TABLE OF CONTENTS

ABSTRACT i

ACKNOWLEDGEMENTS ii

CHAPTER 1: INTRODUCTION 1

1.1 Background of Study 1
1.2 Problem Statement 2
1.3 Objectives 2
1.4 Scope of study 3

CHAPTER 2: LITERATURE REVIEW 4

2.1 Critical review 4
2.2 Selection of Heat Exchangers. . . . 10
2.3 Common Failure Faced by
 Heat Exchanger in Industry . . . 10
2.4 Effects of Fouling 11
2.5 Failure Analysis 15

CHAPTER 3: METHODOLOGY 22

3.1 Project Identification 22
3.2 Pressure Testing 24
3.3 Failure Analysis Methodology . . . 24
3.4 Root Cause Analysis (RCA) . . . 26
3.5 Steps of Research 28
3.6 List of Tools/Equipments Required . . 29
LIST OF FIGURE

Figure 3.1 E-105 after being removed from the shell 23
Figure 3.2 Thick brownish/slimy deposit/fouling observed next to tubing and baffle plate intersection 23
Figure 3.3 Coating damage and blister observed on E-105 tubing 23
Figure 3.4 Close-up of E-105 localized corrosion/pitting and groove/mechanical damage near baffle plate to tube intersection 23
Figure 3.5 Project Methodology work flow 27
Figure 4.1 As received E-105 with coating damage/blister on tubing external 31
Figure 4.2 E-105 with trough wall pitting 5mm x 6mm located next to baffle plate and tubing intersection. Smaller size pits observed in adjacent area 31
Figure 4.3 Cross-section view of E-105 through wall pit 36
Figure 4.4 Microstructure photo of tube E-105 taken from pit internal to external surface (d) and close-up view (e) 37
Figure 4.5 SEM photo from top surface E-105 pit hole 38
Figure 4.6 EDX analyses on corrosion product of E-105 tube 39
Figure 4.7 EDX analyses on black deposit 40
Figure 4.8 EDX Analysis on white deposit 41
Figure 4.9 XRD on black deposit 42
Figure 4.10 XRD on white deposit 43
Figure 4.11 Layer of deposits scale found at tubes and mostly accumulate at U-bend area [12] 44
Figure 4.12 View of tube bundle noted in satisfactory condition.
No sign of any abnormalities observed [12]

Figure 4.13 Peeled off coating in some areas due to water jetting [12]

Figure 4.14 Touched-up peeled off coating after the contractor did
hydro-jetting due to some damaged peeled off the existing
coating [12]

Figure 4.15 View of tubes sheet found with thick layer of product residue
and white residue stick at tubes sheet [12]

Figure 4.16 New E-15 Leaking Mapping [12]

Figure 4.17 Old E105 Leaking Mapping [12]

Figure 4.18 Sticky blackish deposited noted entire tube sheet surface [12]

Figure 4.19 Magnetic test carried out at deposited surface [12]

Figure 4.20 Summary of RCA [12]
LIST OF TABLE

Table 3.1 LD1-11-E105 2nd Stage Primary Heat Exchanger 22
Table 3.2 Tools/equipment required 29
Table 4.1 Tubing wall thickness measurement 31
Table 4.2 Tubing coating thickness measurement 32
Table 4.3 Cooling water analysis result 33
Table 4.4 Chemical composition analysis 34
Table 4.5 Tensile test result 35
Table 4.6 Micro-hardness measurement at different location from the pit 35

APPENDICES

Appendix 1- Job Method Sheet PETLIN Turnaround 2009 I
Appendix 2- Gantt chart for FYP I II
Appendix 3- Gantt chart for FYP II III
Appendix 4- Pictures of Old E-105 IV
Appendix 5- Performance of New Tube Bundle, E105 V
Appendix 6- Recommended Actions VI