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ABSTRACT

Mitigation of power system oscillations is the problem of concern in the power
industry as these oscillations, when exhibiting poor damping; affect the transmission
line power transfer capability and power system stability. These oscillations greatly
restrict power system operations and, in some cases, can also lead to widespread
system disturbances. In this context, the Flexible AC Transmission System (FACTS)
device, Interline Power Flow Controller (IPFC) employed to improve the transmission
capability can be additionally utilized for damping control of power system

oscillations.

IPFC based damping controller design for power system stability requires proper
and adequate mathematical representation of power system incorporating the FACTS
device. This thesis reports the investigation on the development of steady state model,
the dynamic nonlinear mathematical model of the power system installed with the
IPFC for stability studies and the linearized extended Phillips Heffron model for the
design of control techniques to enhance the damping of the lightly damped

oscillations modes.

In this context, the mathematical models of the single machine infinite bus
(SMIB) power system and multi-machine power system incorporated with IPFC are
established. The controllers for the IPFC are designed for enhancing the power system
stability. The eigenvalue analysis and nonlinear simulation studies of the
investigations conducted on the SMIB and Multi-machine power systems installed
with IPFC demonstrate that the control designs are effective in damping the power
system oscillations. The results presented in this thesis would provide useful
information to electric power utilities engaged in scheduling and operating with the

FACTS device, IPFC.
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ABSTRAK

Pengurangan ayunan sistem kuasa adalah permasalahan yang diberi perhatian dalam
industri kuasa kerana ayunan ini, disamping menunjukkan redaman kurang baik,
saluran penghantaran mempengaruhi kemampuan pemindahan dan kestabilan system.
Ayunan ini menyekat operasi sistem dan dalam beberapa kes, boleh menyebabkan
penyebaran gangguan pada sistem. Dalam konteks ini, ‘peranti sistem penghantaran
AU fleksibel’ (FACTS) ‘pengawal aliran kuasa antara-talian’ (IPFC) yang berfungsi
untuk meningkatkan kemampuan penghantaran dapat digunakan untuk meredamkan

ayunan sistem kuasa elektrik.

IPFC berasaskan rekabentuk kawalan redaman untuk menstabilkan sistem kuasa
memerlukan persamaan matematik yang tepat dan mencukupi untuk mewakili sistem
kuasa yang menggabungkan peranti FACTS. Tesis ini melaporkan hasil kajian
berkaitan pembangunan model keadaan mantap dan model matematik dinamik tak
lelurus dari sistem kuasa yang dipasang dengan IPFC untuk kajian kestabilan dan
meleluruskan model Phillips Heffron untuk merekabentuk teknik kawalan bagi

meningkatkan redaman.mod ayunan teredam ringan.

Dalam konteks ini, model matematik dari bas mesin tunggal tak terbatas (SMIB)
sistem sistem kuasa elektrik dan berbilang-mesin digabungkan dengan IPFC.
Pengawal untuk IPFC direka untuk meningkatkan kestabilan sistem kuasa elektrik.
Analisis nilai eigen dan kajian simulasi tak lelurus dari penyiasatan yang dilakukan
pada SMIB dan sistem kuasa MM yang dipasang dengan IPFC menunjukkan bahawa
reka bentuk kawalan adalah sangat berkesan dalam mengayunkan sistem tenaga
redaman. Penemuan yang dipersembahkan dalam tesis ini dapat memberi maklumat
yang berguna untuk pengusaha utiliti kuasa elektrik dalam penjadualan dan

pengoperasian sistem menggunakan peranti FACTS, IPFC.
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CHAPTER 1

INTRODUCTION

Modern day society’s requirement and consumption of energy for use in industry,
commerce, agriculture, communications, domestic households, etc., have increased
steadily. This rapid and continuous growth in electrical energy use is combined with a

greater demand for low cost energy and to improve the reliability of power supply.

To make electric energy generation more economical, the generating stations are
sited remotely from the load centers, and closer to the source of power. For example,
the primary concern to hydroelectric power plants is the availability of water and
benefits of the sites having higher heads with significant water flows, while
thermoelectric power stations are situated near to coal mines and the nuclear power
plants are located distantly away from the urban centers for safety. Consequently, the
transmission lines serve the purpose to pool the generating sites and load centers
covering large distances between generation and end-users in order to minimize the

total generation capacity and fuel cost.

To enhance the system reliability, the electric power supply systems are widely
interconnected, i.e., interlinking the neighboring power supply utilities, which further
extend to inter-regional and international connections. Moreover, with the probable
unavailability of some generating units, the interconnection lines could force the
electric power flows to be redirected through longer routes to provide emergency
assistance (e.g., when encountering partial blackouts). As such, transmission
interconnections enable taking benefit of diversity of loads, availability of sources and

fuel price to provide consistent and uninterrupted service to the loads.

This results in evolved planning, construction and operation of interconnected
network of transmission lines. Although the interconnection results in operating

economy and increased reliability through mutual assistance, yet they contribute



towards increased complexity of stability problems, increased consequences of
instability and more requirements of stringent measures for maintaining adequate
system dynamic performance. In this context, this chapter gives the background about
the stability problems in the power system followed by brief discussion on Flexible
AC Transmission Systems (FACTS) used in the power system to enhance the power

system stability, the research motivation and objectives.

1.1 Power System Stability

Power system stability is the ability of the power system to maintain a state of
equilibrium for a given operating point or to regain an acceptable equilibrium point
after being subjected to disturbances [1], [2]. Power system stability is mainly
connected with electromechanical phenomena where in the synchronous operation is
to be maintained [3]. Electric power is produced, almost entirely, by means of
synchronous three-phase generators (i.e., alternators) driven by steam or water
turbines. A necessary condition to maintain stability is that several generators in the
power system must operate in synchronism during normal steady state and
disturbance conditions. These AC generators produce synchronizing torques which
depends on the relative angular displacements of their rotors to keep the generators in

synchronism.

However, instability in power system may also be encountered due to various
disturbances or with changing power demand. Maintaining the synchronism is not the
only issue at such an instance. The stability and control of voltage and frequency are
also of concern. As power systems are nonlinear, their stability depends on both the

initial conditions and the size of a disturbance.

Over the years the power system stability definition has taken different forms
being influenced by various factors. Different approaches have been developed to deal
with different stability problems and methods are formulated to improve the stability.

Therefore, the stability definitions have been classified as follows [2], [3]:



Rotor angle stability is the ability of synchronous machines in interconnected
power system to remain in synchronism. This stability problem involves the study of
electromechanical oscillations inherent in power systems [2]. These oscillations occur
in interconnected power systems as the synchronous generators swing against each
other in the event of disturbance. Since the phenomenon involves mechanical
oscillations of the rotor and oscillations of the generated electrical power, these

oscillations are called electromechanical oscillations.

Voltage stability is the ability of the power system to sustain steady voltages at all

buses in the system before and after disturbances.

Frequency stability is the ability of the power system to maintain the frequency in

the event of disturbances.

Among several problems in the stressed power network, the major concern of
study in stability problems. In this thesis, it is the electromechanical oscillations
which come under rotor angle stability. The rotor angle stability is further classified as

follows:

Steady-state or small signal stability is the ability of the power system to maintain
synchronism in response to small disturbances. The disturbances are in the form of

small variations in load conditions and small differences in generator schedules.

Transient stability is the ability to maintain synchronism when the power system
is subjected to sudden and severe disturbances. The transient stability depends on the
initial operating point and the severity of the disturbance. These disturbances can be
of varying degree of severity such as short circuits of different types: phase-to-
ground, phase-to-phase-to-ground or three-phase fault. They can occur on
transmission lines, buses, or near transformers. The fault is assumed to be cleared by

the opening of appropriate breakers to isolate the faulted element.

During small disturbances, the angular difference between generators increases
and electrical torque is produced with the help of the excitation system which tries to
reduce the angular displacement. As such, the moment of inertia of the generator

rotors and the positive synchronizing torques cause the angular displacement of the



generators to oscillate, following a system disturbance. The oscillations of the
generator’s rotors are reflected in other power system variables such as bus voltage,
transmission line active and reactive powers, etc. However, from an operating point of
view, oscillations are acceptable as long as they decay. But during large disturbances
such as short circuit on a transmission line, i.e., when the generator is subjected to
relatively larger angular swings, the system may tend to oscillate causing it to become
unstable. Fast excitation systems such as high gain automatic voltage regulators
(AVR) were introduced to prevent the generators from loosing synchronism.
Unfortunately, improvising the synchronizing torque affects the damping torque, as
negative damping was introduced by these AVRs. Consequently, the net damping
torque is insufficient and results in power system oscillations of exponentially
increasing amplitude in an overstressed system. In the absence of mitigating means, it
leads to instability of the power system. Thus, the stability problem is largely due to

insufficient damping of the oscillations.

Electric power systems experience problems with the low frequency oscillations
(0.1 to 2 Hz) [2], [4] which are a frequent phenomenon in the interconnected power
system. The low frequency oscillations are characterized by the electromechanical
mode oscillations and are initiated in the system when exposed to sudden small
disturbances in load, generation and transmission network configuration and worsen

following a large disturbance.

The low frequency oscillations are of two types: The first, known as the local
mode oscillations is associated with a single generator or a group of generators at a
generating station oscillating with respect to the rest of the power system. They have
natural frequencies of about 1 to 2 Hz [2], [4]. The characteristics of local area
oscillations are well understood and adequate damping of these oscillations can be
achieved with help of the Power System Stabilizer (PSS), which provides

supplementary control action in the excitation systems of the generators.

The second are the inter-area mode oscillations, which associate with the
machines in one area of the power system oscillating against the machines in other
areas of the power system. Inter-area modes of oscillation have lower natural

frequencies in the order of 0.1 to 1 Hz [2], [4]. They are caused by two or more

4



groups of closely coupled machines that are interconnected by weak tie lines. As such
these oscillations may also lead to widespread system disturbances if cascading
disturbances (faults and protective relaying operation) on transmission lines occur due
to the oscillatory power swings across the tie lines. Such an event occurred during the
blackout in western US/Canada interconnected system on August 10, 1996 [5] and a
similar blackout occurred on August 14, 2003 in eastern Canada and US by severe
0.4-Hz oscillations in several post-contingency stages [6]. Studies about the relations
between inter-area mode and different factors in the power system are quite
complicated. The characteristics of these modes are complex as they involve more
than one utility and require cooperation of the rest of the utilities to obtain effective

and economical solution.

Low frequency oscillations are of concern as these oscillations affect the power
transfer capability of the line. Damping of these oscillations plays a significant role in
power system stability to secure and increase the supply and transmission capability
of the system. In the circumstances due to insufficient damping, damping devices are

imperative to dampen these power system oscillations.

Demello and Concordia analyzed the mechanism of low frequency oscillation [7],
using the linearized (k constant) model. This model is also known as the linearized
Phillips-Heffron model of a power system which explains the relationships between
small signal stability, high impedance transmission lines, line loading and high gain
fast acting excitation systems. Traditional approaches to assist the damping of power
system oscillations include the application of PSS to the generator voltage regulator.
PSS are designed based on the linearized model of the power system [8]. However,
the pressures of the continuing interconnection of electric networks and increase of
line loading have indicated that the PSS alone is not sufficient. Proliferation of

controls is considered by prudent use of FACTS technology as needed.

1.2 FACTS Devices

With the advent of high power, high speed power electronics based FACTS, their

capability in damping power system oscillations has been explored and



investigated [9]. Flexible Alternating-Current Transmission Systems (FACTS) is
defined by the IEEE as “AC transmission systems incorporating power electronics-
based and other static controllers to enhance controllability and increase power
transfer capability” [10]. The FACTS concept originally came into effect in 1980s to
solve operation problems due to the restrictions on the construction of new
transmission lines, to improve power system stability margins. It also facilitates
power exchange between different generation companies and large power users, thus
considerably utilizing the existing transmission network instead of adding new
transmission lines for the growing demand of power, as it may be restricted due to
economical and environmental problems. Correspondingly, a FACTS controller is
defined as “a power electronics-based system or other static equipment that provides
control of one or more AC transmission parameters” [10]. The FACTS controllers
have been beneficial as they operate very fast and enlarge the safe operating point

limits of a transmission system without threatening the stability of the system.

The developments in FACTS technology made it possible to rapidly vary the
reactive shunt and series compensation, to accommodate the changes in the
transmission lines and maintain the stability margins. Since FACTS elements are
already being used in power systems for voltage support and power flow control, they
can potentially be applied for damping the oscillations of the power system and
improve the overall power system stability. The compensation applied by the FACTS
controllers is varied to affect the power flow to obtain reliable and rapid damping of
the low frequency oscillations, as well as satisfy the primary requirements of the

device.

There are two distinct groups of FACTS controllers based on technical
approaches [9], [11-14]. The first group is based on line commutated thyristor devices
having no intrinsic turn off ability. The thyristor controlled FACTS controllers
consists of Static Var Compensator (SVC), Thyristor Controlled Series Capacitor
(TCSC) and Thyristor Controlled Phase Shifter (TCPS) employing reactive
impedances or tap changing transformers with thyristor switches as controlled

elements [9].



Each of these FACTS devices can control only one parameter: SVC- voltage,
TCSC-transmission impedance and TCPS-transmission angle. The major members of
this group, the SVC and TCSC, have a general characteristic in that the conventional
capacitor or reactor banks generate or absorb the necessary reactive power required
for the compensation, and the thyristor switches are used only for the control of the
combined reactive impedance these banks present to AC system. TCPS does not

supply or absorb the reactive power it exchanges with the AC system.

The second group is based on self-commutated converters which use
thyristors/transistors with gate turn-off capability, such as GTO’s, IGBT’s etc. The
converter based FACTS controllers are of two types: voltage sourced converters
(VSCs) and current sourced converters. However, from economical point of view, the
VSCs seem to be preferred and will be the basis for most of the converter-based
FACTS controllers [12]. They have an advantage over the thyristor controlled FACTS
controllers compensation methods in providing better performance characteristics and
uniform applicability for transmission, effective line impedance and angle control.
This approach can provide reactive compensating shunt current that is independent of
system voltage, as well as series reactive compensating voltage that is independent of
line current, i.e., the applied compensation provided by synchronous voltage sources
(SVS) remains largely independent of the network variables (line current, voltage or
angle). The SVS also has the capability of executing a bidirectional real (active)
power flow between its AC and DC terminals. Thus, it becomes possible to couple the
DC terminals of two or more SVSs and, thereby, they become capable of exchanging
real power with the AC system directly along with providing controllable reactive
power compensation independently. This group of FACTS controllers consists of
Static Synchronous Compensator (STATCOM), the Static Synchronous Series
Compensator (SSSC), the Unified Power Flow Controller (UPFC) and the Interline
Power Flow Controller (IPFC).

1.3 Interline Power Flow Controller (IPFC)

The IPFC is a recent member of the converter based family of FACTS controllers

[15]. IPFC provides comprehensive power flow control scheme for a multi-line
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transmission system unlike other FACTS controllers (STATCOM, SSSC, and UPFC)
which are developed primarily for the control of a single line. In general, the IPFC
employs a number of voltage sourced converters (VSCs) with a common DC link,
each providing a series reactive compensation for a selected line of the transmission
system by injecting a series voltage. Due to the common DC link, any converter of the
IPFC is able to transmit real power in between other VSCs and thus, able to assist in
real power exchange among the lines of the transmission system. Since each converter
is also able to provide series reactive compensation, the IPFC is able to provide real
and reactive power compensation, and thereby, optimize the utilization of the
transmission system. This ability of IPFC makes it possible to equalize both real and
reactive power flow between the lines, transfer power from overloaded to under-
loaded lines, compensate against reactive voltage drops and the related reactive line
power, and to increase the efficiency of the compensating system against dynamic
disturbances (transient stability and power oscillation damping). In other words, the
IPFC can potentially provide a highly effective scheme for power transmission

management at a multi-line substation.

A basic IPFC consists of two VSCs with a common DC link is shown in Figure
1.1 [12]. Each converter is coupled to a different transmission line via its own series
insertion transformer, thus, providing independent series reactive compensation to its

own line.

The real power is exchanged by the converters at its AC terminals which is
supplied to or absorbed from its DC terminal. The IPFC has all the advantages
established for the converter based FACTS controllers: Modular construction from
similar building blocks which can be fully decoupled and operated as independent
series compensators or reconfigured into shunt compensators or UPFC. The rating of
selected individual compensators can be increased by the combination of the

individual building blocks.

The IPFC configuration provides a flexible utilization of needed compensation
assets without any significant cost addition, and thus, makes this approach attractive
for utilities (or other transmission system operators) to solve some of difficult

transmission problems they face today.
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Figure 1.1: Schematic diagram of IPFC

As seen, IPFC is a multivariable controller. The control design of IPFC should be
such that it should be able to perform in a stable manner while providing power flow
control as well as damping to power system oscillations. If the control system is not
designed properly, it could lead to growing oscillations in transmission line power
flow and lead to system wide disturbances. In this view the control aspect of an IPFC

is an important area of research.

1.4 Research Motivation

The electric utilities are constantly on a lookout for new devices that will enable the
power system to have increased power transfer abilities with the transmission lines.
The increase in energy exchange within the transmission network further increases the
stress of the existing power network entailing enhanced control techniques to ensure
power system stability. In the recent research, FACTS devices have been suggested
and investigated for improving damping of the power system oscillations. Thus, while

performing their primary functions of power flow control; they are also utilized for
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enhancing the damping of the oscillation modes. The FACTS-based controllers have
been more prospective to stabilize the low frequency oscillations which cannot just be

controlled through generator controllers with only local measurements.

The latest FACTS device, IPFC, regulates the power flow in the transmission
lines. Consequently, IPFC should not only be able to control the power flow of the
concerned transmission lines but also be able to enhance the damping of the power
system oscillations present in the system. In this context, greater potential in
increasing the oscillations stability with the assistance of the IPFC is perceived. This
demands the modeling of IPFC for stability analysis. However, not much research has
been evolved in the modeling of the IPFC for stability analysis and the control aspect
of IPFC has also to be investigated. The power system stability has to be analyzed

incorporating the IPFC to consider its effect on the system.

Power system consisting of multiple machines will exhibit multiple modes of
oscillations due to a variety of interactions among its components. These oscillations
must decay following a system disturbance. If any lightly damped electromechanical
mode of oscillation exists, it may increase in amplitude due to inadequate damping
torque in some generators. The continuous presence of power system oscillations in
the power system can severely restrict system operations. These oscillations are of
major concern for the power system operation. Thus, determining the lightly damped

modes and their damping are vital for stable operating system.

Tools for analyzing the nature of the system oscillations, in addition to
determining the existence of problems are required. It should be able to identify the
frequency, damping of the oscillation mode, and factors influencing them, i.e., the
variables involved in each of the modes. It should provide information to design
efficient oscillation damping controls. Thus, to investigate the problems concerning
the low frequency oscillations, the small signal analysis (i.e., modal analysis or
eigenvalue analysis) based on linear techniques is suitable. When power system is
subjected to a small disturbance, the system will have a small deviation in the
neighborhood of a steady state operating point. This allows the system equations to be
linearized around the steady state operating point to be permissible for purpose of

analysis. System stability is based on eigenvalue analysis. This method characterizes
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the system oscillations by assuming a linearized model of the power system about a
specific operating point. Since small signal stability is basically viewed as the stability
affected by perturbations valid within the boundary of nominal operating point region,
the power system model which is linearized, is significant for studies mapped in the
domain of small perturbations. The eigenvalues of the state matrix of such model
clearly identify the stability of each mode. The eigenvectors give the modeshapes and
relationships between the modes and system variables. Performing the eigenvalue
analysis, the poorly damped eigenvalues are determined along with their
characteristics and sources of the problem which will help in developing mitigating

measures.

The nonlinear simulations of the power system will indicate the effects of
nonlinearities of the system. Thus, small signal stability analysis along with nonlinear
time simulations is the most effective procedure for studying power system

oscillations [2], [4], [16], [17].

Considering the facts mentioned the major aim of this research is to develop the
dynamic model of the IPFC for stability studies which has to be incorporated into the
power system dynamic model. The control methods for the IPFC to control the power
flow in the transmission lines and to improve the power system oscillations damping
is to be investigated. The power system stability analysis incorporating the IPFC is to

be performed through eigenvalue analysis and nonlinear simulations.

1.5 Research Objectives

The ability of IPFC in damping low frequency oscillations in a power system is
explored in this research. The design of the controllers for the IPFC requires the
power system model incorporated with IPFC. Consequently, modeling of IPFC for
steady state stability is initially established which involves the steady state model and
dynamic model of the FACTS device. Moreover, the dynamic model of the IPFC
involves the DC link dynamics which is a function of the series converter control
variables. Modulating these control variables will provide an injected voltage with

controllable magnitude and phase angle by the converters which in turn vary the
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power flow in the transmission line. Therefore, the main focus of this research is to
develop the dynamic model of the power system incorporated with IPFC. This model

is analyzed for power system stability.

The power system model developed is a nonlinear model consisting of differential
state space equations and network algebraic equations, including the dynamics of the
IPFC. The nonlinear equations are linearized at an operating point to obtain the
linearized Phillips-Heffron state space model of the power system. Consequently,
modal analysis is used to identify oscillation modes from the linearized model. The
controller is designed based on this linearized system to increase the damping of the
un-damped oscillation modes. Design of these controllers to give robust performance
under large variations in system parameters and operating conditions is essential. A
conventional lead-lag damping controller is designed at a particular operating point
based on the linearized Phillips-Heffron model of the system to provide reliable

operation.

To understand the basic concepts of the damping contribution of the IPFC
controller on the power system, initially a single-machine-infinite-bus (SMIB) system
is considered. The linearized Phillips—Heffron model of the SMIB power system has
been used successfully over the years to provide reliable results as it is quite accurate
for studying low frequency oscillations and small signal stability. Based on the insight
provided by the model of SMIB installed with IPFC, the dynamic mathematical
model of multi-machine power system incorporated with IPFC is developed. Further,
to illustrate the effectiveness of the proposed IPFC damping controller for multi-
machine system, case study is performed: Western System Coordinating Council
(WSCC) consisting of three machine and nine buses which presents a poorly damped
oscillation modes. The effectiveness of the IPFC on power flow control and on
damping power system oscillations is investigated through modal analysis and

nonlinear simulations.

The primary function of IPFC is to regulate the power flow in the transmission
lines where it has been installed. The series converters of the IPFC control the power
flows in the transmission lines. The interaction between the series injected voltage

and the transmission line current causes the series inverter to exchange real and
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reactive power with the transmission line. The series injected voltage is controlled by
the input signals of the IPFC. Thus, controlling the input signals usually with a PI

controller, the power flow in the transmission lines is also controlled.

The real power exchange by the series inverter with the transmission line is
supplied or absorbed from the other transmission lines through the DC link capacitor.
This causes a decrease or increase in the DC capacitor voltage. For proper operation
of the IPFC, the DC capacitor voltage should be regulated at a specified level. This is
the other issue which is focused in this work during the design of the IPFC control

system.

The main objective of this research is to design the IPFC based controllers for

enhancing the power system stability. This is achieved by:

a) Establishing the IPFC load flow or the steady-state model, and perform the
power flow analysis of the system with the IPFC to obtain the operating point

around which the power system is linearized for small changes.

b) Developing an IPFC dynamic model with its control inputs for dynamic

studies.

¢) Deriving of the linearized Phillips-Heffron model of the power system (SMIB
and Multi-machine) with IPFC, to be used for analysis and design of

controllers.

d) Designing the conventional lead-lag controller based on the linearized model
of the power system incorporated with IPFC. On the basis of this model, the
robustness of the commonly used input signals are analyzed, employing

transfer function technique and eigenvalue analysis.

e) Performing nonlinear simulations on SMIB power system and a three-machine
nine-bus multi-machine power system. The simulation results demonstrate the

effectiveness of the proposed methodologies.

13



1.6 Contributions of Research

FACTS devices are envisaged to play a prominent role in future to maintain the power
system stability. IPFC belongs to the second generation type of FACTS devices based
on VSCs, provides real and reactive power compensation for multiple transmission
lines. This thesis presents the modeling and control strategies for IPFC for

enhancement in stability. The contributions of the research:

® The steady state model of IPFC is established for load flow studies which
reflect the steady state operation of the FACTS device including all operating
limits. The load flow program is developed for the complete power system

incorporating IPFC.

e The dynamic model of IPFC is developed including the dynamics of the DC
link capacitor which is a function of the control signals of the device. This
dynamic model is used to integrate with the power system model for stability

analysis.

¢ Phillips-Heffron model of SMIB incorporated with IPFC is developed by
adopting the techniques utilized for other FACTS devices especially the
UPFC. The state variables, of the Phillips Heffron model of a SMIB
incorporated with IPFC derived, are a function of all the control inputs to

indicate their influence.

e The lead-lag controller is designed based on the linearized model of the power
system. The output of the controller modulates the input signals of IPFC thus,
varying the magnitude and phase angle of the injected voltage into the
transmission line. The effect of the input signals on the power system stability

is investigated using eigenvalue analysis and detailed simulation studies.

e The mathematical model of the IPFC installed in a multi-machine power
system is developed. The linearized Phillips-Heffron model of the multi-
machine power system extended with IPFC is developed. From the Phillips-
Heffron model, multiple modes in need of damping are identified using modal

or eigenvalue analysis.
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e The control strategy is devised which enables simultaneous control of power
flow on transmission lines to influence the line power, subject to the
restriction that real power exchanged with the line via one converter must be
balanced by the power exchanged by the other converter, and enhancing the

damping of the power system oscillations.

1.7 Thesis Outline
The rest of the thesis is organized as follows:

Chapter 2 provides the theoretical background of power system stability and
reviews the modelling procedures, the analysis techniques of the various FACTS
devices and the control techniques for enhancement of damping of the power system

oscillations.

Chapter 3 presents the steady state model of the IPFC and establishment of the

dynamic model of IPFC for small signal stability studies.

Chapter 4 presents the nonlinear model of the SMIB power system equipped with
an IPFC. The linearized Phillips-Heffron model of SMIB is developed on which
eigenvalue analysis is performed to determine the mode in requirement of damping.
Proposed IPFC lead-lag controllers are designed based on the linearized system to
dampen the oscillations using local measurements. Their effectiveness on power
system stability is investigated through time domain analysis under different system

disturbances.

Chapter 5 briefly reviews the nonlinear multi-machine power system model in
absence of the FACTS controller. This chapter presents the mathematical models of
various components of the multi-machine system. The control scheme involving the
PSSs for the power system is presented. To demonstrate the effectiveness of the
developed controller, eigenvalue analysis and time simulation (nonlinear simulation)

results for the power system are presented.
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Chapter 6 presents the application of an IPFC controller for a multi-machine
power system. Development of the mathematical model of the multi-machine power
system equipped with IPFCs is presented. The control schemes for the power system
are presented. To demonstrate the effectiveness of the developed controllers,

simulation results for the power system are presented.

Chapter 7 summarizes the findings of the research undertaken and contributions

and provides suggestions for future research.
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CHAPTER 2

POWER SYSTEM STABILITY: AN OVERVIEW

2.1 Introduction

In this chapter, the relevant literature review of the work related to the problem of
damping low frequency oscillations investigated in this thesis is presented. The
review is organized in two parts. The first part given in Section 2.2: the work related
with improvement of the stability of power system oscillations using FACTS devices
is reviewed. Then, the second part covered in Section 2.3, the work related to
modeling, control strategy and control systems for IPFC, for damping power system

oscillations are discussed.

2.2 Power System Oscillations Stability

A power system should have the ability to regain the state of equilibrium with most
system variables bounded after being subjected to a physical disturbance, i.e., the
entire power system should remain intact with no tripping of generators or loads in the
other areas, except for those detached by isolation of the faulted elements or
purposely tripped to maintain the continuity of operation for the remaining system [2].
The power systems in practice are designed and operated to be stable for a set of
designed contingencies which are selected based on their significant possibility of
occurrence and severity, given the complexity involving the number of components
comprising the power system. However, due to economic and technical limitations, a
power system may be guaranteed to be stable for all possible disturbances and
contingencies. Power system oscillations are frequent inherent phenomena and are not
unexpected, with continually varying load conditions and some slight differences in
the design and loading of the generators. The requirement for establishing study
procedures and developing tools, for the analysis of system oscillations which

determine the existence of the problems and identifying the factors influencing the



problem, provide useful information in developing control measures in mitigation of

these oscillations.

The Phillips-Heffron model of a synchronous machine connected to an infinite
bus was first presented by Heffron and Phillips [18] and De Mello and Concordia [7]
for the analysis of power system oscillation stability. These papers significantly
contribute to the required understanding of system damping in the area of small
perturbation stability. The linearized Phillips-Heffron model gives insights into effects
of machine and system parameters, voltage regulator gain, and stabilizing functions
derived from speed and working through the voltage reference of the voltage
regulator. Based on this model, the researchers have developed the expressions for
torques and revealed the effect of excitation system on stability. It is shown that under
many system circumstances, excitation systems can be a major source of negative
damping on system oscillations and insufficient damping torque is the cause of

oscillation instability necessitating supplementary stabilizing action.

PSS are used for many years to serve the purpose of enhancing the damping of
electromechanical oscillations (low frequency oscillations). The basic function of the
PSS is to provide additional electrical torque in the excitation system, in phase with
the speed variation to increase the damping torque to sustain the power oscillations.
Installation of PSS is a simple, effective and economical method. The conventional
PSS structure consists of a washout circuit and a cascade of lead-lag networks as
shown in Figure 2.1 [2], [8]. The method of damping torque analysis and phase
compensation method based on the linearized Phillips-Heffron model were applied to
design PSS parameters [2], [8], [19]. The phase compensation is used to compensate
the phase lag between the excitation voltage and electrical torque of the synchronous

machine.
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Figure 2.1: Power system stabilizer
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A number of input signals to the PSS, such as rotor speed, electric power, and
linear combinations of these have been extensively investigated and recommendations
regarding different techniques in PSS design have been reported in literature [20]-
[27]. PSS is quite suitable in mitigating the local area oscillations. However, its effect
is limited in dealing with inter-area oscillations under certain conditions, for the PSS
is designed to operate only upon local variables of the associated generators and
primarily employed to damp local area oscillations. The PSS, if carefully tuned, may
also be effective in damping inter-area modes up to a certain transmission loading.
However, this necessitates provision of PSSs on most of the generators and

consequently, coordination of tuning among them.

Various techniques have been proposed for the coordination of multiple PSSs
installed in multi-machine power systems to suppress multi-mode oscillations.
However, it has further been observed that improving damping ratios associated with
inter-area modes often adversely affects the damping ratios and also the oscillation
frequency associated with local modes [28]. Consequently, oscillation stability
analysis and control for these oscillation modes have been important and active

subjects in power system research and applications for decades.

Recent appearances of FACTS based stabilizers offer alternative ways to damp
power system oscillations. The potential of the FACTS damping function has gained
interest in both academic and industrial sectors. Due to fast control actions of the
FACTS devices, they have been utilized considerably to improve the power system
oscillation damping and also maintain the voltage profile, thus, having an advantage
over the PSS.  Although the function of the FACTS devices is to control power flow
in the transmission lines, their control design enhances the damping characteristics of
certain electromechanical modes while satisfying the primary requirements of the

device.

These transmission controls to enhance damping of oscillation modes use local
input signals near the FACTS device like active and reactive power deviations, bus
voltages or currents, since the control devices are located on the transmission lines.
Larsen et al. [29], presented the general design concepts for the FACTS damping

controller based on an approximate multimodal decomposition for systems with
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multiple swing modes. This concept is similar to the approach applied to a single-
machine model by De Mello and Concordia [7]. Larsen et al. [29], suggested that the
impact of the synchronizing and damping components of torque on each
electromechanical mode of oscillation in a multi-machine system is determined by
decomposing the system variables into their modal components. The concepts
explained are helpful in developing a set of analytical tools which provide valuable

insights to assist the task of designing FACTS controllers to damp power oscillations.

For the study of power system oscillation stability, initially the augmented
Phillips-Heffron model of the power system installed with the FACTS devices is
established. This model has an advantage due to its systematic configuration and clear
demonstration of the control function of the FACTS-based stabilizers. It is convenient
for applying the conventional damping torque analysis and using phase compensation
method to analyze and design FACTS-based stabilizers. The Phillips-Heffron model
of the power system installed with the FACTS-based stabilizers, including SVC -
[30], TCSC - [31], TCPS - [32], [33], STATCOM - [34], SSSC- [35] and UPFC -
[36]-[38] based stabilizers are established in literature. From the Phillips-Heffron
model of the multi-machine power system, a multi-channel model of FACTS-based
stabilizers providing damping to oscillation modes in the multi-machine power system
can be established [9]. A brief review of each FACTS device, along with their

modeling and control strategies is presented in the following sections.

2.2.1 Static Var Compensator (SVC)

The SVC is basically a shunt connected device consisting of thyristor-controlled
reactors (TCRs), and thyristor-switched capacitors (TSCs) as shown in Figure 2.2 [9],
[12]. The output of the SVC is adjusted to exchange capacitive or inductive current to
maintain or control specific power system variable typically, the SVC bus voltage.
The main reason for installing a SVC is to improve dynamic voltage control, and thus,
increase system loadability. By introducing an additional stabilizing signal
superimposed on the voltage control loop of a SVC, by a supplementary control, it

can provide damping of system oscillations.
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Wang and Swift [30], [39] established an extended Phillips-Heffron model of a
SMIB power system to include SVC in 1996. They have analyzed damping torque
contribution of the SVC damping control to the power system. The SVC damping
control is shown to be effective with variations in the transmission line impedance
indicating that the SVC damping control is efficient when the power system is

operating at a weaker system connection.
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Figure 2.2: SVC employing thyristor switched capacitors and thyristor controlled
reactors

Yuan et al. [40] designed the SVC supplementary controller whose parameters are
designed based on the residue phase compensation method. The authors adopted the
synthetic observability and controllability concept to choose the appropriate wide area
input signals and for placing the SVCs, based on modal analysis, in the multi-machine
power system. The analysis was performed on a 16 machine power system. Farsangi
et al. [41], suggested the placement of the SVCs in a multi-machine based on the
voltage stability utilizing the modal analysis and genetic algorithm. Here, the
stabilizing signals for the SVCs are selected using the minimum singular values
(MSYV), the right-half plane zeros (RHP-zeros), the relative gain array (RGA), and the

Hankel singular values (HSV). Larsen [42] considered the locally measured
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transmission line current magnitude as the input signal for the SVC for enhancing the
damping based on the observability and controllability factors. Similarly line current
was used by Zhao and Jiang [43], however, active power [44], [45], generator speed

[46] were also used in the stability studies.

2.2.2 Thyristor Controlled Series Capacitor (TCSC)

TCSC, a series FACTS controller shown in Figure 2.3 [9], [12] consists of a fixed
capacitor in parallel with thyristor controlled reactor, is used to change the equivalent
series capacitive reactance of the line dynamically and thereby controlling the real
power flow in the lines. In addition to this primary function, TCSC also provides
damping in the power system when used along with a supplementary controller which
helps in changing the firing angle, thus modulating the effective reactance of a TCSC.

This variable series capacitive compensation by TCSC mitigates the low frequency

oscillations.
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Figure 2.3: TCSC with a thyristor-controlled reactor in parallel with a series
capacitor

TCSC with a supplementary controller, utilized for damping inter-area and local
area oscillations [47]. A unified model of SMIB power system installed with a TCSC
has been developed in [31]-[33]. Sidhartha Panda [48] developed a lead-lag and
proportional-integral-derivative (PID) types of TCSC based controllers. The
parameters of these controllers are optimized using GA based optimal tuning
algorithm for minimizations of integral-square-error (ISE) and integral of time-

multiplied absolute value of the error (ITAE). The effectiveness of the lead-lag and
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PID structured TCSC controllers are analyzed at different loading conditions and
under various disturbance conditions on a SMIB power system and further extended

to 3-generator power system.

Kalyan Kumar et al. [49] proposed to find a suitable location for TCSC for
improving the damping of inter-area mode of oscillations in a multi-machine system.
This was achieved by utilizing modal controllability index called line index which is
computed by taking set of lines suitable for the TCSC placement (all lines in the
system excluding transformer branches) and incorporating their line compensation in
the differential algebraic equation model (dynamics of generators included). The
feedback signal for the TCSC supplementary controller is taken to be the line real
power of the transmission line on which the TCSC is placed. Lin and Lo [50]
established a proportional-plus-derivative (PD) control scheme assisted with the use
of genetic algorithms for a TCSC on the basis of the linear systems theory to support
power system damping performance. The effectiveness of the proposed method is
verified through computer simulation using a multi-machine power system associated
with a single TCSC. But the authors do not consider the inherent nonlinear character
of power systems. Fang ef al. [51], proposed the oscillation transient energy function
(OTEF), to design a TCSC supplementary modulation controller to damp inter-area
oscillations. Fuzzy-logic control and adaptive techniques are employed to develop the
TCSC damping controller based on OTEF. The OTEF interprets an inter area mode
oscillation as the conversion between oscillation kinetic energy and potential energy.
The controller achieves oscillation suppression by continuously reducing the OTEF.
The proposed controller was implemented on 4-generator 2-area interconnected

power system.

2.2.3 Thyristor Controlled Phase Shifter (TCPS)

The TCPS transformer shown in Figure 2.4 [9], [12] is applied to control the power
flow in multiple transmission lines by regulating the transmission angle. The phase
shifting is obtained by injecting perpendicular variable voltage component in series
with the line-to-neutral terminal voltage. The damping controller modulates the phase

angle to control power flow so as to provide damping to the oscillations. However, the
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tap-changing transformer type phase shifter cannot generate or absorb reactive power
and, together with high cost, this type of phase shifter has significant disadvantage in

practical applications.

A Phillips-Heffron model of an n, machine power system installed with a TCPS
damping controller was established by Wang et al. [52]. The damping torque to the
power system by the TCPS damping control is analyzed based on the linearized
Phillips-Heffron model of the power system. The authors discussed the robustness of
the TCPS damping controller in suppressing the multi-mode oscillations as well as the
selection of the controller's location in a multi-machine system. In situations giving
rise to multimode oscillations, the TCPS damping control provides some generators in
the system with positive damping torque and negative damping torque to other

generators.
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Figure 2.4: Schematic diagram of TCPS

The TCPS damping control may in likelihood have a detrimental influence on
other types of oscillation modes, when it is designed only for the suppression of one
mode. Co-ordination with other types of controllers is a necessity when using with

other controllers such as a PSS, in a multi-machine system.
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2.2.4 Static Synchronous Compensator (STATCOM)

A STATCOM shown in Figure 2.5 [9], 12] is the static counterpart of rotating
synchronous condenser, but without inertia and limited overload capability. It
generates a balanced three-phase voltage at the fundamental frequency with
controllable amplitude and phase angle. It is a shunt-connected controller used for
voltage control and reactive power compensation. The converter can supply real
power to the AC system from its DC energy source if the converter output voltage is
made to lead the AC system voltage or absorb real power for the DC system if its
voltage is lagging behind the AC system voltage. The main function of STATCOM is
to regulate the transmission voltage, however it is insufficient to damp all the
oscillations modes in the power system thus, entailing the supplementary oscillation

damping controller along with the voltage controller.

AC system

3
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Figure 2.5: Schematic diagram of STATCOM

STATCOM model incorporated into the Phillips-Heffron model of the power
system along with its AC/DC voltage regulators controllers interaction has been
studied by Wang [34]. A simple lead lag controller was proposed by Wang in [53],
and a conventional PI controllers were used in [34]. Bamasak and Abido [54]
employed the particle swarm optimization (PSO) algorithm to search for the optimal
settings of stabilizer parameters based on the developed linearized model of a SMIB
power system equipped with STATCOM-based stabilizer. The singular value
decomposition (SVD) based controllability measure is used to identify the
effectiveness of each controller input.
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The power system oscillation damping via PSS and STATCOM-based stabilizer
when applied individually and also through coordinated application was investigated
in this paper. The eigenvalue analysis and nonlinear simulation results show the
effectiveness and the robustness of the proposed stabilizer in enhancing system
stability. Chun et al. [55] designed and evaluated the input signals for the
STATCOM-based damping controller through controllability, observability and self-

interaction gain calculations. Root locus analysis was used to tune the controller gain.

Mak et al. [56] presented the power frequency model for STATCOM with
conventional controllers. He proposed the fuzzy logic controller to further enhance
interconnected power system stability. Simulation tests are conducted on a four-
generator test system and results show significant improvement in dynamic behavior
of the power system with fuzzy controllers. Gharaveisi [57] presented a novel
technique, transient energy function for designing a fuzzy logic controller for
STATCOM. The additional damping is provided by increasing the rate of dissipation
of transient energy so that the system can reach the stable equilibrium point (SEP)
promptly. Energy function and its derivative are given as inputs to the fuzzy logic
based STATCOM supplementary controller and the system stability is evaluated by
observing the rate of dissipation of the transient energy during post-fault period.
Simulations are performed on a four-machine two-area system. Xiaorong et al. [58]
designed control schemes for STATCOM based on wide-area measurements on
reduced-order system model of a large power system. The parameters of the damping

control loop are optimized via LQR approach in a multi-machine environment.

2.2.5 Static Synchronous Series Compensator (SSSC)

The SSSC shown in Figure 2.6 [9], [12] is a series compensator whose controllable
output voltage is in quadrature with the line current for the purpose of increasing or
decreasing the overall reactive voltage drop across the line and thereby controlling the
electric power. This controller is similar to the STATCOM except that it is connected
in series with the AC system. Due to its ability to modulate the line impedance it can

also impart enhanced damping to the power system oscillations.

26



AC system
T AN

Converter

Figure 2.6: Schematic diagram of SSSC

Wang [35], investigated the damping function of the SSSC based on the linearized
Phillips-Heffron model of the power system. The SSSC damping controller is
designed based on the phase compensation method for a SMIB power system installed
with SSSC. An objective function based search algorithm is suggested by the author
for designing the controller for multi-machine power systems. The effectiveness of
the SSSC damping controller to suppress power system oscillations and its design by
the methods proposed for SMIB and multi-machine system was demonstrated in this
paper. Pandey [59], presented optimal power oscillation damping (OPOD) controller
design using Eigen-Value-Assignment (EAT) with a level of relative stability based
on the linearized Phillips-Heffron model of power system installed with SSSC. A
two-area power network has been used to demonstrate the capability of the proposed
method over a wide range of variations in operating conditions. Juan [60] developed
a nonlinear and Multi-Input Multi-Output (MIMO) coordinated model of SSSC and
the excitation system of generator, and linearized the nonlinear model by the direct
feedback linearization method. The author applied the optimal control theory to
design the coordinated nonlinear control scheme between SSSC and the excitation
system of the generator to improve power oscillations damping in power system.
Chen et al. [61] proposed a fuzzy controller to damp power system oscillations by
means of series voltage source converter-based FACTS including SSSC. They have
been designed devoid of consideration of the interaction between the power loop and

DC-link voltage loop.
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Ghaisari [62] considered the interactions between the variables and dynamics of
the DC-link capacitor voltage. The nonlinear and MIMO model for a SMIB power
system employing SSSC is developed. A nonlinear MIMO feedback linearization
controller was proposed and used to improve the power oscillations damping in SMIB

while maintaining the DC side capacitor voltage constant.

A fuzzy logic based controller for SSSC has been developed to improve transient
stability performance of the power system in [63], [64] and for damping power system
oscillations in [65]. Ladjavardi and Masoum [66] proposed Genetic Algorithm to
optimize the selection of the SSSC based conventional lead-lag damping controller
parameters. The objective function based on GA enforces simultaneous improvement
of system stability criteria, i.e., damping factor, damping ratio of the eigenvalues, and
constraints on the controller parameters. The feedback signal for the damping
controller was selected using mode observability. The analysis was conducted on the
Phillips-Heffron model of SMIB installed with SSSC. The controller is effective,
without deteriorating damping characteristics of other modes in a power system.
Haque [67] used the transient energy function (TEF) method to determine the
additional damping provided by a SSSC while satisfying the Lyapunov’s stability
criterion. The proposed control strategy is tested on a SMIB power system with an
SSSC. Haque [68] also compared the additional damping provided by STATCOM
and SSSC using the TEF method showing better performance of SSSC. However, use
of the TEF technique to assess the additional damping provided by various FACTS
devices in a multi-machine system especially on the inter-area modes still requires
further investigation. Ghaisari [69], developed a multivariable model for a power
system installed with a SSSC considering interactions between its variables and
power system dynamics. The design of a MIMO PI controller using the diagonal
dominance approach was proposed, in addition to DC-link voltage regulation, to

sustain power oscillations.

2.2.6 Unified Power Flow Controller (UPFC)

The UPFC is one of the most versatile FACTS controller in a single line

transmission system with all encompassing capabilities of voltage regulation, series
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compensation and phase shifting. Its main function is to inject a controllable series
voltage (controlled magnitude and phase angle with respect to the bus where it is
located), thereby modulating the line reactance and controlling both the real and
reactive power flow in the transmission line. The UPFC is realized by two VSCs
coupled through a DC capacitor. One converter is connected in shunt with the line
through a coupling transformer and draws real power from the source and exchanges
it to the series converter, i.e., second converter, which is inserted in series with the
transmission line through an interface transformer as shown in Figure 2.7 [9], [12].
The power balance between the shunt and series converters is maintained to keep the
voltage across the DC link capacitor constant. The UPFC provides effective and
efficient power flow control, loop-flow control, enhancement of transient stability,
mitigation of low-frequency power system oscillations and voltage (reactive power)
regulation. The UPFC is a combination of STATCOM and SSSC which are coupled
via a common DC link. The UPFC is able to control the transmission line voltage,

impedance and angle or alternatively the real and reactive power in a single line.
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Figure 2.7: Schematic diagram of UPFC

Nabavi-Niaki and Iravani derived the mathematical models of UPFC [70], based
on which the Phillips-Heffron model of power system installed with UPFC for an
SMIB system and a multi-machine system was developed by Wang [36]-[38]. Wang
applied phase compensation method for designing the conventional controller and
proposed the criteria for selecting the operating condition of the power system and the

input control signal to be superimposed by the UPFC damping function to achieve the
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maximum robustness by the damping controller. It has been noted that the damping
controller counteracts the negative interaction between the DC link capacitor of the
UPFC and the PSS installed in the multi-machine system (three-machine system).
Similar results were also presented in [71] and validated by eigenvalue computation
and nonlinear simulation. Huang et al. [72] attempted to design a conventional fixed-
parameter lead-lag controller for a UPFC installed in the tie-line of a two-area system
to damp the inter-area oscillation mode. Tambey and Kothari have presented a
comprehensive approach for design of UPFC controllers for a SMIB system [73] and
for multi-machine system [74]. Pandey and Singh [75] presented analytical method
for selection of the suitable control input signal among the four input signals of UPFC
for power oscillation damping (POD) controller utilizing the indices MSV, HSV,
direct component of torque (DCT) and residue, for damping of electromechanical
modes of oscillation, using the UPFC POD controllers. The damping controllers are
designed to produce an electrical torque in phase with the speed deviation. The
analysis was performed on a SMIB with variations in loading conditions and was
further carried over to two-area system. Eigenvalue analysis technique was used for
analyzing oscillatory instability. Chang [76] presented an approach utilizing the root
locus method and pole assignment to develop proportional-integral (PI) controller
gains for the UPFC control system which included the power flow regulator, shunt
current regulator, DC busbar voltage regulator, and AC busbar voltage regulator. The
supplementary PI damping controller with integral of active power flow as its input
was designed to improve the damping of low-frequency electromechanical mode

oscillations.

Abido et al. [77] proposed a technique to design simultaneously the UPFC
damping controller, the power flow controller and the DC voltage regulator, using the
nonlinear model of the power system. Optimization solved with PSO is utilized to
design the controllers’ parameters settings concurrently. Dhurvey and Chandrakar
[78] presented a power oscillation damping controller of the UPFC, whose parameters
are optimized by using Nonlinear Control design Block set. The effective control
signals for damping oscillations was analyzed by comparing the performance of
UPFC in coordination with POD controller and PSS on the linearized SMIB power
system installed with UPFC. Chandrakar et al. [79] presents a design of PI and RBFN
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controllers for the UPFC in SMIB system and multi-machine test system to achieve
the increase in line power handling capacity and improvement in transient stability.
However, they have not optimized the parameters of POD controller. A Mamdani
type fuzzy logic based controller for UPFC was proposed in [80], [81], which was
designed based on the linearized Heffron-Philips model of a SMIB power system
with UPFC. The fuzzy logic controller was shown to give better damping than the
conventional damping controllers. Mok et al. [82], [83] designed a fuzzy damping
controller for the UPFC where the parameters of the controller are optimized using
the gradient descent training method and genetic algorithm. The performance of the
fuzzy controller was compared with the conventional controller on a multi-machine
interconnected system. A Takagi-Sugeno type nonlinear fuzzy controller was
proposed by Mishra et al. [84] for UPFC voltage source inverter control for damping
inter-area and local mode oscillations in the multi-machine power system. The
controller provides variation of control gain and uses linear and nonlinear rules in the
subsequent expressions of the fuzzy rule base. However, the initial adjustment of the

parameters of the new TS fuzzy controller requires some trial-and-error.

An approach to utilize FACTS controllers to provide a multifunctional power flow
management device was proposed in [85]. There are several possibilities of operating
configurations by combing two or more converter blocks with flexibility. Among
them, there are two operating configurations, namely the Interline Power Flow
Controller (IPFC) and the Generalized Unified Power Flow Controller (GUPFC) [15],
[85] which are significantly extended to control power flows of multi-lines or a sub-
network rather than control power flow of single line. In this thesis the FACTS device

IPFC is considered.

2.3 Interline Power Flow Controller

The IPFC, the VSC-based FACTS devices shown in Figure 1.1, was proposed by
Gyugyi, Sen and Schauder in 1998 [15]. The IPFC configuration of the Convertible
Static Compensator (CSC) was first installed at Marcy 345 kV transmission station by
the New York Power Authority (NYPA) [86], [87]. The IPFC consists of two voltage

source converters, each of which are coupled in series through transformers to each of
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the parallel transmission lines. The modulation index and phase angle of the two
voltage source converters can be controlled to inject variable injected voltage into the
transmission lines and thus, control the power flow in the lines. The IPFC has more
advantage than UPFC since it can control the real and reactive power in more than a
single line. The IPFC is thus, used to maximize the use of the existing transmission

network and increase power transfer capability.

The controllability of the line power flow and reactive power flow in the
transmission lines by IPFC, in the presence of constraints, has been well recognized
over the past few years [88]-[95]. However, very limited information is reported
concerning the control of the IPFC in providing additional damping during system

oscillations.

Modeling of IPFC for power flow analysis has been proposed in references [96]-
[99]. The authors present some excellent techniques for power flow modeling of IPFC
using the Newton or Newton—Raphson power flow algorithm taking into account the
practical operating inequality constraints. The IPFC is modeled as a two controllable
series-injected voltage sources with the coupling transformer reactance while

including the DC link capacitor dynamics.

Kazemi and Karimi [100] first proposed the dynamic model of the SMIB system
with two transmission lines installed with IPFC. The authors established the Phillips-
Heffron model of SMIB system integrated with IPFC. The model involves the
dynamics of the capacitor. A PI supplementary controller with its input equal to the
electrical power of the generator is used to modulate the amplitude modulation ratio
of the second voltage source converter. This control action controls the injected
voltage in the transmission line in such a way to affect the power transfer such that
damping is provided to the power oscillations. Jiang ef al. [101] discussed the
maximum power transfer capability of IPFC under voltage stability condition and also
stated that the IPFC can improve small-signal stability by providing damping control
supplemental to its regulation control of active power flow in a transmission line. A
modal decomposition approach was proposed to determine input signals to the
regulator from locally measured signals, including bus voltages, line currents, and line

flows based on two indices, i.e., Maximum Damping Influence (MDI) Index, and
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Controllability and Observability Gain Product Index. Chen et al. [102] proposed a

PID controller for oscillation damping enhancement in a SMIB test system.

2.4 Discussion

Considerable amount of research has been done in the field of FACTS, where steady-
state and dynamic models of the FACTS devices (SVC, TCSC, TCPS, STATCOM,
SSSC and UPFC) have been developed [9], [11]. Modeling of the modified linearized
Heffron-Phillips models for SMIB system and multi-machine systems installed with
various FACTS devices were utilized to design the controllers for enhancing power
system stability. Controllers designed using the conventional phase compensation and
various other techniques have been discussed and validated by nonlinear simulation.
However, very little literature exists with reference to IPFC, being a relatively new
device; problems associated with damping of oscillations using IPFC have not been

investigated thoroughly.

Stability analysis of power systems with IPFC and design of the IPFC based
controller for damping the oscillations require proper modeling of IPFC. This includes
both load flow or steady state model and dynamic models. Load flow models are
necessary as they form the backbone for any power system dynamic simulations. It is
also considered as the essential for power system network calculations. The
calculations are required for steady state analysis and dynamic performance of the
power systems. Dynamic models are required to capture the interaction between the
two series inverters of the IPFC and the system, therefore providing information that
would aid in the design of the IPFC based controller. With a proper load flow and
dynamic model for IPFC, the impact of IPFC based controllers on power system
stability can be analyzed. The power flow model proposed by Zhang [97], [98] is

taken into consideration for conducting the load flow studies in this thesis.

The dynamic model of the IPFC with the SMIB power system was proposed in
[100]. The injected voltage is shown to be a function of the control signals of IPFC.
Accordingly the magnitude and phase angle of the voltage injected are controlled by

modulating the control inputs signals of IPFC. However the dynamic model of SMIB
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installed with IPFC developed by the authors contains only one of the four control
inputs of the IPFC. The state space model does not involve the effects of other inputs
of the IPFC. Literature survey indicates lack of studies concerning the dynamic

modelling of the IPFC in multi-machine system for small signal stability studies.

Regarding the control aspect of IPFC to dampen the power system oscillations, a
PI controller was considered in [100] for a SMIB power system: however, the
amount of damping introduced by the controller was not investigated through
eigenvalue analysis. The modal decomposition method for designing the controller
proposed in [101] was on a multi-machine power system, however, it was not
equipped with IPFC. The PID controller proposed in [102] is not effective due to the
complexity and nonlinearity of the power system and the performance of the damping

controller is degraded to a certain extent as stated by the authors.

Motivated by the discussions and literature review in the previous sections, the
issues concerning the deficient modeling of IPFC for small signal stability studies are
addressed. Appropriate control strategies are devised to dampen the power system

oscillations by the IPFC based controller.

2.5 Summary

In the literature survey, a brief review of modeling and control design of various
FACTS devices has been conducted. Damping effects of PSS and FACTS controllers
designed by phase compensation, and various other methods have been discussed.
However, it is found that investigations into modeling of IPFC and damping function
of IPFC are limited. Considering these aspects, this research focuses on developing
the mathematical models of IPFC incorporated into the power system and studying its

control functions. This would be discussed in the next chapter.
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CHAPTER 3

MODELING OF INTERLINE POWER FLOW CONTROLLER

3.1 Introduction

The IPFC is installed in the power system to provide comprehensive compensation for
real and reactive power flows for some selected transmission lines at a given
substation. To examine the stability of the power system when the IPFC is
incorporated into a network with transmission lines and generators, an appropriate
model is necessary. This includes the steady state model and dynamic model of the
IPFC. The steady state model is required to conduct the load flow to obtain initial
operating conditions, which is essential for small signal stability studies, whilst the
dynamic model of the IPFC is utilized to incorporate it within the power system
model and investigate the dynamic stability performance of the overall power system.

This chapter presents both steady state and dynamic models of the IPFC.

3.2 Steady State Model

In general form, the IPFC constitutes of number of VSC’s where each one of them is
linked together through their DC terminals. Each VSC provides compensation, for a
dedicated line with which it is connected in series, as shown in the Figure 3.1 [15].
This configuration facilitates real power compensation from the under utilized
transmission lines to the overloaded transmission lines provided that the overall
power is balanced at the DC terminal. A basic IPFC scheme under consideration is
shown in Figure 3.2 [97], which consists of two back-to-back DC-to-AC converters
connected in series with two transmission lines through the transformers. Each VSC
injects a series compensating voltage with controllable magnitude and phase angle at

the fundamental frequency. The real power is exchanged through the DC link between



the two compensating voltage sources. The IPFC is installed into the network between

the buses, i — j, and i — k in line 1 and 2 respectively as shown in Figure 3.2.
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Figure 3.2: Basic two-converter IPFC
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The two SVS’s with phasors V.1 and Vs, in series with transmission lines 1 and
2 represent the output voltages of two back-to-back DC-to-AC inverters. It can be
seen that the sending ends of the two transmission lines are series-connected with the
IPFC buses j and k, respectively. Transmission line 1 between buses i and j,
represented by impedance, Z;q, has a sending-end bus with voltage phasor V; and a
receiving-end bus with voltage phasor V;. The receiving-end voltage phasor of line 2
between buses i and k, represented by impedance, Z;, , is Vj,. The common DC link
is represented by a bidirectional link (Pg;; = —Pge) for real power exchange
between the two voltage sources. The phasor diagram of the transmission line 1 given
in Figure 3.3, shows the relationship between the sending end phasor ‘V;’, receiving
end phasor ‘V;’, the voltage phasor across Z;; ‘Vz;;1’, and the inserted voltage phasor

‘Vse1” With controllable magnitude and varying phase angle [12], [15].

Figure 3.3: The phasor diagram for transmission line 1

The transmission line 1 is arbitrarily chosen to be the primary line for which it is
stipulated to have free controllability of both real and reactive line power flow. Line 2
will be the secondary system. The injection of Vg1 on line 1 usually results in an
exchange of real power Pg,;; and reactive power (;; between converter VSC-1
and the line 1. To establish the transmission relationships, the injected voltage phasor
Vse1 18 decomposed into two components, one Vgeq4; in quadrature and second Vieqpy,
in phase with the line current [12]. The scalar products of these components with the
line current give the reactive power Qge;j = Vse14/11 and real power Py = Vieqqrly.
The reactive power Qg;; is generated internally by VSC-1, and provides series

reactive compensation for line 1. The real power Pg,;; gives real power compensation.
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However, the real power is attained from the second line through the series-
connected VSC-2. Therefore, to satisfy the active power demand of VSC-1, the
converter in second line must supply the real power demanded by VSC-1 from line 2,
through the common DC link. The VSC-2 injects the series voltage V., so as to
satisfy the real power demand of VSC-1. Thus, the relationship Pge;j + Pseie = 0

must be satisfied continuously, i.e., the sum of the exchange of real power within the
lines should be zero when the converter circuit’s losses are ignored. This condition
will be fulfilled by controlling VSC-2 to maintain the voltage of the common DC link
constant, in the event of varying real power demand. Apparently it is clear that in the
primary transmission line controllability of the real and reactive power flow is
possible. While in the secondary transmission line, only the real power flow can be
controlled within the limits defined by reactive compensation available, whereas the
prevailing reactive power will be affected by the real power demand of the primary
transmission line. Evidently one degree of freedom is taken from VSC-2. Thus, the
operation of VSC-2 is to regulate the DC link voltage by controlling the real
component of the injected voltage phasor V., and also to control the real power
transfer in secondary transmission line by regulating the quadrature component of the
injected voltage phasor. Thus, IPFC can control: two independent active and reactive
power flows of branch i — j and one independent active power flow of branch i — k.
In this condition the primary transmission line will have priority over the secondary

transmission line in achieving its set-point requirements.

3.2.1 Load Flow Equations

The power system network is represented by a set of nonlinear equations. To
determine the steady state condition of the power system, power flow is performed to
determine the complex voltages and angles at all buses of the network at steady state.
From this information the active and reactive power flowing through every
transmission line and transformer are computed. Thus, the power flow or the load
flow studies establish the operating point or the equilibrium point of the power system
about which the nonlinear differential equations are linearized. The nonlinear

equations are linearized on the assumption that the disturbance propagated through
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the study system is sufficiently small. The basic formulation for power flow is

demonstrated through Figure 3.4 [14]. It is a one-line diagram representation of the

branches (k =1,---, j,---,m ) connected to bus i. The voltages \7, and \7j are the

voltages of the buses i and j, Zl is the transmission line impedance between bus i

||H

and j . The admittance is represented by v, = =g, +]b,, and the voltage at bus

tj

N

i can be represented as V, = Vieei =V.(cos@, +] sinf,) . The active and reactive
power injected by the generator at bus i, is represented by P, and Q. P, and Q,,
represent the active and reactive powers drawn by a load at bus i, respectively. The
transmitted active and reactive powers from bus i to other buses (k =1,---, j,---,m )

are denoted by P* and Q/ respectively.

V.| P +i0/ 7 Vi
PGi+jQ$ii - ]
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Figure 3.4: Power balance at bus i for active and reactive power

Based on the Kirchhoff’s laws the real and reactive power flow equations for the
transmission line element i — j can be written as [14]:

i =V2g, +VV g, cos(6, —6,)+b,, sin(6, -0,)]
@3.1)
- _
Q) =-V’b,+VV, [gij sin(@, —6;) — b, ; cos(6, —Hj)]

Equation (3.1) represents the real and reactive powers (P’ and Q/) transmitted

from bus i to bus j through the transmission element. The powers P’ and Q. are

functions of the bus voltages and network admittances.
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The net power flow flowing out of the bus i is the summation of the power flow
in each one of the transmission elements connecting bus i to the other buses

(k=1,---,j,---,m) or to the load. As a result the net active and reactive transmitted

powers at bus i are:
= (3.2)

In power flow analysis at each bus, the generated power, load power and power
exchanged through the transmission elements connecting to the bus must be zero.
This is demonstrated in Figure 3.4 for active and reactive power flow [14]. The
injected powers into the bus are taken to be positive and powers leaving the bus are
taken to be negative. Thus:

m Pt =0
= (3.3)

m

AQ; =0 =0 — Q,-k =0

k=1

AP, =P, —P

i Li

Equations (3.3) are also termed as mismatch power equations. The terms AP, and
AQ, are the mismatch active and reactive power at bus i, respectively. Each bus is
described by four variables, net active power P, net reactive power Q,, voltage
magnitude V,, and voltage phase angle 6,. Two out of the four variables are specified

in order to solve Equations (3.3) for each bus. The buses can be classified into the

following categories:

Slack bus: At a slack bus, the specified quantities are the voltage magnitude and
angle whilst the unknown quantities are the active and reactive power injections. The
voltage angle of the slack bus is taken as the reference for the angles of all other

buses. There is only one slack bus as reference.

PV Bus: At a PV bus, the specified quantities are the active power injection and

voltage magnitude whilst the unknown quantities are voltage angle and reactive
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power injection. Usually buses connected to generators and synchronous condensers
are considered as PV buses. For a practical interconnected power system, there may

be one or more PV buses.

PQ Bus: At a PQ bus, the specified quantities are the active and reactive power
injections while the unknown quantities are the voltage magnitude and angle at the
bus. Usually a non-generator bus or load bus is considered as a PQ bus. The number

of PV or PQ buses depends on the system planner.

Various power flow solution methods have been proposed such as Gauss method,
Gauss-Seidel method, decoupled Newton power flow method, Newton-Raphson
methods and etc [14]. Among these methods, the Newton-Raphson method has been
considered as the efficient power flow solution technique for solving large systems of
nonlinear equations [14]. It is an iterative method starting with a reasonable guess for
a solution, where the solution represents numerical values of the all the unknown
variables. This algorithm verifies how near the solution is; if not, it updates the
solution in a direction to improve it. This process is repeated until the verification is
satisfied. The following section briefly describes the Newton-Raphson load flow

technique.

3.2.2 Newton-Raphson Method

The Newton-Raphson approach uses iterative method to solve the set of nonlinear

algebraic equations [14]:

f](xlsxzau"xn)zo

fz(xl,xz,.'..,xn):o or FX)=0 (3.4)

fn(xlsxzau"xn):o

where F represents a set of n nonlinear equations and X is a vector of n unknown
state variables. The method determines the vector of state variables X by performing
a Taylor series expansion of F(X) about the initial estimate X'°’ neglecting the

higher order terms.
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F(X) = FX?)+JX")X-X?) (3.5)

where, J(X) is the Jacobian matrix. It is a matrix of first-order partial derivatives
of F(X) with respect to X evaluated at X = X”. The state vector X is calculated

from Equation (3.5) assuming that X is the value computed by the algorithm at

iteration 1 and it is near to the initial estimate X . Equation (3.5) can be expanded as

follows:
(X)) X)X
XN [ Ax© ox, ox, ox, X0 -x©
LXMDY | £XO) I, X) X)) (X X0 - x©
: = : toox ox, ox, :
LXD] LX) o, oK ¥, X=X,
FX®) FX©) | ox ox, ox, | xex® XD_x©®
JX©)
(3.6)

In general, the above equation (3.6) can be expressed for the it iteration as:
FX™)=FX"")+JX"")X"™ -X""), i=12,-. (3.7)

If X is assumed to be sufficiently close to the solution X , then

F(X) = F(X™) =0, henceforth Equation (3.7) becomes,

FX“ )+ JX" )X —=X"Py=0 (3.8)
and, solving for X from Equation (3.8) gives;

X = XD _ (X D yF(X Dy (3.9)

The iterative solution can be expressed as a function of the correction vector

AX D =X XD where

AX @ = —J! (X“"“)F (X <tt—1>) (3.10)
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The initial estimates are updated using;
AX @ = XD 4 Ax 0 3.11)

This process is repeated until the mismatches AX are within a prescribed
tolerance (i.e.,10'*). Thus, in the power flow problem, the state vector constitutes the

unknown bus voltage phase angles (0)=[6,,---,6,] and magnitudes

(V)=[V,,--,V,,]. The initial estimates (0”,V®) are updated using the following

relation:
0 (it)_ 0 (ir—1)+ A0 (it)
V| |V AV
X X0 (it)
AX
-1
0 (it) 0 (it-1) a_P a_P AP (3.12)
\d v 9Q JQ| [AQ
\)zf;)‘ )?Og) 89 aV F(X(it—l))
J—l (X(it—l) )
AX(it)

where, AP and AQ are the mismatch equations. The various matrices in Jacobian may

consist of up to (nb —1)x (nb —1) elements of the form

P P
00, 9V, |i=1-,nb—1
30, 90, [j=L-,nb-1
0, ",

(3.13)

where nb is the number of buses. The slack bus entries are omitted in the Jacobian
matrix. The rows and columns corresponding to reactive power and voltage

magnitude for PV buses are omitted. When buses i and j are not directly linked by a
transmission element, the corresponding i — j entry in the Jacobian matrix is null. The

power flow solution is started initially with a flat start, i.e., the voltage magnitudes are
selected to be 1 p.u. at all PQ buses and voltage phase angles are set to be O at all

buses. The calculation of Equation (3.12) is repeated until the mismatches are within a

43



prescribed small tolerance. The result gives the voltage magnitudes and phase angles
at each bus and correspondingly the power flows in the transmission lines can be

calculated.

When the IPFC is incorporated into the system, the necessary modifications in
power flow equations are carried out for the concerned IPFC buses to integrate the
IPFC into power flow and obtain the solution when this FACTS device is present in

the system. This is explained in the following section.

3.2.3 The Power Flow Equations Including IPFC

The equivalent circuit of the IPFC in steady state is shown in Figure 3.5 [97], [98]
consisting of two voltage sources in series with the two transmission lines via the

transformers and linked together by DC link. The IPFC is installed between buses

i—jand i—k. Each VSC injects a series voltage V.=V Z6, (p=1,2) to

sep sep

provide series compensation to the respective transmission line. V,,, is the magnitude

and 6, is the phase angle of V, (p =1,2) respectively. The transformer is

represented by impedance Z,, ( p= 1,2) on the two transmission lines. The total

impedance of the transmission line between bus i and bus j is represented by Z

seij ?

where Z . =Z, +Z,, Z,, being the line impedance of the line 1 of the IPFC

seij

branches. Similarly Z,, =Z,, +Z,,, represents the total impedance of line 2 (i.e.,

seik

between bus i and bus k).

Pi +j Qi > 7 vV
‘7[' Il Z f‘%ll Line 1 le + J th BUS/
—>]. sei ﬁ «—] |V
i y Ji J
Bus/ }_‘ P seij T P, =0
—> 1, de - &%: Line 2 <« I Bus £
I a Pki +j Qki Vk

Figure 3.5: Equivalent circuit of IPFC
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In Figure 3.5, V, =V.£6,, ‘7j =V,£6;, and V, =V, £86, are the voltages of the
buses i, j and k , respectively with V, and 6, being the magnitude and phase angle of

V, (I=i,j,k).
P, Q, are the sum of the active and reactive power flows leaving the bus i. Pﬁ,

Q, are the active and reactive power flows of the IPFC branch leaving the bus ;.
P,, Q,; are the IPFC branch active and reactive power flows leaving the bus k . I i
and I, are the IPFC branch currents of branch i — j and i — k leaving bus . I i and

I . are the IPFC branch currents of branch j —i and k —i leaving bus ; and k

respectively. [

; 1s also represented by 1, to indicate the current flowing through the

VSC-1 in transmission line 1 of the IPFC branches. Similarly, 7, =1,, the current
flowing through VSC-2, in the second transmission line. P, ,(n = j, k), is the active

power exchange of each converter.

The real power is exchanged between the series converters via the common DC
link while the sum of real power exchange at the DC terminal should be balanced.
The losses associated with the IPFC operation are ignored and, hence, it neither
absorbs nor injects real power with respect to the system during steady-state

operation. Thus, total real power injected to the power system by the two voltage

sources 1s equal to zero at steady-state, P, + P,

seij seik

=0. Physical interpretation of this

statement is that the voltage of the DC link capacitor remains constant at the pre-

specified value v, . The Newton Raphson technique is used to solve the power system

load flow to determine the unknown variables which now includes the IPFC variables,

ie, V.0, (p=12). Buses i, jand k are considered to be load buses unless there

are PV buses in the load flow analysis. The power flow equations at bus i can be

derived as follows [97]:

The current flowing away from the bus i is

I=1,+I, (3.14)
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= I, = ‘Z_‘jm v, Y _‘Z”Z —V
l Zseij Zseik
=V, =V =VY +(V, =V, =V )Y, (3.15)
=(V, =V, =V (g, +ib)+(V, =V , =V )(g, +iby)

= 1 ,
Y,,==—=8, +1b,,n=j,k

where, Y, = 7

sein

The complex power at bus i is:

S.=V.I =P +jQ,, where, I, is the complex conjugate of I,. (3.16)

Substituting I, from (3.15) into the complex power Equation (3.16), and

separating the real and imaginary parts, the power flows at bus i P, and Q, are

obtained as follows:

P, =Vgy — Z ViVa(gincos(8; — 0y) + binsin(6; — 6,))

n=j,k
_ Z ViViep(Ginc0s(6; — 6,) + bisin(8; — 6,)) (3.17)
n=j,k
Qi =—-Vib; — z ViV, (ginsin(6; — 0,) — bincos(8; — 6,))
n=j,k
(3.18)

- Z ViVsep(ginSin(ei - Hp) - bincos(ei - gp))
n=j,k

where gi;i = Yn=jk Jin bi; = Yn=jxbin and p=12

Similarly the active and reactive power flows of the IPFC branch n — i leaving

bus (n = j, k), are given as,

————

Pni = Re(vnlni
n=jk (3.19)
Qm::hndzi;)
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which can be written as,
Pri = Vi gnn — ViVa(gincos (0 — 6;) + binsin(6, — 6;))
+VVeep (Gincos (6, — 6,) + bipsin(6, — 6,)) (3.20)
Qni = —Vi by = ViV (ginSin(6y — 6;) — bicos (6, — 6)))

HVVoep (ginsin(6n — 6) — bincos(6, — 6,)) (3.21)
where  gin = gnn = Re[1/Zsein], biy = bpp = Im[1/Zsein] . n=j, k, p =12
For the IPFC, the power mismatches at buses i, j, k should hold

AP, =P;;—P,;—P, =0 (3.22)

AQ;=0Qa —Qu—0,=0 (3.23)

where, Pg; , Qg (I = i,j, k) are the real and reactive power generation entering the
bus | (I =1, j, k) respectively. P,; , Qp (I =1, j, k) are the real and reactive
power load at bus [ respectively. P, and Q; (I =i, j, k) are the sum of real and
reactive power flows of the lines connected to bus [, respectively, which includes the
IPFC branches flows. The power flow Equations (3.17-3.21) for the FACTS branches
should be taken into account in the calculations of P; and Q;. According to the
operating principles of the IPFC, the operating constraint representing the active
power exchange between the series converters via a common DC link assuming the
converters are lossless is expressed by Equation (3.24) which also ensure the

constancy of DC link capacitor voltage.

PE = z P, =0 (3.24)

n=j,k

where P, (n = j, k), in Equation (3.24) is the real power exchanged with the

transmission lines by each series VSC’s, Pg;; = Re(Vsell_j’}) , 1s the real power

exchanged by VSC-1 with transmission line i — j. Pgpi = Re(Vseply;) is the real

power exchanged by VSC-2 with transmission line i — k .
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The sum of the exchanged real powers ‘PE’ should be zero as to ensure the real

powers exchanged are balanced. I, is the conjugate of I,;, where (n = j, k).

Therefore, the equations for Ps,;, (n = j, k), are as follows:

— (V. +V -V )
Pxein = Re Vvep X %dl
n=j.k Zsein

= Re{‘?ﬁep [(‘7n +‘7Sel _‘Z)(gm +J bin )]*

The real power exchanged Pg,;,, (n = J, k) can be written as:

Psein = Vszep Gin — VsepVi(COS(ep — 0;)gin t+ bin Sin(ep - 91’))
p=12 (3.25)

+Vsean(COS(9p - Hn)gin + bin Sin(ep - gn))
at the

ji?

Spec
Ji

The IPFC can control active power flow, le., and reactive power flow, Q
in the primary line 1,

receiving end bus j to the reference set points R,.,S.”“ and Q

and only the active power flow P, to the set point P’ on the secondary line 2.

Therefore, the control constraints of IPFC in the two lines are represented as follows:

Spec __
Pf - Pjip =0
(3.26)
jS - Q}?ec =0
P, =P =0 (3.27)

are the specified active and reactive set points of the line 1

Spec Spec
where P and Qj;
and Pksipec is the specified active set point of the line 2 respectively.
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Constraints of IPFC operation:
The IPFC operation is subject to following constraints [11], [97], [98]:

a) The controllable injected voltage’s magnitude and angle of each VSC is

constrained by:

min max —
Vsep < Vsep < Vsep »p=12

—nsep <mp=1.2
where VSZ‘pi" and Vggy"™ are maximum and minimum voltage limits of the series
converter. The phase angle of the injected voltage 6,, can be controlled over a full

revolution.

b) The current flowing through each VSC should be within its current rating
Ly <™ n=jk,
where, ;%" is the current rating of the series converter at which level it can

operate continuously.

c) The active power exchanged between the two VSCs via the DC link is
constrained by

max max _
_Psein SPseinSPsein > ‘I’l—],k,

where, Plof is the maximum limit of the VSC equipment rating for active power

exchange between the series converter and the DC link.

Initialization of IPFC variables

The initial values of IPFC wvariables, Vsep, 6’p (p=12), can be obtained from

Equation (3.26) and Equation (3.27), while setting bus voltages V; = V; =V} = 1.0,

if buses i, j, k are not voltage controlled buses and 6; = 6; = 6, = 0 [98].

In the primary line 1, i.e., the i — j branch, the IPFC can control both real and

reactive power flow, henceforth from Equation (3.26):

P,—P'=0and Q, -0 =0 (3.28)
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Substituting Equation (3.20) and Equation (3.21) for, n = j, in Equation (3.28)

and setting 6; = 6; = 6 = 0 the following equations are obtained:
ijg]] - VlV]gl] + V}Vsel(gijcosel - bijSiTlel) - ijpec =0 (329)
—V2b;; + ViV;b; — ViVie1(gijsindy + byjcos8;) — Q3P° =0 (3.30)

] ji -

The initial values of V,, and 6, are achieved by solving the above Equations

(3.29-3.30):
1 144 (3.31)
1 = — .
_ j JjJ 1VjYij 1( 9
6, = tan™ | Lo — tan™? (ﬁ) (3.32)
Qi Vb = ViViby; ij

where AA is given by:

2 2

For the secondary converter in the i — k branch, since it can control only the real
power, only one equation (3.27) can be used to find the initial values of VSC-2. As
min max

such V., is set to a value in between V" and V5™, and then the initial value of 0,

can be attained by solving (3.27), on substitution of 8; = 6; = 6, = 0, which will be:

VEGkk — ViVi9ik + ViVsea (Gircos, — by siny) — Pksipec =0 (3.33)

s
P = Vid gr + ViVieGin —tan-1 ( ik )

! _b'k
VszeZ (gizk + bizk l

This section describes the amendments in the power flow equations related to the

= 6, =sin~?! (3.34)

IPFC buses and the initialization of IPFC variables to obtain the power flow solution.

The Newton Raphson method is applied for these IPFC buses to obtain the IPFC
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buses voltage magnitudes and angles along with the injected voltage magnitudes and

angles of the two VSCs, which is explained in the following section.

3.2.4 Newton-Raphson Method for IPFC Buses

The power flow solution is obtained by the Newton-Raphson method for the IPFC

buses. The iteration solution equation is expressed as:
Xl(it) _ Xl(iH) _Jl—l (Xl(iH) )Fl (Xl(it—l)) (3.35)

where X is the unknown state vector that includes the voltage phase angles and

magnitudes of the IPFC buses and the independent control variables of IPFC, i.e.,
T
Xl = [ 01'1 Vi ’ 0]‘, Vj' Hk, Vk' 91' Vself 92' VseZ ] (336)

The unknown IPFC VSCs variables V.

sep ?

ﬁp,( p =1, 2) are determined from the
power flow Equations (3.20-3.21) of the lines in which the power flows are controlled
to a set point or reference values. The active and reactive power flows P;; and Q;; on
the IPFC branch i — j, are maintained at their references, Pj‘fpec and inpec by the
series VSC-1. On the branch i — k only one, the active power flow can be controlled
by the VSC-2, while the active power exchange between the series converter should
be balanced. Also the active and reactive power balances at buses i, j, k should also
be maintained. Taking all these into considerations, the mismatch vector can be

written as
F,=[AP, AQ; , AP , AQ; , AP , AQy, APy, AQj; APy , APE | (3.37)

where, F, refers to the mismatch vector of the active and reactive power flows of the
IPFC buses and the power exchanged between the two VSCs. AP, and AQ,; for
l =1i,j,kis given by Equation (3.22) and Equation (3.23), while, AP, =P, —les.” “.
AQ; =0; —fo’ “, AP, =P, — P and APE =—PE . The Jacobian matrix for the

IPFC branches is given by Equation (3.38).
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[OP, OP 0P 0P 0P 0P 0P, 0P 0P 0P |
96, AV, 096, dV, 096, 9V, 96, 9V, 06, 9V,
an an an an an an an an an an
96, AV, 096, 3V, 096, 9V, 96, IV, 06, IV,
ob, OB 9P Op O Ap
96, 9V, 96, 9V, 26, oV,
0, 9, 9, 9%, o 9 9
96, 9V, 36, 9V, 26, oV,
o O, , O OB . OB OA
j |96 v, 06, 9V, 06, oV,
L9 9% g 9% 9% 9% 99
26, oV, 26, IV, 06, IV,
o, P, 9P, O, OB OB
96, v, 06, 26, 9V,
00; 90; 9Q; 9Q; 0 0 & & 0 0
96, 9V, 96, 9V, 26, oV,
By By o o B B o 9B OB
96,  dV, a6, IV, 06, V., |(3.38)
OPE OPE OPE OPE OPE OPE OPE OPE OPE OPE
96, 9V, 96, 3V, 96, dV, 06, IV, 96, IV,

The individual Jacobian terms are given in detail in Appendix A. The Newton
Raphson algorithm formulation for the IPFC buses can be built into the existing
power flow solution of the whole system. This algorithm updates all the variables
simultaneously and achieves the solution through quadrature convergence. The
following section describes the power flow solution of the complete power system

with incorporation of IPFC.

3.2.5 Power Flow Solution of Power System Including IPFC

In a power system consisting of nb buses when an IPFC consisting of M VSCs is
placed, the number of load flow equations will increase by 2M [97], [98]. As such for
a simple IPFC consisting of two VSCs, when included in the system, the number of

load flow equations increases by 4.
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The compact form of Newton power flow equation for the power system including the

IPFC is as follows:

AX P = —JI XY FX ) (3.39)
where, it represents the number of iterations and

F(X) =[AP,AQ, AR]" (3.40)

AP =[AP,AP,,---,AP,] and AQ =[AQ,,AQ,,---,AQ,,] are the mismatch
equations of the active and reactive power flows at each bus.

AR =[AP;,AP,,AQ ;,APE] , represents the mismatch line flows and real power

exchanged among the IPFC branches.
X=X, Xpprel” (3.41)
X =[0,V], XIPFC = [GIPFC ’VIPFC 1, 9IPFC =16,.0,1, VIPFC =V Ve

oP oP  OP oP
0 oV 00 ppc IViprc
a—Q a—Q 9Q Q (3.42)
00 dV 00 IVpppc
R JR JR dR

190 OV e Ve

|
I

Q| QU

xl‘ |
I

oP oP 0Q 0Q
Oprc  IViprc ’ 00 prc ’ IViprc

The Jacobian parameters in Equation (3.42), , )

dR IR OR oR
00" IV’ 30pc  IVippe

with respect to IPFC branches are computed in reference

to Equation (3.38). The Newton Raphson load flow implementation of the power

system incorporated with IPFC is summarized in the following steps:

Step 1:  The power system data is specified, which includes the generated
power by the generators, transmission lines data, transformer impedances, load power,

IPFC series transformer impedances.
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Step2:  The active and reactive power flows (P;",P;" and Q') on the

transmission lines in between the IPFC buses are specified.

Step3:  The admittance matrix is formed which also includes the IPFC

transformer impedances.

Step4:  The initial values of the bus voltages are set to the value 1 and angles
to zero. The initial values of the injected voltage magnitude and angles are set to the

computed values from Equations (3.31), (3.32) and (3.34). Set the iteration count to 1.

Step5:  Compute the power flows at all the buses using Equation (3.2). The
power flows of the IPFC branches are modified by Equations (3.17-3.18) and
Equations (3.20-3.21). The power exchanged between the VSCs of the IPFC is
calculated by Equation (3.24).

Step 6:  Compute the mismatches at each bus and the mismatches of the power

flows in the IPFC connected buses as given in Equation (3.40).

Step 7:  If the mismatch is less than the tolerance value then go to step 12 or

else go to step 8.

Step 8:  Form the conventional Jacobian matrix parameters as in Equation
(3.13). The Jacobian matrix parameters are modified and updated to include the IPFC

parameters according to Equation (3.42).

Step9:  The IPFC injected voltage magnitudes and angles are updated

simultaneously with the bus voltage magnitudes and angles.

Step 10:  Check whether all constraints are satisfied. If the constraints are

violated set the parameters at the limited values.
Step 11:  Increase the iteration count. Go to step 5.

Step 12:  The load flow is converged. Calculate the bus power flows with the

final results of voltage magnitudes and angles.
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Thus, the Newton-Raphson load flow is developed accommodating the IPFC
controller configuration. The flow chart for the power flow solution for the power

system is given in Figure 3.6. The load flow program is developed in Matlab.

The load flow provides the unknown voltages, angles of the buses, the injected
voltage magnitudes and angles of the IPFC VSCs, and the line power flows of the
power system network at steady state. These values will be used to compute the initial
conditions to linearize the power system dynamic equations around this operating
point. The linearized system will be utilized for modal analysis and control design.

The following section establishes the dynamic equations of IPFC.
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Input the data:

The parameters of transmission lines, generators,
transformers, IPFC series transformer impedance.
Specify the generator real power and their terminal voltages.
Specify the power row: in the IPFC branches.

Form the admittance matrix Y,

Bus
2

Initial conditions:
Set the initial voltages of the PQ buses to flat start value of 1.0,
and phase angles to 0. Set the magnitude V,,, and angle
6,, p =1, 2 of the series injected voltages
2
it=1
\ 4

@ ) Calculate the power flow equations
with IPFC and the series converter powers

2

Mismatch Vector
Find AP, &AQ

and AP} AQ' APy, APE
for power flows in IPFC connected buses

ep

If mismatch YES

v

Calculate the
slack bus power
and line flows

Form the conventional Jacobian matrix

s v

Modify Jacobian matrix for incorporating Print Results of
IPFC parameters voltages and angles
and power flows

v
Update the bus voltages , angles and IPFC
injected voltage magnitudes and angles
v

Check whether the variables and IPFC NO
power flows are within the limits (satisfying —
the constraints)

Set voltages at
limit values

L 2
It=it+1
v

G-

Figure 3.6: Flowchart of the power flow solution.
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3.3 Dynamic Model of IPFC

The steady state model developed in Section 3.2 provides the basic foundation for
conducting the dynamic stability studies. The dynamic model of IPFC includes the
DC link capacitor dynamics and the converter control variables. The IPFC structure is
shown in Figure 3.7. It consists of two, three-phase, gate turn-off (GTO) based VSCs,
each injecting a synchronous voltage with controllable magnitude and angle. The
VSCs are linked together at their DC terminals and are connected to the transmission

lines through their series coupling transformers in line 1 and line 2.

Figure 3.7: Structure of IPFC

I, and I, are the currents flowing through the line 1 and 2, respectively in

Figure 3.7. The voltages injected by the VSCs are represented by V,,,, p=1, 2 in this

model. In the Figure 3.7, \Zem, p =12 is the equivalent voltage across the coupling

transformer ~ impedance Z ,(p=1,2) and injected voltage V,

sep?

p=12,

(‘7 =V _+V_.and V

e =Veep Vo s w =Zp1,,(p=1,2)). InFigure 3.7, m,, m, and 6, 6, refer
to amplitude modulation indices and phase angles constituting the control signals for
the VSCs of the IPFC. The modulation index and the phase angle of the series
inverters along with the DC link capacitor dynamics are included in developing the
model for power system stability studies. IPFC primary function is to control the

power flow in multi-transmission lines which is accomplished by the injected voltages
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with varying magnitude and angle. The control of the injected voltage is obtained by

the control signals of the IPFC.

The detailed three-phase GTO based VSCs and DC link capacitor diagram is
shown in Figure 3.8 [70]. The general Pulse-Width-Modulation (PWM) is adopted for
the GTO based VSC. V_,, ,(u = a,b,c) is the injected voltage by the VSC-1 in phase

u,(u=a,b,c),and V

setlu ?

(u = a,b,c) 1s the combined voltage across the transformer
impedance and VSC-1in line 1. V_, ,(u = a,b,c) is the injected voltage by the VSC-

2 in each phase (u = a,b,c) and V,

set2u ?

(u = a,b,c) is the combined voltage across the

transformer impedance and VSC-2 in line 2.

In Figure 3.8, i, ,i,,, (u=a,b,c) are the currents flowing in each phase in line 1
and 2 respectively. i, is the current flowing through the capacitor. v, is the voltage

across the DC capacitor C,, . r, (r,) and [, (I,) are the per phase resistance and

inductance of transformer on line 1 (line 2). To model the IPFC, phase ‘a’ of the
coupling transformer and VSC-1 arms along with the DC link is considered, as

shown in Figure 3.9. ¢.,, and ¢(,, represent the switches which can be either on or

off respectively in Figure 3.9. r is the switch on-state resistance. S, ,(S;,,) 18

N

’

defined as the switching function of the switch ¢.,.,(¢/) - Sc1, (St

) can either be

0 or 1 corresponding to the off or on states of the switch respectively [70].

Figure 3.8: Detailed three phase diagram of IPFC
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v [, Sa E C
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V. oM =« O =0
setla > g’ ]Vsela Ve lldc Vae l
o Ly Cla de | Y2dc
=n 5 T ! )
H )

Figure 3.9: a) Equivalent circuit of phase ‘a’ of coupling transformer and VSC 1,
b) Dynamics of DC link capacitor

Based on the principle of VSC, §.,, and S/,, are always complimentary, i.e.,

(3.43)

From Figure 3.9(a), V,,, can be written as:

(3.44)

Vsela = VFH + VHn

When ¢, is on S, =1 and S;,, =0, then v, =(,,r, +v,)Sc.,. and when ¢,

is off, S, =0 and S;,, =1, v, =(i,r,)S¢,- Thus, v, canbe written as:

vFH = (ilu rx + vdc)SClu + (ilars )Sélu
= (ila rs + vdc )SCla + (ila rs )(1 - SCla) (345)

= lla rs + VchCla

The behavior of the circuit in Figure 3.9(a) can be written as:

(3.46)

di
la . _ _
ll dt + nt, = Vsetla Vsela

Substituting Equation (3.45) in Equation (3.44) and then for V,  into Equation (3.46)

gives:

di (3.47)

Vvetla - (lla rs + vchCIa + an)

L, - +niy, =
t
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setla

I )
=1 d; =Ry, =V4Scia =V, TV

where, R, = (r, + r,) . Similarly for the other two phases ‘b’ and ‘c’;

di i

1 —t= “Riiy, =V Sen Vi Vi (3.48)
dt
di, .

L dl;f =—Ryi,. = VaScie = Vi T Verte (3.49)

The voltage v,, can be obtained by adding the equations of the three phases

Equations (3.47-3.49) and using i, +i, +i, =0,and V_,  +V ., +V_ . =0, is
given by:
an == Vdc z SClu (3'50)

3

u=a,b,c

The switching function S, can be expressed in terms of the control signals as

follows [70]:

m 1
Sea =—-cos(@t+6,)+—
Cla 2 ( 1) 2

Sen :%cos(a)t+01 —120°)+% (3.51)

S, = %cos(a)t +6, —240°) +%

Substituting (3.51) into (3.50) gives:

v, = —% (3.52)

The mathematical model governing the behavior of phase ‘a’ is obtained by

substituting the first equation in Equation (3.51) and Equation (3.52) into Equation
(3.47) to give:

di,

l
" dt

setla

=—Rii, —%oog(wx +6,)+V
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] R
&z__li _Mcos(a)t+6’l)+lv

. 3.53
dl ll la 2ll ll setla ( )

In matrix form the three phase differential equations of the VSC-1 of the IPFC can

be written as follows:

di, | |_R 0
dt L, i, | cos(ax +6,)
diy, R, . n, 0
— = 0 -— 0 i, |——V,|cos(ax+6, —120") |.
dt [, ) 21, 0
di, R | L cos(ax + 6, —240")
— < M -
L dr 0 0 I,
1 0 0
ll Vvetla
| :
+ 0 7 011V (3.54)
1
Vsetlc
0 0 1
L L ]

_diZa_ —_& 0 O |
dt L i, cos(ax +6,)
di,, R, . m, 0
=] 0 =20 | iy | = E v cos(@+6,-120°) |
1
di,, ? R | L > | cos(ax + 8, —240°)
L dr | I
- - _ (3.55)
l 0 O
lz 1 VvetZa
+ O o O Vvech
l, ‘
‘/SetZC
0 O l
L 12_

where, R, =(r, +r1,).
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The dynamics of the DC link capacitor from Figure 3.9(b) is given by:

Do 1, (3.56)
d C,
where,

ldc = lldc + l2dc = Z (lluSCIM + l2uSC2u)

u=a,b,c

On substituting the switching functions in terms of the control signals Equation (3.56)

can be written as:

dv,, 1
d 2C,

+m, (cos(ax +8,)i,, +cos(ar+8, —120°)i,, +cos(axr +8, —240°)i, )|

[, (cos(ax +6,)i,, +cos(ear +6, ~120°)i, +cos(eaxr +6, —240"), )

(3.57)

Equations (3.54), (3.55) and (3.57) are three-phase time-varying differential
equations. These equations are converted to time-invariant differential equations using
the Park’s transformation. Park’s transformation converts the variables from three
axes reference frame (a, b, ¢), to new quantities on the dqo rotating reference frame,
where one is along the direct axis of the rotor field winding, called the direct axis, and
second along the neutral axis of the field winding called the quadrature axis which is

90 ° apart from the direct axis, and the third is on a stationary axis [17], [103].

The electrical variables in the abc reference frame are transformed into a rotating
synchronous rotating dqo reference (or the rotor axis reference frame) using the

Park’s transformation as:

Xy =T X . (3.58)
Ce . T
where, X, = [lla’llb’llc’ZZa’IZb’ZZC’vdc] ,

X _[. Lo ]T
dq0= g stgshoslaaslagsla0 Vae
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and

~

Il
S o v
o v o
~ © o

cosax  cos(ax—120°)  cos(axr+120°%)
P=§ —sinar —sin(ax —120°) —sin(ar +120°) (3.59)

1 1 1

2 2 2

Equations (3.54), (3.55) and (3.57) are transformed in dqo axes reference frame

and are given in one matrix as follows:

[di, ] —% o 0 0 0 0 —%cosé{
dt ! :
di, e B B 0 0 0 -sing | . -
i h Ao
: R -
diyy 0 0 k| 0 0 0 0 ly
c?t b R ho
dirg |_ 0 0 0 2 w 0 ——2cosb, | |iy,
dt L 2 ;
di 2
by 0 0 0 —® & 0 —Zsing ||,
dt L, 21, bo
5
= 0 0 0 0 o B | Dl
dt hL
dv,.
dar Eﬂcosé’1 Eﬂsiné?l 0 Eﬁcosé’2 Eﬂsin6?2 0 0
4Cdc Cdc 4Cd€ CdC -
- _
~ 000000
ll
1 _ -
ol—ooooovmd
: 1 ‘/seth
00 -0 0 00|
ll serl0
o002 0 o off %
12 ‘/set2q
0000~ 0 0/
12 1 L O |
0000O0-=—0
L
0000 0 0 0]
(3.60)
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From Equation (3.60) the dynamics of d-axis component of the current in line 1 is

given by:
di,, R, . . myv, 1
— =—— twi, ——*cosf, +—V 3.61
dt ll 1d 1g 211 1 ll setld ( )

For the study of power system oscillation stability, the resistance and transients of

the transformers and VSCs of the IPFC are neglected, 1i.e.,
dild _ dilq _ di2d _ di2q

(R, =0, =0,). The above equation can be written as:
dt dt dt dt
. m 1
0= wi, —jcos 6,v, +l—led (3.62)
1 1
=V = —0Li,, + 2% cos 6, (3.63)
i 1
= Vena = —Xn +Evdcml cos 6, (3.64)

where, x,, = X,

Similarly the d — ¢ components of V,, ,(p=1,2), of the two VSCs can be

derived from Equation (3.60) as follows:

Vina _{ 0 —X,l} Iy Vac {ml cos&l}

_Vveth X1 0 ilq 2 m, sin 91 (365)
Vi _{ 0 —Xﬂ} g Va {mz cos&z}

_Vset2q X 0 izq 2 m, Sil’l 92 (366)

where x, = wl,, x,, = wl, are the reactances of the series transformers. The DC link

dynamics in d — g axes is:

d i i
Vae _ 3m [cosé?1 siné?l] 4 3y [cosé?2 sin6?2] 2 (3.67)
dl 4Cdc llq 4Cdc qu
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The Equations (3.65-3.67) give the voltages and the DC link dynamics on d — ¢

axis reference frame. The equivalent voltages can be written as:

V

setl

= Vsetld +J Vserlq
=jx,I, +Lv,m (cos +] sin6,)
=] xrll_l +V, (3.68)

sel

‘7X€I‘2 = ‘/SetZd +] ‘/Seth
=jx,I, +Lv,m,(cos, +] sinf,) (3.69)

=]jx,1, +‘7xez

where, I, =i, +ji,, I, =i,, +]i,, (3.70)
In Equations (3.68) and (3.69) jx,I, and jx,,I, are the voltage drops across the

VSCs transformer reactance. V., and V,,, are the actual values of the voltages

injected by the VSCs and are function of the IPFC control parameters, i.e.,

modulations indices (m,,m,) and phase angles (6,,6,). From Equations (3.68) and

(3.69) V_, and V_, can be written as:

= Vsellel (3 71)
V., =1v,m,(cos8, +] siné,)
= Vve2402
where V_, = % and V, = % (3.72)

Equations (3.65-3.67) constitute the dynamic model of the IPFC which will be
utilized to incorporate the IPFC model into the power system dynamic model,
together developing the dynamic model of the power system installed with IPFC,

which is used for power system stability analysis.
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The following section demonstrates the application of the steady state model and
dynamic model of IPFC developed in Section 3.2 and Section 3.3 by taking a three
bus system incorporated with IPFC. The steady state model of the power system
installed with IPFC will be used to perform the load flow. The load flow results give
the steady state operating point of the system along with the VSCs injected voltage
magnitudes and angles, which will be used to determine the initial values of IPFC

control parameters from the dynamic model.

3.4 Results

Consider a three bus power system consisting of two transmission lines with IPFC
incorporated as shown in Figure 3.10. The three buses are represented with notation

as i,j and k . Bus i is taken as the slack bus, while bus j and k are taken as the PQ
buses. The loads P, +jQ, and P, +jQ, are connected to bus j and k

respectively. The two VSCs of IPFC are in between buses i —j and i —k
respectively. The system data is given in Table 3.1 and all the values are given in p.u.
The transmission lines are modeled by equivalent 7 model. For performing the load
flow, the bus i is taken as the slack bus where the voltage is taken as: V; = 1.04 p.u.
Bus j and k are considered as the load buses where the loads values are given in Table

3.1. The IPFC variables have been initialized, accordingly computed from the

Equations (3.31-3.32) and (3.34).

V.£6, vV /6 . Bus/
Line 1 —— Siib ! «—P,+j0,|Vi48,
P+jg, —
— f
Psezj +Pseik :0 PLj +J QLj
Bus / _| Line 2 Z \rb Bus 4 Vk49k
vz —hn
se2 2 .
PLk +) QLk

Figure 3.10: Three bus system with IPFC
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Table 3.1: Three bus system data

Trapsrmssmn Resistance Reactance B./2
line data
i—j 0.02 0.04 0.02
i—k 0.01 0.025 0.025
Loads Bus MW (P,) MVAR (Q.)
1 j 0.5 0.1
2 k 0.5 0.1
VSC transformer Resistance Reactance
VSC-1 0 0.015
VSC-2 0 0.015
IPFC DC capacitor parameters
v, =225 KV=2pu C,=100uF =02pu

In the system the power flows from bus i to the other two buses j and k, which

absorb power and this direction of the power flow is taken positive. The power flow

on line j — i and on line k — i is set to 0.5 p.u. (ij”“ =-0.5, P,” =-0.5) and the set

point of reactive power on line j — i, is specified to 0.08 p.u., (Qﬁ” “=-0.08). The

negative sign indicates the direction of power flow in the lines from bus j , k to bus i.

The load flow is performed on the system and the results are given in Table 3.2. From

Table 3.2 the injected voltages are V_ =0.0932271.7854° and

\Zez =0.0184£—-112.5248" . Using Equations (3.71) and (3.72) the initial values of

control parameters of IPFC are calculated. The results are given in Table 3.3. The
initial values given in Table 3.3 are utilized for small signal stability studies and time

domain simulations of the power system incorporating IPFC.

Table 3.2: Load flow results of three bus system

Voltages Voltages angles in | Real and reactive
Buses . . .
magnitudes in p.u. degrees powers in p.u.
1 1.0400 0 1.0075 + §0.1663
2 1.0000 -6.4692 -0.5000 - 50.1000
3 1.0394 -0.0835 -0.5000 - 50.1000
Injected voltage Magnitude in p.u. Angle in degrees
VSC-1 V_, 0.0932 71.7854
VSC-2 V., 0.0184 -112.5248
The power flows in the IPFC branches
P,=-0.5p.u. P,=-0.5p.u. Q,;=-0.08 p.u.
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Table 3.3: Initial values of the control parameters of IPFC

m, 0.0932
m, 0.0184
6, 71.7854
6, -112.5248

3.5 Summary

In this chapter the steady state model of an IPFC is presented. The corresponding
power flow equations relating to the integration of the IPFC model into load flow
studies has been described. The flowchart for power flow solution of the power
system with IPFC based on Newton Raphson method is presented. The solution
provides the operating point of the power system from which necessary initial
conditions are computed for conducting small signal studies and dynamic simulations.
The dynamic model of the IPFC in d — q axis form is established which will be used
to develop the integrated power system model added with IPFC. This power system
model is utilized for conducting power system analysis and time domain simulations
to investigate the dynamic performance of the power system in the presence of, the
FACTS device, IPFC. The following chapter presents the incorporation of IPFC

dynamic model into the SMIB power system model.

68



CHAPTER 4

SINGLE MACHINE INFINITE BUS SYSTEM WITH IPFC

4.1 Introduction

To understand the dynamic behavior of an electric power system and to design a
controller to improve its performance, it is essential to model the power system. The
mathematical model of the power system, consisting of the nonlinear differential-
algebraic equations of various system components, is developed using the system
structure and fundamental physical laws governing the power system elements. A
proper and adequate power system model for power system dynamic studies must be
chosen to include all significant components, which can reflect the characteristic

phenomena of the dynamic behavior.

To study the power system stability, the modeling of various power system
components is required, consisting of generators, their control systems including
excitation control, automatic voltage regulators, and the transmission system
components. The dynamic behavior of the individual components is described by
differential algebraic equations. For small signal stability analysis, the equations
characterizing the overall power system are linearized around equilibrium point. The
small signal stability technique includes load flow computation, state matrix
representation and eigenvalue analysis or modal analysis, based on the linearized
models of the system dynamics, for studying the power system stability. The power
system stability analysis is also investigated by nonlinear simulation of the dynamic

model of the power system.

This chapter presents the dynamic model of the Single Machine Infinite Bus
(SMIB) power system incorporated with IPFC. The nonlinear model of the system is
linearized to develop the Phillips-Heffron model of SMIB including IPFC model. The

IPFC based damping controller is designed based on the linearized model.



Consequently the power system is analyzed for the oscillation stability. The

performance of the controllers is demonstrated by nonlinear simulation studies.

4.2 Dynamic Model of SMIB Power System With IPFC

A dynamic model for IPFC for stability analysis is developed in section 3.3. The
complete power system dynamic model in the presence of IPFC is developed by
incorporating it with the models for generator, exciter, etc. in order to form the state
equations and to analyze the dynamic stability. The SMIB power system equipped
with an IPFC is shown in Figure 4.1.

Pe’ Qe

Generator

Infinite
Bus

Figure 4.1: SMIB installed with IPFC

Figure 4.1 shows the power system consisting of a generator which is connected
to the infinite bus via parallel transmission lines. There is no load at the generator bus.
An elementary IPFC consisting of two three-phase GTO based VSCs is installed on
the two transmission lines. Each VSC compensates a different transmission line by

series voltage injection.
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4.2.1 The Nonlinear Dynamic Model of SMIB Power System With IPFC

The nonlinear dynamic model of the SMIB power system with IPFC is developed as

follows:

The synchronous machine in the system is represented by the third order model [2],

[104], [105]:

d=w,(w-1) 4.1
. P, —-P-P,

— m e 4.2
@ " (4.2)
o CE A ER) 4.3)

! T, '

The exciter of the machine is represented by:

_ _Efd +KA(Vref _Vz)

E, = 4.4
fd T, (4.4)
The DC voltage dynamics linking the VSCs of the IPFC is given by:
: 3m, . . 3m, . .
Vg =—— (i), €086, +1i,,sin6,) + —=(i,, cosb, +1i,,sinb,) 4.5)
dc dc

where the auxiliary equations are given as:

P =V, +V,I, , E =E +(x,~x)1,=E, +(x,~x)) G, +i,)

qt?

V,=E, —x,1,=E, —x,(,+i,,),V, =x,1,=x,0,+1i,,)

v, =z+v2)r,

I, =1, +qut’ I,=1+1,, 1, =i, +ji1q’ I, =1y, +ji2q

I, =i,+] hyy Thyg Ty, 1, =i, +iy,, Iq, =1, i,
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From Figure 4.1,
v, =ixd, +V, (4.6)

‘71 :ijlI_l +jxrll_1 +‘7sel ++‘7b

:ijzl_z +szzl_2 +V

se2

++V, 4.7

where x,, , x,, are the transmission line reactances, the resistances of the
transmission lines are neglected, V, is the infinite bus voltage. Equations (4.6) and

(4.7) represent the network equations of the power system. These equations are in
synchronously rotating frame denoted by D and Q axes which have to be transformed

to the synchronous machine rotor axis frame denoted by d — q axes [17], [103].

4.2.2 Relationship Between Machine And Synchronous Frame of Reference

The synchronous machine stator and network variables should be transformed to a
reference frame that converts balanced three phase sinusoidal variations into constants
which is accomplished by the Park’s transformation of Equation (3.30). The
synchronous rotating frame is transformed into machine reference frame by the
following transformation [17], [103]:

=PP'V

dqgo

Voo = PV,

abc

1 (4.8)
Ipgo =PI, = PP

dqo

where P is the Park’s transformation matrix and V and 1 represents the voltage and

current variables. The synchronous frame of reference denoted by D and Q axes, are
orthogonal in nature as shown in Figure 4.2 [17]. The d and g axes of the machine are

also shown in the figure. The angle between D and g axes is 0 and the angle between

. T .
D and d axes is > 0 . The currents in the two reference frames are related by:

I, sind cosd | 1,
= ) 4.9)
I,| |—coso sind |1,
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Q-axis _

Figure 4.2: Relationship between machine and synchronous frame of reference.

J(6-7/2)

This transformation gives, (I »+il Q): (I s+l q) e . Similarly for voltage

(VD +] VQ)z(Vd +] Vq)ej(‘s_”/ ? . Using these relations the network variables are

converted to the d — g reference frame.

4.2.3 Transforming the Network Equations in d — q Axes Frame

The network Equations (4.6-4.7) are transformed to d — q axes frame as follows:

V.=ix 1, +V,
:J i +‘7vet2+J'xL21_2+‘7h (4.10)
=SV, +iVy =ix 1, +V,, +i(x, +x,)I, +V,

j(7/2-6)

V,, and V,, are on the D — Q axes frame. Multiplying by e- will transform the

above D — @Q axes frame of equations to d — q axes reference frame as follows:

(Vi +5V, e/ 20 = (1x,1, 4V, +] (x,, + x,,)], +V, Je /72D (4.11)
Left Hand Side of Equation (4.11) gives:

(Vi +iVy e/ "0 =V, +jV, =x 1, +](E, -x,1,) (4.12)

— Jj(7/2-6) — Jj(7[2-6)
where V, =V e Vi =Vye
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Right Hand Side of Equation (4.11) gives:

Jx, (L, +] Iqt)+Vve2d +] Veerq +] (xp, +x,)0 +] qu)

+V, sind+j V, coso
where

I_tej(ﬁ/Z—ts) :]t :(Idt +j]qt)
I_zej(”/z_s) =, +ily el = 1, =iy, +]iy,)

V,e! 7 —y sinS+] V, cosd

‘Zgzej(”/z_é‘l) -V

se2
=V, (sin(5 —6,)+]j cos(o0—-86, ))
= ‘/SeZd +] V

se2q

ej(ﬂ'/2—5+91)

Equation (4.11) becomes

x, (i, iy ) E, =X, (i, +ipy)
= J 'xr (ild +i2d +J ilq +ji2q)+vse2d +J VseZq

+j(x, X))y, +]i,,)+V,sind+]V, cosd

Equation (4.7) in d — q axes reference frame will be

J Copy +x,)@, +] ilq)+vse1d +] Vselq =
J(xp, +x,)@0,, +] iZq) + Vg ] Vsezq

Solving Equations (4.15-4.16):

) , 1
Ly =X%,E, +E(x12d = Xy14)V 4, €0S(5 — 6,)

1
= Xi2aVacM cos(0—6,)—x,,,V,cosd
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(4.14)

(4.15)

(4.16)
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) , 1
by =X ,E, + E(xzzd = Xy14 )V 4.1, €OS(O = 6,)

| (4.18)
=5 naVa cos(0 —6,)— x,,,V, cos &
) 1 .
i, = E(an + X5, V1, sin(0 —6,)
] 4.19)
_E(xlzq ety Sin(d —6,) + x,, V, sin &
) 1 .
b, = E(xmq + X, WV eI, sin(d —6,)
(4.20)

—% (Xpy Ve SIN(G = 6) + x,, V, sin &

where
— — 4 _ _ ’
Xing = Xo I Xgys Xing = (X + X)) Xy 5 X1y = X 0/ Xgys Xgpy ==X Xy
4 /7
Xig =X w2l Xsas Xiog = _(xqt + X0 Xy s Xogg =X ! Xsas Xppg = Xy ! Xz,
_ ’ _ 7
Xypp =Xpp H X5, Xy =X, X

’
r o X = Xn +xL1’xqt —)Cq +'xt

Xpy = (XX )+ (X + X)), Xgy = ('xqt Xypa)t ('xqt +X,0)(%,)

Equations (4.1-4.5) supported by Equations (4.17-4.20) mainly constitute the
nonlinear model of SMIB embedded with IPFC.

4.3 Linearized Model of Power System

The extended linearized Phillips-Heffron model of SMIB system incorporating IPFC

is obtained by linearizing the nonlinear model Equations (4.1-4.5) which are obtained

as follows:
Ao =w,A® 421
Aw = (AP, — AP, — DAw)I M (4.22)
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AE! =(-AE, +AE )T, (4.23)
AE,, =(-AE, +K,(AV,, —AV)IT, (4.24)

Ade:K7A5+K8AE;—K9Ade+K Am +K _, A0 +K_ ,Am, +K_,, A6,

cml cm?2

(4.25)
where
AP, =K, A6+K, AEq +K,, Av, +K,, Am +K , A +K, ,Am, +K ,, A6,
(4.26)

AE, =K, A6+K,AE, +K Av, +K, Am +K o, A6 +K_, Am, +K 4, AG,

gml qm?2

(4.27)

Am +K , A6 +K, ,Am,+K ,, AB,

vml vm?2

AV, =K;A0+K AE, +K, Av, +K

(4.28)

The model has 28 K-constants which are functions of system parameters and the
initial operating condition. The initial operating point is computed from the steady
state load flow solution. The detailed derivation of the constants is given in the

Appendix B.

4.4 State Space Model
The power system is represented in state space as:
AX = AAX + BAU (4.29)

where the state and control vectors are:

_ ’ T
AX =[Ad Aw AE, AE, Av,] (4.30)

AU =[Am, A8, Am, A6,]" (4.31)
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and, state and control matrices are:

0 o, 0 0 0
K D K, _K,
M M M M
a-| Kooy K1 R
Tdo Tdo Tdo Tdo
K,K; 0 K,Ks _i _KAKVV
TA TA TA TA
K, 0 K, 0 -K, |
i 0 0 0
_ Kpml _ Kpal _ Kpm2 _ Kpaz
M M M M
_ qul _ KqHI _ quz _ anz
B=l T T T, T,
_ KK, _ K,K o _ K.,K,.» _ K,K, o
TA TA TA TA
L Kcml KCHI KcmZ Kc92

and Am, is the deviation in pulse-width-modulation index m, of voltage of series

converter 1 in line 1. Am, 1s the deviation in pulse-width-modulation index m, of

voltage of series converter 2 in line 2. Ag, is the deviation in phase angle of the

injected voltage V. A 6, is the deviation in phase angle of the injected voltage V_, .

Generally the nonlinear model of SMIB without IPFC is constituted by Equations

(4.1-4.4) [104], [105] and the linearized Phillips-Heffron model of SMIB is given by

Equations (4.21-4.24) where
AP, :K1A5+K2AE;

AE, = K, A8+ AE,
K

q
3

AV, =K, AS + K, AE,
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The model has 6 K-constants ( K, — K, ) which are functions of the system

operating point and its parameters. The linearized equations of SMIB without IPFC in
Laplace domain are given by Equations (4.35-4.38) using which the block diagram of
SMIB is formed and given in Figure 4.3 [2].

o Aw

As = %o (4.35)
S
np=Bn=ARZDAG) 1 \p g As-K,AE) (4.36)
Ms Ms + D
, —AE +AE K
AE] = B > (-K,AS+AE,) (4.37)
T,s 1+K.T,s ‘
: K, ’ 4.38
AE, =1+sTA (AV,, —K;AS— K AE)) (4.38)

Figure 4.3: Block diagram of a SMIB
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With the inclusion of IPFC in SMIB power system, the linearized Equations

(4.21-4.25) in Laplace domain are given as follows:

A
AS = L2
s
rpy (AP, —AP, — DA®)
Ms
1 ,
= (AR, ~ K, AS~ K, AE, =K ,, Av, — K, AU)
g _ “OE HAE, (AE, ~K,AS-K, Av, —K,AU)
1 T, s K, +T,s

. K ,
AE; =2 —(AV,, ~ K, AS - K AE| =K, Av, — K, AU)

A

1
K, +s

AV, = (K, AS+ Ky AE, + K, AU)

where K ,,K,,K, and K are the row vectors defined as

K,=[K,. Ko Ko Ko
K,=[K,, Ko Koo Kyl
K =K, K, K,, K, ]
K. =K, Ko K.,o Kol

(4.39)

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

The Phillips-Heffron model of SMIB with IPFC is shown in Figure 4.4. The

model consists of the 28 K constants. From Equation (4.31), it is observed that any

one of the four control inputs Am,, A#,,

Am, and A@, can be utilized to exhibit

damping characteristics of IPFC. The eigenvalues are calculated from the state matrix

of the system using modal analysis or eigenvalue analysis, which is described in the

following section, to determine the lightly damped modes.
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A U Avdc

K. |-

7

Figure 4.4: Phillips-Heffron model of SMIB system installed with IPFC

4.5 Modal Analysis of the Power System

In general the linearized power system in state space form can be written as [2]:

AX = AAX + BAU

(4.48)
AY = CAX + DAU

where AX is the state vector of length equal to number of states n, AY is the output

vector of length m, AU is the input vector of length 7, A is the (nxn) state matrix,

B 1is the control or input matrix of size (nxr), C is the output vector of size (mxn),

D is the feed forward matrix of dimension (mXxr).

Taking the Laplace transform of Equation (4.48):

SAX (5) = X (0) = AAX (s)+ BAU (5) (4.49)

AY (s) = CA(s) + DAU () (4.50)
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Rearranging Equations (4.49) and (4.50):

(sl —A)AX (s)= X(0)+ BAU (s)

AX (s)=(sI —A)'[X(0) + BAU(5)]

adj(sl — A)
=——[X(0)+BAU
detst —a) O FEAVD)
Correspondingly,
adj(sl — A)
=C————= 4.51
AY(s)=C dot(s] — A) [X(0)+ BAU((s)]+ DAU (s) (4.51)

The poles of AX (s)and AY (s) are the roots of the equation det( s/ — A) = 0 which

is also referred to as the characteristic equation of matrix A. The values of s which
satisfy the characteristic equation are the eigenvalues of A. There are a total of n

eigenvalues 4;; i=1,2,.n, as A is an nXn matrix. The eigenvalues determine the

stability of the power system as follows:

A real eigenvalue in the system corresponds to a non-oscillatory mode. A negative
real eigenvalue represents a decaying mode and larger its magnitude value, earlier is

its decay. When a real eigenvalue is positive it represents aperiodic instability.

Complex eigenvalues occur in conjugate pairs and each pair corresponds to an

oscillatory mode. Thus, for a pair of complex eigenvalues, A = a + jB, the time
response is of the form e ' sin(fr+ 6). The real part of the eigenvalue gives the

damping and imaginary part gives the oscillation frequency, f = #/2z. The damping

ratio, ¢ =—a'/ (J& + %), determines the rate of decay of the amplitude of the

oscillation. A negative real part in the complex eigenvalue represents a damped

oscillation whereas a positive real part represents oscillation of increasing amplitude.
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For any eigenvalue A, there is an eigenvector ¢, which satisfies the following

equation:

Ag. =26, . i=12..n (4.52)

where ¢. is the right eigenvector of A associated with the eigenvalue A.. Each right

eigenvector is a column vector of length n and has the form:

P
¢2i

D (4.53)

Similarly, the n - row vector y; which satisfies

WA=y, i=12..n (4.54)

is called the left eigenvector associated with the eigenvalue A,, where 4, # A PLFE].

Expressing the eigenvector in matrices form, they are termed as modal matrices

¢=[¢1 g, - ¢n] (4.55a)

] A | (4.55b)

wo =1 y=¢"

Equation (4.48) is derived from physical considerations of the power system. The
rate of change of each state variable is a linear combination of all the state variables.
As a result of cross coupling between the states, it is difficult to isolate those
parameters that influence the motion in a significant way. The state variables can be
decoupled by expressing the state variables in terms of the modal variables Z .

Consider a new state vector Z defined by the transformation:

AX = 9pAZ (4.56)
or

AZ =y AX (4.57)
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The original state variables are represented by AX ,AX,,.,AX, and the
transformed variables by AZ,,AZ,,..,AZ  which are associated with only one mode.

The right eigenvector gives the mode shape, 1.e., the extent of the activities of the n

n

state variables in the i” mode, and the angles of the elements in the matrix give phase

displacements of the state variables with respect to the mode. The left eigenvector

identifies which combination of the original state variables displays only in the i

mode.
Equation (4.48) is transformed into new state equation as:
AZ=¢"'APAZ +¢'B AU (4.58)
AY =C¢ AZ + D AU (4.59)
The state equation in decoupled form may therefore be written as
AZ =A AZ + B' AU (4.60)
AY =C"AZ+DAU (4.61)

where A is a diagonal matrix consisting of eigenvalues of the state matrix A.

A=¢""Ag (4.62)
B'=¢"'B (4.63)
C'=Co (4.64)

The mode controllability and observability matrices are defined by Equations
(4.63) and (4.64) respectively. By inspecting the matrices B and C’, one can

determine the controllability and observability properties of the modes. If the i " row

h .
mode. Such a mode is

of the matrix B’ is zero, the inputs have no effect on the i .
said to be uncontrollable. If the column of C” matrix is zero, the corresponding mode
is unobservable. If the mode is either uncontrollable or unobservable, the feedback

between the output and the input has negligible influence on the mode [2].
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The eigenvalues are computed as described in this section from the state matrix.
The under damped oscillation modes are observed. Additional stabilizer is provided to
increase the damping of these oscillation modes. The conventional method of
increasing the damping is the Power System Stabilizer (PSS). The PSS is designed

based on the linearized model as explained in the following section.

4.6 Power System Stabilizer (PSS)

The structure of the PSS is shown in Figure 4.5 [17], consisting of three blocks: a
phase compensation block, a signal washout block and a gain block. The phase
compensation block provides the appropriate phase lead characteristic to compensate

the phase lag between the exciter input and the generator electrical torque.

K, Efd >
1+sT,
1 Vs
1+ 5T, 1+ T, sT, Aw
KPSS —
1+ 57, 1+ 7, 1+sT,
hase Washout Gain
compensation

Figure 4.5: Excitation system with AVR and PSS

The signal washout block serves as a high pass filter, with the time constant 7,

high enough to allow signals associated with oscillations in @ to pass unchanged and

preventing undesirable generator voltage excursions. The stabilizer gain K

determines the amount of damping provided by the PSS. The conventional lead-lag
PSS is installed in the feedback loop which produces an electrical torque component
Vpss 1n phase with the rotor speed deviation. This component is added as a
supplementary signal in the excitation control to provide extra damping at the

oscillating frequency. In Figure 4.5 E, is the generator field voltage, V, is the
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generator output voltage, V, .is the reference voltage. The block in the forward path

represents the voltage regulator that has a time constant of 7, and a gain of K.

As discussed in [17]: The PSS is usually designed when no FACTS devices exist

in the power system. The plant transfer function GEP (s) can be obtained from Figure

4.3 and is given by:

GEP(s)=-re = uSLITE
(1+sK,T, )1+sT,)+K,K K,

AV

ref

(4.65)

Once GEP (s) is determined, the phase lag of GEP (s) given by ZGEP (s) is

determined at the angular frequency of system oscillation from the mechanical loop,

ie, s=jw, where o, :1/% , the undamped natural frequency of the

mechanical mode and w, =27f 1is the system frequency in radians per sec. K, is the

constant computed in Equation (4.32) for the operating point and given system

parameters. M 1is the inertia constant in seconds.
The transfer function of PSS is given by:

T,s (1+sT,)(1+sT,)

G s)=K
pss () = Kpss 14T, s (1+ sT,)(1+ sT,)

(4.66)

The phase of PSS, ZG, (s) is set to compensate B = ZGEP (s), the phase of

pss

GEP (s) , so as to produce a purely damping torque contribution to the generator, i.e.,
£G 5 (9)| o AGEP(s)L:J_w =0 (4.67)

The parameters of the lead-lag block are designed using the phase compensation

method. The simplest transfer function of PSS may be chosen in the form of

Gpgs (8) = K pgs

T.s (1+5T1

k
sk=1lor2 ,1T,>T, (4.68)
1+T s\ 1+sT,
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In Figure 4.5, with k=2

T,s 1+sT, 1+ sT;

G (s)=K
pas (5) 5 1+T, s 1+sT, 1+ T,

where T, =T,,T, =T, . The phase compensation provided by each lead-lag block

does not exceed a maximum (usually 60 °) [2]. Let,

1 _ (I+sin )

T =aT,,and T, =——, where, a = )
T (@ a) (1-sin f)

The required gain setting of the PSS for the desired damping ratio ‘¢’ is obtained
as [73], [104]:

_ 2feM
PG (9)||GEP(s)

, (4.69)

where |GPSS (s)| and |GEP(S)| are evaluated at s= jw, . The value of T, (the

washout filter time constant) is chosen in the range of 10 to 20s [2]. The reasonable

choice of ¢ is between 0.1 and 0.3 [2], [17].

In the actual applications, damping of the electromechanical oscillations is
achieved initially with help of the Power System Stabilizers (PSS), which provides
supplementary control action in the excitation systems of the generators. The PSS

helps to stabilize the rotor angle and speed oscillations.

The IPFC is incorporated in the power system. The primary function of IPFC is to
control the power flow in the transmission lines. In this respect, feedback controller is
designed for the IPFC to control the active transmission line power. Along with the
power flow control, the DC voltage across the capacitor has to be maintained constant
simultaneously to ensure safe and efficient operation of IPFC. This is achieved with
the use of another feedback controller which controls the DC capacitor voltage to the
required constant value. The controllers used for controlling the power and DC
voltage may or may not provide additional damping to the oscillations modes. In the
event when the oscillations modes have further insufficient damping, supplementary

damping controller for IPFC is provided to increase the damping of the oscillations
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modes. Taking in view of the above, the IPFC will now be installed with three

controllers as explained in the following section.

4.7 Controllers of IPFC

The IPFC is installed with the following controllers:
(1) Power flow controller
(11) DC voltage regulator

(iii)  Damping controller

4.7.1 Power Flow Controller

The power flow controller regulates the power in the transmission lines. The structure
of the power flow controller is shown in Figure 4.6 [38]. The power flow controller is
of Proportional-Integral (PI) feedback type controller. The proportional and integral

gains of the controller are &, and k, , respectively. The controller in Figure 4.6

pi’
regulates the real power in the transmission line 1 to the specified value of P,
in the system. The real power in the transmission line 1 can be controlled by varying

the phase angle 6, of the series injected voltage of VSC 1. Generally the input signal
m, can also be used to regulate the active power of the transmission line, however, the
range in which m, (0<m, <1) can be regulated is narrower than that of 6,
(0<6,<360°). In Figure 4.6, P,,, represents the power flow in line 1 and P, ..,

represents the specified power flow in line 1. The error of the active power flow is

amplified through the PI block and modulates the input signal &,. Through PI
controller the error is regulated to zero. Modulating the input signal g, the currents in

both the transmission lines are controlled, as they are function of 6, as seen in

Equations (4.17-4.20). Thus, the active and reactive powers in both the lines are

modulated.
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flow1 01 rof
- +

Piw k.
flow (D) K, + » IPFC |—»
+ s + o,

Figure 4.6: Structure of the power flow controller

4.7.2 DC Voltage Regulator

The DC voltage regulator functions by controlling the exchange of active power
between the two VSCs and the power system. It has to ensure that the net exchange

of real power is zero. This is achieved by maintaining constant voltage across the
capacitor. The DC voltage regulator is of PI type as shown in Figure 4.7 [38]. k,,, and
k, are the proportional and integral gain settings of the DC voltage regulator
respectively. As this regulator is responsible for converting the same amount of real
power to replace the power drained by the VSC-1 through the DC link, the regulator
is used to modulate the input signal 8, , the phase angle of the injected voltage of
VSC 2. In the Figure 4.7 v, is the DC voltage across the capacitor and v, is the
reference voltage. Since the currents flowing in the transmission lines are function of
0, as seen in (4.17-4.20), this controller make sure the net active power exchanged is

Z€r10.

vcre k
detre) g+ IPFC |—»

Figure 4.7:  Structure of the DC voltage regulator

During power flow control one PI controller may or may not be sufficient to
obtain the desired power flows in the transmission lines. It becomes necessary to have
additional PI controllers to control the other input signals of IPFC to achieve the
preferred power flows in the lines. The reactive power flow in transmission line 1 can
be modulated through input signal m,, as the input signal 6, is utilized for controlling

Py, inline 1.
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The real power in transmission line 2 can be controlled by input signal m,, since
apparently the input signal 8,, of VSC-2 is utilized for controlling the DC voltage,
The controllers are of PI feedback type controller similar to Figure 4.6, whereas the

inputs to these controllers vary corresponding to reactive power flow control in line 1

or real power flow control in line 2.

4.7.3 TPFC Damping Controller

The IPFC damping controller is designed to increase the damping of the selected
oscillation mode. The structure of the IPFC based damping controller is shown in

Figure 4.8 [38], which comprises of the amplification block having gain K signal

pod >

washout block and m, stages of lead lag compensator blocks. K, is a positive gain,

and T, is the washout time constant. 7, and T,, are the lead and lag time
constants respectively. The time constants of lead-lag compensator are determined
using the phase compensation method [2] to compensate the phase shift between the

control input signal AU and electrical power deviation AP, .

Aw e
— Kpoa > —STW > —1 + 5T, —>
_ 1+sT, 1+ T, AU
Gain Signal Washout Phase Compensation

Figure 4.8: Structure of IPFC based damping controller

The steps to determine the damping controller constants are as follows: Compute

the natural frequency of oscillation @, from the mechanical loop as:

w, = JK,w,/M (4.70)

where K, is the synchronizing torque coefficient value determined in Equation (4.26)

of the linearized system when IPFC is placed.
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Let y be the angle of the transfer function:

AP
G. =—-, 471
() AU (4.71)

which gives the phase lag between AU and AP,, at s = jw, with AU being one of
the inputs (Am,,A6,,Am,,or A8,) as shown in Figure 4.9. Figure 4.9 represents the
transfer function block diagram of the system relating electrical power AP, and AU .

The transfer function of the IPFC based damping controller is represented by:

m.

T (1+sT, |

Gc (S):Kpod - - ° - (4'72)
1+sT \1+sT,,

The phase compensation limit provided by each lead-lag block is about 60°. The

number of the lead-lag blocks m_ is determined by taking the largest number near to
y160 , where ¥ is the required phase compensation of the controller at the concerned

oscillation mode frequency range.

Assume for the lead-lag network,

T, =al,,, (4.73)
i 1
where a = M and T,,, =——F+.
(1=sin 7) (@, a)

The required gain setting of the damping controller for the desired damping ratio
‘£’ 1s obtained as:
2¢a,M

= 4.74
" G(9)|G, () 79

where |Gs (s)| and |Gc (S)| are evaluated at s = jw, . The value of T, (the washout

filter time constant) is chosen in the range of 10 to 20s [2]. The reasonable choice of

¢ 1is between 0.1 and 0.3 [17]. The four control parameters, m,, m,, 6, and ¢, can be

modulated to produce the damping torque. The damping controller based on the IPFC
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input signal m, is termed as the damping controller », and consequently other
controller based on input signalsm,,9, and ¢, are termed as damping controller m,,

damping controller ¢, and damping controllerg, .

K,
K, L
AU 1
AE; Ky +T,s
Ky _ K
pv
K,
A
Uk, 1
K9 +s AVdC

Figure 4.9: Block diagram of the system relating electrical power AP, and AU

However, one of the first stages in the design of the stabilizer is the selection of
the IPFC input signal parameter upon which the damping signal is superimposed. In
order to select the IPFC control parameter most suitable for modulation, by the
damping controller, the concept of a controllability index is used. The controllability
index is formulated based on an approximate multimodal decomposition approach as

explained in Appendix B [29].

4.8 Case Study: SMIB Power System With IPFC

A SMIB power system with IPFC as shown in Figure 4.1 is considered for analysis.
The data for the system (in p.u. except where indicated) are given in Table 4.1 [9].
The load flow is performed to find the steady state condition of the system, i.e., the
voltages at various buses with their phase angles and the power flows in the

transmission lines, the results of which are given in Table 4.2.
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Table 4.1: SMIB power system data

H = 4.0s. D=0.0 T/, =5044s | x,=10 x,=0.6 x, =03
x, = 0.01 x,=0015| x,=0015 | x,=005| x,=0.05 K, =100
T,=001ls | v,=2p.u. P, =0.8 v, =10 vV =1.02 C,=02

Table 4.2: Load flow results of SMIB power system with IPFC
P=0.8p.u. 0,=-1.0223 p.u. V.=1.02 p.u. V,=1.0p.u.

V., =00512 pu | V_,=0.1237p.u. 6, =-77.8458"° 6, =-23.8761°

0 =0.8280 rad Py,.=04p.u. Q0= 0.2921p.u. Py,2=04p.u.

Table 4.2 shows the results from the load flow, which gives the power flows in

each transmission line represented by P, Q,,, and P, ,, injected voltages V_,

on2 2
and V_,, and their corresponding phase angles 6, and €, of VSCs of IPFC in each
transmission line. The real and reactive power at the generator bus is given by P, and
Q,. V, is the terminal voltage of the generator bus. V, is the voltage of infinite bus.
The numerical values are computed at the nominal operating point of P, = 0.8 p.u.,

1.e., the generator is generating an electrical power of 0.8 p.u. for a 100 MVA base.
The nonlinear equations of the power system are linearized around this operating
point. The K constants computed at this operating point are given in Table 4.3. The

state, control, and output matrices (4, B and C) are computed and are given by

AP

flowl *

Equations (4.75-4.77). The outputs taken are AP, and The system is found to

be controllable and observable from the controllability and observability matrices

calculated as described in Section 4.5.

Table 4.3: K constants at the operating point of P,=0.8 p.u.
K,=1.575856 K,=2.382711 K,=3.043796 K,=1.667898
K,=0.000299 K, =0.082475 Kk, =0.023072 Kk, =0.027127
K, =0.004617 K, =0.036168 K, =-0.005127 K, =0.029190

K, =0.721441

K = -0.008752

K, =0.286143

K ;= -0.084596

K. =0.590336

K 5 =-0.042716

K,.=-0.327326

K 4 =-0.119733

K., =0.116607

K., =0.022488

K, ,=0423723

K.,,=0.020285

K, =-1442618

K., =0.199523

K., =-4999133

K.,,=0.028017
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0 377 0 0 0
-0.1970 0 -0.2978 0 -0.0045
A=|-03307 0 -0.6034 0.1983  0.001 (4.75)
-02986 0 -824750 -100 -29.1897
00231 0 0.0271 0 -0.0046 |
0 0 0 0 |
-0.0902  0.0011 -0.0358  0.0106
B=| -0.1170  0.0085 0.0649 0.0237 (4.76)

-116.6073 -22.4884 -423.7235 -20.2849
| -1.4426 0.1995 -4.9991 0.0280 |

4.77)

1.5759 0 23827 0 0 0.0362
-0.7413 0 -1.0753 0 -0.0182

The eigenvalues are computed from the state matrix formed by using the K
constants in Table 4.3. Table 4.4 gives the computed eigenvalues, for the power
system with IPFC. The system contains real and one pair of complex eigenvalues and
they are stable. The oscillation modes have a damping ratio of 0.0291 and are lightly
damped. These undamped modes have an oscillation frequency of 1.3697 Hz. They
contribute to local area oscillations (1-2Hz) when the system is subjected to a
disturbance. The disturbance can be in the form of change in mechanical input or a
three phase fault. The pair of oscillation modes given by complex eigenvalues are
contributed by the rotor angle and rotor speed variables of the generator. The real

eigenvalues are contributed by the remaining state variables of Equation (4.30).

Table 4.4: Eigenvalues of the linearized SMIB with IPFC at operating point

P,=0.8p.u.
Eigenvalues Damping Ratio | Frequency
-99.8353 1 0
-0.2503+7 8.6063 0.0291 1.3697
-0.2685 1 0
-0.0037 1 0

The damping of the oscillations modes is increased by placing the PSS in the

excitation system of the generator. The PSS is designed as described in Section 4.6.
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The PSS parameters are; K, =1.9889 , T, =0.33239 , T, =0.054258 , and
T,=T,.,T,=T,, T, =10. The PSS is designed at the operating point P,= 0.8 p.u. The

controllers of IPFC, i.e., the PI power flow controller controlling the real power in
transmission line 1 and PI DC voltage regulator, are placed in the system to maintain

the powers in the transmission line and maintain the DC voltage constant in the event

of disturbance. The parameters of the power flow controller are k,, = 1 and &, =

0.01 and DC voltage regulator are k,, = 4 and k, = 4. They have been designed by

trial and error using simulation. The effect of controllers on the oscillation mode of
the SMIB system incorporated with IPFC is given in Table 4.5. It has been observed
that the PSS significantly increases the damping ratio to 0.09. The PI power flow
controller and DC voltage regulator have little influence on the oscillation mode.

Together they contribute to minor increase in damping ratio.

Table 4.5: FEigenvalues of the linearized SMIB with IPFC and controllers at

operating point P, = 0.8 p.u.

Salzl/[c{BC(\;vriglo{il:sC Eigenvalues Damping Ratio | Frequency
No controllers -0.2503 £5 8.6063 0.0291 1.3697
With only PSS -0.77508 £ 8.5625 0.090152 1.3628
PSS and Power 1 70517 5 g 5463 0.092053 1.3602
flow controller

PSS and DC 077262 +5 8.5622 0.08987 1.3627
voltage regulator

PSS, power flow

controller and DC | -0.77649 +5 8.5758i 0.090176 1.3649

voltage regulator

The IPFC is installed with the damping controller to increase the damping of the
oscillation mode present in the system. The structure of the damping controller is
shown in Figure 4.10. The input to the controller is the rotor speed. The damping
controller contributes a positive damping torque in phase with the speed deviation to
the electromechanical oscillation loop of the generator. The parameters of the
damping controller are designed as described in Section 4.7.3 using phase
compensation technique. The output of the damping controller superimposes and

modulates any one of the input signal u = (m,,m,,6, or 8, ) of IPFC. The controller
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is designed to increase the damping ratio of the oscillation mode to a reasonable

choice between 0.1 and 0.3 [17].

ref

Aw :
iy Damping IPEC
controller + U

Figure 4.10: IPFC based damping controller

The active power generated by the generator may change in the range from lighter

load condition P, = 0.2p.u. to heavier load condition P, =1.2p.u. with V, =1.02 p.u.,
V, =1.0p.u. to meet the varying requirement of power supply. The effectiveness of

damping controller also changes with the variation of power system operating
conditions. Therefore, the IPFC based damping controller should be designed at an
operating point such that it is robust over a set of know operating conditions.
Table 4.6 gives the eigenvalues computed at different operating points without any
controllers. Figure 4.11 shows the relationship between the damping ratio of the
oscillation mode and the operating point. From Table 4.6 and Figure 4.11, it is
observed that the oscillation mode is of poorest damping at operating condition

P, =12p.u.

Table 4.6: Eigenvalues of the system computed at different operating points

Operating point P, Eigenvalues Damping ratio Frequency
0.2 -0.42927 £5 7.5064 0.057095 1.1947
0.4 -0.3456 5 7.683 0.044937 1.2228
0.6 -0.26677 5 8.0658 0.033057 1.2837
0.8 -0.2503 £5 8.6063 0.029075 1.3697
0.9 -0.24842 +5 8.8303 0.028122 1.4054
1.0 -0.24446 +5 9.0188 0.027096 1.4354
1.2 -0.23165 £5 9.3249 0.024834 1.4841
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Figure 4.11: Damping ratio versus operating condition.

There are two potential choices of operating conditions for designing the IPFC

based damping controller:

1) The nominal operating condition P, = 0.8 p.u , which is the usual active power

delivered by the generator.

2) The operating point at which the system oscillation mode is of poorest

damping P, =1.2p.u.

IPFC based damping controller is designed at the two operating points and its
effectiveness is verified over varying operating conditions through eigenvalue
analysis. To determine which input signal is significant in providing the damping, the
controllability index is calculated. The controllability index is computed based on the

linearized model for the electromechanical mode to be damped, taking the control
parameters (Am,, A6,, Am,, Af,) into account one at a time. The controllability
indices with different IPFC controllable parameters are given in Table 4.7 and Table
4.8 computed at the two operating points P, =0.8p.u and P, =1.2p.u respectively.
Observation of Table 4.7 and Table 4.8 reveals that the controllability index

corresponding to IPFC control parameter m, has higher controllability index
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compared to other input signals and thus, is the most efficient signal for damping. The

signals 6, and 6, have lesser values of controllability index.

Table 4.7: Controllability indices with different IPFC controllable parameters at
operating point P, = 0.8 p.u

Input signal | Controllability index
Am, 0.090447
A, 0.0011749
Am, 0.035781
A6, 0.010632

Table 4.8: Controllability indices with different IPFC controllable parameters at
operating point P, =1.2p.u

Input signal | Controllability index
Am, 0.11336
A, 0.0010221
Am, 0.085591
A6, 0.0096744

To confirm the prediction, the various damping controllers are designed and
installed in the system, to achieve an improvement of the damping ratio of the

oscillation mode to around 0.1. The various damping controllers modulating different
input signals (m,, m,, 6, and 6, ) are designed at the nominal operating point, i.e.,
P, = 0.8 pu. and P,= 1.2 p.u, based on the linearized model to mitigate the

oscillations. The parameters of each controller, are given in Table 4.9 designed at the

operating point P,= 0.8 p.u. and in Table 4.10 designed at operating point P, = 1.2

p.u., which are computed using phase compensation method. From Tables 4.9 and

4.10, it is observed that the damping controllers m, and m, have only one lead-lag
block compared to the other damping controllers &, and 8, . The gain values of the
damping controllers m, and m, are also comparatively less making them cost
efficient. The other two damping controllers 8, and 8, have larger gain values, thus

making them less efficient comparatively.
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Using these designed damping controllers, the eigenvalues of the system are
computed with only damping controllers to observe their contribution towards
increase of damping ratio of the oscillation mode. Table 4.11 gives the eigenvalues

computed at the operating point P, = 0.8 p.u. with the damping controllers designed
at P, = 0.8 p.u. whose values are given in Table 4.9. Table 4.12 gives the eigenvalues
computed at the operating point P, =1.2 p.u. with the damping controllers designed at

P, =1.2p.u. whose values are given in Table 4.10.

Table 4.9: Parameters of the damping controllers designed at operating condition
P,=0.8 p.u.
Parameters of the damping controller
Damping controller | Ph 1
m, 8.0903 21.974 | 0.10071 | 0.1337 | 1
6, 132.11 5005.5 | 0.024605 | 0.54728 | 2
m, 40.087 73.382 | 0.054004 | 0.24935 | 1
0, 176.99 5379.1 | 0.032184 | 0.41841 | 3

Table 4.10: Parameters of the damping controllers designed at operating condition

P,=12p.u.
Parameters of the damping controller
Damping controller Phase}/angle K,, T. T,. m
m, 6.443 18.523 | 0.095688 | 0.11988 | 1
6, 63.363 4032 | 0.025354 | 0.45243 | 1
m, 19.479 26.396 | 0.075722 | 0.15149 | 1
0, 171.92 4631.6 | 0.031415 | 0.36514 | 3

Table 4.11: Eigenvalues of the system computed at P, = 0.8 p.u. using the damping

controllers designed at P, = 0.8 p.u.

Input signal Eigenvalues Damping ratio Frequency
Am, -1.1309 %7 8.595 0.13045 1.3679
A, -0.86263 +5 7.9853 0.1074 1.2709
Am, -1.0711 =5 8.689 0.12235 1.3829
A6, -0.81261 +5 8.7377 0.092601 1.3906
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Table 4.12: Eigenvalues of the system computed at P, = 1.2 p.u. using the damping

controllers designed at P, =1.2p.u.

Input signal Eigenvalues Damping ratio Frequency
Am, -1.1813 £5 9.3048 0.12594 1.4809
A6, -1.1774 +59.4998 0.123 1.5119
Am, -1.1064 +5 9.3423 0.1176 1.4869
A6, -0.76049 =5 9.4293 0.080391 1.5007

It is observed at both the operating points that the damping controller m, and m,
provides better damping with lesser gain values and with use of only one lead-lag
compensator blocks. However, comparing between m, and m, damping controllers,
the gain value of the damping controller m, is much less than damping controller m, .
As such the damping controller m, is the most efficient to provide damping to the
oscillation mode. This confirms with the controllability indices calculated in Table 4.7
and Table 4.8. Thus, for providing the damping for the oscillations in SMIB power
system, the damping controller m, will be considered for further analysis. To
investigate the robustness of the damping controller, the operating conditions of the
power system are varied and the effect of the controller is observed on the oscillation
mode. Table 4.13 and Table 4.14 gives the oscillation modes of the eigenvalues
calculated due to the variation in the system operating conditions (P, =0.2to1.2p.u)

with the IPFC based damping controller m, designed at operating point P, = 0.8 p.u.

and P,= 1.2 p.u. respectively.

Table 4.13: Oscillation modes calculation with the damping controller m, designed

at operating point P,= 0.8 p.u.

Op. point Eigenvalues Damping ratio Frequency
0.2 -0.60792 +5 7.206 0.084064 1.1469
0.4 -0.85677 £ 7.5429 0.11286 1.2005
0.6 -0.98889 +7 8.0225 0.12234 1.2768
0.8 -1.1309 +3 8.595 0.13045 1.3679
0.9 -1.191 +5 8.8258 0.13374 1.4047
1.0 -1.2402 £5 9.0193 0.13622 1.4355
1.2 -1.3153 +5 9.3321 0.13956 1.4853
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Table 4.14: Oscillation modes calculation with the damping controller m, designed

at operating point P,=1.2 p.u.

Op. point Eigenvalues Damping ratio frequency
0.2 -0.57547 5 7.2406 0.079228 1.1524
0.4 -0.78601 x5 7.5472 0.10359 1.2012
0.6 -0.8949 +5 8.0091 0.11104 1.2747
0.8 -1.0193 x5 8.574 0.11805 1.3646
0.9 -1.0726 +7 8.8026 0.12096 1.401
1.0 -1.1159 £ 8.9945 0.12312 1.4315
1.2 -1.1813 +5 9.3048 0.12594 1.4809

Both the designs result in effective damping at the operating point selected and
quite consistent within neighbouring operating conditions. However a slight
difference lies mostly during the lighter load operating condition P, = 0.2 p.u.
Compare the results of Table 4.13 and Table 4.14, (the eigenvalues computed with
IPFC based damping controller) with that of Table 4.6, (the eigenvalues computed
when no damping controller is used). It is observed that the damping contributed at

operating point P,= 0.2 p.u., by the damping controller designed at P,= 1.2 p.u. is
less compared to the damping controller designed at operating point P, = 0.8 p.u.
However, with increase of its gain value the damping controller designed at P,= 1.2
p-u. will also be suitable at different operating conditions. For further power system
analysis, the damping controller m, designed at nominal operating point P, = 0.8 p.u.

1s selected.

The various controllers of IPFC (PI real power flow controller, DC voltage
regulator and damping controller) along with the PSS are placed in the power system.
The schematic diagram representing the SMIB power system with IPFC and its
controllers is shown in Figure 4.12. The eigenvalues of the complete closed loop
system are computed and are given in Table 4.15. The system is stable and all the

oscillation modes are sufficiently damped.

In presence of PSS and damping controller, the oscillation mode damping ratio
has increased to 0.2109. The other conjugate pair of eigenvalues have significant

higher damping ratio as such they are not of concern in contributing the oscillations.
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Figure 4.12: SMIB power system with IPFC and its controllers

Table 4.15: Eigenvalues of the SMIB power system incorporated with IPFC, with

PSS, PI power flow controller, DC voltage regulator and damping controller with

speed as input

Eigenvalues Damping ratio frequency
0
-100.45 1 0
-17.419 £ 6.1054 0.94371 0.97171
-2.1118 +3 9.7876 0.21091 1.5577
-7.7599 1 0
-3.0144 1 0
-0.44873 +5 0.98797 0.41354 0.15724
-0.27731 1 0
-0.09988 1 0
-2.46E-15 1 0
-0.1 1 0
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Since the damping controller is designed on the linearized system, its
effectiveness is verified on nonlinear power system through nonlinear simulation of

the system. The dynamic response of the system is observed with the controllers.

The system response is observed in the time domain simulations for the power
system. The nonlinear simulation is conducted through numerical integration and as
well as by MATLAB/SIMULINK. Simulation through either method gives the same
results. The numerical integration of the differential equations is performed using
ode45 functions in Matlab. The MATLAB/SIMULINK block diagram of the
nonlinear model of SMIB power system installed with IPFC is developed and is

shown in Figures 4.13 —4.17.

Figure 4.13 represents the swing equations: rotor angle Equation (4.1) and speed
Equation (4.2) along with the damping controller. The rotor speed is used as input for
the damping controller in the SMIB power system as shown. Figure 4.14 represents
the generator internal voltage Equation (4.3) and field voltage Equation (4.4). Figure
4.15 shows the simulink model for calculating the DC link capacitor voltage Equation
(4.5). Figure 4.16 represents the simulink model for computing the electrical power
from the generator and the terminal voltage. Figure 4.17 shows the simulink model

for calculating the transmission line currents in d-q axis from Equations (4.17-4.20).
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P+ > controller _>€
m

Mechanical

power 7 N

D»- % - Spei"l}» ~ <bettass

Electrical a o
Dampin

< D ‘ < ping

Power
Figure 4.13: Simulink model representing rotor angle and speed
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Figure 4.17: Simulation model for calculating the transmission line currents

The system is equipped with the PI power flow controller which controls the
active power flow in transmission line 1 at 0.4 p.u. The PI voltage regulator maintains
the DC voltage across the capacitor at a constant value of 2 p.u. The system is

subjected to various disturbances and the performances of the PSS and damping

controllers are investigated.

104



4.8.1 Disturbance: Step Change in Mechanical Power

A disturbance in the form of a step variation of 0.05 p.u., in mechanical power input

P, , at 0.5s is applied. Power system oscillations are observed due to this disturbance

and are lightly damped. The transmission line power flow is controlled by the injected
series voltage such that the rotor angle oscillation is sufficiently damped. The
magnitude and phase angle of injected series voltage is controlled by the input signals
of the IPFC. The input signals are modulated by the controllers. Ultimately the

effectiveness of IPFC damping controller is observed in damping the oscillations.

Figures 4.18 - 4.19 gives the response of the rotor angle at the operating condition

P,= 0.8 p.u., in presence of PSS and damping controllers m,, m, and 6, 6,
respectively. These controllers have been designed at the operating point P, = 0.8 p.u.

The power flow controller and DC voltage regulator are present in the system. The
damping controllers m,, gives a better performance than the damping controller m,
as seen in Figure 4.18. The damping controllers 8, and €, have the least damping
effect on the oscillations as seen in Figure 4.19. It is thus shown that the damping
controllers 6, and 6, are not suitable signals for providing damping. This is verified

with the controllability indices given in Table 4.7.

Figure 4.20 shows the active power flow response on transmission line 1 and

Figure 4.21 gives the capacitor voltage v, response in the presence of various

damping controllers. Figure 4.22 shows the rotor angle response in the presence of

damping controller m, designed at operating conditions P,= 0.8 p.u. and P,= 1.2

p.u. They give similar responses.

Figure 4.23 gives the electrical power P, response generated by the generator at

various operating conditions with the damping controller m, designed at operating

condition P, = 0.8 p.u. The damping controller sufficiently dampens the oscillations.
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Figure 4.18: Rotor angle response with the damping controllers m, and m, and PSS

Figure 4.19: Rotor angle response with the damping controllers & and 8, and PSS
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Figure 4.20: Active power flow response in line 1 in the presence of various damping
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damping controllers
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Figure 4.23: Electrical power generated response with the damping controller m, at
various operating conditions
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4.8.2 Disturbance: Three Phase Fault

Infinite
Bus

IPFC

FFf 7

m, 6, m; 6

Figure 4.24: SMIB power system with fault

A three-phase fault is applied at bus 1 as shown in Figure 4.24, at +=0.5s and

cleared after 0.1s. The line currents are affected accordingly. Equations (4.17-4.20)

represent the line currents for post fault system. During fault, the voltage at the bus

becomes zero. Hence, the line currents are modified during fault and are obtained as

follows:

g =

by =

, 1
YidE, +§y12dvdc (m, cos(d —8,)—m, cos(6—6,))

, 1
YadE, +Ey22dvdc (m, cos(d —6,)—m, cos(6—6,)

. 1 . ;
Iy =7 YizgVa (M, $IN(6 — 6,) —m, sin(6 - 6))

lzq =
where,

Via
| Va1a

yllq
_y21q

2

1

5 YrgVae (M, $i(6 — 6,) —m, sin(6 — 6,)

7 rs , -1
Yia | _| Xa X Xg T X, }
Yoa | |[XntXn — (X, +X,)

1 0r 1
Vig | | X, +X, x, X,

Yoq | |7 (x, +x,) (x,+x,)
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The response of various parameters of the dynamic power system i.e., electrical
power generated by the machine, rotor angle, terminal voltage, rotor speed response,

power flows in the transmission lines and DC voltage v, are shown with and without

the damping controller and PSS during three phase fault in Figures 4.25 - 4.32

respectively.

The PI power flow controller and DC voltage regulator are present in the system.
The damping controller m, mitigates the oscillations efficiently even during the case
of three phase fault. The responses given in these figures are at the nominal operating

condition P, =0.8p.u. The damping controller and PSS used are designed at

operating point P, = 0.8 p.u.

Figure 4.33 gives the electrical power response at varying operating conditions in
the event of three phase fault. It is seen that at the lighter load condition the
oscillations take longer time to settle even with the use of the damping controller and

PSS.
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Figure 4.25: Electrical power response due to three phase fault
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Figure 4.29: Real power flow response in line 1 due to three phase fault
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Figure 4.31: Reactive power flow response in line 1 due to three phase fault
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Figure 4.33: Electrical power response due to three phase fault at varying operating
conditions
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The response of various parameters of the power system in the event of change in
mechanical input and three-phase fault disturbance are shown in Figures 4.18-4.33 in
the presence of PSS and damping controller. The PI power flow controller and DC
voltage regulator are present simultaneously in the system to maintain the power flow
and constant DC capacitor voltage. It is to be noted that the input to both PSS and

damping controller m, is the rotor speed such that the output from these stabilizers is

in phase with the rotor speed @.

However, since the FACTS device is incorporated on the transmission lines it is
more appropriate to select a signal, given to the damping controller, in its vicinity.
Usually the local input signals are always preferred, such as the active or reactive
power flow through FACTS device. As such the error signal between the set point and
the measured signal of the active power flow will be taken as the input to the damping
controller as shown in Figure 4.34. The damping controller output is in phase with
the real power flow deviation. This active power has been obtained from the line on
which the VSC of IPFC has been installed. The structure of the damping controller is
given in Figure 4.35 [38].

P

flow1 ml rof

P

flow 1 (ref) Damping |
controller + m, IPFC

Figure 4.34: Damping controller with power deviation as input

1 5T, 1457, )
— Kpod > 1 > - [—1‘1‘3 e
+sT, 1+sT, 1+sT,,
Gain Low pass Signal Phase
filter Washout Compensation

Figure 4.35: Structure of the damping controller with power deviation as input

This damping controller consists of extra block, i.e., the low pass filter, with 7,
being a measurable time constant. This filter attenuates Torsional frequencies. T, is

chosen to be 0.1s. The damping controller shown in Figure 4.35 will now be termed
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as power oscillation damping (POD) controller. The remaining parameters of POD
m, are unchanged. In the following section the regulation of power in the

transmission lines with the control of the input signals of IPFC is discussed.

4.8.3 Disturbance: Change in Power Flow Reference

The effect of the power flow controller in controlling the transmission line flow can
be observed when new power reference value is given in Figure 4.34. Originally the
real power flowing through the two transmission lines is 0.4 p.u. A real power of 0.45
p.-u. can be made to flow in the transmission line 1 by changing the power reference

P

towi(rery tO 0.45 p.u. Subsequently the real power flow in transmission line 2 will be

0.35 p.u.

The DC regulator maintains the voltage at a constant value of 2 p.u. The change in
power reference is given at 0.5s in the simulation. To obtain the desired power flow,

gain scheduling is required and was determined by trial and error on simulation.

The parameters of the power flow controller to obtain this change in power flow

in line 1 are k,, = 4 and k,= 15. The power flow controller is able to make the

desired active power P, of 0.45 p.u., to flow in line 1 and the active power P, in

line 2 is reduced to 0.35 p.u., as the difference active power (0.05 p.u.) is made to

transfer from transmission line 2 to line 1 through IPFC.

However, the reactive power flow Q,,, in transmission line 1 has deviated from

its reference value. As such another PI controller is installed to regulate the reactive

power flow in transmission line 1.

The input signal m, is used for controlling the reactive power. The reactive power

PI controller is shown in Figure 4.36. The controller parameters are k,, = 0.05 and

k, = 0.4. The block diagram of the SMIB power system incorporated with IPFC and

all the controllers (PSS, PI power flow controllers, POD) is given in Figure 4.37.
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Figure 4.36: Reactive power flow controller

The dynamic response of the system is observed with the controllers with a step

change in P, ., at 0.5 s. The responses of various parameters (active power flows

in line 1 and 2, reactive power flow in linel, DC capacitor voltage and rotor angle) are
shown in Figures 4.38-4.42 respectively with PSS and POD. The power flow
controller regulates the powers in the transmission lines to the reference values. With
the presence of both the PSS and POD the oscillations in power flows settle at the

steady state values eventually.
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Figure 4.37: Block diagram of SMIB with IPFC and its controllers
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Figure 4.39: Response of the real power flow in transmission line 2 with step change
in power reference

118



0.34

----- with PSS
with PSS and POD m,
0.33} J
0.32
=)
o
~_ 0.31
3
o
0.3
0.29

0

10 15 20
Time (s)

Figure 4.40: Response of the reactive power flow in transmission line 1 with step

change in power reference
2.001

1.999

----- with PSS
with PSS and POD m,

1.998

vy, (PU)

1.997 }

1.996 |

1.995
0

10
Time (s)
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Figure 4.42: Response of the rotor angle with step change in power reference

It is observed from the above figures that all controllers ensure efficient operation
of the IPFC in controlling the power flow and mitigating oscillations. The power flow
controller only regulates the power in the transmission line and has negligible
contribution towards damping of oscillations. The effect is only due to damping
controller or the PSS.The effectiveness of the IPFC damping controller in improving
the damping of the oscillation mode is investigated through eigenanalysis and
nonlinear simulation in this Section 4.8. The effect of the various controllers of the

IPFC on the system is investigated.

4.9 Summary

In this chapter, the nonlinear model of the SMIB power system embedded with [PFC
has been developed which includes all the inputs of IPFC and DC capacitor dynamics.
The linearized model of the power system is established to form the extended
Phillips-Heffron model of a SMIB power system incorporated with IPFC. This model

is used to study the oscillation stability.
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The state model of the power system is formed, from which the eigenvalues are
computed using eigenanalysis or the modal analysis. The oscillation mode having low
damping ratio is identified. Based on the linearized model, the PSS is designed to
increase the damping of the oscillations mode. The power flow controller and DC
voltage regulator are also incorporated in the IPFC control to regulate the power flow

and to maintain the DC voltage across the DC link.

The damping function of IPFC is also investigated. The IPFC based damping
controllers, considering various control signals, are designed to increase the damping
of the oscillation modes existing in the system. The parameters of the IPFC damping
controller are determined using the phase compensation method. The relative

effectiveness of the input control signals m,, 8,,m, and 8, has been determined

using the controllability index.

Investigations reveal that control signal m, is the most efficient of the input
control signals to be used for damping the low frequency oscillations in the power
system. The control signals &, and 8, are not suitable in providing the damping, as
they do not provide consistent damping to the oscillations. The effectiveness and
robustness of the IPFC damping controllers are validated through eigenanalysis and
nonlinear simulation of the power system subjected to various disturbances. The IPFC
based damping controller and PSS ensure consistent damping of the low frequency
oscillations in the SMIB power system. The following chapter presents the

mathematical modeling of mullet-machine power system without FACTS devices.
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CHAPTER 5

MULTIMACHINE POWER SYSTEM

5.1 Introduction

Modeling of multi-machine system is quite complex. A typical multi-machine system
is composed of synchronous generators, excitation systems, governors, power system
stabilizers, transmission lines, transformers, and loads etc. Suitable mathematical
models of these devices are required for stability analysis. The dynamics of these
models are represented by sets of differential and algebraic equations. These
equations are integrated to form the overall system model. In this chapter, the
nonlinear, linearized state space form model of multi-machine power system is
presented. Power system stability analysis is performed on a case study which utilizes

the modeling and stability control techniques.

5.2 Modeling of Multi-Machine Power System

The nonlinear model of a multi-machine power system is presented in this section.
The following assumptions are made to simplify the mathematical model which
describes the nonlinear dominant behavior of a multi-machine power system [17],

[103], [104].

1) Governor and turbine dynamics are neglected. This results in constant input

mechanical power.

2) The network is in quasi-static state, (i.e., the transient characteristics of the
network elements like transmission lines, transformers, etc. are avoided as
their effects can be negligible on the electromechanical phenomenon).
Network elements are represented by equivalent impedances (or admittances),

the value of which are the ones assumed at the equilibrium steady state at



nominal frequency. The problem may be greatly simplified from the analytical
and computational point of view, with such a representation in the analysis of

power system stability.

3) The loads are represented by constant impedance loads (i.e., the dynamics of
the load are simplified for the stability studies). This helps in reducing the
network to only the generator buses by eliminating load buses as they have
zero injection current. When the load buses are eliminated, the network
voltage current relationship between the terminal buses of generators is

expressed through a reduced bus admittance matrix.

Synchronous generators are the primary sources of electrical energy in power
systems. The power system stability problem is basically one of keeping
interconnected synchronous machines in synchronism. Hence, an understanding of
their characteristics and accurate modeling of their dynamic performance are of
fundamental importance to the study of power system stability. In this thesis, the
generator represented by a third-order model has been used, which is frequently
employed in stability and control analysis due to its simplicity. The dynamic equation
of the synchronous generator consists of the swing equations and generator internal

voltage equation [2], [16], [17], [104].

5.2.1 Synchronous Generators

The nonlinear dynamics for the ;" machine of an n - machine power system as shown

in Figure 5.1 is given as [2], [16], [17], [104]:

The swing equations are written as follows:

5, = w, (0, —1) (5.1)
d)i — (sz _Pei _PDi) (52)
M.

l
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Figure 5.1: The i” machine in a multi-machine power system network

The internal voltage equation is given by

E . =L,(Efdi _E;,,- _(xdi _x:li) Idi)

qi
doi

The excitation system is described by the following equation

By =gy + Ky (Ve =V,)

fdi
Ai

The auxiliary equations are as follows:

Pei = Re[(ldi +J Iqi)X(‘/)‘dl +J tqi )] Idl‘/tdl +I V

qi " tqi

I, _Idz+JI thz+J P, =D, (@ -1),

qi? tqi®

Vi =%, 5 Vg = E =X,

qt’

where, i =1,2,---n, n is the number of generators.
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5.2.2 Transmission Network and Loads

The role of transmission network is to deliver the power produced in generating
stations to loads. Thus, nonlinear equations of the synchronous machines are coupled
to the network equations that interconnect these machines. In the commonly used
models, the network is assumed constantly in steady state and all the transients
associated with transmission lines are neglected. The electrical transmission line is

represented as an equivalent 7 model as shown in the Figure 5.2 [14]. In Figure 5.2
Z.j =R, +] X, represents linear lumped series impedance, where R; and X are the
resistance and inductive reactance of the transmission line between bus i and bus j.
)701:]. =G, +] B is the shunt admittance representing the line charging capacitance

between the two buses. The shunt admittance is evenly distributed in parallel at both

ends of the transmission line as shown in Figure 5.2.

Busi Bus j
_ Z L
l‘ V Vi
PLi +J QLi 2

Figure 5.2: Lumped parameter 7 equivalent transmission line

The load connected to a bus i in Figure 5.2, is modeled commonly as [2], [17]:

P,(V)=P, (V) i=12,---.nb

l

(5.6)
0,(V)=0,, (Vi ) i=12,---,nb

where P, and Q,, are the real and reactive components of the voltage dependent

load connected to the bus i with V; being the magnitude of bus voltage \7, . When a

=0, 1 or 2, the load model given by the above exponential model represents constant
power, constant current or constant impedance components. In this thesis for power

system analysis, the loads are represented by constant impedances and converted to

126



equivalent passive admittances. For a bus having a voltage magnitude V, to which a

load P,, +]j Q,, is connected, this load is represented by the static shunt admittances

g, and b,; given by % and —V—sz respectively [17]. The transformers in the power

1 1

system are represented by equivalent reactances. Therefore, for an n-machine nb-bus
interconnected power system, the static network and the loads are shown in Figure 5.3
[17], [103]. Figure 5.3 contains the first n buses connected to the generators with the

local loads and the rest n + 1, ... nb buses are connected to only loads.

°]
O—?7' [ n+ lo——$
PLi +j QL,' o ° PLﬂ+1 +J QLn+1
* I=w
o [ J
. Network .
_ . .
O

) P..+i0,,
PLn+JQLn Lnb J Lnb

Figure 5.3: Interconnected network of synchronous machines and the loads

The following algebraic equation gives the relationship between the injected

currents and bus voltages of the transmission network [17], [103]:

I=YV G.7)

where :

<I
_
w2
—t
=
o
<
(¢}
o
[l
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<
@)
=
&
(6)e]
(¢}
w2
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=
o
)
o
=
o
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Y is the bus admittance matrix, where each element is given by
=g;;+ib,,i=12--,nb; j=1.2,---,nb , and Zj is the admittance between

the bus i and bus j. The admittance matrix Y is constructed using the following steps

[16], [17]:

a) The diagonal entries Zi of the admittance matrix are the sum of all the
admittance connected to bus i, including the shunt admittances. Zi is known

as the self-admittance of the bus i.

The equivalent shunt admittance for each load of the system is added to the
corresponding diagonal entries of the admittance matrix in ¥ of Equation

(5.7), 1.e., to the self-admittance of that particular bus.

b) The off-diagonal entries 17, ; of the admittance matrix are the sum of the

negatives of all admittance between bus i and bus j, known as the transfer

admittance between bus i and bus j.

Equation (5.7) may be written in partitioned form as [17], [103],

IL YLG YLL VL
where the subscript ‘G’ is used to denote generator buses and the subscript ‘2’ is used

to denote the remaining load buses.

Equation (5.8) can be written as:
(5.9

Since loads are represented by constant impedances, the load buses have zero

injection currents, i.e., I, =0 ; whereas the generators inject currents into the
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generator buses. Thus, eliminating ‘7L in the above equations, the generator currents

can be represented as:

IG YGG _YGLYL_LIYLG )VG

Il
~

I; =Y,V (5.10)

where Y, = (Y,, —Y,,Y,,'Y,.) is the reduced admittance matrix of the power system

network and V,, represent the terminal voltages of the generators. Thus, the system

admittance matrix is reduced to generator buses and the load buses are eliminated.
The stability analysis is performed on the reduced power system containing only the

generator buses interconnected to each other.

5.2.3 Generator Network Interface

The currents and voltages in Equation (5.10) of the network are in the common
reference frame, called the D — Q axes, which rotates at the synchronous frequency.

Equation (5.10) can also be represented as:

ID1+jIQ1 ‘/tDl+j‘/tQ1
IDn+jIQn ‘/tDn+j‘/th

where I, =Ige’™ =1, +jl,, and V, =Vge' =V, +jV, , i=12..n . The

0i »
generators currents and voltages in Equation (5.11) are in D — Q axes reference

frame. The state equations for each generator of an interconnected power system
given in Equations (5.1-5.4) have their own individual d, — g, frame of reference
synchronously rotating with its own rotor. In order to study the behavior of a multi-
machine system, it is necessary to interface all machines along with the network, as
represented in the Figure 5.4 [17]. This is possible either by transforming the
generator state variables to the common reference frame or the network equations to

the individual machine reference frame.
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However, transforming the network equations onto the machine reference frame
has an advantage that the generator variables are unchanged and application of control
techniques is uncomplicated. There are two methods for transformation of the

network Equation (5.10) into the individual machine frame of reference.

5.2.4 Method 1 of Transforming Network Equations To Individual Machine

Frame

Consider the phasor diagram shown in Figure 5.5 [17]. The common reference frame

is represented by the D — @ axes and the individual machine reference is represented
by the d; —g, axes. O, is the phase angle difference between the D axis and the ¢,

axis.

Load

ot

Gi ) Y Gj
D —
A —_— —_—
. =Y To other
G red " G machines ' Gj

—»

Machine

Exciter

I

I

I
Vo l Efdz |
Interface Machine |
I

I

I

I

I

(Electrical)

I
i

Di> Qil Idi’Iqi
] L
I
I

Swing
S, Equations

Figure 5.4: Multi-machine generator network interface representation
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From Figure 5.5, the relation between the two coordinate axes is obtained as:

Vipi _ sind,  cosd; || Vi
Vo || —cosd, sing ||V,

= Vi +] VrQi = (Sin 55thi +cos 55qui )+J (_ COSéi‘/tdi +sin 5i‘/tqi)

=V ]V =V +i Ve

Thus,

= o je .
Vi =Vae " =V +] VtQi

. j(0:—7/2) j(0:—7/2)
=V, ]V, e/ =y,

Similarly the current variables can be transformed as:

iV . . j(0;—m/2 j(0;—m/2
I =1ge"" =1y +]1y :(Idi+JIqi)e](l " ):Iie](l "

A Q-axis
gi-axis
thi
N\
N\
Vaiks—— A ——— Vi
/
=
/
S,  , |
// VtDi D-axis
/
thi
di-axis

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

Figure 5.5: Transformation for interfacing network reference with machine

reference-method 1
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From Equation (5.15)

j(O:—712)
rDz + J 1Qi (‘/tdl + J tqi )e '

Substituting the stator algebraic equations, V,;, = x,1 :V,, =E, —x;I, in the

above equation, the following is obtained,

o—7/2
‘/rDi er [‘xqzlqz +J (qu xdzldz)] e (517)

Substituting 1, =1, —j I, in Equation (5.17),

i il ’ : j(0;—7/2
Vipi +1 Vf i :[xqilqi t) [Eqi — x5 (I _JIqi)]]ej( e

i~ (5.18)

, jo . ’ j(O0:—7l2)
E ‘—del. +(xqi—xdi)1qie !

J(6-ml2)

Replacing V,,, +j V,, with V, and I,e with I, in Equation (5.18), it can

Qi
be written in D — Q axis reference frame as:
j(0:—7ml2)

‘7Gi = E; ] l _delIGl +(x x:ti)lqie ' (5.19)

The above equation gives the generator voltages in D — Q axis reference frame. In

matrix form Equation (5.19) can be written as
Vo =eE, —jx\I; +[x, —x;1/ 9721, (5.20)

— , = . . . i ’ ’
where, V, Eq, I;, 1 , are column matrices and the coefficients ¢’°, x/,, [xq -x,1,

¢’®=7'2 are diagonal matrices. Substituting Equation (5.20) in Equation (5.10), the

generator current vector becomes:

T v S o7 rq j(0-7l2)

I, =Y, ,[e"E, —)x,1;+[x,—x;]e 1,1,
or,

I, = (?_lred +jx, )71 [eng; +[x, —x] e_,-(a_;;/2>1q] (5.21)
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Applying the transformation, Equation (5.21) is converted to the d, —¢, axes

reference frame as follows:
JxI2=87 _  j(xl2-8) (——1 ., )*1 [ S ryiS-ml2) ]
e I;=e Y v +)x,) |e7E, +[x,—x,]e I,

[=/">2Y, [e”E] +[x, —x,] /7?1 ] (5.22)

where Y, =(I7_1red +jx, )71 and [=e/ ™70 =1, +j1,. Equation (5.22) can be

written in detail as follows:

. i(/2-8,) _ _
I, l,+]1, "0 0 Yy - Yy,
D= : = 0 0 X
In Idn +qun 0 0 ej(”/2_5n) del den
g o [E ‘0 0
e gl X~ Xa
o . 0 s+ 0 0 X
iOn ’ ’
0 0 &™|E, 0 0 x,—x,
TP g o |z,
0 0 :
0 0 e/ 2]

qn

Therefore, in general, output current of the i” generator in n machine power

system can be expressed in d; — g, axes as:

Js.

g } (5.23)

248 )

I =1,+]1, ZZZI:f[E;fe +(xq}.—x;,)1q,-e

=1

where 0, =9, —,.

5.2.4.1 Initial conditions for the dynamic system

To perform the power system dynamic analysis, the fixed inputs P,;, V., and initial

conditions of all the dynamic states are computed [17]:
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Step 1: From the load flow, compute the generator’s currents:

T =1 e z% izl (5.24)

Gi

where F;, , and Qg , and are the generator power outputs. VG*I. is the complex

conjugate of VGZ..

Step 2: Compute 0., which is computed from Equation (5.19) as follows [17];

Equation (5.19) can be written as [17]:

i o 06 - s Jv: ’ j(0:—7m/2)
Vae ' =E et —)x,lge +(qu. —xdi)lqie !
o ., iv; ’ j(6;=m/2) ,J6;
= Ve '+ x, e —(xqi —xdi)lqie ! —Eqie t=0
j6: ., . j(8:—m12) , j(6:—m12) ;6
= Vet +]x, U, +]Iqi)e ! —(xqi —xdi)lqie ! —Eqie =0
9. . i(8i=712) i(8i=7/2) iS;
= Vyel+jxie" —x, 1 e —E e’ =0
6. . Jj(&;—ml2) . j(0;—m/2)
= Ve ' +xgl e —Jxlge (5.25)
. i(0:—1/2) i(0:—7m/2) 0
+) xqildiej ' _xqilqiej l _E;iejl =0
A . . j(O0:=712) , jo: . ’ J(0-mi2) _
= Ve ’+jxqi(1di+]1qi)e ! —E_e ’—j(xqi—xdi)ldie ! =0
jo: . . iO=ml2) _ - j6; ’ jo;
= Ve +jqu.(1dl. +]Iq[)e ! —Eqie ! +(xq[ —x;) e
Rearrange the terms as follows:
Ve +ix, I5e" = (E, +(x, —x,)1, )’ 5.26
Gi€ qui Gi€ — \Lyi Xgi — Xai) L ai (5.26)

The Right hand side of Equation (5.26) represents the voltage behind the

impedance jx, having an angle O, which can also be computed as angle of

1
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6, %, . . .
(VGiej "X, 1e’ y’). The phasor diagram representation of the stator algebraic

variables for computing &, is shown in Figure 5.6.

0,= angle of (VGiejg" +Xx, IGl.e”" ), i=1,-,n (5.27)

Step 3: Compute V,;,V,., I, I for the machines from Equations (5.15-5.16)
as:

Ve =V, 41V, e or (V,, +V,, )= Ve TP o (5.28)

IGiejyi = (Idi +] Iqi)ej((yi_”/z) or (Idi +] Iqi): IGiej(}/i_aiJr”/Z) si=1-,n (5.29)

Figure 5.6: Phasor diagram of stator algebraic variables for computing the rotor
angle J; method-1

Step 4: Compute E; as:
Vi = Eyy = x4l or (5.30)

E;i:‘/)‘qi+x;ildi’ i=1-,n (531)
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Step 5: Compute E,,; from Equation (5.3) after setting the derivative equal to

zero (under steady state).

E,i=E +(x;=x),;, i=1--n (5.32)

Step 6: Compute V, ., from Equation (5.4) after setting the derivative equal to

Z€10.

E. .
S H Y, il (5.33)

Ai

Vv

ref i

Step 7: The mechanical states @ and P, can be computed from Equations

mi

(5.1-5.2) by setting the derivatives equal to zero.

@=1, i=1,,n (5.34)
P. =P, ,with P, =0

=1,V +1,V,,

=1,x, 1, +1,(E, ~x,I,)
P,.=E.I.+(x,=x)I,I,., i=1--n (5.35)

This completes the computation of the initial conditions of all the dynamic states

using this type of transformation.

5.2.5 Method 2 of Transforming Network Equations To Individual Machine

Frame
The individual machine coordinates d;, —¢q; may be related to the common system
coordinates D—Q as shown in Figure 5.7 [104], where O, is the phase angle
difference of the d; axis with respect to the D axis or the g; axis with respect to the

Q axis.
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The orthogonal transformation is given by

Vipi coso, sind; || Vy
=l . (5.36)

V| |-sing, coss ||V,
From Equation (5.36) the relationship between the two coordinate variables is

obtained as:

Vi +] VzQi = (thi +] qui)é@ (5.37)

Similarly the current variables can be transformed as:

I, +jIQi :(Idi +j1q,‘)eij5i (5.38)
4 Q-axis
gi-axis
thi
AN
AN
Vaiee —— 77— — — Vi
7
/
/ |
/ ]
51 y / Vipi D-axis
/7
Vidi
di-axis

Figure 5.7: Transformation for interfacing network reference with machine
reference-method 2

Following the method explained in Section 5.3.1, the generator voltages are

derived using this transformation as [104]:

— r o j(ml2-6;)

V= Ee SR NI P (5.39)
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Rewriting the Equation (5.39) as,

i6: ,iteI2-8) i9; (5.40)

Ve ' =E e

7Y
qi €

— Xl +('xqi _'xdi)lqie

,Jé'l

Rearrange the terms in Equation (5.40), by adding and subtracting jx,/ e on
right hand side,
Vciejgi +] xquGiejyi = (E;i +(x, - Xy ) )61(2—51‘) (5.41)

Comparing Equation (5.19) with Equation (5.39) and Equation (5.26) with

Equation (5.41), it is observed that the angle between internal quadrature axis voltage

and D axis is &, with the first transformation whereas it is equal to 5—51 when using

the second transformation.

Remark: Since O, is the angular position of the rotor in electrical radians with

respect to the synchronous rotating reference, the rotor angle Equation (5.1) does not
differ when using the first transformation as the equation has been developed with the

same concept. However, when the second transformation is used, the new angular

position is 57 0, . As such the rotor angle equation is modified as follows:

@

=0~ (5.42)

Equation (5.1) becomes
5, = -y (@, ~1) (5.43)

Note: When the second transformation is utilized, the rotor angle equation is

given by Equation (5.43), and the remaining Equations (5.2-5.4) remain same.

Proceeding, the generator voltage Equation (5.39) can be written in matrix form as,

V. =e'f(”/2_5)E; —j X, +(x, —x} )e‘"ﬁlq7 (5.44)
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Substituting Equation (5.44) in Equation (5.10) the generator current equation will be:

I;=Y,,[/ """ F —jxI;+(x,—x,)e°I,] (5.45)
or,
I, = (17’1,6(1 +jx )_1 [ej(”/z_‘s)E; +(x, =X )e”ﬁlq] (5.46)
I, =Y, [/ PFE, +(x, - x))e °I] (5.47)
Applying the transformation, Equation (5.47) is converted onto the d; —q,axes
reference frame as follows:
[=1,e" =Y, [/ PE +(x,-x))e °I ] (5.48)
where I=1," =1, +j1,
Equation (5.48) can be written as:
I, Id1+j1q1 ej51 0 0 __de Ydm
e : =0 . 0 c N
In Idn +j]qn O O ejan )7dnl _dnn
JUTV 0 0 [E,
0 . 0 T (5.49)
0 0 e/ | E
L= an
, -j5,
Xg—Xy 0 0 e 0 0 |1,
0 0 o . 0
0 0 x,-x,| 0 0 e’|I,

From the above equation (5.49) the output current of the i™ generator is expressed as:

, = , i(wl2+8;) , 5,
I=1,+jl, :ZYdU[quelﬂ P (= e ,J (5.50)
j=1

where J, =6, — 0.
139



Note: Comparing the two generator currents of Equations (5.23) and (5.50) derived

with the two different transformations, the variation lies in the rotor angle difference

6, and J; between the two equations.

5.2.5.1 Initial conditions for the dynamic system

The initial conditions for the dynamic states are computed in a method similar to that
explained in Section 5.3.4.1. However, Step 2 and Step 3, i.e., Equations (5.27-5.29)

are modified according to the 2" method of transformation.

Step 2: The individual rotor angles &, are computed from the stator algebraic
equation given in Equation (5.41). The phasor diagram representation of the stator
algebraic variables for computing &, in this 2™ method of transformation is shown in

Figure 5.8.

4Q

Figure 5.8: Phasor diagram of stator algebraic variables for computing the rotor
angle J; method-2
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The Right hand side of Equation (5.41) represents the voltage behind the

impedance jx, having an angle %—é} which is computed as the angle of

76: j7-)
(VGie Ctx, Lget )
.9. i .
%_ 8, = angle of (VG,eJ f X, IGie”/l )’ or

=%~ angle of (A +x,, e’ ) ictn (5.51)
The above equation gives the initial values of the individual machine rotor angles

in the 2™ method of transformation.

Step 3: Compute V.V,

i » Lai» 1,; as follows:

VGiejHi = (Vrdi +] qui)e_j(% or (Vrdi +] qui): VGiej(HiJrﬁi), i=1,--,n (5.52)

J¥+6;)
o

e’ = (1, +i1,)e% or (1, +i1,)=1ge i=1-.n (5.53)

The rest of the steps for computing the initial values remain unchanged.

5.3 Linearized System of Multi-Machine Power System

The linearized Phillips-Heffron model [7], [18] was proposed for the analysis of
power system oscillation stability and control. The linearized model for a power
system is derived by linearizing the nonlinear equations of the multi-machine power
system. The nonlinear equations consist of the differential equations of the
mechanical system, electrical equation of the exciter, field winding, and algebraic

equations of the stator and network in the multi-machine power system.

The following equations constitute the linearized model of the multi-machine
system when the transformation of network variables is performed by first method

[17].

Ad = w,Aw (5.54)
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Aé =M "' (AP, — AP, — DAw) (5.55)

AE, =T, '(-AE, —(x, —x; )Al, + AE ;) (5.56)

AE, =T, (-AE,, + K ,(AV,, —AV,)) (5.57)
where

AP, =1 AE, +1 ,(x,—x,)Al, + E_ Al +1,,(x,—x,)AI, (5.58)

AV, =x,Al, AV, =AE, -x,Al, (5.59)
and,

AS=[AS, AS, - AS,[

Aa):[Aa)1 Aw, --- Aa)n]T
AE =[AE, AE, - AE,[.
AE, =[AE,, AE,, AE,, T
Al =[AI, Al Aldn]T’
AL =[A1, Al ar T,

AV, =[av,, AV,

tq2

AV, =[AV, AV, - AV, [
Vti = \}thiz +thi2 ’
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M =diag(2H,), D = diag(D,), T, = diag(T,,)

x, =diag(x,), x, =diag(x,), x, = diag (x};)

1, =diag(l ,g,....d ) 1,4 = diag (1 ,g,.....1 40) 5

10> 1, are the values of 1,1 respectively at the operating point.

i=1,---,n , nisthe number of generators.

From Equation (5.23) the generator current in d — q axes is,

. N — , j(ml2s , 5.
I,=1,+]jl, :ZYM[EW. P +(xqj —xdj)lqj e’ ”}
j=l
n_ (/240 .=0. i(0:-0;
j=1
Denoting
_ By 5
¥ =Ye 7, (5.61)
1, =realll,), 1, =imag(l,,) (5.62)
0uy =9, =0+ Puy (5.63)
Expanding Equation (5.60) into the d — q axes components,
I,=>Y, [— E; sind,; +(x,; — X)) cos 5(,1:/.14,]
i= (5.64)
I, =YY, [E cos 8, +(x, —x;)sin 8,1,
j=! (5.65)
In linearized form Equations (5.64) and (5.65) can be written as,
Al, :CqA5+EqAE; +M Al (5.66)
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Al, =C,A6+E,AE, + M Al (5.67)

where,

ZYdU[Sln dtj qj_ _xd COSé‘dlj 6]]] -..,n

j;tz

C,; =Y du(sm5dUEq/+( xdj)cos5 I )j=1,2,---,n;i:1,2,---,n

) dij~qj
i#j
(5.68)
Eqij :_Ydij COSé‘dij J=12,-n; i=12,---.n
Mqij _(Ydtj('x xd})Sln5dy) j:1,2,"',l’l, l:1,2,"',7’l
C,. ZYdU[COS5dUEqJ+ —xd s1n§dU qj]
J#:l
C, = du(cos§dUEq]+( xd])smé'dlllq]) j=12,,n; i=12,---,n,
i#]
Edljz_YdljSln5dU j=1’2’---’n; i=1’2’...’n
(5.69)
Mdij =(Yd,](x xdj)cosé'dy) j=12,n i=12,---,n
From (5.66)
Alq :DqA5+FqAEq (5.70)
where
_ -1 _ gl _
Dq —Lq Cq, Fq —Lq Eq,and Lq —I—Mq,
L, =1-Y,.(x, —x,)sind,;, L, ==Y, (x;,—x;)sind,; j#i
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Substituting Equation (5.70) into Equation (5.67) Al, can be written as:

Al, :DdA5+FdAE; (5.71)
where

D,=C,+M,D,, F,=E,+M F,

Substituting Equations (5.70) and (5.71) into Equations (5.55-5.59), the integrated
linearized power system model is formed also known as the Phillips-Heffron model of

the multi-machine power system, and in state space form is given in Equation (5.72)

while the block diagram for the i™ machine is represented in Figure 5.9 [104].

AS 0 w,l 0 0 AS
At -M7'K, -M"D -MTK 0 Aw
| T , -1 1 r -1 ’ 7 -1 ’ (572)
AEq - Tda K4 0 - Tda K3 Tdo AEq
AE.fd _TA_IKAKS 0 _TA_IKAKG _TA_1 AE.fd
where,
K, =1I,(x,—x;)D, +E,D, +1,,(x, —x,)D,
(5.73)
Kz =Iq0 +Iq0(xq _x;)Fq +E;1Fq +Ido(x‘1 _x;)F‘I
K,=(x, —x;)D,
(5.74)
K,=1+(x,—x,)F,
—v( 'D,)
Ks=Vig VX, D, = VX, D,y
(5.75)

K =Vle(Vdoquq +Vq0 _Vox;Fd)

q

The K-constants are the functions of the operating point and system parameters.
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The linearized system of equations for the multi-machine, when the network
variables are transformed by second method are given by the same set of
equations, i.e., Equations (5.54)-(5.75), except Equations (5.54) and (5.63) which are
modified according to Equations (5.43) and(5.50) with respect to the second method

of transformation and are given as:

Ad =-a,Aw (5.76)

045 =0, =0, + By (5.77)

> g
M s+ D, s

Y
Ks;
A 46,
+
< A Ksij e
AE ¢———"—
L+ 5T, K5; + AE’ .
A K 7
6ij

> K

Figure 5.9: Block diagram of i™ machine in linearized multi-machine power system

The state matrix formed from the K -constants computed from using either
transformation will finally give the same set of eigenvalues. The following section

gives the results of the nonlinear simulation of multi-machine power system.
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5.4 Case Study: Multi-Machine Power System

Consider the 3-machine, 9-bus Western System Coordinating Council (WSCC) power
system [17] shown in Figure 5.10. The system parameters are listed in Table 5.1 and

the generator and exciter data are given in Table 5.2.

’_>100MW
3¢ 7 3SMVAR | x|
OBtk e O
9
5| |
125|\/|WT TQOMW
50MVAR 30MVAR
T 4
Slack ﬁ_ﬁj 1

Bus O

Figure 5.10: 3-machine 9-bus power system

Table 5.1: 'WSCC power system parameters

Impedance
Bus no. R X B./2
Transmission lines Transformer | reactance
1 1-4 0 0.0576
2 2-7 0 0.0625
3 3-9 0 0.0586
4 4-5 0.01 0.085 0.088
5 4-6 0.017 0.092 0.079
6 5-7 0.032 0.161 0.153
7 6-9 0.039 0.17 0.179
8 7-8 0.0085 0.072 0.0745
9 8-9 0.0119 0.1008 0.1045
Loads MW MVAR
1 5 125 50
2 6 90 30
3 8 100 35
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Initially the admittance matrix ¥ of the power system network is formed which is
given by Equation (5.78). The admittance matrix Equation (5.78) includes the
admittance due to the loads. The load flow is performed on the system where the

results are given in Table 5.3 and the transmission line flows are given in Table 5.4.

Table 5.2:

Generator and exciter data

Parameters | Generator 1 | Generator 2 | Generator 3
H (secs) 23.64 6.4 3.01
D 0 0 0
Xgq (pu) 0.146 0.8958 1.3125
x'g (pu) 0.0608 0.1198 0.1813
xq (pu) 0.0969 0.8645 1.2578
T 40 (pu) 8.96 6.0 5.89
K, (pu) 30 30 10
T, (sec) 0.05 0.05 0.05

Bus 1 is taken as the slack (swing) bus for the load flow.

Table 5.3:  The load flow results of the WSCC 3-machine 9-bus system
Bus Voltage (p.u.) Ps;(p.u.) | Qs(p.u.) | =P, (p.u.) | —Q.(p.u.)
1 | (swing) | 1.04 0.7164 | 0.2705
21 (P-V) 1.02529.28° 1.6300 | 0.0665
3| (P-V) 1.02524.665° 0.85 -0.1086
4| (P-V) 1.02582 — 2.22°
5(®P-Q |0.9956£—-3.99° 1.25 0.5
6 | (P-Q) 1.01272-3.7° 0.9 0.3
7| (P-Q) 1.02582 3.72°
8 | (P-Q) 1.0159.0.73° 1.0 0.35
91 (P-Q) 1.0324,1.97°
Table 5.4: The power flows in each transmission lines
Transmission lines P Q
1-4 0.7164 | 0.2705
2-7 1.6300 | 0.0665
3-9 0.8500 | -0.1086
4-5 0.4094 | 0.2289
4-6 0.3070 | 0.0103
5-7 -0.8432 | - 0.1131
6-9 -0.5946 | - 0.1346
7-8 0.7638 | - 0.0080
8-9 -0.2410 | - 0.2430
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(5.78)

From the load flow results, the initial operating point is computed. The following

two tables give the initial conditions computed as given in Sections 5.2.4.1 and

5.2.5.1 with respect to the two transformations. Table 5.5 gives the initial conditions

when the first method of transformation is used. Table 5.6 gives the initial conditions

when the second method is used. The values are in p.u. except where mentioned.

Table 5.5:

Table 5.6:

Initial conditions computed using the first method of transformation

State variable | Machine 1 | Machine 2 | Machine 3

O inradians | 0.06258 1.06637 0.94486
Eq 1.05636 0.78817 0.76786
E, 1.08215 1.78932 1.40299
P, 0.71641 1.63 0.85
V. 1.07607 1.08464 1.16529

Initial conditions computed using the second method of transformation

State variable | Machine 1 | Machine 2 | Machine 3
O inradians | 1.50821 0.50443 0.62593
Eq 1.05636 0.78817 0.76786
E, 1.08215 1.78932 1.40299
P, 0.71641 1.63 0.85
Vs 1.07607 1.08464 1.16529
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The power system is reduced to the generator buses by eliminating the load buses

as described in Section 5.2.2. The computed reduced admittance matrix Y, of the

transmission network is given by Equation (5.79) using which 17(, is calculated from

Equation (5.22) and given by Equation (5.80).The reduced system containing only the

generator buses is depicted in Figure 5.11.

1.1051-j4.6957 0.0965+])2.2570 0.0046+)2.2748
=[0.0965+)2.2570 0.7355-j5.1143 0.1230+] 2.8257 (5.79)
0.0046+j2.2748 0.1230+2.8257 0.7214-]5.0231

with,
-j17.3611 0 0
Y, = 0 -j16.0 0
0 0  -j17.0648

[j17.3611 0 0 0 O 0
Y, = 0 0 0 jl16.0 O 0
0 0 0 0 0 j17.0648

[j17.3611 0 0
0 0 0
7 - 0 0 0
Lo 0 j16.0 0
0 0 0

0 0 j17.0648]
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Figure 5.11: The reduced power system network

0.8455-]2.9883
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0.2871+j1.5129 0.2096+] 1.2256
0.2133+j1.0879
0.2133+j1.0879 0.2770-] 2.3681

0

11.2820
+]5.5882

0

-11551

+] 9.7843
24371

321539

(5.80)

Each generator in the system has four state variables (A5, Aw, AE;,AEfd ) The K-

constants are computed and the state matrix is formed. In matrix notation, the
differential equations describing the linearized power system is given in Equation

(5.81). The numerical values are computed using the initial operating point values
listed in Table 5.5.

The state matrix formed, using the values in Table 5.6, is given by Equation

(5.82). The two matrices only differ with respect the first six columns. The



magnitudes of the computed values in these columns are same, however, the signs are

different. This is due to the difference in the signs of the rotor angle differential

equation and J,,; as explained in Section 5.3. The values in the other columns remain

unchanged.

The dynamic properties of the power system are determined from the nature of the

eigenvalues of the state matrix. Consequently the eigenvalues computed from either

state matrix give same results. The eigenvalues are listed in Table 5.7. The power

system consists of real and complex eigenvalues. The system is stable as all the

eigenvalues have negative real part.

40, 0 0 0 3770 0 0 0 0 0o o0 o 49
49, 0 0 0 03770 0 0 o 0 0 0 |49
495 0 0 0 0 0377 0 0 0 0 0 0 | 49
Aay -0.0501 0.0313 0.0187 0 0 0 -0.0527 0.02 00125 0 0 0 Aoy
Adwy 0.1202 -0.175 0.0548 0 0 0 -0.0843 -0.2426 0.0332 0 0 0 || 4o,
Aoz | 10178 01396 -03176 0 0 0 -0.0651 0.1115 -0.3926 0 0 0 || 4oy
AE;,1 “1-00031 0 00031 0 0 O -0.1314 0.0119 0.0112 0.1116 0 0 AE'ql
AE’qz 0.2034 -0.3174 0.114 0 0 0 0.0137 -0.5219 0.1285 0 0.1667 0 AE;IZ
AE;ﬁ 0221 0.176 -03969 0 0 0 00718 0214 -0.6287 0 0 0.1698 AE;]3
Ak, 3.8138 5.0469 -8.8606 0 0 0 -600.108 0.2529 -0.7747 -20 0 0 | AE,,
AE 34318 -16.1255-18.1925 0 0 0 -274.56 -277.887-117.694 0 -20 0 |AE,,
AE 41 15.2726 10.4271 -25.6997 0 0 0 -99.6703-40.7536-85.1017 0 0 -20 JAEg,
(5.81)
o 0 0 -377 0 0 0 0 0 0 0 0 |
0 0 0 0 -377 0 0 0 0 0 0 0
0 0 0 0 0 -377 0 0 0 0 0 0
0.0501 -0.0313-0.0187 0 0 0 -00527 002 00125 0 0 0
-0.1202 0.175 -0.0548 0 0 0 -0.0843 -02426 0.0332 0 0 0
-0.178 -0.1396 03176 0 0 0 -0.0651 0.1115 -0.3926 0 0 0 (5.82)
00031 0 -00031 0 0 O -0.1314 00119 00112 0.1116 0 0
-0.2034 03174 -0.114 0 0 0 00137 -0.5219 01285 0 0.1667 0
-0221 -0.176 03969 0 0 0 00718 0214 -0.6287 0 0 0.1698
-3.8138 -5.0469 8.8606 0 0 O -600.108 02529 -0.7747 -20 0 0
-34318 16.1255 18.1925 0 0 0 -274.56 -277.887-117694 0 -20 0
|-15.2726-10.427125.6997 0 0 0 -99.6703-40.7536-85.1017 0 0 -20 |

Two zero eigenvalues are obtained due to the redundant state variables [2], [17].

The state matrix formed from the state equations uses absolute changes in machine
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rotor angle and speed as state variables, and the system matrix does not contain an

infinite bus thus, having no reference for the angles.

Due to the lack of uniqueness of the absolute rotor angle one of the zero
eigenvalue is formed. The rotor angle redundancy can be eliminated by choosing one
of the machines as a reference and expressing the other machine angles with respect
to this reference. With such a formulation the order of the system will be reduced by

one. The second zero eigenvalue is associated with zero damping.

The modes having low damping ratio contribute to the power system oscillations
in the event of a disturbance. There are two pairs of complex conjugate eigenvalues
having low damping ratio. The modes 4 and 5 have low damping ratio of 0.0289
(0.3384/11.7007) with frequency equal to 1.8622 (11.7007/2x) Hz and similarly the
modes 6 and 7 have a low damping ratio of 0.0376 with frequency of 1.3096 Hz. In
order to determine which states contribute dominantly to the modes, the participation

factors are computed.

Table 5.7:  Eigenvalues of WSCC power system

No. Eigenvalues Damping Ratio Frequency
1 -19.5077 1 0
2 -17.0406 1 0
3 -15.6814 1 0
4 -0.3384 +511.7007 0.0289 1.8622
5 -0.3384 - 5 11.7007 0.0289 1.8622
6 -0.3095 + 5 8.2283 0.0376 1.3096
7 -0.3095 - § 8.2283 0.0376 1.3096
8 -4.4453 1 0
9 -2.8411 1 0
10 -0.4701 1 0
11 0 - -
12 0 - -

Participation factors determine which state variables significantly participate in a
selected eigenvalue [2], [17]. The right eigenvectors account for the mode shape, as
explained in Section 4.5. The left eigenvectors define the state variable associated
exclusively with the mode. The right and left eigenvector are computed as explained

in Section 4.5. The participation factors can be seen as right eigenvectors weighted by
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left eigenvectors. The participation factor of the k" state variable in the it" mode is

defined as: p,=@.¥, »i=1,--.n, k=1,--.n, where, ¢, is the k™" entry of the
right eigenvector ¢ and y, is the k'™ entry of the left eigenvector y,. @, is the
measure of the activity of k" state variable in the i*" mode and y, weighs the

contribution of this activity to the mode. In matrix form the participation matrix is:

P=[p, p, - p,l (5.83)
with
Pii PV
P _ (N
pi=| . |= :
D PV

The product p,. measures the net participation. The participation factor is a

dimensionless quantity. The sum of the participation factors associated with any mode
Z p,; or with any state variable Z p,; 1s equal to 1. The participation factors can be
i=1 k=1

further normalized by making the largest of all the participation factor values equal to
unity. Table 5.8 gives the normalized participation factors of all the eigenvalues and
Table 5.9 gives the dominant states of the eigenvalues concluded from the
participation factors. On observation of the participation factors in Table 5.8 and
Table 5.9, it is noted that the machine 3 rotor angle and speed contribute more to
modes 4 and 5, whereas, machine 2 rotor angle and speed contribute mainly to modes

6 and 7.

In this WSCC system, generator 1 is chosen as the slack bus or the reference bus.
As such absolute rotor angle and rotor speed state variables of this machine contribute
to the zero eigenvalues. This is also indicated while calculating the participation
factors as given in Table 5.8. For example, the data given in columns 11 and 12 in
Table 5.8 correspond to the eigenvalues 11 and 12 in Table 5.7. The state variables
having highest participating factor in these modes are deducted from the respective

rows having the value one. Similarly the first eigenvalue -19.5077 in Table 5.7
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corresponds to the first column in Table 5.8. The highest normalized participation

factor value given by one is in the last row which corresponds to the state variable

E ;. As such this state variable contributes more to this eigenvalue.

Table 5.8:  The normalized participation factors of all the eigenvalues

Eigenvalues
States 1 2 3 4 5 6 7 8 9 10 11 12
o, 0 0 0 0 0 | 04004 | 0400 | © 0 0 0 1
0, 0 0 0 |0.1868 | 0.1868 | 1 1 0 0 0 0 |02979
0, 0 0 0 1 1013810138 | 0 0 0 0 | 01548
@, 0 0 0 0 0 | 04004 | 0400 | © 0 0 1 0
@, 0 0 0 |0.1868 | 01868 | 1 1 0 0 0 02979 | 0
w, 0 0 0 1 1| 013810138 | 0 0 0 01548 | 0
Eél 0 0 [0277] o0 0 0 0 1 0 0 0 0
E;z 0 0178 | 0 0 0 [01131 0113 | 0 1 {0097 | o 0
Eé3 0 0 0 | 0066 | 0.066 0 0 0 |o01082| 1 0 0
E,, 0 0 1 0 0 0 0 |02795| 0 0 0 0
E;, [o01052] 1 0 0 0 0 0 0 |01564 | © 0 0
E ;s 1 [0109] o 0 0 0 0 0 0 0 0 0

To increase the damping of these modes, two PSS’s are placed at machine 2 and 3
thus, providing a supplementary damping in the excitation of the generators in phase
with the rotor speed. The PSS parameters are designed using phase compensation
method as explained in Chapter 4, to increase the damping ratio of the concerned
modes to 0.1. PSS at machine 2 is designed to increase the damping ratio of the
modes 6 and 7, and PSS at machine 3 is designed for increasing the damping ratio of
modes 4 and 5. The parameters of the two PSS are given in Table 5.10. The
eigenvalues computed when the PSS is included is shown in Table 5.11. Since each
PSS contributes three states, the order of system has increased from 12 to 18 when the
two PSS’s are included in the power system. The damping ratios of the concerned
modes have been increased as shown with the PSS’s placement in the system. The
eigenvalue analysis has been performed on the system with and without the PSS. It is

seen that the PSS improves the damping of the concerned modes.
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Table 5.9: Dominant states of the eigenvalues

No. Eigenvalues Dominant states

1 -19.5077 E s

2 -17.0406 E,,

3 -15.6814 E g

4 -0.3384 + 5 11.7007 w,

5 -0.3384 - 5 11.7007 0,

6 -0.3095 + j 8.2283 ,

7 -0.3095 - § 8.2283 0,

8 -4.4453 E,

9 -2.8411 E,

10 -0.4701 E,

11 0 o,

12 0 o,

Table 5.10: Parameters of the PSS’s
Gain 1 T, T T,

Machine 2 | 1.8807 | 0.3002 | 0.0492 | 0.3002 | 0.0492
Machine 3 | 3.5843 | 0.3001 | 0.0243 | 0.3001 | 0.0243

Table 5.11: Eigenvalues of the power system with PSS’s

No. Eigenvalues Damping Ratio | Frequency | Dominant states
1 -54.6188 1 0
2 -26.8409 1 0
3&4 | -21.9227 +35 10.6709 0.8991 1.6983
5&6 | -15.7227 +5 5.8101 0.938 0.9247
7 -15.6981 1 0
8&9 |-1.3138+ 7§ 11.1949 0.1166 1.7817 5, o,
10&11 | -0.6606 +7 8.4186 0.0782 1.3399 S, @,
12 -4.4484 1 0
13 -2.6394 1 0
14&15 | -0.4258 +5 0.2684 0.8459 0.0427
16 -0.1 1 0
17 0 - -
18 0 - -
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To evaluate the performance of the closed loop system with the designed PSS,
nonlinear simulations are conducted. The nonlinear simulation is conducted in the

following procedures.

Step 1)  Initially the load flow is performed using the generated powers, load

powers, and transmission network data, to obtain the steady state operating point.

Step2)  The initial conditions of the dynamic states are computed from the

operating point and the machine data.

Step3)  Using the initial conditions the nonlinear dynamic equations of the

power system are simulated.

The multi-machine power system is simulated using the nonlinear differential and
algebraic equations of the power system of Equations (5.1-5.4) and Equation (5.23) or
(5.50). The simulations have been carried out by numerical integration and as well as
by MATLAB/SIMULINK. The numerical integration of the differential equations is
performed using ode45 functions in Matlab. The program is written in M-file. The
MATLAB/SIMULINK block diagram is given in the Appendix C. Both simulations
approaches give same results. Under steady state, when no disturbance is present in
the system, the responses of relative angles and speeds are given in Figure 5.12. Since
the power system has no infinite bus, and, as such no reference, the responses are

given relative to each other, and in this study it is with respect to machine 1.

In Figure 5.12, 8, =0, —0,, is the relative angle between machine 1 and 2.
Similarly the other parameters, o, ,@,,, and @,, are defined. Now the disturbance is

initiated in the form of three phase fault near bus 7 at the end of line 5-7, of the power
system in Figure 5.10. The three phase fault is applied at 0.1s and cleared after 0.1s.
During fault, since V, =0, the rows and columns of the admittance matrix of the
prefault system Equation (5.78) corresponding to bus 7 will be deleted [16], [17] and
is given by Equation (5.84). Then the load buses are eliminated and the formulated
reduced matrix is given by Equation (5.85). The power system network during fault

can be visualized as in Figure 5.13 and the reduced system network during fault
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containing only the generator buses, in Figure 5.14. These figures are devised from

the admittance matrices.

1.6}

L 3 ]
1.4 g

08} I -
06} .
04} -

02} .
ln,Iv

Relative angle and speed responses

-0.2

Time (s)

Figure 5.12: Responses of relative angle and speed during steady state operation

(173611 0 0 j17.3611 0 0 0 0
0 160 0 0 0 0 0 0
0 0 -j17.0648 0 0 0 0 i 17.0648
. 33074 13652 -19422
173611 0 0 0 0

-139.3089 +j11.6041 +j10.5107
13652 38138

0 0 0 0 0 0
+]11.6041 -17.8426
7= -1.9422 41018 -1.282
= 0 0 0 0 0
+10.5107 161335 +)5.588

3.7412 -1155

0 0 0 0 0 0
236424 +j9.784
-1.2820 1551 2437
0 0 j17.0648 0 0
+)5.5882 +]9.7843 32154 |

(5.84)
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Figure 5.13: The power system network during fault condition.
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Figure 5.14: The reduced power system network during fault condition
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(5.85)

After the fault is cleared, the faulted line is either switched back to service (i.e.,

the original prefault system is restored) or opened (i.e., postfault system with line 5-7

removed from the network), depending on which the admittance matrix is modified. If

the line is removed for the postfault system as shown in Figure 5.15, then the

admittance matrix of the network is again computed with the line 5-7 removed and

then the reduced admittance matrix is calculated and is given by Equation (5.86). The

reduced postfault system network will appear to be similar to Figure 5.11.

1.1386-j2.2966  0.1290+j 0.7063 0.1824+j1.0637

Y, aeraur =| 0-1290+j0.7063  0.3744-]2.0151

0.1921+j1.2067

0.1824+j1.0637 0.1921+)1.2067 0.2691-j2.3516

159

(5.86)



O
Figure 5.15: The power system network after fault clearance with transmission line
5-7 removed.

The responses for o,,,0,,, power generated by the generators, @,,, and @,,are

shown in the following Figures 5.16-5.20, respectively for three-phase fault. The
damping control effort provided by the PSS signal is shown clearly in the figures in

terms of the overshoot and settling time. The results validate the eigenvalue analysis.
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Figure 5.16: Relative angle J,, response with and without PSSs
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Figure 5.17: Relative angle o,, response with and without PSSs
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Figure 5.18: Generated power response of each machine with PSSs
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Figure 5.21: Responses of relative angles when three phase fault occurs and line is
opened after the clearance of fault
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Figure 5.22: Responses of relative angles with change in mechanical input at
machine 1
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Figures 5.16-5.20 show the responses when a three phase fault occurs at bus 7,

and the prefault system is restored after fault clearance. Figure 5.21 shows the J,, and
0,;, response when the line 5-7 is opened after fault clearance, in the presence of

PSSs. The settling time increases when the postfault system involves the opening of
the line compared the responses in Figures 5.16-5.17, when the prefault system is

restored.

Figure 5.22 shows the rotor angle responses when the disturbance is in the form of
change in mechanical input at machine 1. A step change of 10% is given at

mechanical input P, for a period of 0.1s. The settling time of the oscillations is less

comparatively.

Figure 5.23 gives the responses due to line switching between bus 8 and bus 9
with PSSs. The response of terminal voltages of the three machines due to line
switching is given in Figure 5.24. The observation of the responses of the multi-
machine power system indicates that the PSS provides sufficient damping to the

oscillations.
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Figure 5.23: Responses of relative angles due to line switching in line 8-9
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Figure 5.24: Responses of terminal voltages due to line switching in line 8-9

5.5 Summary

In this chapter, the multi-machine power system modeling is presented. The third-
order synchronous generator model has been used along with the excitation system
model for the multi-machine system. Models of load and power balance equations in
the network are introduced. The transformation of the network into individual

machine reference frame has been discussed.

The linearized Phillips-Heffron model of multi-machine power system is
presented. A case study of multi-machine power system is taken to investigate the
power system stability. Eigenvalue analysis and nonlinear simulations are carried out
to evaluate the effectiveness of the PSS control in enhancing the damping of the
oscillatory modes. The following chapter presents the mathematical modeling of

multi-machine power system with IPFC.
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CHAPTER 6

MULTIMACHINE POWER SYSTEM WITH IPFC

6.1 Introduction

Large power systems typically exhibit swing modes which are associated with the
dynamics of power transfers and involve groups of machines oscillating relative to
each other due to inadequate system damping. Traditionally, PSS’s have been
designed individually for each generator that is likely to be affected by these
oscillations to dampen the oscillations. However, due to the complexity of present day
power systems, it experiences multiple modes of oscillations with different
frequencies; therefore, the design of an effective PSS has become extremely difficult.
In this interest, FACTS devices were installed in the system to improve the
transmission capability and additionally utilized for damping of power system swing

oscillations.

IPFC based damping controller design requires adequate mathematical
representation of power system including the FACTS device for power system
stability studies. In this chapter, the dynamic models, both nonlinear and linearized,
for multi-machine system installed with IPFC are presented. The effectiveness of the
IPFC based controllers, in controlling the power flow and in damping power system

oscillations is shown by case studies.

6.2 Modeling of Multi-Machine Power System Incorporating with IPFC

In general, it is assumed that in an n-machine power system, an IPFC is installed on
the branches i — j and i — k, as shown in Figure 6.1. Figure 6.2 gives the equivalent

model of IPFC in the n-machine power system.
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Figure 6.1: A n-machine power system installed with IPFC
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Figure 6.2: Equivalent model of IPFC installed in n-machine power system

The network admittance Z is formed before the IPFC has been installed, keeping

n generator nodes along with the nodes i, j, k.
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The network equations are given by:

(6.1)

V., ]T. The dimensions of the

o] [¥, ¥, ¥, 7,V
0 _ Yi Yy Yy Y ‘7;
0 Yki ij Ykk YkG Vk
IG YGi YGj YGk YGG VG
P P 9 R A 7
where I =|lg 1oy =l | » Vo =lVar Ve
vectors ZG’YjG’YkG are Ixn and those of the vectors YGi,I?Gj,_

Y, are nxl,

respectively, and Y, is an nXn matrix. With the installation of IPFC between the

branches i — j and i — k, the network equations are modified as follows:

Vo+I,+1,+Y,.V,=0

YV, =1, +Y,V, +Y;V; =0
YV, +Y Vo~ 1, +Y,5V5 =0
_Gi‘7i + _ijj + _Gkvk + _GGVG = _G

where Z::Y”_yl/_ylk’ Y/j, :Y/j_y/z and Yk;c :Ykk — Vi

From Figure 6.2, the current in the IPFC branches can be written as:

1, =(V,-V

~

I] :(‘7,_ sel — j) seij

s

o+ i V.-V -V ; : 6. MV, jé
lld +Jl1‘1 :(‘/I _Vvel _V])(gl] +Jbl]) :(gtj +Jbl])|:‘/lej t ——lzd ej 1
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(6.4)

(6.5)

(6.6)

(6.7)



I, =(g; +ib)V,(cos, +]sin6,) - 12"” (cos, +j sin6,) 68)

—V;(cos @, +] sin6,)]
Similarly transforming Equation (6.7) and separating the real and imaginary parts:

cos& V cos@. j+b ( V. sin 6, + 2 smﬁ +V. smﬁ}

=g (V cosd, —
(6.9)

gl](V sinf, ———%sin 6, —V;sind, j+b (V cos@, ———4 cos@, =V, cosd, j(6.10)
2

% sin@, +V, sin ij
(6.11)

. m,v . m,v
Iry :gik(Vi cos@, ——=% cos@, -V, cosﬁkj+bik(—vi sin 6, +—=

—2-4 §in@, -V, sin@ j+bi (V cosé, — 2‘} cos@, —V, coséd j

=gu (V sing, —
(6.12)

Substituting the expressions of Equations (6.6) and (6.7), into Equations (6.2-6.4)

the IPFC bus voltages V, V V., can be written in matrix form as follows:

BRI
— Z . 7. _
Z B 1ae1] seik ‘7 ZI‘G B
V=% — 0 le} Yo Vo (6.13)
‘7 Zse[j L " se2 Y
k 1 kG
0 J—
L Zseik
7T B 1
Z seij Zseik Zseij seik
where, y = L Y., + b Y,
ZSe'ij Zseij
1 = —, 1
- = Y, Y, +=
L seik seik
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Substituting the voltages ‘7,.,‘71.,\7k, from Equation (6.13) into Equation (6.5) and
eliminating them the generator currents can be written as follows:

I_G = YG‘7G + YYeleel + YSEZVS‘(EZ (614)
where
Y
Y; =Y5 [YGi Gj YGk]yt_l {jG (6.15)
Yio
Yz,
Y, =—Ys ch YGk]Yt_l _I/Zseij (6.16)
0
— — _ _ _ I/Z?eik
Y, = _[YGi YGj Yo ]Yfl 0 (6.17)
- l/Zseik

The Equations (6.14-6.17) represent the generator currents in terms of the network
parameters, terminal voltages and IPFC parameters on common reference frame.
Considering the machine dynamics, the nonlinear model of the complete multi-

machine power system with IPFC is developed.

6.3 Nonlinear Model of Multi-Machine Power System Installed with IPFC

The i" machine dynamics in n machine power system is given as:

S = (@ -1) (6.18)
— (sz _Pei _PDi) (619)
i Mi
—~7 1 ’ ’
E, = T_'(Efdi —-E, - (xdi - xdi) Idi) (6.20)
doi
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Epi= (B + K,V -V,) (6.21)

fdi
Ai

where,
P,=1,V,+1,V, (6.22)
l=1,+]1,,V, =V, +jV,.. B,=D@-1), (6.23)
Vg =x,1,V, =E, —x,1, (6.24)
where, i =1,2,---n, nis the number of generators

The dynamics of the IPFC is described by Equations (6.25-6.27) which has been

derived in Section 3.3.

The injected voltages are given by:

‘7sel = Vvelejel = %vdcml (COS 01 +J Sin 01) (625)

V., =V,e'” =1y, m,(cos@, +] sin6,) (6.26)

se2

The DC capacitor voltage is given by:

v, = 3,ﬂ(ild cos 6, +1i,,sin 6,) +3&(i2d cos 8, +i,,sin 6,) (6.27)

de de
The network equation described by Equation (6.14) which is on the D — Q axis
frame is transformed into the individual machine reference frame d, — ¢, axis frame
using the second type of transformation as explained in Section 5.2.5. Consequently
the terminal voltages of the generators for the n machine power system in common
axis frame or D — @ axis frame is described by Equation (5.44), which is again given

in Equation (6.28).

Vo ="V — X1, +(x, —x))e I, (6.28)
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Consequently the rotor angle Equation (6.18) is modified as explained in Section

5.2.5 and is given by:
5, = -y (@, ~1) (6.29)

Substituting Equation (6.28) in Equation (6.14),

I, =Y [/ 7*OF +(x,—x))e I, +Y,V, +Y,V,,] (6.30)
where,
A AR IS A 7 R AR A (631
Y, is an n X n dimension matrix, ¥, and Y, are vectors of size n X 1.
In d-q axis form the generator currents Equation (6.30) can be expressed as:
I=e"1, =Y/ > +(x, - x))e I, + YV, +Y,V.,] (6.32)

I=1,+jl,=Ie"

2, .., j(ml2+6-6, , L 066 = = i) = = S
=SV [EL e b (x — e J)+YAjVselej(5’)+YBjVse2e](5‘)]
j=1
(6.33)
Denoting
_ m

=Y (6.34)
_ By — iBg )

G =Ye MY =Y e (6.35)
5dij =0, _5]' +ﬂdij (6.36)
Opi =0, + By +B4; 6, (6.37)
5317 :51‘ +leij +:BB,' +‘92 (6.38)
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Separating the real and imaginary parts of Equation (6.33) the direct and

quadrature components of the generator currents are obtained as follows:

Idi =real(]i), Iqi =imag(ll.)

I,=>Y], [— E) sind,; +(x,; —x;)cos 8,1, +Y,;V, cosd,; +Y,V,,cos 531:/.]

dij” g
=
(6.39)
1,=)Y,; [E;/ cos 0, +(x, —x,)sind, .1, +Y, .V, sind,; + YV, sin 53:7]
=1
(6.40)

Equations (6.18-6.27) and Equations (6.39-6.40) together constitute the nonlinear
model of the power system installed with IPFC. The nonlinear equations of the system
are linearized around the operating point obtained from load flow studies to form the
Phillips Heffron model of the multi-machine power system incorporated with IPFC in

the following section.

6.4 Linearized Phillips-Heffron Model of a Multi-Machine Power System
Including IPFC in State Space Form

The linear dynamic model of the multi-machine power system with IPFC is obtained
by linearizing the nonlinear model around an operating point of the power system.
The operating point is obtained from load flow analysis. The linearized form of

Equations (6.18-6.24) is as follows:

Ad = o,Aw (6.41)
Ad =M "' (- AP, — DAw) (6.42)
AE, =T} '(-AE, +AE,,) (6.43)
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AE, =T, (-AE, +K,(-AV,))

where
AP, =IqOAE; +1,,(x, —x,)AI, +E;Alq +1,(x, —x;)AIq
AE, :—AE; —(x, —x,)AI,
AV, =x Al AV, =AE, -x,Al,V, =V, +]V,

and,

AS=[AS, A5, - AL, Aw=[Ao Aw, - Aol

n

AE; = AE;I AE;z AE;n]T’ AEfd = [AEfdl AEde AEfdn ]T
AId :[Aldl AIdZ Aldn]T’ AIq :[Alql NqZ Aan]T’
AVzd = [Athl Athz Athn ]T’ Aqu = [szql Aquz AV,

AV, =[av, AV, - AV [, av, =\av,+av,,
M =diag(2H,), D = diag(D,), T, = diag(T,,)

x, =diag(x,), x, =diag(x,), x, = diag (x};)

1, =diag(l g, d ,0) s 1o = diag (1 ,g,.....1 40) 5

10> 1, are the values of 1,1 respectively at the operating point.

i=1,---,n , nisthe number of generators.
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The d — q axis components of the generator currents Equations (6.39)-(6.40) are

linearized and represented in matrix form as:

Al, =C,A6 +E,AE, + M ,Al + P,Av, +G,Am, + H , A6,

(6.48)
+G ,Am, + H ;A0,
Al,=C A6+ EAE, +M Al +PAv, +G,,Am, +H  AD, (6.49)
+G ,Am, + H , A0, .
where,
Cov=2"Y ;,»j[cosé'd,»jE;j +(x s1n5dlj qj] mde (YdUY s1n5AU)
2 J=1
1 ( ) ) o
_EmZVJLZI V) Yp;sindy, ) i=12,--,n
J
Cuy —Yd,j(cosé‘dUE +( —xd )smé‘dulqj) =12,-,mj=12,-nm
i#]
Ed,-j :—Yd,ij Sil’lé‘dij i:1,2,"',l’l;j:1,2,"',n,

M, —(Yd'lj(x — X, )Cosé'dy) i=12,--,n;j=12,---,nm;

Fui = lm‘ ) (Yd'/Y cos 5Au)+lmzzn:(Yc;UYBj COS p; ), i=12,---,n
2 A 2 4
1 n
GdAl _E (YdUY cos §Al/) ’2"",’1

Jj=1

H,, = —%mlvdL Z(Y(IUY sin §Alj)i =12,---,n

j=1

1
GdBi :2deZ(Ydl/Y COS5B!/) ’2’.“”1

Jj=1

J=1
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n

]¢l

+%m2deZ(YdUY cosé'BU) 1,2,

n

1 /
z d,][sm 6,,E,; (xqj—xdj)cosé'd,] q]]+§mlvdc,Z(YdinAjcosé‘Aij)

=1

N
j=1
C,; =Y, in 6, E, +(x, —x))cos 8,,1,,) j=12,.n
i
E, =-Y, cosd,, i=12,n j=12,-n
Mqij :(Yd/l](xqj_x;])sinédl]) i:1’2’-..’n’ :1’2’...’n

n

1 1
P, :Eml (Yd,/Y smé‘A,/)+2mzz( 2iY

Gy =%vdczn:(Yqu Sin5A,~,-) i=12,-,n;

j=1

sinBU), i=12,---,nm;

H,, =%mlvd(Z(Yqu COS5A,~,-) i=12,--,m

j=1

G, s :%VdCZ(Yd,,Y Sin5Bé/) i=12,-,n;

J=1

Hqu.—%m vdLZ(YdUY c0s 8,;) i =12,

j=1

From Equation (6.49) Al , can be written as:

AI, =D A5+ F,AE,+N Av, +R, Am +S, A0,

+Ry,Am, + 8, A0,
where

DLCFLENLP

949>

R—LGS

gA >

—LH R,

qB>
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(6.50)

5o =L, H ; and



L =1-M_, L,=1-Y;(x,—x,)sind,;, L, =-Y;.(x,—x,)sind,, j#i

q q° q

Substitute Al , from Equation (6.50) into Equation (6.438) to get:

Al, =D,A6+F,AE, + N ,Av, + R, Am, +S,,A0,
+Ry,Am, + S ,,A0,

where

D, :Cd+Mqu, F, =Ed+Mqu, N, =Pd+Mqu
R,, =G, +MdRAq’ S aa :HdA+MdSAq’

Ry, =Gy +MdRBq’ Sps =Hyp +MdSBq’

(6.51)

Substituting Equations (6.50) and (6.51) into Equations (6.45-6.47) the following is

obtained:

AP, = KA+ K,AE, +K, Av, +K,  Am +K A0 +
K,,Am, +K A0,

pm?2

AE, = K,A0+K,AE, +K Av, +K  Am +K A0 +
K,,Am, +K ,,A0,

qm?2

AV, =K.Ad+ K6AE; +K Av, +K, Am +K A0, +
K, ,Am,+K A0,

vm2
where

K, =1,(x,-x;)D, +E D, +1,(x, —x,)D,
K,=1,+1,(x,—x))F,+EF, +1,(x,—x,)F,

K, =1,(x,~x )N, +EN, +1,(x,—x;)N,
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K, =1,(x, -xX,)R,, +E;RA(17 +1,(x, —)CZ,)RAq7
K, =1,(x, - xS, -+-E;7SA(17 +1,0(x, —x;)SAq
K,.,=1,(x, — xRy, +E;RBq +1,0(x, —x:,)RBq7

K, =1,(x, —x,)S,, +E;SBq +1,0(x, - X, )S s,

K,=(x,—x,)D, K,=1+(x,—x,)F,
K, = (x, _x;' )N, K, = (x, _x; )R,
K = (x, _x; )S 4 K,.= (x, _x; )Ry,

K = (x, _x; )S 54 K =VtEl (Vdoquq _qux;Dd)

K¢ = ‘/tal (Vdoquq +Vq0 _qux:le) K, = VtSl (Vdoquq _qux;Nd)

v

K, = Vzgl (VdeqRAq _VqOX;RAd) K, = Vzgl (VdO'quAq _Vqu;SAd)
=v\( 'R,) K,,=VlV,xS, -V xS, )
K,,=V, VdoquBq _qudeBd w2 = Vo YaoXqO g — VeoXaOBa

The linearized form of DC capacitor voltage of Equation (6.27) is given by

Av, =

dc
+(iy, cos @, +i,,sin 6, )Am, + m,(=sin 6,i,, +cos 6,i, )A6,

+(iy, €080, +1,, 8in 6,)Am, +m,(—sin 0,i,, + cos 6,1, )A6, |

From Equations (6.6) and (6.7)

L=V, -V, =V)g,+ib,)

I,

(‘71 _‘Zez _‘71<)(gik +jby)
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[m, cos B,Ai,, +m, sin 6,Ai,, +m, cos 0,Ai,, +m, sin0,Ai,,

(6.55)
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(6.57)



The voltages ‘71" \7j, ‘7k are written in terms of the terminal voltages of those
generator buses to which these IPFC buses are connected. However, if the IPFC buses

i, j, k are the generator buses, then V, =V,,l =1, j,k. Then
V, =V +iV,, =i, j,k, (APFC buses) (6.58)

Vi =Xl s Vi = E;z _x:illdl’ [=1,j,k (6.59)

ql > t
In linearized form Equation (6.59) can be represented as:

AV, =x,Al ;5 AV, =AE;, —x,Al,, 1=i,jk (6.60)

ql>

where Al ;; Al ,, =1, j,k are obtained from Equations (6.50) and (6.51).

ql?

Equation (6.56) in d — g axis can be written as:

ild +J ilq = ((‘/tdi +J ‘/Iqi ) - (‘/seld + J Vvelq) - (thj +J quj ))(gl] + J bij) (661)
iy = 8, (Vnﬁ _ mlzvdc cos6, ~V,, j +b, (— v, + mlzvdf sin @, + thjj (6.62)
i, = g, (Vmi - —mlzvdc sin6, -V, j +b, (V,di - %cos 6, - thjj (6.63)

Substituting Equation (6.59) in Equations (6.62) and (6.63) and the resultant

equations are linearized to obtain Ai,,, Ai, . Similarly Ai,,, Ai, are obtained from

Equation (6.57) which are finally substituted in Equation (6.55) to get,

Av, = K7A5+K8AE; -K,Av, +K_ Am +K_,A6 +K_,Am, +K_, A6,

(6.64)

cml cm?2

where K,, K, are (1 X n) dimension vectors and the other coefficients in (6.64) are

scalars. Substituting Equations (6.52-6.54) in Equations (6.41-6.44), the linearized
Phillips Heffron model of the power system installed with IPFC in state space form is

given by Equation (6.65). The model involves the DC capacitor dynamics.
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A [ 0 w,l 0 0 0 [ A ]
Ao -M7'K, -M'D -M"K, 0 -M7K, || Aw
AE, |=| -1}k, 0 -7T,°K, T, -T,"K, ||AE,

. ‘ ‘ . ‘

AE , ~T,'K K 0 -T,'K,K, -T,” -T,'K,K, ||AE4
amv, | LK, 0 K 0 K, J[Av,
[ 0 0 0 0 |

-1 -1 -1 -1 Aml
-M7K,,, -M"K, -M'K,, -M7K,,, Ag
, -1 s -1 s —1 7 —1 1
H - Tdo qul - Tdo Kq(ﬂ - Tdo quZ - Tdo KqHZ Am
_Ta_lKaKvml _Ta_lKaKle_Ta_lKaKvm2 _Ta_lKaKVHZ Aez
2
L Kcml Kc@l KcmZ Kc@Z n
(6.65)

The state matrix is utilized to determine the eigenvalues and determine the
oscillations modes present in the system. The following section gives the analsysis of

multi-machine power system with IPFC.

6.5 Case Study: Multi-Machine Power System With IPFC

The 3 machine 9-bus (WSCC) power system shown in Figure 5.10 [17] is considered
for the stability analysis. The IPFC is placed in the WSCC system and is analyzed
with it’s the presence. The IPFC is placed in the branches 7-5 and 7-8 as shown in
Figure 6.3. In Figure 6.3, IPFC bus sending end i is bus 7, the receiving end buses j
and k are represented by buses 5 and 8 respectively. The IPFC is placed to regulate

the power flows in its branches at the specified values P; = Py; = 0.8432 p.u.

P, = Py=0.7590 p.u., Q; =05, = 0.1157 p.u. The load flow is performed and the

results are given in Table 6.1.
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Figure 6.3: WSCC system with IPFC

Table 6.1: The load flow results of the WSCC

Bus Voltage (p.u.) Ps(pu.) | Qs(p.u.) | =P (p.u.) | —Qp(p.u.)
1 | (swing) | 1.04 0.7175 0.1576
2| (P-V) |1.025£9.6274° 1.63 0.0188
3| (P-V) |1.02524.9268° 0.85 0.0577
4| (P-V) |1.028724.08°
5| ((P-Q |1.01622—4.02° 1.25 0.5
6| (P-Q |0.98432—1.056° 0.9 0.3
7| (P-Q) | 1.02292£ 2.204°
8| (P-Q |1.01332—3.62° 1.0 0.35
9| (P-Q |1.0322£-2.21°
v, =0.0445 p.u. V,,=0.0533 p.u. | 6, =172.5895° 0, =-14.4399°

P,

J

.= P =0.8432 p.u.

P, = P,=0.7590 p.u.

Q; =05=0.1157 p.u.

Table 6.1 gives the voltages and phase angles at each bus, power flowing through

the IPFC branches represented by P, Q;, B, and the injected voltages V

p.u. except where indicated.
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and V_,

sel

with their corresponding phase angles 6, and 8, of VSCs of IPFC. The load flow
results show the IPFC regulates the power flows to the set points in its branches
serving its primary function. The initial operating point is computed from the load

flow results and Table 6.2 gives the initial values computed. The values are given in




Table 6.2: Initial conditions computed

State variable | Machine 1 | Machine 2 | Machine 3
O in radians 1.5075 0.4800 0.7241
E, 1.0498 0.7719 0.8535
E, 1.0664 1.7644 1.5464
” 0.7175 1.63 0.85
| 1.0755 1.0838 1.1796
IPFC parameters
Vie 2 C. 0.2
m, 0.0445 m, 0.0533

The power system is reduced to the generator buses and the IPFC buses by

eliminating the load buses and as shown in Figure 6.4. The computed reduced

admittance matrix Y, , of the transmission network is given by Equation (6.66) using

which z,', Y, and Y, are calculated from Equation (6.31) and are given by Equations

(6.67-6.69).

0 -j16

[ 0.699-j8.012 0 -0.019+j1.12

= -0.019+j1.12 0 0.63-j7.34

Y
red 0 J 16

S
I

[ 0.1623+] 0.0251
Y, =| -0.4691+] 0.0570
| -0.2024+] 0.0773]

[-0.1532+] 0.0477 |
Y, =| -0.5421+j0.0207
| 0.2065-j0.0008 |

-0268+j630 0 -0.101+j0.75 -1
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0 -0.268 +j6.30 -0.087+j 0.641 |
0 j16 0 0
0 -0.101+j0.747 -0.295+]5.62
0 2.11-j32.66  -1.0+)5.50 -1.112+11.39
455  29-j13.155  -0.108+)0.42
|-0.087+j0.641 0 -0.295+]5.62 -1.11+]11.39 -0.1085+]0.422 2.75-]18.152 |
(6.66)
_0.8458-j 29525 0.2848+) 1.4839 0.2135+)1.2209
0.2848+)1.4839 0.4078-j2.6697 0.2168+] 1.0604 (6.67)
_0.2135+j 1.2209 0.2168+j1.0604 0.2864-]2.3470
(6.68)
(6.69)
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Figure 6.4: Reduced system containing the generator and IPFC buses

The K-constants are calculated and the eigenvalues are computed and given in
Table 6.3. There are a total of 13 eigenvalues with three pair of complex eigenvalues
which contribute to oscillations and remaining are real eigenvalues. The participation
factors have been computed and the state variables contributing to these oscillation
modes have been determined. Table 6.4 gives the normalized participation factors of
all the eigenvalues. The oscillations modes 4 & 5 and 6 & 7 have the least damping
ratio as seen in Table 6.3. On observation of Table 6.4, it is noted that these
oscillations modes 4 & 5 and 6 & 7 are contributed by machine 3 and machine 2,
respectively. Compare the results with Table 5.7. It is observed that the power system
without IPFC and with IPFC, both have two pair of oscillation modes 4 & 5 and 6 & 7
in which the machine 3 and 2 have highest participation factor. This validates the

mathematical model of the power system with IPFC.

To increase the damping of these modes, initially the PSS is installed in the
system. The design of PSS and the eigenvalues with PSS of the WSCC system
without IPFC are given in Chapter 5. Using those PSS’s whose parameters are given
in Table 5.10, the WSCC power system is installed with the two PSSs at machine 2
and 3. The eigenvalues of the WSCC system with IPFC in the presence of the two
PSS’s are given in Table 6.5.
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Table 6.3: Eigenvalues of WSCC power system with [PFC

Eigenvalues Damping ratio | Frequency | Dominant states

-19.3 1 0 E s
-17.1802 1 0 E
-15.6798 1 0 E,.,

-0.3009 +511.2735 0.0267 1.7942 0, w,

-0.2933 +5 j 8.1607 0.0359 1.2988 0, &,
-4.4731 1 0 E,
-2.7315 1 0 E,
-0.6816 1 0 E,

-0.0174 £5j 0.2109 0.0823 0.0336 o0,
-0.0196 1 0 Ve

Table 6.4: The participation factors of the eigenvalues

Eigenvalues
2 3 4 6 7 8 9 11 12
o, 0 0 0 0427 | 0427 | © 0 1 1
0, 0 0 | 0212|0212 1 1 0 0 0305 | 0.305
0, 0 0 1 0.164 | 0.164 | © 0 0.157 | 0.157
@, 0 0 0 0427 | 0427 | © 0 1 1
@, 0 0 | 0212|0212 1 1 0 0 0305 | 0.305
0 0 1 0.164 | 0.164 | © 0 0.157 | 0.157
0 0277 o 0 0 1 0 0 0
0168 | 0 0 0.109 | 0.109 | © 1 0.155 | 0.155
0 0 | 0064 | 0064 | © 0 0 | 0.125 0.366 | 0.366
0 1 0 0 0 | 0281 | o0 0 0
E 1 0 0 0 0 0 | 0.148 0 0
E 0128 | 0 0 0 0 0 0 0 0
v, 0 0 0 0 0 0 0 0 0

the presence of the two PSSs.
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The damping ratios of the concerned oscillation modes have increased with the
PSS placement in the system as shown in Table 6.5. Complex eigenvalues 11 & 12 in
Table 6.3 have an oscillation frequency equal to 0.033 Hz, and they are contributed by

machine 1. The damping ratio of these oscillation modes has also been increased with




Table 6.5: Eigenvalues with PSS

Eigenvalues Damping ratio | Frequency | Dominant states
-54.1642 1 0
-26.8454 1 0
-22.1998 + §10.1872 0.9089 1.6213
-15.7747 £ 5 5.8177 0.9382 0.9259
-15.6979 1 0
-1.1200 £ 5 10.7658 0.1035 1.7134 o, w,
-0.6599 + 5 8.3559 0.0787 1.3299 0,
-4.4747 1 0
-2.5057 1 0
-0.5183 + 5 0.2606 0.8934 0.0415 o, o,
-0.0455 + 5 0.0864 0.4654 0.0138
-0.0198 1 0
-0.1 1 0

It is seen that the oscillation modes -0.6599 + 5 8.3559 still have slightly less
damping ratio than 0.1. The damping ratio of this mode can be further increased by
IPFC Power Oscillation Damping (POD) controller. The most suitable control signal
for providing additional damping is determined from the controllability index

computed from the linearized model. The controllability indices are computed and
given in Table 6.6, from which it is observed that the input signal m, has the highest

value, an indicator for the best signal to provide damping.

Table 6.6: Controllability indices with different IPFC controllable parameters

Input signal | Controllability index
Am, 0.0201
A, 0.0036
Am, 0.0070
AG, 0.0040

The Power Oscillation Damping (POD) controller is shown in Figure 6.5 having
the error signal, of the active power flow of the IPFC branch j —ior5— 7, as its
input. The structure of POD controller is given in Figure 4.35. The parameters of the
controller are designed using phase compensation technique as described in Section

4.7.3, to compensate the phase shift between the control input signal Am, and real
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power deviation AP, , and improve the damping ratio of the oscillation mode to

around 0.1. The POD is designed on the system considering the two PSS.

P.

I ml ref

Pji(ref) POD
controller | " m,

IPFC —

Figure 6.5: POD controller of IPFC

The PI type power flow controllers and DC voltage regulator are present together
in the system to maintain the power flow and constant DC capacitor voltage. The

block diagram of the complete closed loop system is shown in Figure 6.6.

TG¢ 93 164 92 iG Cj1
Vs Tvcz TVGI
Yt
o, L. ! 7, "

=
§<

P, My rery

i power flow controller A
- Power flow controller
Pki ref) k ;
(ref) k + ki
kp k.
v S kpp + _pr
de Dc voltage regulator 2] 5
- + 2ref
1%
dc(ref) ko o+ k;[,
dp
+ s + Power P.
k oscillation I
k qi damping -
Q' ap + controller +
i AL S
ji (ref) Pji (ref)

Figure 6.6: Multi-machine system with IPFC and its controllers
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Three power flow controllers are placed in the system to control the real and
reactive power flow in line j — i and real power flow in line k — i respectively. The

DC voltage regulator maintains the DC voltage constant. The parameters of the
controllers are: kpp =5, km: 25, kqp =0.06, kql: 0.007, kkpz 0.01, k,,=0.01, kdpz 10
and k,=20. The parameters of the POD controller are: k, = 0.3554, T, = 10s, T, =
0.01s, 7T,= 0.20058, T,= 0.071407, m = 1. The oscillation modes of the closed loop
system are given in Table 6.7. The PI controllers contribute little damping to the

oscillation modes. The POD controller significantly increases the damping of the

concerned oscillation mode.

The power system incorporating IPFC response is observed in time domain
simulations. The nonlinear simulation is conducted through numerical integration and
by MATLAB/SIMULINK. The multi-machine power system with IPFC is simulated
using the nonlinear differential and algebraic equations of the power system in
Equations (6.18-6.24, 6.9-6.12, 6.27, and 6.33). The numerical integration of the
differential equations of the power system is performed using ode45 functions in
Matlab. The MATLAB/SIMULINK block diagram of the system with IPFC is given
in the Appendix D.

Table 6.7: Eigenvalues of the linearized WSCC with IPFC and controllers

Damping

WSCC with IPFC and Controllers Eigenvalues .
Ratio

Frequency

-0.3009 +5 11.2735 0.0267 1.7942

No controllers 202933 + 5 8.1607 0.0359 1.2988

-1.1200 + § 10.7658 0.1035 1.7134

With only PSS 06599 + 83559 | 0.0787 | 1.3299

-1.1252 + 5 10.7635 0.104 1.7131

PSS and DC voltage regulator 1 (oos ™ 83624 | 00785 | 13309

PSS and Power flow controllers and | -1.1015 £ §10.7254 0.1022 1.7070
DC voltage regulator -0.6922 + 5 8.0082 0.0861 1.2745

PSS, power tlow controller and DC | -y 1055, 5107405 | 0.1024 | 1.7094

voltage regulator and damping | o750, 570006 | 01376 | 1.1177
controller

The system is equipped with the PI power flow controllers which regulate the real

power flow in line j — i or 5 - 7 at 0.8432 p.u., reactive power at 0.1157 p.u. and real
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power flow in line k — i or 8 - 7 at 0.7590. The DC voltage is maintained at a constant
value of 2 p.u. by the voltage regulator. The system is subjected to various
disturbances and the performances of the PSS and IPFC damping controller are

investigated.

6.5.1 Disturbance: Step Change in Mechanical Power

A disturbance in the form of a step variation of 0.01 p.u. in mechanical power input

P, ., at machine 2 is applied at 0.5s. Oscillations are observed in the system due to the

m

disturbance. The power flow in the transmission line is controlled by the series
injected voltage such that oscillations are damped sufficiently. The magnitude and
phase angle of the injected series voltages are controlled by the input signals of the
IPFC which are modulated by the controllers to effectively control the power flows.
The POD controller increases the damping of the oscillations. The responses of
various parameters of the power system, i.e., electrical power generated by the
machines 1 and 2, active power flow in IPFC branches, relative rotor angles and
relative rotor speeds, respectively in the event of change in mechanical input are
shown in Figures 6.7-6.14 in the presence of PSSs and POD controller. The PI power
flow controllers and DC voltage regulator are present simultaneously in the system to

maintain the power flow and constant DC capacitor voltage. The POD controller m,

mitigates the oscillations efficiently during the mechanical input disturbance. The
response of other parameters such as electrical power generated by machine 3 is
similar to Figures 6.7 and 6.8 with the initial value at 0.85 p.u. corresponding to its

generated power.
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P_. (p-u)

P_, (pu)

0.718

0.7178

0.7176

0.7174

0.7172

0.717

0.7168
0

Figure 6.7: Generated power response at machine 1 with mechanical input

1.631

1.6305

1.63

1.6295

Figure 6.8: Generated power response at machine 2 with mechanical input
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P, (p-u)

Figure 6.9: Real power flow response in IPFC branch 5 — 7 with mechanical input

P, (P-U)

Figure 6.10: Real power flow response in IPFC branch 8 — 7 with mechanical input
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---------- no controller
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E: with PSS and damping controller
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Figure 6.11: Relative rotor angle J,, response with mechanical input disturbance
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Figure 6.12: Relative rotor angle ¢, response with mechanical input disturbance
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Figure 6.13: Relative rotor angle @,, response with mechanical input disturbance
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Figure 6.14: Relative rotor angle @,, response with mechanical input disturbance
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6.5.2 Disturbance: Three Phase Fault

The disturbance in the form of three phase fault is initiated near bus 9 at the end of
line 6-9, of the power system in Figure 6.3. The three phase fault is applied at 0.5s
and cleared after 0.1s. During fault, since V, =0, the rows and columns of the
admittance matrix of the prefault system corresponding to bus 9 will be deleted. Then

the load buses are eliminated and the reduced matrix is formulated which given by

Equation (6.70), following 17(,', Y, and Y, are calculated and are given by Equations

0
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(6.71-6.73).
[0.7122-]8.1398 0 0 0 -0.2491 +j 6.2195 0 i
0 -j16 0 j16 0 0
= 0 0 -j17.0648 0 0 0
red = 0 j16 0 2.11-732.66  -1.0+j5.50 -1.112+]11.39
-0.2691+j 6219 0 0 -1+j5.5 2.9-j13.21 0
i 0 0 0  -1.11+j11.39 0 3.299-j21.35 |
(6.70)
0.6882-)3.7706 0.1269+] 0.7737 0
Y/ =|0.1269+j0.7737 0.2522-j3.2857 0 (6.71)
0 0 -] 4.1684
0.3218-j 0.0927
Y, =|-0.2968+0.0546 (6.72)
0
-0.3351+j 0.0991
Y, =| -0.7333+j0.0621 (6.73)



The response of various parameters of the dynamic power system i.e., real power
flow in IPFC branches, relative rotor angles, electrical power generated by the
machines, DC capacitor voltage and relative speed are shown with and without the
POD controller and PSS during three phase fault in Figures 6.15 -6.21 respectively.

The POD controller m, mitigates the oscillations efficiently even during the case of

three phase fault. The other parameters responses follow in a similar pattern.

Figure 6.19 gives the electrical power generated by the three machines, where the
values are given in p.u. Each generator generates the real power initially as given by
the load flow results given in Table 6.1 which is also the steady state operating
condition. A disturbance is given at 0.5 s which cause oscillations as seen in the
response. The oscillations eventually are dampened with the presence of damping

controller and settle at their steady state values.

0.95 r r r r
---------- no controller
ook m=m== with PSS J
with PSS and damping controller
085}
08} -
=}
a
5
o 0.75} -
0.7} 4
065} -
0 1 2 3 4 5

Time (s)

Figure 6.15: Real power flow response in IPFC branch 5 — 7 with three phase fault
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Figure 6.16: Real power flow response in IPFC branch 8 — 7 with three phase fault
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Figure 6.17: Relative rotor angle o,, response with three phase fault
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Figure 6.18: Relative rotor angle ¢,, response with three phase fault
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Figure 6.19: Electrical power generated response with three phase fault
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Figure 6.21: Relative rotor angle @,, response with three phase fault
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6.5.3 Disturbance: Change in Power Flow Reference

The transmission line flows in IPFC branches can be controlled by changing the
reference set point. Originally the real power flow in line 5 — 7 is 0.8432 p.u. and in
line 8 — 7 is 0.7590 p.u. as shown in Table 6.1. An increase of 0.01 p.u. real power,
i.e., 0.8532 p.u. can be made to flow in the transmission line 1 by changing the power

reference P,

irery t0 that value. Subsequently the real power flow set point in

transmission line 2 is set to B, = 0.7490 p.u. The change in power reference is

given at 0.5s in the simulation. To obtain the desired power flow, gain scheduling of
the concerned PI controller is normally required to achieve the desired change in
power level. In the case, when a 0.01 p.u. change in power level is required, the gains

k., , k. are set to 0.6 and 0.4, respectively. The other parameters remain unchanged.

kp >
The responses of various parameters (power flows in IPFC branches, relative rotor

angles) are shown in Figures 6.22-6.26.

0.858 T T T )
---------- no controller
o8¢ m——— with PSS 7

f’\. with PSS and damping controller
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0.846

0.844

0.842 L
0
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Figure 6.22: Real power flow response in IPFC branch 5 — 7 with change in power
reference
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Figure 6.23: Reactive power flow response in IPFC branch 5 — 7 with change in
power reference
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Figure 6.24: Real power flow response in IPFC branch 8 — 7 with change in power

reference
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Figure 6.26: Relative rotor angle ¢,, response with change in power reference
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It is observed from the above studies that the controllers ensure capable operation
of the IPFC in controlling the power flow and damping oscillations in the
transmission lines. The power flow controllers regulate the power flows and have
minor contribution towards damping of oscillations. The damping is increased by

IPFC POD controller.

6.6 Summary

In this chapter, the nonlinear model of the multi-machine power system incorporated
with IPFC has been developed. The linearized model of the multi-machine power
system with IPFC is developed to form the Phillips-Heffron model. The oscillation
modes having low damping ratio are determined by eigenvalue analysis from the
Phillips-Heffron model. The IPFC POD controller is designed using the phase
compensation method based on the linearized model to increase the damping of the

concerned oscillation mode existing in the system.

The power flow controllers and DC voltage controller are incorporated in the
IPFC control to regulate the power flow and to maintain the DC voltage across the
DC link. The effectiveness and robustness of the IPFC controllers are validated
through eigenanalysis and nonlinear simulation of the power system subjected to
various disturbances. The IPFC based POD controller and PSS ensure reliable
damping of the low frequency oscillations in the multi-machine power system with

IPEC. The following chapter gives the thesis conclusions.
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CHAPTER 7

CONCLUSION

7.1 Conclusion

Low frequency oscillations are inherent in the modern interconnected power system
due to continuous disturbances. These oscillations occur as the synchronous
generators oscillate against each other and have the frequency ranging from 0.1 to
2 Hz. These oscillations cause limitations on the amount of power that can be
transmitted within the system and can also lead to widespread system disturbances if
cascading outages of transmission lines occur due to oscillatory swings. Thus,
insufficient damping of these oscillations leads to system instability and requires
supplementary damping devices to mitigate them. As such, these oscillations must be

considered in planning, operating and designing a power system.

Traditional approach to provide additional damping is with the use of PSS which
is placed in the excitation system of the generator. PSS is designed using phase
compensation method and taking the local generator speed signal as input. A
relatively new solution is to use FACTS devices such as IPFC, for increasing damping
of the power system oscillations in addition to performing their primary functions of
controlling power flow in the transmission lines. IPFC is a multi-line voltage-sourced
converter-based FACTS device. It facilitates both real and reactive power
compensation among the transmission lines thus, allowing improved transmission
system operation. The primary focus in this thesis is on employing the Interline Power

Flow Controller (IPFC) to damp low frequency oscillations.

Several studies are involved in investigating the low frequency oscillations. These
include load flow studies, small signal stability studies, and nonlinear simulation. The
load flow is used to initialize the nonlinear simulation and small signal stability

studies for which the steady state model of the power system with the IPFC is



required. The small signal stability study involves the linearization of nonlinear
dynamic model of the power system and eigenvalue analysis. The dynamic model
represents the synchronous generators, loads, network and IPFC dynamics by
differential and algebraic equations which are linearized at an operating point given
by load flow studies. The eigenvalue analysis gives the eigenvalues, eigenvectors,
participation factors, natural, damped frequencies, and damping ratio. The oscillation
modes with precise indication of oscillation frequency and damping, primarily
affecting the stability problem may be identified, with which appropriate action
should be taken. The nonlinear simulation of the power system verifies the eigenvalue

analysis.

7.2 Achievements of Research Objectives

The steady-state and dynamic models of IPFC have been established in this thesis.
For power flow studies, the steady state model of IPFC is incorporated with the power
system network. The algorithm given only for IPFC branches is implemented into a
full Newton-Raphson load flow program for the complete system incorporated with
IPFC. The program is written in Matlab. The solution of the load flow gives the
steady state operating point for stability studies. The d — g axis dynamic model of
IPFC has been developed incorporating DC link dynamics for stability studies. This

model includes all the four control signals of IPFC.

The overall dynamic model of the power system incorporating IPFC is formulated
by augmenting the models of the various components of system, with IPFC and
interfacing the network equations with the machine reference frame. Using this
approach, the nonlinear dynamic models for a single-machine infinite bus (SMIB) and
multi-machine power system incorporating IPFC are developed to study power

system oscillations.

Further the linearized Phillips-Heffron model of power system with IPFC is
developed. Oscillation modes are identified by eigenvalue analysis. In multi-machine
power system, the factors associated with each eigenvalues are revealed by

participation factors. This provides valuable information to identify the generators
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that may experience oscillations. PSS is placed at the generators according to the
participation factors to enhance damping of a system. The dynamic performances of
the proposed modeling of power system incorporating IPFC is examined and verified

through eigenvalue analysis as well as nonlinear simulations.

The proposed control strategy for IPFC has three major components: first is the
control of the real and the reactive power flows on transmission lines where IPFC is
located which is the primary function of the FACTS device, the second is that of
controlling the DC link capacitor voltage to a constant value to ensure balanced power
exchange between the VSCs of IPFC ( loss of DC voltage during disturbances could
lead to instability) and the third is the damping controller to enhance the damping of
the oscillations. PI controllers are used to control the power flow and DC link
capacitor voltage. The parameters of PI controllers are determined using simulation
response. However, tuning the parameters of the power flow controllers is not the

main scope of this work.

A lead-lag damping controller is designed based on the linearized Phillips-Heffron
model of the power system to increase damping of the un-damped oscillation modes.
The control signal(s) suitable for providing damping is determined using a
controllability index. The output of the controller is superimposed on the input signal
of IPFC thus, varying the magnitude and phase angle of the injected voltage into the
transmission line which controls the power flow in such a way to dampen the power
system oscillations. Local measurements such as the real power flow deviation in the
transmission line are taken as the input to the damping controller as the IPFC is

normally installed on the transmission lines that are away from any generator.

Case studies on SMIB and three-machine nine-bus (WSCC) power system have
been carried out. PSS and IPFC based damping controller is designed using phase
compensation method. The effectiveness of the controllers in controlling the power
flow and in damping the oscillations is examined and verified through eigenvalue

analysis and nonlinear simulations under different disturbances.

The work in this thesis includes a complete control system design for IPFC and

studying its performance. Power flow calculations and dynamic simulation studies
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demonstrate the potential of the IPFC in increasing the power transfer capability of

transmission system and enhancing power system stability.

7.3 Contributions of Research

The main contributions of this research are summarized as follows:

1y

2)

3)

4)

Development of the load flow program in Matlab for load flow analysis of the

complete power system incorporating [IPFC:

The steady state model of the IPFC is utilized to integrate it into the power system
network equations for load flow studies. The load flow program gives the

operating point around which the power system nonlinear equations are linearized.
Modeling of IPFC for dynamic stability studies:

This work demonstrates the steps taken in developing a mathematical model of
IPFC for dynamic stability study. This dynamic model of IPFC is used to
incorporate it with the power system model to develop one complete dynamic

model for stability analysis.
Modeling of power system incorporated with IPFC:

The nonlinear models of SMIB and multi-machine power system with IPFC have
been developed. The nonlinear equations are linearized at an operating point to
obtain the linearized Phillips-Heffron state space model of the power system.
Eigenvalue analysis is performed to identify oscillation modes from the linearized

model.

Investigations on the control functions of IPFC and its effect on the system

oscillations:

A conventional lead-lag damping controller is designed based on linearized
model to increase the damping of the oscillations. The performance of the

controller to different dynamic states in enhancing the damping of the oscillatory
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modes 1is confirmed through detailed eigenvalue analysis and nonlinear

simulation.

7.4 Suggestions for Future Work

In summary this research work presents the load flow formulation, nonlinear dynamic
models, linearized models, damping control design and stability analysis for the

power system incorporated with IPFC.

Low frequency oscillations when present in a power system, limits the amount of
power transfer on the tie-lines between the regions containing the groups of coherent
generators. Damping of these oscillations contributes to the enhancement of the
stability limits of the system, signifying greater power transfer through the system.
The application of IPFC based damping controller to satisfy different end goals,
namely the damping of local and inter-area modes over a broad range of operating
points in a multi-area power system, has to be investigated. Torsional modes were
also not accounted for in the analysis. In modern power systems, apart from a large
number of generators and associated controllers, there are many types of load, ranging
from a simple resistive load to more complicated loads with electronic controllers.
Thus, there are other areas for future research in investigating the control functions of
IPFC and their effects on damping power system oscillations considering the facts

mentioned above.

PI controllers have been used for power flow control. However the gains of these
controllers have been designed at one operating point. It generally requires gain
scheduling for different operating conditions in the system. Conventional lead-lag
damping controller is proposed in this thesis. Alternative control strategies such as

fuzzy logic and adaptive control could be explored for more robust control.
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APPENDIX A

JACOBIAN TERMS OF THE POWER FLOW WITH IPFC
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oP,
BVﬂ =V, (gl.j cos(é?j -6, )+ b, sin(é?j -6, ))
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1) PHILLIPS-HEFFRON MODEL K CONSTANTS OF A SINGLE MACHINE

INFINITE-BUS POWER SYSTEM EQUIPPED WITH IPFC

1 : . 1 , .
K, =5(xq — X, )X, X,, V.V, SIN O cOs B,m, —E()cq7 — X)X,y X9, M, V.V, COS B, SiN O +
. _ : .
(X, = X,)X,X,.V, 8in" O+ E, (l+ (x, —x,)x, )xzt,vb coso +
1 ! . S 1 , . S
E(xq — X, )X, X,.m,V, v, sin @, cos —E(xq — X, )X, . X,.mV,.V, sinf, coso —
' 2 2
(X, = X,)%,X,.v, COS" O
- D) S D)
K, _E L+ (x, = x,)%,, JX3,V4.m, COS 0, _E L+ (x, = x,) %, XV .1, COS 0,
+(1 +(x, —x,)x, )xzcvh sin 0
1 ! ) . 1 ~ .
K, —E(xq — X, )X, X,,V 4.5 Sin 6, cos @, —E(xq — X, )X,,X,,M,Mm,Vv, cos@, sin b,
1 , . S 1 , 0
+5(xq — X, )X, X,.m,V, sin @, sin —E(xq — X, )X, . X,,Mmm,v, sin 6, cosf,
1 ~ ) . 1 ~ . S
+5(xq =X, )X, X,V M, Sin@, cosb, _E(Xq — X, )X, X,.m,v, sin @, sin
e (e, ) L (e, e, cosd
+5Eq +(x, —x,)x,, Jx,,m, cosb, _EE’] +(x, —x,)x,, Jx,,m, cos6,
——(x, —x,)x,,Xx, m,v, cos6 cos5+l(x — X)X, ,X,,m,v, oS cosd
2q d/7*1d2a"""2" b 2 2q d/771d"*2b"" 1" b 1
1 ! 2 . 1 , 2 .
oml = —Z(xq — X, )X, X,, V., sin 6, cos b, +§(xq — X)X, X,, V.M, SIn 6, cos b,
1 . . S | - ( . )
—E(xq — X, )X, . X,.V,.V, sin g, sin _EEq L+ (x, —x,)x,, )X,V cOSO,
1 ! 2 . 1 , S
—Z(xq — X, )X, Xy, V.1, COs O, sin 6, +§(xq — X, )X, X, V.V, COS O, cos
_ ! 2 0 - 0 1 ! 2 2 2 0
pol = —Z(xq — X, )X,.X,,V,;.mm, cos @, sinb, +Z(xq — X, )X, X5, V.1, COS~ 6,

. ) 1 . - .
_E(Xq — X)X, X,V 4 M, V, COS 6, sin §+5Eq (1+ (x, = x,)x, )xz};vdc,ml sin 6,
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+Z(xq — X, )X, X, V,.mm, sin @, sin 6, —Z(xq =X, )X, X5,V ;.M SIn” 6,

1 \ )
_E(x" — X, )X, X0V, 1, V, SIN G, COS O
_ 1 ' 2 . 1 ' 2 .
K,,= E(X" =X, )X, X,V .M, SIN G, cos b, —Z(xq — X, )X, X,, V., SIN G, cos b,

1 , . . . ,
+5(xq — X, )X, X5,V V, SING, sin O + EE" (1 +(x, —x,)x, )xhvdc cosd,

1 . 2 . 1 ,
_Z(x" - X,)X,.X,,V;.m, cos8,sin b, _E(Xq = X;)X14 X2, V4.V, €086, cOSO

1 ! 2 2 2 1 ! 2
K, = Z(xq — X, )X, X,, V.1, COs” 6, —Z(xq — X, )X, Xy, V.11, cOs 6, cos O,

, _ 1. ! .
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1 : 1 \
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4
1 ! o S
+§(xq — X)X, X,,V . M,V, SIN B, cOs
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K, =(x, —x,)x,,sind

1 : : 1 ' -
K, = E('xd — X, )Xy, Sin 6, _E(xd — X)X, .m sin6,

Ko = _E(x" — X)XV, Sin6,
1 :
Kq91 - _E(Xd — X, )xlcvdcml COSB1
1 : :
K —(x, —x,)X,V, siné,

gm?2 = 2

quz = E(xd - X,)x,,V, M, cosd,
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v, =sqrt quxwvdcm2 cos 492+qux2bvd€m1 cos” &, +x,x;.v, sin” & —

1 2 2 2 .
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2 : 2 ' SRR I R S
X X, Xy M,V 4.V, €08, sind+ E- (1= x,x,,) +Zxd X, V,.m; sin” 6, +

1 255 5.9 "2 2 2 2 ' ' ' .
2% XieVam sin 0, +x, x;;v, cos” 6 —E (1—x,x,)X,X,Vv,.m,sinb, +

E,(1=x,x,)x,%,.,m sin6 +2E (1-x,x,)Xx,X,V,c0os0 —

1 .2 2 . . 12 .
Exd X, X,V M, Sin @, sin6, — x, x,,x,,v,.v,m, sin@, cosd +

2 .
Xy X, X,V V,m, sin 6, coso

1 -1 2 2
K, = SV ( XXX,V eV 1M, €COS B, COS O — X, Xy, XV, v,y COS B COS O
2.2 2 : ' ! ' :
+2x,x;,v, cososin 6 —2E (1—x,x,,)x,x,,v, sin o
v 2 . . v 2 . .
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v 2 2 2 .
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l 2.2 2 20 _l 2 0 0 +
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2quz,,vdcm1 cos” 6, — X, X,,X,,m,v, cos 6, sin
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1 "2 9 9 .2 2 .
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—X X3, X VgV, €086, 8IN O — E (1-2x,x,)x,X,.V, sing, —

2
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2 : : 2 2 i 2
Exd X, X,V .1, sin 6, sin 6, +5xd x,.myv, sin” 6, +
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X, XX, V,V, COsOsing, |
K _l o 2 . 6 9 _l 2.2 2 2 . 9 6
o = Vi | 5 X Koy Xy Vg My $IN 6, COS 0 =2 X, X5V, My 810 6 COS 6,
2 . . ! ' '
X, X0, X5,V Y, SING sin 6+ E_ (1-x,x,,)X,X,v,.m, cOS 6, —

2

. |
2 : 2 2.2
5 X, X, X,.Vimm,cos6 sinf, + Exd x;.m; v, sin@, cosf, +

2
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1 1 1
_ -1 2.2 2 2 2 2
K, , _Ev’ Equmvdcm2 cos” 6, —Equzllxz,,vdcrn1 cos @, cosb, +

2 . [ ' ' .
Xy Xy X0 Vg V), €088, 8in 0 — E_ (1= x,%,,)X,%,V,, sin @, —

2 ) . . I 2, 2 . 2
Exd XX, V.M, sin@, sin G, +5xd X,,m,v; sin” 6, —

2

X, Xy, XV, COSOSinG, |

1 -1 1 2 2 : 1 2.2 2 2
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2 . . ' ' '
=X, Xy, X, V4V, SN0, sin 6 — E_ (1—x,x,,)x,X,V,m, cos 6, —

2

, I .2
2 : 2 2.2
Exd XX,V .MM, cos @, sin 6, +§xd X;,m,v,. sin@, cos 6, —

"2
o Xa X XigMaVyVee cosScos b, |

K, = F[xndmlvb cos @, sin & + x,, mv, sin 6, cos &
de

+X,,,M,V, €088, sin O + X, .m,v, sin &, cos J]

3
K, = F[xm,m1 cosd, + x,,,m, cosb,]
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3 11 . 1 ) .
o = aC E(xnd - X,,,)m,m, cos @, sin @, —Exmm1 sin @, cos 6,
dc
. 1 P .
+§(x“q + X, )mm, sin 6, cos 6, —Exlzqm1 cos 6, sin 6,

1 . 1 .
+§(x22d — X,,,)m; sin @, cos b, —Exmmlm2 sin @, cos @, +

1 . 1 .
+§(x214 + X, ym; cos @, sin @, — Exzzqmlm2 cos@, sinf, |

3 1 . 1 .

K, = ==Xy MyV,, €08 sinG ——x, mv, cos sinb,
4C,. L 2 2

in &, cos & in 6, sin & ! 6,sin

E(x“q+x12q)vdcm2 sin@, cos b, + x,,,v, sin 6, sin —Exlzqucmlcos , sin G,

, 1 . 1 .
x,4E, cos6, +5(x12d — X4 )V, .M, COS O, sin 6, —Exmvdcm1 sin @, cos G,

1 . 1 .
—X,,,V, COS 6, cos5—Exmvdcm2 siné, cos g, —Exzzqucm2 sin @, cos 6, |

3 1 2 2 1 2 2
K., = — =X,y V.MM, COS~ 6, + = X1y, Ve SIN 0, +
ac, | 2 2
l()c +x,, )V, mm, cosd cos@, +x,, v,m, cosb, siné‘—lx v, m’ cos’ 6
5 Mg 12¢ Vac MM, 1 2 T X4V 1 5 Y21gVaeMh 1

N 1 . . 1 2.2
—x;,,E,m, sin6, _E(Xud = X4 )V,.m,m, sin @, sin 6, —Exlztlvdcm1 sin” 6,

. 1 1 . .
X4V, SIN 6, cos5—Exmvdcmlrn2 cos 6, cosb, +5x22qucm1m2 sin @, sin g, |

3 01 . 1 .
K,,= c [E(xud — X142 )V, €Os 6, sin 6, —E(x“q + Xj5, )V, SIN G, cOS O,
dc

1 . 1 .
+5(x22d — X,5,4 )V, M, SING, cOs 6, +§(x21q + Xy, Vg1, SIN G, COS O, +
. S 1 . ,
Xy, V), SIN G, SIn —E)czzqucm1 cos ), sinb, + x,,,E, cosb, —

. 1 .
> (Xp0y — X514 )V, SIN O, COSH, — 5 X0y V4, SIN O, cOS G,
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3 |1 1 ) )
K., = 1C E(xud — X4 )V 4.1, cOs 6, cos B, _E(an + an)vdcmlm2 sin @, sin 6,
dc

1 2 2 1 2 2.2
+§(x22d — Xy, )V, COS™ 6, —E(xﬂq + Xy, WV,.m;sin” 8, +
! + > cos’ 6, + 0, si 5—1 0, 0
E(xﬂq Xy, Wy My €COS™ 6, +xy,,v,m, cOs G, sin ) X34V 4 MM, €COS 6, cOs 6,

, 1 1
. 2 .2 . .
Xy, E,m,sin 6, _E(XZM — Xy, )V, SIn” 6, +Ex22dvdcmlm2 sin @, sin 6,

+X,,,V,M, Sin 6, cos & ]

2) MULTIMODAL DECOMPOSITION

This method is applicable for multi-machine power system having n machines
[29]. For a SMIB power system, n = 1. The state space model of the linearized power

system with IPFC is given by:

AX = AAX + BAU
AY = CAX + DAU

(B.1)

where AX =[AS,,AS,, -, AS, . Aw, . Aw, . Aw, . AZ" |, (B.2)

and Ao ’s and Aw’s represent the generator angles and speeds respectively. AZ
represents the remaining state variables. The system matrices A and B can be written

in this form:

0 wl! 0 0
A=|A, A, A,|,B=|B, (B.3)
Ay Ay Ay B,
Vv 0 0
The transformation AX, =u~'AX is applied to (B.1) where u={0 V 0] and
0 0 [

V' 1is the right eigenvector matrix of A,;, and the matrix A,, relates the generator

angles and the derivative of the speeds, representing the synchronizing effects
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independent of other state variables. The system equations after transformation will

become:

AX, =u"'AuAX, +u'BAU = A AX, +B, AU

(B.4)
AY = CuhX, + DAU = C, AX, + DAU

The angles and speeds in (B.4) represent the modal variables. For the oscillation

mode A, with modal frequency @, , the state variables are arranged in the form such
that the modal angle AJ,, and speed Aw,, corresponding to A, will become the first

and second state variables resulting in the system representation as follows:

AS,, 0 o 0 A, 0
Ao, |=|-k, -d, A, |Aw,|+|-B, AU (B.5)
AZI Ad3l Ad32 Ad33 AZI Bd3
Ao,
AY =[C,, C,, C,l|Aw,, |+DAU (B.6)
AZl

where, AZ, represents all other state variables, k,, and d, represent the modal
synchronizing and damping coefficients. The modal frequency 1is given by

w, =+ w,k,. rad/s. This approach is known as single mode evaluation as only one

mode is focused at a time. The above system can also be expressed in the frequency
domain given in (B.7) and the block diagram of the above single mode power system

is constructed using its transfer functions as shown in Figure B.1 [9, 29].

sA®, (5)=—(@, /K, ()A®, . (s)— K, (s)AU(s)

(B.7)
AY(s) =K, (s)Aw,,(s)+ K, (s)AU(s)
where,
K (s)=A,,(sI—A,;;) " B, +B,, (B.8)
-1 28 @,
K (s)=Cy(sI —A;33) (Ays T +A;)+ (Tcdl +Cyn) (B.9)
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K (s)=Cyy(sl - Ad33)_1 B,;+D (B.10)

s _ K
K, (s)=k, + ;dmi + A (I —Ayss) 1(Ad31 +—Au) (B.11)
0 0
. w,
K, (s) | A | Oy
S
Electromechanical
oscillation loop
1 Aa)mi
_A S
A
K. (s) K, (s)
ry +
+
AU > KlLi(S)
AY
G,(s)
Figure B.1: The power system installed with IPFC based damping
controller

Figure B.1 represents the linearized model of the closed loop power system

installed with the IPFC and its damping controller. K .,, K,,;, K,,,, and K, are the

controllability, observability, inner loop and modal transfer functions, respectively.
These transfer functions are evaluated at the concerned electromechanical mode of

oscillation, s = jw,. G_(s) is the transfer function of the damping controller. When

evaluated at s = jw,, K.,(j@,)provides a measure of how controllable the mode is

n?

by the control signal AU .
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NONLINEAR SIMULATION OF WSCC SYSTEM USING MATLAB/SIMULINK

Simulink model of the multi-machine power system
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Figure C.1: Simulink model of multi-machine power system representing the
machine equations and stator algebraic equations along with the PSSs
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Abstract: This paper presents the modeling of the power system installed with the Interline Power Flow
Controller (IPFC), the latest proposed Flexible AC Transmission System (FACTS) controller. The IPFC is
modeled in d-q axis form, and the dynamic model of a single machine infinite bus (SMIB) power system
installed with IPFC is developed. Further, the linearized Phillips-Heffron model of the power system is
established to study the oscillation stability. The damping controllers considering the various control signals are
designed based on the linearized model. The power oscillation stability is investigated with the use of
eigenvalue analysis and by nonlinear simulation of the dynamic model of the power system. Studies reveal that
the most effective input signal of IPFC utilized for damping the low frequency oscillations is found to be the
input signal m, , providing robust performance under different operating conditions.

Key-Words: - FACTS, Interline power flow controller, Modelling, Phillips Heffron model, Power oscillation

stability

1 Introduction

The phenomenon that is of great interest and vital
concern in the power industry is the stability of
electromechanical oscillations, 1i.e., the low
frequency oscillations having an oscillation
frequency in the range of 0.2 Hz to 2 Hz. These
oscillations limit the maximum amount of power
that can be transferred over the transmission lines
and sometimes may have disastrous consequences to
the interconnected systems stability, leading to
partial or total collapses (black-outs). Therefore,
equipment and procedures to enhance the damping
of these oscillations become mandatory for the safe
system operation, and to allow a better use of the
existent transmission network. The traditional
approaches to aid the damping of a power system
oscillations is by adding a Power System Stabilizer
(PSS) in the excitation system of the generator for
which much experience and insight exist in the
industry [1]-[3]. In the recent years, the rapid
growth of power electronics has made Flexible AC
Transmission Systems (FACTS) controllers very
important in terms of controller application in power
system damping in addition to their primary purpose
of reactive power support, controlling line power
flows etc. Major contributions have been made in
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[4]-[12], in damping of power system oscillations
where universal approaches are proposed for the
analysis of the FACTS devices such as Thyristor
Controlled Series Capacitor (TCSC), Static Var
Compensator (SVO), Static Synchronous
Compensator (STATCOM), Static Synchronous
Series Capacitor (SSSC), Unified Power Flow
Controller (UPFC).

Interline Power Flow Controller (IPFC), is the latest
representative of the Voltage Source Converter
(VSC) based FACTS devices, and was proposed by
Gyugyi with Sen and Schauder [13]. Like the
UPFC, the IPFC is a combined compensator,
consisting of at least two or more VSCs with a
common dc link. This dc link provides the device
with an active power transfer path among the
converters, thereby facilitating real power transfer
among the lines of the transmission system which
enables the IPFC to compensate multiple
transmission lines at a given substation. Each
converter also  provides reactive  power
compensation  independently on its own
transmission line. Thus, the IPFC provides the real
and reactive power compensation to the system. The
controllability of the line power flow by IPFC has
been well recognized [14]-[16]. However, very
limited information is reported [17]-[19] concerning
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the control of the IPFC to provide additional
damping during system oscillations. The damping
function of the IPFC has not been investigated
thoroughly. Chen et. al. [17, 18], proposed a PID
controller for oscillation damping enhancement in a
SMIB test system. However, due to the complexity
and nonlinearity of the power system the
performance of the damping controller is degraded
to a certain extent. Kazemi et. al [19] proposed a PI
supplementary controller with its input equal to the
electrical power of the generator for oscillation
damping. However, they have not optimized the
parameters of the controller.

In the view of this, the primary object of this paper
is to develop a dynamic model for IPFC for small
signal stability analysis and examine its damping
function in mitigating the power system oscillations.
The rest of the paper is organized as follows: Firstly
the mathematical model has been developed for
IPFC in d-q axis form in section 2. Secondly a small
signal linearized Phillips—Heffron model of a power
system installed with an IPFC is derived in section
3. Thirdly the IPFC based damping controller is
designed on the basis of linearized system model,
using the phase compensation method as described
in section 4. Lastly the relative effectiveness of the
IPFC control signals on which the damping function
of the IPFC is superimposed is examined and
analyzed on single machine infinite bus power
system (SMIB). The performance of IPFC based
controllers in achieving the damping of low
frequency oscillations of the power system is
compared. The effectiveness of the controllers under
wide variations in operating conditions is studied.
The ability of the damping controllers during
various disturbances is examined with nonlinear
simulation of the dynamic model of the power
system. The simulation results are given in
section 5.

2 Modeling of IPFC

The schematic diagram of IPFC is shown in Fig. 1.
It consists of two three phase Gate turn-off (GTO)
based VSCs, each providing series reactive
compensation for the two lines. The VSCs are
linked together at their dc terminals and are
connected to the transmission lines through their
series coupling transformers. The converters can
transfer the real power between them via their

common dc terminal. In Fig. 1, m,,m, and &,,0,

refer to amplitude modulation index and phase-
angle of the control signal of each VSC,
respectively, which are the input control signals to
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the IPFC. To model the IPFC, consider phase ‘a’ of
the coupling transformer and the VSC 1, arms along

with the dc link, as shown in Fig. 2. C,, is the dc
link capacitor. 7; and /; are the per phase resistance
and inductance of transformer on line 1. ¢, and
Gc1a Tepresent the bidirectional switches which can
be either on or off in Fig. 2. r  is the switch on

N
state resistance.

—> I Line 1

r

_— —> 1

VSC 2 L VSC 1

@ e | @
. A

m, g, m, 1)

Fig. 1. Schematic diagram of IPFC

Lide [ de

r s ldc I
s 1 ll gCla C de
I/;etla —> . , Vsel Vdc
ll SCla
-*
- n a) r B l

Lt
1. TV .
1de chdc iy

Fig. 2. a) Equivalent circuit of phase ‘a’ of coupling
transformer and VSC 1. b) Dynamics of dc link
capacitor.

The mathematical model for each phase a, b and
¢ for both the VSC’s are obtained similar to the
approach in [20]. The three phase differential
equations of the IPFC are:

iy | |_R
c{t [ ;

LT I S C R ) LN
dt I, . 21,
7 llc

& 0 0 R, |~

| dt | L
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Ly
cos(awt +0,) /i |
cos(at + 6, —120") |+| 0 m
cos(at + &, —240°) !
0 0
di,| [ R 0 |
dt I
@ = 0 — & 0
dt [,
diy, R
e Iy
L dt | 0 0 l,
L
cos(at +9,) l, |
cos(wt + 5, —120°) |+] 0 I
| cos(awrt + 35, — 240°) ?
0 0

Vsetla
Vsetlb
Vsetlc
(1)
m2vdc
21,
set2a
Vrseth
set2c
)

where R, =r, +r,. The dc link capacitor voltage is:

[cos(a)t +0,)

d
Dae - ™ [cos(a)t +6,) cos(ot + 6, —120°)
i 2C,
lla m
cos(awt + 9, +1200)] iy, |+ 2

L

cos(wt + 90, — 120°)

dc

iZa
cos(wt + 5, + 1200)] iy

120

A3)

2.2 TPFC modeled in d-q axis form
By applying the Park’s transformation, the equations
(1-3) are developed into the rotating reference

(d — g — o axis) frame as:
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| | R, L
dt 12 5d 12 ‘{veﬂd
dzzq R, : 1
— |5 o —= by [HO — OV,
dt L L “
di ’ R. Lo : 1 | Mser20
20 se
. 0o o0 —2 0 0 —
L] | L L b
cosd, |
Ve | ging, 5)
2,
0 -
ha
%zﬂ[cosﬁl sin 9, O] i
dt 4C, ;
10
by
+ 31y [cosé'2 sin o, 0] iy,
dc i20
(6)

Equations (4-6) represent the three phase dynamic
differential equations of the IPFC on the rotor axis
frame. Neglecting the resistance and transients of
series converter transformers the dynamic model of
IPFC (4-6) can be written as:

—I/setld— |: 0 x”:l_ild Ve |:m1 cos§l:|
= S == ) 7

_Vseth ] X1 0 _llq 2 | msin 51 ( )

Vser2d :[ 0 —)(;tz ha |, Ve [mz 098552} ®)
_Vset2q | xt2 i qu 2 m2 Sin 2
d .
e Zﬂ[cos 5, sind, ] a

d 4C, Iy, )

3 .
+272 [cosS, sind, | [Z.Zd }
dc 12‘]

where x, =w!,, x,, = wl, are the reactances of the
series transformers.

3 System Model

3.1 Non Linear Model

Fig. 3 shows a Single machine infinite bus (SMIB)
power system equipped with an IPFC. The system
consists of a generator which is connected to the
infinite bus through the two parallel transmission
lines. An elementary IPFC consisting of two three-
phase GTO based VSCs, each compensating a
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different transmission line by series voltage
injection is installed on the two transmission lines.

Vit

Generator ‘

—> I 14

sel

m, g5, m o,

Fig. 3. An IPFC installed in a single machine
infinite bus system

The VSCs are linked together at their DC terminals
facilitating real power transfer among the
transmission lines. The nonlinear dynamic model of
the power system of Fig. 3 is derived as follows:

S=wy(w-1) (10)
P —-P -P
d): m e D (11)
M
-E _+E,
T
. -E +K, (V. -V
fd a ref t)
Ep= : (13)
. 3m; . .
Vge =———(ij; €088, +1i), sin o))
de m (14)
+—2(i,; cos 5, +1,,8In0,)
dc

where

P, =P +P, =v,i, +Vqtiqt
!/ ’ o !/ ! . .
E, =E, +(x;—xg)iy =E;+(x; —x5) i,y +15,)
’ ro. ’ ! . .
Vqt :Eq —Xg Ly :Eq — Xy (lld +l2d)

Vit :xq lqt :xq (llq +l2q)
1
_ (4,2 2 V2
v, —(th"rvqt)/,
L, =1y +]lqt’ L, =1 +l2

Ly =l tlyy, Ly =hy Ty,

B, P
transmission lines and &, is the rotor angle of
synchronous generator in radians, @ is rotor speed

are the power flow in each of the
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y

t

generator, £, is generator internal voltage, £, is

in rad/sec, is the terminal voltage of the

the generator field voltage, v,. is the voltage at DC
link. 7, and 7, are the line currents flowing the

transmission lines.
From the Fig. 3, we obtain:

Vt zjxt[t_{—l/l (15)
I/l :I/setl +ij1[1 +Vb
(16)
=Vierr + X121, +V,

where x,,, x,, are the transmission line reactances,

therefore,
V,=jxI,+V

et Y IX Ly +V
. . . ot ey .
Va + IV =X, (G +ipy) + JE, — jxg Gy +1sy)
=Jx,(hy +iyg + Jhy + Jiag) + Veeru
+J Vserrg T T (X2 ing + Jiag)

+V, sind + jV, coso

(17)
Solving the equations we get:
. , 1 .
Ig =Xy Eq +— (X100 = X114)V4m, SINO,
2 (18)
—Exlza,va,cm1 sin o, — x,,,V, €0S O
. , 1 .
g =Xy By +— (X4 —X314)V e, SIN O,
2 (19)
—Exm,vdcm1 sin &, —X,,,V), COSO
. 1
i1, == (X114 + X124 V.M, €OS 5,
2 (20)

1 .
—E(xlzq W4y €088, +X,,,v, Sind

1
Iy, == (Xyy, + X0, )V 4.1, COSO,
a7, lq q 1)
—E(xzzq )V 4y COSOy + X1,V SIN S

where
_ N
Xing =X o/ Xsps X1og =(Xg + X 15)/ Xy
X1, =X g1/ Xgyy Xony ==X | X
210 =X @1/ Xs15 Xopq = Xy / X5y
— — !
Xig =X w2/ X525 X124 __(xqt +X10)/ X5,

!
Xolg =X ! Xs2s Xa0g = X [ Xs5)
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_ ro_r
Xypp =Xpp T Xpo, Xy =Xg + X,
’
Xt =X T XXy =X, X,
’ !
Xy = (Xg X )+ (g +X 10 (Xp)

Xso = (x:]t'x a2)+ (x(,]t + X0 (Xi1)

3.2 Linearized model

The linear Heffron-Phillips model of SMIB system
installed with IPFC is obtained by linearizing the
non linear model equations (10-21) which is
obtained as follows:

ASszAw (22)
AP, — AP, — DA
pip= BPa =A%~ DA0) @)
M
. —AE_+AE,
N e el (24)
Tho
. —AE,+K, (AV,, —AV,
ai, = A ROy AT (25)
Ta
A‘}dc =K7 A5+K8 AE; _K9 AVdc + Kcml Aml
+K 5 A0 + K,y Amy + K 57 AD,
(26)
where
AP, =K AS+K,AE, +K , Av, +K . Am,
+K,5 A6+ K, Amy + K 5, AD,
(27)
AEq =K4 A5+K3 AE:] +va Avdc + qul Aml
+K 5 A6, + K, Amy + K 5, AJ,
(28)
AV, =Ks A6+ K AE; + K, Av, + K, Am
+K,5 AS; +K,,, Amy + K 5, AS,
(29)

The model has 28 K-constants which are functions
of system parameters and the initial operating
condition.

3.3 State Space Model
The power system is represented in state space as:

X =AX+BU (30)

ISSN: 1109-2777

Alivelu M. Parimi, Irraivan Elamvazuthi, Nordin Saad

where the state vector and control vector are:

X=[AS Ao AE, AE, Av,]"
U=[Am, AS, Am, AS,]" (31)

and, state and control matrix are:

o o, 0 0 0 |
K5 DK Ko
M M M M
4=| - K, 0 _ K, L va
T T To T
KaKS KaK6 _i Kava
T, T, T, T,
K 0 K 0 K |
0 0 0 0 |
_Kpml _Kp51 _Kme _Kpé'Z
M M M M
B= _qul _quﬂ _qu2 _Kq52
T Tgo To Tgo
KaKvml K Kvé'l K Kvm2 KaKv52
Ta Ta Ta Ta
L Kcml Kc51 KcmZ Kcé'Z B

and Am, is the deviation in pulse width modulation
index m, of voltage series converter 1 in line 1.
Am, is the deviation in pulse width modulation
index m, of voltage series converter 2 in line 2.
Ao, is the deviation in phase angle of the injected
voltage V,,. A, is the deviation in phase angle of

N

the injected voltage V., .

Fig. 4. Phillips-Heffron model of SMIB system
installed with IPFC
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The extended Phillips-Heffron model of SMIB
system installed with IPFC (30) is shown as a block
diagram in Fig. 4. It should be noted that
K,,K,,K,andK, in Fig. 4 are the row vectors

defined as

Kp = [Kpml Kp(ﬂ Kpm2 Kp§2 ]
Kq = [qul Kq51 quZ Kq52 ]
Kv = [Kvml Kvé'l Kva Kv52 ]
K. =K., K. Kgn Kyl

From (31), we observe that any of the four inputs
control signals Am,, AJS,, Am, and AJ, can be

utilized to superimpose on the damping function of
IPFC.

4 IPFC Damping Controller

The damping controller is designed to contribute a
positive damping torque in phase with the speed
deviation to the electromechanical oscillation loop
of the generator. The structure of the IPFC based
damping controller is shown in Fig. 5, which
comprises of gain K, , signal washout block and

‘n’ lead lag compensator blocks.

Aw

T 1+sT, )"
— K . St - ( ts 1]
1+sT, 1+sT,

Signal Washout

AU

Gain
Phase Compensation

Fig. 5. Structure of IPFC based damping controller

The time constants of lead lag compensator are
determined using the phase compensation method
[21] to compensate the phase shift between the
control input signal AU and electrical power
deviation AP,. The gain setting K, of the damping
controller is chosen to achieve a required damping
ratio of the electromechanical mode and the value of
T, (the washout filter time constant) is chosen in
the range of 10 to 20s. The four control parameters,
m,, m,, 6, and &, can be modulated to produce
the damping torque. The damping controller based

on the IPFC input signal m, is termed as the
damping controller m;, and consequently other

controller based on input signals m,,o, and o0, are

termed as damping controller m,, damping
controller 4, and damping controller o, .
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S Simulation Results

A single machine infinite bus power system
installed with IPFC is considered for analysis,
parameters of which are given in Appendix A. The
system is operated with various different load
conditions, i.e., from P,=0.1pu to P,=1.5 pu,
and V, =1.02pu, V, =1.0pu. The linearized model
is obtained at each varying condition and eigenvalue
analysis is performed. The values of the K
constants of the system at the one operating point
P,= 0.8 pu is given in the Appendix B. Eigenvalues
for the power system at this operating point are
shown in Table 1. The system contains a pair of
complex eigenvalues having low damping ratio of
0.0084952. A controller is designed to tune the gain
K, toachieve a damping ratio of 0.1. The various
damping controllers are designed at the operating
point P,= 0.8 pu, where the parameters of each

controller is given in the Appendix C.

Table 1: Eigenvalues of the linearized SMIB at
operating point P, = 0.8 pu.

Eigenvalues Damping Ratio | Frequency
-100.09 1 0
-0.09782 +j11.514 0.0084952 1.8325
-0.31442 1 0
-0.0023063 1 0
The dynamic performance of the system is

examined using the alternative damping controllers
with varying operating conditions. The responses
are shown for the operating conditions P,= 0.8 pu

e

the nominal condition, P,= 0.2 pu light load
condition and P,= 1.4 pu the heavy load condition.

5.1 Operating point P, = 0.8 pu
The effectiveness of IPFC damping controllers at
the nominal operating condition P,= 0.8 pu at

which they are designed is observed. The power
system performance in the presence of the
controllers is investigated with the non linear
simulation of the system modelled by the nonlinear
differential equations (10-21). A three phase fault
occurs at 1.0 sec at the starting end of the
transmission line and cleared after 100 ms. The
response of the system without the controller
(marked by ‘no controller’) is shown with dotted
line and the responses with [IPFC controller is shown
with solid line marked by the arrow “with
controller”.
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5.1.1 Damping Controller m,
The system eigenvalues in the presence of the
damping controller m, is shown in Table 2.

Table 2: Eigenvalues of the linearized SMIB at
operating point P,= 0.8 pu with damping controller

nm
Eigenvalues Damping Ratio | Frequency
0 - 0
-100.01 1 0
-1.2986 +j11.531 0.11191 1.8353
-6.5463 1 0
-0.37662 1 0
-0.095395 1 0
-0.0023062 1 0
0.015 :
with controller no controller
0.01} £ =
0.005}
) 0
-0.005 |
-0.01

-0.015

Time (sec)

Fig.6. Rotor Speed response with and without
damping controller m; at P,=0.8 pu

2 T T '
N with controller no controller
1.5¢ '
1 |
3
(=9
o
0.5+
0 |
-0.5 :
0 1 2 3 4 5

Time (sec)

Fig. 7. Electrical Power response with and without
damping controller m, at P,= 0.8 pu.
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The complex eigenvalue pair’s damping ratio has
increased to approximately 0.11 as desired. The
rotor speed and electrical power response during and
after the fault clearance, with and without the
controller is shown in Fig. 6 and Fig. 7 respectively.
It is clear from these Figures that, the system is
oscillating without the controller due to the poor
damping of the oscillation modes and as such power
system oscillations are clearly observed. It is also
seen, that the use of the proposed IPFC damping
controller m, the oscillations are suppressed in

about 4.5 sec. after the fault is cleared i.e at 5.5sec,
simulation time.

5.1.2 Damping Controller m,

Table 3 gives the eigenvalues of the system in the
presence of the damping controller m,. The

damping ratio of the pair of complex eigenvalues
has increased to 0.10877 with the use of this

Table 3: Eigenvalues of the linearized SMIB at
operating point P,= 0.8 pu with damping controller

m,
Eigenvalues Damping Ratio | Frequency
0 - 0
-100.08 1 0
-1.2541 +£j11.461 0.10877 1.8241
-11.003 1 0
-0.0023052 1 0
-0.1 1 0
-0.31631 1 0
0.015 :
with controller no controller
0.01} :
0.005}
) 0
-0.005 |
-0.01 ¢
-0.015 : : : :
0 1 2 3 4 5
Time (sec)
Fig. 8. Rotor Speed response with and without

damping controller m, at P,=0.8 pu
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2 T T
with controller
x ~ . ho gontroller
1.5
1 |
=]
o
o
o
0.5
of B -
-0.5 !
0 1 2 3 4 5

Time (sec)

Fig. 9. Electrical Power response with and without
damping controller m, at P,= 0.8 pu

damping controller at the operating point P,= 0.8

pu as per the designed requirement. Fig. 8 and Fig. 9
show the rotor speed and electrical power response
in the presence of the damping controller m, from

the nonlinear simulation. The oscillations occurring
due to the fault are mitigated at the time of 4.5 sec
i.e around 3.5 sec after the fault clearance. The
controller m, is comparatively better than the
damping controller m, and also, in the value of the
gain K, required by the controllers to achieve
same performance. The gain of the controller m, is

much higher (equal to 182.12) compared to the gain
of the damping controller m, which is equal to

15.235. As such the damping controller m, is much

more effective than damping controller m, .

5.1.3

The eigenvalues of the system with the damping
controller ¢, is given in the Table 4. The controller

achieves the damping ratio of 0.10189 for the pair of

Damping Controller 6,

Table 4: Eigenvalues of the linearized SMIB at
operating point P,= 0.8 pu with damping controller

S

Eigenvalues Damping Ratio | Frequency
0 - 0
-22.599 £+ j94.966 0.23151 15.114
-105.84 1 0
-1.139 £j11.12 0.10189 1.7698
-0.31395 1 0
-0.10005 1 0
-0.0023063 1 0
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0.015

with controller

no controller

0.01r

0.005

-0.005

-0.01 |

-0.015
0

Time (sec)

Fig. 10. Rotor Speed response with and without
damping controller 0, at P,=0.8 pu

2 : i '
with controller g controller

1.5} =

1 |
3

0.5F

0 |
-0.5 ‘
2 4 6 8 10
Time (sec)

Fig. 11. Electrical Power response with and without
damping controller 5, at P,=0.8 pu

complex eigenvalues and phase is compensated by
two lead lag compensator blocks (n = 2) as
compared to controllers m, and m, which require
only one lead lag block. The rotor speed response
o and electrical power P, is shown in Fig. 10 and
Fig. 11 respectively. It is observed from the
responses that the oscillations are sustained around
7.5 sec. The damping controller 9, is less effective
compared to the other two controllers m, and m,
as it requires more time to dampen the oscillations.

5.1.4 Damping Controller 5,
Table 5 shows the eigenvalues of the system with
the damping controller &, . However, this controller

does not contribute much to the damping of the
oscillation mode as seen from the eigenvalues,
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damping ratio in Table 5, although the gain of the
damping controller is significantly large.

Table 5: Eigenvalues of the linearized SMIB at
operating point P, = 0.8 pu with damping controller

%,

Eigenvalues Damping Ratio | Frequency
0 - 0
-100.09 1 0
-0.15569 + j10.191 0.015275 1.622
-0.1734 +70.21481 0.62812 0.034188
-0.10615 1 0
-0.05592 1 0
-0.0023054 1 0

0.015 : .
no controller

0.01 ‘ T 1 . with controller |

0.005

-0.005

-0.01 r

-0.015

Time (sec)

Fig. 12. Rotor Speed response with and without
damping controller 6, at P,= 0.8 pu

2r with controller
no controller
15¢
= 1r
Q
L]
o
0.5+
o L
-0.5 - ‘
0 2 4 6 8 10

Time (sec)

Fig. 13. Electrical Power response with and without
damping controller 6, at P,= 0.8 pu
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Further increase of the gain of the controller only
pushes the system to instability as the eigenvalues
are forced into the RHS of the S plane. The
responses of the rotor speed and electrical power of
the system with the damping controller &, is shown
in Fig. 12 and Fig. 13 respectively. It is seen that the
effect of the controller on the oscillations is
negligible and inferior compared to the other three
controllers.

5.2 Operating point P, = 0.2 pu (light load

condition)
The performance of the controllers at different load
condition, i.e, at a lighter load condition P,= 0.2 pu

is examined other than the operating point whether
the controllers have been designed.

5.2.1
The eigenvalues of the power system at P,= 0.2 pu

Damping Controller m,

with the damping controller m, is given in Table 6.

Table 6: Eigenvalues of the linearized SMIB at
operating point P,= 0.2 pu with damping controller

my
Eigenvalues Damping Ratio | Frequency
0 - 0
-100.18 1 0
-8.7464 + j15.604 0.48895 2.4835
-3.4176 1 0
-0.00077924 1 0
-0.10315 1 0
-0.34957 1 0
3
6 x10 ‘
no controller \ . _
ith $ ¥
4r co\r'\vtlroller
8
4t
6 : w : :
0 1 2 3 4 5

Time (sec)

Fig. 14. Rotor Speed response with and without
damping controller m, at P,=0.2 pu.
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The damping controller is very effective at lighter
load condition as it increases the damping ratio to a
higher value of 0.48895 as seen from Table 6.
Fig. 14 and Fig. 15 show the rotor speed and
electrical power response with and with out the
damping controller at P,= 0.2 pu. The damping

controller m, is able to sustain the oscillations at a

faster rate approximately within 1.0 sec. after the
fault occurrence as compared to Fig. 6 and Fig.,
where the settling time is 4.5 sec. It is thus observed

that the damping controller m, contributes more
damping for lighter load conditions.

1.2

with controller

no controller

- > ~

Pe pu

Time (sec)

Fig. 15. Electrical Power response with and without
damping controller m, at P,=0.2 pu

5.2.2 Damping Controller m,

Table 7 shows the eigenvalues of the system with
the damping controller m, at the operating point
P,= 0.2 pu. The damping controller increases the

damping of the oscillation mode slightly at lighter
load condition. This is also observed in the response
of the rotor speed and electrical power in Fig. 16

Table 7: Eigenvalues of the linearized SMIB at
operating point P,= 0.2 pu with damping controller

n,

Eigenvalues Damping Ratio | Frequency

0 - 0

-100.19 1 0

-1.4903 + j12.232 0.12094 1.9468

-10.987 1 0

-0.00077932 1 0

-0.10031 1 0

-0.34438 1 0
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and Fig. 17 respectively. The damping of the
oscillation is at 3.5 sec, improving by one sec when
compared to Fig 8 and Fig. 9 at the operating point
of P,=08pu.

no controller - = - 2 =

with
| controller

N

0 1 2 3 4 5
Time (sec)

Fig. 16. Rotor Speed response with and without
damping controller m, at P,=0.2 pu.

0.8- with controller no controller

"

Pe pu

0 1 2 3 4 5
Time (sec)

Fig. 17. Electrical Power response with and without
damping controller m, at P,=0.2 pu

5.2.3 Damping Controller 9,

The eigenvalues of the power system with the
damping controller &, is given in Table 8. The
damping contributed by this controller is less as
compared to damping controllers m, and m, at this
operating point. The damping ratio of the oscillation
mode is only 0.034505 which is very less than the
required 0.1 value. Fig. 18 and Fig. 19 show the
response of the rotor speed and electrical power
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Table 8: Eigenvalues of the linearized SMIB at
operating point P,= 0.2 pu with damping controller

5.

Eigenvalues Damping Ratio | Frequency

0 - 0

-71.472 £+ j64.643 0.74165 10.288
-100.81 1 0

-0.42678 + j12.361 0.034505 1.9673
-0.34466 1 0
-0.1 1 0
-0.00077932 1 0

Time (sec)

Fig. 18. Rotor Speed response with and without
damping controller o, at P,=0.2 pu.

0.8 T
no controller

with contrbller

0.6

041

a2
" 0.2—1
o

0,

-02 -

-04
Time (sec)

Fig. 19. Electrical Power response with and without
damping controller &, at P,=0.2 pu

respectively in the presence of the damping
controller ;. The settling time is around 9.5 sec
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which is more compared to the settling times when
the damping controllers m, and m, are used at the
two different operating points P,= 0.2 pu and
P,=0.8 pu

5.2.4 Damping Controller o,

Table 9 gives the eigenvalues when the damping
controller 6, is placed in the power system. As
observed during the operating point P,= 0.8 pu, this
controller also does not contribute to any damping
during the operating point P,= 0.2 pu as seen in

Table 9. This is also verified from the responses of
rotor speed and electrical power in Fig. 20 and Fig.
21 respectively. The controller does not help in
mitigating the power system oscillations. Thus
damping controller &, is not suitable for improving

the damping of the oscillation mode.

Table 9: Eigenvalues of the linearized SMIB at
operating point P,= 0.2 pu with damping controller

%,

. Damping
Eigenvalues Ratio Frequency
0 - 0
-100.2 1 0
-0.027141+j11.736 0.0023127 1.8678
-0.00078018 1 0
-0.062618 1 0
-0.10615 1 0
-0.24777 +£j0.049733 0.98044 0.0079153
3
6x 10 ‘
with controller withqut controller
4 |
20 :
8 0
2+
4+
6 . . . .
0 1 2 3 4 5

Time (sec)

Fig. 20. Rotor Speed response with and without
damping controller 5, at P,=0.2 pu.
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08l with controller without controller

A

0.6

0.4r

Pe pu

0.2

0 1 2 3 4 5
Time (sec)

Fig. 21. Electrical Power response with and without
damping controller 6, at P,=0.2 pu

5.3 Operating point P, = 1.4 pu (heavy load

condition)
The damping controller performance of the power
system is observed for the operating point P,= 1.4

pu i.e at heavy load condition with various damping
controllers.

5.3.1
The eigenvalues of the power system at P,= 1.4 pu

Damping Controller m,

with the damping controller m, is given in Table
10. It appears that the damping controller m,

contributes negative damping at heavy load
conditions as observed from Table 10. The
oscillation mode is forced into the RHS of the S -
plane. But upon the non linear simulation of the
system with this controller m,, we observe a
peculiarity in the responses of the rotor speed and
electrical power as shown in Fig. 22 and Fig. 23

Table 10: Eigenvalues of the linearized SMIB at
operating point P,= 1.4 pu with damping controller

m,

Eigenvalues Damping Ratio | Frequency

0 - 0

-100.19 1 0

2.6187 + j9.2251 -0.27308 1.4682

-8.79 1 0

-0.81499 1 0

-0.097471 1 0

6.4304e-005 -1 0
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0.12

01} with controller

0.08 -
0.06
8 0.04f no controller

0.02 -

-0.02

-0.04

Time (sec)

Fig. 22. Rotor Speed response with and without
damping controller m, at P,=1.4 pu.

15

«—With controller
10

no controller

Pe pu

0 2 4 6 8 10
Time (sec)

Fig. 23. Electrical Power response with and without
damping controller m, at P,=1.4 pu.

respectively. The oscillation seems to increase in
amplitude with high peak overshoots as if leading
the system to instability reflecting the eigenvalues
computed in Table 10. But at time 4.5 sec the
oscillation suddenly are mitigated. This unusual
nature of the damping controller m, providing

excessive damping at light load condition, providing
damping at heavy load condition with high peak
values and requirement of higher gain value to
provide the required damping makes it unreliable for
damping the power system oscillations consistently
for all operating conditions.

5.3.2 Damping Controller m,

Table 11 represents the eigenvalues of the power
system with the damping controller m,. At heavy
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load condition the controller provides a damping
about 5.7%. The oscillations in the rotor speed and

Table 11: Eigenvalues of the linearized SMIB at

Alivelu M. Parimi, Irraivan Elamvazuthi, Nordin Saad

electrical power is shown in Fig. 24 and Fig. 25
respectively. The damping controller m, dampens

the oscillations at about 7.5 sec for heavy load

) P14 b damni I condition. This damping controller m, provides
operating point £, = 1.4 pu with damping controller sufficient damping at lighter load condition P,= 0.2
e pu and nominal load condition P,= 0.8 pu.

- - . However, its performance in heavy load condition

E1gen(\)/ alues Damplrfg Ratio Frquency P,= 1.4 pu does not meet the designed requirement

299 847 1 0 of achieving the damping ratio of 0.1 although it

-0.6271 + _]10 91 0.057388 1.7363 mitigates the oscillation ConSiStently.

-11.039 1 0

-0.71301 1 0 5.3.3 Damping Controller 9,

-0.099809 1 0 The eigenvalues of the system with the damping

6.4304¢-005 -1 0 controller &, is shown in Table 12. The damping
controller &, contributes slightly to the oscillation
0.02 ‘ ‘ mode of interest and it also introduces another set of
) = no controller
0.015r 2z 'th.,cor_mo'_ler Table 12: Eigenvalues of the linearized SMIB at
001" = operating point P,= 1.4 pu with damping controller
é‘1
0.005}
8 0 Eigenvalues Damping Ratio | Frequency
-0.005 | 0 - 0
-116.91 1 0
oot} -27.566 + 96.088i 0.27576 15.293
0.015 | -0.87469+ j9.8899 0.088099 1.574
-0.69493 1 0
-0.02 :
0 2 4_ 6 8 10 -0.10006 1 0
Time (sec)
6.4304e-005 -1 0
Fig. 24. Rotor Speed response with and without
damping controller m, at P,=1.4 pu.
0.025 :
3.5 w w ) no controller
no controller 0.02+ with controller i
3t with controller 2
A 0.015}
25} 0.01"
2} 0.005}
A 15l 8 0
. -0.005
1 L
-0.01
0.5 N -0.015 |
o R -0.02 |
‘ -0.025 :
05, 2 4 6 8 10 0 1 2_ 3 4 5
Time (sec) Time (sec)

Fig. 25. Electrical Power response with and without
damping controller m, at P,=1.4 pu.
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Fig. 26. Rotor Speed response with and without
damping controller o, at P,= 1.4 pu.
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complex eigenvalues, though it has sufficient
damping ratio. However the responses obtained
from the nonlinear simulation as shown in Fig. 26
and Fig. 27 for rotor speed and electrical power
output respectively indicate the ineptness of this
controller to provide damping compared to the other
damping controllers m, and m,. The responses

indicate that the controller is ineffective in damping
the oscillations at heavy load conditions.

35

" controller " .With controller
3r \
25F

2 |

15[

Pe pu

1,

0.5~

0,

-0.5

Time (sec)

Fig. 27. Electrical Power response with and without
damping controller o, at P,= 1.4 pu.

5.3.4 Damping Controller o,
The damping controller &, is not a suitable signal

for damping as can be observed from Table 13
where the eigenvalues of oscillation mode are
shifted to RHS of S-plane making the system
unstable. This is also seen in Fig 28 and 29 that the
controller does not provide any damping.

Table 13: Eigenvalues of the linearized SMIB at
operating point P,= 1.4 pu with damping controller

%,

0 1 2 3 4 5

Eigenvalues Damping Ratio | Frequency
0 - 0
-99.873 1 0

0.02401 £+ j9.9107 -0.0024226 1.5773
-0.75652 1 0
-0.14535 1 0
-0.10615 1 0
-0.083081 1 0
6.4306e-005 -1 0
ISSN: 1109-2777

524

Alivelu M. Parimi, Irraivan Elamvazuthi, Nordin Saad

0.03

with controller

0.02

0.011

-0.01 -

-0.02
no controller

-0.03

Time (sec)

Fig. 28. Rotor Speed response with and without
damping controller 6, at P,=1.4 pu.

3.5

ith controller no controller

Pe pu

Time (sec)

Fig. 29. Electrical Power response with and without
damping controller 6, at P,=1.4 pu.

From the analysis we have deducted that the
controller ¢, is inept in providing damping to the
power system oscillations. m; and m, prove to be
suitable input signals on which the damping
function can be added. However the damping
controller m, is more efficient as the required
damping is provided at minimum control cost, and it
provides consistent damping throughout the varying
operating conditions. This is also proved with the
controllability index given in Table 14; from we can
observe that the input signal m, is the most
efficient signal for damping as it has higher value of
controllability index compared to other input
signals.
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Table 14: Controllability indices with different IPFC
controllable parameters

Input signal | Controllability index
m, 0.0170
o, 0.0055
m, 0.1560
0, 0.0079

Furthermore, if the operating condition where the
IPFC damping controller is least effective is selected
for the design of damping controller then it becomes
more effective in damping at other operating
conditions indicating its robustness. As we have
seen, the damping controller m, is least effective at
heavy load condition comparatively, and also the
damping ratio of the concerned oscillation mode is
the least at the operating condition of P,= 1.4 pu as
indicated in Table 15. Consequently the damping
controller is designed at the operating point
P,= 1.4 pu and its performance at varying operating
conditions is observed in Fig. 30. The results of the
eigenanalysis with damping controller m, , designed
at the operating point P,=1.4 pu, at different
operating conditions are shown in Table 16. It is
observed that the controller provides damping

without sharp drops or increases in the damping
contribution with various operating conditions

Table 15: Oscillation modes at various operating
conditions

Op. Eigenvalues without damping
Pt.
Eigenvalues Damping | Frequ-
ratio ency
0.2 | -0.031219+ j12.275 | 0.0025433 | 1.9536
0.8 | -0.09782+ j11.514 | 0.0084952 | 1.8325
1.4 | -0.016734+ j11.009 | 0.00152 | 1.7521

Table 16: Oscillation modes at various operating
conditions with damping controller m, designed at

P,=1.4pu

Op. Eigenvalues with damping m,
Pt.
Eigenvalues Damping | Frequ-
ratio ency
0.2 -2.6316 +£j12.503 0.20596 1.99
0.8 -2.1822 +£j11.669 0.18382 | 1.8573
1.4 -1.1397 +j10.965 0.10338 | 1.7451
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making the damping controller m, more robust and
effective. Fig. 30 shows the rotor speed response
with the damping controller m, at different load

conditions. It is noted that the oscillations are
mitigated at a faster rate with lighter load conditions
which validates the results of Table 16.

0.02

0.015}

0.01r

0.005}

-0.005F

-0.01F

-0.015¢

-0.02

Time (sec)

Fig. 30. Rotor Speed response with controller m,
with varying operating conditions

The effect of the IPFC damping controller m, is
also verified during a step variation of 0.01 pu in
mechanical power input P, . Fig. 31 shows the

response of the electrical power when the
disturbance is given at 1.0 sec. The effect of the
damping controller  m, designed at the two

operating conditions P,= 0.8 pu and at P,= 1.4 pu
is compared during this disturbance.

0.88

la. . no controller

0.86

0.841

078} P

0.76

0.74
0 10
Time (sec)

Fig. 31. Electrical Power response without damping
controller and with damping controller m, designed

at (a) P,= 0.8 pu(b) P,.= 1.4 pu
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It is clearly seen that the damping controller m,
designed at the operating point P,= 1.4 pu gives

better damping as the settling time is at 3 sec. It
improves the performance by 55% in comparison
with the controller designed at P,= 0.8 pu. Thus the

controller is more robust when designed at the
operating point at which the damping ratio of the
oscillation mode is minimum or where it is least
effective to ensure to effectiveness at other
operating conditions. The operating point and the
input signal play a significant role in damping the
power system oscillations.

6 Conclusion

In this paper the non linear model of the IPFC has
been developed and the extended linearized Phillips-
Heffron model of a single machine infinite bus
power system incorporated with IPFC is established.
The parameters of the IPFC damping controller is
determined using the phase compensation method
based on the linearized model. The relative

effectiveness of the input control signals
Am,, Ao,, Am, and AJ, has been examined on
example power system subjected to various

disturbances. Investigations revealed that control
signal Am, is the most efficient of the input control
signals to be used for damping in the power system
whereas the control signal AJ, is inefficient in

providing the damping. It is found that the IPFC
damping controller is more robust over various
operating conditions when the controller is designed
at appropriate operating condition. The effectiveness
and robustness of the IPFC damping controller is
validated through eigenanalysis and non linear
simulation. The authors are further investigating the
additional damping provided by the proposed IPFC
based damping controller in a multi-machine power
system incorporated with IPFC.
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Appendix

Appendix A

The parameters of the single machine infinite bus
power system are as follows (in pu except where
indicated):

H=40s.,

x, = 1.0,

D=0.0,
x, = 0.6,

T, = 5.044s.,
x,; =03,

ISSN: 1109-2777
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x, = 0.01, x, = 0.015, x,, = 0.015,
x;, =0.05, x;, =0.05, K, =10.0,
T,=00ls., V40 = 225KV, P, =028,
V,, =1.0, Vv, =1.02.

Appendix B

K constants at the operating point of P,=0.8 pu

K,=3.166416, K,=0.323807 K,=3.043796
K,=0.066681 K,=-0.104002 K,=-0.001198
K,=0.002149 K,=-0.009759  K,=0.000035
K,,=0.123469 K, =0.004512 K, =0.012725

K, =1.497362
K., =1.578447

K 5, =-0.008114
K 5, =-0.017687

Ky =-0.285734 K 5 =-0.015464
K> =-0.031945 K5, =-0.144520
K, =0.129343 K5 =0.000640
K,,,=0.165458 K5, =0.028441
K., =-0.898796 K.;=0.005237

K,,,=0.034733 K5 =-0.053150

Appendix C

Damping controller designed at P,=0.8 pu
T,,=10 sec

Damping controller m,
K, =182.12, T,=0.057312, T,=0.13174, n=1

Damping controller m,
K, =15.235, 1,=0.083781, 7,= 0.090121, n=1

Damping controller &,
K, =5.0117, T,=0.73539, T,=0.010267, n=2

Damping controller &,
K, =34420, T,= 0.00080155, T,= 9.4198, n=2

Issue 5, Volume 9, May 2010
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Interline Power Flow Controller (IPFC) Based Damping Controllers
for Damping Low Frequency Oscillations in a Power System

Alivelu M. Parimi Student Member IEEE, Irraivan Elamvazuthi and Nordin Saad

Abstract— The Interline Power Flow Controller (IPFC) is a
voltage-source-converter (VSC)-based flexible ac transmission
system (FACTS) controller which can inject a voltage with
controllable magnitude and phase angle at the line-frequency
thereby providing compensation among multiple transmission
lines. In this paper, the use of the IPFC based controller in
damping of low frequency oscillations is investigated. An
extended Heffron-Phillips model of a single machine infinite
bus (SMIB) system installed with IPFC is established and used
to analyze the damping torque contribution of the IPFC
damping control to the power system. The potential of various
IPFC control signals upon the power system oscillation stability
is investigated a using controllability index. Simulation results
using Matlab Simulink demonstrate the effectiveness of IPFC
damping controllers on damping low frequency oscillations.

I. INTRODUCTION

HE present day interconnected power system consists of

a great number of generators being connected together
through a high-voltage long transmission network, supplying
power to loads through lower-voltage distribution systems.
The phenomenon that is of great concern in the planning and
operation of interconnected power systems is the low
frequency electromechanical oscillations. These oscillations
are the consequence of the dynamical interactions between
the generator groups. The oscillations associated with groups
of generators when oscillating against each other are called
inter-area modes and having frequencies in the range 0.1 to
0.8 Hz, whereas the oscillations, associated with a single
generator oscillating against the rest of the system, are called
local modes and normally have frequencies in the range of
0.7 to 2.0 Hz [1]. These low frequency oscillations constrain
the capability of power transmission, threaten system
security and damage the efficient operation of the power
system [2-3]. For this reason, the use of controllers to
provide better damping to the power system oscillations is of
utmost importance to maintain power stability.

In the last decade, the flexible ac transmission systems
(FACTS) devices have been progressively developed to deal
with the above control objectives [4]. A stream of voltage
source converter (VSC) based FACTS devices, [5], and [6]
such as Static Compensator (STATCOM), Static
Synchronous Series Compensators (SSSC), and Unified
Power Flow Controller (UPFC) have been successfully

Manuscript received on July 15, 2008.

Alivelu M. Parimi, Irraivan Elamvazuthi, and Nordin Saad are with
Universiti Teknologi PETRONAS, Bandar Seri Iskander, Tronoh, Perak,
Malaysia. (e-mails: alivelu_manga@utp.edu.my; irraivan_elamvazuthi
(@petronas.com.my , nordiss@petronas.com.my).

978-1-4244-1888-6/08/$25.00 (© 2008 IEEE

applied in damping power system oscillations [7-14].

Interline power flow controller (IPFC) is the latest
generation of FACTS controllers [15]. It is the combination
of two or more SSSCs which are coupled via a common DC
link. With this scheme, IPFC has the capability to provide an
independently controllable reactive series compensation for
each individual line and also to transfer real power between
the compensated lines. There has been growing interest
recently in studying the IPFC modeling [16], its basic
function to control power flow among transmission lines
[17] and oscillation damping [18]. Kazemi and Karimi
proposed a PI supplementary damping controller for the
IPFC for damping inter-area oscillations [18]. However, the
controller parameters are not optimized. Further, no effort
had been made to identify the most suitable control
parameter. A supplementary PID damping controller was
proposed in [19], but the performance degraded due to the
system nonlinearity and complexity.

Therefore, in this paper, the linearised Heffron-Phillips
model of a single machine infinite bus (SMIB) power system
installed with an IPFC is first established. It is of same form
as that of the unified model presented in [20-22] for UPFC.
Phase compensation method [23] is applied for the design of
IPFC damping controllers based on the established
linearized model. The relative effectiveness of modulating
alternative IPFC control parameters for damping power
system oscillations at the nominal point of the system is
examined. The controllability index is used to determine the
most  effective  output  control  signal  among
(my,6,,m,,and 6,) from the damping controller.

II. MODEL OF THE SYSTEM STUDIED

A single machine infinite bus (SMIB) system installed
with IPFC is considered for the analysis of stability. Fig. 1.
shows the generator connected to the infinite bus through the
two parallel transmission lines. The static excitation system,
model type IEEE-ST1A, has been considered. PSS is not
taken into account in the power system. A simple IPFC is
incorporated into the system, which consists of two, three
phase GTO based voltage source converters (VSC’s), each
providing a series compensation for the two lines. The
converters are linked together at their dc terminals and
connected to the transmission lines through their series
coupling transformers. This configuration allows the control
of real and reactive power flow in line 1. For the series
converter in line 2, it is assumed that active power flow
constraint is used while reactive power flow is relaxed.
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Line1 — [,

Generator

Infinite Bus

Vier Line 2
Fig. 1: SMIB system installed with an IPFC.

The system data and the initial operating conditions of the
system are as follows:

Generator:  M=2H=8.0 MI/MVA D=0  T,,=5.044s
x;=1.0pu  x,=0.6pu x;;=0.3pu
Excitation system : K,=50 T,=0.05s

Transmission line : x;;=x;,=x; =0.5 pu

Transformers 1 x,=0.15pux,; =x, =0.1pu
Operating condition: P=0.8 (Q=0.1958 ¥,=1.0 pu
V,=1.0pu f=60Hz

:m=0.15, my=0.1.

Vi=2pu, C4o=1pu

IPFC parameters

A. Power system Non Linear Dynamic Model

A non-linear dynamic model of the system is derived by
neglecting the resistances of all the components of the
system (generator, transformer, transmission lines and series
converter transformers) and the transients of the
transmission lines and transformers of the IPFC. The IPFC
considered is based on pulse width modulation. The non-
linear dynamic model of the power system in Fig. 1 is

5= my(w-1) (1)
. P,-P,—P,
=2 ¢ = 2
% 2
. -E,+E
= o) 3)
Tdo
—E, +K,(V.. -V,
Efd — Jd a( ref 3] (4)
TH
. 3m, .
Vi = (cos 6, I}, +sin6, 1,,)
- ®)
2 (c0s 0, I,, +sinb, I,,)

de
Where 6, is the rotor angle of synchronous generator in
radians, @ is rotor speed in rad/sec, V, is the terminal
~’ . .
voltage of the generator, E, is generator internal voltage,
E, is the generator field voltage, V. is the voltage at DC

link. More details are given in Appendix 1. The voltages
injected by the IPFC converters in d-q coordinates are
obtained as follows:

V.

— Ve
seld — _Xllllq + 5 m cOS61

v

v
— dc :
velg = X1 +72 m sin 6

v,

— Vdc
o2d = Xpplhg + o™ cost,

v, .
Vierq :xz2lzd+%”’2 sin6,

. A
Vsei = Vseid + .]Vseiq = Vseiej ' (6)
where V,,;,i=1,2 is the complex controllable series

injected voltage, x,, and x,, are the reactance’s of the
transformers in line 1 and 2.

B. Power System Linear Model
The linear Heffron-Phillips model of SMIB system
installed with IPFC is obtained by linearizing the non linear
model around an operating condition, which is obtained
from power flow analysis [24]. The linearized model
obtained is given as:
_ (AP, —AP, - DAw)

Ad> m (7)

Ad=w,A0 )

iy =0 ©

do

A = -AE +KHT(ijf —AV,) (10

AV =K; AS+Kg AE, — Ko AV, + an

K o Ay + K ooy AB) + K 1y Ay +K gy AB,

where

AP, =K A6+ K, AE, + K ,, AV, + K, Am 1)
+Kp€l A6, +Kpm2 Am, +Kpg2 AG,

AE, =K, AS+Ky AE, +K ,, AV, +K .\ Am, 03
+K o1 A6, +K iy Amy +K gy AB,

AV, =K AS+K AE) +K, AV, +K,,, Am, (14

+K,0 AG +K,,, Am, +K 5, AG,

The model has 28 K-constants. These constants are
functions of system parameters and the initial operating
condition.

C. State space Model

In state-space representation, the power system can be
modeled as

X =AX+BU (15)
where the state vector and control vector are as follows:
X=[AS Aw AE, AE, AV,1"

U=[Am AG Amy AT (16)

The system matrix and control matrix are:
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0 w, 0 0 0
ISR A K
M M M M
Tdo Tdn Tdo Tdo
KKs o KK 1 KK,
Ta Ta Ta Ta
e 0 Kq 0 -Ky |
[0 0 0 0
_Kpml _Kpﬁl _Kme _KpGZ
M M M M
B= _qul _qul quZ _quz
Tz;o Tr;o T:}n Tz;n
_KaKvml _KHKVGI _KaKva _KuKVQZ
Ta Ta Ta Ta
Kcml KcHl KcmZ KL'HZ

and Am, is the deviation in pulse width modulation index
m, of voltage series converter 1 in line 1. By controllingm,

the magnitude of series injected voltage in line 1 can be
controlled. Am, is the deviation in pulse width modulation

index m, of voltage series converter 2 in line 2. By
controlling m, , the magnitude of series injected voltage in
line 2 can be controlled. A#, is the deviation in phase angle
of the injected voltage V,,,. A8, is the deviation in phase
angle of the injected voltage V.

se2

III. DESIGN OF IPFC DAMPING CONTROLLERS

To improve the damping of low frequency oscillations the
damping controllers are provided to produce the additional
damping torque. The speed deviation Aw is considered as
the input to the damping controllers which reflects the
swings on the machines and lines of interest. As such, the
output of the controller is in phase with the speed deviation.

A
e
1+sT,,

Gain

1+sT;

G.(s)= ]
C() 1+ST2 Au

Signal Washout Phase Compensation

Fig. 2: Structure of IPFC based damping controller.

The structure of IPFC based damping controller is shown
in Fig. 2. It consists of gain, signal washout and phase
compensation blocks. The optimum parameters of the
damping controller are obtained using the phase
compensation technique [22]. The design is presented in
Appendix II. The time constants of the phase compensator
are chosen such that the phase angle of the system is fully
compensated. For the nominal operating condition, the

magnitude and phase angle of transfer function, AP, /AU,
will be computed for s=jw,. The gain setting of the

damping controller is chosen to achieve the required
damping ratio of 0.1. As observed from (16) there are four
choices of input signals (m,,8,,m,,and 6,) of the IPFC to
modulate. The signal which can achieve effective damping
control at minimum control cost will be the most efficient.
This selection is made at open loop condition before
installation of damping controller. The concept of
controllability index is used to select the most suitable IPFC
control parameter from the damping controller for
modulation [25].

IV. SIMULATION RESULTS

The effectiveness of IPFC damping controllers on
damping low frequency oscillations is demonstrated using
Matlab simulink. First, the system is simulated without
IPFC. The K-constants are computed as given in table I. The
system is simulated using these values and the change in
rotor speed (Aw) response is obtained, by making 1% step
increase in P, ie.AP, =0.01, as shown in Fig. 3. The

response clearly indicates that the system is unstable.

TABLE I

K-CONSTANTS FOR THE SYSTEM WITHOUT IPFC
K =0.8674 K4 =-0.2854 K1 =0.8674
K, =1.0192 K5 =-0.0994 K =1.0192
K3=0.7143 Kg=0.5179 K3=0.7143

0.015

0.01

0.005 -

Aw

-0.005 -

-0.01 -

-0.015 L I I L L I . I .
0 0.5 1 1.5 2 25 3 35 4 45 5
Time (s)

Fig. 3: Rotor speed deviation without IPFC

The system is incorporated with IPFC. Load flow analysis
is performed to obtain the operating point which is given as
follows:

P, = 09000, O =01958 v, =102

Vv, =1 Vg =03795 ¥V, = 04311
V0 =09244 [, =05469 [, =07185
Jy =7.6056"  6,,=715651°  6,, =7.7250°

The system is linearized about this operating point. The
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K-constants for the system installed with IPFC, are
computed as follows:

K, =20552  K,=00413 K, =0.7333

K, =0 K;=00185 K =0.6001

K, =-0.0885 K, =-0.1088 K, =7.6663x10"*

K, =00672 K, =-00087 K, =-00116

K, =0.0552 K, =0.0376 K, =02530

K g, =-0.0045 K, =-0.0326 K4 =0.0010

Ky =0.0056 K, =0.0033 K, =-0.0360

K,p =—0.0029 K, ,=-0.0038 K, =-0.0021

K,y =7.6663x10™ K, =0.0672 K, =—0.0087
K g =—0.0116

The eigenvalues corresponding to oscillatory modes of the
system are computed as given in table II. From the table II,
we observe that the system consists of both local modes and
inter area modes. The inter area modes are sufficiently
damped, whereas, the local modes are lightly damped.

TABLE I
EIGENVALUES OF THE SYSTEM

Damping ratio of
oscillatory modes

Natural frequency of

Eigenvalues oscillations (Hz)

-0.0032+9.8410j 0.0003 1.5662
-10.0698 +4.5122j 0.9126 0.7181
1.0000 0

-0.0000291

For the nominal operating point, the natural frequency of
oscillation , is equal to 9.8410jrad/sec. This mode is
responsible for the low frequency oscillation of around 1.5
Hz with very less damping of 0.0003. The damping
controllers are designed to provide the additional damping.
The parameters of the controllers are computed assuming a
damping ratio (¢ ) of 0.1. The gain and phase angle of

G, (s) for the various inputs are computed and given in
table 1L

TABLE 111
MAGNITUDE AND PHASE ANGLE OF THE TRANSFER FUNCTION
G.(s) G, (s)] £G(s)

AP, | Am;, 0.055447 -1.5426

AP,/ A6, 0.037634 -0.89511°

AP, | Am, 0.25303 -0.042285°

AP,/ AG, 0.0044907 -179.98°

It can be seen that the phase angle of the system for the
control parameter A@, is near to -180°, therefore the system

becomes unstable when the controller (A8,) is used. This

controller is not considered in further investigations. Table-
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IV shows the parameters of the remaining three alternative
damping controllers computed at the nominal operating
point.

TABLE IV
PARAMETERS OF THE IPFC DAMPING CONTROLLERS
K T,
Damping controller Aml 276.44 0.10439
Damping controller A&, 411.91 0.10321
Damping controller Am 2 62.183 0.10169

Fig. 4 shows the response of A« with the three
alternative damping controllers. The response of A« is
obtained with a step perturbation of AP, = 0.01. Fig.4
shows the responses are identical which indicates that any of

the IPFC damping controllers, provide satisfactory
performance at the nominal operating point.

1-damping controller (1, )
2-damping controller (g,)

3-damping controller (,)

.
0 0.5 1 15 2 25 3 35 4 45 5
Time (s)

Fig. 4: Dynamic response for A& with different damping controllers.

However, in order to select the most effective IPFC
control signal for damping, the controllability index is
computed. The index is computed for the electromechanical
mode (9.8410jrad/sec) to be damped taking into account all

the control signals one at a time. Table V gives the
computed values of the indices.

TABLE V
CONTROLLABILITY INDICES WITH DIFFERENT IPFC CONTROLLABLE
PARAMETERS

IPFC Control Parameters Controllability index

Amy 0.17974
Amy 0.8202
A6y 0.12194
A6, 0.014551
Table V reveals that the controllability index

corresponding to IPFC control parameter A, , is highest

and that of A8,, is insignificant compared to the other



control parameters. Hence, Au=Am, is the best selection
for the design of the IPFC damping controller since the
minimum control cost (the lowest gain) is needed to provide
the required damping (as also observed in table 3). From
now on, the damping controllers based on Am, shall be
denoted as damping controller Am,. Fig. 5 shows the
dynamic response of the system with and without the
damping controller Am, .

x10"
15

1-without aampiné controller
2-with damping cpntroller

0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Time (s)

Fig. 5: Rotor speed deviation for D=0, with and without damping controller

The dynamic performance of the system is further
examined considering a case in which two damping
controllers operate simultaneously. Fig. 6 shows the
dynamic response for Aa with damping controller Am;,
Am, and simultaneous operation of both the controllers
(dual controller).

x10°

1-damping controller Am,
2-damping controller Am,

3-dual controller

Aa
ok
-2
4
-6
8 n ! . . . . . . .
[¢] 0.5 1 15 2 25 3 35 4 4.5 5
Time (s)

Fig. 6: Dynamic response with different damping controllers.

It is observed that the dynamic response of the system has
improved with the use of dual controllers, and thus, more
effective than individual controllers.

V. CONCLUSIONS

The linearized modified Heffron-Phillips model of a
single machine infinite bus system installed with IPFC has
been established. The linearized model is applied to study
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the effect of alternative IPFC damping controllers on
oscillation damping. Controllability index is utilized to
determine the most effective damping control signal for the
design of IPFC damping controller. From the study it is
revealed that the IPFC control signal Am, is the most

effective. However, the dual damping controller which
modulates the control signals Am; and Am, is more

effective in providing significant damping torque.
APPENDIX 1
Fo=PR+P =Vl +V, 1,
E, = E)+(Xg =X)Ly = E)+ (X~ X))y + 1y
V,=Vig+iVigs 1, =14+l
Vi =X 1V =E, =Xl
Ly =g+ 1) 1y =y, +15,)
Iy :xudE; +%(X12d = X114 Vg, Sin 6,
1 .
~ 5 M2aVaeM sin @, — x,,,v;, cos O
Iy =xy4E, +%(x22d = X314 )Va My Sin 6,
1 .
—Exzz{,,vdcm1 sin 6 —x,,,v;, cos 0
I, =%(x”q +x12q)vdcm2 cos 6, —%(x,zq)vdcm1 cos 6,
+X14Vp SiN O

1 1
12q = 5 (leq + X2, Wiy €086, — 7 (xZZq W aemy cos 6,

[xlld
X214

xllq

+X5,Vp 8In 0
x12d:|_|: Xg+X,
X224 X +Xp
Xiog _{ X;+X,

—(xg+xp)

V, :Terminal voltage of generator

M =2H : is the inertia constant

P, = D(w-1), D: Damping coefficient

T,

» - Open circuit d-axis time constant in sec
K, : AVR gain,

a

-1
XX, X X1,
_(th +xL2)
-1
Xg+x, X, +xL2}

X214 X224 (th +x75)

T, :Time constant of AVR in sec

P, :Electrical power of the generator

P, :Mechanical power input to the generator
Vier
C,. : DC link capacitor

m; : Modulation index of VSC 1

m, : Modulation index of VSC 1

Reference voltage



6, :Phase angle of series converter 1 voltage

6, :Phase angle of series converter 2 voltage

1,; :d-axis current in line 1
I, :q-axis current in line 1
1,, :d-axis current in line 2
I,, :q-axis current in line 2

APPENDIX II
Design of IPFC damping controller.
Compute the natural frequency of oscillation @, from the

mechanical loop as @, =K ,@,/M . Let y be the angle

AP
of the transfer function G, (s) = A ¢
u

Au and AP,, where Au=(Am;,A6,,Am,,and AG,) ) as
shown in Fig. Aat s = jw, .

, (phase lag of between

KZ
= v ;
Controller AE;, K3 +T5,
KX

LY
:
Ky+s

Fig. A: Transfer function of the system relating component of electrical

AV,

power AP, produced by damping controller Au

The controller designed is made up of washout filter and

lead-lag block, with the following transfer function:
T, 1+sT
G()=K— "L
1+s7T,, 1+5T,

T, is the washout filter time constant and its value can be
taken as a number between 1 and 20 sec. Assume for the
lead-lag network, T} =aT,, where a = (1+siny)/(1-siny)
and 7, =1/(w, Ja ). The required gain setting for the
26w, M
G (9)][G (5)

‘GS (s)‘ and ‘Gc (s)‘ are evaluated at s = jw, .

desired ratio £ is obtained as, K = , Where
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Abstract—This paper investigates the effect of Interline
Power Flow Controller (IPFC), an advanced Flexible AC
Transmission System (FACTS) controller, in damping low
frequency oscillations via supplementary control. For this
purpose, a modified linearised Phillips-Heffron model for a
Single machine Infinite Bus (SMIB) system installed with
IPFC is established, and the power oscillation damping
controller is designed. The effect of this damping controller
on the system, subjected to wide variations in loading
conditions and system parameters, is investigated. Results of
simulation investigations in Matlab are presented to validate
the proposed approach.

Keywords—IPFC; inter area oscillation; damping controller

1. INTRODUCTION

Today’s heavily loaded and stressed power
transmission networks exhibit complex dynamic system
behavior. They are continually exposed to sudden, small

and large, disturbances in load, generation and
transmission network configuration. As such the
appearance of low frequency electromechanical

oscillations in the interconnected power systems is a
reasonably frequent phenomenon. Growing oscillations
eventually lead to loss of synchronism in a power system
causing either damage or making the parallel operation
infeasible. In this context, damping devices are imperative
for the modern power systems to improve system stability
and suppress undesirable oscillations. The
electromechanical oscillations are usually in the range
between 0.1 and 2 Hz [1]. The oscillations in the range 0.1
to 0.8 Hz are called inter-area modes which are associated
among groups of generators or groups of plants.
Oscillations associated with a single generator or more in
an area with respect to the rest of the system are called
local modes having frequencies in the range 0.8 to 2.0 Hz.

In recent years, Flexible AC Transmission System
(FACTS) controllers are found to be more capable of
handling power flow control, transient stability and
oscillation damping enhancement as reported in [2-6].
Researchers have presented design of FACTS-based
stabilizers for SVC, TCSC, TCPS, and Unified Power
Flow Controller (UPFC) in [7]. Interline Power Flow
Controller (IPFC) is an advanced voltage sourced
converter based FACTS controller [8] which employs a
number of dc to ac converters each providing a series
compensation for a different line. The converters are

1-4244-2405-4/08/$20.00 ©2008 IEEE

linked together at their dc terminals and connected to the
ac systems through their series coupling transformers. The
IPFC allows to simultaneously and independently inject,
over each transmission line, a controllable series voltage
which enables to equalize both real and reactive power
flow between the lines; transfer power demand from
overload to under loaded lines; compensate against
resistive line voltage drops and the corresponding reactive
power demand; increase the effectiveness of the overall
compensating system for dynamic disturbances. Though
the primary function of the IPFC is to control power flow
on a given line, it can also be utilized for damping power
system oscillations by judiciously applying a damping
controller.

A supplementary PID damping controller along with
power flow control was proposed in [9], but the
performance is degraded due to nonlinearity of the system.
The effect of IPFC on damping inter-area oscillations with
a PI damping controller, with electrical power as input,
was proposed by Kazemi [10]. However, the parameters
of the controller are not optimized. In the view of this, the
main purpose of this paper is to extend the design of
damping controllers for UPFC previously proposed by the
authors [5, 11] to IPFC. Adopting similar techniques, the
modified linearized Phillips-Heffron model for a single
machine infinite bus (SMIB) system with IPFC is derived.
Thereafter, an IPFC based power oscillation damping
controller is designed. The performance of the damping
controller under wide variations in loading conditions and
in system parameters (equivalent line reactance) is
investigated.

II.  SYSTEM INVESTIGATED

A single machine infinite bus system installed with
IPFC as shown in Fig. 1 is considered.

Vo Iy  —» Xg Vyl—¢

MAL

@ X2 —>» I 1

X, . 0
b -2 VSC1
V. ser Infinite
! Bus
my 6, m o,
Figure 1. IPFC installed in a SMIB system
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The IPFC is installed on the two parallel transmission
lines. The IPFC is assumed to be based on pulse width
modulation (PWM) converters.

A. Non Linear Dynamic Model of the System with IPFC

A non-linear dynamic model of the system is derived
by neglecting the resistances of all the components of the
system (generator, transformer, transmission lines, and
series converter transformers); the transients of the
transmission lines and transformers of the IPFC. The non-
linear dynamic model of the system using IPFC is derived
as follows

é=0wy(w-1) (1
o= Pm — Pe — PD
M @
o CE T E)
q T/
do (3)
. _ _Elfd +Ka(Vref _Vt)
“ “4)
. 3Wll .
Vd(‘ = (c0591 [ld +Sln9] [](1)+
de
3}’}12 .
(cos Iy +sin) I5,)
dc (5)
where
J : Rotor angle of synchronous generator in radians
@ : Rotor speed in rad/sec
V, : Terminal voltage of generator
M =2H : is the inertia constant

Pp = D(w-1), D: Damping coefficient

T,, : Open circuit d-axis time constant in sec
K, : AVR gain,

T, :Time constant of AVR in sec

P, : Electrical power of the generator

P, : Mechanical power input to the generator
E ; : Generator internal voltage

E ; : Generator field voltage

V. : Reference voltage

V, : Voltage at DC link

C,. : DC link capacitor

my; : Modulation index of VSC 1

m, : Modulation index of VSC 1

6, : Phase angle of series converter 1 voltage
6, : Phase angle of series converter 2 voltage
1,,; :d-axis current in line 1
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I, : q-axis current in line 1
1,, : d-axis current in line 2
1,, : g-axis current in line 2

The equivalent controllable injected voltage source
magnitude and angle of the series converter are
constrained by :

S Vmax

sei

min
V\‘ei < Vsei

(6)

<0, 1w

1

and V™M ™% are the minimal and

sei >7 sei

V.

sei >

where i=1, 2 ;

maximal voltage limits of respectively [12].

According to the principle of IPFC, the operating
constraint representing the active power exchange ( PE )
between or among the converters via the common DC link
is given by:

PE=Y"P, =0(i=12) (7)

where P,,; =Re(V,,;1.,;) (i=12), I.,, is the conjugate

of I,,; [12]. General pulse width modulator is used for the

VSC’s. The voltages injected by the IPFC converters in
d-q coordinates are obtained as follows:

v

R

Ve
etd =—Xuly, +—2 m, cos 6,

v

Ve .
selg =Xnl1a +_2 m, sin 6,

— Vdc
Viera = =Xpplag + =7 m; c0s 6

Vdc :
VseZq =x,15y +—2 m, sin 6,
- i - 76,
Vsei =Vseid T ./Vseiq - Vseie ! (8)
where x, and x, are the reactance’s of the

transformers in line 1 and 2.

B.  Linear Dynamic Model (Modified Heffron-Phillips
Model of an SMIB System including IPFC) in State
Space form

A linear dynamic model is obtained by linearising the
non linear model (1) to (5) around an operating condition
which is obtained from power flow analysis. The
linearised model in state space form is obtained as

X =AX+BU ©)

where X=[AS Aw AE, AE, AV,]1"
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r o o, 0 0 0 where
Am; : Deviation in pulse width modulation index m,
K, D K, K, of voltage series converter 1 in line 1. By controlling m;, ,
M M M 0 Y the magnitude of series injected voltage in line 1 can be
controlled.
4l - K, 0 K 1 _ K Am, : Deviation in pulse width modulation index m,
T}, T}, T}, T;, of voltage series converter 2 in line 2. By controlling m, ,
the magnitude of series injected voltage in line 2 can be
KK 0 KK 1 _K.K,, controlled.
T, T, T, T, A, : Deviation in phase angle of the series injected
voltage V..
K7 0 Kg O _K9 .. . . ..
- - A@, : Deviation in phase angle of the series injected
0 0 0 0 ] voltage V,,,
Fig. 2 shows the modified Phillips-Heffron transfer
K ,m K o K 2 K 02 function model of the system incorporating IPFC. The
Y Y Y, Y model has 28 constants similar to SMIB model with
UPFC [5]. These constants are functions of system
K, K, K,, K, g parameters and the initial operating condition. It should be
B=| - q,m - q, - q,m q, noted that K,,K,,K,andK, in Fig. 2 are the row
Tdo Tdo Tdo Tdo 4 !
vectors defined as
K, K K, K K, K K, K
_avml _Pa™vel _ ravm2 _ a2 Kp =[Kpm1 Kp@l Kpm2 erz ]
T() T(J TH T()
Kq :[qul Kq61 quZ an92 ]
K, K K K
et <ol o <02 N Kv :[Kvml KVHI Kvm2 KVBZ ]
The control vector u is defined as follows:
Kc :[Kcml KcE’l KcmZ KCHZ ] (11)
U=[Am A6, Am, A8,] (10)
+
bk é} :
U Ky+s | AV,

@47

Figure 2. Modified Heffron-Phillips model of SMIB system with IPFC
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C. Computation of Constants of the Power System

The initial d-q axes voltage and current components
computed for the nominal operating point

(P, =08 pu., O, =04 pu., V,=10, Vb=1.0 pu.)
are as follows:

Ve =03610 ¥, =0.9326
14 =0.6618 1, =0.6017
8, =53.1301" v, =0.1328
6, =71.565° 6, =4.44°

The system parameters are given in appendix. The
data is required for computing the constants of the
system model. The constants for the nominal condition
are as follows

K, =0.9617 K,=0.0295  K;=0.8577
K, =—4515x10"° K5 =0.0066 K¢ =0.7861

K, =0.0032 Ky =—0.0074 Ky =-2.641x107
K, =00563 K, =362-4 K, =-0.0026
K, =0.1169 K5 =0.0042 K, =0.1064

K 9 =—0.0056 K, =-0.0043 K, g =0.0026
Ky =0.0082 K4 =0.0016 K, =-0.0212
K,5 =0.0017 K,,=00188 K, , =-0.0013
Koy =—2.64x107° K 5 =0.0563 K, , =3.62x107*

D. Design of Damping Controllers

The damping controllers are designed to provide an
additional electrical torque in phase with the speed
deviation. The speed deviation A is considered as
the input to the damping controller whose output is used
to modulate the controlled parameter m, which

controls the series voltage injected in line 2. It is
assumed that, for the series converter in line 2, the
active power flow control constraint is used while the
reactive power flow constraint is relaxed. The structure
of IPFC based damping controller is shown in Fig. 3. It

consists of gain, signal washout and phase
compensation blocks.
Aw sT 1+sT,
1+sT, 1457, Au
Gain Y

Signal Washout Phase Compensation

Figure 3. Structure of IPFC based damping controller

The parameters of the damping controller are
determined using the phase compensation technique
[13]. The magnitude and phase angle of transfer

70

function, AP,/Am, is computed for s=jw, at

K, 0,

nominal operating condition where @, = . The

gain setting of the damping controller is chosen to
achieve required damping ratio equal to 0.5. The time
constants computed to compensate the phase angle of
the transfer function AP,/Am, for the system at
§=06.7314i are T} =0.1478s and T, =0.1493s . The
gain setting K ;. is equal to 511.0965. The value of T,
(the washout filter time constant) is chosen as 20s
which should be high enough to pass low frequency
oscillations unchanged. Then, the dynamic performance
of the system is investigated with the designed
controller while varying the loading conditions and the
equivalent line reactance x, over the range of +20%
from its nominal value considering a step perturbation
AP, =0.01pu.

III.

To examine the effect of IPFC based damping
controller on the system, simulations are performed
using Matlab simulink on the system, first without IPFC
and then, with IPFC and damping controller. The K-
constants for the system without IPFC are computed
which are given as follows:

RESULTS AND DISCUSSION

K, =0.2884
K, =-1744

K,=0.7385
K5 =-0.1706

K, =0.8467
Kg=0.7182

Using these values the Phillips-Heffron linear model
of the single machine infinite bus without IPFC is
simulated in Matlab. The response of change in speed
Aa for the system when there is no IPFC is given in
Fig 4. which indicates the system is unstable and
requires additional damping to sustain the oscillation.

0.025 T T

0.02
0.015F
0.01
0.005
Aw b
-0.005
-0.011
-0.015

-0.02 L L L L L L L L L

0 0.5 1 1.5 2 25 3 35 4 4.5 5
Time (sec)

Figure 4. Dynamic response for Ag@ without IPFC

The system is incorporated with IPFC and the
operating point is obtained from load flow. The K-
constants are computed using the system parameters
and initial operating point, as given in section C and the
system is simulated. The response of A& for the
system with the IPFC based damping controller



2" [EEE International Conference on Power and Energy (PECon 08), December 1-3, 2008, Johor Baharu, Malaysia

included is shown in Fig 5. It shows the damping
controller provides satisfactory performance at the
nominal operating condition. The robustness of the
damping controller designed at the nominal operating
point is examined by varying the loading conditions of
the system. The load condition of the system is varied
from P, =0.1 to P, =1.0. The dynamic responses of

e
the system are obtained for each loading condition.

x 10
12 T T T T
1ol Nominal Point i
P=0.8, Q=0.4
8- il
6 .
4 il
2 i
0F
2 . . . . . . . . .
0 0.5 1 15 2 25 3 35 4 45 5
Time (sec)
Figure 5. Dynamic response for A@ with the IPFC based damping
controller
1- Light load
2- Nominal load
3- Heawy load

o 05 1 15 2 25 3 35 4 45 5
Time (sec)
Figure 6. Dynamic response for A@ with the IPFC based damping
controller for different loading conditions

Fig 6, shows the dynamic responses of Aw for
P, =0.2 (light loading), P, =0.8 (nominal loading)
and P, =1.0 (heavy loading). It can be seen that the
responses are similar in terms of settling time which
indicates that the damping controller provides
satisfactory performance under wide variation in
loading conditions. The performance of the damping
controller is further investigated with variation in
equivalent reactance x,. Fig. 7 shows the dynamic

performance of the system for variation in x, for
+20% from the nominal value.
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1-20% increase in Xe
2- nominal value
3-20% decrease in Xe

| | | | |
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5
Time (sec)

Figure 7. Dynamic response for A@ with the IPFC based damping

controller for different variations in X,

The damping controller provides a satisfactory
response even with variation in equivalent reactance
X, .

IV. CONCLUSION

The effectiveness of the IPFC based damping
controller has been investigated in damping low
frequency oscillations. Dynamic simulations results
have emphasized that the damping controller which
modulates the control signal m, provides satisfactory

dynamic performance under wide variations in loading
condition and system parameters. Further work will be
carried on applying the controller design for a multi-
machine system.
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APPENDIX
The nominal parameters and the operating condition
of the system are given as follows:

72

Generator: M =2H =80MI/MVA D=0, T'y, =5.044s
Xg=01,X, = o.s,x'd =03

Excitation system: K, =50, T, = 0.05

Transformer :x, =1.0pu.,x; =x, =x; =0.01
X, =X, =02, x,=1.0+(0.01+0.2)/2

Operating Condition: P, =0.8pu., O, =0.4p.u.

Vy=10pu, vV, =1.0
IPFC parameters: m; = 0.15,m, = 0.1
Parameters of DC link: V, =2pu., C, =1pu.
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Dynamic Modeling of Interline Power Flow
Controller for Small Signal Stability
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Abstract—This paper addresses the formulation of the non-
linear dynamic model of the power system installed with
Interline Power Flow Controller (IPFC). The linearized
model for both single-machine infinite-bus and multi-
machine power system installed with IPFC is developed and
incorporated into the Phillips-Heffron model. These models
lay the foundation for small signal stability studies of the
power system using IPFC. The application of the models is
demonstrated for a Multi-machine power system.

Keywords—IPFC; power system modelling; Phillips-Heffron
model

I.  INTRODUCTION

The Interline Power Flow Controller (IPFC) belongs to
the converter-based FACTS Controllers, representing the
new generation of transmission controllers, employing the
self commutated, voltage-sourced converters (VSC). An
IPFC consists of a number of VSCs linked together at
their dc terminals. Each VSC injects a controllable ac
voltage to its respective transmission line providing series
compensation [1, 2], whilst the common dc link facilitates
the transfer of real power flow among the transmission
lines. Thus, real power is transferred from overloaded to
under-loaded lines and increases the capacity of the
transmission lines. The IPFC simultaneously compensates
multiple transmission lines by equalizing the real and
reactive power flows in between the lines. IPFC also
provides voltage control, improves transient stability, and
enhances oscillation damping. Recently, modelling of
IPFC and its various control functions has come under
intensive investigation. Work has been established to
model the IPFC into the power systems in a steady-state
mode of operation for load flow studies and power flow
control [3-5]. Control strategies for damping improvement
such as supplementary PI controller or lead lag controller
had been suggested for IPFC in [6-9]. These controllers
were designed based on linear models of single machine
infinite bus (SMIB) power system installed with IPFC.
Studies on this system reveal good damping
characteristics of IPFC. However, modelling of the IPFC
into a multi-machine power system (MMPS) for small
signal stability is very limited. The small signal stability
analysis based on eigenvalue technique is suitable for
planning and operation of the power systems, to examine
the problems associated with oscillations and to mitigate
the power system oscillations using various control
methods [10]. The Phillips-Heffron model of the power
system with the FACTS device is suitable for

978-1-4244-8946-6/10/$26.00 ©2010 |IEEE
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understanding of system damping in the area of small
perturbation stability. It presents an insight into the
operation of the damping control of the FACTS device
and is useful in studying the small signal stability of the
power system.

In this view, the non-linear dynamic model of a power
system installed with an IPFC is initially developed.
Further, the linearized Phillips-Heffron model is modified
to include the FACTS device, IPFC, which is utilized to
perform the small signal stability analysis. Consequently,
in the following sections the non-linear model of SMIB
power system and MMPS installed with IPFC is
developed. Then the small signal linearized Phillips—
Heffron model of these systems is derived. The linearized
model of a power system with an IPFC obtained, is in
similar form to that of the unified Phillips-Heffron model
presented in [11-14] for other FACTS devices such as,
Static VAR Compensator (SVC), Thyristor-Controlled
Series Compensator (TCSC), Thyristor-Controlled Phase
Shifter (TCPS) and Unified Power Flow Controller
(UPFC) for single machine and multi-machine power
systems. On the basis of linearized system model, the
IPFC controllers are designed and their effect is
investigated on oscillation stability.

II.  SINGLE MACHINE INFINITE BUS POWER SYSTEM

A SMIB system installed with IPFC as shown in Fig. 1 is
considered. The IPFC is installed on the two parallel
transmission lines through series transformers. The IPFC
consists of two VSCs which are linked together at the dc
link.

X/Z ]2 ‘
Infinite

Bus

Figure 1. IPFC installed in a SMIB system

The voltages injected by the IPFC converters are given
by [7, 8]:

a Ve 6 i Ve 6.
Vel me’V, Vo, =——mye’™ (1)



where v, is the voltage at DC link, 2 and m, are the

modulation indices of VSC 1 and 2, 6, and 6, are the

phase angles of series converter 1 and 2. The dc capacitor
voltage is given by

. 3m .
de = ! (lld COS(91 +i1q s 91)+

dc

)

m,

(i54 €086, +iy, sin6,)

de
where, C,, is the dc link capacitor, i,; and i,, are the d-
axis currents in line 1 and 2, i, and i,, are the g-axis

current in line 1 and 2 respectively. From the Fig. 1 we
obtain,

(€)

Vl = jxrlll +Vsel

+ij11_1 +I7b 4
= X dy + Vo + jx o1, + V),

where, x,; and x,, are the reactance of the transformers
in line 1 and 2 respectively and x;; and x;, are the

reactance of the transmission line 1 and 2 respectively.
Solving (3) and (4) we get the currents in d-q axis as
follows:

1
. ’ .
g =Xk, +§(x12d = X114 Vg, Sin 6,

(%)
=5 124V sin 6, — x,,,v,, cos &
— ;1 .
Iy =x34E, +E(x22d = X314 )V .M SIN 6,
| (6)
—Exndvdcml sin @) —x,,,v, O8O
ol
hy = 5()“1 1q T Xi24)Vacm, 086,
| (7
—E(xlzq)vdcm1 cosd, +x,,v, 8ind
1
Ly _E(XZIq + X304 WM €086,
(®)

1 .
—E(xzzq)vdcm1 oS b +x,1,V) Sin &
’
where, Xy, =X ;5 /X5y, Xjag = (X +X15)/ X5
= [ Xy Xop g ==X | X
X21d = X 1! X315 X220 = —Xgr 1 X3t

’
X11g =X w2l X525 X124 :_(xqt +X10)/ X5)
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7
Xo1g =X w1 X525 X204 =X /X5,
— ’ — ’
Xypp =X FXpo,Xg =Xg X,
’

Xt =X T XXy =X T X,

’ ’
X1 = (XX 1)+ (Xg X 10)(x1)

’ ’
Xyo = (g X o)+ (g, +x0)(X)

A. Non-linear model of Single Machine Infinite Bus

The non-linear dynamic model of the power system
incorporated with IPFC is derived as follows [7 - 9]:

5=a)0(a)—1)

@=(P,-P,—Py)/ M

E) =(-E,+E )/ T},

Ey=CEu+K, V=V IT, ©)

where ¢ is the rotor angle of synchronous generator in
radians, & is the rotor speed in rad/sec, V, is the terminal

voltage of generator, M(=2H) is the inertia constant,
P, =D(w-1), D is the damping coefficient, 7, 6',0 is the
open circuit d-axis time constant in sec, K ,is the AVR
gain, T, is the time constant of AVR in sec, P, is the
electrical power of the generator, P, is the mechanical

power input to the generator, £, is the generator internal

voltage, E ; is the generator field voltage, V., is the

reference voltage,

B. Linearized Model of an SMIB System including
IPFC in State Space form
A linear dynamic model is obtained by linearizing the
non-linear model (9) around an operating condition which
is obtained from power flow analysis. The linearized
model in state space form is obtained as ,

X =AX +BU (10)

where, X =[A§ Aw AE, AE, AV,1"

0 , 0 0 0
K D K 0 _K”V
M M M M

Tdo Tdo Tdo Tda
_KaKS 0 KaKG _L Kava
Ta Ta Ta Ta
e 0 Kq 0 ~K,




0 0 0 0 |
_ KPWI _ KP91 _ Kme _ KpHZ
M M M M
B= _@ _Kqﬁl _qu2 _KqHZ
Tgo Tho Tgo Tgo
KaKvml KaKvﬁl KaKvm2 KaKVGZ
Ta Ta Ta Ta
L Kcml Kc(91 Kcm2 KcHZ _

The control vector u is defined as follows:

U=[Am, A8, Am, A6,]" (11)
where, Am; ( Am, ) is the deviation in pulse width
modulation index m; ( m, ) of voltage series converter
1 (2) in line 1 (2). By controlling m, (m, ), the magnitude
of series injected voltage in line 1 (2) can be controlled.
A6, (AB,) is the deviation in phase angle of the series
injected voltage V,,; (V> ).

Fig. 2 shows the modified Phillips-Heffron model of

the power system with [PFC. The model has 28 constants
which are functions of system parameters and the initial

operating condition. It should be noted that
K,,K,,K,and K in Fig. 2 are the row vectors defined
as

Kp =[Kpml Kp@l Kme Kp62 ]

Kq = [qul Kq&l quZ Kq92 J

Kv = [Kvml KvBl Kvm2 Kv02 ]

Kc = [Kcml Kc@l KcmZ KCHZ ] (12)

+
T Ko | AV

K |-

Figure 2. Phillips Heffron model of SMIB with IPFC

III. MULTI-MACHINE POWER SYSTEM

Without loss of generality, we assume that in an n
machine power system, an IPFC is installed on the
branches 4-2 and 4-3, as shown in Fig. 3. For developing
the dynamic model of the system, the network is

represented by taking out the buses connecting the lines in
which IPFC is installed.

ig"l G, ol G ig'l G
Tvgu Tvgz Tvgl
Yl
I, _ v,
—p le
_ Xn @
I, ) r/\m/\
- ~~ J
v,
VSC 2 L VSC 1 J ®
DH®@
1 13
KO 491 my 02

Figure 3. An n-machine power system installed with an IPFC

The network admittance ¥, is formed before the IPFC has

been installed, keeping » generator nodes along with the
nodes1—4 . The equation of the network is given by:

(13)

where,
ig = [I_gl I_g2 I_gn ]T
Vg = [I7g1 ng o I7gn ]T

With the installation of IPFC between the branches 4-2
and 4-3, the network equations are modified as follows:

I,=1,+1,

Yol + 1y +?15Vg =0

YoV, =1, + Yp5V, =0

YVisV3 =1, + Y35V, =0

Yo7y + Y5, Vs + Y373 +?55Vg =ig (14)
where, )71,1 =I711 —Vias Y =Yoy = yays Vi =Yy —yy

From Fig. 3 we have,
Vi=Jxiadiy +V4
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V= jxpd, + Vo +V, (15)

=Xl Ve +V3

v

Whereﬂ Vsetl = jxllll + Vs ser2 = jthIZ + VseZ

el »

Substituting (1) in (15) and solving for currents we obtain,

_ 1 . _ _
I, :_[_J(xm Fx )W+ (x4 + X105 +Xx)V,
Xy (16)

— gV + jOg + X + X0 W = X4V ser |

- | = =
I, =_[_](XL1 Fx )WV = JxiaVs + (e, +xp
Xy (17)

x5 = jx14Ver + J (X4 +x00 + X0 W en ]

where, Xy =X, (X7 + X))+ (X +x,) (X4 X150 +X,5)

Substituting (16-17) in (14) and deleting nodes 1-4 we
obtain,

ig = vng + Ysel Vsel +vse2 I7582 (18)
where,
S Yis
Yg = Ys;s _[Y51 Ys; Ys3 ]Yt, - Xzs
Yss
J(xpp +x5)/ x5 ]
v v v v -1 .
Yoer :_[YSI Y5, Ys3 ]Yt —J(Xpp + X +x14) ) X5
J(x14)/ x5
JXpy +x)/ x5
v v v v -1 .
Yie2 =_[Y51 Ys; Ys3 ]Yt J(x14)/ x5

= JOrg +xpy +x+) /X5 |

[ By - ]
. JOrp + %) JOrpg + )
JOep +x + x5 + X))
Xz Xz
X5 -
vo|  Jtprny BT 1)
t= JOrg + X5 +Xp5)
Xy —_— Xz
Xs -
,
. . Yy -
J(xp +x,) J(x14) (X0 + X1 + X))
4)(2 s JXg X+ Xy
L xz =

A. Nonlinear model of the multi-machine power system
installed with IPFC

The nonlinear model of the multi-machine power
system with IPFC, is developed as follows:

820) (Q)

V]

o=M"(P, —P, —-DAw)
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By =Te'(-E'q —(Xp —Xp)p +Eg)

B =Ty (-Egq +K 4 (Vi — V1)) (19)

where,

P, =14,Vio +IpVip, Vip =Xolos
Vo =Ey -XpIp

3=[6, &, 5, o=lo o o],
e, =le, £, oE,l

Eqy = [Efdl Efdz Efdn ]T >

IDz[[dl Ly Idn]T’

IQ:[]ql qu an]Ta

Vip = [thd Viza thd]T:

Voo =Wy Vg - Vol Vi =Vid® +V” >

M =diag(2H,), D =diag(D;) , Ty = diag(T,,) ,
XD = diag(xdi) ’ XQ = diag(xqi) ’ X;) = diag(xdi)

and, 1=1,2 ..n, n is the number of generators.

The terminal voltage of the generators for the n
machine power system can also be expressed in the
common coordinates as [15]:

V, =E; - jXpI, — j(Xq - X}l (20)
Substituting (20) in (18) we get,
T, =Y, (E) — j(Xq ~Xp)o + YoV + Yy7ea)  (21)

where,
Y, =[5+ X[ ¥y =Y Yy, Yy =V ,Y,
a= gTJAp| » YA =Y g¥qq, Yp =Y g

In d-q axis form the generator currents (21) can be
expressed as

T _7 Lo
Ig; —Igie

n 000
- — , J(90°+6.-0 ) ,
IGi:ZYdij[Eq/e T (g X)X

J=l (22)
i(0.-0.) = — (8) = =— i(0:
ej( I j) +YA_/'Vselej(§l) +YBjVseZej(§l):|
Denoting
— JBgi) = JBy )
Yaj=Yase °0 Yy =Y e 00,



_ i(Bg )
Yy, =Yg e J

14 =real(iGl-), 1, zimag([_Gi)

Oqjj =0; =0, +Bai»
045 =0;+PBay+Pa;+61,
Opyy =0; +Pay+Ps;+6,

n

T ’ . ’

1, = E Ydij[—Eq/- s1n5d”+(xq/—x(ﬁ)cosﬁdy1qi
Jj=1

+Y Vi1 €086 45 +Yp Vs cOS 531-1»]

(23)

n
T ’ ’ .
1, =2Yd,-j [Eq/- cosé‘d”— +(x,; —xg)sin 5@-[6”-
J=
+YAjI/Sel Slné‘AU +YBjV

S

24

2 sm53ij]

B.  Linearised Model of an Multi-machine Power System
including IPFC in State Space form

The linear dynamic model of the multi-machine power
system with IPFC is obtained by linearizing the non-linear
equations (2, 19, 23, and 24) around an operating point of
the power system. The modified Phillips Heffron model of
the multi-machine power system installed with IPFC
along with the capacitor dynamics in state space form is as
follows:

Ad 0 o,l
A® -M'k, -M'D
AE, (=] -Tg 'K, 0
AEg | |-T,'K,Ks 0
) LK 0
0 0 0 1T As
-M 'K, 0 -M7'K,, Ao
—T Ky Tg T K, || AE,
-T,"'K,K, -T," -T,"'K,K,, ||AEw
Ky 0 -Ky AV 4
[ 0 0

-M 7K -M 'K
+ _Téo_quml _T(’io_quOI
_Ta_lKaKvml _Ta_lKaKvﬂl
L K m K.

0 0
MKy MK j’;l
~Tao 'K qm2 ~Tao 'K q02 Aml
_Ta_lKaKva _Ta_lKaKv(-)Z Aez

Kcmz Kcoz i ? (25)
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Fig. 4 shows the block diagram of Phillips Heffron
model of a multi-machine system including IPFC. In this

model, Ad,Am, AE;,AEfd are n dimensional vectors,

K, —Kgare nxnmatrices and

K, =lKimi Kpe Kpmz Kpeo |
Ky =Kgm Kgo Kgm Kgoo |
K, =[Kyu Ky Kymx Kipgl
K=K Koo Kemz Kego | (26)

The elements of the above vectors are n dimensional
column vectors. All the constants of the model are
functions of the system parameters and operating
condition.

v
+ m
+ +
AP, 1 Ao o, Ad
*® 3 R
o]
5
. 1 y K, | Yhaav,

a
1+sT, z

K
U Ko+s | AV,
.

Figure 4. Modified Heffron- Phillips model of n-machine system with
IPFC installed

IV. SYSTEM INVESTIGATED

A three machine example power system [13] shown in
Fig 5 is considered for MMPS analysis. An IPFC is
installed into the two parallel transmission lines through
the transformers between bus 3 and bus 1. The parameters
of the system are given in the Appendix.

1 3
IPFC HH
()
15MW
0.5MVA i| 2

Fob®)

Three-machine, power system installed with IPFC

Figure 5.

A generalized load flow program based on Newton
technique with embedded IPFC [16] has been developed
to obtain steady state operating point. For this initial
condition the system equations are linearized and the
constants of the system model are computed. The study
focuses on the improvement in rotor angle oscillation
damping. Table 1 shows the oscillation modes computed
from the linearized system. The system has one inter area
mode where all machines oscillate together, and one local
area modes where machine 2 and 3 oscillate against each
other which is determined using the participation factors
[10].



TABLE L

OSCILLATION MODES
Multi-machine Local mode Inter area mode
system
With no IPFC and 0.0146 - 6.7033i -0.0020 + 3.9599i
no PSS
Damping 0.0022 0.0005
Frequency 1.0669 0.6302
With PSS at -0.6686+6.4833i | -0.0868 +3.9289i
machine 3
pamping 0.1026 0.0221
quency 1.0319 0.6253
IPFC along with . .
PSS at machine 3 -0.6993 + 6.9322i -0.1151 +4.08791
Damping 0.1004 0.0281
cquency 1.1033 0.6506
IPFC installed with
damping controller -0.6996 + 6.92691 -0.4912 +4.1193i
along with PSS at
machine 3
Damping 0.1005 0.1184
Frequency 1.1024 0.6556

The oscillation modes have very low damping. PSS is
installed at machine 3, which is designed based on the
linearized system to increase the damping ratio to 0.1,
using phase compensation technique. The PSS is able to
sufficiently increase the damping of the modes as
observed from the table. However the damping ratio of the
inter area modes is still less. The IPFC is now installed in
the power system. We observe that in the presence of the
IPFC there is no significant change in the damping of the
oscillation modes. The damping controller having a lead
lag structure [9] is designed using phase compensation
technique based on the Phillips Heffron model to increase
the damping of the inter area mode. The IPFC based
controller improves the damping of the inter area modes
without effecting the local mode as shown in the Table 1.

V.

The mathematical modeling of the power system
installed with IPFC is outlined in this paper. A dynamic
model for both SMIB and multi-machine power system is
developed. Further the procedure for formulation of the
extended Phillips Heffron model of the power system
installed with IPFC for these systems have been
established. The model also includes the dc capacitor
dynamics. The developed formulation is general and the
models are applicable for small signal stability analysis.
The application of the model for small signal stability
analysis is using eigenvalue analysis is demonstrated for a
three machine power system. The IPFC based controller,
designed based on the linearized model of the power
system, significantly improves the damping of the
concerned oscillation modes.

CONCLUSION
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APPENDIX

Parameters of the three machine power system (in p.u
except where indicated) .

Generator: H, =20.09s, H, =20.09s, H; =11.8s
D, =D, =D;=0,

Tyor =7.55, Tyoy =755, Tyoy =4.75,

x; =019, x;, =0.19, x,;; =041,

x, =0163,x, =0.163,x,; =033,

x,; =0.0765, x,, =0.0765, x,; =0.173
Exciter: K, =K, =20, K, =100,
r,=T,=0.05,T, =0.0ls
Transmission  lines: Z;; =j1.2 for
Z,, =j0.03, Z;, = j0.03

each line,



Transient Stability Enhancement and Power Flow
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Abstract—In this paper, the nonlinear dynamic model of a
typical multi-machine power system incorporated with
Interline Power Flow Controller (IPFC) has been developed.
The oscillation modes with low damping ratio are identified
from the eigenvalue analysis of the linearized Phillips-
Heffron model. A power oscillation damping controller has
been designed for the IPFC using phase compensation
technique to enhance the transient stability of the system.
Additional power flow controllers have also been
incorporated into the system, to control the power flow
demand in the transmission lines on which the IPFC is
connected. The performance of the designed IPFC
controllers has been assessed by simulation studies on a
multi-machine system for power flow demand control as
well as overall power system damping.

Keywords—IPFC; multi-machine power system; Phillips-
Heffron model; damping control.

l. INTRODUCTION

The Interline Power Flow Controller (IPFC) is a
converter-based FACTS Controller, representing the new
generation of transmission controllers. It employs self
commutated, voltage-sourced converters (VSC). An IPFC
can consist of a number of VVSCs linked together at their
common dc terminals. Each VSC injects a controllable ac
voltage to its respective transmission line for series
compensation [1, 2]. The dc link facilitates real power
flow among the transmission lines enabling real power
transfer from overloaded to under-loaded lines. The IPFC
provides simultaneous compensation for multiple
transmission lines by real and reactive power flow control
in the lines. It also provides voltage control, improves
transient stability, and enhances oscillation damping.
Recently, modelling of IPFC and its various control
functions have undergone rigorous research. In [3-5], the
steady state model of IPFC with the power system is
developed for load flow studies and power flow control.
Control strategies with the help of supplementary PI
(proportional-integral) controller or lead-lag controller for
damping enhancement are suggested in [6-9]. These
controllers were designed based on linear models of single
machine infinite bus (SMIB) power system installed with
IPFC. However, studies on modeling of IPFC in a multi-
machine power system [10] for stability analysis are very
limited. The stability analysis based on eigenvalue

technique is suitable for planning and operation of the
power systems, to examine the problems associated with
oscillations and to mitigate the power system oscillations
using various control methods [11]. The Phillips-Heffron
model of power system with the FACTS (Flexible AC
Transmission System) device is suitable for understanding
of system damping for small perturbation stability.

In this paper, the nonlinear dynamic model of a multi-
machine power system installed with an IPFC is
developed. Further, the linearized Phillips-Heffron model
is modified to include IPFC; this model is of similar
structure as that of the unified Phillips-Heffron model
presented in [12-15]. This Phillips-Heffron model is
utilized for investigating small signal stability analysis by
identifying the oscillation modes with low damping ratio.
Based on this analysis and the linearized model, an
oscillation damping controller has been designed for the
IPFC using phase compensation technique. This
supplementary controller is added to the standard power
flow demand controllers used for the IPFC. The efficacy
of the overall control architecture has been evaluated by
eigenvalue analysis as well as computer simulation
experiments.

The paper is organized as follows. Section 2 presents
the development of nonlinear and linearized models of a
typical multi-machine power system incorporated with an
IPFC. In Section 3, the details of damping controller and
power flow controllers are provided. The simulation
results and analysis are presented in Section 4. Section 5
concludes the paper.

Il.  MuLTI-MACHINE POWER SYSTEM WITH IPFC

A typical installation of IPFC in a multi-machine
system is shown in Fig. 1. It is assumed that an IPFC is
installed on the branches i—; and i—k . The network
admittance ¥, is formed before the IPFC has been
installed, keeping » generator nodes along with the nodes
i, jand k. The network equation is given by:

01 [5 0 T Va7
e Vi Yy Y Yie |V} 1)
T. Yi Yy Yo Yag | Vi

Yai Ygi Yok Yoe | Ve
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Figure 1. An n-machine power system installed with an IPFC

With the installation of IPFC between the branches
i—jand ik, the network equations are modified as:

YV, + 1 +1,+YcVg =0 )
_j;_]_]_1+?j’k_k ?jGVG =0 (3)
%Z+ﬁka_i2+?kGVG =0 4)
?GiVi +?Gjl7j +?le7k +?GGVG :iG )
where Y=Y, -y, -y; ., Y;=Y,—-y, and
Y}, =Y, —y, . From Fig. 1, the currents in the IPFC
branches can be written as:

L=V, ~Via=V;[Z (6)
Iy =V, ~Vep Vi |Z it @)

Substituting the currents (6) and (7), into (2-4) the IPFC

buses voltages V;,V;,V,, can be written in matrix form

as follows:
E 1 ]7/Z seij ]/Z seik 17 EG _
V=0 -YZey O [V; G
Vi 0 -YZ,u] YiG

where,

. Yll, +]/Zseij +1/Zseik __]/Zseij _]'/_Zseik

Yt = _]/Zseij Y22 +]7/Zseij ij

seik

~YZn fjk Y +yZ

Substituting the voltages 7, i J,Vk, from (8) into (5)

and eliminating them the generator currents can be written
as the follows:

IG - YG VG + Ysel Vsel + Yse2 Vse2 (9)
where,
?iG
— — . -
Y¢ = Yae _[YGi YGj Yax ]Yt XjG
Yic

[YGI YG] YGk]Y - _]7/ Zseij

sel -

Y

se2 —

| ]/Zseik
0
__]/Zseik

A.  Nonlinear model of the multi-machine power system
installed with IPFC

The nonlinear dynamic model of the multi-machine
power system with IPFC is developed as follows:

_[?Gi ?Gj Yo ]Yz_l

d=0,(®-1) (10)
®=M"(P, - P, -DAw) (11)
Eq =Ta' (-E'q ~(Xp ~Xp)lp +Eg) (12)
Eg =Ty (-Egg +K, (Vis = V7)) (13)
Ve ::’Cii(iw oS 6, +iy, sin6;)

+——2(ipy COS Oy +iy, SiNO,) (14)

de

VTQ:E'q'X'DID:f’:[él "5n]Tx
o-lo, o) B =lgy £,]
Efd:[E_/dl "E/dn]T'ID:[Idl "Idn]T’
IQ:[]ql "an]T7VTD:[thd ”tha']T'

VTQ :[thq thq] Vi = \/ tid +Vt

M = diag(2H,), D = diag(D;) , Tpy = diag(T;o,«) ,
Xp =diag(xy) , Xo = diag(xqi) , Xp =diag(x,;)
and, i=1,2 ...,n, nis the number of generators.

The terminal voltage of the generators for the n- machine
power system in the common coordinates is [16]:

V, =l E X1 - (X -Xp)e T, (15)

1, =Y, (E, - j(Xq - Xp)g + YoVt + Yu7i2)  (16)

_ [ T — .
Where,Yd = [Y-lg +]X’D] ) YA :Y-ngsel’ and



Yy =YY, . In d-q axis form, the generator currents

are:
For =T e (17)
n -ran0
_ _ , i(90045,-5) ,
IGi:szij[que T (g =g ) %
=1 (18)
i(6.-6.) — — i(8) = — iS5
e]( ! j) +YAjVseleA](él) +YBsteze](6l):|
o iB, ) JBy )
Denoting Y, ; =Y ;e a9 Yy =Yy e 4 !
_ i(Bg ) = 7
Yy, =Yy e B, =rea1(]Gi), 1, :imag(lg,-)

04jj =0;=0;+Payr 045 =0; +Pay+P4;+61,
Opij =0i +Pay+PBp; +05,

n
I, = szij[_E:y' Sin S, + (x,; —xl;) €08 8451 9)
J=1

+Y V1 €0SS 4 + Y Vien cos&Bij]

n

7. =

’ , .
qi Ydij[qu COSO,; + (X —xg)SiNSy 51,

J=1
+Y, Vi SING 4y +Yp Vo sin 53;7]

(20)

B.  Linearised Model of an Multi-machine Power System
including IPFC in State Space form

The linear dynamic model of the multi-machine power
system with IPFC is obtained by linearizing the non-linear
equations around a steady state operating point of the
power system. The modified Phillips Heffron model of the
multi-machine power system installed with IPFC along
the capacitor dynamics in state space form is as follows:

AS 0 @1
A® -M7'K, -M'D
A |=| 1,y o
AEg | |-T,'"K,K5s 0
AVdC K7 0
0 0 0
-M7'K, 0 -MTK, ﬁg
r -1 r -1 r -1 '
_Tdo K3 Tdo _Tdo va AEq
-1 -1 -1
_Ta KaK6_Ta _Ta Kava ﬁlF;fd
0 0
-1 -1
-M Kpml -M erl
r -1 r -1
+ _Tdo qul _Tdo Kq()l

-1 -1
_Ta KaKvml _Ta KaKv()l
K KcHl

cml

0 0
-M7'K,, MK, || 4m
T Kgm ~Tio Koz || 2 (21)
_TailKaKva —TailKaKvez AH;
cm2 KcHZ

In this model, AS,Am,AE:l,AEfd are n-dimensional

vectors, K; —K are nxn matrices. The other vector

elements are n-dimensional column vectors. All the
constants of the model are functions of the system
parameters and operating condition.

I1l.  CONTROLLERS FOR IPFC

The IPFC is installed with three separate controllers.
They are: (1) Power flow controller, (ii) DC voltage
regulator, and (iii) Power Oscillation Damping controller.

A.  Power Flow Controller

The power flow controller regulates the power in the
transmission lines. The structure of the Pl-type power
flow controller is shown in Fig. 2.

P, o

1ref
P ) k +
jiref) pi
(O b+t “+ o IPFC

Figure 2. Power flow controller

The controller regulates real power in the transmission
line 1 to the specified value of Piitrep in the system. The
real power can be controlled by varying the phase angle
6, of the series injected voltage of VSC 1. Generally the
input signal m, can also be used to regulate the active
power of the transmission line, however, the range in
whichm; (0<m; <1) can be regulated is narrower than

that of 6, (0<6; <360° ). Modulating the input signal
6, , the currents in both the transmission lines are
controlled, as they are function of &, . Thus, the active

and reactive powers in both the lines are modulated.
Similar to the structure of Fig. 2, two more power flow
controllers are also placed in the system to the control the
reactive power in line land real power in line 2.

B.  DC Voltage Regulator

The DC voltage regulator functions by controlling
exchange of active power between the two VSCs and the
power system. It has to ensure that the net exchange of
real power is zero. This is achieved by maintaining
constant voltage across the capacitor. The DC voltage
regulator is of PI type as shown in Fig. 3.

Ve
e gzref
- +
Y ietre k
et kg + =40 @ IPFC
+ s +

0>

Figure 3. DC voltage regulator

As this regulator is responsible for converting the same
amount of real power to replace the power drained by the



VSC-1 through the DC link, the regulator is used to
modulate the input signal 6, , the phase angle of the

injected voltage of VSC 2. In the Fig. 3 v ..y is the

reference voltage. Since the currents flowing in the
transmission lines are function of 6, , this controller
make sure the net active power exchanged is zero.

C. Power Oscilation Damping Controler

Since the FACTS device is incorporated on the
transmission lines it is more appropriate to select a signal,
given to the damping controller, in its vicinity. Usually
the local input signals are always preferred, such as the
active or reactive power flow through FACTS device. As
such the error signal between the set point and the
measured signal of the active power flow will be taken as
the input to the damping controller as shown in Fig. 4.
The design of the damping controller is based on phase
compensation technique such that its output is in phase
with the real power flow deviation. This active power has
been obtained from the line on which the VSC of IPFC
has been installed. The structure of the damping
controller is given in Fig. 5. The most suitable control
signal for providing additional damping is determined
from the controllability index computed from the
linearized model [17]. It is observed that the input signal

my has the highest value, an indicator for the best signal
to provide damping.
P

s 1 e

P, é POD %
Ji(rep )
controller | " m, IPFC

Figure 4. Power oscillation damping controller
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Figure 5.  Structure of the damping controller
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Figure 6. Multi-machine system with IPC and its controllers
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The complete IPFC based multi-machine power system
with all the controllers in place is shown in Fig. 6.

IV. SIMULATION RESULTS

A three machine example power system [18] shown in
Fig 7 is considered for computer simulation experiments.
An IPFC is installed in the branches 7-5 and 7-8.
<« P, 100MW
1317 V20, PR 3SWAR o
O R T iy O
(@] 3

3
p ifle[x

9

PJHQJ,' 5 - — 6
125MW I I 90MW
S50MVAR 30MVAR

Figure 7. Three-machine power system installed with IPFC

A generalized load flow program based on Newton
technique with embedded IPFC [19] has been developed
to obtain steady state operating point. For this initial
condition the system equations are linearized and the
constants of the system model are computed. Table 1
gives the eigenvalues of the system from which the
participation factors of all the eigenvalues are computed.
It is revealed that the oscillation modes 4&5, 6&7 have
the least damping ratio contributed by machine 3 and 2,
respectively. In order to increase the damping ratio, PSS is
installed in the system for machine 2 and 3. The
eigenvalues of the systems with PSS are shown in Table
2. It is seen that the damping ratios of the concerned
modes have increased. However, there is still a pair of
eigenvalues having a damping ratio less than 0.1. This can
be increased by means of the IPFC POD controller. The
most suitable signal for providing additional damping is
determined from the controllability index computed from
the linearized model [17]. Table 3 shows the
controllability indices. It is observed that the input signal

my has the highest index, an indicator for best signal for
damping.

TABLE I. EIGENVALUES OF THE SYSTEM
. Damping Dominant
No. Eigenvalues ratio Frequency states
1 -19.3 1 0 E 43
2 -17.1802 1 0 E 2
3 -15.6798 1 0 Emn
45 | -0.30094j11.2735 | 0.0267 1.7942 05 g
6,7 | -0.2933+)8.1607 | 0.0359 1.2988 0, @y
8 -4.4731 1 0 E,
9 -2.7315 1 0 E,
10 -0.6816 1 0 E
11,12 | -0.0174 £j0.2109 | 0.0823 0.0336 o, oy
13 -0.0196 1 0 Ve




TABLE II.

EIGENVALUES WITH PSS

Eigenvalues De:’r;wt[ia(i)ng Frequency nggsm
-54.1642 1 0
-26.8454 1 0
-22.1998 +j10.1872 | 0.9089 1.6213
-15.7747 + ) 5.8177 0.9382 0.9259
-15.6979 1 0
-1.1200 £ 10.7658 | 0.1035 1.7134 03 (4
-0.6599 + j 8.3559 0.0787 1.3299 52 Wy
-4.4747 1 0
-2.5057 1 0
-0.5183 + j 0.2606 0.8934 0.0415
-0.0455 + j 0.0864 0.4654 0.0138
-0.0198 1 0
-0.1 1 0
TABLE IlI. CONTROLLABILITY INDICES
Input signal Controllability index
Amy 0.0201
Aby 0.0036
Am, 0.0070
AG, 0.0040

With the IPFC controllers in place, the performance
evaluation of the designed controllers is carried out by
computer simulation studies under various disturbance
conditions. The results are shown below.

A. Step Change in Mechanical Power Input

5, (rad

A disturbance in the form of a 1% step change of in
mechanical power input to machine 2 is applied. The
IPFC controllers control the power flow in the lines to
damp out the oscillations. The transient responses,
shown in Fig. 8, highlight the efficacy of controllers.

1,

---------- no controller
----- with PSS
with PSS and damping controller

1.0278]

with PSS and damping controller

1.0277]

10276

)

1.0275]

10274

10273]

Time (s)

o controller
ith PSS
jth PSS and damping controller

Time (s) Time (s)

Figure 8. Relative rotor angle and rotor speed deviations with respect
to machine 1 for mechanical power input change in machine 2

5, (ra)

B.  Three-phase Fault

A three-phase fault of 100 ms duration is simulated
near bus 9 (at the end of line 6-9). The dynamic
responses of the system states are shown in Fig. 9. This
again establishes the elegance of the proposed IPFC
controllers under a severe disturbance.

x10"

o controller
with PSS
with PSS and damping controller

jth PSS and dam ping controller

5,(rad)
a0y, ()

.
Tme s ime (s)

=== with PSS
with PSS and damping controller

i PSS and damping controller

Yy (00)

) 2 4 © s 0 2 4 © g

Time (s)

Time (5)

Figure 9. Relative rotor angle and rotor speed deviations (with respect
to machine 1) and capacitor voltage transient response for 3-phase fault

C. Change in Power Flow Reference

The power flow in the lines can be controlled by IPFC
by change of reference set point. This is verified by
changing the reference power flow in line 5-7 by 1%. The
test results are delineated in Fig. 10.

0.858

wesmsensens 0 controller
------ with PSS
with PSS and

0.856

ping controller

i

0.854

0.852

P
o0
°
&

Time ()

Figure 10. Dynamic response for real power flow in line 5-7 with a
change in reference power flow

V. CONCLUSION

The nonlinear model of multi-machine power system
with IPFC is developed. The linearized Phillips-Heffron
model is formulated. The modes having low damping
ratio are found by eigenvalue analysis. The IPFC POD
controller is designed using the phase compensation
method to increase the damping of the concerned
oscillation mode The power flow controllers and DC
voltage controller are incorporated to regulate the power
flow and to maintain DC link voltage. The effectiveness
the IPFC controllers are validated through nonlinear
simulations of the power system subjected to various
disturbances. The IPFC based POD controller and PSS
ensure reliable damping of the low frequency oscillations
in the multi-machine power system with IPFC.
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APPENDIX

Nomenclature:
o is the rotor angle in electric radians, @ is generator
rotor speed in p.u, oy =27z f in rad/s, ¥, is the terminal

voltage in p.u.,E;] is internal quadrature-axis voltage in

p.u., £ is the field voltage in p.u, v, is the voltage at

DC link in p.u, M =2H , H is the inertia constant in
p.u., P, is the mechanical input in p.u, P, is the electrical

output in p.u, D is the damping coefficient, x,,x), are
the d-axis reactance and d-axis transient reactance in p.u,
T,, is the open circuit d axis time constant in sec, 7, 1,
are the direct and quadrature axis components of stator
currentin p.u, ¥, v,, are the d, and g axis components
of terminal voltage in p.u., 7, and K, are time constant
and gain of voltage regulator. v, is the capacitor voltage
of the DC link of the IPFC. m; and m, are the
modulation indices of VSC 1 and 2, ¢, and 8, are the
phase angles of series converter 1 and 2. C,, is the dc
link capacitor, i, and i,, are the d-q axis components of

current 7, in line i—; and i,, and ip, the d-q axis
components of 7, in line i—k respectively.

PSS structure and parameters:
the structure of PSS is given in Fig. 11. The parameters

are designed by phase compensation method and are
given in the following table.

@ sT, 1+57, 1+ 5T, Viss
—» K pss P > —»
1+sT,| |L+s7, 1+sT,
Gain .
Washout Phase compensation
Figure 11. Power system stabilizer
TABLE IV. PARAMETERS OF THE PSS
Machine 2 | 1.8807 | 0.3002 | 0.0492 | 0.3002 0.0492
Machine 3 | 3.5843 | 0.3001 | 0.0243 | 0.3001 0.0243

IPFC Controller Parameters:.
The parameters of the IPFC controllers are k,, =5 ,

k, = 25, k,,=0.06, k,= 0.007, k;,= 0.01, k;; = 0.01,
kg, = 10 and k, =20. The parameters of the POD

controller are &, = 0.3554, T, = 10s, T,, = 0.01s, 7; =
0.20058, T, = 0.071407,and m, = 1.
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