrate (b) V2SS Flowrate

(c) V3SS Flowrate (d) V2SS Yield

(f) V1SS Density

(h) V3SS Density

(e) V3SS Yield

(i) V1SS kv100 (j) V2SS kv100

(g) V2SS Density

29

(k) V3SS kv100 (l) V1SS Sulphur

(m) V2SS Sulphur (n) V3SS Sulphur

(o) V1SS Nitrogen (p) V2SS Nitrogen

(q) V3SS Nitrogen (r) V1SS Aromatic

(s) V2SS Aromatic (t) V3SS Aromatic

30

Figure 4.5: Graphs of Predicted vs Actual using Random Forest.

4.3 Comparison between XGBoost and Random Forest

 Based on Figure 4.6, it could be observed that the Random Forest algorithm is

able to achieve better R2 values due to its ability in randomly subsampling the data

during training which prevents overfitting of the model towards the training data. Thus,

Random Forest is a better option if it was to be used with minimal hyperparameter

tuning. XGBoost has the advantage in terms of computing power and the overfitting

issue could be corrected by introducing a lower sampling rate of columns and features

to build each tree to avoid any overfitting. Referring to Figure 4.7, both algorithms

achieved similar performance in predicting the kinematic viscosity at 100℃ and the

aromatic content of all three streams, V1SS, V2SS and V3SS as shown by charts (j),

(k), (l), (s), (t) and (u).

Figure 4.6: Chart of R2 for XGBoost and Random Forest.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
2

Target Variables

xgboost R2 random forest R2

31

(a) V1SS Flowrate

(c) V3SS Flowrate (d) V1SS Yield

(b) V2SS Flowrate

(e) V2SS Yield (f) V3SS Yield

(g) V1SS Density (h) V2SS Density

(i) V3SS Density (j) V1SS kv100

32

(k) V2SS kv100 (l) V3SS kv100

(m) V1SS Sulphur (n) V2SS Sulphur

(o) V3SS Sulphur

(q) V2SS Nitrogen (r) V3SS Nitrogen

(s) V1SS Aromatic

(p) V1SS Nitrogen

(t) V2SS Aromatic

33

Figure 4.7: Graphs of Random Forest vs XGBoost

(u) V3SS Aromatic

34

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

 This project, which is based on the refinery in MRCSB is focused on

developing predictive model for the VDU using the XGBoost algorithm. Through

literatures, the superior performance of the XGBoost algorithm in terms of

computation time and prediction accuracy over other algorithms such as Random

Forest and Decision Tree algorithms is emphasised. In this report, the researcher has

primarily worked on the first research objective, which is to develop and modify the

source code to develop the predictive models. A detailed breakdown of the source

code, major functions and packages used were also highlighted. The outputs of the

developed model were explained, where the both the Random Forest and XGBoost

models show good fit to 19 out of the 21 target variables. When the predicted results

of XGBoost was compared against the predicted results from Random Forest, the

Kinematic Viscosity@100℃, Nitrogen and Aromatic content values of streams V1SS,

V2SS and V3SS closely approximate each other.

35

5.2 Recommendation

 The performance of both the algorithm is not entirely conclusive since the test

data is limited and is from the actual data itself. Thus, recent plant data is required to

test the performance of these models and their accuracy in prediction as well as to

analyse their reliability in predicting live data.

 Another recommendation would be to explore the route of exhaustive

hyperparameter tuning to obtain the best coefficient of determination. XGBoost is the

appropriate algorithm to be used for this case since sufficient computing power is

needed if such task was to be taken and Random Forest is not recommended because

of its slow computing performance. Aside from that, the detailed understanding of the

effects of manipulating each hyperparameter is one aspect to be considered for having

a detailed analysis.

36

REFERENCES

Bhalla, D. (n.d.). A complete guide to random forest in R. Retrieved from Listen Data:

https://www.listendata.com/2014/11/random-forest-with-r.html#What-is-

Random-Forest-

Boehmke, B., & Greenwell, B. (2020, February 1). Random Forest. Retrieved from

Hands-on Machine Learning with R:

https://bradleyboehmke.github.io/HOML/random-forest.html

Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. KDD

'16: Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, (pp. 785-794).

doi:10.1145/2939672.2939785

Leventis, D. (2018, November 11). XGBoost Mathematics Explained. Retrieved from

Towards Data Science: https://towardsdatascience.com/xgboost-mathematics-

explained-58262530904a

Morde, V., & Setty, V. A. (2019, April 8). XGBoost Algorithm:Long May She Reign!

Retrieved from Towards Data Science: https://towardsdatascience.com/https-

medium-com-vishalmorde-xgboost-algorithm-long-she-may-rein-

edd9f99be63d

Nikulski, J. (2016, March). The ultimate guide to adaboost, random forests and

xgboost. Retrieved from Towards Data Science:

https://towardsdatascience.com/the-ultimate-guide-to-adaboost-random-

forests-and-xgboost-7f9327061c4f

Saxena, R. (2017, January 30). How decision tree algorithm works. Retrieved from

Dataaspirant: https://dataaspirant.com/how-decision-tree-algorithm-

works/#:~:text=Decision%20Tree%20Algorithm%20Pseudocode,same%20v

alue%20for%20an%20attribute.

Song, Y., & Lu, Y. (2015). Decision tree methods: applications for classification and

prediction. Shanghai Archives of Psychiatry, 27(2), 130-135.

doi:10.11919/j.issn.1002-0829.215044

37

Wu, X. (2018, October 8). Evaluating Machine Learning Models in R: Predicting

Marine Debris. Retrieved from Azavea:

https://www.azavea.com/blog/2018/10/08/marine-debris-machine-learning-

models-r/

XGBoost Parameters. (n.d.). Retrieved from

https://xgboost.readthedocs.io/en/latest/parameter.html#general-parameters

38

APPENDICES

Appendix A: List of Abbreviations

39

40

41

42

APPENDIX B: Input Variables

43

APPENDIX C: Output Variables

44

APPENDIX D: Gantt Chart (FYP I)

Task 1 2 3 4 5 6 7 8 9 10 11 12 13

Context setting and briefing

Work on literature review

regarding XGBoost

Develop the source code to

develop XGBoost models

Develop predictive model for 94

target variables

Report Preparation

Developed model submission

Report Submission and

Presentation

45

APPENDIX E: Gantt Chart (FYP II)

Task 1 2 3 4 5 6 7 8 9 10 11 12 13

Develop Random Forest model

Trial run on 60/40 data split for

training and test data

Correlation studies

Draft Dissertation Submission

Develop predictive model for 21

target variables

Report Submission and

Presentation

Milestones:

1 – Develop a source code that could generate predictive model for XGBoost and Random Forest

2 – Identify correlations between features wherever applicable

3 – Submit the developed models in a .zip file as well as the finalised report and other related documents.

46

APPENDIX F: Source Code (XGBoost)

#Prakash Saravanan

Packages

library(tidyverse) # data manipulation

library(caret)

library(mlr) # ML package (also some data manipulation)

library(knitr) # just using this for kable() to make pretty tables

library(xgboost)

library(caTools)

require(fastmatch)

Data preparation

#For version 2 of the data

Importing the dataset

dataset = read.csv('C:\\Users\\User\\Desktop\\UTP_Intern\\Source_Code\\Dataset_Latest_v2_1.csv')

dataset$mode<-as.factor(dataset$mode)

#dataset<-na.omit(dataset)#Remove rows with missing data

dataset<-dataset[,-c(1,2)] #Used for current code to remove only sequence, date,

dataset = select(dataset,"V3SS_kv100",1:10,13:29,121:126) #Dataset for inputs only. Target variable to be added in the

beginning

str(dataset)

summary(dataset)

mydata1<-dataset

mydata1<-mydata1[,-c(34)]

Splitting the dataset into the Training set and Test set

set.seed(12345)

split1=createDataPartition(mydata1$V3SS_kv100,p=0.7,list=FALSE)

train1 <- mydata1[split1,]

test1 <- mydata1[-split1,]

#fitting XGBoost to the training set

47

trainTask1 <- makeRegrTask(data = train1, target = "V3SS_kv100")

testTask1 <- makeRegrTask(data = test1, target = "V3SS_kv100")

Timer

start_time = Sys.time()

Sys.sleep(0.5)

#set.seed(1)

Create an xgboost learner that is classification based and outputs

labels (as opposed to probabilities)

xgb_learner <- makeLearner(

 "regr.xgboost",

 predict.type = "response",

 par.vals = list(

 objective = "reg:squarederror",

 eval_metric = "error",

 nrounds = 200

)

)

Create a model

xgb_model1 <- train(xgb_learner, task = trainTask1)

result1 <- predict(xgb_model1, testTask1)

head(result1$data) %>%

 kable()

XGBoost hyperparameter tuning

xgb_params <- makeParamSet(

 # The number of trees in the model (each one built sequentially)

 makeIntegerParam("nrounds", lower = 500, upper = 2000),

 # Number of splits in each tree

 makeIntegerParam("max_depth", lower = 1, upper = 6),

 # "shringkage" - prevents overfitting

 makeNumericParam("eta", lower = .1, upper = .5),

48

 # L2 regularization - prevents overfitting

 makeNumericParam("lambda", lower = -1, upper = 0, trafo = function(x) 10^x)

)

control <- makeTuneControlRandom(maxit = 200)

Create a description of the resampling plan

resample_desc <- makeResampleDesc("CV", iters = 10)

tuned_params1 <- tuneParams(

 learner = xgb_learner,

 task = trainTask1,

 resampling = resample_desc,

 par.set = xgb_params,

 control = control

)

#view importance

classifier1 = xgboost(data = as.matrix(train1[-1]),

 label = train1$V3SS_kv100,

 nrounds = 125000,

 max_depth = tuned_params1xmax_depth,

 eta = tuned_params1xeta,

 lambda = tuned_params1xlambda,

 seed = 1,

 nfolds =10,

 eval_metric = "rmse",

 objective = "reg:squarederror",

 early_stopping_rounds = 10

)

print(c(tuned_params1xmax_depth,tuned_params1xeta,tuned_params1xlambda, classifier1$best_score))

importance_matrix1 <- xgb.importance(model = classifier1)

print(importance_matrix1)

xgb.plot.importance(importance_matrix = importance_matrix1,top_n = 20)

save model to binary local file

xgb.save(classifier1 , "Project_Unsorted_V3SS_kv100.model")

49

end_time = Sys.time()

end_time - start_time

#Used for model retrieval and residual plot

#classifier1<-xgb.load("Project_MG3_QuenchBottom_103.model")#Load developed model

num<-1

num

testlabel1<-as.matrix(test1[,num])

test1<-test1[,-num]

y_pred1 <- predict(classifier1, as.matrix(test1))

y_pred1 = as.data.frame(y_pred1)

df_VDU1 = data.frame(Actual = testlabel1 , Predicted = y_pred1$y_pred1)

write.csv(df_VDU1, 'Project_Unsorted_V3SS_kv100.csv')

summary(y_pred1)

mean(testlabel1)

mean(y_pred1$y_pred1)

y_pred1<-as.integer(y_pred1>mean(y_pred1$y_pred1))

testlabel1<-as.integer(testlabel1>mean(testlabel1))

confusionMatrix(as.factor(y_pred1),as.factor(testlabel1))

50

APPENDIX G: Source Code (Random Forest)

#Prakash Saravanan

#28/8/2020

Packages

library(tidyverse) # data manipulation

library(caret)

library(mlr) # ML package (also some data manipulation)

library(knitr) # just using this for kable() to make pretty tables

library(parallelMap)

library(parallel)

library(caTools)

library(ranger)

library(tuneRanger)

require(fastmatch)

library(randomForest)

#Parallel computing

no_cores <- detectCores()-0

.onLoad = function(libname, pkgname) {

 configureMlr()

 backports::import(pkgname)

}

.onAttach = function(libname, pkgname) {

 configureMlr()

 parallelRegisterLevels(package = "mlr", levels = c("benchmark", "resample", "selectFeatures", "tuneParams", "ensemble"))

}

parallelStartSocket(cpu = no_cores , level = "mlr.resample")

#For version 2 of the data

#Check the working directory to save files

getwd()

setwd("C:\\Users\\User\\Desktop\\UTP_Intern\\Output_Dataset_U18_V3_ZAP_MAF_V3")

51

Importing the dataset

dataset = read.csv('C:\\Users\\User\\Desktop\\UTP_Intern\\Source_Code\\Dataset_U18_V3_ZAP_MAF_V3_1.csv')

dataset$mode<-as.factor(dataset$mode)

#dataset<-na.omit(dataset)#Remove rows with missing data

dataset<-dataset[,-c(1,2)] #Used for current code to remove only sequence, date, Nitrogen and Sulphur

dataset1 = select(dataset,"V3SS_Sulphur",1:10,13:29,121:126) #Dataset for inputs only. Target variable to be added in the

beginning

set.seed(12345)

split1=createDataPartition(dataset1$V3SS_Sulphur,p=0.7,list=FALSE)

train1 <- dataset1[split1,]

test1 <- dataset1[-split1,]

trainTask1 <- makeRegrTask(data = train1, target = "V3SS_Sulphur")

testTask1 <- makeRegrTask(data = test1, target = "V3SS_Sulphur")

rf_learner <- makeLearner(

 "regr.randomForest",

 predict.type = "response",

 par.vals = list(

 ntree=2000,

 importance=TRUE,

 proximity=TRUE

)

)

rf_model1 <- train(rf_learner, task = trainTask1)

result1 <- predict(rf_model1, testTask1)

getParamSet(rf_learner)

rf_params <- makeParamSet(

 # The number of columns sampled in each tree

 makeIntegerParam("mtry", lower = 2, upper = 10),

52

 # Observations in terminal nodes

 makeIntegerParam("nodesize", lower = 10, upper = 50)#,

 # Number of trees

 #makeNumericParam("ntree", lower = 500, upper = 2000)

)

control <- makeTuneControlRandom(maxit = 200)

resample_desc <- makeResampleDesc("CV", iters = 10L)

tuned_params1 <- tuneParams(

 learner = rf_learner,

 task = trainTask1,

 resampling = resample_desc,

 par.set = rf_params,

 control = control

)

rf1 <- randomForest(

 dataset1$V3SS_Sulphur ~ .,

 data=as.matrix(dataset1),

 ntree=2000,

 mtry=tuned_params1xmtry,

 nodesize=tuned_params1xnodesize,

 importance=TRUE,

 proximity=TRUE

)

plot(importance(rf3))

varImpPlot(rf3)

print(rf3)

MDSplot(rf1,dataset1$y1)

proximity.plot(

 rf2,

 dim.x = 1,

 dim.y = 2,

53

 legend.loc = c("top", "bottom", "left", "right"),

 point.size = 2,

 circle.size = 8,

 circle.border = 1,

 hull.alpha = 0.3,

 plot = TRUE

)

pred1 <-predict(rf1, as.matrix(test1))

num<-1

num

testlabel1<-as.matrix(test1[,num])

test1<-test1[,-num]

actual1<-testlabel1

predicted1<-pred1

R2_1 <- 1 - (sum((actual1-predicted1)^2)/sum((actual1-mean(actual1))^2))

df_VDU1 = data.frame(Actual = testlabel1 , Predicted = pred1, R2_1)

write.csv(df_VDU1, 'RandomForest_V3SS_Sulphur.csv')

