

FINAL EXAMINATION JANUARY 2023 SEMESTER

COURSE: FDM1023/FEM1023/FFM1023/FEM1083 - ORDINARY

DIFFERENTIAL EQUATIONS/ENGINEERING

MATHEMATICS II/MATHEMATICS FOR SCIENTISTS

DATE: 4 APRIL 2023 (TUESDAY)

TIME : 9:00 AM - 12:00 NOON (3 HOURS)

INSTRUCTIONS TO CANDIDATES

- 1. Answer **ALL** questions in the Answer Booklet.
- 2. Begin EACH answer on a new page in the Answer Booklet.
- 3. Indicate clearly answers that are cancelled, if any.
- 4. Where applicable, show clearly steps taken in arriving at the solutions and indicate **ALL** assumptions, if any.
- 5. **DO NOT** open this Question Booklet until instructed.

Note

- There are EIGHT (8) pages in this Question Booklet including the cover page and the Appendix.
- ii. DOUBLE-SIDED Question Booklet.

Universiti Teknologi PETRONAS

1. a. Solve the following initial value problem

$$\frac{dy}{dx} = \sec y \left(\frac{2x}{x^2 + 2}\right), \qquad y(1) = 0.$$

[4 marks]

b. Given the following first-order differential equation
$$y \ dx + (2xy - e^{-2y}) dy = 0.$$

i. Verify the exactness of the equation.

[2 marks]

ii. Based on your answer in Part 1(b)(i), solve the differential equation.

[7 marks]

c. Solve the following Bernoulli differential equation

$$x^2 \frac{dy}{dx} + 3xy = \frac{6x^3 y^{\frac{1}{3}}}{e^x}.$$

2. a. Solve the following second-order differential equation

$$\frac{d^2y}{dx^2} - 8\frac{dy}{dx} + 16 = \sin(2x) + xe^{4x}.$$

Use the method of undetermined coefficients to find the particular solution.

[10 marks]

b. Solve the following non-homogeneous differential equation

$$x^2 \frac{d^2 y}{dx^2} - x \frac{dy}{dx} - 3y = x^3 \sin x.$$

Use the method of variation of parameters to find the particular solution.

[10 marks]

i.
$$L\left\{(2t+8)U(t-7)+\frac{3\sinh 4t}{e^{2\pi t}}\right\}$$

ii.
$$L^{-1}\left\{ \frac{s+7}{s^2+4s+9} \right\}$$
.

b. Use the Laplace transform to solve the following differential equation

$$\frac{d^2y}{dt^2} - 5y = \cos t \ U(t - 2\pi), \qquad y(0) = 4, \ y'(0) = 0.$$

4. a. Given the following first-order differential equation

$$x\frac{dy}{dx} - y = x^3 + 3x^2 - 2x, \qquad y(1) = 2.$$

Solve the differential equation over the interval [1,5] using Heun's method with step size h=2. Round off your results to five decimal places.

[8 marks]

b. Use the 4th order Runge-Kutta method with step size $\,h=1.5$ to solve the following differential equation

$$\frac{dy}{dx} - \frac{6\sqrt{xy^2 + 8x}}{y} = 0, \quad y(1) = 4.$$

over the interval [1, 4]. Round off your results to five decimal places.

[12 marks]

5. The heat distribution of a long rod with a length of 20 cm can be determined by solving the following heat-conduction equation

$$k\frac{\partial^2 T}{\partial x^2} = \frac{\partial T}{\partial t}$$

where $k=0.835~{\rm cm^2 s^{\text{-1}}}$ is the diffusivity constant. The initial and boundary conditions are

$$T(0,x)=0,$$

$$T(t,0)=150^{\circ}C,$$

$$T(t, 20) = 80^{\circ}C.$$

a. Use the Crank-Nicholson method to generate the tridiagonal system of equations for the heat distribution at t=5 s with step sizes $\Delta x=4$ cm and $\Delta t=5$ s.

[12 marks]

b. Based on your answer in **Part 5(a)**, solve the generated system using the Gauss-Seidel iterative method with initial guess, $T^{(0)}=0$. Compute the numerical solutions for the first 2 iterations.

[8 marks]

- END OF PAPER -

APPENDIX

1. Trigonometric Identities

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\cos(a - b) = \cos a \cos b + \sin a \sin b$$

$$\sin(a+b) = \sin a \cos b + \sin b \cos a$$

$$\sin(a-b) = \sin a \cos b - \sin b \cos a$$

2. Variation of Parameters

Consider the differential equation

$$\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = f(x).$$

The particular solution is

$$y_p(x) = u_1(x)y_1(x) + u_2(x)y_2(x).$$

3. Laplace Transform of Basic Functions

$$L\{1\} = \frac{1}{s}$$

$$L\{t^n\} = \frac{n!}{s^{n+1}}$$
 , $n = 1,2,3,\cdots$

$$L\{e^{at}\} = \frac{1}{s-a}$$

$$L\{\sin kt\} = \frac{k}{s^2 + k^2}$$

$$L\{\cos kt\} = \frac{s}{s^2 + k^2}$$

$$L\{\sinh kt\} = \frac{k}{s^2 - k^2}$$

$$L\{\cosh kt\} = \frac{s}{s^2 - k^2}$$

4. Laplace Transform of Derivatives

$$L\{y'(t)\} = sY(s) - y(0)$$

$$L\{y''(t)\} = s^2Y(s) - sy(0) - y'(0)$$

5. First Translation Theorem

If $L\{f(t)\} = F(s)$ and a is any real number, then $L\{e^{at}f(t)\} = F(s-a)$.

6. Second Translation Theorem

If $L\{f(t)\} = F(s)$ and a > 0, then $L\{f(t-a)U(t-a)\} = e^{-as}F(s)$.

7. Fourth-Order Runge-Kutta Method

$$y(x_{i+1}) = y(x_i) + \frac{h}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

where

$$k_1 = f(x_i, y_i)$$

$$k_2 = f\left(x_i + \frac{1}{2}h, y_i + \frac{1}{2}k_1h\right)$$

$$k_3 = f\left(x_i + \frac{1}{2}h, y_i + \frac{1}{2}k_2h\right)$$

$$k_4 = f(x_i + h, y_i + k_3 h)$$

8. Crank-Nicholson Formula for Heat-Conduction Equation,
$$\frac{\partial T}{\partial t} = k \frac{\partial^2 T}{\partial x^2}$$

$$-\lambda T_{i-1}^{l+1} + 2(1+\lambda)T_i^{l+1} - \lambda T_{i+1}^{l+1} = \lambda T_{i-1}^l + 2(1-\lambda)T_i^l + \lambda T_{i+1}^l$$

where $\lambda = \frac{k(\Delta t)}{(\Delta x)^2}$.