

[35 marks]

FIGURE Q1 shows a reinforced concrete slender column cross section with dimensions of 300 mm x 200 mm. The column is subjected to an ultimate axial load of 1250 kN and moment of 87 kN.m about minor axis (y-y). Design the longitudinal reinforcements and shear links for this column. The characteristic strength of concrete is 30 MPa, the characteristic strength of steel is 500 MPa and axis distance is 50 mm. Assume the following information:

Slenderness ratio, ly =39

1.

Effective length; Loy = 4.1m

FIGURE Q1

2. FIGURE Q2 shows the longitudinal section of a reinforced concrete stair connecting to the ground floor and the first floor of a shop house. The 1.5 m width stairs have 170 mm risers and 300 mm going along the flight. The stair is monolithically casted with supporting beams and connecting slabs at the first-floor level. However, at the ground level it is only casted monolithically with a supporting beam. Other dimensions of the staircase are given in the figure.

With a characteristic live load of 5.0 kN/m2 and a characteristic dead load of 1.4 kN/m2 (excluding of self-weight), design the reinforcement required in the stair using Grade C40 concrete, Grade 500 steel reinforcement, and a concrete cover of 25 mm. Assume a suitable value for the waist of the stair. All checking of deflection, shear and cracking should be done.

FIGURE Q3 shows a simply supported rectangular beam with span of 10 m 3. carrying a uniformly distributed vertical load of 15 kN/m. Calculate the minimum prestressing force P required for this beam for two cases as the following: a) P applied along the line of centre of gravity. [15 marks] b) P applied at a distance (e) = 175 mm. [15 marks] w = 15 kN/m b = 270 $I = 10 \, \text{m}$ h = 610 Simply supported beam v (a) p (b) u ji (c) FIGURE Q3: (a) Beam dimensions; (b) P applied along the line of centre of gravity; (c) P applied at a distance of e = 175 mm. -END OF PAPER-

- Mail

se de la constante de la const

Table 7.4N: Basic ratios of span/effective depth for reinforced concrete members without axial compression

Structural System	κ	Concrete highly stressed $\rho = 1,5\%$	Concrete lightly stressed $\rho = 0.5\%$		
Simply supported beam, one- or two-way spanning simply supported slab	1,0	12	20		
End span of continuous beam or one-way continuous slab or two- way spanning slab continuous over one long side	1,3	38	26		
Interior span of beam or one-way or two-way spanning slab	1,5	20	30		
Slab supported on columns without beams (flat slab) (based on longer span)	1,2	17	24		
Cantilever	0,4	6	8		

Note 2: For 2-way spanning slabs, the check should be carried out on the basis of the shorter span. For flat slabs the longer span should be taken.

Note 3: The limits given for flat slabs correspond to a less severe limitation than a mid-span deflection of span/250 relative to the columns. Experience has shown this to be satisfactory.

6

١.	1	Г	DA	07	5
١.	ľ		D4	·υz	. 2
		_			

<u>Main bars ii</u>	<u>n lension</u>
Asimin	9.2.1.1 (1): 0.26 $f_{ctm}/f_{vk}bd \ge 0.0013 bd$
As.max	0.04 <i>bd</i>
Secondary 1	Transverse Bars
As.min	9.3.1.1 (2): 0.2A₅ for single way slabs
As _{imax}	9.2.1.1 (3): 0.04 bd
Spacing of E	lars
Smin.	8.2 (2): d _g + 5 mm or ∳ or 20mm 9.3.1.1 (3): main 3 <i>h</i> ≤ 400 mm
S _{max}	secondary: 3.5h ≤ 450 mm
	places of maximum moment: main: 2h ≤ 250 mm secondary: 3h ≤ 400 mm
<u>Columns</u> <u>Main Bars</u>) <u>in Compression</u>
A _{s.min}	9.5.2 (2): 0.10N _{Ed} /0.87f _{vk} ≤ 0.002
A _{s,max}	9.5.2 (3): 0.04 bh (out of laps zo 0.08 bh (in laps zones
<u>Links</u>	

S_{cl,tmax}

The least of the following: a. 20 x min diameter of bars b. Lesser dimension of the column (b,h) c. 400 mm

7

EC 2 does not directly give a method for designing biaxially bent columns other than working from first principle. Clause 5.8.9 of EC 2 stated that separate design in each principal direction, disregarding biaxial bending, may be made as a first step. No further check is necessary if,

(a)
$$\lambda_y/\lambda_z \leq 2$$
 and $\lambda_x/\lambda_y \leq 2$, and

(b)
$$(e_y/h)/(e_y/h) \le 0.2$$
 or $(e_y/h)/(e_y/h) \le 0.2$

where

b, h are the width and depth of a section

 λ_y , λ_z are the slenderness ratio with respect to y- and z- axis respectively

 $e_y = M_{Edz} / N_{Ed}$; eccentricity along y-axis

 $e_{z} = M_{Edy} / N_{Ed}$; eccentricity along z-axis

 M_{Edy} is the design moment about y-axis. Including second order moment M_{Edz} is the design moment about z-axis. Including second order moment N_{Edz} is the design value of axial load in the respective load combination.

(a). if $M_{\text{Edz}}/h^2 \ge M_{\text{Edy}}/b^2$ then $M_{\text{Edz}}^2 = M_{\text{Edz}} + \beta(h^2/b^2) M_{\text{Edy}}$ (b) if $M_{\text{Edz}}/h^2 \le M_{\text{Edy}}/b^2$ then $M_{\text{Edy}}^2 = M_{\text{Edy}} + \beta(b^2/h^2) M_{\text{Edz}}$

 h^* and b^* are the effective depth as indicated in Figure 10.9, and the coefficient β can be obtained from the equation

$$l = 1 - N_{\rm Ed}/bhf_{\rm ck}$$
 (0.3 < β < 1.0)

where

 M_{Rdy} is the moment resistance in y-axis. M_{Rdx} is the moment resistance in z-axis.

a is the exponent;

for circular and elliptical cross section: a = 2 for rectangular cross sections :

	and the second
ուսիստում 🖬 է հետերին՝ հանձեսի որ 🖡 է հետերին 🚺 է է է հետ համան է	
	1 1 1
	2
	Contract of the second state of the second sta
and the second	
	The second se
	· · · · · · · · · · · · · · · · · · ·
	and the second se
	A start of the second s second second se
	international and the CAS 12 years and a little independent of 11 have been been
	and the second
	www.conflicting.com

with linear interpolation for intermediate values

 $N_{\rm Rd} = A_{\rm cfcd} + A_{\rm fyd}$, design axial resistance of section

 $A_{\rm c}$ is the gross area of the concrete section

A, is the area of longitudinal reinforcement

VFB4022

 $V_{Rd,max} = 0.5 \gamma_1 f_{cd} ud = 0.5 \gamma_1 \left(\frac{f_{ck}}{1.5}\right) ud$

where:

d

Y1

is the perimeter of the column

is the effective depth of the footing

is the strength reduction factor = 0.6 $(1 - f_{ck}/250)$

Class designation	Description of the environment	Informative examples where exposure classes may occur
1 No risk of	corrosion or attack	
xo	For concrete without reinforcement or embedded metal: all exposures except where there is freeze/thaw, abrasion or chemical attack For concrete with reinforcement or embedded metal: very dry	Concrete inside buildings with very low air humidit
2 Corrosion	Induced by carbonation	
XC1	Dry or permanently wet	Concrete inside buildings with low air humidity Concrete permanently submerged in water
XC2	Wet, rarely dry	Concrete surfaces subject to long-term water contact Many foundations
хсз	Moderate humidity	Concrete inside buildings with moderate or high al humidity External concrete sheltered from rain
XC4	Cyclic wet and dry	Concrete surfaces subject to water contact, not within exposure class XC2
3 Corrosion	Induced by chlorides	
XD1	Moderate humidity	Concrete surfaces exposed to airborne chlorides
XD2	Wet, rarely dry	Swimming pools Concrete components exposed to industrial water containing chlorides
XD3	Cyclic wet and dry	Parts of bridges exposed to spray containing chlorides Pavements

Corrosio	in induced by chlorides from sea water	
XS1	Exposed to airborne salt but not in direct contact with sea water	Structures near to or on the coast
XS2	Permanently submerged	Parts of marine structures
XS3	Tidal, splash and spray zones	Parts of marine structures
Freeze/T	haw Attack	
XF1	Moderate water saturation, without de-icing agent	Vertical concrete surfaces exposed to rain and freezing
XF2	Moderate water saturation, with de-icing agent	Vertical concrete surfaces of road structures exposed to freezing and airborne de-icing agents
XF3	High water saturation, without de-icing agents	Horizontal concrete surfaces exposed to rain and freezing
XF4	High water saturation with de-icing agents or sea water	Road and bridge decks exposed to de-icing agents Concrete surfaces exposed to direct spray containing de-icing agents and freezing Splash zone of marine structures exposed to freezing
Chemica	il attack	
XA1	Slightly aggressive chemical environment according to EN 206-1, Table 2	Natural soils and ground water
XA2	Moderately aggressive chemical environment according to EN 206-1, Table 2	Natural soils and ground water
XA3	Highly aggressive chemical environment according to EN 206-1. Table 2	Natural soils and ground water

20

Table for determining final Structural Class – EC 02-1-1: Table 4.3N

(And and an and an	Exposure Class according to Table 4.1						
CULEIDH	X0	XC1	XC2/XC3	XC4	XD1	XD2 / XS1	XD3/XS2/XS
Design Working Life of 100 years	increase class by 2	increase class by 2	increase class by 2	increase class by 2	increase class by 2	increase class by 2	increase class by 2
Strength Class ^{1) 2)}	≥ C30/37 reduce class by 1	≥ C30/37 reduce class by 1	≥ C35/45 reduce class by 1	≥ C40/50 reduce class by 1	≥ C40/50 reduce class by 1	≥ C40/50 reduce class by 1	≥ C45/55 reduce class t 1
Member with slab geometry (position of reinforcement not affected by construction process)	reduce class by 1	reduce class by 1	reduce class by 1	reduce class by 1	reduce class by 1	reduce class by 1	reduce class b 1
Special Quality Control of the concrete production ensured	reduce class by 1	reduce class by 1	reduce class by 1	reduce class by 1	reduce class by 1	reduce class by 1	reduce class b 1

 Table 4.4N: Values of minimum cover, c_{min,dur}, requirements with regard to durability for reinforcement steel in accordance with EN 10080.

Structural	Exposure Class according to Table 4.1									
Class	XO	XC1	XC2/XC3	XC4	XOLXSI	XD2/XS2	XD3 / XS3			
S1	10	10	10	15 🍃	20	25	30			
\$2	10	10	15	28	25	30	35			
S 3	10	10	20	25	30	35	40			
<u>S4</u>	10	15	25 J	30	35	40	45			
<u>\$5</u>	15	20	30	35	40	45	50			
S6	20	25	35	40		50	55			

rrangement of bars	Minimum cover cmin.b*	4
eparated	Diameter of bar	_
undle	Equivalent diameter	
	$\phi_n = \phi \sqrt{n_b} \le 55 \text{ mm}$ Where n_b is the number of bars in the bundle, which is limited to	
	$n_{\rm b} \leq 4$ for vertical bars in compression	
	$n_b \leq 3$ for all other cases	

•____

Table (5.12 Final cree	p coefficient of no	ormal weight concrete (Ø(∞,to))			
loadin (days)	g <u>100</u> C	200 ny atmosphere (insi	Notional size (2A 300 500 de: 50% RH)	100 20 Humid atmo	0 300 sphere (outside	5 : 80% RH)	00
1 3 7 28 100	5.5 4.6 3.8 5.0 + 2.7	5.0 4.0 3.5 2.8 2.5	4.7 4.3 3.8 3.6 3.2 2.9 2.6 2.3 2.3 2.1	3.8 3.1 2.6 2.2 2.1 2.0 1.9 1.3	5 3.4 2.8 4 2.3 1.9 1 1.7	3 2 2 1 1 1 1 1	3 18 12 19 19
f _{cim}	= $0.3 f_{ck}^{2/3}$ (ee of concrete, u = pe MPa)		diving			
Ecm	$= 22 \left[\frac{\mathcal{G}_{ck}}{1} \right]$	<u>+ 8)</u>] ^{0.3} kN	/mm²		02		
	$\frac{E_{cm}}{1+Q(\infty)}$	<u>,0</u>					
a _e = w _k =	E _{c.eff}	5m - E _{cm})		α.Α.			
				ient ironstofn			
E _{sm} -	σ _s - ε _{cm} =	$-k_i \frac{f_{a.eff}}{\rho_{p.eff}} (1)$	$+ \alpha_{e} \rho_{p,eff}$) $\longrightarrow \geq 0.6$	$\frac{\sigma_s}{E}$			
	$\alpha_{\rm c} = \frac{E_{\rm s}}{E_{\rm cm}}$			-3			
			22				

where σ_s is the stress in the tension steel calculated using the cracked concrete section. k_t is a factor that accounts for the duration of loading (0.6 for short-term load, 0.4 for long-term load).

k is a coefficient accounting for the bond properties of the reinforcement (0.8 for high bond, 1.6 for plain bars)
k is a coefficient accounting for the nature of the strain distribution which for cracking due to flexure can be taken as 0.5.

VEB4022

