FINAL EXAMINATION JANUARY 2024 SEMESTER

UNIVERSITI TEKNOLOGI PETRONAS

COURSE : YBB2053 - ORGANOTRANSITION METAL

- CHEMISTRY
- 6 APRIL 2024 (SATURDAY)
- 9:00 AM 12:00 NOON (3 HOURS)

INSTRUCTIONS TO CANDIDATES

*

5

- 1. Answer ALL questions in the Answer Booklet.
- 2. Begin EACH answer on a new page in the Answer Booklet.
- 3. Indicate clearly answers that are cancelled, if any.
- Where applicable, show clearly steps taken in arriving at the solutions and indicate ALL assumptions, if any.
- 5. **DO NOT** open this Question Booklet until instructed.

Note

- i. There are SEVEN (7) pages in this Question Booklet including the cover
- ii. DOUBLE-SIDED Question Booklet.

Universiti Teknologi PETRONAS

YBB2053

K₃[Fe(SCN)₆] has been used to synthesize potassium-ion battery cathode material.

1.

C.

a. Determine the International Union of Pure and Applied Chemistry (IUPAC) nomenclature of K₃[Fe(SCN)₆] complex.

[2 marks]

- Draw the molecular orbital diagram of K₃[Fe(SCN)₆] complex with complete labelling.
 [10 marks]
 - Determine the crystal field stabilization energy (CFSE) of K₃[Fe(SCN)₆] complex. [2 marks]
- d. Determine the magnetic moment of K_3 [Fe(SCN)₆] complex.
- e. Sketch the orbital interaction(s) between the ligand and the metal centre in K₃[Fe(SCN)₆] complex to represent the characteristics of the ligand in the complex.

2

[4 marks]

[2 marks]

- YBB2053 Crystal field theory is a model that describes the electronic structure of transition metal compounds.
- Using crystal field theory, discuss the splitting of *d* orbitals in octahedral complex. Support your discussion with drawings.
 [10 marks]
- b. Draw the arrangement of electrons in *d* orbitals of $[CuF_6]^{5-}$.

2.

c. It has been observed that [CuF₆]⁴⁻ will undergo Jahn-Teller Distortion. Draw the splitting of the *d* orbitals in this complex.
 [7 marks]

3

[3 marks]

YBB2053

The $[Pt(NH_3)_4]^{2^+}$ complex ion is reacted with one equivalent mole of Cl⁻ to form complex X. Then, complex X is reacted with another mole of Cl⁻ to produce complex Y.

3.

C.

f.

 Using curved arrows, propose an associative mechanism for the formation of complex X.

[4 marks]

b. Determine the rate of reaction in part (a) when the concentration of $[Pt(NH_3)_4]^{2^+}$ and Cl⁻ are doubled. Justify your answer.

[3 marks]

Determine the rate of reaction if the $[Pt(NH_3)_4]^{2+}$ complex ion in **part (a)** is replaced by $[Ni(NH_3)_4]^{2+}$.

[3 marks]

- Determine the rate of reaction if the [Pt(NH₃)₄]²⁺ complex ion in part (a) is replaced by [Pt(NH₃)₄]⁴⁺.
 [3 marks]
- e. Complex X undergoes a dissociative mechanism to form complex Y. Draw a mechanism for the transformation of complex X to complex Y using curved arrows.

[3 marks]

Determine the rate of reaction in **part (e)** when the concentrations of complex **X** and ligand CI⁻ are doubled. Justify your answer.

4

[4 marks]

- YBB2053
- Polypropylene (PP) is a thermoplastic polymer widely used for fabricated parts and components due to its excellent chemical and impact resistance. In a typical allin, polymerization of propylene (C_3H_7) monomers to PP, dimethylzirconocene, $(\eta^{5}-C_{5}H_{5})_{2}Zr(CH_{3})_{2}$ is used as a catalyst.
 - Draw the structure of dimethylzirconocene. а.

4.

[2 marks]

Propose a catalytic cycle for polymerization of 2 moles of propylene (C_3H_7) b. monomer.

[10 marks]

Calculate the number of electrons around the central metal ion in each step of C. the mechanisms as shown in part (b).

5

[8 marks]

ļ

YBB2053

Hydroformylation of olefin is an important industrial process where olefin reacts with syngas (H, and CO) to produce linear and branched aldehydes. [Fe(CO)₃(PPh₃)₂] is one of the catalysts commonly used for hydroformylation reaction.

Draw a catalytic cycle for the hydroformylation of 1-hexene (C_6H_{12}) to branched aldehyde.

[10 marks]

Identify the type of reaction in each step of the mechanism in part (a).

END OF PAPER -

[8 marks]

Name the aldehyde produced from part (a)

5.

а.

b.

C.

[2 marks]

6

l H	B = Solids				Hg =	Hg = Liquids			ses	2m =	= Not fo	und in nature					18 2 He
3 Li 6.941	2 4 Be 9.012182											13 5 B 10.811	14 C 12.0107	15 7 N 14.00674	16 8 0 15.9994	17 9 F 18,9984032	4.002602 10 Ne 20.1797
11 Na 989770	12 Mg 24.3050	.	•	5	6	7	8	9	10	11	12	13 Al 26.561538	14 Si 28.0855	15 P 30.973761	16 S 32.066	17 Cl 35.4527	18 Ar 39.948
19 K 39.0983	20 Ca 40.078	21 SC 44.955910	22 TÎ 47,867	23 V 50.9415	24 Cr 51.9961	25 Mn 54.938049	26 Fe 55.845	27 CO 58.933200	28 NI 58.6534	29 CU 63.545	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.92160	34 Se 78.96	35 Br 79.504	36 Kr 83.80
37 Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 TC (98)	44 Ru 101.07	45 Rh	46 Pd 106.42	47 Ag 107.87	48 Cd 112411	49 In 114.818	50 Sn 118,710	51 Sb 121.760	52 Te 127.60	53 126.90447	54 Xe 131.29
55 Cs 32.90545	56 Ba 197,927	71 LU 174.967	72 Hf 178.49	73 Ta 180.94.79	74 W 183,84	75 Re 186.207	76 OS 190.23	77 Ir 192,217	78 Pt 195.078	79 Au 196.56655	80 Hg 200.39	81 TI 204.3833	82 Pb 207.2	83 Bi 208.58038	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)	103 Lr (262)	104 Rf (261)	105 Db (262)	106 S.C (263)	107 Bh (262)	108 HS (265)	109 Mt (266)	110 DS (269)	111 Rg (272)	112 Cn (277)	113 Uut (277)	114 Uuq (277)	115 Uup 1277	116 Uuh (277)		118 Uuo (277)
			57 La	58 Ce	59 Pr 140,50765	60 Nd	61 Pm	62 Sm 150.36	63 Eu 151,984	64 Gd	65 Tb	66 Dy 162,50	67 Ho 164,93032	68 Er 167,25	69 Tm 168,93421	70 Yb 173.04	
			89 AC 232.0381	90 Th 232.0381	91 Pa 231,035888	92 U 238.0289	93 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 NO (259)	

application of the state of the second

~

-

APPENDIX I (PERIODIC TABLE)

and a first plants

YBB2053

