MACHINE LEARNING PREDICTIVE MODEL DEVELOPMENT
FOR VACUUM DISTILLATION UNIT IN
LUBRICANT BASE OIL PRODUCTION

PRAKASH SARAVANAN

CHEMICAL ENGINEERING
UNIVERSITI TEKNOLOGI PETRONAS

JANUARY 2021

Machine Learning Predictive Model Development for Vacuum Distillation Unit
in Lubricant Base Oil Production

by

Prakash Saravanan

24394

Dissertation submitted in partial fulfilment of

the requirements for the
Bachelor of Engineering (Hons)

(Chemical Engineering)

JANUARY 2021

Universiti Teknologi PETRONAS,
32610, Bandar Seri Iskandar,

Perak Darul Ridzuan

CERTIFICATION OF APPROVAL

Machine Learning Predictive Model Development for Vacuum Distillation Unit
in Lubricant Base Oil Production

by

Prakash Saravanan
24394
Dissertation submitted to the
Chemical Engineering Programme
Universiti Teknologi PETRONAS
in partial fulfilment of the requirement for the
BACHELOR OF ENGINEERING (Hons)
(CHEMICAL ENGINEERING)

Approved by,

mﬂ

\-—-—"—H—_—.

Ir Dr Khor Cheng Seong

UNIVERSITI TEKNOLOGI PETRONAS
BANDAR SERI ISKANDAR, PERAK
January 2021

CERTIFICATION OF ORIGINALITY

This is to certify that | am responsible for the work submitted in this project, that the
original work is my own except as specified in the references and acknowledgements,
and that the original work contained herein have not been undertaken or done by

unspecified sources or persons.

M,

PRAKASH SARAVANAN

ABSTRACT

Predictive modelling through machine learning is utilized to accurately
determine the predictive variables for a given target variable in the operation of a
Vacuum Distillation Unit in a lubricant base oil plant. This is done by training the
model using 70% of the past plant data from 2018 to 2020 and enables the model to
capture the correlations between the target variables and the predictor variables. The
algorithms, such as XGBoost, Random Forest and Decision Tree, have different
approaches for training the model and their correlations but XGBoost has emerged as
the best of the rest. In this report, two source codes were developed, one using
XGBoost algorithm and the other using Random Forest algorithm. The breakdown of
the source code development is explained in depth and some of the functions and
packages used were also highlighted. Upon generating the model, the remaining 30%
of the plant data is used as the test dataset to analyse the performance of the models.
Based on the results obtained, it is identified that 19 out of the 21 models developed
showed good fit with the data whereas the two variables, namely V2SS Density and
V2SS Sulphur have fluctuations in its data, thus making it difficult to determine the
outliers and selectively remove them. Comparison with the Random Forest models
further enforces that the target variables except V2SS Density and V2SS Sulphur show
excellent fit with the data. When the predictions of XGBoost and Random Forest are
compared against each other, it can be observed that Kinematic Viscosity@100°C,
Nitrogen and Aromatic content of all three side streams shows agreeable result. Further
work could be done to fine tune certain parameters in the XGBoost to improve its
performance comparable to that of Random Forest since XGBoost has the best
computing performance. One such way is to use exhaustive tuning to vet through all
through possible options which would take extremely long if Random Forest algorithm
were to be used. Obtaining recent plant data could also help in analysing the

performance and reliability of the developed models.

iv

ACKNOWLEDGEMENTS

Throughout my journey in completing this dissertation, | am grateful to have
received support and assistance from lecturers, friends and family. First and foremost,
| would like to extend my utmost gratitude to Ir Dr Khor Cheng Seong, my project
supervisor who has provided me with valuable resources and information for me to
execute this project successfully. His constant supervision on my progress and his keen
interest on my weekly findings has kept me motivated to continue pushing myself

further and contribute the best I could for this project.

| would also like to extend my gratitude to Dr Mohd Hilmi bin Noh and Dr
Mohd Dzul Hakim bin Wirzal for their support in arranging the relevant seminars to
aid us in the project and their coordination and guidance throughout this project.
Without their assistance, it would have been a difficult journey achieving what I had

achieved now with the tight deadlines.

Next, 1 would like to extend my deepest gratitude towards the data science
community for providing the resources and the fundamental knowledge regarding
machine learning and data science available for public use. Their contributions have
helped beginners like me to understand machine learning and data science with ease
and allow us to challenge ourselves further knowing that the community could support
in times of need. Finally, 1 would like to convey my appreciation to my family and

friends for their moral support and motivation throughout executing this project.

TABLE OF CONTENTS

CERTIFICATION OF APPROVAL
CERTIFICATION OF ORIGINALITY
ABSTRACT
ACKNOWLEDGEMENTS

LIST OF FIGURES

LIST OF TABLES

LIST OF APPENDICES

CHAPTER 1: INTRODUCTION
1.1 Background
1.2 Problem Statement
1.3 Objectives
1.4 Scope of Study

CHAPTER 2: LITERATURE REVIEW
2.1 Decision Tree
2.2 Random Forest
2.3 Extreme Gradient Boost (XGBoost)

CHAPTER 3: METHODOLOGY/PROJECT WORK
3.1 Softwares and Tools Used
3.2 Packages and Key Functions

3.3 Source Code Overview

CHAPTER 4 RESULTS AND DISCUSSION
4.1 XGBoost Model Results
4.1.1 Predictive Model Fit
4.1.2 Importance Plots
4.1.3 Predicted vs Actual Plots
4.2 Random Forest Model Results

Vi

A W W R -

~N o o1 o1

10
10
10
15

17
17
17
19
23
26

CHAPTER 5

REFERENCES
APPENDICES

4.2.1 Predictive Model Fit
4.2.2 Predicted vs Actual Plots

4.3 Comparison between XGBoost and Random
Forest

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion
5.2 Recommendations

vii

26
27

30

34

34

35

36
38

LIST OF FIGURES

Figure 1.1
Figure 1.2
Figure 3.1
Figure 3.2
Figure 4.1
Figure 4.2

Figure 4.3
Figure 4.4

Figure 4.5
Figure 4.6
Figure 4.7

Overview of the processes within MRCSB.

Overview of the Vacuum Distillation Unit (Unit 18).

Snapshot of function masking when adding packages.

Flowchart of the Source Code.

Importance plots of V1SS using XGBoost.

Graph of Predicted vs Actual of V1SS Yield using
XGBoost.

Graphs of Predicted vs Actual using XGBoost.
Graph of Predicted vs Actual of V1SS Yield using
Random Forest.

Graphs of Predicted vs Actual using Random Forest.
Chart of R? for XGBoost and Random Forest.
Graphs of Random Forest vs XGBoost.

viii

12
16
19
23

24

27
28
30
31

LIST OF TABLES

Table 2.1

Table 2.2
Table 3.1
Table 3.2
Table 3.3
Table 3.4
Table 3.5
Table 4.1

Table 4.2

Modelling Results for Predicting Marine Debris

(Wu, 2018). 8

Attributes of XGBoost Algorithm. 9

List of Softwares. 10
List of Packages and Functions. 11
Hyperparameter description. 13
Learning Task Parameters — “objective”. 14
Learning Task Parameters — “eval_metric”. 14

Coefficient of Determination, Main Feature and

Gain for Respective Target Variables using XGBoost. 18
Coefficient of Determination for Respective Target 26
Variables using Random Forest.

LIST OF APPENDICES

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G

List of Abbreviations

Input Variables

Output Variables

Gantt Chart (FYP I)

Gantt Chart (FYP I1)

Source Code (XGBoost)
Source Code — Random Forest

38
42
43
44
45
46
50

CHAPTER 1

INTRODUCTION

1.1 Background

This project entitled “Machine Learning Predictive Model Development for
Vacuum Distillation Unit in Lubricant Base Oil Production” is a collaborative project
between Malaysian Refining Company Sdn. Bhd. (MRCSB) and Centre for Process
Systems Engineering (CPSE), Universiti Teknologi PETRONAS.

Figure 1.1 provides a brief overview of the processes within MRCSB. A Crude
Distillation Unit (CDU) fractionates the crude into fuel gases, Liquified Petroleum Gas
(LPG), naphtha, kerosene and diesel. The crude residue is then sent to an intermediary
tank. Referring to Figure 1.2, the Low Sulphur Waxy Residue (LSWR) from the CDU
makes up the hot feed and the LSWR from the intermediate tank represents the cold
feed. Throughout the operation of the shown units, two modes are run, namely MG3
and Non-MG3 where the first is a combination of both the hot and cold feed and the
latter constitutes of only cold feed from the intermediate tank. The feed then enters
into a Vacuum Distillation Unit (VDU) (Unit 18) where it is further separated into light
ends, light vapor gas oil (LVGO), medium vapor gas oil (MVGO), vapor residue (VR)
and three side draws (V1SS, V2SS and V3SS). These three side draws are then stored
in an intermediate tank before being blended and further processed in Unit 19 to form

Group 11 base oil.

MRCSB CDU1 and MG3 Overview

PCN
MIG3 (U-18 MG3 (U-72)
3 - 154C (U-18) MGE3 U-19) Tankages (U-75)

=
E==1

HoT

o= [l LS

Figure 1.1: Overview of the processes within MRCSB.

Fuel Gas
LSWR/CDU-1 AR VG0
MVGO to HCK
V1ss Intermediate

(100D) Storage

Hot Feed VDU | y2s5
(150D] To U19 (base oil)

Cold Feed V3ss

(500D)

T-
7554

LSWR Import from PP(T)SB

Figure 1.2: Overview of the Vacuum Distillation Unit (Unit 18).

VR to DCU

Extensive work was done on developing and modifying the source code for
predicting the predictor variables for respective target variables of the VDU which will

be explained further in Chapter 3.

1.2 Problem Statement

The primary problem that we are trying to solve through this project is to
identify the key predictor variables which influence the physical properties such as
density, kinematic viscosity, pour point and etc. of the desired streams within the
lubricant base oil production process, especially for the CDU and VDU. This would
be crucial in understanding the process better and possibly setting up better control
structures to maintain optimal value of the product physical properties, which could

produce high quality products consistently, thus maximising profitability.

1.3 Objectives

The main objectives of this project include:

I. Development of predictive models for the Vacuum Distillation Unit.

Predictive models for target variables in the vacuum distillation unit will be
developed through XGBoost algorithm only using R. These models are to be
developed based on a set number of input variables, such as draw temperature of the
streams, pump around flow rates, feed flow rates and etc., to predict and understand

the correlation between these input variables and the target variables.

ii. Comparison between algorithms using available dataset.

Source codes for machine learning algorithms (Decision Tree, Random Forest
and Extreme Gradient Boosting) will be developed and these algorithms are compared
in terms of their computation time, accuracy of the prediction and other relevant data
as deemed necessary for a set number of target variables. This will serve as a
benchmark for further machine learning works with regards to the refinery processes

property prediction.

1.4

Scope of Study

The scope of this project is limited to:

Developing the source codes to produce predictive models for 21 target variables
within the Vacuum Distillation Unit using both XGBoost and Random Forest
algorithms and perform necessary hyperparameter tuning to achieve better
predictive performance of the model.

Analysing and comparing the results from both algorithms and recommend

appropriate measures for future work.

CHAPTER 2

LITERATURE REVIEW

In this project, multivariable regression is used to develop the model based on
the target variables. However, the selection of the appropriate algorithm is key in
developing the regression model. Among the most common algorithms which are used
in the era of machine learning includes Decision Tree, Random Forest and Extreme

Gradient Boost. Each of these algorithms are further explained below.

2.1 Decision Tree

Decision Tree, specifically the Classification and Regression Tree (CART) is
the most common type of data mining method used to develop prediction algorithms.
This method classifies a given data into a flowchart-like tree structure with a root node,
internal node and a leaf node. The root node splits all of the data into two or more
specific subsets based on the feature that has the best split and the internal node splits
the current tree level into respective subdivisions similarly. The leaf node represents
the terminal node and contains the output label. In order to identify the right feature
with the best split at each node, Gini Index is used. (Song & Lu, 2015)

Gini Index is a measure of impurity (the amount of inaccuracy in separating
the data) and lower Gini index value shows better separation of the data using a
particular feature. The feature with the lowest Gini Index becomes the root of the
decision tree. Then, each node of the root is further separated using a feature that has

the lowest Gini index in splitting the node. However, if the Gini index of the node is

much lower as compared to that of the feature with the lowest score, then the separation
of the node is not needed. (Saxena, 2017) Since the Decision Tree forms a single tree
and depends on the lowest Gini Index to determine the respective features on the nodes
of tree, the results of the Decision Tree model would be skewed for datasets with
significant outliers and noise. The model also would only work well for a small sample
size, thus making this algorithm undesirable for this study.

2.2 Random Forest

Random Forest is a widely used machine learning algorithm and could be used
to develop both regression and classification type models. For a given dataset, Random
Forest algorithm first randomly extracts rows of data from the primary dataset with
replacement and adds them into a bootstrap dataset. Since the samples are taken
randomly with replacements, the bootstrap data would roughly contain about 60% of
the actual rows from the primary dataset and have several duplicate rows. Following
this, the algorithm would randomly select a number of features (or columns) from the
bootstrap dataset to create individual trees. This method of bootstrapping and

aggregating the data is known as “bagging”.

The number of trees (ntree) is generally defined by the user and a higher
number of tree would result in a better prediction accuracy at the expense of
computation time. The final result of the algorithm is done based on a majority vote of
the output values when a test data is introduced. Thus, Random Forest algorithm
generally performs better in classification type models. (Nikulski, 2016)

Aside from ntree, another variable that is important in Random Forest is mtry,
which represents the number of random variables used in each tree within the
ensemble. Fine tuning both these values allows us to obtain a fairly accurate model in
most situations. Bhalla (n.d.) has stated the optimal way to tune a Random Forest
model is by using default mtry value and manipulating the ntree value to achieve a low
Out-of-Bag (OOB) error. Upon achieving a stable OOB error rate, a number of mtry

tuning values are used to find the optimal mtry value where the OOB error is at the
6

minimum. Initial mtry values can be approximated to be the square root of the number
of total input variables or predictors, half of the square root value and twice of the
square root value. The OOB error stated earlier is Random Forest algorithm’s way of
performing internal model validation. It utilises the data which are not taken into the
bootstrap dataset (the bootstrap data is analogous to a bag) and performs cross
validation of the model to compute the performance of the model.

One other variable that impacts the performance of the Random Forest model
is the node size. Node size is the minimum size of the tree nodes and represents the
minimum number of sample or data points that it can hold at the node. Having a high
node size would result in a less complex and shallow tree while a lower node size
would create a complex and deep tree. Altogether, the optimal value of these three
parameters could produce a model that is robust against noise and outliers present in
the data and produces accurate predictions. (Boehmke & Greenwell, 2020)

2.3 Extreme Gradient Boost (XGBoost)

XGBoost which was introduced by Tiangi Chen and Carlos Guestrin in 2016
is a relatively new algorithm which is based on “boosting” where weak learners are
used sequentially to develop the final model. It uses the second-order Taylor’s
approximation to simplify the objective loss function. This function is then minimised
and produces an output value for the residuals on respective leaf nodes. To minimise
split loss, XGBoost calculates the gain of respective nodes and this is controlled by the
hyperparameter, gamma for pruning of the tree. XGBoost is ought to be the best
performing predictive model algorithm available as of now based on its computing
performance and prediction accuracy. (Leventis, 2018) One benefit of using XGBoost
is that upon constructing the model, it is relatively simple to extract the importance
scores of respective features, which are used to develop the model. This enables the
user to identify the predictor variables with the highest contribution factor or gain value

and understand its significance in a process.

Gain = Output (Parent Node) - (Output (Left Node) + Output (Right Node)) 1)

Wu (2018) has suggested that XGBoost resulted in the lowest Mean Absolute
Error with Random Forest up next for the prediction of marine debris using the data

from International Coastal Cleanup based on Table 2.1.

Table 2.1: Modelling Results for Predicting Marine Debris (Wu,2018).

Ordinary Decision Random Generalized | Extreme
Models Least Tree Forest Boosted Gradient

Square Model Boosting
MAE 1382.50 998.29 836.01 910.00 807.83

This superior performance by the XGBoost algorithm is made possible by a number
of enhancements which improved its computation speed and model development
performance, which are tabulated in Table 2.2. (Chen & Guestrin, 2016) (Morde &
Setty, 2019)

Table 2.2: Attributes of XGBoost algorithm.

Attributes Description
For manageable data sizes, the algorithm identifies the
Exact Greedy Algorithm | best split of data by running through every datapoint.

Approximate Greedy
Algorithm

Most trees use exact greedy algorithm to identify the
best split of data and to minimise losses. However, this
poses a difficulty when the file size is large and it does
not fit in the system memory for computations. This is
where approximate greedy algorithm kicks in where
instead of enumerating all the data points, it selects
splitting points based on percentile of feature
distribution.

Weighted Quantile
Sketch

To identify the optimal splitting point, an evenly
distributed data could be split into percentile of 1/n
using the quantile sketch to identify the splitting points.
However, there is no quantile sketch for weighted
datasets and this addition to XGBoost allows it to
handle weighted datasets.

Sparsity-aware Split
Finding

In real world, the dataset would be filled with missing
values and the XGBoost algorithm is developed to
recognise this missing value and get around to the non-
missing data.

Cache-aware Access

Limits the size of data within a block based on the
available CPU cache to balance the cache property and
parallelisation

Out-of-core Computation

Optimises the algorithm to maximise the usage of the
device’s hardware. It allows the data which does not fit
into the system memory to be compressed or sharded
into multiple blocks to the disks and runs an algorithm
to read the data from the respective disks.

Regularization

Penalizes complex models using both Lasso and Ridge
regression using alpha and gamma values respectively.

Built-in Cross Validation

Cross validation partitions the training dataset into n
number and trains the model using n-1 partitions and
runs a test using the untrained data. The model is trained
and tested for n number of times and the hyperparameter
tunes could be retrieved.

CHAPTER 3

METHODOLOGY / PROJECT WORK

3.1 Softwares and Tools Used

The list of software used throughout the project period is described in Table 3.1.

Table 3.1: List of Softwares.

No. Software

Description

Microsoft Office
1 | (Microsoft Word, Microsoft
PowerPoint, Microsoft Excel)

A collection of softwares wused for
documentations, data analysis, data
visualisation using graphs and tables, and
presentation slides.

2 Adobe Acrobat Reader

A software used to view and print digital
documents.

RStudio
Version 4.0.3 (2020-10-10)

An interactive interface to develop and run R-
based source codes

3.2 Packages and Key Functions

Upon installation, RStudio runs of a base package which contains a large

number of basic functions. However, this is not sufficient to achieve the desired result.

Thus, additional packages could be installed as needed from RStudio itself or from the

Comprehensive R Archive Network (CRAN) repository. Some of the key packages

and functions which are used in this project are described in Table 3.2.

10

Table 3.2: List of Packages and Functions.

No. Packages Functions and Description
caret createDataPartition
(Miscellaneous functions for Used to split the data into training and testing
1 | training and plotting datasets

classification and regression
models)

confusionMatrix
Calculates a cross-tabulation of observed and
predicted values with associated statistics

mice
(Multivariate Imputation
using Chained Equations)

e mice
Performs imputation (replaces missing
data with predicted data)

Xgboost
(Extreme Gradient Boosting)

e Xgboost
Running the XGBoost algorithm and
generates a model

e Xgb.importance
Creates an importance list with the gains of
each predictor variables with respect to the
target variable

e Xxgb.importance.plot
Plots an importance plot that represents the
gains of respective predictor variables

e Xgh.save
Save XGBoost model in a binary model
file

e Xgb.load
Load XGBoost model from the binary
model file

mlr

(Interface to a large number
of classification and
regression techniques)

¢ makeRegrTask
Create a regression task
e makelLearner
Create learner object
e train
Train a learning algorithm
e makeTuneControlRandom
Create control object for hyperparameter
tuning with random search
¢ makeResampleDesc
Create a description object for a
resampling strategy
e tuneParams
Hyperparameter tuning

randomForest

e randomForest
Generates the Random Forest model.

e varlmpPlot
Generates the importance plot for the
Random Forest model

parallelMap

e parallelStartSocket
Enables parallelization backend

11

An important aspect to take note here is that the sequence of the packages
matters especially when two or more packages to be used has the same function name.
Figure 3.1 displays an example where the function “train” is present in both the caret
and mlr packages. Since the mlr package is added after the caret package, the “train”
function from the caret package is masked and it could only be used if the caret

package is re-added. In this situation, the “train” function from the mlr package is

utilised.

> library(mir) # ML package (also some data manipulation)

Loading required package: ParamHelpers

'mlr’ 15 in maintenance mode since July 2019. Future development efforts will go
into its successor 'mir3’ (<https://mlr3.mlr-org. com=)

attaching package: "mir’
The following object is masked from ‘package:caret’:
train

Figure 3.1: Snapshot of function masking when adding packages.

The arguments within the XGBoost function also requires special attention as
each parameter is critical in developing a good model. Table 3.3 describes the common
hyperparameters which are defined in the XGBoost algorithm. Only nrounds is
required to be defined by the user and other parameters have default values when the
algorithm is run. However, the default values could lead to overfitting models in some
cases which could result in poor prediction. Thus, hyperparameter tuning is significant
to achieve a model with the ability to predict with high accuracy. (XGBoost

Parameters, n.d.)

12

Table 3.3: Hyperparameter description.

No Hyperparameters Description
Maximum number of iteration/ trees grown
1 | nrounds]
Value: Must be user defined
) . Learning rate of the model based on the tree output
eta
Default value: 0.3 (Range: 0 — 1)
Pruning of the leave nodes
3 | gamma
Default value: 0 (Range: 0 — Inf)
Depth of the tree
4 | max_depth Default value: 6 (Range: 0 — Inf)

*Deeper trees tend to overfit

Minimum number of residuals on each leaf node

5 | min_child_weight
Default value: 1 (Range: 0 — Inf)

Number of samples (rows) supplied to the tree

6 | subsample
Default value: 1 (Range: 0 — 1)

Number of features (column) supplied to the tree

7 | colsample_bytree
Default value: 1 (Range: 0 — 1)

L2 regularization (Ridge regression)
Default value: 0 (Range: 0 — Inf)

8 lambda

L1 regularization (Lasso regression)

9 |alpha
Default value: 1 (Range: 0 — Inf)

When the algorithm builds each tree and works on achieving the best model, it
requires an objective to develop a classification or regression model and an evaluation
metric to compare the actual data and the output of the tree to improve on and build a
tree with a better fit. Table 3.4 and Table 3.5 displays some of the types of objectives

and evaluation metrics respectively. (XGBoost Parameters, n.d.)

13

Table 3.4: Learning Task Parameters — “objective”.

No Options Description
1 | reg:squarederror Regression with squared loss
2 | reg:squaredlogerror | Regression with squared log loss
3 | reg:logistic Logistic regression
4 | reg:pseudohubererror | Regression with Pseudo Huber loss
. I Logistic regression with binary classification.
5 | binary:logistic Outputs probability
. L Hinge loss for binary classification. Outputs 0 or 1
6 | binary-hinge instead of probabilities
L Performs pairwise ranking where pairwise loss is
7 | rank:pairwise L
minimised
, Perform list-wise ranking where Mean Average
8 | rank:map L .
Precision is maximised
Table 3.5: Learning Task Parameters — “eval metric”.
No Options Description
Root mean square error
1 |rmse
Default metric for reg:squaredloss
Root mean square log error
2 | rmsle
Default metric for reg:squaredlogloss
3 | mae Mean absolute error
Mean Pseudo Huber error
4 | mphe
Default metric for reg:pseudohubererror
Binary classification error rate where split occurs at
5 | error

0.5

14

Binary classification error rate where split occurs at
6 |error@t :

“t” (user-defined value)
7 | map Mean Average Precision

3.3 Source Code Overview

The developed source code (refer Appendix 1V) initially starts off with the
packages specifically XGBoost and mir packages. The data is read from a comma-
separated value file (.csv) and irrelevant variables are removed from the RStudio
environment. The input variables (Appendix 1) and one of the output variable or target
variable (Appendix Il1) is extracted from the master dataset and added into a new
dataset. The data from the new dataset is then split into training and testing dataset
with a ratio of 70:30. Following that, a regression task for training and testing dataset
is created alongside a learner object which results in a model. This model, however, is
derived from the mlr package and uses the argument “reg:xgboost” in the learner to
execute the XGBoost algorithm for a regression model. Then, the hyperparameter
boundary limits were set and the control structure was set to run 200 random
combinations of hyperparameters with a 10-fold cross validation. Upon the completion
of the hyperparameter tuning, a XGBoost model was developed using the tuned
hyperparameter values. The results from the model and the actual test data were stored
ina .csv file and a residual plot is made to identify the coefficient of determination or
R? value of the predicted values. A plot of predicted against actual was also made for
each target variable to check for the fit of the model using a test data. An importance
plot, which displays the key predictor variables, is also attained before the XGBoost
model was saved as a binary model file. Figure 3.2 highlights the key steps within the

source code.

To develop the Random Forest model, similar source code to that of XGBoost
is used and the relevant parameters are specified with their boundaries set to perform
parameter tuning before generating the model. The test data is run through the model

and the results are saved as a CSV file in Excel before further analysis are performed.

15

|‘|‘|.|‘|‘|‘|‘|‘|

Figure 3.2: Flowchart of the Source Code.
16

CHAPTER 4

RESULTS AND DISCUSSION

4.1 XGBoost Model Results

4.1.1 Predictive Model Fit

In this project, 21 predictive models are developed using the Extreme Gradient
Boosting (XGBoost) algorithm for the target variables shown in Table 4.1 using 33
input variables as stated in Chapter 3. The list of abbreviations could be referred in
Appendix |. Based on Table 4.1, the total feed flow rate, f and the Low Sulphur Waxy
Residue (LSWR) simulated distillation at 70%, LSWR_70 are seen to be the primary
predictor for a number of target variables. However, both V2SS Density and
V2SS_Sulphur models show poor coefficient of determination, R? when the test data

is passed through the developed model.

17

Table 4.1: Coefficient of Determination, Main Feature and Gain for Respective Target

Variables using XGBoost.

Target Variable R? Main Feature / Predictor Variable Gain
fvlss 0.96 f 0.69
fv2ss 0.94 f 0.68
fv3ss 0.68 | V2SS _PAT71 0.18
yl 0.69 tlvgo 0.23
y2 0.83 |LSWR 5 0.19
y3 075 |f 0.24
V1SS _Density15 0.872 | LSWR_Combined_40 0.91
V2SS _Density15 0.0001 | LVGO_PA34 0.27
V3SS_Density15 0.9283 | LSWR_Combined_Density15 0.25
V1SS _kv100 0.9469 | LSWR_20 0.40
V2SS _kv100 0.8443 | tmvgo 0.22
V3SS_kv100 0.9037 | tmvgo 0.28
V1SS_Sulphur 0.8619 | LVGO_PA34 0.18
V2SS _Sulphur 0.0015 | tviss 0.21
V3SS_Sulphur 0.83 | V3SS_PA87 0.13
V1SS _Nitrogen 0.9181 | LSWR_90 0.24
V2SS_Nitrogen 0.9409 | LSWR_70 0.46
V3SS_Nitrogen 0.9364 | LSWR_70 0.42
V1SS_Aromatic 0.9436 | LSWR_70 0.38
V2SS_Aromatic 0.962 | LSWR_70 0.41
V3SS_Aromatic 0.9387 | LSWR_50 0.22

18

4.1.2

The XGBoost algorithm develops a tree ensemble and is able to identify the
gain value or contribution factor of respective input variables by removing or adding
the features and observing whether the accuracy of the model increases or decreases.
These variables are then sequenced in terms of the gain values in descending order in
an importance plot such as the example shown in Figure 4.1 for all of the target
variables of side stream V1SS. The importance plot highlights the gain, cover and the
frequency. Gain represents the contribution of a feature as explained previously; cover

represents the relative number of observations related to a feature; and frequency is

Importance Plots

the number of times an input variable is used at the node to split the data.

“ Feature Gain
1

2 LSWR_20

3 tmvgo

4 tigo

5 s

& QuenchBottom

7 tuls:

8 LSWR_Combined_Density1s | 1.2
9 tviss

10 V355 Pag7

11 LSWR_70

12 LSWR_Combined_40
13 tr

14 WVGO_PA34

15 V255 PaTl

16 tovh

stopping. Best iteration:
[1580] train-rmse:0.001369

Desktop/UTP_intern/Output_Dataset_U18_V

Frequency

5633618-02

3_ZAP_MAF N3/

Importance

6666760201

LSWR,_Combinad_Density15

V3ss_PagT
LSWR_T0
LSWR_Combines_40
twr

LVGO_PAZ
V288_PATI

tovh

v

LSWR_HatFasd
LSWR_5

V1S5_PagE

0.0

() V1SS Flowrate

19

01 02 03 04 0.5

06

Feature Gain Cover Frequency Importance
tvge
1 thgo 0.233471460 0073922968 (.0629348718 0.233471480
tmuge
2 tmvgo 0.104537100 | 0070925821 0.071283314 0104537100
LSWR_Combined_Density15
3 LSWR_Combined_Density15 | 0.080713106 0.038629626 0.038531521 0.080713106
LEWR_HatFeed
4 LSWR_HotFeed 0.071968921 | 0.051900428 0.049983945 0.071968921
V1SS _FAGE
5 WIS5_PAGE 0.065374095 | 0.048624229 0.050947233 0.065374098 tvlss
6 tudss 0.063262100 0058180474 0.059509793 | D.03262100 LSWR Combined 40
7 LSWR_Combined_40 0.034370791 | 0014322669 0.013807128 0.034370791 wp
8 wp 0.044136495 | 0012123735 0.012843840 0.044136485 f
9 f 0.038868937 0.044899%144 0046057369 0.036868937 tovh
10 | tovh 0.037373658 | 0.047333289 0.046699561 0.037373658 QuenchBattam
11 QuenchBottom 0.033280225 | 0.039032624 0.057797281 0.033280225 tulss
12 tviss 0.031934040 | 0069925000 0.064361394 0.031934040 tviss
_ LVGO_FAZ4
13 tvlss 0.031702336 | 0.033716976 0.035962753 0.031702336
LSWR_20
14 VGO _PA34 0.029138772 0.064299513 0.062613722 0.029138772
LEWR_5
15 LSWR_20 0.012043768 | 0.011511202 0.008027400 0.012043763
VIES_PAT1
16 LSWR 3 0.011288477 | 0003419447 0005137536 0.011288477
VISS_FAET
17 V255_PATI 0.009928720 | 0.052105463 0.054800385 0.002928720
B LSWR_CokiFeed
Showing 1 to 20 of 26 entries, 5 total columns
LEWR_Combined &
Console Terminal Jobs =
C-/Users/User/Desktop/UTP_Intern/Output_Dataset_U18_V3_ZAP_MAF V3/ f f ‘ T I
Stopping. Best iteration: 000 005 010 015 020
[3144] train-rmse:0.001747

(b) V1SS Yield

“ Feature Gain Cover Frequency Importance
1 LSWR_Combined_40 9062376e.01 3781768e.02 01262309758 9.062376e.01 LSWR_Combined_0
2 LSWR ColdFeed 7463550602 2.122456e-01 01038495071 | 7.463580e-02 LSWR_ColdFeed
3 LSWRS 1912656202 1436485601 00653536258 1912656e-02 LswR_s
4 LSWR_Combined_Density15 | 2.111331e-09 1.1086042-01 00975828111 | 2.111331e-09 LSWR_Gombined_Density1s
5 QuenchBottom 4748942e-10 442383302 00346105640 4.748342e-10 QuenahEatiom
teiss
6 tulss 3384676610 3465516e-02 00420722471 | 338467610
muge
7 tmvgo 30689352.10 3533092¢.02 00510295434 3068935e.10
LSWR_70
& LSWATD 2308373e-10 4666519203 00026857854 2308373e-10
- LSWR_Combines_20
9 LSWR Combined 20 2030888610 2.10121%e-02 00232766338 | 2030888e-10 Lveo_raze
10 LVGO_PA34 1990166210 306215802 00336102059 186016610 LSWR_Combined_t0
11 LSWR_Combined_10 183155210 3600901e-02 00250623093 1831382e-10 '
12t 1783955610 2490208602 00349149508 1763955e-10 LEWR,_Cambined_20
13 LSWR_Combined_30 1750715610 2436708e.02 00223813767 | 1.750715e-10 LEWR_Combined_5
viss_pass
14 LSWR_Combined 5 1481247e-10 4221551e-02 00501342883 | 148124110 -
vass FasT
15 V155 PAGS 1339221610 1977337602 00313339302 1338221610
t3ss
16 Viss PAST 1307570610 4541608e.02 00367054611 | 1307570e-10
tivge
17 hidss 1212778610 2467733e-02 00367054611 | 121277610 es
Showing 1 to 20 of 28 entries, 5 total columns Pisto_paz2
Console Terminal -« Jabs ; ; ; ; i
CifUsers/User/Desktop/UTP_Intern/Output_Dataset_U18_V3_ZAP_MAF_V3/
L51] SV RVIVVE) 00 02 04 06 08
stopping. Best iteration:
[71] train-rmse:0.000569

(c) V1SS Density

20

3

Feature Gain
1 LSWR_Z0 3.954280e-01
2 V155_PABE 9.698330e-02
3 LSWR_T0 5.873704e-02
4 V355 _PAST 5.555681e-02
5 LSWR_ED 5.408222e-02
6 LSWR_Combined_Density15 | 5.083165e-02
7 WVGO_PA34 4.458672e-02
8 LSWR_HotFeed 4.233867e-02
9 LSWR_ColdFeed 2.309424¢-02
10 tviss 2.2084028-02
11 tv3ss 1.971302e-02
12 LSWR_Combined 40 1.848125€-02
13 tmvgo 1.608587e-02
14 LSWR_Combined 3 1.508605€-02
15 f 1.224110e-02
16 tivge 1.003354e-02
17 tv2ss 8.370483e-03

inowing 1 to 20 of 30 entries, 5 total columns

Console Terminal Jobs
C:/Users/User/Desktop/UTP_Intern/Source_Code/

stopping. Best iteration:

[218] train-rmse:0. 000969
* Feature Gain
1 LVGO_PA3L 0.1803802457
2 LSWR Combined Densityl5 01400428332
3 tmvgo 00904934349
4 LSWR30 00635091839
5 | tivgo 00516899229
6 V3SS_PABT 0463274596
7 LSWRSD 0462671095
8 tris D.0433T66756
9 f 00421284759
10 | LSWR_Combined 5 00415177294
1M tdss 00326195159
12 P1810.PA22 00264117023
13 t2ss 00266781236
14| tovh 00264456828
15 VISS_PASS 00205408175
16 LSWR_Combined_10 00177006022
17 | LSWR_Combined_30 0165612735

Showing 1 to 20 of 28 entries, 5 total columns

Console Terminal Jobs.

Ci/Users/User/Deskiop/UTP_Interm/Output_Dataset U185

[88] train-rmse:0.000603
stopping. Best iteration:
[78] train-rmse:0.000603

Cover

0.0037713883

0.0636009228

0.0058493367

0.0336447995

0.0027396236

0.0390148036

0.0580517164

0.0389427082

0.0632468545

0.0538075470

0.0446510585

0.0162785978

0.0433757717

0.0284448723

0.0486467434

0.044401127¢

0.0635715506

Cover

00809506023

00931193733

00581978630

00219132129

00550160400

00734617954

00215569013

00478582474

00362253073

00501918170

00528552628

00308266003

00464671817

00304271637

0.0400791005

00242502732

00232554081

Frequency Importance
LSWR_20
0.0046300191 | 3.954280e-01
Viss_pags
" y
0.0452192584 £.693930e-02 Lswa_7o
0.0016121940 | 5.373704e-02 vass past
00512970834 5.333681e-02 LswR_80
0.0008793786 5.409222e-02 LSWR_Gombined_Density15
00411842298 | 5.083165¢-02 Lue0_PAz
0.0474864429 | 4.489672e-02 LEWR_HetFeed
LSWR_CoildFeed
0.0438223655 £.239B67e-02
telss
0.0794371977 | 2508424802
tv3ss
0.0483658215 | 2.2084028-02
LSWR_Combined_40
0.0430726953 1871902e-02
tmugo
00150959988 1.348125e-02 LSWR_Combined_5
0.0470467536 | 1.608557e-02 f
0.0631686941 | 1508605e-02 tivgo
00507108310 | 1.224110e-02 trdss
Lol hBaottor
0.0444086179 | 1.005354e-02 uenensetem
LSWR_Combined_20
0.0423567346 | £370483e-03
VZSS_PAT1
I T T 1
0.0 041 0.2 0.3
Frequency Importance
0076160881 01803802457 R
0080495356 | 01400498332 LSWR_Combines_Density1s
0057585139 | 00904934343 mugo
0006191950 0.0635091839 LSWR_%0
0051383189 00516899228 e
V3ISS_PAST
0063157695 00463274596
LSWR_50
0005572755 | 00462671095
tviss
0047058824 | 00433766756 .
0053842724 | 00421284759 LSWR_Cemines 5
0068111455 | 00415177294 wass
0056965944 0.0328195159 Fig10_PAZ2
0027863777 | 00284117023 s
toun
0034674823 | 00266781236
ViSS_PABS
0040247676 | 00264456628
LSWR_Combined_i0
0038380083 | 00205408175 LSWR Combines 20
0026006182 | 00177006022 CusnchBotiom
0022810217 | 00165612735 LSWR_5
LSWR_ColdFeed
T T T 1
0.00 0.05 0.10 0.15

MAF V3/

(e) V1SS Sulphur

21

Feature Gain Cover Frequency

1 LSWR_E0 2351867e-01 1.9649772-03 00008647173
2 LswR20 1372268e.01 2.070203e.03 00058254636
3 V3ss_PAST 133919201 6194644202 0496757310
4 1SWRS 9036750602 6.668750e-03 00322003630
5 LVGOPA3L 6153502¢.02 7.4520402.02 00520125699
6 P1310_PAZ2 6572854e-02 3385483202 00224143816
7 LSWR Combined Densiyy'5 3472035e-02 505e-02 00325406758
8 3426324602 5.640967e-02 00537945159
9 QuenchBottom 3060100202 7.0170222.02 00547730117
10 tmvgo 1577121602 7190812202 00505178326
1 tviss 1569265e-02 4.662696e-02 00467402435
12 LSWR Combined 5 15563786-02 2073635802 0.0641938787
13 tudss 1424715e.02 5585480e.02 00448257632
14 tvgo 1305202602 6000224202 0.0492433724
15 V1S5_PagS 1093360602 5410235202 0427607487
16 tovh 9506047¢-03 7.3868942-02 0.0700676095
17 LSWR_Combined 30 8323805e.03 £0457€e.03 00108029836

Shawing 1 to 30 entries, 5 total columns

Console Terminal Jobs

Ci/Users/User/Desktop/UTP Intem/Qutput Dataset UT8. MAF V3/

[2004] train-rmse:0.001426
“ Feature Gain Cover Frequency
1 LSWR_T0 377495901 553917803 1.579703e03
2 LSWR HotFeed 195675301 3.352084.02 4155098602
3 tmvgo 2126109202 6013761602 5.1364282.02
4 LSWR_Combined Densityls 7.590383e-02 2521465602 3350151e.02
5 LSWRS 5.27263¢-02 356742103 3.956632¢-02
6 LWGO_PA3S 451905902 | 7493572¢-02 | 5.08655%¢-02
7 LSWR_ColdFeed 307550002 | 7.036488e02 | 8.344758e.02
B VIS5 PAST 273183402 6.198334e-02 442316902
9 f 1508235602 562959902 57300714802
10 tovh 1162220202 605367502 5773087202
11 QuenchBottom 1031567202 | T.1TE0E3e02 4.008654e-02
12 tuzss 8174225603 | 5.085576-02 4.064146e-02
13 tvlss 7741859203 | 6.4500192.02 4.7552582.02
14 LSWR_Combined 5 743452803 | 196851602 8.115717e-02
15 V1S5 _pags 734186703 | 4.009764¢.02 3465773e-02
16 LSWR_Combined_10 7.066633¢-03 | 1.638375¢-02 | 1.780756e-02

Console
C:/Users

[627]

tvass 5.061388e-03 | 5.589961e-02 4.681666e-02

1 to 20 of 30 entries, 5 total columns

Terminal Jobs

/User/Desktop/UTP_Interm/Output_Dataset U1

train-rmse:0.001288

P_MAF_V3/

Figure 4.1:

Importance

2.351867¢-01
1372268201
1359182201
2.056750e-02
8.1535922.02
£.972854e-02
3472035202
3426324602
3.060100e-02
1577121202
1.5692652-02
1.5563788-02
14247152.02
1.308202e-02
1.093360e-02
9.506047¢2-03

5.3238052.03

Importance
3.774959%-01
1856753201
9.126109e-02
7.950383e-02
5.127263¢-02
4519059¢-02
3.075800e-02
2.731834e-02
1.508235¢-02
1.1622208-02
1.051867e-02
8174225603
7.74185%¢-03
7.434528e-03
7.341867¢-03
7.066833¢-03

5.061386e-03

LSWR_Combined

LSWR 50
LSWR_20
vass_pagT
LSWR_S
VGG _PAI

Pi810_PAZZ

density 15

GuenchBatiom
tmugo
tviss

5

LSWR_Combin

tviss
tuge

wiss_pass

tovn
LSWR_Combined_20
LSWR_Gombinza_10

LSWR_ColsFeed

LSWR_HatFeea

T
0.00

(f) V1SS Nitrogen

LSWR_T0

LSWR_HotFees

LEWR_Combirs

LVGO_Paz4

LEWR_Cok

vass_pasT

tovh

V1SS_PABS

LSWR_Combined_10

tvass
LSWR_Combined_20
LSWR_Combined_30

V285 _PAT

0.05

0.10

015

0.20

T
0.00

(9) V1SS Aromatic

T
0.05

T
0.10

T
015

T
0.20

Importance plots of V1SS using XGBoost.

22

T
0.25

T
0.30

1
0.35

4.1.3 Predicted vs Actual Plots

Upon developing the models, the models are tested using a test data to observe
its performance. Figure 4.2 shows the actual against predicted graph of target variable
y1, where the data points follow the 45° reference line which indicates that the
predicted data closely approximates the actual data of y1. The data has a coefficient of
determination, R? value of 0.6923 as shown in Table 4.1.

0.5
0.45 @

0.4 Q
0.35 ®

0.25

Predicted
=
[¥8]
\
A
A
< 3
\
e\
@
..
o

=

(%]

»

\
®,

0.15 Pl
0.1 |_u="
0.05

0 0.1 0.2 0.3 0.4 0.5
Actual

Figure 4.2: Graph of Predicted vs Actual of V1SS Yield using XGBoost.

Figure 4.3 displays the actual versus predicted graphs of all the other 20
variables besides y1. All of these graphs except Figure 4.3 (g) and Figure 4.3 (m)
highlights that the model has a good fit with the data and is reliable in terms of its
prediction and accuracy. However, for Figure 4.3 (g) and Figure 4.3 (m), the
discrepancy in the data of density and sulphur content respectively has resulted in a
poor model fit. These values were not treated as outliers since the large values occurred

several times within the dataset.

23

40

35

30

25

20

Predicted
Predicted

15

0 10 20 30 40 50 60 70 0 5 10 15 20 25 30 35 40

Actual

(a) V1SS Flowrate (b) V2SS Flowrate

0.28

Actual

0.24

Prediction
Predicted
o
N

0.16

0 5 10 15 20 25 3 0.12 0.16 0.2 0.24 0.28
Actual Actual
(c) V3SS Flowrate (d) V2SS Yield
0.88
0.875
5 087
3 g
b 2 0.865
2 o
e & 086
0.855
0.85
o .08 0.08 012 016 02 024 098 0.85 0.855 0.86 0.865 0.87 0.875 0.88
Actual Actual
(e) V3SS Yield (f) V1SS Density
1 (]
0.98 ,’.“.
0.96
0.94 o °
E 0.92 ° T
= 09 g
£ oss ° e
0.86 &
0.84 ﬁ
0.82 .‘5
0.8 °
0.8 0.85 0.9 0.95 1
08 085 08 08 08 089 0.9 091 0092
Actual
) Actual
(9) V2SS Density (h) V3SS Yield
10
9
8
- 7
3 e
& a5
4
3
2
2 3 4 5 6 7 8 9 10
Actual Actual

(i) V1SS kv100 (i) V2SS kv100

24

Predicted

Predicted

Predicted

Predicted

Predicted

-100

12.5

140

1200

1100

1000

r-)
=1
S

45

35

30

25

20

15

15

13

100

180

20

0.075

0.07

0.065

0.06

Predicted

0.055

0.05

0.045
13.5 14 14.5 15 15.5 16 0.045 0.05 0.055 0.06 0.065 0.07 0.075

Actual Actual

(K) V3SS kv100 (1) V1SS Sulphur

0.16
0.15
0.14
0.13

0.12

Predicted

0.11

0.1

0.09

0.08
200 300 400 500 600 700 0.08 0.09 0.1 0.11 0.12 0.13 0.14 0.15 0.16

Actual Actual

(m) V2SS Sulphur (n) V3SS Sulphur

Predicted

200 220 240 260 280 300 320 340 360 250 300 350 400 450 500 550 600 650

Actual Actual

(0) V1SS Nitrogen (p) V2SS Nitrogen

Predicted

800 900 1000 1100 1200
Actual Actual

(g) V3SS Nitrogen (r) V1SS Aromatic

[]

Predicted

25 30 35 40 45
Actual

Actual

s) V2SS Aromatic t) V3SS Aromatic

Figure 4.3: Graphs of Predicted vs Actual using XGBoost.
25

4.2 Random Forest Results

421 Predictive Model Fit

Table 4.2 shows the coefficient of determination, R? value of the respective
target variables for the Random Forest models. However, both V1SS Density and
V2SS Density models show poor coefficient of determination, R? when the test data is
passed through the developed model. V2SS Sulphur displays a good fit using the

Random Forest algorithm but further tests with new test data is needed to verify this

model.

Table 4.2: Coefficient of Determination for Respective Target Variables using

Random Forest.

Target Variable R?
fvlss 0.9907
fv2ss 0.9921
fv3ss 0.9559
yl 0.9825
y2 0.9722
y3 0.9483
V1SS _Density15 0.0001
V2SS _Density15 0.0009
V3SS_Density15 0.9915
V1SS _kv100 0.9940
V2SS _kv100 0.9761
V3SS_kv100 0.9872
V1SS _Sulphur 0.9773
V2SS_Sulphur 0.9589
V3SS_Sulphur 0.9703
V1SS_Nitrogen 0.9857
V2SS _Nitrogen 0.9908
V3SS_Nitrogen 0.9879

26

V1SS Aromatic 0.9908
V2SS_Aromatic 0.9937
V3SS_Aromatic 0.9909

4.2.2 Predictive vs Actual Plots

When the models are developed using the Random Forest algorithm, the trends
shown by the models are similar to that of XGBoost where all of the target variables
except V1SS Density and V2SS Density show good performance. This can be
attributed to the poor dataset that is obtained for the specific target variables. Figure
4.4 shows the graph of actual versus predicted of V1SS Yield using the Random Forest
algorithm which shows a better fit and has a better R? value.

0.45

Predicted
A}
A"
[

0.05 Pad

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Actual

Figure 4.4: Graph of Predicted vs Actual of V1SS Yield using Random Forest.

27

Predicted

Predicted

Predicted

0 10 20 30 40 50 60 70 0 5 10 15 20 25 30 35
Actual Actual

(a) V1SS Flowrate (b) V2SS Flowrate

Predicted
Predicted

0 5 10 15 20 25 30 35 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26
Actual Actual

(c) V3SS Flowrate (d) V2SS Yield

0.875

Predicted
Predicted
o o
o 2 w2
F w B
w & & 9

o
o0
&

0.845

0.84
0.84 0.845 0.85 0.855 0.86 0.865 0.87 0.875 0.88

Actual Actual

(e) V3SS Yield (f) V1SS Density

0.9 0.95
0.94
0.93

0.92

Predicted
\J

Predicted
o 4 ©
8 o R

°
8

0.87
0.86

0.86 0.85
0.86 0.865 0.87 0.875 0.88 0.885 0.89 0.895 0.9

Actual Actual
(9) V2SS Density (h) V/3SS Density

4.4

4.2 5

3.8 4 4.2 4.4 4.6 4.8
Actual Actual

(i) V1SS kv100 8 (i) V2SS kv100

Predicted

Predicted

Predicted

Predicted

1200

1100

1000

900

800

700

600

45

40

35

30

Predicted

25

20

15

o

50

13

13.5 14 14.5 15
Actual

(k) V3SS kv100

16

100 150 200 250 300 350 400 450 500 550 600 650

180

Actual

(m) V2SS Sulphur

220 260 300
Actual

(o) V1SS Nitrogen

380

600

15

700

20

800 900 1000
Actual

() V3SS Nitrogen

25 30 35
Actual

(s) V2SS Aromatic

1100

40

1200

45

0.075

0.07
0.065
% 0.06
. 0.055
0.05
0.045
0.045 0.05 0.055 0.06 0.065 0.07 0.075
Actual
(1) V1SS Sulphur
Actual
(n) V3SS Sulphur
250 300 350 400 450 500 550 600 650
Actual
(p) V2SS Nitrogen
10 15 20 25 30 35
Actual
(r) V1SS Aromatic

29

30 35 40 45 50
Actual

(t) V3SS Aromatic

Figure 4.5: Graphs of Predicted vs Actual using Random Forest.

4.3 Comparison between XGBoost and Random Forest

Based on Figure 4.6, it could be observed that the Random Forest algorithm is
able to achieve better R? values due to its ability in randomly subsampling the data
during training which prevents overfitting of the model towards the training data. Thus,
Random Forest is a better option if it was to be used with minimal hyperparameter
tuning. XGBoost has the advantage in terms of computing power and the overfitting
issue could be corrected by introducing a lower sampling rate of columns and features
to build each tree to avoid any overfitting. Referring to Figure 4.7, both algorithms
achieved similar performance in predicting the kinematic viscosity at 100°C and the
aromatic content of all three streams, V1SS, V2SS and V3SS as shown by charts (j),

(k). (1), (s), (t) and (u).

xgboost R2 mrandom forest R2

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

RZ

IR IR MR N N R R RS LR LR LR & & & F
L SN S S S
N \ \ N \
(7/®59®%9®4¢%&@5&%‘?'/{?‘—)/"{?5/")5 c,)")/ c,)‘7§%‘9 %%Yéo/ %%Y
& S S O O

Target Variables

Figure 4.6: Chart of R? for XGBoost and Random Forest.

30

R?=0.5231

random forest

0 10 20 30 40 50 60

xgboost

(a) V1SS Flowrate

random forest

xghoost

(c) V3SS Flowrate

R*=0.3791

random forest

01 012 014 0.16 018 02 022 0.24
xghoost

(e) V2SS Yield

0.87
0.865

0.86

random forest

0.855

0.85
0.85 0.855 0.8e 0.865 0.87

xgboost

(9) V1SS Density

0.93
091

0.89

random forest

087

0.85
0.85 0.86 087 0.88 0.89 0.9 0.91 0.92 0593

xgboost

(i) V3SS Density

random forest

B B 8 ®

random forest
&

0 5 10 15 20 25 30 35
xgboost

(b) V2SS Flowrate

Ri-02439 *@*
L]

0.45

random forest

o o o
=) o o o
= TR I

0.05

o 0.05 01 0.15 0.2 0.25 03 0.35 04 045

xgboost

(d) V1SS Yield

random forest

0 0.04 0.08 0.12 0.16 02 0.24 0.28

xghoost

() V3SS Yield

R*=0.0017

] \”.w‘o..“ e %‘

08 0.85 08 085 1
xgboost

(h) V2SS Density

49

R*=0.9669

3s 41 43 45 47 45
xgboost

(i) V1SS kv100

31

random forest

xghoost

(k) V2SS kv100

random forest
R
5 B & F

=
B

0.04 0.045 0.05 01055 0.06 0.065 0.07 0.075

xgboost

(m) V1SS Sulphur

random forest

0.09 0.1 0.11 012 0.13 0.14 0.15
xgboost
(0) V3SS Sulphur
650
500 R*=0.6746 . -

xgboost

(g) V2SS Nitrogen

RE=08295 @ .
E
%

i3

random forest
5]

&

xghoost

(s) V1SS Aromatic

0.16

R*=0.6334

&

-
I~
in

random forest
%
n R

r

xgboost

(I V3SS kv100

0.08 0 0.05 0.1 0.15 02

xgbhoost

(n) V2SS Sulphur

random forest
r
E E

g

xgboost

(p) V1SS Nitrogen

1200

e RF=04721
1100

1000

random forest

600 700 BOD 900 1000 1100 1200
xgboost

(r) V3SS Nitrogen

&

R*=0.7977
e

w8

random forest
8

25
20
15
35 15 20 25 30 35 40 45
xghoost

(t) V2SS Aromatic
32

random forest

xgboost

(u) V3SS Aromatic

Figure 4.7: Graphs of Random Forest vs XGBoost

33

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

51 Conclusion

This project, which is based on the refinery in MRCSB is focused on
developing predictive model for the VDU using the XGBoost algorithm. Through
literatures, the superior performance of the XGBoost algorithm in terms of
computation time and prediction accuracy over other algorithms such as Random
Forest and Decision Tree algorithms is emphasised. In this report, the researcher has
primarily worked on the first research objective, which is to develop and modify the
source code to develop the predictive models. A detailed breakdown of the source
code, major functions and packages used were also highlighted. The outputs of the
developed model were explained, where the both the Random Forest and XGBoost
models show good fit to 19 out of the 21 target variables. When the predicted results
of XGBoost was compared against the predicted results from Random Forest, the
Kinematic Viscosity@100°C, Nitrogen and Aromatic content values of streams V1SS,
V2SS and V3SS closely approximate each other.

34

5.2 Recommendation

The performance of both the algorithm is not entirely conclusive since the test
data is limited and is from the actual data itself. Thus, recent plant data is required to
test the performance of these models and their accuracy in prediction as well as to
analyse their reliability in predicting live data.

Another recommendation would be to explore the route of exhaustive
hyperparameter tuning to obtain the best coefficient of determination. XGBoost is the
appropriate algorithm to be used for this case since sufficient computing power is
needed if such task was to be taken and Random Forest is not recommended because
of its slow computing performance. Aside from that, the detailed understanding of the
effects of manipulating each hyperparameter is one aspect to be considered for having
a detailed analysis.

35

REFERENCES

Bhalla, D. (n.d.). A complete guide to random forest in R. Retrieved from Listen Data:
https://www.listendata.com/2014/11/random-forest-with-r.html#What-is-

Random-Forest-

Boehmke, B., & Greenwell, B. (2020, February 1). Random Forest. Retrieved from
Hands-on Machine Learning with R:
https://bradleyboehmke.github.io/HOML/random-forest.html

Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. KDD
'16: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, (pp. 785-794).
d0i:10.1145/2939672.2939785

Leventis, D. (2018, November 11). XGBoost Mathematics Explained. Retrieved from
Towards Data Science: https://towardsdatascience.com/xgboost-mathematics-
explained-58262530904a

Morde, V., & Setty, V. A. (2019, April 8). XGBoost Algorithm:Long May She Reign!
Retrieved from Towards Data Science: https://towardsdatascience.com/https-
medium-com-vishalmorde-xgboost-algorithm-long-she-may-rein-
edd9f99be63d

Nikulski, J. (2016, March). The ultimate guide to adaboost, random forests and
xgboost. Retrieved from Towards Data Science:
https://towardsdatascience.com/the-ultimate-guide-to-adaboost-random-
forests-and-xgboost-7f9327061c4f

Saxena, R. (2017, January 30). How decision tree algorithm works. Retrieved from
Dataaspirant: https://dataaspirant.com/how-decision-tree-algorithm-
works/#:~:text=Decision%20Tree%20Algorithm%?20Pseudocode,same%20v
alue%20for%20an%20attribute.

Song, Y., & Lu, Y. (2015). Decision tree methods: applications for classification and
prediction. Shanghai Archives of Psychiatry, 27(2), 130-135.

doi:10.11919/j.issn.1002-0829.215044
36

Wu, X. (2018, October 8). Evaluating Machine Learning Models in R: Predicting
Marine Debris. Retrieved from Azavea:
https://www.azavea.com/blog/2018/10/08/marine-debris-machine-learning-

models-r/

XGBoost Parameters. (n.d.). Retrieved from
https://xgboost.readthedocs.io/en/latest/parameter.html#general-parameters

37

Appendix A: List of Abbreviations

LSWR
VGO
MVGO
V1S5
V255
Viss
VR

flvgo
fmvgo
fviss
fv2ss
fw3ss
fur

List of Abbreviations Used

Low Sulphur Vaxy Residue
Light Vacuum Gas Gil
Medium Vacuum Gas Oil
Vacuum 1 Side Stream
Vacuum 2 Side Stream
Vacuum 3 Side Stream
Vacuum Residue
Total Flowrate
LVGO Flowrate
MVGO Flowrate
V155 Flowrate
V255 Flowrate
V355 Flowrate
VR Flowrate

APPENDICES

VR_5
VR_10
VR_20
VR_30
VR_40
VR_50
VR_60
VR_70
VR_80
VR_90
VR_95

VR_Simdist 5
VR_Simdist_10
VR_Simdist_20
VR_Simdist_30
VR_Simdist_40
VR_Simdist_50
VR_Simdist_60
VR_Simdist_70
VR_Simdist_80
VR_Simdist_90
VR_Simdist_95

List of Abbreviations Used

tovh Overhead Draw Temperature V155 _Nitrogen V155 Nitrogen Content
thvgo VGO Draw Temperature V255 Nitrogen V255 Nitrogen Content
tmvgo MVGO Draw Temperature V355 _Nitrogen V355 Nitrogen Content
twiss V155 Draw Temperature V1SS _Sulphur V155 Sulphur Content
tviss V255 Draw Temperature V255 _Sulphur V255 Sulphur Content
tw3ss V355 Draw Temperature V355 Sulphur V355 Sulphur Content
tr VR Draw Temperature V355 MCRT V355 Micro Carbon Residue Tester
vp Vapour Pressure LVGO Density15 VGO Densityi@15°C
V155 _kv100 V155 Kinematic Viscosity @100°C MVGO_Density15 MVGO Density{@15°C
V255 _kv100 V255 Kinematic Viscosity @100°C V155 _Density15 V155 Density@15°C
V355 kv100 V355 Kinematic Viscosity @100°C V255 Density15 V2S5 Density@15°C
V155 _Aromatic V155 Aromatic Content V355 Density15 V355 Density@15°C
V255 kv100 V255 Aromatic Content VRES Density15 VRES Density@15°C
V355 _kv100 V355 Aromatic Content QuenchBottom Quench Bottom Flowrate

39

List of Abbreviations Used

LSWR_ 5 LSWR_Simdist 5 LVGO 5 LVGO_Simdist_5 MVGO 5 MVGO_Simdist 5
LSWR_10 LSWR_Simdist_10 VGO _10 LVGO_Simdist_10 MVGO_10 MVGO_Simdist_10
LSWR_20 LSWR_Simdist_20 VGO _20 LVGO_Simdist_20 MVGO_20 MVGO_Simdist_20
LSWR_30 LSWR_Simdist_30 VGO _30 LVGO_Simdist_30 MVGO_30 MVGO_Simdist_30
LSWR_40 LSWR_Simdist_40 LVGO_40 LVGO_Simdist_40 MVGO_40 MVGO_Simdist_40
LSWR_50 LSWR_Simdist_50 LVGO_50 LVGO_Simdist_50 MVGO_50 MVGO_Simdist_50
LSWR_60 LSWR_Simdist_60 LVGO B0 LVGO_Simdist_60 MVGO_60 MVGO_Simdist_60
LSWR_T70 LSWR_Simdist_70 LVGO_T0 LVGO_Simdist_70 MVGO_70 MVGO_Simdist_70
LSWR_80 LSWR_Simdist_80 LVGO_80 LVGO_Simdist_80 MVGO_80 MVGO_Simdist_80
LSWR_S90 LSWR_Simdist_90 VGO _90 LVGO_Simdist_90 MVGO_90 MVGO_Simdist_90
LSWR_95 LSWR_Simdist_95 VGO _95 LVGO_Simdist_95 MVGO_95 MVGO_Simdist_95
P1810_PAZ2 P1810 Pump Around V155 _PABS V155 Pump Around V355 PAST V355 Pump Around
LVGO PA34 LVGO Pump Around V255 PAT V255 Pump Around

40

List of Abbreviations Used

V1SS 5 | V1SS _Simdist 5 V2SS 5 | V2SS _Simdist 5 V3SS 5 | V3SS_Simdist 5
VISS_10 | V1SS_Simdist 10 V2SS 10 | V2SS _Simdist_10 V385 10 | V3SS_Simdist_10
V1SS 20 | V1SS Simdist 20 V2SS 20 | V2SS _Simdist 20 V385 20 | V3SS_Simdist 20
V1SS 30 | V1SS Simdist 30 V2SS 30 | V2SS Simdist_30 V385 30 | V3SS_Simdist 30
VISS 40 | V1SS Simdist 40 V2SS 40 | V2SS Simdist_40 V3SS 40 | V3SS_Simdist 40
VISS_50 | V1SS _Simdist 50 V2SS 50 | V2SS _Simdist 50 V385 50 | V3SS_Simdist 50
V1SS 60 | V1SS _Simdist 60 V2SS 60 | V2SS Simdist 60 V385 60 | V3SS_Simdist 60
VISS_70 | V1SS Simdist 70 V2SS 70 | V2SS _Simdist_70 V385 70 | V3SS_Simdist 70
VISS_80 | V1SS Simdist 80 V2SS 80 | V2SS _Simdist 80 V385 80 | V35S Simdist 80
V1SS 90 | V1SS Simdist 90 V2SS 90 | V2SS Simdist 90 V385 90 | V3SS_Simdist 90
V1SS 95 | V1SS_Simdist 95 V2SS 95 | V2SS Simdist 95 V385 95 | V3SS_Simdist 95

41

APPENDIX B: Input Variables

LSWR_5
LSWR_10
LSWR_20
LSWR_30
LSWR_40
LSWR_50
LSWR_60
LSWR_70
LSWR_80
LSWR_90
LSWR_95

Input Variables

LSWR_Combined_5
LSWR_Combined 10
LSWR_Combined 20
LSWR_Combined_30
LSWR_Combined 40

LSWE._Combined_Density
LSWR_ColdFeed
LSWR_HotFeed
f
vp

tovh

42

twr
tivgo
tmvgo
tv1ss
tv2ss
tv3ss
QuenchBottom
P1810_PA22
V3SS_PA8T
V255 _PAT1
V155_PAGS
LVGO_PA34

APPENDIX C: Output Variables

Output Variables

IVGO 5 MVGO 5 V1585 5 V255 5 V3585 5 VR_5
LWVGEO_10 MVGO_10 V155_10 V255_10 V3s55_10 VR_10
LVGO_20 MVGO_20 V155 20 V255 20 V355 20 VR_20
LVGO_30 MVGO_30 V155 30 V255 30 V355 30 VR_30
LVGO_40 MVGO_40 V155 40 V255 40 V355 40 VR_40
LVGO_50 MVGO_50 V155 50 V255 50 V355 50 VR_50
LVGEO_60 MVYGO_G60 V155_60 V255 _60 V355_60 VR_G0
LVGEO_70 MYGO_70 V1S5 70 V255 70 V355 70 VR_T70
LVGEO_80 MVGO_80 V155_80 V255_80 V355_80 VR_80
LVGO_90 MVYGO_90 V155 90 V255 90 V355 90 VR_90
LVGO_95 MVGO_95 V155 95 V255 95 V355 95 VR_95

flvgo fmvgo fviss fv2ss fv3ss fwr
VGO Density MVGO _Density V155 Density V255 Density V355 Density VRES _Density
V155_kv100 V255 _kv100 V355 _kv100 WV1SS_Aromatic V255_Aromatic V355_Aromatic

V155 Nitrogen V255 Nitrogen V355 Nitrogen
V355_MCRT

V155 Sulphur V255 Sulphur V355 Sulphur

43

APPENDIX D: Gantt Chart (FYP I)

Task

Context setting and briefing

Work on literature review

regarding XGBoost

Develop the source code to
develop XGBoost models

Develop predictive model for 94

target variables

Report Preparation

Developed model submission

Report Submission and

Presentation

44

APPENDIX E: Gantt Chart (FYP I1)

Task

Develop Random Forest model
Trial run on 60/40 data split for

training and test data

Correlation studies

Draft Dissertation Submission

Develop predictive model for 21

target variables

Report Submission and

Presentation

Milestones:
1 — Develop a source code that could generate predictive model for XGBoost and Random Forest
2 — Identify correlations between features wherever applicable

3 — Submit the developed models in a .zip file as well as the finalised report and other related documents.

45

APPENDIX F: Source Code (XGBoost)

#Prakash Saravanan

Packages

library(tidyverse) # data manipulation

library(caret)

library(mir) ~ # ML package (also some data manipulation)
library(knitr) ~ # just using this for kable() to make pretty tables
library(xgboost)

library(caTools)

require(fastmatch)

Data preparation

#For version 2 of the data

Importing the dataset

dataset = read.csv('C:\\Users\\User\\Desktop\UTP_Intern\\Source_Code\\Dataset_Latest v2_1.csv')
dataset$mode<-as.factor(dataset$mode)

#dataset<-na.omit(dataset)#Remove rows with missing data

dataset<-dataset[,-c(1,2)] #Used for current code to remove only sequence, date,

dataset = select(dataset,"VV3SS_kv100",1:10,13:29,121:126) #Dataset for inputs only. Target variable to be added in the
beginning

str(dataset)

summary(dataset)

mydatal<-dataset

mydatal<-mydatal[,-c(34)]

Splitting the dataset into the Training set and Test set
set.seed(12345)
splitl=createDataPartition(mydatal$V3SS_kv100,p=0.7,list=FALSE)
trainl <- mydatal[splitl,]

testl <- mydatal[-splitl,]

#fitting XGBoost to the training set

46

trainTaskl <- makeRegrTask(data = trainl, target = “V3SS_kv100")

testTaskl <- makeRegrTask(data = test1, target = "V3SS_kv100")

Timer
start_time = Sys.time()

Sys.sleep(0.5)

#set.seed(1)
Create an xgboost learner that is classification based and outputs
labels (as opposed to probabilities)
xgb_learner <- makeLearner(
"regr.xgboost",
predict.type = "response"”,
par.vals = list(
objective = "reg:squarederror",
eval_metric = "error",

nrounds = 200

Create a model
xgb_modell <- train(xgh_learner, task = trainTask1)

resultl <- predict(xgb_modell, testTask1)

head(result1$data) %>%

kable()

XGBoost hyperparameter tuning

xgb_params <- makeParamSet(
The number of trees in the model (each one built sequentially)
makelntegerParam("nrounds", lower = 500, upper = 2000),
Number of splits in each tree
makelntegerParam("max_depth", lower = 1, upper = 6),
"shringkage" - prevents overfitting

makeNumericParam(“eta", lower = .1, upper = .5),

47

L2 regularization - prevents overfitting

makeNumericParam("lambda", lower = -1, upper = 0, trafo = function(x) 10”x)

control <- makeTuneControlRandom(maxit = 200)

Create a description of the resampling plan

resample_desc <- makeResampleDesc("CV", iters = 10)

tuned_params1 <- tuneParams(
learner = xgb_learner,
task = trainTask1,
resampling = resample_desc,
par.set = xgb_params,

control = control

#view importance
classifierl = xghoost(data = as.matrix(train1[-1]),
label = train1$V3SS_kv100,
nrounds = 125000,
max_depth = tuned_params1xmax_depth,
eta = tuned_params1xeta,
lambda = tuned_params1xlambda,
seed = 1,
nfolds =10,
eval_metric = "rmse",
objective = "reg:squarederror",
early_stopping_rounds = 10
)
print(c(tuned_params1xmax_depth,tuned_params1xeta,tuned_params1xlambda, classifierl$best_score))
importance_matrix1 <- xgb.importance(model = classifierl)
print(importance_matrix1)

xgb.plot.importance(importance_matrix = importance_matrix1,top_n = 20)

save model to binary local file

xgb.save(classifierl , "Project_Unsorted V3SS_kv100.model™)

48

end_time = Sys.time()

end_time - start_time

#Used for model retrieval and residual plot

#classifierl<-xgb.load("Project_ MG3_QuenchBottom_103.model")#Load developed model

nums<-1
num
testlabell<-as.matrix(test1[,num])

testl<-test1[,-num]

y_predl <- predict(classifierl, as.matrix(test1))
y_predl = as.data.frame(y_pred1)
df_VDUL1 = data.frame(Actual = testlabell , Predicted =y_pred1$y_pred1l)

write.csv(df_VDUL, 'Project_Unsorted_V3SS_kv100.csv')

summary(y_predl)

mean(testlabell)

mean(y_pred1$y_predl)
y_predl<-as.integer(y_pred1>mean(y_pred1$y_predl))
testlabell<-as.integer(testlabel1>mean(testlabell))

confusionMatrix(as.factor(y_pred1),as.factor(testlabell))

49

APPENDIX G: Source Code (Random Forest)

#Prakash Saravanan

#28/8/2020

Packages

library(tidyverse) # data manipulation

library(caret)

library(mlr) # ML package (also some data manipulation)
library(knitr) # just using this for kable() to make pretty tables
library(parallelMap)

library(parallel)

library(caTools)

library(ranger)

library(tuneRanger)

require(fastmatch)

library(randomForest)

#Parallel computing

no_cores <- detectCores()-0

.onLoad = function(libname, pkgname) {
configureMIr()
backports::import(pkgname)

}

.onAttach = function(libname, pkgname) {
configureMIr()
parallelRegisterLevels(package = "mlr", levels = ¢("benchmark", "resample”, "selectFeatures", "tuneParams", "ensemble"))

}

parallelStartSocket(cpu = no_cores , level = "mlr.resample™)

#For version 2 of the data

#Check the working directory to save files

getwd()
setwd(""C:\\Users\\User\\Desktop\UTP_Intern\\Output_Dataset_U18_V3_ZAP_MAF_V3")

50

Importing the dataset

dataset = read.csv('C:\\Users\\User\\Desktop\UTP_Intern\\Source_Code\\Dataset_U18_V3_ZAP_MAF_V3_1.csv')
dataset$mode<-as.factor(dataset$mode)

#dataset<-na.omit(dataset)#Remove rows with missing data

dataset<-dataset[,-c(1,2)] #Used for current code to remove only sequence, date, Nitrogen and Sulphur

datasetl = select(dataset,"VV3SS_Sulphur",1:10,13:29,121:126) #Dataset for inputs only. Target variable to be added in the
beginning

set.seed(12345)
splitl=createDataPartition(dataset1$V3SS_Sulphur,p=0.7,list=FALSE)
trainl <- dataset1[split1,]

testl <- dataset1[-splitl,]

trainTaskl <- makeRegrTask(data = trainl, target = "V3SS_Sulphur")

testTaskl <- makeRegrTask(data = test1, target = "V3SS_Sulphur")

rf_learner <- makeLearner(
"regr.randomForest",
predict.type = "response"”,
par.vals = list(
ntree=2000,
importance=TRUE,

proximity=TRUE

rf_modell <- train(rf_learner, task = trainTask1)

resultl <- predict(rf_modell, testTask1)

getParamSet(rf_learner)

rf_params <- makeParamSet(

The number of columns sampled in each tree

makelntegerParam("mtry”, lower = 2, upper = 10),

51

Observations in terminal nodes
makelntegerParam("nodesize", lower = 10, upper = 50)#,
Number of trees

#makeNumericParam("ntree", lower = 500, upper = 2000)

)

control <- makeTuneControlRandom(maxit = 200)

resample_desc <- makeResampleDesc("CV", iters = 10L)

tuned_paramsl <- tuneParams(
learner = rf_learner,
task = trainTask1,
resampling = resample_desc,
par.set = rf_params,

control = control

rfl <- randomForest(
dataset1$V3SS_Sulphur ~ .,
data=as.matrix(dataset1),
ntree=2000,
mtry=tuned_params1xmtry,
nodesize=tuned_params1xnodesize,
importance=TRUE,

proximity=TRUE

plot(importance(rf3))
varlmpPlot(rf3)
print(rf3)
MDSplot(rfl,dataset1$y1)
proximity.plot(

rf2,

dimx=1,

dimy =2,

legend.loc = c("top", "bottom", "left", "right"),
point.size = 2,
circle.size = 8,

circle.border = 1,

hull.alpha = 0.3,
plot = TRUE
)

predl <-predict(rfl, as.matrix(test1))

num<-1

num

testlabell<-as.matrix(test1[,num])

testl<-test1[,-num]

actuall<-testlabell

predicted1<-predl

R2_1 <- 1 - (sum((actual1-predicted1)"2)/sum((actuall-mean(actual1))"2))
df_VDUL1 = data.frame(Actual = testlabell , Predicted = predl, R2_1)

write.csv(df_VDUL1, 'RandomForest_V3SS_Sulphur.csv')

53

