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ABSTRACT 

 

Mitigation of power system oscillations is the problem of concern in the power 

industry as these oscillations, when exhibiting poor damping; affect the transmission 

line power transfer capability and power system stability. These oscillations greatly 

restrict power system operations and, in some cases, can also lead to widespread 

system disturbances. In this context, the Flexible AC Transmission System (FACTS) 

device, Interline Power Flow Controller (IPFC) employed to improve the transmission 

capability can be additionally utilized for damping control of power system 

oscillations.  

IPFC based damping controller design for power system stability requires proper 

and adequate mathematical representation of power system incorporating the FACTS 

device. This thesis reports the investigation on the development of steady state model, 

the dynamic nonlinear mathematical model of the power system installed with the 

IPFC for stability studies and the linearized extended Phillips Heffron model for the 

design of control techniques to enhance the damping of the lightly damped 

oscillations modes.  

In this context, the mathematical models of the single machine infinite bus 

(SMIB) power system and multi-machine power system incorporated with IPFC are 

established. The controllers for the IPFC are designed for enhancing the power system 

stability. The eigenvalue analysis and nonlinear simulation studies of the 

investigations conducted on the SMIB and Multi-machine power systems installed 

with IPFC demonstrate that the control designs are effective in damping the power 

system oscillations. The results presented in this thesis would provide useful 

information to electric power utilities engaged in scheduling and operating with the 

FACTS device, IPFC. 
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ABSTRAK 

 

Pengurangan ayunan sistem kuasa adalah permasalahan yang diberi perhatian dalam 

industri kuasa kerana ayunan ini, disamping menunjukkan redaman kurang baik, 

saluran penghantaran mempengaruhi kemampuan pemindahan dan kestabilan system. 

Ayunan ini menyekat operasi sistem dan dalam beberapa kes, boleh menyebabkan 

penyebaran gangguan pada sistem. Dalam konteks ini, ‘peranti sistem penghantaran 

AU fleksibel’ (FACTS) ‘pengawal aliran kuasa antara-talian’ (IPFC) yang berfungsi 

untuk meningkatkan kemampuan penghantaran dapat digunakan untuk meredamkan 

ayunan sistem kuasa elektrik. 

IPFC berasaskan rekabentuk kawalan redaman untuk menstabilkan sistem kuasa 

memerlukan persamaan matematik yang tepat dan mencukupi untuk mewakili sistem 

kuasa yang menggabungkan peranti FACTS. Tesis ini melaporkan hasil kajian 

berkaitan pembangunan model keadaan mantap dan model matematik dinamik tak 

lelurus dari sistem kuasa yang dipasang dengan IPFC untuk kajian kestabilan dan 

meleluruskan model Phillips Heffron untuk merekabentuk teknik kawalan bagi 

meningkatkan redaman.mod ayunan teredam ringan.  

Dalam konteks ini, model matematik dari bas mesin tunggal tak terbatas (SMIB) 

sistem sistem kuasa elektrik dan berbilang-mesin digabungkan dengan IPFC. 

Pengawal untuk IPFC direka untuk meningkatkan kestabilan sistem kuasa elektrik. 

Analisis nilai eigen dan kajian simulasi tak lelurus dari penyiasatan yang dilakukan 

pada SMIB dan sistem kuasa MM yang dipasang dengan IPFC menunjukkan bahawa 

reka bentuk kawalan adalah sangat berkesan dalam mengayunkan sistem tenaga 

redaman. Penemuan yang dipersembahkan dalam tesis ini dapat memberi maklumat 

yang berguna untuk pengusaha utiliti kuasa elektrik dalam penjadualan dan 

pengoperasian sistem menggunakan peranti FACTS, IPFC. 
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NOMENCLATURE 

 

 	, �, � State, control and output matrices 

dcC
 

DC capacitor 


 Damping coefficient  

iD
 

th
i -machine damping coefficient 


 � �  Synchronous network rotating reference frame 
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Synchronous machine rotating reference frame 

��� Generator field voltage in p.u. 

ifdE  
th

i -generator field voltage 

��′  Generator internal voltage in p.u. 

'

qiE
 

th
i -machine internal quadrature-axis voltage

 

F  Represents a set of n  nonlinear equations 

1F  Mismatch vector of the active and reactive power flows of 

the  IPFC buses and the power exchanged between the two 

VSCs 

F  Mismatch vector of the system with IPFC 

)(sGc  Transfer function of IPFC damping controller 
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CHAPTER 1 

 

INTRODUCTION 

 

Modern day society’s requirement and consumption of energy for use in industry, 

commerce, agriculture, communications, domestic households, etc., have increased 

steadily. This rapid and continuous growth in electrical energy use is combined with a 

greater demand for low cost energy and to improve the reliability of power supply.  

To make electric energy generation more economical, the generating stations are 

sited remotely from the load centers, and closer to the source of power. For example, 

the primary concern to hydroelectric power plants is the availability of water and 

benefits of the sites having higher heads with significant water flows, while 

thermoelectric power stations are situated near to coal mines and the nuclear power 

plants are located distantly away from the urban centers for safety. Consequently, the 

transmission lines serve the purpose to pool the generating sites and load centers 

covering large distances between generation and end-users in order to minimize the 

total generation capacity and fuel cost.  

To enhance the system reliability, the electric power supply systems are widely 

interconnected, i.e., interlinking the neighboring power supply utilities, which further 

extend to inter-regional and international connections. Moreover, with the probable 

unavailability of some generating units, the interconnection lines could force the 

electric power flows to be redirected through longer routes to provide emergency 

assistance (e.g., when encountering partial blackouts). As such, transmission 

interconnections enable taking benefit of diversity of loads, availability of sources and 

fuel price to provide consistent and uninterrupted service to the loads.  

This results in evolved planning, construction and operation of interconnected 

network of transmission lines. Although the interconnection results in operating 

economy and increased reliability through mutual assistance, yet they contribute 
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towards increased complexity of stability problems, increased consequences of 

instability and more requirements of stringent measures for maintaining adequate 

system dynamic performance. In this context, this chapter gives the background about 

the stability problems in the power system followed by brief discussion on Flexible 

AC Transmission Systems (FACTS) used in the power system to enhance the power 

system stability, the research motivation and objectives. 

1.1 Power System Stability  

Power system stability is the ability of the power system to maintain a state of 

equilibrium for a given operating point or to regain an acceptable equilibrium point 

after being subjected to disturbances [1], [2]. Power system stability is mainly 

connected with electromechanical phenomena where in the synchronous operation is 

to be maintained [3]. Electric power is produced, almost entirely, by means of 

synchronous three-phase generators (i.e., alternators) driven by steam or water 

turbines. A necessary condition to maintain stability is that several generators in the 

power system must operate in synchronism during normal steady state and 

disturbance conditions. These AC generators produce synchronizing torques which 

depends on the relative angular displacements of their rotors to keep the generators in 

synchronism.  

However, instability in power system may also be encountered due to various 

disturbances or with changing power demand. Maintaining the synchronism is not the 

only issue at such an instance. The stability and control of voltage and frequency are 

also of concern. As power systems are nonlinear, their stability depends on both the 

initial conditions and the size of a disturbance.  

Over the years the power system stability definition has taken different forms 

being influenced by various factors. Different approaches have been developed to deal 

with different stability problems and methods are formulated to improve the stability. 

Therefore, the stability definitions have been classified as follows [2], [3]: 
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Rotor angle stability is the ability of synchronous machines in interconnected 

power system to remain in synchronism. This stability problem involves the study of 

electromechanical oscillations inherent in power systems [2]. These oscillations occur 

in interconnected power systems as the synchronous generators swing against each 

other in the event of disturbance. Since the phenomenon involves mechanical 

oscillations of the rotor and oscillations of the generated electrical power, these 

oscillations are called electromechanical oscillations. 

Voltage stability is the ability of the power system to sustain steady voltages at all 

buses in the system before and after disturbances.  

Frequency stability is the ability of the power system to maintain the frequency in 

the event of disturbances. 

Among several problems in the stressed power network, the major concern of 

study in stability problems. In this thesis, it is the electromechanical oscillations 

which come under rotor angle stability. The rotor angle stability is further classified as 

follows: 

Steady-state or small signal stability is the ability of the power system to maintain 

synchronism in response to small disturbances. The disturbances are in the form of 

small variations in load conditions and small differences in generator schedules.  

Transient stability is the ability to maintain synchronism when the power system 

is subjected to sudden and severe disturbances. The transient stability depends on the 

initial operating point and the severity of the disturbance. These disturbances can be 

of varying degree of severity such as short circuits of different types: phase-to-

ground, phase-to-phase-to-ground or three-phase fault. They can occur on 

transmission lines, buses, or near transformers. The fault is assumed to be cleared by 

the opening of appropriate breakers to isolate the faulted element. 

During small disturbances, the angular difference between generators increases 

and electrical torque is produced with the help of the excitation system which tries to 

reduce the angular displacement. As such, the moment of inertia of the generator 

rotors and the positive synchronizing torques cause the angular displacement of the 
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generators to oscillate, following a system disturbance. The oscillations of the 

generator’s rotors are reflected in other power system variables such as bus voltage, 

transmission line active and reactive powers, etc. However, from an operating point of 

view, oscillations are acceptable as long as they decay. But during large disturbances 

such as short circuit on a transmission line, i.e., when the generator is subjected to 

relatively larger angular swings, the system may tend to oscillate causing it to become 

unstable. Fast excitation systems such as high gain automatic voltage regulators 

(AVR) were introduced to prevent the generators from loosing synchronism. 

Unfortunately, improvising the synchronizing torque affects the damping torque, as 

negative damping was introduced by these AVRs. Consequently, the net damping 

torque is insufficient and results in power system oscillations of exponentially 

increasing amplitude in an overstressed system. In the absence of mitigating means, it 

leads to instability of the power system. Thus, the stability problem is largely due to 

insufficient damping of the oscillations. 

Electric power systems experience problems with the low frequency oscillations 

(0.1 to 2 Hz) [2], [4] which are a frequent phenomenon in the interconnected power 

system. The low frequency oscillations are characterized by the electromechanical 

mode oscillations and are initiated in the system when exposed to sudden small 

disturbances in load, generation and transmission network configuration and worsen 

following a large disturbance.  

The low frequency oscillations are of two types: The first, known as the local 

mode oscillations is associated with a single generator or a group of generators at a 

generating station oscillating with respect to the rest of the power system.  They have 

natural frequencies of about 1 to 2 Hz [2], [4]. The characteristics of local area 

oscillations are well understood and adequate damping of these oscillations can be 

achieved with help of the Power System Stabilizer (PSS), which provides 

supplementary control action in the excitation systems of the generators.  

The second are the inter-area mode oscillations, which associate with the 

machines in one area of the power system oscillating against the machines in other 

areas of the power system. Inter-area modes of oscillation have lower natural 

frequencies in the order of 0.1 to 1 Hz [2], [4]. They are caused by two or more 
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groups of closely coupled machines that are interconnected by weak tie lines. As such 

these oscillations may also lead to widespread system disturbances if cascading 

disturbances (faults and protective relaying operation) on transmission lines occur due 

to the oscillatory power swings across the tie lines. Such an event occurred during the 

blackout in western US/Canada interconnected system on August 10, 1996 [5] and a 

similar blackout occurred on August 14, 2003 in eastern Canada and US by severe 

0.4-Hz oscillations in several post-contingency stages [6].  Studies about the relations 

between inter-area mode and different factors in the power system are quite 

complicated. The characteristics of these modes are complex as they involve more 

than one utility and require cooperation of the rest of the utilities to obtain effective 

and economical solution.  

Low frequency oscillations are of concern as these oscillations affect the power 

transfer capability of the line. Damping of these oscillations plays a significant role in 

power system stability to secure and increase the supply and transmission capability 

of the system. In the circumstances due to insufficient damping, damping devices are 

imperative to dampen these power system oscillations.  

Demello and Concordia analyzed the mechanism of low frequency oscillation [7], 

using the linearized  (k constant) model. This model is also known as the linearized 

Phillips-Heffron model of a power system which explains the relationships between 

small signal stability, high impedance transmission lines, line loading and high gain 

fast acting excitation systems. Traditional approaches to assist the damping of power 

system oscillations include the application of PSS to the generator voltage regulator.  

PSS are designed based on the linearized model of the power system [8]. However, 

the pressures of the continuing interconnection of electric networks and increase of 

line loading have indicated that the PSS alone is not sufficient. Proliferation of 

controls is considered by prudent use of FACTS technology as needed. 

1.2 FACTS Devices 

With the advent of high power, high speed power electronics based FACTS, their 

capability in damping power system oscillations has been explored and      
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investigated [9]. Flexible Alternating-Current  Transmission Systems (FACTS) is 

defined by the IEEE as “AC transmission systems incorporating power electronics-

based and other static controllers to enhance controllability and increase power 

transfer capability” [10]. The FACTS concept originally came into effect in 1980s to 

solve operation problems due to the restrictions on the construction of new 

transmission lines, to improve power system stability margins. It also facilitates 

power exchange between different generation companies and large power users, thus 

considerably utilizing the existing transmission network instead of adding new 

transmission lines for the growing demand of power, as it may be restricted due to 

economical and environmental problems. Correspondingly, a FACTS controller is 

defined as “a power electronics-based system or other static equipment that provides 

control of one or more AC transmission parameters” [10]. The FACTS controllers 

have been beneficial as they operate very fast and enlarge the safe operating point 

limits of a transmission system without threatening the stability of the system.  

The developments in FACTS technology made it possible to rapidly vary the 

reactive shunt and series compensation, to accommodate the changes in the 

transmission lines and maintain the stability margins. Since FACTS elements are 

already being used in power systems for voltage support and power flow control, they 

can potentially be applied for damping the oscillations of the power system and 

improve the overall power system stability.  The compensation applied by the FACTS 

controllers is varied to affect the power flow to obtain reliable and rapid damping of 

the low frequency oscillations, as well as satisfy the primary requirements of the 

device.  

There are two distinct groups of FACTS controllers based on technical 

approaches [9], [11-14]. The first group is based on line commutated thyristor devices 

having no intrinsic turn off ability. The thyristor controlled FACTS controllers 

consists of Static Var Compensator (SVC), Thyristor Controlled Series Capacitor 

(TCSC) and Thyristor Controlled Phase Shifter (TCPS) employing reactive 

impedances or tap changing transformers with thyristor switches as controlled 

elements [9].  
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Each of these FACTS devices can control only one parameter: SVC- voltage, 

TCSC-transmission impedance and TCPS-transmission angle. The major members of 

this group, the SVC and TCSC, have a general characteristic in that the conventional 

capacitor or reactor banks generate or absorb the necessary reactive power required 

for the compensation, and the thyristor switches are used only for the control of the 

combined reactive impedance these banks present to AC system. TCPS does not 

supply or absorb the reactive power it exchanges with the AC system. 

The second group is based on self-commutated converters which use 

thyristors/transistors with gate turn-off capability, such as GTO’s, IGBT’s etc. The 

converter based FACTS controllers are of two types: voltage sourced converters 

(VSCs) and current sourced converters. However, from economical point of view, the 

VSCs seem to be preferred and will be the basis for most of the converter-based 

FACTS controllers [12]. They have an advantage over the thyristor controlled FACTS 

controllers compensation methods in providing better performance characteristics and 

uniform applicability for transmission, effective line impedance and angle control. 

This approach can provide reactive compensating shunt current that is independent of 

system voltage, as well as series reactive compensating voltage that is independent of 

line current, i.e., the applied compensation provided by synchronous voltage sources 

(SVS) remains largely independent of the network variables (line current, voltage or 

angle). The SVS also has the capability of executing a bidirectional real (active) 

power flow between its AC and DC terminals. Thus, it becomes possible to couple the 

DC terminals of two or more SVSs and, thereby, they become capable of exchanging 

real power with the AC system directly along with providing controllable reactive 

power compensation independently. This group of FACTS controllers consists of 

Static Synchronous Compensator (STATCOM), the Static Synchronous Series 

Compensator (SSSC), the Unified Power Flow Controller (UPFC) and the Interline 

Power Flow Controller (IPFC). 

1.3 Interline Power Flow Controller (IPFC) 

The IPFC is a recent member of the converter based family of FACTS controllers 

[15]. IPFC provides comprehensive power flow control scheme for a multi-line 
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transmission system unlike other FACTS controllers (STATCOM, SSSC, and UPFC) 

which are developed primarily for the control of a single line. In general, the IPFC 

employs a number of voltage sourced converters (VSCs) with a common DC link, 

each providing a series reactive compensation for a selected line of the transmission 

system by injecting a series voltage. Due to the common DC link, any converter of the 

IPFC is able to transmit real power in between other VSCs and thus, able to assist in 

real power exchange among the lines of the transmission system. Since each converter 

is also able to provide series reactive compensation, the IPFC is able to provide real 

and reactive power compensation, and thereby, optimize the utilization of the 

transmission system. This ability of IPFC makes it possible to equalize both real and 

reactive power flow between the lines, transfer power from overloaded to under-

loaded lines, compensate against reactive voltage drops and the related reactive line 

power, and to increase the efficiency of the compensating system against dynamic 

disturbances (transient stability and power oscillation damping). In other words, the 

IPFC can potentially provide a highly effective scheme for power transmission 

management at a multi-line substation.  

A basic IPFC consists of two VSCs with a common DC link is shown in Figure 

1.1 [12]. Each converter is coupled to a different transmission line via its own series 

insertion transformer, thus, providing independent series reactive compensation to its 

own line. 

The real power is exchanged by the converters at its AC terminals which is 

supplied to or absorbed from its DC terminal. The IPFC has all the advantages 

established for the converter based FACTS controllers: Modular construction from 

similar building blocks which can be fully decoupled and operated as independent 

series compensators or reconfigured into shunt compensators or UPFC. The rating of 

selected individual compensators can be increased by the combination of the 

individual building blocks.  

The IPFC configuration provides a flexible utilization of needed compensation 

assets without any significant cost addition, and thus, makes this approach attractive 

for utilities (or other transmission system operators) to solve some of difficult 

transmission problems they face today.  
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Figure 1.1: Schematic diagram of IPFC 

As seen, IPFC is a multivariable controller. The control design of IPFC should be 

such that it should be able to perform in a stable manner while providing power flow 

control as well as damping to power system oscillations. If the control system is not 

designed properly, it could lead to growing oscillations in transmission line power 

flow and lead to system wide disturbances. In this view the control aspect of an IPFC 

is an important area of research.  

1.4 Research Motivation 

The electric utilities are constantly on a lookout for new devices that will enable the 

power system to have increased power transfer abilities with the transmission lines. 

The increase in energy exchange within the transmission network further increases the 

stress of the existing power network entailing enhanced control techniques to ensure 

power system stability. In the recent research, FACTS devices have been suggested 

and investigated for improving damping of the power system oscillations. Thus, while 

performing their primary functions of power flow control; they are also utilized for 
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enhancing the damping of the oscillation modes. The FACTS-based controllers have 

been more prospective to stabilize the low frequency oscillations which cannot just be 

controlled through generator controllers with only local measurements. 

The latest FACTS device, IPFC, regulates the power flow in the transmission 

lines. Consequently, IPFC should not only be able to control the power flow of the 

concerned transmission lines but also be able to enhance the damping of the power 

system oscillations present in the system. In this context, greater potential in 

increasing the oscillations stability with the assistance of the IPFC is perceived. This 

demands the modeling of IPFC for stability analysis. However, not much research has 

been evolved in the modeling of the IPFC for stability analysis and the control aspect 

of IPFC has also to be investigated. The power system stability has to be analyzed 

incorporating the IPFC to consider its effect on the system. 

Power system consisting of multiple machines will exhibit multiple modes of 

oscillations due to a variety of interactions among its components. These oscillations 

must decay following a system disturbance. If any lightly damped electromechanical 

mode of oscillation exists, it may increase in amplitude due to inadequate damping 

torque in some generators. The continuous presence of power system oscillations in 

the power system can severely restrict system operations. These oscillations are of 

major concern for the power system operation. Thus, determining the lightly damped 

modes and their damping are vital for stable operating system.  

Tools for analyzing the nature of the system oscillations, in addition to 

determining the existence of problems are required. It should be able to identify the 

frequency, damping of the oscillation mode, and factors influencing them, i.e., the 

variables involved in each of the modes. It should provide information to design 

efficient oscillation damping controls. Thus, to investigate the problems concerning 

the low frequency oscillations, the small signal analysis (i.e., modal analysis or 

eigenvalue analysis) based on linear techniques is suitable. When power system is 

subjected to a small disturbance, the system will have a small deviation in the 

neighborhood of a steady state operating point. This allows the system equations to be 

linearized around the steady state operating point to be permissible for purpose of 

analysis. System stability is based on eigenvalue analysis. This method characterizes 
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the system oscillations by assuming a linearized model of the power system about a 

specific operating point. Since small signal stability is basically viewed as the stability 

affected by perturbations valid within the boundary of nominal operating point region, 

the power system model which is linearized, is significant for studies mapped in the 

domain of small perturbations. The eigenvalues of the state matrix of such model 

clearly identify the stability of each mode. The eigenvectors give the modeshapes and 

relationships between the modes and system variables. Performing the eigenvalue 

analysis, the poorly damped eigenvalues are determined along with their 

characteristics and sources of the problem which will help in developing mitigating 

measures.  

The nonlinear simulations of the power system will indicate the effects of 

nonlinearities of the system. Thus, small signal stability analysis along with nonlinear 

time simulations is the most effective procedure for studying power system 

oscillations [2], [4], [16], [17].  

Considering the facts mentioned the major aim of this research is to develop the 

dynamic model of the IPFC for stability studies which has to be incorporated into the 

power system dynamic model. The control methods for the IPFC to control the power 

flow in the transmission lines and to improve the power system oscillations damping 

is to be investigated. The power system stability analysis incorporating the IPFC is to 

be performed through eigenvalue analysis and nonlinear simulations.   

1.5 Research Objectives  

The ability of IPFC in damping low frequency oscillations in a power system is 

explored in this research. The design of the controllers for the IPFC requires the 

power system model incorporated with IPFC. Consequently, modeling of IPFC for 

steady state stability is initially established which involves the steady state model and 

dynamic model of the FACTS device. Moreover, the dynamic model of the IPFC 

involves the DC link dynamics which is a function of the series converter control 

variables. Modulating these control variables will provide an injected voltage with 

controllable magnitude and phase angle by the converters which in turn vary the 
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power flow in the transmission line. Therefore, the main focus of this research is to 

develop the dynamic model of the power system incorporated with IPFC. This model 

is analyzed for power system stability.  

The power system model developed is a nonlinear model consisting of differential 

state space equations and network algebraic equations, including the dynamics of the 

IPFC. The nonlinear equations are linearized at an operating point to obtain the 

linearized Phillips-Heffron state space model of the power system. Consequently, 

modal analysis is used to identify oscillation modes from the linearized model. The 

controller is designed based on this linearized system to increase the damping of the 

un-damped oscillation modes. Design of these controllers to give robust performance 

under large variations in system parameters and operating conditions is essential. A 

conventional lead-lag damping controller is designed at a particular operating point 

based on the linearized Phillips-Heffron model of the system to provide reliable 

operation.  

To understand the basic concepts of the damping contribution of the IPFC 

controller on the power system, initially a single-machine-infinite-bus (SMIB) system 

is considered. The linearized Phillips–Heffron model of the SMIB power system has 

been used successfully over the years to provide reliable results as it is quite accurate 

for studying low frequency oscillations and small signal stability. Based on the insight 

provided by the model of SMIB installed with IPFC, the dynamic mathematical 

model of multi-machine power system incorporated with IPFC is developed. Further, 

to illustrate the effectiveness of the proposed IPFC damping controller for multi-

machine system, case study is performed: Western System Coordinating Council 

(WSCC) consisting of three machine and nine buses which presents a poorly damped 

oscillation modes. The effectiveness of the IPFC on power flow control and on 

damping power system oscillations is investigated through modal analysis and 

nonlinear simulations.  

The primary function of IPFC is to regulate the power flow in the transmission 

lines where it has been installed. The series converters of the IPFC control the power 

flows in the transmission lines. The interaction between the series injected voltage 

and the transmission line current causes the series inverter to exchange real and 
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reactive power with the transmission line. The series injected voltage is controlled by 

the input signals of the IPFC. Thus, controlling the input signals usually with a PI 

controller, the power flow in the transmission lines is also controlled.  

The real power exchange by the series inverter with the transmission line is 

supplied or absorbed from the other transmission lines through the DC link capacitor. 

This causes a decrease or increase in the DC capacitor voltage. For proper operation 

of the IPFC, the DC capacitor voltage should be regulated at a specified level. This is 

the other issue which is focused in this work during the design of the IPFC control 

system. 

The main objective of this research is to design the IPFC based controllers for 

enhancing the power system stability. This is achieved by: 

a) Establishing the IPFC load flow or the steady-state model, and perform the 

power flow analysis of the system with the IPFC to obtain the operating point 

around which the power system is linearized for small changes.   

b) Developing an IPFC dynamic model with its control inputs for dynamic 

studies. 

c) Deriving of the linearized Phillips-Heffron model of the power system (SMIB 

and Multi-machine) with IPFC, to be used for analysis and design of 

controllers. 

d) Designing the conventional lead-lag controller based on the linearized model 

of the power system incorporated with IPFC. On the basis of this model, the 

robustness of the commonly used input signals are analyzed, employing 

transfer function technique and eigenvalue analysis.  

e) Performing nonlinear simulations on SMIB power system and a three-machine 

nine-bus multi-machine power system. The simulation results demonstrate the 

effectiveness of the proposed methodologies.  
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1.6 Contributions of Research 

FACTS devices are envisaged to play a prominent role in future to maintain the power 

system stability. IPFC belongs to the second generation type of FACTS devices based 

on VSCs, provides real and reactive power compensation for multiple transmission 

lines. This thesis presents the modeling and control strategies for IPFC for 

enhancement in stability.  The contributions of the research: 

• The steady state model of IPFC is established for load flow studies which 

reflect the steady state operation of the FACTS device including all operating 

limits. The load flow program is developed for the complete power system 

incorporating IPFC. 

• The dynamic model of IPFC is developed including the dynamics of the DC 

link capacitor which is a function of the control signals of the device. This 

dynamic model is used to integrate with the power system model for stability 

analysis.  

• Phillips-Heffron model of SMIB incorporated with IPFC is developed by 

adopting the techniques utilized for other FACTS devices especially the 

UPFC. The state variables, of the Phillips Heffron model of a SMIB 

incorporated with IPFC derived, are a function of all the control inputs to 

indicate their influence.  

• The lead-lag controller is designed based on the linearized model of the power 

system. The output of the controller modulates the input signals of IPFC thus, 

varying the magnitude and phase angle of the injected voltage into the 

transmission line. The effect of the input signals on the power system stability 

is investigated using eigenvalue analysis and detailed simulation studies. 

• The mathematical model of the IPFC installed in a multi-machine power 

system is developed. The linearized Phillips-Heffron model of the multi-

machine power system extended with IPFC is developed. From the Phillips-

Heffron model, multiple modes in need of damping are identified using modal 

or eigenvalue analysis.   
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• The control strategy is devised which enables simultaneous control of power 

flow on transmission lines to influence the line power, subject to the 

restriction that real power exchanged with the line via one converter must be 

balanced by the power exchanged by the other converter, and enhancing the 

damping of the power system oscillations.  

1.7 Thesis Outline 

The rest of the thesis is organized as follows: 

Chapter 2 provides the theoretical background of power system stability and 

reviews the modelling procedures, the analysis techniques of the various FACTS 

devices and the control techniques for enhancement of damping of the power system 

oscillations.  

Chapter 3 presents the steady state model of the IPFC and establishment of the 

dynamic model of IPFC for small signal stability studies. 

 Chapter 4 presents the nonlinear model of the SMIB power system equipped with 

an IPFC. The linearized Phillips-Heffron model of SMIB is developed on which 

eigenvalue analysis is performed to determine the mode in requirement of damping. 

Proposed IPFC lead-lag controllers are designed based on the linearized system to 

dampen the oscillations using local measurements. Their effectiveness on power 

system stability is investigated through time domain analysis under different system 

disturbances.  

Chapter 5 briefly reviews the nonlinear multi-machine power system model in 

absence of the FACTS controller. This chapter presents the mathematical models of 

various components of the multi-machine system. The control scheme involving the 

PSSs for the power system is presented. To demonstrate the effectiveness of the 

developed controller, eigenvalue analysis and time simulation (nonlinear simulation) 

results for the power system are presented.  
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Chapter 6 presents the application of an IPFC controller for a multi-machine 

power system. Development of the mathematical model of the multi-machine power 

system equipped with IPFCs is presented. The control schemes for the power system 

are presented. To demonstrate the effectiveness of the developed controllers, 

simulation results for the power system are presented.  

Chapter 7 summarizes the findings of the research undertaken and contributions 

and provides suggestions for future research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

CHAPTER 2 

 

POWER SYSTEM STABILITY: AN OVERVIEW 

2.1 Introduction  

In this chapter, the relevant literature review of the work related to the problem of 

damping low frequency oscillations investigated in this thesis is presented. The 

review is organized in two parts. The first part given in Section 2.2: the work related 

with improvement of the stability of power system oscillations using FACTS devices 

is reviewed. Then, the second part covered in Section 2.3, the work related to 

modeling, control strategy and control systems for IPFC, for damping power system 

oscillations are discussed. 

2.2 Power System Oscillations Stability  

A power system should have the ability to regain the state of equilibrium with most 

system variables bounded after being subjected to a physical disturbance, i.e., the 

entire power system should remain intact with no tripping of generators or loads in the 

other areas, except for those detached by isolation of the faulted elements or 

purposely tripped to maintain the continuity of operation for the remaining system [2]. 

The power systems in practice are designed and operated to be stable for a set of 

designed contingencies which are selected based on their significant possibility of 

occurrence and severity, given the complexity involving the number of components 

comprising the power system. However, due to economic and technical limitations, a 

power system may be guaranteed to be stable for all possible disturbances and 

contingencies. Power system oscillations are frequent inherent phenomena and are not 

unexpected, with continually varying load conditions and some slight differences in 

the design and loading of the generators. The requirement for establishing study 

procedures and developing tools, for the analysis of system oscillations which 

determine the existence of the problems and identifying the factors influencing the 
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problem, provide useful information in developing control measures in mitigation of 

these oscillations.  

The Phillips-Heffron  model of a synchronous machine connected to an infinite 

bus was first presented by Heffron and Phillips [18] and De Mello and Concordia [7] 

for the analysis of power system oscillation stability. These papers significantly 

contribute to the required understanding of system damping in the area of small 

perturbation stability. The linearized Phillips-Heffron model gives insights into effects 

of machine and system parameters, voltage regulator gain, and stabilizing functions 

derived from speed and working through the voltage reference of the voltage 

regulator. Based on this model, the researchers have developed the expressions for 

torques and revealed the effect of excitation system on stability. It is shown that under 

many system circumstances, excitation systems can be a major source of negative 

damping on system oscillations and insufficient damping torque is the cause of 

oscillation instability necessitating supplementary stabilizing action.  

PSS are used for many years to serve the purpose of enhancing the damping of 

electromechanical oscillations (low frequency oscillations). The basic function of the 

PSS is to provide additional electrical torque in the excitation system, in phase with 

the speed variation to increase the damping torque to sustain the power oscillations. 

Installation of PSS is a simple, effective and economical method. The conventional 

PSS structure consists of a washout circuit and a cascade of lead-lag networks as 

shown in Figure 2.1 [2], [8]. The method of damping torque analysis and phase 

compensation method based on the linearized Phillips-Heffron  model were applied to 

design PSS parameters [2], [8], [19]. The phase compensation is used to compensate 

the phase lag between the excitation voltage and electrical torque of the synchronous 

machine.  
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Figure 2.1: Power system stabilizer 
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A number of input signals to the PSS, such as rotor speed, electric power, and 

linear combinations of these have been extensively investigated and recommendations 

regarding different techniques in PSS design have been reported in literature [20]-

[27]. PSS is quite suitable in mitigating the local area oscillations. However, its effect 

is limited in dealing with inter-area oscillations under certain conditions, for the PSS 

is designed to operate only upon local variables of the associated generators and 

primarily employed to damp local area oscillations. The PSS, if carefully tuned, may 

also be effective in damping inter-area modes up to a certain transmission loading. 

However, this necessitates provision of PSSs on most of the generators and 

consequently, coordination of tuning among them.        

Various techniques have been proposed for the coordination of multiple PSSs 

installed in multi-machine power systems to suppress multi-mode oscillations. 

However, it has further been observed that improving damping ratios associated with 

inter-area modes often adversely affects the damping ratios and also the oscillation 

frequency associated with local modes [28]. Consequently, oscillation stability 

analysis and control for these oscillation modes have been important and active 

subjects in power system research and applications for decades.   

Recent appearances of FACTS based stabilizers offer alternative ways to damp 

power system oscillations. The potential of the FACTS damping function has gained 

interest in both academic and industrial sectors. Due to fast control actions of the 

FACTS devices, they have been utilized considerably to improve the power system 

oscillation damping and also maintain the voltage profile, thus, having an advantage 

over the PSS.    Although the function of the FACTS devices is to control power flow 

in the transmission lines, their control design enhances the damping characteristics of 

certain electromechanical modes while satisfying the primary requirements of the 

device. 

These transmission controls to enhance damping of oscillation modes use local 

input signals near the FACTS device like active and reactive power deviations, bus 

voltages or currents, since the control devices are located on the transmission lines. 

Larsen et al. [29], presented the general design concepts for the FACTS damping 

controller based on an approximate multimodal decomposition for systems with 
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multiple swing modes. This concept is similar to the approach applied to a single-

machine model by De Mello and Concordia [7]. Larsen et al. [29], suggested that the 

impact of the synchronizing and damping components of torque on each 

electromechanical mode of oscillation in a multi-machine system is determined by 

decomposing the system variables into their modal components. The concepts 

explained are helpful in developing a set of analytical tools which provide valuable 

insights to assist the task of designing FACTS controllers to damp power oscillations. 

For the study of power system oscillation stability, initially the augmented 

Phillips-Heffron model of the power system installed with the FACTS devices is 

established. This model has an advantage due to its systematic configuration and clear 

demonstration of the control function of the FACTS-based stabilizers. It is convenient 

for applying the conventional damping torque analysis and using phase compensation 

method to analyze and design FACTS-based stabilizers. The Phillips-Heffron model 

of the power system installed with the FACTS-based stabilizers, including SVC - 

[30], TCSC - [31], TCPS - [32], [33], STATCOM - [34], SSSC- [35] and UPFC - 

[36]-[38] based stabilizers are established in literature. From the Phillips-Heffron 

model of the multi-machine power system, a multi-channel model of FACTS-based 

stabilizers providing damping to oscillation modes in the multi-machine power system 

can be established [9]. A brief review of each FACTS device, along with their 

modeling and control strategies is presented in the following sections. 

2.2.1 Static Var Compensator (SVC) 

The SVC is basically a shunt connected device consisting of thyristor-controlled 

reactors (TCRs), and thyristor-switched capacitors (TSCs) as shown in Figure 2.2 [9], 

[12]. The output of the SVC is adjusted to exchange capacitive or inductive current to 

maintain or control specific power system variable typically, the SVC bus voltage. 

The main reason for installing a SVC is to improve dynamic voltage control, and thus, 

increase system loadability. By introducing an additional stabilizing signal 

superimposed on the voltage control loop of a SVC, by a supplementary control, it 

can provide damping of system oscillations. 
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 Wang and Swift [30], [39] established an extended Phillips-Heffron model of a 

SMIB power system to include SVC in 1996. They have analyzed damping torque 

contribution of the SVC damping control to the power system. The SVC damping 

control is shown to be effective with variations in the transmission line impedance 

indicating that the SVC damping control is efficient when the power system is 

operating at a weaker system connection. 

 

Figure 2.2: SVC employing thyristor switched capacitors and thyristor controlled 

reactors 

Yuan et al. [40] designed the SVC supplementary controller whose parameters are 

designed based on the residue phase compensation method. The authors adopted the 

synthetic observability and controllability concept to choose the appropriate wide area 

input signals and for placing the SVCs, based on modal analysis, in the multi-machine 

power system. The analysis was performed on a 16 machine power system. Farsangi 

et al. [41], suggested the placement of the SVCs in a multi-machine based on the 

voltage stability utilizing the modal analysis and genetic algorithm. Here, the 

stabilizing signals for the SVCs are selected using the minimum singular values 

(MSV), the right-half plane zeros (RHP-zeros), the relative gain array (RGA), and the 

Hankel singular values (HSV).  Larsen [42] considered the locally measured 
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transmission line current magnitude as the input signal for the SVC for enhancing the 

damping based on the observability and controllability factors. Similarly line current 

was used by Zhao and Jiang [43], however, active power [44], [45], generator speed 

[46] were also used in the stability studies.  

2.2.2 Thyristor Controlled Series Capacitor (TCSC) 

TCSC, a series FACTS controller shown in Figure 2.3 [9], [12] consists of a fixed 

capacitor in parallel with thyristor controlled reactor, is used to change the equivalent 

series capacitive reactance of the line dynamically and thereby controlling the real 

power flow in the lines. In addition to this primary function, TCSC also provides 

damping in the power system when used along with a supplementary controller which 

helps in changing the firing angle, thus modulating the effective reactance of a TCSC.  

This variable series capacitive compensation by TCSC mitigates the low frequency 

oscillations. 

 

Figure 2.3: TCSC with a thyristor-controlled reactor in parallel with a series 

capacitor 

TCSC with a supplementary controller, utilized for damping  inter-area and local 

area oscillations [47]. A unified model of SMIB power system installed with a TCSC 

has been developed in [31]-[33]. Sidhartha Panda [48] developed a lead-lag and 

proportional–integral-derivative (PID) types of  TCSC based controllers. The 

parameters of these controllers are optimized using GA based optimal tuning 

algorithm for minimizations of integral-square-error (ISE) and integral of time-

multiplied absolute value of the error (ITAE). The effectiveness of the lead-lag and 
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PID structured TCSC controllers are analyzed at different loading conditions and 

under various disturbance conditions on a SMIB power system and further extended 

to 3-generator power system.  

Kalyan Kumar et al. [49] proposed to find a suitable location for TCSC for 

improving the damping of inter-area mode of oscillations in a multi-machine system. 

This was achieved by utilizing modal controllability index called line index which is 

computed by taking set of lines suitable for the TCSC placement (all lines in the 

system excluding transformer branches) and incorporating their line compensation in 

the differential algebraic equation model (dynamics of generators included). The 

feedback signal for the TCSC supplementary controller is taken to be the line real 

power of the transmission line on which the TCSC is placed. Lin and Lo [50] 

established a proportional-plus-derivative (PD) control scheme assisted with the use 

of genetic algorithms for a TCSC on the basis of the linear systems theory to support 

power system damping performance. The effectiveness of the proposed method is 

verified through computer simulation using a multi-machine power system associated 

with a single TCSC. But the authors do not consider the inherent nonlinear character 

of power systems. Fang et al. [51], proposed  the oscillation transient energy function 

(OTEF), to design a TCSC supplementary modulation controller to damp inter-area 

oscillations. Fuzzy-logic control and adaptive techniques are employed to develop the 

TCSC damping controller based on OTEF. The OTEF interprets an inter area mode 

oscillation as the conversion between oscillation kinetic energy and potential energy. 

The controller achieves oscillation suppression by continuously reducing the OTEF. 

The proposed controller was implemented on 4-generator 2-area interconnected 

power system.  

2.2.3 Thyristor Controlled Phase Shifter (TCPS) 

The TCPS transformer shown in Figure 2.4 [9], [12] is applied to control the power 

flow in multiple transmission lines by regulating the transmission angle. The phase 

shifting is obtained by injecting perpendicular variable voltage component in series 

with the line-to-neutral terminal voltage.  The damping controller modulates the phase 

angle to control power flow so as to provide damping to the oscillations. However, the 
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tap-changing transformer type phase shifter cannot generate or absorb reactive power 

and, together with high cost, this type of phase shifter has significant disadvantage in 

practical applications.  

A Phillips-Heffron model of an n, machine power system installed with a TCPS 

damping controller was established by Wang et al. [52]. The damping torque to the 

power system by the TCPS damping control is analyzed based on the linearized 

Phillips-Heffron model of the power system. The authors discussed the robustness of 

the TCPS damping controller in suppressing the multi-mode oscillations as well as the 

selection of the controller's location in a multi-machine system. In situations giving 

rise to multimode oscillations, the TCPS damping control provides some generators in 

the system with positive damping torque and negative damping torque to other 

generators. 

dcV

 

Figure 2.4: Schematic diagram of TCPS 

The TCPS damping control may in likelihood have a detrimental influence on 

other types of oscillation modes, when it is designed only for the suppression of one 

mode. Co-ordination with other types of controllers is a necessity when using with 

other controllers such as a PSS, in a multi-machine system. 
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2.2.4 Static Synchronous Compensator (STATCOM) 

A STATCOM shown in Figure 2.5 [9], 12] is the static counterpart of rotating 

synchronous condenser, but without inertia and limited overload capability. It 

generates a balanced three-phase voltage at the fundamental frequency with 

controllable amplitude and phase angle.  It is a shunt-connected controller used for 

voltage control and reactive power compensation. The converter can supply real 

power to the AC system from its DC energy source if the converter output voltage is 

made to lead the AC system voltage or absorb real power for the DC system if its 

voltage is lagging behind the AC system voltage. The main function of STATCOM is 

to regulate the transmission voltage, however it is insufficient to damp all the 

oscillations modes in the power system thus, entailing the supplementary oscillation 

damping controller along with the voltage controller. 

 

Figure 2.5: Schematic diagram of STATCOM 

STATCOM model incorporated into the Phillips-Heffron model of the power 

system along with its AC/DC voltage regulators controllers interaction has been 

studied by Wang [34]. A simple lead lag controller was proposed by Wang in [53], 

and a conventional PI controllers were used in [34]. Bamasak and Abido [54] 

employed the particle swarm optimization (PSO) algorithm to search for the optimal 

settings of stabilizer parameters based on the developed linearized model of a SMIB 

power system equipped with STATCOM-based stabilizer. The singular value 

decomposition (SVD) based controllability measure is used to identify the 

effectiveness of each controller input.  



26 

 

The power system oscillation damping via PSS and STATCOM-based stabilizer 

when applied individually and also through coordinated application was investigated 

in this paper. The eigenvalue analysis and nonlinear simulation results show the 

effectiveness and the robustness of the proposed stabilizer in enhancing system 

stability. Chun et al. [55] designed and evaluated the input signals for the 

STATCOM-based damping controller through controllability, observability and self-

interaction gain calculations. Root locus analysis was used to tune the controller gain.  

Mak et al. [56] presented the power frequency model for STATCOM with 

conventional controllers. He proposed the fuzzy logic controller to further enhance 

interconnected power system stability. Simulation tests are conducted on a four-

generator test system and results show significant improvement in dynamic behavior 

of the power system with fuzzy controllers. Gharaveisi [57] presented a novel 

technique, transient energy function for designing a fuzzy logic controller for 

STATCOM. The additional damping is provided by increasing the rate of dissipation 

of transient energy so that the system can reach the stable equilibrium point (SEP) 

promptly. Energy function and its derivative are given as inputs to the fuzzy logic 

based STATCOM supplementary controller and the system stability is evaluated by 

observing the rate of dissipation of the transient energy during post-fault period. 

Simulations are performed on a four-machine two-area system. Xiaorong et al. [58] 

designed control schemes for STATCOM based on wide-area measurements on 

reduced-order system model of a large power system. The parameters of the damping 

control loop are optimized via LQR approach in a multi-machine environment. 

2.2.5 Static Synchronous Series Compensator (SSSC) 

The SSSC shown in Figure 2.6 [9], [12] is a series compensator whose controllable 

output voltage is in quadrature with the line current for the purpose of increasing or 

decreasing the overall reactive voltage drop across the line and thereby controlling the 

electric power.  This controller is similar to the STATCOM except that it is connected 

in series with the AC system. Due to its ability to modulate the line impedance it can 

also impart enhanced damping to the power system oscillations.  
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Figure 2.6: Schematic diagram of SSSC 

Wang [35], investigated the damping function of the SSSC based on the linearized 

Phillips-Heffron model of the power system. The SSSC damping controller is 

designed based on the phase compensation method for a SMIB power system installed 

with SSSC. An objective function based search algorithm is suggested by the author 

for designing the controller for multi-machine power systems. The effectiveness of 

the SSSC damping controller to suppress power system oscillations and its design by 

the methods proposed for SMIB and multi-machine system was demonstrated in this 

paper. Pandey [59], presented optimal power oscillation damping (OPOD) controller 

design using Eigen-Value-Assignment (EAT) with a level of relative stability based 

on the linearized Phillips-Heffron model of power system installed with SSSC. A 

two-area power network has been used to demonstrate the capability of the proposed 

method over a wide range of variations in operating conditions.  Juan [60] developed 

a nonlinear and Multi-Input Multi-Output (MIMO) coordinated model of SSSC and 

the excitation system of generator, and linearized the nonlinear model by the direct 

feedback linearization method. The author applied the optimal control theory to 

design the coordinated nonlinear control scheme between SSSC and the excitation 

system of the generator to improve power oscillations damping in power system.  

Chen et al. [61] proposed a fuzzy controller to damp power system oscillations by 

means of series voltage source converter-based FACTS including SSSC. They have 

been designed devoid of consideration of the interaction between the power loop and 

DC-link voltage loop.  
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Ghaisari [62] considered the interactions between the variables and dynamics  of 

the DC-link capacitor voltage. The nonlinear and MIMO model for a SMIB power 

system employing SSSC is developed. A nonlinear MIMO feedback linearization 

controller was proposed and used to improve the power oscillations damping in SMIB 

while maintaining the DC side capacitor voltage constant.  

A fuzzy logic based controller for SSSC has been developed to improve transient 

stability performance of the power system in [63], [64] and for damping power system 

oscillations in [65]. Ladjavardi and Masoum [66] proposed Genetic Algorithm to 

optimize the selection of the SSSC based conventional lead-lag damping controller 

parameters. The objective function based on GA enforces simultaneous improvement 

of system stability criteria, i.e., damping factor, damping ratio of the eigenvalues, and 

constraints on the controller parameters.  The feedback signal for the damping 

controller was selected using mode observability. The analysis was conducted on the 

Phillips-Heffron model of SMIB installed with SSSC. The controller is effective, 

without deteriorating damping characteristics of other modes in a power system. 

Haque [67] used the transient energy function (TEF) method to determine the 

additional damping provided by a SSSC while satisfying the Lyapunov’s stability 

criterion.  The proposed control strategy is tested on a SMIB power system with an 

SSSC. Haque [68] also compared the additional damping provided by STATCOM 

and SSSC using the TEF method showing better performance of SSSC. However, use 

of the TEF technique to assess the additional damping provided by various FACTS 

devices in a multi-machine system especially on the inter-area modes still requires 

further investigation. Ghaisari [69], developed a multivariable model for a power 

system installed with a SSSC considering interactions between its variables and 

power system dynamics. The design of a MIMO PI controller using the diagonal 

dominance approach was proposed, in addition to DC-link voltage regulation, to 

sustain power oscillations.  

2.2.6 Unified Power Flow Controller (UPFC) 

The UPFC is one of the most versatile FACTS controller in a single line 

transmission system with all encompassing capabilities of voltage regulation, series 
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compensation and phase shifting. Its main function is to inject a controllable series 

voltage (controlled magnitude and phase angle with respect to the bus where it is 

located), thereby modulating the line reactance and controlling both the real and 

reactive power flow in the transmission line. The UPFC is realized by two VSCs 

coupled through a DC capacitor. One converter is connected in shunt with the line 

through a coupling transformer and draws real power from the source and exchanges 

it to the series converter, i.e., second converter, which is inserted in series with the 

transmission line through an interface transformer as shown in Figure 2.7 [9], [12]. 

The power balance between the shunt and series converters is maintained to keep the 

voltage across the DC link capacitor constant. The UPFC provides effective and 

efficient power flow control, loop-flow control, enhancement of transient stability, 

mitigation of low-frequency power system oscillations and voltage (reactive power) 

regulation. The UPFC is a combination of STATCOM and SSSC which are coupled 

via a common DC link. The UPFC is able to control the transmission line voltage, 

impedance and angle or alternatively the real and reactive power in a single line. 

 

Figure 2.7: Schematic diagram of UPFC 

Nabavi-Niaki and Iravani derived the mathematical models of UPFC [70], based 

on which the Phillips-Heffron model of power system installed with UPFC for an 

SMIB system and a multi-machine system was developed by Wang [36]-[38]. Wang 

applied phase compensation method for designing the conventional controller and 

proposed the criteria for selecting the operating condition of the power system and the 

input control signal to be superimposed by the UPFC damping function to achieve the 
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maximum robustness by the damping controller. It has been noted that the damping 

controller counteracts the negative interaction between the DC link capacitor of the 

UPFC and the PSS installed in the multi-machine system (three-machine system). 

Similar results were also presented in [71] and validated by eigenvalue computation 

and nonlinear simulation.  Huang et al. [72] attempted to design a conventional fixed-

parameter lead-lag controller for a UPFC installed in the tie-line of a two-area system 

to damp the inter-area oscillation mode. Tambey and Kothari have presented a 

comprehensive approach for design of UPFC controllers for a SMIB system [73] and 

for multi-machine system [74]. Pandey and Singh [75] presented analytical method 

for selection of the suitable control input signal among the four input signals of UPFC 

for power oscillation damping (POD) controller utilizing the indices MSV, HSV, 

direct component of torque (DCT) and residue, for damping of electromechanical 

modes of oscillation, using the UPFC POD controllers. The damping controllers are 

designed to produce an electrical torque in phase with the speed deviation. The 

analysis was performed on a SMIB with variations in loading conditions and was 

further carried over to two-area system. Eigenvalue analysis technique was used for 

analyzing oscillatory instability. Chang [76] presented an approach utilizing the root 

locus method and pole assignment to develop proportional-integral (PI) controller 

gains for the UPFC control system which included the power flow regulator, shunt 

current regulator, DC busbar voltage regulator, and AC busbar voltage regulator. The 

supplementary PI damping controller with integral of active power flow as its input 

was designed to improve the damping of low-frequency electromechanical mode 

oscillations.  

Abido et al. [77] proposed a technique to design simultaneously the UPFC 

damping controller, the power flow controller and the DC voltage regulator, using the 

nonlinear model of the power system. Optimization solved with PSO is utilized to 

design the controllers’ parameters settings concurrently. Dhurvey and Chandrakar 

[78] presented a power oscillation damping controller of the UPFC, whose parameters 

are optimized by using Nonlinear Control design Block set. The effective control 

signals for damping oscillations was analyzed by comparing the performance of 

UPFC in coordination with POD controller and PSS on the linearized SMIB power 

system installed with UPFC. Chandrakar et al. [79] presents a design of PI and RBFN 
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controllers for the UPFC in SMIB system and multi-machine test system to achieve 

the increase in line power handling capacity and improvement in transient stability. 

However, they have not optimized the parameters of POD controller.  A Mamdani 

type fuzzy logic based controller for UPFC was proposed in [80], [81], which was 

designed based on the  linearized Heffron-Philips model of a SMIB power system 

with UPFC. The fuzzy logic controller was shown to give better damping than the 

conventional damping controllers. Mok et al. [82], [83] designed a fuzzy damping 

controller for the UPFC where the parameters of the controller are optimized using 

the gradient descent training method and genetic algorithm. The performance of the 

fuzzy controller was compared with the conventional controller on a multi-machine 

interconnected system. A Takagi-Sugeno type nonlinear fuzzy controller was 

proposed by Mishra et al. [84] for UPFC voltage source inverter control for damping 

inter-area and local mode oscillations in the multi-machine power system. The 

controller provides variation of control gain and uses linear and nonlinear rules in the 

subsequent expressions of the fuzzy rule base. However, the initial adjustment of the 

parameters of the new TS fuzzy controller requires some trial-and-error.  

An approach to utilize FACTS controllers to provide a multifunctional power flow 

management device was proposed in [85]. There are several possibilities of operating 

configurations by combing two or more converter blocks with flexibility. Among 

them, there are two operating configurations, namely the Interline Power Flow 

Controller (IPFC) and the Generalized Unified Power Flow Controller (GUPFC) [15], 

[85] which are significantly extended to control power flows of multi-lines or a sub-

network rather than control power flow of single line. In this thesis the FACTS device 

IPFC is considered. 

2.3 Interline Power Flow Controller  

The IPFC, the VSC-based FACTS devices shown in Figure 1.1, was proposed by 

Gyugyi, Sen and Schauder in 1998 [15]. The IPFC configuration of the Convertible 

Static Compensator (CSC) was first installed at Marcy 345 kV transmission station by 

the New York Power Authority (NYPA) [86], [87]. The IPFC consists of two voltage 

source converters, each of which are coupled in series through transformers to each of 
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the parallel transmission lines. The modulation index and phase angle of the two 

voltage source converters can be controlled to inject variable injected voltage into the 

transmission lines and thus, control the power flow in the lines. The IPFC has more 

advantage than UPFC since it can control the real and reactive power in more than a 

single line. The IPFC is thus, used to maximize the use of the existing transmission 

network and increase power transfer capability.  

The controllability of the line power flow and reactive power flow in the 

transmission lines by IPFC, in the presence of  constraints, has been well recognized 

over the past few years  [88]-[95]. However, very limited information is reported 

concerning the control of the IPFC in providing additional damping during system 

oscillations.  

Modeling of IPFC for power flow analysis has been proposed in references [96]-

[99]. The authors present some excellent techniques for power flow modeling of IPFC 

using the Newton or Newton–Raphson power flow algorithm taking into account the 

practical operating inequality constraints. The IPFC is modeled as a two controllable 

series-injected voltage sources with the coupling transformer reactance while 

including the DC link capacitor dynamics.  

Kazemi and Karimi [100] first proposed the dynamic model of the SMIB system 

with two transmission lines installed with IPFC. The authors established the Phillips-

Heffron model of SMIB system integrated with IPFC. The model involves the 

dynamics of the capacitor.  A PI supplementary controller with its input equal to the 

electrical power of the generator is used to modulate the amplitude modulation ratio 

of the second voltage source converter. This control action controls the injected 

voltage in the transmission line in such a way to affect the power transfer such that 

damping is provided to the power oscillations. Jiang et al. [101] discussed the 

maximum power transfer capability of IPFC under voltage stability condition and also 

stated that the IPFC can improve small-signal stability by providing damping control 

supplemental to its regulation control of active power flow in a transmission line. A 

modal decomposition approach was proposed to determine input signals to the 

regulator from locally measured signals, including bus voltages, line currents, and line 

flows based on two indices, i.e., Maximum Damping Influence (MDI) Index, and 
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Controllability and Observability Gain Product Index. Chen et al. [102] proposed a 

PID controller for oscillation damping enhancement  in a SMIB test system.  

2.4 Discussion 

Considerable amount of research has been done in the field of FACTS, where steady-

state and dynamic models of the FACTS devices (SVC, TCSC, TCPS, STATCOM, 

SSSC and UPFC) have been developed [9], [11].  Modeling of the modified linearized 

Heffron-Phillips models for SMIB system and multi-machine systems installed with 

various FACTS devices were utilized to design the controllers for enhancing power 

system stability. Controllers designed using the conventional phase compensation and 

various other techniques have been discussed and validated by nonlinear simulation. 

However, very little literature exists with reference to IPFC, being a relatively new 

device; problems associated with damping of oscillations using IPFC have not been 

investigated thoroughly.  

Stability analysis of power systems with IPFC and design of the IPFC based 

controller for damping the oscillations require proper modeling of IPFC. This includes 

both load flow or steady state model and dynamic models. Load flow models are 

necessary as they form the backbone for any power system dynamic simulations. It is 

also considered as the essential for power system network calculations. The 

calculations are required for steady state analysis and dynamic performance of the 

power systems. Dynamic models are required to capture the interaction between the 

two series inverters of the IPFC and the system, therefore providing information that 

would aid in the design of the IPFC based controller. With a proper load flow and 

dynamic model for IPFC, the impact of IPFC based controllers on power system 

stability can be analyzed. The power flow model proposed by Zhang [97], [98] is 

taken into consideration for conducting the load flow studies in this thesis.  

The dynamic model of the IPFC with the SMIB power system was proposed in 

[100].  The injected voltage is shown to be a function of the control signals of IPFC. 

Accordingly the magnitude and phase angle of the voltage injected are controlled by 

modulating the control inputs signals of IPFC.  However the dynamic model of SMIB 
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installed with IPFC developed by the authors contains only one of the four control 

inputs of the IPFC. The state space model does not involve the effects of other inputs 

of the IPFC. Literature survey indicates lack of studies concerning the dynamic 

modelling of the IPFC in multi-machine system for small signal stability studies.  

Regarding the control aspect of IPFC to dampen the power system oscillations, a 

PI controller was considered in  [100] for a SMIB power system: however, the 

amount of damping introduced by the controller was not investigated through 

eigenvalue analysis. The modal decomposition method for designing the controller 

proposed in [101] was on a multi-machine power system, however, it was not 

equipped with IPFC. The PID controller proposed in [102] is not effective due to the 

complexity and nonlinearity of the power system and the performance of the damping 

controller is degraded to a certain extent as stated by the authors.  

Motivated by the discussions and literature review in the previous sections, the 

issues concerning the deficient modeling of IPFC for small signal stability studies are 

addressed.  Appropriate control strategies are devised to dampen the power system 

oscillations by the IPFC based controller. 

2.5 Summary  

In the literature survey, a brief review of modeling and control design of various 

FACTS devices has been conducted. Damping effects of PSS and FACTS controllers 

designed by phase compensation, and various other methods have been discussed. 

However, it is found that investigations into modeling of IPFC and damping function 

of IPFC are limited. Considering these aspects, this research focuses on developing 

the mathematical models of IPFC incorporated into the power system and studying its 

control functions. This would be discussed in the next chapter. 

 

 

 



 
 

 

 

 

CHAPTER 3 
 

MODELING OF INTERLINE POWER FLOW CONTROLLER  

3.1 Introduction   

The IPFC is installed in the power system to provide comprehensive compensation for 

real and reactive power flows for some selected transmission lines at a given 

substation. To examine the stability of the power system when the IPFC is 

incorporated into a network with transmission lines and generators, an appropriate 

model is necessary. This includes the steady state model and dynamic model of the 

IPFC. The steady state model is required to conduct the load flow to obtain initial 

operating conditions, which is essential for small signal stability studies, whilst the 

dynamic model of the IPFC is utilized to incorporate it within the power system 

model and investigate the dynamic stability  performance of the overall power system. 

This chapter presents both steady state and dynamic models of the IPFC. 

3.2 Steady State Model  

In general form, the IPFC constitutes of number of VSC’s where each one of them is 

linked together through their DC terminals. Each VSC provides compensation, for a 

dedicated line with which it is connected in series, as shown in the Figure 3.1 [15]. 

This configuration facilitates real power compensation from the under utilized 

transmission lines to the overloaded transmission lines provided that the overall 

power is balanced at the DC terminal. A basic IPFC scheme under consideration is 

shown in Figure 3.2 [97], which consists of two back-to-back DC-to-AC converters 

connected in series with two transmission lines through the transformers. Each VSC 

injects a series compensating voltage with controllable magnitude and phase angle at 

the fundamental frequency. The real power is exchanged through the DC link between 
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the two compensating voltage sources. The IPFC is installed into the network between 

the buses, � � �, and  � � � in line 1 and 2 respectively as shown in Figure 3.2.  

 

 

Figure 3.1: IPFC employing � converters 
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Figure 3.2: Basic two-converter IPFC 
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The two SVS’s with phasors 50/! and 50/" in series with transmission lines 1 and 

2 represent the output voltages of two back-to-back DC-to-AC inverters. It can be 

seen that the sending ends of the two transmission lines are series-connected with the 

IPFC buses �  and � , respectively. Transmission line 1 between buses �  and � , 

represented by impedance,  87!, has a sending-end bus with voltage phasor  5�  and a 

receiving-end bus with voltage phasor 51. The receiving-end voltage phasor of line 2 

between buses � and �, represented by impedance,  87" , is 5F. The common DC link 

is represented by a bidirectional link ()0/�1 � �)0/�F.   for real power exchange 

between the two voltage sources. The phasor diagram of the transmission line 1 given 

in Figure 3.3, shows the relationship between the sending end phasor ‘5�’, receiving 

end phasor ‘51’, the voltage phasor across  87! ‘567!’, and the inserted voltage phasor 

‘50/!’ with controllable magnitude and varying phase angle [12], [15]. 
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Figure 3.3: The phasor diagram for transmission line 1 

The transmission line 1 is arbitrarily chosen to be the primary line for which it is 

stipulated to have free controllability of both real and reactive line power flow. Line 2 

will be the secondary system. The injection of 50/! on line 1 usually results in an 

exchange of real power  )0/�1   and reactive power  �0/�1 between converter VSC-1 

and the line 1. To establish the transmission relationships, the injected voltage phasor 50/! is decomposed into two components, one 50/!�? in quadrature and second 50/!@? 
in phase with the line current [12]. The scalar products of these components with the 

line current give the reactive power �0/�1 � 50/!�?�!  and real power  )0/�1 � 50/!�?�!. 

The reactive power �0/�1  is generated internally by VSC-1, and provides series 

reactive compensation for line 1. The real power )0/�1 gives real power compensation.  
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However, the real power is attained from the second line through the series-

connected VSC-2. Therefore, to satisfy the active power demand of VSC-1, the 

converter in second line must supply the real power demanded by VSC-1 from line 2, 

through the common DC link. The VSC-2 injects the series voltage 50/"  so as to 

satisfy the real power demand of VSC-1. Thus, the relationship  )0/�1 G )0/�F � 0 

must be satisfied continuously, i.e., the sum of the exchange of real power within the 

lines should be zero when the converter circuit’s losses are ignored. This condition 

will be fulfilled by controlling VSC-2 to maintain the voltage of the common DC link 

constant, in the event of varying real power demand. Apparently it is clear that in the 

primary transmission line controllability of the real and reactive power flow is 

possible. While in the secondary transmission line, only the real power flow can be 

controlled within the limits defined by reactive compensation available, whereas the 

prevailing reactive power will be affected by the real power demand of the primary 

transmission line. Evidently one degree of freedom is taken from VSC-2.  Thus, the 

operation of VSC-2 is to regulate the DC link voltage by controlling the real 

component of the injected voltage phasor 50/"  and also to control the real power 

transfer in secondary transmission line by regulating the quadrature component of the 

injected voltage phasor. Thus, IPFC can control: two independent active and reactive 

power flows of branch  � � � and one independent active power flow of branch � � �. 

In this condition the primary transmission line will have priority over the secondary 

transmission line in achieving its set-point requirements. 

3.2.1 Load Flow Equations 

The power system network is represented by a set of nonlinear equations. To 

determine the steady state condition of the power system, power flow is performed to 

determine the complex voltages and angles at all buses of the network at steady state. 

From this information the active and reactive power flowing through every 

transmission line and transformer are computed. Thus, the power flow or the load 

flow studies establish the operating point or the equilibrium point of the power system 

about which the nonlinear differential equations are linearized. The nonlinear 

equations are linearized on the assumption that the disturbance propagated through 



39 

 

the study system is sufficiently small. The basic formulation for power flow is 

demonstrated through Figure 3.4 [14]. It is a one-line diagram representation of the 

branches ( mjk ,,,,1 LL= ) connected to bus i . The voltages iV  and jV  are the 

voltages of the buses  i  and j , jiZ  is the transmission line impedance between bus i

and j . The admittance is represented by 
jiji

ji

ji bg
Z

Y j+==
1

 and the voltage at bus  

i  can be represented as =iV )sin(cos iiii VeV i θθ
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Figure 3.4: Power balance at bus � for active and reactive power 

 Based on the Kirchhoff’s laws the real and reactive power flow equations for the 

transmission line element ji −   can be written as [14]: 
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     (3.1) 

Equation (3.1) represents the real and reactive powers (
j

iP  and 
j

iQ ) transmitted 

from bus i  to bus j  through the transmission element. The powers 
j

iP  and 
j

iQ  are 

functions of the bus voltages and network admittances.  



40 

 

The net power flow flowing out of the bus i  is the summation of the power flow 

in each one of the transmission elements connecting bus i  to the other buses               

( mjk ,,,,1 LL= ) or to the load. As a result the net active and reactive transmitted 

powers at bus i  are: 

∑

∑

=

=

=

=

m

k

k

ii

m

k

k

ii

QQ

PP

1

1
     (3.2) 

In power flow analysis at each bus, the generated power, load power and power 

exchanged through the transmission elements connecting to the bus must be zero. 

This is demonstrated in Figure 3.4 for active and reactive power flow [14].  The 

injected powers into the bus are taken to be positive and powers leaving the bus are 

taken to be negative. Thus: 
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Equations (3.3) are also termed as mismatch power equations. The terms 
iP∆  and 

iQ∆  are the mismatch active and reactive power at bus i , respectively. Each bus is 

described by four variables, net active power 
iP , net reactive power 

iQ , voltage 

magnitude 
iV ,  and voltage phase angle 

iθ . Two out of the four variables are specified 

in order to solve Equations (3.3) for each bus. The buses can be classified into the 

following categories: 

Slack bus: At a slack bus, the specified quantities are the voltage magnitude and 

angle whilst the unknown quantities are the active and reactive power injections. The 

voltage angle of the slack bus is taken as the reference for the angles of all other 

buses. There is only one slack bus as reference.  

PV Bus: At a PV bus, the specified quantities are the active power injection and 

voltage magnitude whilst the unknown quantities are voltage angle and reactive 
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power injection. Usually buses connected to generators and synchronous condensers 

are considered as PV buses. For a practical interconnected power system, there may 

be one or more PV buses. 

PQ Bus: At a PQ bus, the specified quantities are the active and reactive power 

injections while the unknown quantities are the voltage magnitude and angle at the 

bus. Usually a non-generator bus or load bus is considered as a PQ bus. The number 

of PV or PQ buses depends on the system planner. 

Various power flow solution methods have been proposed such as Gauss method, 

Gauss-Seidel method, decoupled Newton power flow method, Newton-Raphson 

methods and etc [14]. Among these methods, the Newton-Raphson method has been 

considered as the efficient power flow solution technique for solving large systems of 

nonlinear equations [14].  It is an iterative method starting with a reasonable guess for 

a solution, where the solution represents numerical values of the all the unknown 

variables. This algorithm verifies how near the solution is; if not, it updates the 

solution in a direction to improve it. This process is repeated until the verification is 

satisfied.  The following section briefly describes the Newton-Raphson load flow 

technique. 

3.2.2 Newton-Raphson Method 

The Newton-Raphson approach uses iterative method to solve the set of nonlinear 

algebraic equations [14]:  
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where F  represents a set of n  nonlinear equations and X  is a vector of n  unknown 

state variables. The method determines the vector of state variables X  by performing 

a Taylor series expansion of F(X)   about the initial estimate )( 0X  neglecting the 

higher order terms. 
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)X)(XJ(X)F(XF(X) (0)(0)(0) −+=   (3.5) 

where,  )J(X (0)  is the Jacobian matrix. It is a matrix of first-order partial derivatives 

of F(X) with respect to X  evaluated at  (0)XX = . The state vector X  is calculated 

from Equation (3.5) assuming that (1)X  is the value computed by the algorithm at 

iteration 1 and it is near to the initial estimate (0)X . Equation (3.5) can be expanded as 

follows: 
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In general, the above equation (3.6) can be expressed for the th
it iteration as: 

)X)(XJ(X)F(X)F(X )()()( 1)(11)( −−− −+= ititititit , L,2,1=i . (3.7) 

If )(itX  is assumed to be sufficiently close to the solution )(∗X , then 

0)()( =≈ ∗ )F(X)F(X it , henceforth Equation (3.7) becomes,  

01)(11 =−+ −−− )X)(XJ(X)F(X )()()( itititit  (3.8) 

and, solving for )(itX  from Equation (3.8) gives; 

))F(X(XJXX )()()( 1111)( −−−− −= itititit  (3.9) 

The iterative solution can be expressed as a function of the correction vector 

)1()()( −−=∆ itititX XX , where  

( ) ( ))1(11 −−−−=∆ it)it((it)
X XFXJ  (3.10) 
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The initial estimates are updated using; 

)()1()( ititit X∆+= −X∆X  (3.11) 

This process is repeated until the mismatches ∆X  are within a prescribed 

tolerance (i.e., 1210 − ). Thus, in the power flow problem, the state vector constitutes the 

unknown bus voltage phase angles ( ) ],,[ 2 nbθθ L=θ  and magnitudes 

],,[)( 1 nbVV L=V . The initial estimates ( ))0()0( V,θ  are updated using the following 

relation: 
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where, ∆P and ∆Q are the mismatch equations. The various matrices in Jacobian may 

consist of up to ( ) ( )11 −×− nbnb  elements of the form   

             
1,,1

1,,1

,

,

−=

−=













∂

∂
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∂

∂

∂
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θ

Q
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P

θ
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i

j

i

j

i

j

i

L

L
     (3.13) 

where nb is the number of buses. The slack bus entries are omitted in the Jacobian 

matrix. The rows and columns corresponding to reactive power and voltage 

magnitude for PV buses are omitted. When buses i  and j  are not directly linked by a 

transmission element, the corresponding ji −  entry in the Jacobian matrix is null. The 

power flow solution is started initially with a flat start, i.e., the voltage magnitudes are 

selected to be 1 p.u. at all PQ buses and voltage phase angles are set to be 0 at all 

buses. The calculation of Equation (3.12) is repeated until the mismatches are within a 



44 

 

prescribed small tolerance. The result gives the voltage magnitudes and phase angles 

at each bus and correspondingly the power flows in the transmission lines can be 

calculated.   

When the IPFC is incorporated into the system, the necessary modifications in 

power flow equations are carried out for the concerned IPFC buses to integrate the 

IPFC into power flow and obtain the solution when this FACTS device is present in 

the system. This is explained in the following section. 

3.2.3 The Power Flow Equations Including IPFC 

The equivalent circuit of the IPFC in steady state is shown in Figure 3.5 [97], [98] 

consisting of two voltage sources in series with the two transmission lines via the 

transformers and linked together by DC link. The IPFC is installed between buses 

� � �  and � � � . Each VSC injects a series voltage  psepsep VV θ∠=  ( )2,1=p  to 

provide series compensation to the respective transmission line. sepV  is the magnitude 

and pθ  is the phase angle of sepV ( )2,1=p  respectively. The transformer is 

represented by impedance tpZ , ( )2,1=p  on the two transmission lines.  The total 

impedance of the transmission line between bus � and bus � is represented by seijZ , 

where 11 tLseij ZZZ += ,  1LZ  being the line impedance of the line 1 of the IPFC 

branches. Similarly 22 tLseik ZZZ += , represents the total impedance of line 2 (i.e., 

between bus � and bus  �).  

iV
1seV

2seV

ijI

ikI

jV

kV

0=+ seikseij PP

jiji QP j+

ikseZ

kiki QP j+

jiI

kiI

ijseZ
1I

2I

ii QP j+

 

Figure 3.5: Equivalent circuit of IPFC 
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In Figure 3.5,  iii VV θ∠= , jjj VV θ∠= , and kkk VV θ∠=  are the voltages of the 

buses ji,  and k , respectively with 
lV  and 

lθ  being the magnitude and phase angle of 

lV  ),,( kjil = . 

iP , 
iQ  are the sum of the active and reactive power flows leaving the bus i . jiP , 

jiQ  are the active and reactive power flows of the IPFC branch leaving the bus j .  

kiP , 
kiQ  are the IPFC branch active and reactive power flows leaving the bus k . ijI  

and ikI  are the IPFC branch currents of branch � � � and � � �  leaving bus i . jiI  and 

kiI  are the IPFC branch currents of branch � � �  and � � �   leaving bus j  and k  

respectively.  ijI  is also represented by 
1I  to indicate the current flowing through the 

VSC-1 in transmission line 1 of the IPFC branches. Similarly, 2II ik = , the current 

flowing through VSC-2, in the second transmission line. ),(, kjnPsein = , is the active 

power exchange of each converter.  

The real power is exchanged between the series converters via the common DC 

link while the sum of real power exchange at the DC terminal should be balanced. 

The losses associated with the IPFC operation are ignored and, hence, it neither 

absorbs nor injects real power with respect to the system during steady-state 

operation. Thus, total real power injected to the power system by the two voltage 

sources is equal to zero at steady-state, 0=+ seikseij PP . Physical interpretation of this 

statement is that the voltage of the DC link capacitor remains constant at the pre-

specified value 
dcv . The Newton Raphson technique is used to solve the power system 

load flow to determine the unknown variables which now includes the IPFC variables, 

i.e., )2,1(, =pV psep θ . Buses �, � and � are considered to be load buses unless there 

are PV buses in the load flow analysis. The power flow equations at bus i  can be 

derived as follows [97]: 

The current flowing away from the bus i  is  

     ikiji III +=  (3.14) 
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where,  kjnbg
Z

Y inin

sein

sein ,,
1

=+== j  

The complex power at bus i  is: 

iiiii QPIVS j+== *
,  where, 

*

iI  is the complex conjugate of iI .  (3.16) 

Substituting iI  from (3.15) into the complex power Equation (3.16), and 

separating the real and imaginary parts, the power flows at bus �  
iP  and 

iQ  are 

obtained as follows: 

)� � 5�"��� � I 5�5�+���CDJ+:� � :�. G ���J��+:� � :�..                                           �K1,F    
� I 5�50/@L���CDJ+:� � :@. G ���J��+:� � :@.M�K1,F                                     +3.17. 

�� � �5�"��� � I 5�5�+���J��+:� � :�. � ���CDJ+:� � :�..�K1,F                  
� I 5�50/@L���J��+:� � :@. � ���CDJ+:� � :@.M�K1,F                                     +3.18. 

where   ��� � ∑ ����K1,F           ��� � ∑ ����K1,F      and  A � 1,2 

Similarly the active and reactive power flows of the IPFC branch � � � leaving 

bus  +� � �, �., are given as, 

kjn

IVQ

IVP

ninni

ninni

,

)Im(

)Re(

*

*

=








=

=

 (3.19) 
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which can be written as, 

)�� � 5�"��� � 5�5�+���CDJ+:� � :�. G ���J��+:� � :�.. 
  G5�50/@L���CDJ+:� � :@. G ���J��+:� � :@.M                             (3.20) 

��� � �5�"��� � 5�5�+���J��+:� � :�. � ���CDJ+:� � :�.. 
  G5�50/@L���J��+:� � :@. � ���CDJ+:� � :@.M                             (3.21) 

where       ��� � ��� � ReS1 8�0/��⁄ U,  ��� � ��� � ImS1 8�0/��⁄ U ,  � � �, �,   A � 1,2 

For the IPFC, the power mismatches at buses �, �, � should hold 

                                   ∆)9 � )Y9 � )79 � )9 � 0   (3.22) 

                                  ∆�9 � �Y9 � �79 � �9 � 0  (3.23) 

where, )Y9  , �Y9  +< � �, �, �. are the real and reactive power generation entering the 

bus  <  +< � �, �, �.  respectively. )79  ,  �79  +< � �, �, �.  are the real and reactive 

power load at bus <  respectively. )9  and �9  +< � �, �, �.  are the sum of real and 

reactive power flows of the lines connected to bus  <, respectively, which includes the 

IPFC branches flows. The power flow Equations (3.17-3.21) for the FACTS branches 

should be taken into account in the calculations of  )9   and  �9 . According to the 

operating principles of the IPFC, the operating constraint representing the active 

power exchange between the series converters via a common DC link assuming the 

converters are lossless is expressed by Equation (3.24) which also ensure the 

constancy of DC link capacitor voltage.  

                                          )� � I )0/�� � 0�K1,F                                                                +3.24. 
where  )0/�� +� � �, �. , in Equation (3.24) is the real power exchanged with the 

transmission lines by each series VSC’s,  )0/�1 � Re+5;0/!� �1�[ .  , is the real power 

exchanged by VSC-1 with transmission line � � �.  )0/�F � Re+5;0/"� �F� [ . is the real 

power exchanged by VSC-2 with transmission line � � � .  



48 

 

The sum of the exchanged real powers ‘)�’ should be zero as to ensure the real 

powers exchanged are balanced.  � ���[  is the conjugate of  � ��� , where +� � �, �. . 

Therefore, the equations for  )0/�� +� � �, �., are as follows: 

∗

∗

+−+=
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
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
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 −+
×=

=

)])([(Re{

Re

1

1

,

ininisensep

sein

isen

sepsein

bgVVVV

Z

VVV
VP

kjn

j

         2,1=p  

The real power exchanged )0/�� +� � �, �. can be written as:  

)0/�� � 50/@"  ��� � 50/@5�LCDJ+:@ � :�.��� G ��� J��+:@ � :�.M 
                     G50/@5�LCDJ+:@ � :�.��� G ��� J��+:@ � :�.M  A � 1,2      (3.25) 

The IPFC can control active power flow, jiP , and reactive power flow, jiQ , at the 

receiving end bus  �  to the reference set points Spec

jiP  and Spec

jiQ  in the primary line 1, 

and only the active power flow 
kiP  to the set point 

Spec

kiP  on the secondary line 2. 

Therefore, the control constraints of IPFC in the two lines are represented as follows: 

                           

0

0

=−

=−

Spec

jiji

Spec

jiji

QQ

PP

    (3.26) 

                           0=− Spec

kiki PP  (3.27) 

where  )1�\@/] and  �1�\@/]  are the specified active and reactive set points of the line 1 

and )F�\@/] is the specified active set point of the line 2 respectively.  
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Constraints of IPFC operation: 

The IPFC operation is subject to following constraints [11], [97], [98]: 

a) The controllable injected voltage’s magnitude and angle of each VSC  is 

constrained by:  50/@��� ^ 50/@ ^ 50/@�� , A � 1,2 

 �_ ^ :@ ^ _, A � 1,2 

where  50/@��� and 50/@��  are maximum and minimum voltage limits of the series 

converter. The phase angle of the injected voltage :@ can be controlled over a full 

revolution. 

 

b) The current flowing through each VSC should be within its current rating  ��� ^ ����� ,     � � �, � ,  

 where, �����  is the current rating of the series converter at which level it can 

operate continuously. 

 

c) The active power exchanged between the two VSCs via the DC link is 

constrained by �)0/���� ^ )0/�� ^ )0/����  ,      � � �, �, 

where, )0/����   is the maximum limit of the VSC equipment rating for active power 

exchange between the series converter and the DC link. 

 

Initialization of IPFC variables 

The initial values of IPFC variables, )2,1(, =pV psep θ , can be obtained from 

Equation (3.26) and  Equation (3.27), while setting bus voltages 5� � 51 � 5F � 1.0, 

if buses �, �, � are not voltage controlled buses and :� � :1 � :F � 0 [98].  

In the primary line 1, i.e., the � � � branch, the IPFC can control both real and 

reactive power flow, henceforth from Equation (3.26): 

0=− Spec

jiji PP  and 0=− Spec

jiji QQ  (3.28) 
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Substituting Equation (3.20) and Equation (3.21) for, � � �, in Equation (3.28) 

and setting :� � :1 � :F � 0 the following equations are obtained: 

51"�11 � 5�51��1 G 5150/!L��1CDJ:! � ��1J��:!M � )1�\@/] � 0    (3.29)                           

�51"�11 G 5�51��1 � 5150/!L��1J��:! G ��1CDJ:!M � �1�\@/] � 0 (3.30) 

The initial values of 
1seV and 1θ  are achieved by solving the above Equations 

(3.29-3.30): 

50/! � 151` 		L��1" G ��1" M                                                                      +3.31. 

:! � a2�b! c)1�\@/] � 51"�11 G 5�51��1�1�\@/] G 51"�11 � 5�51��1d � a2�b! e ��1���1f                              +3.32. 
where 		 is given by: 

		 � L)1�\@/] � 51"�11 G 5�51��1M" G L�1�\@/] G 51"�11 � 5�51��1M" 

For the secondary converter in the � � � branch, since it can control only the real 

power, only one equation (3.27) can be used to find the initial values of VSC-2. As 

such  50/" is set to a value in between 50/"��� and 50/"�� , and then the initial value of :" 

can be attained by solving (3.27), on substitution of :� � :1 � :F � 0, which will be: 

5F"�FF � 5�5F��F G 5F50/"+��FCDJ:" � ��FJ��:". � )F�\@/] � 0    (3.33) 

 

g  :" � J��b!
h
i)F�\@/] � 5F"�FF G 5�5F��F

5F50/"j+��F" G ��F" . k
l�a2�b! m ��F���Fn                              +3.34. 

This section describes the amendments in the power flow equations related to the 

IPFC buses and the initialization of IPFC variables to obtain the power flow solution. 

The Newton Raphson method is applied for these IPFC buses to obtain the IPFC 
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buses voltage magnitudes and angles along with the injected voltage magnitudes and 

angles of the two VSCs, which is explained in the following section. 

3.2.4 Newton-Raphson Method for IPFC Buses  

The power flow solution is obtained by the Newton-Raphson method for the IPFC 

buses. The iteration solution equation is expressed as: 

)(X)F(XJXX
)()()( 1

11

1

1

1

1

1

1

)(

1

−−−−
−=

itititit
  (3.35) 

where 1X  is the unknown state vector that includes the voltage phase angles and 

magnitudes of the IPFC buses and the independent control variables of IPFC, i.e., 

X! � p :� ,   5� , :1 ,   51,   :F , 5F, :!, 50/!, :", 50/" qr  (3.36) 

The unknown IPFC VSCs variables )2,1(,, =pV psep θ  are determined from the 

power flow Equations (3.20-3.21) of the lines in which the power flows are controlled 

to a set point or reference values. The active and reactive power flows  )1� and �1� on 

the IPFC branch  � � �, are maintained at their references,  )1�\@/] and  �1�\@/] by the 

series VSC-1. On the branch � � � only one, the active power flow can be controlled 

by the VSC-2, while the active power exchange between the series converter should 

be balanced. Also the active and reactive power balances at buses  �, �, �  should also 

be maintained. Taking all these into considerations, the mismatch vector can be 

written as 

1F � p∆)� ,  ∆��  ,  ∆)1   ,  ∆�1  ,  ∆)F  ,  ∆�F,   ∆)1�   ,  ∆�1�  , ∆)F�  , ∆)�    qr (3.37) 

where, 1F  refers to the mismatch vector of the active and reactive power flows of the  

IPFC buses and the power exchanged between the two VSCs. ∆)9  and ∆�9  for 

< � �, �, � is given by Equation (3.22) and Equation (3.23), while, 
Spec

jijiji PPP −=∆ ,  

Spec

jijiji QQQ −=∆ , 
Spec

kikiki PPP −=∆  and PEPE −=∆ . The Jacobian matrix for the 

IPFC branches is given by Equation (3.38).  
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 (3.38) 

The individual Jacobian terms are given in detail in Appendix A. The Newton 

Raphson algorithm formulation for the IPFC buses can be built into the existing 

power flow solution of the whole system. This algorithm updates all the variables 

simultaneously and achieves the solution through quadrature convergence. The 

following section describes the power flow solution of the complete power system 

with incorporation of IPFC.   

3.2.5 Power Flow Solution of Power System Including IPFC 

In a power system consisting of  ��  buses when an IPFC consisting of  %  VSCs is 

placed, the number of load flow equations will increase by 2M [97], [98]. As such for 

a simple IPFC consisting of two VSCs, when included in the system, the number of 

load flow equations increases by 4.  
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The compact form of Newton power flow equation for the power system including the 

IPFC is as follows: 

)X(F)X(J )()( 111)( −−−−=∆ ititit
X  (3.39) 

where, it  represents the number of iterations and  

TR]Q,P,[)X(F ∆∆∆=  (3.40) 

],,,[ 21 nbPPP ∆∆∆=∆ LP  and ],,,[ 21 nbQQQ ∆∆∆=∆ LQ are the mismatch 

equations of the active and reactive power flows at each bus. 

],,,[ PEQPP jikiji ∆∆∆∆=∆R , represents the mismatch line flows and real power 

exchanged among the IPFC branches.  

T],[ IPFCXXX = ,   (3.41) 

V][θX ,= , ],V,[θX IPFCIPFCIPFC = ],[ 21 θθ=IPFCθ , ],[ 21 sese VV=IPFCV  
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The Jacobian parameters in Equation (3.42), 
IPFCθ

P

∂

∂
 , ,

IPFCV

P

∂

∂
 ,

IPFCθ

Q

∂

∂
 ,

IPFCV

Q

∂

∂
 

,
θ

R

∂

∂
 ,

V

R

∂

∂
 ,

IPFCθ

R

∂

∂
 

IPFCV

R

∂

∂
 with respect to IPFC branches are computed in reference 

to Equation (3.38). The Newton Raphson load flow implementation of the power 

system incorporated with IPFC is summarized in the following steps: 

Step 1: The power system data is specified, which includes the generated 

power by the generators, transmission lines data, transformer impedances, load power, 

IPFC series transformer impedances.  
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Step 2:  The active and reactive power flows (
Spec

ki

Spec

ji PP ,  and 
Spec

jiQ ) on the 

transmission lines in between the IPFC buses are specified. 

Step 3: The admittance matrix is formed which also includes the IPFC 

transformer impedances. 

Step 4:  The initial values of the bus voltages are set to the value 1 and angles 

to zero. The initial values of the injected voltage magnitude and angles are set to the 

computed values from Equations (3.31), (3.32) and (3.34). Set the iteration count to 1. 

Step 5: Compute the power flows at all the buses using Equation (3.2). The 

power flows of the IPFC branches are modified by Equations (3.17-3.18) and 

Equations (3.20-3.21). The power exchanged between the VSCs of the IPFC is 

calculated by Equation (3.24).  

Step 6: Compute the mismatches at each bus and the mismatches of the power 

flows in the IPFC connected buses as given in Equation (3.40). 

Step 7: If the mismatch is less than the tolerance value then go to step 12 or 

else go to step 8. 

Step 8:  Form the conventional Jacobian matrix parameters as in Equation 

(3.13). The Jacobian matrix parameters are modified and updated to include the IPFC 

parameters according to Equation (3.42). 

Step 9:  The IPFC injected voltage magnitudes and angles are updated 

simultaneously with the bus voltage magnitudes and angles. 

Step 10: Check whether all constraints are satisfied. If the constraints are 

violated set the parameters at the limited values.  

Step 11: Increase the iteration count. Go to step 5. 

Step 12: The load flow is converged. Calculate the bus power flows with the 

final results of voltage magnitudes and angles.  
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Thus, the Newton-Raphson load flow is developed accommodating the IPFC 

controller configuration. The flow chart for the power flow solution for the power 

system is given in Figure 3.6. The load flow program is developed in Matlab.  

The load flow provides the unknown voltages, angles of the buses, the injected 

voltage magnitudes and angles of the IPFC VSCs, and the line power flows of the 

power system network at steady state. These values will be used to compute the initial 

conditions to linearize the power system dynamic equations around this operating 

point. The linearized system will be utilized for modal analysis and control design. 

The following section establishes the dynamic equations of IPFC. 
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Figure 3.6: Flowchart of the power flow solution.  



57 

 

3.3 Dynamic Model of IPFC 

The steady state model developed in Section 3.2 provides the basic foundation for 

conducting the dynamic stability studies. The dynamic model of IPFC includes the 

DC link capacitor dynamics and the converter control variables. The IPFC structure is 

shown in Figure 3.7. It consists of two, three-phase, gate turn-off (GTO) based VSCs, 

each injecting a synchronous voltage with controllable magnitude and angle. The 

VSCs are linked together at their DC terminals and are connected to the transmission 

lines through their series coupling transformers in line 1 and line 2.  

1I

2I

1tseV

2tseV

1θ
2θ2m 1m

dcC

1tZ

2tZ

 

Figure 3.7: Structure of IPFC 

1I and 
2I  are the currents flowing through the line 1 and 2, respectively in        

Figure 3.7. The voltages injected by the VSCs are represented by  2,1, =pVsep  in this 

model. In the Figure 3.7, 2,1, =pVsetp  is the equivalent voltage across the coupling 

transformer impedance )2,1(, =pZ tp  and injected voltage ,2,1, =pVsep                       

( ztpsepsetp VVV += , and )2,1(, == pIZV ptpZtp ). In Figure 3.7, 21 , mm  and 21, θθ  refer 

to amplitude modulation indices and phase angles constituting the control signals for 

the VSCs of the IPFC.  The modulation index and the phase angle of the series 

inverters along with the DC link capacitor dynamics are included in developing the 

model for power system stability studies. IPFC primary function is to control the 

power flow in multi-transmission lines which is accomplished by the injected voltages 
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with varying magnitude and angle. The control of the injected voltage is obtained by 

the control signals of the IPFC. 

The detailed three-phase GTO based VSCs and DC link capacitor diagram is 

shown in Figure 3.8 [70]. The general Pulse-Width-Modulation (PWM) is adopted for 

the GTO based VSC. ),,(,1 cbauV use =  is the injected voltage by the VSC-1 in phase 

u , ),,( cbau = , and ),,(,1 cbauV uset =  is the combined voltage across the transformer 

impedance and VSC-1 in line 1. ),,(,2 cbauV use =  is the injected voltage by the VSC-

2 in each phase ),,( cbau =  and ),,(,2 cbauV uset =  is the combined voltage across the 

transformer impedance and VSC-2 in line 2.   

In Figure 3.8, ),,(,, 21 cbauii uu =  are the currents flowing in each phase in line 1 

and 2 respectively. 
dci  is the current flowing through the capacitor. 

dcv  is the voltage 

across the DC capacitor 
dcC . )( 21 rr  and )( 21 ll  are the per phase resistance and 

inductance of transformer on line 1 (line 2). To model the IPFC, phase ‘a’ of the 

coupling transformer and  VSC-1 arms along with the DC link is considered, as 

shown in Figure 3.9.  aC1ς  and aC1ς ′  represent the switches which can be either on or 

off  respectively in Figure 3.9.  sr   is the switch on-state resistance. )(, 11 aCaC SS ′ is 

defined as the switching function of the switch )(, 11 aCaC ςς ′ . )( 11 aCaC SS ′  can either be 

0 or 1 corresponding to the off or on states of the switch respectively [70].  

1rasetV 1
1l

dci1 dci2

dcC
dcv

dci

ai1bsetV 1

bi1csetV 1

ci1

2r asetV 22l

ai2 bsetV 2

bi2 csetV 2

ci2

Line 2Line 1

VSC-1 VSC-2

aseV 1

bseV 1

cseV 1

aseV 2

bseV 2

cseV 2

 

Figure 3.8: Detailed three phase diagram of IPFC 
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Figure 3.9: a) Equivalent circuit of phase ‘a’ of coupling transformer and VSC 1,           

b) Dynamics of DC link capacitor 

Based on the principle of VSC, 
aCS 1

 and 
aCS 1

′  are always complimentary, i.e.,  

111 =′+ aCaC SS  (3.43) 

From Figure 3.9(a), 
aseV 1
 can be written as: 

HnFHase vvV +=1
 (3.44) 

When 
aC1ς  is on 11 =aCS  and 01 =′

aCS , then 
aCdcsaFH Svriv 11 )( += , and when 

aC1ς  

is off, 01 =aCS  and 11 =′
aCS , 

aCsaFH Sriv 11 )( ′= . Thus, FHv  can be written as: 

aCdcsa

aCsaaCdcsa

aCsaaCdcsaFH

Svri

SriSvri

SriSvriv

11

1111

1111

)1)(()(

)()(

+=

−++=

′++=

 (3.45) 

The behavior of the circuit in Figure 3.9(a) can be written as: 

aseaseta

a VVir
dt

di
l 1111

1
1 −=+  (3.46) 

Substituting Equation (3.45) in Equation (3.44) and then for 
aseV 1
 into Equation (3.46) 

gives: 

)( 11111

1

1 HnaCdcsaaseta

a vSvriVir
dt

di
l ++−=+  (3.47) 
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asetHnaCdca

a VvSviR
dt

di
l 1111

1

1 +−−−=⇒  

where, )( 11 srrR += . Similarly for the other two phases ‘�’ and ‘C’; 

bsetHnbCdcb

b VvSviR
dt

di
l 1111

1
1 +−−−=  (3.48) 

csetHncCdcc

c VvSviR
dt

di
l 1111

1
1 +−−−=  (3.49) 

The voltage 
Hnv  can be obtained by adding the equations of the three phases 

Equations (3.47-3.49) and using ,0111 =++ cba iii and ,0111 =++ csetbsetaset VVV  is 

given by: 

∑
=

−=
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Hn S
v

v
,,

1
3

 (3.50) 

The switching function 
uCS 1

 can be expressed in terms of the control signals as 

follows [70]:   
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Substituting (3.51) into (3.50) gives: 

2

dc

Hn

v
v −=  (3.52) 

The mathematical model governing the behavior of phase ‘2 ’ is obtained by 

substituting the first equation in Equation (3.51) and Equation (3.52) into Equation 

(3.47) to give: 
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a

a V
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11 1
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++−−=⇒ θω  (3.53) 

In matrix form the three phase differential equations of the VSC-1 of the IPFC can 

be written as follows: 
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        (3.54) 

The mathematical model is similarly derived for VSC-2 in line 2 and is given as: 
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where, )( 22 srrR += .   

 

 



62 

 

The dynamics of the DC link capacitor from Figure 3.9(b) is given by: 

dc

dc

dc i
Cdt

dv 1
=  (3.56) 

where, 
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On substituting the switching functions in terms of the control signals Equation (3.56) 

can be written as:  
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Equations (3.54), (3.55) and (3.57) are three-phase time-varying differential 

equations. These equations are converted to time-invariant differential equations using 

the Park’s transformation. Park’s transformation converts the variables from three 

axes reference frame (2, �, C), to new quantities on the ��D rotating reference frame, 

where one is along the direct axis of the rotor field winding, called the direct axis, and 

second along the neutral axis of the field winding called the quadrature axis which is 

090  apart from the direct axis, and the third is on a stationary axis [17], [103].  

The electrical variables in the 2�C reference frame are transformed into a rotating 

synchronous rotating ��D  reference (or the rotor axis reference frame) using the 

Park’s transformation as: 

abcdq XTX =0  (3.58) 

where, [ ]T

dccbacbaabc viiiiiiX ,,,,,, 222111= , 

 
[ ]T

dcqdqddq viiiiiiX ,,,,,, 202210110=
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Equations (3.54), (3.55) and (3.57) are transformed in ��D axes reference frame 

and are given in one matrix as follows:  
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From Equation (3.60) the dynamics of d-axis component of the current in line 1 is 

given by: 

dset
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d V
ll
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dt
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11 1
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For the study of power system oscillation stability, the resistance and transients of 

the transformers and VSCs of the IPFC are neglected, i.e., 
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1 =====
dt
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qdqd . The above equation can be written as: 
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where, 11 lxt ω=  

Similarly the qd −  components of  )2,1(, =pVsetp , of the two VSCs can be 

derived from Equation (3.60) as follows: 
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where 
11 lx t ω= , 

22 lxt ω=  are the reactances of the series transformers. The DC link 

dynamics in qd −  axes is: 
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The Equations (3.65-3.67) give the voltages and the DC link dynamics on qd −

axis reference frame. The equivalent voltages can be written as: 

111

1112
1

11

111

)sin(cos

set

dct

qsetdsetset

VIx

mvIx

VVV

+=

++=

+=

j

jj

j

θθ
               (3.68) 
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j

θθ                         (3.69) 

where, qd iiI 111 j+= , qd iiI 222 j+=  (3.70) 

In Equations (3.68) and (3.69) 11Ixtj  and 22Ixtj  are the voltage drops across the 

VSCs transformer reactance. 1seV   and 2seV  are the actual values of the voltages 

injected by the VSCs and are function of the IPFC control parameters, i.e., 

modulations indices ),( 21 mm  and phase angles ),( 21 θθ . From Equations (3.68) and 

(3.69) 1seV  and 2seV  can be written as: 
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 (3.71) 

where  
2

1

1

mv
V dc

se =  and 
2

2

2

mv
V dc

se =  (3.72) 

Equations (3.65-3.67) constitute the dynamic model of the IPFC which will be 

utilized to incorporate the IPFC model into the power system dynamic model, 

together developing the dynamic model of the power system installed with IPFC, 

which is used for power system stability analysis.  
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The following section demonstrates the application of the steady state model and 

dynamic model of IPFC developed in Section 3.2 and Section 3.3 by taking a three 

bus system incorporated with IPFC. The steady state model of the power system 

installed with IPFC will be used to perform the load flow. The load flow results give 

the steady state operating point of the system along with the VSCs injected voltage 

magnitudes and angles, which will be used to determine the initial values of IPFC 

control parameters from the dynamic model.   

3.4 Results 

Consider a three bus power system consisting of two transmission lines with IPFC 

incorporated as shown in Figure 3.10. The three buses are represented with notation 

as ji,  and k . Bus i  is taken as the slack bus, while bus j  and k  are taken as the )� 

buses. The loads LjLj QP j+  and 
LkLk QP j+  are connected to bus j  and k  

respectively. The two VSCs of IPFC are in between buses � � �  and � � �  

respectively. The system data is given in Table 3.1 and all the values are given in p.u. 

The transmission lines are modeled by equivalent π  model. For performing the load 

flow, the bus � is taken as the slack bus where the voltage is taken as:  5� � 1.04 p.u. 

Bus � and � are considered as the load buses where the loads values are given in Table 

3.1. The IPFC variables have been initialized, accordingly computed from the 

Equations (3.31-3.32) and (3.34).   

iiV θ∠
11 θ∠seV

0=+ seikseij PP

jiji QP j+

ikseZ
kiP

ijseZ

ii QP j+

LjLj QP j+

LkLk QP j+

jjV θ∠

kkV θ∠

22 θ∠seV

 

Figure 3.10: Three  bus system with IPFC 
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Table  3.1: Three bus system data 

Transmission 

line data 
Resistance Reactance 2/CB  

� � � 0.02 0.04 0.02 � � � 0.01 0.025 0.025 

Loads Bus MW +)7. MVAR (�7. 
1  � 0.5 0.1 

2  � 0.5 0.1 

VSC transformer  Resistance  Reactance 

VSC-1 0 0.015 

VSC-2 0 0.015 

IPFC DC capacitor parameters  

dcv  = 225 KV= 2 p.u  
dcC = 100 tu = 0.2 p.u 

 

In the system the power flows from bus  �  to the other two buses  �  and  �, which 

absorb power and this direction of the power flow is taken positive. The power flow 

on line � � � and on line � � � is set to 0.5 p.u. )5.0,5.0( −=−= Spec

ki

Spec

ji PP  and the set 

point of reactive power on line  � � �, is specified to 0.08 p.u., )08.0( −=Spec

jiQ . The 

negative sign indicates the direction of power flow in the lines from bus  � , � to bus �. 
The load flow is performed on the system and the results are given in Table 3.2. From 

Table 3.2 the injected voltages are
0

1 7854.710932.0 ∠=seV  and

0

2 5248.1120184.0 −∠=seV . Using Equations (3.71) and (3.72) the initial values of 

control parameters of IPFC are calculated. The results are given in Table 3.3. The 

initial values given in Table 3.3 are utilized for small signal stability studies and time 

domain simulations of the power system incorporating IPFC. 

Table  3.2: Load flow results of three bus system 

Buses 
Voltages 

magnitudes in p.u. 

Voltages angles in 

degrees 

Real and reactive 

powers in p.u. 

1 1.0400 0 1.0075 + j0.1663 

2 1.0000 -6.4692 -0.5000 - j0.1000 

3 1.0394 -0.0835 -0.5000 - j0.1000 

Injected voltage Magnitude in p.u. Angle in degrees 

VSC-1  1seV  0.0932 71.7854 

VSC-2  2seV  0.0184 -112.5248 

The power flows in the IPFC branches 

jiP = - 0.5 p.u. kiP = - 0.5 p.u. jiQ = - 0.08 p.u. 
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Table  3.3: Initial values of the control parameters of IPFC 

1m  0.0932 

2m  0.0184 

1θ  71.7854 

2θ  -112.5248 

3.5 Summary  

In this chapter the steady state model of an IPFC is presented. The corresponding 

power flow equations relating to the integration of the IPFC model into load flow 

studies has been described. The flowchart for power flow solution of the power 

system with IPFC based on Newton Raphson method is presented. The solution 

provides the operating point of the power system from which necessary initial 

conditions are computed for conducting small signal studies and dynamic simulations. 

The dynamic model of the IPFC in � � � axis form is established which will be used 

to develop the integrated power system model added with IPFC. This power system 

model is utilized for conducting power system analysis and time domain simulations 

to investigate the dynamic performance of the power system in the presence of, the 

FACTS device, IPFC. The following chapter presents the incorporation of IPFC 

dynamic model into the SMIB power system model. 



 

 

 

CHAPTER 4 
 

SINGLE MACHINE INFINITE BUS SYSTEM WITH IPFC 

4.1 Introduction  

To understand the dynamic behavior of an electric power system and to design a 

controller to improve its performance, it is essential to model the power system. The 

mathematical model of the power system, consisting of the nonlinear differential-

algebraic equations of various system components, is developed using the system 

structure and fundamental physical laws governing the power system elements. A 

proper and adequate power system model for power system dynamic studies must be 

chosen to include all significant components, which can reflect the characteristic 

phenomena of the dynamic behavior.  

To study the power system stability, the modeling of various power system 

components is required, consisting of generators, their control systems including 

excitation control, automatic voltage regulators, and the transmission system 

components. The dynamic behavior of the individual components is described by 

differential algebraic equations. For small signal stability analysis, the equations 

characterizing the overall power system are linearized around equilibrium point. The 

small signal stability technique includes load flow computation, state matrix 

representation and eigenvalue analysis or modal analysis, based on the linearized 

models of the system dynamics, for studying the power system stability. The power 

system stability analysis is also investigated by nonlinear simulation of the dynamic 

model of the power system.  

This chapter presents the dynamic model of the Single Machine Infinite Bus 

(SMIB) power system incorporated with IPFC. The nonlinear model of the system is 

linearized to develop the Phillips-Heffron model of SMIB including IPFC model. The 

IPFC based damping controller is designed based on the linearized model. 
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Consequently the power system is analyzed for the oscillation stability. The 

performance of the controllers is demonstrated by nonlinear simulation studies. 

4.2 Dynamic Model of SMIB Power System With IPFC 

A dynamic model for IPFC for stability analysis is developed in section 3.3. The 

complete power system dynamic model in the presence of IPFC is developed by 

incorporating it with the models for generator, exciter, etc. in order to form the state 

equations and to analyze the dynamic stability. The SMIB power system equipped 

with an IPFC is shown in Figure 4.1. 

1I

tV

tx

tI
2I

1V

bV

1seV

2seV

2tx

1tx

1θ
2θ2m 1m

dcC

δ∠′qE

ee QP , 11 , flowflow QP

2flowP

 

Figure 4.1: SMIB installed with IPFC 

Figure 4.1 shows the power system consisting of a generator which is connected 

to the infinite bus via parallel transmission lines. There is no load at the generator bus. 

An elementary IPFC consisting of two three-phase GTO based VSCs is installed on 

the two transmission lines. Each VSC compensates a different transmission line by 

series voltage injection.  
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4.2.1 The Nonlinear Dynamic Model of SMIB Power System With IPFC 

The nonlinear dynamic model of the SMIB power system with IPFC is developed as 

follows:  

The synchronous machine in the system is represented by the third order model [2], 

[104], [105]: 

)1(0 −= ωωδ&   (4.1) 

M

PPP Dem −−
=ω&  (4.2) 

do

fdq

q
T

EE
E

′

+−
=′

)(
&  (4.3) 

The exciter of the machine is represented by: 

A

trefAfd

fd
T

VVKE
E

)( −+−
=&  (4.4) 

The DC voltage dynamics linking the VSCs of the IPFC is given by: 

)sincos(
4

3
)sincos(

4

3
2222

2
1111

1 θθθθ qd

dc

qd

dc

dc ii
C

m
ii

C

m
v +++=&  (4.5) 

where the auxiliary equations are given as: 

qtqtdtdte IVIVP += , 
 

)()()( 21 ddddqdtddqq iixxEIxxEE +′−+′=′−+′=  

)( 21 dddqdtdqqt iixEIxEV +′−′=′−′= , )( 21 qqqqtqdt iixIxV +==  

( ) 2
1

22

qtdtt VVV += ,   

qtdtt III j+= , 
21 III t += , qdqd iiIiiI 222111 , jj +=+=

 

qdqdt iiiiI 2211 jj +++= , 
dddt iiI 21 += , qqqt iiI 21 +=  
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From Figure 4.1, 

1VIxV ttt += j             (4.6) 

bsetL VVIxIxV ++++= 111111 jj  

     bsetL VVIxIx ++++= 22222 jj             (4.7) 

where 
1Lx , 

2Lx  are the transmission line reactances, the resistances of the 

transmission lines are neglected, bV  is the infinite bus voltage. Equations (4.6) and 

(4.7) represent the network equations of the power system. These equations are in 

synchronously rotating frame denoted by D and Q axes which have to be transformed 

to the synchronous machine rotor axis frame denoted by � � � axes [17], [103]. 

4.2.2 Relationship Between Machine And Synchronous Frame of Reference  

The synchronous machine stator and network variables should be transformed to a 

reference frame that converts balanced three phase sinusoidal variations into constants 

which is accomplished by the Park’s transformation of Equation (3.30). The 

synchronous rotating frame is transformed into machine reference frame by the 

following transformation [17], [103]: 

dqoabcDQO

dqoabcDQO

IPPPII

VPPPVV

1

1

−

−

==

==
 (4.8) 

where  P  is the Park’s transformation matrix and V and I  represents the voltage and 

current variables. The synchronous frame of reference denoted by D and Q axes, are 

orthogonal in nature as shown in Figure 4.2 [17]. The � and � axes of the machine are 

also shown in the figure. The angle between D and q axes is δ  and the angle between 

D and �  axes is δ
π

−
2

. The currents in the two reference frames are related by: 


















−
=









q

d

Q

D

I

I

I

I

δδ

δδ

sincos

cossin
 (4.9) 
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I

δ

 

Figure 4.2: Relationship between machine and synchronous frame of reference. 

This transformation gives, ( ) ( ) )2( πδ −+=+ j
eIIII qdQD jj . Similarly for voltage 

( ) ( ) )2( πδ −+=+ j

qdQD eVVVV jj . Using these relations the network variables are 

converted to the � � � reference frame. 

4.2.3 Transforming the Network Equations in v � w Axes Frame 

The network Equations (4.6-4.7) are transformed to � � � axes frame as follows: 

bLtsettQtDt

bLsettt

ttt

VIxxVIxVV

VIxVIx

VIxV

++++=+⇒

+++=

+=

2222

222

1

)(jjj

jj

j

 (4.10) 

DtV  and QtV  are on the 
 � � axes frame. Multiplying by 
)2( δπ −j

e  will transform the 

above 
 � � axes frame of equations to � � � axes reference frame as follows: 

( ) ( ) )2()2(
2212 )(

δπδπ −− ++++=+ jj
eVIxxVIxeVV bLtsettQtDt jjj  (4.11) 

Left Hand Side of Equation (4.11) gives:  

( ) )(
)2(

dtdqqtqqtdtQtDt IxEIxVVeVV
j ′−′+=+=+ − jjj δπ

 (4.12) 

where 
)2(

,
)2( δπδπ −− == jj

eVVeVV QtqtDtdt  
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Right Hand Side of Equation (4.11) gives: 

δδ cossin

))(()( 221222
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qdtLqsedseqtdtt
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iixxVVIIjx

j

jjjj
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++++++
     (4.13) 

where  
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qdQD iiIeIIeI
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Equation (4.11) becomes 
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222121

2121

bbqdtL

qsedseqqddt
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 (4.15) 

Equation (4.7) in � � � axes reference frame will be  

qsedseqdtL

qsedseqdtL

VViixx

VViixx

222222

111111

))((

))((

jjj

jjj

++++

=++++
 (4.16) 

Solving Equations (4.15-4.16): 

δθδ
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cos)cos(
2
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)cos()(
2

1

112112

221112111
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dcddqdd

Vxmvx
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75 

 

δθδ

θδ
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211122
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mvxxExi

−−−

−−+′=
        (4.18) 
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111112
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Vxmvx
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1

)sin()(
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1

211122

2222212

bqdcq

dcqqq

Vxmvx

mvxxi

+−−
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       (4.20) 

where 

12121211 /)(,/ ΣΣ +′== xxxxxxx tLdtdtLd , 
1221121 /,/ ΣΣ

′−== xxxxxx dtdtLd
 

22122211 /)(,/ ΣΣ +′−== xxxxxxx tLqtqtLq , 2222121 /,/ ΣΣ
′−== xxxxxx qtdtLq  

tddtLttL xxxxxx +′=′+= ,222  , tqqtLttL xxxxxx +=′+= ,111  

))(().( 1221 tLtLdttLdt xxxxxx +′+′=Σ , ))(().( 1222 tLtLqttLqt xxxxxx +′+′=Σ  

Equations (4.1-4.5) supported by Equations (4.17-4.20) mainly constitute the 

nonlinear model of SMIB embedded with IPFC.  

4.3 Linearized Model of Power System 

The extended linearized Phillips-Heffron model of SMIB system incorporating IPFC 

is obtained by linearizing the nonlinear model Equations (4.1-4.5) which are obtained 

as follows: 

ωωδ ∆=∆ o
&

 (4.21) 

MDPP em /)( ωω ∆−∆−∆=∆ &   (4.22) 
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 dofdqq TEEE ′∆+∆−=′∆ /)(&  (4.23) 

AtrefAfdfd TVVKEE /))(( ∆−∆+∆−=∆ &  (4.24) 

22221111987 θθδ θθ ∆+∆+∆+∆+∆−′∆+∆=∆ ccmccmdcqdc KmKKmKvKEKKv&     

          (4.25) 

where 

2222111121 θθδ θθ ∆+∆+∆+∆+∆+′∆+∆=∆ ppmppmdcpvqe KmKKmKvKEKKP            

 (4.26) 

2222111134 θθδ θθ ∆+∆+∆+∆+∆+′∆+∆=∆ qqmqqmdcqvqq KmKKmKvKEKKE             

 (4.27)  

2222111165 θθδ θθ ∆+∆+∆+∆+∆+′∆+∆=∆ vvmvvmdcvvqt KmKKmKvKEKKV               

 (4.28) 

The model has 28 K-constants which are functions of system parameters and the 

initial operating condition. The initial operating point is computed from the steady 

state load flow solution. The detailed derivation of the constants is given in the 

Appendix B. 

4.4 State Space Model 

The power system is represented in state space as: 

UBXAX ∆+∆=∆ &
 (4.29) 

where the state and control vectors are: 

T

dcfdq vEEX ][ ∆∆′∆∆∆=∆ ωδ
 (4.30) 

T
mmU ][ 2211 θθ ∆∆∆∆=∆    (4.31) 
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and, state and control matrices are: 
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and 
1m∆  is the deviation in pulse-width-modulation index 

1m  of voltage of series 

converter 1 in line 1. 
2m∆  is the deviation in pulse-width-modulation index 

2m  of 

voltage of series converter 2 in line 2. 
1θ∆  is the deviation in phase angle of the 

injected voltage 1seV . 
2θ∆  is the deviation in phase angle of the injected voltage 

2seV .  

Generally the nonlinear model of SMIB without IPFC is constituted by Equations 

(4.1-4.4) [104], [105] and the linearized Phillips-Heffron model of SMIB is given by 

Equations (4.21-4.24) where 

qe EKKP ′∆+∆=∆ 21 δ        (4.32) 

qq E
K

KE ′∆+∆=∆
3

4

1
δ  (4.33) 

qt EKKV ′∆+∆=∆ 65 δ  (4.34) 
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The model has 6 K-constants (
61 KK − ) which are functions of the system 

operating point and its parameters. The linearized equations of SMIB without IPFC in 

Laplace domain are given by Equations (4.35-4.38) using which the block diagram of 

SMIB is formed and given in Figure 4.3 [2].    
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Figure 4.3: Block diagram of a SMIB 
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With the inclusion of IPFC in SMIB power system, the linearized Equations 

(4.21-4.25) in Laplace domain are given as follows: 

s

o ωω
δ
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=∆  (4.39) 
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UKEKK
sK

v cqdc ∆+′∆+∆
+

=∆ δ&  (4.43) 

where cvqp KKKK  and,,  are the row vectors defined as  

][ 2211 θθ ppmppmp KKKKK =
 (4.44) 

][ 2211 θθ qqmqqmq KKKKK =
 (4.45) 

][ 2211 θθ vvmvvmv KKKKK =
 (4.46) 

][ 2211 θθ ccmccmc KKKKK =
 (4.47) 

The Phillips-Heffron model of SMIB with IPFC is shown in Figure 4.4. The 

model consists of the 28 K  constants. From Equation (4.31), it is observed that any 

one of the four control inputs 
211 ,, mm ∆∆∆ θ and

2θ∆  can be utilized to exhibit 

damping characteristics of IPFC. The eigenvalues are calculated from the state matrix 

of the system using modal analysis or eigenvalue analysis, which is described in the 

following section, to determine the lightly damped modes. 
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Figure 4.4: Phillips-Heffron model of SMIB system installed with IPFC 

4.5 Modal Analysis of the Power System 

In general the linearized power system in state space form can be written as [2]: 

UDXCY

UBXAX

∆+∆=∆

∆+∆=∆ &

 (4.48) 

where X∆ is the state vector of length equal to number of states n , Y∆ is the output 

vector of length m , U∆  is the input vector of length r , A  is the )( nn×  state matrix, 

B  is the control or input matrix of size )( rn× , C  is the output vector of size )( nm × , 

D  is the feed forward matrix of dimension )( rm × .  

Taking the Laplace transform of Equation (4.48):  

)()()0()( sUBsXAXsXs ∆+∆=−∆  (4.49) 

)()()( sUDsCsY ∆+∆=∆   (4.50) 
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Rearranging Equations (4.49) and (4.50): 

)()0()()( sUBXsXAsI ∆+=∆−  

)]()0([
)det(

)(

)]()0([)()(
1

sUBX
AsI

AsIadj

sUBXAsIsX

∆+
−

−
=

∆+−=∆ −

 

Correspondingly, 

 )()]()0([
)det(

)(
)( sUDsUBX

AsI

AsIadj
CsY ∆+∆+

−

−
=∆  (4.51) 

The poles of )(sX∆ and )(sY∆ are the roots of the equation 0)det( =− AsI which 

is also referred to as the characteristic equation of matrix A . The values of s  which 

satisfy the characteristic equation are the eigenvalues of A . There are a total of  n  

eigenvalues nii .,2,1; =λ , as A  is an nn×  matrix. The eigenvalues determine the 

stability of the power system as follows:  

A real eigenvalue in the system corresponds to a non-oscillatory mode. A negative 

real eigenvalue represents a decaying mode and larger its magnitude value, earlier is 

its decay. When a real eigenvalue is positive it represents aperiodic instability.  

Complex eigenvalues occur in conjugate pairs and each pair corresponds to an 

oscillatory mode. Thus, for a pair of complex eigenvalues, βαλ j±= , the time 

response is of the form )sin( θβα +−
te

t . The real part of the eigenvalue gives the 

damping and imaginary part gives the oscillation frequency, .2/ πβ=f  The damping 

ratio, )( 22 βααζ +−= , determines the rate of decay of the amplitude of the 

oscillation. A negative real part in the complex eigenvalue represents a damped 

oscillation whereas a positive real part represents oscillation of increasing amplitude.  

 

 



82 

 

For any eigenvalue iλ , there is an eigenvector iφ  which satisfies the following 

equation: 

iiiA φλφ =  ,   ni ,...2,1=  (4.52) 

where iφ  is the right eigenvector of A  associated with the eigenvalue iλ . Each right 

eigenvector is a column vector of length n  and has the form: 



















=

ni

i

i

i

φ

φ

φ

φ
M

2

1

 (4.53) 

Similarly, the  n - row vector iψ  which satisfies  

iii A ψλψ =     ni ,...2,1=  (4.54) 

is called the left eigenvector associated with the eigenvalue iλ , where jiji ≠≠ ,λλ . 

Expressing the eigenvector in matrices form, they are termed as modal matrices 

[ ]nφφφφ L21=
 (4.55a) 

[ ]TT

n

TT ψψψψ L21=
 (4.55b) 

I=ψφ          
1−= φψ  

Equation (4.48) is derived from physical considerations of the power system. The 

rate of change of each state variable is a linear combination of all the state variables. 

As a result of cross coupling between the states, it is difficult to isolate those 

parameters that influence the motion in a significant way. The state variables can be 

decoupled by expressing the state variables in terms of the modal variables Z . 

Consider a new state vector Z  defined by the transformation: 

ZX ∆=∆ φ  (4.56) 

or  

XZ ∆=∆ ψ  (4.57) 
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 The original state variables are represented by 
nXXX ∆∆∆ ,..,, 21

 and the 

transformed variables by 
nZZZ ∆∆∆ ,..,, 21
 which are associated with only one mode. 

The right eigenvector gives the mode shape, i.e., the extent of the activities of the n  

state variables in the 
th

i  mode, and the angles of the elements in the matrix give phase 

displacements of the state variables with respect to the mode. The left eigenvector 

identifies which combination of the original state variables displays only in the 
th

i  

mode.  

Equation (4.48) is transformed into new state equation as:    

UBZAZ ∆+∆=∆ −− 11 φφφ&  (4.58) 

UDZCY ∆+∆=∆ φ  (4.59) 

The state equation in decoupled form may therefore be written as 

UBZZ ∆′+∆Λ=∆ &  (4.60) 

UDZCY ∆+∆′=∆  (4.61) 

where Λ  is a diagonal matrix consisting of eigenvalues of the state matrix A .  

φφ A
1−=Λ  (4.62) 

BB
1−=′ φ  (4.63) 

φCC =′  (4.64) 

The mode controllability and observability matrices are defined by Equations 

(4.63) and (4.64) respectively. By inspecting the matrices B′  and  C′ , one can 

determine the controllability and observability properties of the modes. If the 
th

i  row 

of the matrix B′  is zero, the inputs have no effect on the  
th

i  mode. Such a mode is 

said to be uncontrollable. If the column of C′  matrix is zero, the corresponding mode 

is unobservable. If the mode is either uncontrollable or unobservable, the feedback 

between the output and the input has negligible influence on the mode [2].  
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The eigenvalues are computed as described in this section from the state matrix. 

The under damped oscillation modes are observed. Additional stabilizer is provided to 

increase the damping of these oscillation modes. The conventional method of 

increasing the damping is the Power System Stabilizer (PSS). The PSS is designed 

based on the linearized model as explained in the following section.  

4.6 Power System Stabilizer (PSS) 

The structure of the PSS is shown in Figure 4.5 [17], consisting of three blocks: a 

phase compensation block, a signal washout block and a gain block. The phase 

compensation block provides the appropriate phase lead characteristic to compensate 

the phase lag between the exciter input and the generator electrical torque.  
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+1

ω∆

 

Figure 4.5: Excitation system with AVR and PSS  

The signal washout block serves as a high pass filter, with the time constant 
wT  

high enough to allow signals associated with oscillations in  ω  to pass unchanged and 

preventing undesirable generator voltage excursions. The stabilizer gain 
PSSK  

determines the amount of damping provided by the PSS. The conventional lead-lag 

PSS is installed in the feedback loop which produces an electrical torque component 

PSSV  in phase with the rotor speed deviation. This component is added as a 

supplementary signal in the excitation control to provide extra damping at the 

oscillating frequency. In Figure 4.5  fdE  is the generator field voltage, 
tV  is the 
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generator output voltage, refV is the reference voltage. The block in the forward path 

represents the voltage regulator that has a time constant of  AT  and a gain of AK .  

As discussed in [17]: The PSS is usually designed when no FACTS devices exist 

in the power system. The plant transfer function )(sGEP  can be obtained from Figure 

4.3 and is given by:  

633

32

)1)(1(
)(

KKKsTTsK

KKK

V

P
sGEP

AAdo

A

ref

e

++′+
=

∆

∆
=  (4.65) 

Once )(sGEP  is determined, the phase lag of )(sGEP given by )(sGEP∠  is 

determined at the angular frequency of system oscillation from the mechanical loop, 

i.e., J � �,�   where 
M

K
n

01ωω =  , the undamped natural frequency of the 

mechanical mode and fπω 20 =  is the system frequency in radians per sec. 1K  is the 

constant computed in Equation (4.32) for the operating point and given system 

parameters. M  is the inertia constant in seconds. 

The transfer function of PSS is given by: 

)1)(1(

)1)(1(

1
)(

42

31

sTsT

sTsT

sT

sT
KsG

w

w

PSSPSS
++

++

+
=  (4.66) 

The phase of PSS, )(sG pss∠  is  set to compensate )(sGEP∠=β , the phase of  

)(sGEP , so as to produce a purely damping torque contribution to the generator, i.e., 

0)()( =∠+∠
== njsnjsPSS sGEPsG

ωω
 (4.67) 

The parameters of the lead-lag block are designed using the phase compensation 

method. The simplest transfer function of PSS may be chosen in the form of 

k

w

w

PSSPSS
sT

sT

sT

sT
KsG 
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
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


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+
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2

1

1

1

1
)( , 2or1=k   , 21 TT >  (4.68) 
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In Figure 4.5, with 2=k  

4

3

2

1

1

1

1

1

1
)(

sT

sT

sT

sT

sT

sT
KsG

w

w

PSSPSS
+

+

+

+

+
=  

where 
2413 , TTTT ==  . The phase compensation provided by each lead-lag block 

does not exceed a maximum (usually 060 ) [2]. Let, 

 21 aTT = , and 
)(

1
2

a
T

nω
= , where, 

)sin1(

)sin1(

β

β

−

+
=a .    

The required gain setting of the PSS for the desired damping ratio  ‘ζ ’ is obtained 

as  [73], [104]:  

)()(

2

sGEPsG

M
K

PSS

n

PSS

ωζ
= , (4.69) 

where )(sGPSS  and )(sGEP  are evaluated at njs ω= . The value of  wT  (the 

washout filter time constant) is chosen in the range of 10 to 20s [2]. The reasonable 

choice of ζ  is between 0.1 and 0.3  [2], [17].  

In the actual applications, damping of the electromechanical oscillations is 

achieved initially with help of the Power System Stabilizers (PSS), which provides 

supplementary control action in the excitation systems of the generators. The PSS 

helps to stabilize the rotor angle and speed oscillations.  

The IPFC is incorporated in the power system. The primary function of IPFC is to 

control the power flow in the transmission lines. In this respect, feedback controller is 

designed for the IPFC to control the active transmission line power. Along with the 

power flow control, the DC voltage across the capacitor has to be maintained constant 

simultaneously to ensure safe and efficient operation of IPFC. This is achieved with 

the use of another feedback controller which controls the DC capacitor voltage to the 

required constant value. The controllers used for controlling the power and DC 

voltage may or may not provide additional damping to the oscillations modes. In the 

event when the oscillations modes have further insufficient damping, supplementary 

damping controller for IPFC is provided to increase the damping of the oscillations 
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modes. Taking in view of the above, the IPFC will now be installed with three 

controllers as explained in the following section. 

4.7 Controllers of IPFC  

The IPFC is installed with the following controllers: 

(i) Power flow controller 

(ii) DC voltage regulator 

(iii) Damping controller 

4.7.1 Power Flow Controller  

The power flow controller regulates the power in the transmission lines. The structure 

of the power flow controller is shown in Figure 4.6 [38]. The power flow controller is 

of Proportional-Integral (PI) feedback type controller. The proportional and integral 

gains of the controller are  ppk  and pik , respectively. The controller in Figure 4.6 

regulates the real power in the transmission line 1 to the specified value of )(1 refflowP  

in the system. The real power in the transmission line 1 can be controlled by varying 

the phase angle 1θ  of the series injected voltage of VSC 1. Generally the input signal 

1m  can also be used to regulate the active power of the transmission line, however, the 

range in which  1m ( )10 1 ≤≤ m  can be regulated is narrower than that of 1θ                  

( 0

1 3600 ≤≤ θ ). In Figure 4.6, 1flowP  represents the power flow in line 1 and )(1 refflowP  

represents the specified power flow in line 1. The error of the active power flow is 

amplified through the PI block and modulates the input signal 1θ . Through PI 

controller the error is regulated to zero. Modulating the input signal 1θ , the currents in 

both the transmission lines are controlled, as they are function of  1θ  as seen in 

Equations (4.17-4.20). Thus, the active and reactive powers in both the lines are 

modulated.  
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Figure 4.6: Structure of the power flow controller  

4.7.2 DC Voltage Regulator 

The DC voltage regulator functions by controlling the exchange of active power 

between the two VSCs and the power system.  It has to ensure that the net exchange 

of real power is zero. This is achieved by maintaining constant voltage across the 

capacitor. The DC voltage regulator is of PI type as shown in Figure 4.7 [38]. dpk  and 

dik  are the proportional and integral gain settings of the DC voltage regulator 

respectively. As this regulator is responsible for converting the same amount of real 

power to replace the power drained by the VSC-1 through the DC link, the regulator 

is used to modulate the input signal 2θ , the phase angle of the injected voltage of 

VSC 2. In the Figure 4.7 
dcv  is the DC voltage across the capacitor and )(refdcv  is the 

reference voltage. Since the currents flowing in the transmission lines are function of 

2θ  as seen in (4.17-4.20), this controller make sure the net active power exchanged is 

zero. 

dcv

dc(ref)v

s

k
k di

dp +

2θ

ref2θ

 

Figure 4.7: Structure of the DC voltage regulator 

During power flow control one PI controller may or may not be sufficient to 

obtain the desired power flows in the transmission lines. It becomes necessary to have 

additional PI controllers to control the other input signals of IPFC to achieve the 

preferred power flows in the lines.  The reactive power flow in transmission line 1 can 

be modulated through input signal 1m , as the input signal 1θ  is utilized for controlling 

1flowP  in line 1.  
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The real power in transmission line 2 can be controlled by input signal 2m , since 

apparently the input signal 2θ , of VSC-2 is utilized for controlling the DC voltage, 

The controllers are of PI feedback type controller similar to Figure 4.6, whereas the 

inputs to these controllers vary corresponding to reactive power flow control in line 1 

or real power flow control in line 2.  

4.7.3 IPFC Damping Controller 

The IPFC damping controller is designed to increase the damping of the selected 

oscillation mode. The structure of the IPFC based damping controller is shown in 

Figure 4.8 [38], which comprises of the amplification block having gain podK , signal 

washout block and 
cm  stages of lead lag compensator blocks. podK , is a positive gain, 

and  
wT  is the washout time constant.  

dcT1
 and 

dcT2
 are the lead and lag time 

constants respectively. The time constants of lead-lag compensator are determined 

using the phase compensation method [2] to compensate the phase shift between the 

control input signal U∆  and electrical power deviation eP∆ .     
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Figure 4.8: Structure of IPFC based damping controller 

 

The steps to determine the damping controller constants are as follows: Compute 

the natural frequency of oscillation  nω  from the mechanical loop as: 

MKn 01ωω =  (4.70) 

where 1K  is the synchronizing torque coefficient value determined in Equation (4.26) 

of the linearized system when IPFC is placed.  



90 

 

Let γ  be the angle of the transfer function: 

U

P
sG e

s
∆

∆
=)( , (4.71) 

which gives the phase lag between U∆  and eP∆ , at njs ω=  with U∆  being one of 

the inputs ,,,( 211 mm ∆∆∆ θ or )2θ∆  as shown in Figure 4.9.  Figure 4.9 represents the 

transfer function block diagram of the system relating electrical power  eP∆  and U∆ . 

The transfer function of the IPFC based damping controller is represented by: 
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sT

sT

sT

sT
KsG 









+

+

+
=

2

1

1

1

1
)(  (4.72) 

The phase compensation limit provided by each lead-lag block is about 060 . The 

number of the lead-lag blocks 
cm  is determined by taking the largest number near to 

60/γ , where γ   is the required phase compensation of the controller at the concerned 

oscillation mode frequency range. 

Assume for the lead-lag network,  

dcdc aTT 21 = , (4.73) 

where 
)sin1(

)sin1(

γ

γ

−

+
=a    and 

)(

1
2

a
T

n

dc
ω

= .  

The required gain setting of the damping controller for the desired damping ratio  

‘ζ ’ is obtained as:  

)()(

2

sGsG

M
K

sc

n

pod

ως
= , (4.74) 

where )(sGs  and )(sGc  are evaluated at 
njs ω= . The value of  

wT  (the washout 

filter time constant) is chosen in the range of 10 to 20s [2]. The reasonable choice of 

ζ  is between 0.1 and 0.3 [17]. The four control parameters, 
1m , 

2m , 
1θ  and 

2θ  can be 

modulated to produce the damping torque. The damping controller based on the IPFC 
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input signal 
1m  is termed as the damping controller 

1m  and consequently other 

controller based on input signals
2m ,

1θ  and 
2θ  are termed as damping controller 

2m , 

damping controller 
1θ  and damping controller

2θ . 
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Figure 4.9: Block diagram of the system relating electrical power  eP∆  and U∆  

However, one of the first stages in the design of the stabilizer is the selection of 

the IPFC input signal parameter upon which the damping signal is superimposed. In 

order to select the IPFC control parameter most suitable for modulation, by the 

damping controller, the concept of a controllability index is used. The controllability 

index is formulated based on an approximate multimodal decomposition approach as 

explained in Appendix B [29]. 

4.8 Case Study: SMIB Power System With IPFC 

A SMIB power system with IPFC as shown in Figure 4.1 is considered for analysis. 

The data for the system (in p.u. except where indicated) are given in Table 4.1 [9]. 

The load flow is performed to find the steady state condition of the system, i.e., the 

voltages at various buses with their phase angles and the power flows in the 

transmission lines, the results of which are given in Table 4.2.  
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Table  4.1: SMIB power system data 

=H 4.0s. =D 0.0 =′
0dT 5.044s =dx 1.0 =qx 0.6 =′

dx 0.3 

=tx 0.01 =1tx 0.015 =2tx 0.015 
1Lx = 0.05 =2Lx 0.05 =AK 10.0 

=AT 0.01s dcv = 2 p.u. =eP 0.8 =bV 1.0 
tV = 1.02 

dcC = 0.2 

  

Table  4.2: Load flow results of SMIB power system with IPFC 

eP = 0.8 p.u. 
eQ = -1.0223    p.u. 

tV = 1.02 p.u. 
bV = 1.0 p.u. 

1seV = 0.0512    p.u. 
2seV = 0.1237p.u. 0

1 8458.77-=θ  0

2 8761.23-=θ  

0.8280=δ  rad 1flowP = 0.4 p.u.
 1flowQ = 0.2921p.u.

 2flowP = 0.4 p.u.
 

 

Table 4.2 shows the results from the load flow, which gives the power flows in 

each transmission line represented by 1flowP , 1flowQ
 
and 2flowP , injected voltages  

1seV  

and 
2seV , and their corresponding phase angles 1θ  and 2θ  of VSCs of IPFC in each 

transmission line. The real and reactive power at the generator bus is given by 
eP  and  

eQ . 
tV  is the terminal voltage of the generator bus. 

bV  is the voltage of infinite bus. 

The numerical values are computed at the nominal operating point of 
eP  = 0.8 p.u., 

i.e., the generator is generating an electrical power of 0.8 p.u. for a 100 MVA base. 

The nonlinear equations of the power system are linearized around this operating 

point. The K constants computed at this operating point are given in Table 4.3. The 

state, control, and output matrices +	, � 2�� �. are computed and are given by 

Equations (4.75-4.77). The outputs taken are 
eP∆
 
and 1flowP∆ . The system is found to 

be controllable and observable from the controllability and observability matrices 

calculated as described in Section 4.5.  

Table  4.3: K  constants at the operating point of 
eP = 0.8 p.u. 

1K = 1.575856 
2K = 2.382711 

3K = 3.043796 
4K =1.667898 

5K = 0.000299 
6K  = 0.082475 

7K  =0.023072 
8K  = 0.027127 

9K  = 0.004617 
pvK  = 0.036168 qvK  = -0.005127 vvK  =0.029190 

1pmK = 0.721441 1θpK = -0.008752 2pmK  =0.286143 2θpK = -0.084596 

1qmK = 0.590336 1θqK = -0.042716 2qmK = -0.327326 2θqK = -0.119733 

1vmK  = 0.116607 
1θvK = 0.022488 

2vmK = 0.423723 
2θvK = 0.020285 

1cmK = -1.442618 
1θcK = 0.199523 

2cmK = -4.999133 
2θcK = 0.028017 



93 

 

     

0.0046-00.02710 0.0231

29.1897-100-82.4750-00.2986-

0.001 0.19830.6034-00.3307- 
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0003770
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0.0280 4.9991-0.19951.4426-

20.2849-423.7235- 22.4884-116.6073-

0.02370.0649  0.0085 0.1170-

0.01060.0358- 0.00110.0902-

0000
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

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

=B  (4.76) 









=

0.0182-01.0753-00.7413-

0.0362    002.38270 1.5759
C  (4.77) 

The eigenvalues are computed from the state matrix formed by using the K 

constants in Table 4.3. Table 4.4 gives the computed eigenvalues, for the power 

system with IPFC.  The system contains real and one pair of complex eigenvalues and 

they are stable. The oscillation modes have a damping ratio of 0.0291 and are lightly 

damped. These undamped modes have an oscillation frequency of 1.3697 Hz. They 

contribute to local area oscillations (1-2Hz) when the system is subjected to a 

disturbance. The disturbance can be in the form of change in mechanical input or a 

three phase fault. The pair of oscillation modes given by complex eigenvalues are 

contributed by the rotor angle and rotor speed variables of the generator. The real 

eigenvalues are contributed by the remaining state variables of Equation (4.30).  

Table  4.4: Eigenvalues of the linearized SMIB with IPFC at operating point  

 
eP = 0.8 p.u. 

Eigenvalues Damping Ratio Frequency 

-99.8353 1 0 

-0.2503±j 8.6063  0.0291 1.3697 

   -0.2685 1 0 

-0.0037 1 0 

 

The damping of the oscillations modes is increased by placing the PSS in the 

excitation system of the generator. The PSS is designed as described in Section 4.6. 



94 

 

The PSS parameters are; 1.9889=PSSK , 33239.01 =T ,   054258.02 =T , and 

2413 , TTTT == , 10=wT . The PSS is designed at the operating point 
eP = 0.8 p.u. The 

controllers of IPFC, i.e., the PI power flow controller controlling the real power in 

transmission line 1 and PI DC voltage regulator, are placed in the system to maintain 

the powers in the transmission line and maintain the DC voltage constant in the event 

of disturbance. The parameters of the power flow controller are ppk  = 1 and  pik = 

0.01 and DC voltage regulator are
 dpk  = 4 and 

dik  = 4. They have been designed by 

trial and error using simulation. The effect of controllers on the oscillation mode of 

the SMIB system incorporated with IPFC is given in Table 4.5. It has been observed 

that the PSS significantly increases the damping ratio to 0.09. The PI power flow 

controller and DC voltage regulator have little influence on the oscillation mode.  

Together they contribute to minor increase in damping ratio. 

Table  4.5: Eigenvalues of the linearized SMIB with IPFC and controllers at 

operating point 
eP = 0.8 p.u. 

SMIB with IPFC 

and Controllers 
Eigenvalues Damping Ratio Frequency 

No controllers -0.2503 ±j 8.6063 0.0291 1.3697 

With only PSS -0.77508 ±j 8.5625 0.090152 1.3628 

PSS and Power 

flow controller 
-0.79007 ±j 8.5463i 0.092053 1.3602 

PSS and DC 

voltage regulator 
-0.77262 ±j 8.5622 0.08987 1.3627 

PSS, power flow 

controller and DC 

voltage regulator 
-0.77649 ±j 8.5758i 0.090176 1.3649 

 

The IPFC is installed with the damping controller to increase the damping of the 

oscillation mode present in the system. The structure of the damping controller is 

shown in Figure 4.10. The input to the controller is the rotor speed. The damping 

controller contributes a positive damping torque in phase with the speed deviation to 

the electromechanical oscillation loop of the generator. The parameters of the 

damping controller are designed as described in Section 4.7.3 using phase 

compensation technique. The output of the damping controller superimposes and 

modulates any one of the input signal u = (
1m ,

2m ,
1θ  or 

2θ  ) of IPFC. The controller 
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is designed to increase the damping ratio of the oscillation mode to a reasonable 

choice between  0.1 and 0.3 [17]. 

ω∆

u

refu

 

Figure 4.10: IPFC based damping controller 

The active power generated by the generator may change in the range from lighter 

load condition p.u.2.0=eP  to heavier load condition p.u.2.1=eP with p.u.02.1=tV , 

p.u.0.1=bV to meet the varying requirement of power supply. The effectiveness of 

damping controller also changes with the variation of power system operating 

conditions. Therefore, the IPFC based damping controller should be designed at an 

operating point such that it is robust over a set of know operating conditions.       

Table 4.6 gives the eigenvalues computed at different operating points without any 

controllers. Figure 4.11 shows the relationship between the damping ratio of the 

oscillation mode and the operating point. From Table 4.6 and Figure 4.11, it is 

observed that the oscillation mode is of poorest damping at operating condition 

p.u.2.1=eP  

Table  4.6: Eigenvalues of the system computed at different operating points 

Operating point
eP  Eigenvalues Damping ratio Frequency 

0.2 -0.42927 ±j 7.5064 0.057095 1.1947 

0.4 -0.3456 ±j 7.683 0.044937 1.2228 

0.6 -0.26677 ±j 8.0658 0.033057 1.2837 

0.8 -0.2503 ±j 8.6063    0.029075                          1.3697 

0.9 -0.24842 ±j 8.8303 0.028122 1.4054 

1.0 -0.24446 ±j 9.0188 0.027096 1.4354 

1.2 -0.23165 ±j 9.3249 0.024834 1.4841 
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Figure 4.11: Damping ratio versus operating condition. 

There are two potential choices of operating conditions for designing the IPFC 

based damping controller: 

1) The nominal operating condition p.u8.0=eP , which is the usual active power 

delivered by the generator.   

2) The operating point at which the system oscillation mode is of poorest 

damping p.u.2.1=eP  

IPFC based damping controller is designed at the two operating points and its 

effectiveness is verified over varying operating conditions through eigenvalue 

analysis. To determine which input signal is significant in providing the damping, the 

controllability index is calculated. The controllability index is computed based on the 

linearized model for the electromechanical mode to be damped, taking the control 

parameters ),,,( 2211 θθ ∆∆∆∆ mm  into account one at a time. The controllability 

indices with different IPFC controllable parameters are given in Table 4.7 and Table 

4.8 computed at the two operating points p.u8.0=eP   and p.u2.1=eP  respectively. 

Observation of Table 4.7 and Table 4.8 reveals that the controllability index 

corresponding to IPFC control parameter 1m  has higher controllability index 
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compared to other input signals and thus, is the most efficient signal for damping. The 

signals 1θ  and 2θ  have lesser values of controllability index. 

Table  4.7: Controllability indices with different IPFC controllable parameters at 

operating point p.u8.0=eP  

Input signal Controllability index 

1m∆  0.090447 

1θ∆  0.0011749 

2m∆  0.035781 

2θ∆  0.010632 

 

Table  4.8: Controllability indices with different IPFC controllable parameters at 

operating point p.u2.1=eP  

Input signal Controllability index 

1m∆  0.11336 

1θ∆  0.0010221 

2m∆  0.085591 

2θ∆  0.0096744 

 

To confirm the prediction, the various damping controllers are designed and 

installed in the system, to achieve an improvement of the damping ratio of the 

oscillation mode to around 0.1. The various damping controllers modulating different 

input signals ( 1m , 2m , 1θ  and 2θ ) are designed at the nominal operating point, i.e.,  

eP = 0.8 p.u. and 
eP = 1.2 p.u., based on the linearized model to mitigate the 

oscillations. The parameters of each controller, are given in Table 4.9 designed at the 

operating point 
eP = 0.8 p.u. and in Table 4.10 designed at operating point 

eP = 1.2 

p.u., which are computed using phase compensation method. From Tables 4.9 and 

4.10, it is observed that the damping controllers 1m  and 2m  have only one lead-lag 

block compared to the other damping controllers 1θ  and 2θ . The gain values of the 

damping controllers 1m  and 2m  are also comparatively less making them cost 

efficient. The other two damping controllers 1θ  and 2θ  have larger gain values, thus 

making them less efficient comparatively.  
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Using these designed damping controllers, the eigenvalues of the system are 

computed with only damping controllers to observe their contribution towards 

increase of damping ratio of the oscillation mode. Table 4.11 gives the eigenvalues 

computed at the operating point 8.0=eP p.u. with the damping controllers designed 

at 8.0=eP p.u. whose values are given in Table 4.9. Table 4.12 gives the eigenvalues 

computed at the operating point 2.1=eP p.u. with the damping controllers designed at 

2.1=eP p.u. whose values are given in Table 4.10. 

Table  4.9:  Parameters of the damping controllers designed at operating condition 

eP = 0.8 p.u. 

Damping controller 

Parameters of the damping controller 
Phase angle 

γ
 

podK  
dcT1

 
dcT2

 
cm
 

1m  8.0903 21.974 0.10071
 

0.1337
 

1 

1θ  132.11 5005.5 0.024605
 

0.54728
 

2 

2m  40.087 73.382 0.054004
 

0.24935
 

1 

2θ  176.99 5379.1 0.032184
 

0.41841
 

3 

 

Table  4.10: Parameters of the damping controllers designed at operating condition 

eP = 1.2 p.u. 

Damping controller 

Parameters of the damping controller 
Phase angle 

γ
 

podK  
dcT1

 
dcT2

 
cm
 

1m  6.443 18.523 0.095688
 

0.11988
 

1 

1θ  63.363 4032 0.025354
 

0.45243
 

1 

2m  19.479 26.396 0.075722
 

0.15149
 

1 

2θ  171.92 4631.6 0.031415
 

0.36514
 

3 

Table  4.11: Eigenvalues of the system computed at 8.0=eP p.u. using the damping 

controllers designed at 8.0=eP p.u. 

Input signal Eigenvalues Damping ratio Frequency 

1m∆  -1.1309  ±j 8.595 0.13045 1.3679 

1θ∆  -0.86263 ±j 7.9853 0.1074 1.2709 

2m∆  -1.0711 ±j 8.689 0.12235 1.3829 

2θ∆  -0.81261 ±j 8.7377 0.092601 1.3906 
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Table  4.12: Eigenvalues of the system computed at 2.1=eP p.u. using the damping 

controllers designed at 2.1=eP p.u. 

Input signal Eigenvalues Damping ratio Frequency 

1m∆  -1.1813 ±j 9.3048 0.12594 1.4809 

1θ∆  -1.1774  ±j 9.4998 0.123 1.5119 

2m∆  -1.1064  ±j 9.3423 0.1176 1.4869 

2θ∆  -0.76049  ±j 9.4293 0.080391 1.5007 

 

It is observed at both the operating points that the damping controller 1m  and 2m  

provides better damping with lesser gain values and with use of only one lead-lag 

compensator blocks. However, comparing between 1m  and 2m  damping controllers, 

the gain value of the damping controller 1m  is much less than damping controller 2m . 

As such the damping controller 1m  is the most efficient to provide damping to the 

oscillation mode. This confirms with the controllability indices calculated in Table 4.7 

and Table 4.8. Thus, for providing the damping for the oscillations in SMIB power 

system, the damping controller 1m  will be considered for further analysis. To 

investigate the robustness of the damping controller, the operating conditions of the 

power system are varied and the effect of the controller is observed on the oscillation 

mode. Table 4.13 and Table 4.14 gives the oscillation modes of the eigenvalues 

calculated due to the variation in the system operating conditions p.u)2.1to2.0( =eP  

with the IPFC based damping controller 1m  designed at operating point 
eP = 0.8 p.u. 

and 
eP = 1.2 p.u. respectively.  

Table  4.13: Oscillation modes calculation with the damping controller 1m  designed 

at operating point 
eP = 0.8 p.u.   

Op. point Eigenvalues Damping ratio Frequency 

0.2 -0.60792 ±j 7.206 0.084064 1.1469 

0.4 -0.85677 ±j 7.5429 0.11286 1.2005 

0.6 -0.98889 ±j 8.0225 0.12234 1.2768 

0.8 -1.1309 ±j 8.595 0.13045 1.3679 

0.9 -1.191 ±j 8.8258 0.13374 1.4047 

1.0 -1.2402 ±j 9.0193 0.13622 1.4355 

1.2 -1.3153 ±j 9.3321 0.13956 1.4853 
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Table  4.14: Oscillation modes calculation with the damping controller 1m  designed 

at operating point 
eP = 1.2 p.u. 

Op. point Eigenvalues Damping ratio frequency 

0.2 -0.57547 ±j 7.2406 0.079228 1.1524 

0.4 -0.78601 ±j 7.5472 0.10359 1.2012 

0.6 -0.8949 ±j 8.0091 0.11104 1.2747 

0.8 -1.0193 ±j 8.574 0.11805 1.3646 

0.9 -1.0726 ±j 8.8026 0.12096 1.401 

1.0 -1.1159 ±j 8.9945 0.12312 1.4315 

1.2 -1.1813 ±j 9.3048 0.12594 1.4809 

 

Both the designs result in effective damping at the operating point selected and 

quite consistent within neighbouring operating conditions. However a slight 

difference lies mostly during the lighter load operating condition 
eP = 0.2 p.u. 

Compare the results of Table 4.13 and Table 4.14, (the eigenvalues computed with 

IPFC based damping controller) with that of Table 4.6, (the eigenvalues computed 

when no damping controller is used). It is observed that the damping contributed at 

operating point 
eP = 0.2 p.u., by the damping controller designed at 

eP = 1.2 p.u. is 

less compared to the damping controller designed at operating point 
eP = 0.8 p.u. 

However, with increase of its gain value the damping controller designed at 
eP = 1.2 

p.u. will also be suitable at different operating conditions. For further power system 

analysis, the damping controller 1m  designed at nominal operating point 
eP = 0.8 p.u. 

is selected.  

The various controllers of IPFC (PI real power flow controller, DC voltage 

regulator and damping controller) along with the PSS are placed in the power system. 

The schematic diagram representing the SMIB power system with IPFC and its 

controllers is shown in Figure 4.12. The eigenvalues of the complete closed loop 

system are computed and are given in Table 4.15. The system is stable and all the 

oscillation modes are sufficiently damped. 

In presence of PSS and damping controller, the oscillation mode damping ratio 

has increased to 0.2109. The other conjugate pair of eigenvalues have significant 

higher damping ratio as such they are not of concern in contributing the oscillations. 
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Figure 4.12: SMIB power system with IPFC and its controllers 

 

Table  4.15: Eigenvalues of the SMIB power system incorporated with IPFC, with 

PSS, PI power flow controller, DC voltage regulator and damping controller with 

speed as input 

Eigenvalues Damping ratio frequency 

0     

-100.45 1 0 

-17.419 ±j 6.1054 0.94371 0.97171 

-2.1118 ±j 9.7876 0.21091 1.5577 

-7.7599 1 0 

-3.0144 1 0 

-0.44873 ±j 0.98797 0.41354 0.15724 

-0.27731 1 0 

-0.09988 1 0 

-2.46E-15 1 0 

-0.1 1 0 
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Since the damping controller is designed on the linearized system, its 

effectiveness is verified on nonlinear power system through nonlinear simulation of 

the system. The dynamic response of the system is observed with the controllers.  

The system response is observed in the time domain simulations for the power 

system. The nonlinear simulation is conducted through numerical integration and as 

well as by MATLAB/SIMULINK.  Simulation through either method gives the same 

results. The numerical integration of the differential equations is performed using 

ode45 functions in Matlab. The MATLAB/SIMULINK block diagram of the 

nonlinear model of SMIB power system installed with IPFC is developed and is 

shown in Figures 4.13 –4.17.   

Figure 4.13 represents the swing equations: rotor angle Equation (4.1) and speed 

Equation (4.2) along with the damping controller. The rotor speed is used as input for 

the damping controller in the SMIB power system as shown. Figure 4.14 represents 

the generator internal voltage Equation (4.3) and field voltage Equation (4.4). Figure 

4.15 shows the simulink model for calculating the DC link capacitor voltage Equation 

(4.5). Figure 4.16 represents the simulink model for computing the electrical power 

from the generator and the terminal voltage. Figure 4.17 shows the simulink model 

for calculating the transmission line currents in d-q axis from Equations (4.17-4.20).  
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Figure 4.13: Simulink model representing rotor angle and speed   
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Figure 4.14: Simulation model representing internal voltage and field voltage 
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Figure 4.15: Simulation model representing the DC link capacitor voltage  
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qtqdt IxV =

×
qx

qtI

×dx′

dtI

qE ′

dtdqqt IxEV ′−′=

f(u)
tV

22

qtdtt VVV +=

qtqtdtdte IVIVP +=

ePf(u)

 

Figure 4.16: Simulation model for calculation of electrical power and terminal 

voltage  
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Figure 4.17: Simulation model for calculating the transmission line currents  

The system is equipped with the PI power flow controller which controls the 

active power flow in transmission line 1 at 0.4 p.u. The PI voltage regulator maintains 

the DC voltage across the capacitor at a constant value of 2 p.u. The system is 

subjected to various disturbances and the performances of the PSS and damping 

controllers are investigated. 
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4.8.1 Disturbance: Step Change in Mechanical Power  

A disturbance in the form of a step variation of 0.05 p.u., in mechanical power input 

mP , at 0.5s is applied. Power system oscillations are observed due to this disturbance 

and are lightly damped. The transmission line power flow is controlled by the injected 

series voltage such that the rotor angle oscillation is sufficiently damped. The 

magnitude and phase angle of injected series voltage is controlled by the input signals 

of the IPFC.  The input signals are modulated by the controllers. Ultimately the 

effectiveness of IPFC damping controller is observed in damping the oscillations.  

Figures 4.18 - 4.19 gives the response of the rotor angle at the operating condition  

eP = 0.8 p.u., in presence of PSS and damping controllers 1m ,  2m  and  1θ , 2θ  

respectively. These controllers have been designed at the operating point 
eP = 0.8 p.u. 

The power flow controller and DC voltage regulator are present in the system. The 

damping controllers 1m , gives a better performance than the damping controller 2m   

as seen in Figure 4.18. The damping controllers 1θ  and 2θ  have the least damping 

effect on the oscillations as seen in Figure 4.19. It is thus shown that the damping 

controllers 1θ  and 2θ  are not suitable signals for providing damping.  This is verified 

with the controllability indices given in Table 4.7.  

Figure 4.20 shows the active power flow response on transmission line 1 and 

Figure 4.21 gives the capacitor voltage 
dcv   response in the presence of various 

damping controllers. Figure 4.22 shows the rotor angle response in the presence of 

damping controller 1m  designed at operating conditions  
eP = 0.8 p.u. and 

eP = 1.2 

p.u. They give similar responses.  

Figure 4.23 gives the electrical power 
eP  response generated by the generator at 

various operating conditions with the damping controller 1m  designed at operating 

condition  
eP = 0.8 p.u. The damping controller sufficiently dampens the oscillations. 



106 

 

 

Figure 4.18: Rotor angle response with the damping controllers 1m  and 2m  and PSS 

with step change in mechanical power  

 

Figure 4.19: Rotor angle response with the damping controllers 1θ and 2θ  and PSS 

with step change in mechanical power  
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Figure 4.20: Active power flow response in line 1 in the presence of various damping 

controllers 

 

Figure 4.21: DC voltage across the capacitor response in the presence of various 

damping controllers 

0 2 4 6 8 10
0.392

0.394

0.396

0.398

0.4

0.402

0.404

0.406

0.408

0.41

0.412

Time (s)

P
fl

o
w
 (

p
.u

)

 

 
damping controller m

1

damping controller θ
1

damping controller m
2

damping controller θ
2

0 2 4 6 8 10
1.9985

1.999

1.9995

2

2.0005

2.001

2.0015

Time (s)

v d
c
 (

p
.u

)

 

 

damping controller m
1

damping controller θ
1

damping controller m
2

damping controller θ
2



108 

 

 

Figure 4.22: Rotor angle response with the damping controller 1m  designed at two 

operating conditions 

 

Figure 4.23: Electrical power generated response with the damping controller 1m  at 

various operating conditions 
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4.8.2 Disturbance: Three Phase Fault 
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Figure 4.24: SMIB power system with fault 

A three-phase fault is applied at bus 1 as shown in Figure 4.24, at t =0.5s and 

cleared after 0.1s. The line currents are affected accordingly. Equations (4.17-4.20) 

represent the line currents for post fault system. During fault, the voltage at the bus 

becomes zero. Hence, the line currents are modified during fault and are obtained as 

follows:   

))cos()cos((
2

1
112212111 θδθδ −−−+′= mmvyEyi dcdqdd

        (4.78)  

)cos()cos((
2

1
112222212 θδθδ −−−+′= mmvyEyi dcdqdd

        (4.79) 

)sin()sin((
2

1
1122121 θδθδ −−−= mmvyi dcqq

       (4.80) 

)sin()sin((
2

1
1122222 θδθδ −−−= mmvyi dcqq

       (4.81) 

where,  

1

22112221

1211

)(

−










+−+

+′+′
=









tLtL

tdtd

dd

dd

xxxx

xxxx

yy

yy

   

1

22112221

1211

)()(

−










++−

++
=









tLtL

tqtq

qq

qq

xxxx

xxxx

yy

yy

 



110 

 

The response of various parameters of the dynamic power system i.e., electrical 

power generated by the machine, rotor angle, terminal voltage, rotor speed response, 

power flows in the transmission lines and DC voltage 
dcv   are shown with and without 

the damping controller and PSS during three phase fault in Figures 4.25 - 4.32 

respectively.  

The PI power flow controller and DC voltage regulator are present in the system. 

The damping controller 1m  mitigates the oscillations efficiently even during the case 

of three phase fault. The responses given in these figures are at the nominal operating 

condition p.u.8.0=eP  The damping controller and PSS used are designed at 

operating point p.u.8.0=eP   

Figure 4.33 gives the electrical power response at varying operating conditions in 

the event of three phase fault. It is seen that at the lighter load condition the 

oscillations take longer time to settle even with the use of the damping controller and 

PSS.  

 

 

Figure 4.25: Electrical power response due to three phase fault 
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Figure 4.26: Rotor angle response due to three phase fault 

 

Figure 4.27: Terminal voltage response due to three phase fault 
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Figure 4.28: Rotor speed response due to three phase fault 

 

Figure 4.29: Real power flow response in line 1 due to three phase fault 
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Figure 4.30: Real power flow response in line 2 due to three phase fault 

 

Figure 4.31: Reactive power flow response in line 1 due to three phase fault 
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Figure 4.32: DC capacitor voltage response due to three phase fault 

 

 

Figure 4.33: Electrical power response due to three phase fault at varying operating 

conditions 
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The response of various parameters of the power system in the event of change in 

mechanical input and three-phase fault disturbance are shown in Figures 4.18-4.33 in 

the presence of PSS and damping controller. The PI power flow controller and DC 

voltage regulator are present simultaneously in the system to maintain the power flow 

and constant DC capacitor voltage. It is to be noted that the input to both PSS and 

damping controller 1m   is the rotor speed such that the output from these stabilizers is 

in phase with the rotor speed ω .  

However, since the FACTS device is incorporated on the transmission lines it is 

more appropriate to select a signal, given to the damping controller, in its vicinity. 

Usually the local input signals are always preferred, such as the active or reactive 

power flow through FACTS device. As such the error signal between the set point and 

the measured signal of the active power flow will be taken as the input to the damping 

controller as shown in Figure 4.34.  The damping controller output is in phase with 

the real power flow deviation. This active power has been obtained from the line on 

which the VSC of IPFC has been installed. The structure of the damping controller is 

given in Figure 4.35 [38].  

(ref)flow1P

flow1P
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ref1m

 

Figure 4.34: Damping controller with power deviation as input 
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Figure 4.35: Structure of the damping controller with power deviation as input 

This damping controller consists of extra block, i.e., the low pass filter, with 
mT  

being a measurable time constant. This filter attenuates Torsional frequencies. 
mT  is 

chosen to be 0.1s. The damping controller shown in Figure 4.35 will now be termed 
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as power oscillation damping (POD) controller. The remaining parameters of POD  

1m  are unchanged. In the following section the regulation of power in the 

transmission lines with the control of the input signals of IPFC is discussed.   

4.8.3 Disturbance: Change in Power Flow Reference  

The effect of the power flow controller in controlling the transmission line flow can 

be observed when new power reference value is given in Figure 4.34. Originally the 

real power flowing through the two transmission lines is 0.4 p.u. A real power of 0.45 

p.u. can be made to flow in the transmission line 1 by changing the power reference 

)(1 refflowP  to 0.45 p.u. Subsequently the real power flow in transmission line 2 will be 

0.35 p.u.  

The DC regulator maintains the voltage at a constant value of 2 p.u. The change in 

power reference is given at 0.5s in the simulation. To obtain the desired power flow, 

gain scheduling is required and was determined by trial and error on simulation.  

The parameters of the power flow controller to obtain this change in power flow 

in line 1 are ppk  = 4 and  pik = 15. The power flow controller is able to make the 

desired active power 1flowP  of 0.45 p.u., to flow in line 1 and the active power 2flowP  in 

line 2 is reduced to 0.35 p.u., as the difference active power (0.05 p.u.) is made to 

transfer from transmission line 2 to line 1 through IPFC.  

However, the reactive power flow 1flowQ  in transmission line 1 has deviated from 

its reference value. As such another PI controller is installed to regulate the reactive 

power flow in transmission line 1.  

The input signal 1m  is used for controlling the reactive power. The reactive power 

PI controller is shown in Figure 4.36. The controller parameters are qpk  = 0.05 and   

qik = 0.4. The block diagram of the SMIB power system incorporated with IPFC and 

all the controllers (PSS, PI power flow controllers, POD) is given in Figure 4.37. 
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Figure 4.36: Reactive power flow controller 

The dynamic response of the system is observed with the controllers with a step 

change in )(1 refflowP  at 0.5 s. The responses of various parameters (active power flows 

in line 1 and 2, reactive power flow in line1, DC capacitor voltage and rotor angle) are 

shown in Figures 4.38-4.42 respectively with PSS and POD. The power flow 

controller regulates the powers in the transmission lines to the reference values. With 

the presence of both the PSS and POD the oscillations in power flows settle at the 

steady state values eventually. 
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Figure 4.37: Block diagram of SMIB with IPFC and its controllers 
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Figure 4.38: Response of the real power flow in transmission line 1 with step change 

in power reference 

 

Figure 4.39: Response of the real power flow in transmission line 2 with step change 

in power reference 
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Figure 4.40: Response of the reactive power flow in transmission line 1 with step 

change in power reference 

 

Figure 4.41: Response of the DC capacitor voltage with step change in power 

reference 
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Figure 4.42: Response of the rotor angle with step change in power reference 

It is observed from the above figures that all controllers ensure efficient operation 

of the IPFC in controlling the power flow and mitigating oscillations. The power flow 

controller only regulates the power in the transmission line and has negligible 

contribution towards damping of oscillations. The effect is only due to damping 

controller or the PSS.The effectiveness of the IPFC damping controller in improving 

the damping of the oscillation mode is investigated through eigenanalysis and 

nonlinear simulation in this Section 4.8. The effect of the various controllers of the 

IPFC on the system is investigated. 

4.9 Summary 

In this chapter, the nonlinear model of the SMIB power system embedded with IPFC 

has been developed which includes all the inputs of IPFC and DC capacitor dynamics. 

The linearized model of the power system is established to form the extended 

Phillips-Heffron model of a SMIB power system incorporated with IPFC. This model 

is used to study the oscillation stability.  
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The state model of the power system is formed, from which the eigenvalues are 

computed using eigenanalysis or the modal analysis. The oscillation mode having low 

damping ratio is identified. Based on the linearized model, the PSS is designed to 

increase the damping of the oscillations mode. The power flow controller and DC 

voltage regulator are also incorporated in the IPFC control to regulate the power flow 

and to maintain the DC voltage across the DC link.  

The damping function of IPFC is also investigated. The IPFC based damping 

controllers, considering various control signals, are designed to increase the damping 

of the oscillation modes existing in the system. The parameters of the IPFC damping 

controller are determined using the phase compensation method. The relative 

effectiveness of the input control signals 211 ,, mm θ  and 2θ  has been determined 

using the controllability index.  

Investigations reveal that control signal 1m  is the most efficient of the input 

control signals to be used for damping the low frequency oscillations in the power 

system. The control signals 1θ  and 2θ  are not suitable in providing the damping, as 

they do not provide consistent damping to the oscillations.   The effectiveness and 

robustness of the IPFC damping controllers are validated through eigenanalysis and 

nonlinear simulation of the power system subjected to various disturbances. The IPFC 

based damping controller and PSS ensure consistent damping of the low frequency 

oscillations in the SMIB power system. The following chapter presents the 

mathematical modeling of mullet-machine power system without FACTS devices.   
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CHAPTER 5 

 

MULTIMACHINE POWER SYSTEM 

5.1 Introduction 

Modeling of multi-machine system is quite complex. A typical multi-machine system 

is composed of synchronous generators, excitation systems, governors, power system 

stabilizers, transmission lines, transformers, and loads etc. Suitable mathematical 

models of these devices are required for stability analysis. The dynamics of these 

models are represented by sets of differential and algebraic equations.  These 

equations are integrated to form the overall system model.  In this chapter, the 

nonlinear, linearized state space form model of multi-machine power system is 

presented. Power system stability analysis is performed on a case study which utilizes 

the modeling and stability control techniques.  

5.2 Modeling of Multi-Machine Power System 

The nonlinear model of a multi-machine power system is presented in this section. 

The following assumptions are made to simplify the mathematical model which 

describes the nonlinear dominant behavior of a multi-machine power system [17], 

[103], [104].  

1) Governor and turbine dynamics are neglected. This results in constant input 

mechanical power. 

2) The network is in quasi-static state, (i.e., the transient characteristics of the 

network elements like transmission lines, transformers, etc. are avoided as 

their effects can be negligible on the electromechanical phenomenon). 

Network elements are represented by equivalent impedances (or admittances), 

the value of which are the ones assumed at the equilibrium steady state at 
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nominal frequency. The problem may be greatly simplified from the analytical 

and computational point of view, with such a representation in the analysis of 

power system stability. 

3) The loads are represented by constant impedance loads (i.e., the dynamics of 

the load are simplified for the stability studies). This helps in reducing the 

network to only the generator buses by eliminating load buses as they have 

zero injection current. When the load buses are eliminated, the network 

voltage current relationship between the terminal buses of generators is 

expressed through a reduced bus admittance matrix. 

Synchronous generators are the primary sources of electrical energy in power 

systems. The power system stability problem is basically one of keeping 

interconnected synchronous machines in synchronism. Hence, an understanding of 

their characteristics and accurate modeling of their dynamic performance are of 

fundamental importance to the study of power system stability. In this thesis, the 

generator represented by a third-order model has been used, which is frequently 

employed in stability and control analysis due to its simplicity. The dynamic equation 

of the synchronous generator consists of the swing equations and generator internal 

voltage equation [2], [16], [17], [104].  

5.2.1 Synchronous Generators  

The nonlinear dynamics for the th
i machine of an n - machine power system as shown 

in Figure 5.1 is given as [2], [16], [17], [104]:  

The swing equations are written as follows: 

)1(0 −= ii ωωδ&    (5.1) 

i

Dieimi

i
M

PPP )( −−
=ω&  (5.2) 
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Figure 5.1: The th
i  machine in a multi-machine power system network 

 

The internal voltage equation is given by 

 

( )( )dididiqifdi

doi

qi IxxEE
T

E ′−−−= '

'

' 1&

 (5.3) 

The excitation system is described by the following equation 

( ))(
1

itirefiAifd

iA

ifd VVKE
T

E −+−=&  (5.4) 

The auxiliary equations are as follows: 

tqiqitdiditqitdiqidiei VIVIVVIIP +=+×+= )]()Re[( jj   

,qidii III j+=
 

,tqitditi VVV j+= )1( −= iiDi DP ω , (5.5) 

didiqitqiqiqitdi IxEVIxV ′−′== ;   

where, ni L,2,1= , n is the number of generators. 
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5.2.2 Transmission Network and Loads 

The role of transmission network is to deliver the power produced in generating 

stations to loads. Thus, nonlinear equations of the synchronous machines are coupled 

to the network equations that interconnect these machines. In the commonly used 

models, the network is assumed constantly in steady state and all the transients 

associated with transmission lines are neglected. The electrical transmission line is 

represented as an equivalent π  model as shown in the Figure 5.2 [14]. In Figure 5.2 

ijijij XRZ j+=  represents linear lumped series impedance, where ijR  and ijX  are the 

resistance and inductive reactance of the transmission line between bus � and bus �. 
ijCijCijC BGY j+=  is the shunt admittance representing the line charging capacitance 

between the two buses. The shunt admittance is evenly distributed in parallel at both 

ends of the transmission line as shown in Figure 5.2.   

ijZ

iBus jBus

iV jV

2

ijCY

LiLi QP j+
 

Figure 5.2: Lumped parameter π  equivalent transmission line 

 

The load connected to a bus �  in Figure 5.2, is modeled commonly as [2], [17]: 

( )

( ) nbiVQVQ

nbiVPVP

a

iiLoiLi

a

iiLoiLi

,,2,1)(

,,2,1)(

L

L

==

==

 (5.6) 

where iLP  and iLQ  are the real and reactive components of the voltage dependent 

load connected to the bus  � with 
iV  being the magnitude of bus voltage iV .  When    2 

= 0, 1 or 2, the load model given by the above exponential model represents constant 

power, constant current or constant impedance components. In this thesis for power 

system analysis, the loads are represented by constant impedances and converted to 
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equivalent passive admittances. For a bus having a voltage magnitude iV  to which a 

load 
LiLi QP j+  is connected, this load is represented by the static shunt admittances 

Lig  and 
Lib  given by 

2

i

Li

V

P
 and 

2

i

Li

V

Q
−  respectively [17]. The transformers in the power 

system are represented by equivalent reactances. Therefore, for an �-machine ��-bus 

interconnected power system, the static network and the loads are shown in Figure 5.3 

[17], [103]. Figure 5.3 contains the first n buses connected to the generators with the 

local loads and the rest � G 1,…  �� buses are connected to only loads.  

nI

VYI =

iLiL QP j+

nLnL QP j+

11 ++ + nLnL QP j

nbLnbL QP j+

1

i

n

1+n

nb

Network

 

Figure 5.3: Interconnected network of synchronous machines and the loads 

 

The following algebraic equation gives the relationship between the  injected 

currents and bus voltages of the transmission network [17], [103]: 

VYI =  (5.7) 

where : 

I  is the vector of injected currents at each bus, nbnn IIIIII LL ,,,, 121 +=  

V  is the vector of voltages of each bus, nbnn VVVVVV LL ,,,,, 121 +=  
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Y  is the bus admittance matrix, where each element is given by 

jiji

ij

ji bg
Z

Y j+==
1

, nbi ,2,1 L= ; nbj ,,2,1 L= , and jiY  is the admittance between 

the bus � and bus �. The admittance matrix Y  is constructed using the following steps 

[16], [17]: 

a) The diagonal entries iiY of the admittance matrix are the sum of all the 

admittance connected to bus  �,  including the shunt admittances. iiY is known 

as the self-admittance of the bus i.  

The equivalent shunt admittance for each load of the system is added to the 

corresponding diagonal entries of the admittance matrix in Y  of Equation 

(5.7), i.e., to the self-admittance of that particular bus. 

b) The off-diagonal entries jiY  of the admittance matrix are the sum of the 

negatives of all admittance between bus  �  and bus  �, known as the transfer 

admittance between bus � and bus �. 
Equation (5.7) may be written in partitioned form as [17], [103], 



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


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
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


=
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
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

L

G

LLLG

GLGG

L

G

V

V

YY

YY

I

I
 (5.8) 

where the subscript ‘ G ’ is used to denote generator buses and the subscript ‘ L ’ is used 

to denote the remaining load buses. 

Equation (5.8) can be written as: 

LLLGLGL

LGLGGGG

VYVYI

VYVYI

+=

+=

 (5.9) 

Since loads are represented by constant impedances, the load buses have zero 

injection currents, i.e., 0=LI ; whereas the generators inject currents into the 
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generator buses. Thus, eliminating LV  in the above equations, the generator currents 

can be represented as: 

GLGLLGLGGG VYYYYI )( 1−−=   

GredG VYI =  (5.10) 

where )( 1

LGLLGLGGred YYYYY
−−=  is the reduced admittance matrix of the power system 

network and GV  represent the terminal voltages of the generators. Thus, the system 

admittance matrix is reduced to generator buses and the load buses are eliminated. 

The stability analysis is performed on the reduced power system containing only the 

generator buses interconnected to each other. 

5.2.3 Generator Network Interface  

The currents and voltages in Equation (5.10) of the network are in the common 

reference frame, called the 
 � � axes, which rotates at the synchronous frequency. 

Equation (5.10) can also be represented as: 
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 (5.11) 

where QiDiGiGi IIeII ij
j+==

γ
, and tQitDiGiGi VVeVV ij

j+==
θ

, ni ,,2,1 L= . The 

generators currents and voltages in Equation (5.11) are in 
 � �  axes reference 

frame. The state equations for each generator of an interconnected power system 

given in Equations (5.1-5.4) have their own individual ii qd −  frame of reference 

synchronously rotating with its own rotor. In order to study the behavior of a multi-

machine system, it is necessary to interface all machines along with the network, as 

represented in the Figure 5.4 [17]. This is possible either by transforming the 

generator state variables to the common reference frame or the network equations to 

the individual machine reference frame.  
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However, transforming the network equations onto the machine reference frame 

has an advantage that the generator variables are unchanged and application of control 

techniques is uncomplicated. There are two methods for transformation of the 

network Equation (5.10) into the individual machine frame of reference.   

5.2.4 Method 1 of Transforming Network Equations To Individual Machine 

Frame  

Consider the phasor diagram shown in Figure 5.5 [17]. The common reference frame 

is represented by the 
 � � axes and the individual machine reference is represented 

by the  ii qd −  axes. iδ  is the phase angle difference between the D  axis and the  iq

axis. 
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GjI
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GiI
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ieP

iqid II ,
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i
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Figure 5.4: Multi-machine generator network interface representation   
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From Figure 5.5, the relation between the two coordinate axes is obtained as:  
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( ) ( )
tqiitdiitqiitdiitQitDi VVVVVV δδδδ sincoscossin +−++=+⇒ jj  (5.13) 

( ) )( 2/πδ −
+=+⇒ ij

tqitditQitDi eVVVV jj  (5.14) 

Thus, 
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=+=

+==
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tQitDiGiGi

eVeVV
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 (5.15) 

Similarly the current variables can be transformed as: 

( ) )()( 2/2/ πδπδγ −−
=+=+== iiij j

i

j

qidiQiDiGiGi eIeIIIIeII jj  (5.16) 

iδ

 

Figure 5.5: Transformation for interfacing network reference with machine 

reference-method 1 
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From Equation (5.15) 

( ) )( 2/πδ −
+=+ ij

tqitditQitDi eVVVV jj
 

Substituting the stator algebraic equations, tdidqitqiqiqitdi IxEVIxV ′−′== ;   in the 

above equation, the following is obtained, 

[ ] )( 2/
)(

πδ −
′−′+=+ ij

didiqiqiqitQitDi eIxEIxVV jj  (5.17) 

Substituting qiidi III j−=  in Equation (5.17),  
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 (5.18) 

Replacing tQitDi VV j+  with GiV  and 
)( 2/πδ −ij

ieI with GiI  in Equation (5.18), it can 

be written in 
 � � axis reference frame as: 

)( 2/
)(

πδδ −
′−+′−′= ii j

qidiqiGidi

j

qiGi eIxxIxeEV j  (5.19) 

The above equation gives the generator voltages in 
 � � axis reference frame. In 

matrix form Equation (5.19) can be written as 

q

j

dqGdq

j

G IexxIxEeV )( 2/][ πδδ −′−+′−′= j  (5.20) 

where, GV , qE′ , GI , qI  are column matrices and the coefficients δj
e , 

dx′ , ][ dq xx ′− , 

)( 2/πδ −j
e  are diagonal matrices. Substituting Equation (5.20) in Equation (5.10), the 

generator current vector becomes: 

]][[ )( 2/
q

j

dqGdq

j

redG IexxIxEeYI πδδ −′−+′−′= j ,  

or, 

( ) [ ]
q

j

dqq

j

dredG IexxEexYI
)(11 2/][ πδδ −′−+′′+=

−− j  (5.21) 
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 Applying the transformation, Equation (5.21) is converted to the ii qd −
 
axes 

reference frame as follows: 

( ) [ ]
q
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j IexxEeYeI πδδδπ −− ′−+′=  (5.22) 

where ( ) 11 −− ′+= dredd xYY j  and qdG

j IIIeI j+== − )( 2/ δπ
. Equation (5.22) can be 

written in detail as follows: 
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Therefore, in general, output current of the th
i  generator in �  machine power 

system can be expressed in ii qd −
 
axes as:   

( )∑
=

+





 ′−+′=+=

n

j

ji
j

qjdjqj

ji
j

qjijdqidii eIxxeEYIII
1

)( 2/ δδπ
j  (5.23) 

where ijji δδδ −= . 

5.2.4.1 Initial conditions for the dynamic system  

To perform the power system dynamic analysis, the fixed inputs miP , irefV  and initial 

conditions of all the dynamic states are computed [17]: 
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Step 1: From the load flow, compute the generator’s currents:  

∗

−
==

Gi

GiGi

GiGi
V

QP
eII ij jγ

  ni L,1=  (5.24) 

where GiP , and GiQ , and are the generator power outputs. 
∗

GiV  is the complex 

conjugate of GiV . 

Step 2: Compute iδ , which is computed from Equation (5.19) as follows [17];  

Equation (5.19) can be written as [17]: 
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Rearrange the terms as follows: 

( ) iii j

didiqiqi

j

Giqi

j

Gi eIxxEeIxeV
δγθ

)( ′−+′=+ j  (5.26) 

The Right hand side of Equation (5.26) represents the voltage behind the 

impedance iqjx having an angle iδ  which can also be computed as angle of 
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( )ijij
eIxeV GiiqGi

γθ
+ . The phasor diagram representation of the stator algebraic 

variables for computing iδ  is shown in Figure 5.6. 

iδ = angle of ( )ijij
eIxeV GiiqGi

γθ
+ , ni ,,1 L=  (5.27) 

Step 3: Compute  tdiV , tqiV , diI , qiI  for the machines from Equations (5.15-5.16) 

as: 

( ) )( 2/πδθ −
+= iij j

tqitdiGi eVVeV j  or ( ) )( 2/πδθ +−
=+ iij

Gitqitdi eVVV j , ni ,,1 L=  (5.28) 

( ) )( 2/πδγ −
+= iij j

qidiGi eIIeI j  or ( ) )( 2/πδγ +−
=+ iij

Giqidi eIII j , ni ,,1 L=  (5.29) 

GiV

GiI

iθ

Giqi Ixj

di

di

qi

I
x

x

)

(

′
−

qiE′

iγ

iδ

 

Figure 5.6: Phasor diagram of stator algebraic variables for computing the rotor 

angle iδ  method-1 

Step 4: Compute qiE ′  as: 

didiqitqi IxEV ′−′=  or (5.30) 

diditqiqi IxVE ′+=′ , ni ,,1 L=  (5.31) 
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Step 5: Compute ifdE  from Equation (5.3) after setting the derivative equal to 

zero (under steady state). 

dididiqiifd IxxEE )( ′−+′= ,  ni ,,1 L=  (5.32) 

Step 6: Compute irefV  from Equation (5.4) after setting the derivative equal to 

zero. 

ti

iA

ifd

iref V
K

E
V += , ni ,,1 L=  (5.33) 

Step 7: The mechanical states iω  and miP  can be computed from Equations       

(5.1-5.2) by setting the derivatives equal to zero. 

1=iω ,  ni ,,1 L=  (5.34) 

eimi PP = , with 0=DiP  

)( didiqiqiqiqidi

tqiqitdidi

IxEIIxI

VIVI

′−′+=

+=
 

qididiqiqiqimi IIxxIEP )( ′−+′= ,  ni ,,1 L=  (5.35) 

This completes the computation of the initial conditions of all the dynamic states 

using this type of transformation. 

5.2.5 Method 2 of Transforming Network Equations To Individual Machine 

Frame 

The individual machine coordinates ii qd −  may be related to the common system 

coordinates QD −  as shown in Figure 5.7 [104], where iδ  is the phase angle 

difference of the id  axis with respect to the D  axis or the iq  axis with respect to the 

Q  axis. 
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The orthogonal transformation is given by 
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 (5.36) 

From Equation (5.36) the relationship between the two coordinate variables is 

obtained as: 

( ) ij

tqitditQitDi eVVVV
δ−

+=+ jj  (5.37) 

Similarly the current variables can be transformed as: 

( ) ij

qidiQiDi eIIII
δ−

+=+ jj  (5.38) 

iδ

 

Figure 5.7: Transformation for interfacing network reference with machine 

reference-method 2 

 

Following the method explained in Section 5.3.1, the generator voltages are 

derived using this transformation as [104]: 

ii j

qidiqiGidi

j

qiGi eIxxIxeEV
δδπ −−

′−+′−′= )(
)2/(

j  (5.39) 
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Rewriting the Equation (5.39) as, 

iiii j

qidiqi

j

Gidi

j

qi

j

Gi eIxxeIxeEeV
δγδθ π −−

′−+′−′= )(
)2/(

j  (5.40) 

Rearrange the terms in Equation (5.40), by adding and subtracting ij
eIx diqi

δ−
j  on 

right hand side,  

( ) 




 −

′−+′=+
iii

j

didiqiqi

j

Giqi

j

Gi eIxxEeIxeV
δπ

γθ 2)(j  (5.41) 

Comparing Equation (5.19) with Equation (5.39) and Equation (5.26) with 

Equation (5.41), it is observed that the angle between internal quadrature axis voltage 

and 
 axis is iδ  with the first transformation whereas it is equal to 
iδ

π
−

2
 when using 

the second transformation. 

Remark: Since iδ  is the angular position of the rotor in electrical radians with 

respect to the synchronous rotating reference, the rotor angle Equation (5.1) does not 

differ when using the first transformation as the equation has been developed with the 

same concept. However, when the second transformation is used, the new angular 

position is 
iδ

π
−

2
. As such the rotor angle equation is modified as follows: 

)1(
2

0 −=









−

i

i

dt

d

ωω

δ
π

 (5.42) 

Equation (5.1) becomes 

)1(0 −−= ii ωωδ&  (5.43) 

Note: When the second transformation is utilized, the rotor angle equation is 

given by Equation (5.43), and the remaining Equations (5.2-5.4) remain same. 

Proceeding, the generator voltage Equation (5.39) can be written in matrix form as,  

q

j

dqGdq

j

G IexxIxEeV δδπ −′−+′−′= − )()( 2/ j  (5.44) 
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Substituting Equation (5.44) in Equation (5.10) the generator current equation will be: 

])([ )( 2/
q

j

dqGdq

j

redG IexxIxEeYI δδπ −′−+′−′= − j  (5.45) 

or, 

( ) [ ]
q
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dredG IexxEexYI
δδπ −−− ′−+′′+= − )()(11 2/j  (5.46) 

])([ )( 2/
q

j

dqq

j

dG IexxEeYI
δδπ −′−+′= −   (5.47) 

 Applying the transformation, Equation (5.47) is converted onto the ii qd − axes 

reference frame as follows: 

δδδπδ j

q
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d
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G eIexxEeYeII ])([ )( 2/ −′−+′== −
 (5.48) 
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Equation (5.48) can be written as:  
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 (5.49) 

From the above equation (5.49) the output current of the thi  generator is expressed as: 

( )∑
=

+





 ′−+′=+=

n

j

ij
j

qjdjqj

ij
j

qjijdqidii eIxxeEYIII
1

)( 2/ δδπ
j  (5.50) 

where jiij δδδ −= .  
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Note: Comparing the two generator currents of Equations (5.23) and (5.50) derived 

with the two different transformations, the variation lies in the rotor angle difference 

jiδ  and ijδ   between the two equations. 

5.2.5.1  Initial conditions for the dynamic system  

The initial conditions for the dynamic states are computed in a method similar to that 

explained in Section 5.3.4.1. However, Step 2 and Step 3, i.e., Equations (5.27-5.29) 

are modified according to the 2
nd

 method of transformation.   

Step 2: The individual rotor angles iδ  are computed from the stator algebraic 

equation given in Equation (5.41). The phasor diagram representation of the stator 

algebraic variables for computing iδ  in this 2
nd

 method of transformation is shown in 

Figure 5.8.  

GiV
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x

x
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′
−

qiE′

iδπ −
2

iγ
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Figure 5.8: Phasor diagram of stator algebraic variables for computing the rotor 

angle iδ  method-2 
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The Right hand side of Equation (5.41) represents the voltage behind the 

impedance iqjx having an angle 
iδπ −

2
 which is computed as the angle of 

( )ijij
eIxeV GiiqGi

γθ
+ .  

iδπ −
2

= angle of ( )ijij
eIxeV GiiqGi

γθ
+ , or 

iδ = −
2
π  angle of ( )ijij

eIxeV GiiqGi

γθ
+ , ni ,,1 L=  (5.51) 

The above equation gives the initial values of the individual machine rotor angles 

in the 2
nd

 method of transformation. 

Step 3: Compute  tdiV , tqiV , diI , qiI  as follows: 

( ) iij j

tqitdiGi eVVeV
δθ −

+= j  or ( ) )( iij

Gitqitdi eVVV
δθ +

=+ j , ni ,,1 L=  (5.52) 

( ) iij j

qidiGi eIIeI
δθ −

+= j  or ( ) )( iij

Giqidi eIII
δγ +

=+ j , ni ,,1 L=  (5.53) 

The rest of the steps for computing the initial values remain unchanged. 

5.3 Linearized System of Multi-Machine Power System 

The linearized Phillips-Heffron model [7], [18] was proposed for the analysis of 

power system oscillation stability and control. The linearized model for a power 

system is derived by linearizing the nonlinear equations of the multi-machine power 

system. The nonlinear equations consist of the differential equations of the 

mechanical system, electrical equation of the exciter, field winding, and algebraic 

equations of the stator and network in the multi-machine power system. 

The following equations constitute the linearized model of the multi-machine 

system when the transformation of network variables is performed by first method 

[17]. 

ωωδ ∆∆ 0=&  (5.54)   



142 

 

( )ωDPPMω em

-
∆

1 −∆−∆=∆ &  (5.55) 

)∆∆∆(∆
1

0 fddddqdq EI)x(xETE +′−−′−′=′ −&  (5.56) 

))∆(∆(∆
1

trefAfdAfd VVKETE −∆+−=
−&  (5.57) 

where 

qdqdqqddqqqqe IxxIIEIxxIEIP ∆)(∆∆)(∆ 000
′−+′+′−+′=∆  (5.58) 

qqtd IxV ∆=∆ , ddqtq IxEV ∆′′∆=∆ -  (5.59) 

and,  

[ ]T

nδδδδ ∆∆∆=∆ L21 ,  

[ ]T

nωωωω ∆∆∆=∆ L21  

[ ]Tqnqqq EEEE
''

2

'

1 ∆∆∆=′∆ L ,  

[ ]Tfdnfdfdfd EEEE ∆∆∆=∆ L21   

[ ]T

dnddd IIII ∆∆∆=∆ L21 ,  

[ ]Tqnqqq IIII ∆∆∆=∆ L21 , 

[ ]T

tdntdtdtd VVVV ∆∆∆=∆ L21 ,  

[ ]Ttqntqtqtq VVVV ∆∆∆=∆ L21  ,  

[ ]T

tnttt VVVV ∆∆∆=∆ L21  

22

tqitdiit VVV += , 
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)2( iHdiagM = , )( iDdiagD = , )( '

00 idd TdiagT =′ , 

)( did xdiagx = , )( qiq xdiagx = , )( did xdiagx ′=′   

),.....( 0100 qnqq IIdiagI = , ),.....( 0100 dndd IIdiagI = ,  

0diI , 0qiI  are the values of 
diI , qiI  respectively at the operating point. 

ni ,,1 L=  ,   � is the number of generators. 

From Equation (5.23) the generator current in � � � axes is, 

( )∑
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+
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


 ′−+′=+=

n
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qjdjqj
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)( ijj
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j

qjijd eIxxeEY
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 (5.60) 

Denoting  

ijd
jβ

eYY ijdijd = ,  (5.61) 

( )Gidi IrealI = , ( )Giqi IimagI =  (5.62) 

ijdijijd βδδδ +−=
 (5.63) 

Expanding Equation (5.60) into the � � � axes components, 

[ ]qjijddjqj

n

j

ijdqjijddi IxxEYI δδ cos)(sin
1

′−+′−=∑
=  (5.64) 

[ ]qjijddjqj

n

j

ijdqjijdqi IxxEYI δδ sin)(cos
1

′−+′=∑
=  (5.65) 

In linearized form Equations (5.64) and (5.65) can be written as, 

qqqqqq IMEEδCI ∆+′∆+∆=∆  (5.66) 
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qdqddd IMEEδCI ∆+′∆+∆=∆  (5.67) 

where, 
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From (5.66) 

qqqq EFδDI ′∆+∆=∆  (5.70) 

where  

qqq CLD 1−= , qqq ELF 1−= , and qq ML −= 1 ,  

iiddiqiiidiiq xxYL δsin)(1 '−−= , ijxxYL ijddjqjijdqij ≠−−= δsin)( '
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Substituting Equation (5.70) into Equation (5.67) 
dI∆  can be written as: 

qddd EFδDI ′∆+∆=∆  (5.71) 

where 

qddd DMCD += , qddd FMEF +=  

Substituting Equations (5.70) and (5.71) into Equations (5.55-5.59), the integrated 

linearized power system model is formed also known as the Phillips-Heffron model of 

the multi-machine power system, and in state space form is given in Equation (5.72) 

while the block diagram for the  
thi  machine is represented in Figure 5.9 [104].  
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 (5.72) 

where, 

qdqdq
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 (5.75) 

The K-constants are the functions of the operating point and system parameters.  
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The linearized system of equations for the multi-machine, when the network 

variables are transformed by second method are given by the same set of      

equations, i.e., Equations (5.54)-(5.75), except Equations (5.54) and (5.63) which are 

modified according to Equations (5.43) and(5.50) with respect to the second method 

of transformation and are given as: 
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&  (5.76) 
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Figure 5.9: Block diagram of thi  machine in linearized multi-machine power system 

The state matrix formed from the # -constants computed from using either 

transformation will finally give the same set of eigenvalues. The following section 

gives the results of the nonlinear simulation of multi-machine power system. 
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5.4 Case Study: Multi-Machine Power System 

Consider the 3-machine, 9-bus Western System Coordinating Council (WSCC) power 

system [17] shown in Figure 5.10. The system parameters are listed in Table 5.1 and 

the generator and exciter data are given in Table 5.2.  

 

Figure 5.10: 3-machine 9-bus power system 

Table 5.1: WSCC power system parameters 

 
Bus no. 

Impedance 

R X 2/CB  

Transmission lines  Transformer  reactance   

1 1-4 0 0.0576  

2 2-7 0 0.0625  

3 3-9 0 0.0586  

4 4-5 0.01 0.085 0.088 

5 4-6 0.017 0.092 0.079 

6 5-7 0.032 0.161 0.153 

7 6-9 0.039 0.17 0.179 

8 7-8 0.0085 0.072 0.0745 

9 8-9 0.0119 0.1008 0.1045 

Loads  MW MVAR  

1 5 125 50  

2 6 90 30  

3 8 100 35  
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Table 5.2: Generator and exciter data 

Parameters Generator 1 Generator 2 Generator 3 '(secs) 23.64 6.4 3.01 
 0 0 0 E� (pu) 0.146 0.8958 1.3125 E′� (pu) 0.0608 0.1198 0.1813 E� (pu) 0.0969 0.8645 1.2578 3′�x (pu) 8.96 6.0 5.89 #$ (pu) 30 30 10 3$ (sec) 0.05 0.05 0.05 

 

Initially the admittance matrix Y of the power system network is formed which is 

given by Equation (5.78). The admittance matrix Equation (5.78) includes the 

admittance due to the loads. The load flow is performed on the system where the 

results are given in Table 5.3 and the transmission line flows are given in Table 5.4. 

Bus 1 is taken as the slack (swing) bus for the load flow. 

 

Table 5.3: The load flow results of the WSCC 3-machine 9-bus system 

 Bus Voltage (p.u.) )Y(p.u.) �Y(p.u.) �)7(p.u.) ��7(p.u.) 

1 (swing) 1.04 0.7164 0.2705     

2 (P-V) 1.025y9.28x 1.6300 0.0665      

3 (P-V) 1.025y4.665x 0.85 - 0.1086    

4 (P-V) 1.0258y � 2.22x     

5 (P-Q) 0.9956y�3.99x   1.25 0.5 

6 (P-Q) 1.0127y�3.7x   0.9 0.3    

7 (P-Q) 1.0258y 3.72x     

8 (P-Q) 1.0159y0.73x   1.0 0.35 

9 (P-Q) 1.0324y1.97x     

Table 5.4: The power flows in each transmission lines 

Transmission lines P Q 

1-4 0.7164 0.2705 

2-7 1.6300 0.0665 

3-9 0.8500 -0.1086 

4-5 0.4094 0.2289 

4-6 0.3070 0.0103 

5-7 -0.8432 - 0.1131 

6-9 -0.5946 - 0.1346 

7-8 0.7638 - 0.0080 

8-9 -0.2410 - 0.2430 
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 (5.78) 

From the load flow results, the initial operating point is computed. The following 

two tables give the initial conditions computed as given in Sections 5.2.4.1 and 

5.2.5.1 with respect to the two transformations. Table 5.5 gives the initial conditions 

when the first method of transformation is used. Table 5.6 gives the initial conditions 

when the second method is used. The values are in p.u. except where mentioned. 

Table 5.5: Initial conditions computed using the first method of transformation  

State variable Machine 1 Machine 2 Machine 3 

δ  in radians 0.06258 1.06637 0.94486 
'

qE  1.05636 0.78817 0.76786 

fdE  1.08215 1.78932 1.40299 

mP  0.71641 1.63 0.85 

refV  1.07607 1.08464 1.16529 

Table 5.6: Initial conditions computed using the second method of transformation  

State variable Machine 1 Machine 2 Machine 3 

δ  in radians 1.50821  0.50443    0.62593 
'

qE  1.05636 0.78817 0.76786 

fdE  1.08215 1.78932 1.40299 

mP  0.71641 1.63 0.85 

refV  1.07607 1.08464 1.16529 
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The power system is reduced to the generator buses by eliminating the load buses 

as described in Section 5.2.2. The computed reduced admittance matrix redY of the 

transmission network is given by Equation (5.79) using which dY  is calculated from 

Equation (5.22) and given by Equation (5.80).The reduced system containing only the 

generator buses is depicted in Figure 5.11. 
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2.2748 + 0.00462.2570 + 0.09654.6957- 1.1051

jjj

jjj

jjj

redY  (5.79) 
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Figure 5.11: The reduced power system network 
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

=

2.3681 - 0.27701.0879+ 0.2133  1.2256 + 0.2096

1.0879 + 0.2133   2.7239 - 0.4200 1.5129 + 0.2871

1.2256 + 0.20961.5129 + 0.28712.9883 - 0.8455

jjj

jjj

jjj

dY  (5.80) 

Each generator in the system has four state variables ( )fdq EE ∆∆∆∆ ,,, 'ωδ . The K-

constants are computed and the state matrix is formed. In matrix notation, the 

differential equations describing the linearized power system is given in Equation 

(5.81). The numerical values are computed using the initial operating point values 

listed in Table 5.5.  

The state matrix formed, using the values in Table 5.6, is given by Equation 

(5.82). The two matrices only differ with respect the first six columns. The 
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magnitudes of the computed values in these columns are same, however, the signs are 

different. This is due to the difference in the signs of the rotor angle differential 

equation and ijdδ  as explained in Section 5.3. The values in the other columns remain 

unchanged.  

The dynamic properties of the power system are determined from the nature of the 

eigenvalues of the state matrix. Consequently the eigenvalues computed from either 

state matrix give same results. The eigenvalues are listed in Table 5.7. The power 

system consists of real and complex eigenvalues. The system is stable as all the 

eigenvalues have negative real part.  
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Two zero eigenvalues are obtained due to the redundant state variables [2], [17]. 

The state matrix formed from the state equations uses absolute changes in machine 
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rotor angle and speed as state variables, and the system matrix does not contain an 

infinite bus thus, having no reference for the angles.  

Due to the lack of uniqueness of the absolute rotor angle one of the zero 

eigenvalue is formed. The rotor angle redundancy can be eliminated by choosing one 

of the machines as a reference and expressing the other machine angles with respect 

to this reference. With such a formulation the order of the system will be reduced by 

one. The second zero eigenvalue is associated with zero damping.  

The modes having low damping ratio contribute to the power system oscillations 

in the event of a disturbance. There are two pairs of complex conjugate eigenvalues 

having low damping ratio. The modes 4 and 5 have low damping ratio of 0.0289 

(0.3384/11.7007) with frequency equal to 1.8622 (11.7007/2π) Hz and similarly the 

modes 6 and 7 have a low damping ratio of 0.0376 with frequency of 1.3096 Hz. In 

order to determine which states contribute dominantly to the modes, the participation 

factors are computed.  

Table 5.7: Eigenvalues of WSCC power system 

No. Eigenvalues Damping Ratio Frequency 

1 -19.5077 1 0 

2 -17.0406 1 0 

3 -15.6814 1 0 

4 -0.3384 +j11.7007 0.0289 1.8622 

5 -0.3384 - j 11.7007 0.0289 1.8622 

6 -0.3095 + j 8.2283 0.0376 1.3096 

7 -0.3095 - j 8.2283 0.0376 1.3096 

8 -4.4453 1 0 

9 -2.8411 1 0 

10 -0.4701 1 0 

11 0 - - 

12 0 - - 

 

Participation factors determine which state variables significantly participate in a 

selected eigenvalue [2], [17]. The right eigenvectors account for the mode shape, as 

explained in Section 4.5. The left eigenvectors define the state variable associated 

exclusively with the mode. The right and left eigenvector are computed as explained 

in Section 4.5. The participation factors can be seen as right eigenvectors weighted by 
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left eigenvectors. The participation factor of the ��| state variable in the ��| mode is 

defined as: 
ikkikip ψφ=  , ni ,,1 L= , nk ,,1 L= , where, 

kiφ  is the ��|  entry of the 

right eigenvector 
iφ  and 

ikψ  is the ��|  entry of the left eigenvector 
iψ . 

kiφ  is the 

measure of the activity of ��|  state variable in the ��|  mode and 
ikψ  weighs the 

contribution of this activity to the mode. In matrix form the participation matrix is: 

[ ]npppP L21=  (5.83) 

with 
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The product 
kip  measures the net participation. The participation factor is a 

dimensionless quantity. The sum of the participation factors associated with any mode 
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n
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 or with any state variable ∑
=

n

k

kip
1

 is equal to 1. The participation factors can be 

further normalized by making the largest of all the participation factor values equal to 

unity. Table 5.8 gives the normalized participation factors of all the eigenvalues and 

Table 5.9 gives the dominant states of the eigenvalues concluded from the 

participation factors. On observation of the participation factors in Table 5.8 and 

Table 5.9, it is noted that the machine 3 rotor angle and speed contribute more to 

modes 4 and 5, whereas, machine 2 rotor angle and speed contribute mainly to modes 

6 and 7.  

In this WSCC system, generator 1 is chosen as the slack bus or the reference bus. 

As such absolute rotor angle and rotor speed state variables of this machine contribute 

to the zero eigenvalues. This is also indicated while calculating the participation 

factors as given in Table 5.8. For example, the data given in columns 11 and 12 in 

Table 5.8 correspond to the eigenvalues 11 and 12 in Table 5.7. The state variables 

having highest participating factor in these modes are deducted from the respective 

rows having the value one. Similarly the first eigenvalue -19.5077 in Table 5.7 
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corresponds to the first column in Table 5.8. The highest normalized participation 

factor value given by one is in the last row which corresponds to the state variable

3fdE . As such this state variable contributes more to this eigenvalue.  

Table 5.8: The normalized participation factors of all the eigenvalues 

Eigenvalues 

States 1 2 3 4 5 6 7 8 9 10 11 12 

1δ  0 0 0 0 0 0.4004 0.400 0 0 0 0 1 

2δ  0 0 0 0.1868 0.1868 1 1 0 0 0 0 0.2979 

3δ  0 0 0 1 1 0.1381 0.138 0 0 0 0 0.1548 

1ω  0 0 0 0 0 0.4004 0.400 0 0 0 1 0 

2ω  0 0 0 0.1868 0.1868 1 1 0 0 0 0.2979 0 

3ω  0 0 0 1 1 0.1381 0.138 0 0 0 0.1548 0 

'

1qE  0 0 0.277 0 0 0 0 1 0 0 0 0 

'

2qE  0 0.178 0 0 0 0.1131 0.113 0 1 0.097 0 0 

'

3qE  0 0 0 0.066 0.066 0 0 0 0.1082 1 0 0 

1fdE  0 0 1 0 0 0 0 0.2795 0 0 0 0 

2fdE  0.1052 1 0 0 0 0 0 0 0.1564 0 0 0 

3fdE  1 0.109 0 0 0 0 0 0 0 0 0 0 

 

To increase the damping of these modes, two PSS’s are placed at machine 2 and 3 

thus, providing a supplementary damping in the excitation of the generators in phase 

with the rotor speed. The PSS parameters are designed using phase compensation 

method as explained in Chapter 4, to increase the damping ratio of the concerned 

modes to 0.1. PSS at machine 2 is designed to increase the damping ratio of the 

modes 6 and 7, and PSS at machine 3 is designed for increasing the damping ratio of 

modes 4 and 5.  The parameters of the two PSS are given in Table 5.10.  The 

eigenvalues computed when the PSS is included is shown in Table 5.11. Since each 

PSS contributes three states, the order of system has increased from 12 to 18 when the 

two PSS’s are included in the power system. The damping ratios of the concerned 

modes have been increased as shown with the PSS’s placement in the system. The 

eigenvalue analysis has been performed on the system with and without the PSS. It is 

seen that the PSS improves the damping of the concerned modes.  
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Table 5.9: Dominant states of the eigenvalues  

No. Eigenvalues Dominant states 

1 -19.5077 3fdE  

2 -17.0406 2fdE  

3 -15.6814 1fdE  

4 -0.3384 + j 11.7007 3ω  

5 -0.3384 - j 11.7007 3δ  

6 -0.3095 + j 8.2283 2ω  

7 -0.3095 - j 8.2283 2δ  

8 -4.4453 
'

1qE  

9 -2.8411 
'

2qE  

10 -0.4701 
'

3qE  

11 0 1ω  

12 0 1δ  

Table 5.10: Parameters of the PSS’s 

Table 5.11: Eigenvalues of the power system with PSS’s 

No. Eigenvalues Damping Ratio Frequency Dominant states 

1 -54.6188 1 0  

2 -26.8409 1 0  

3&4 -21.9227 ±j 10.6709 0.8991 1.6983  

5&6 -15.7227 ±j 5.8101 0.938 0.9247  

7 -15.6981 1 0  

8&9 -1.3138 ± j 11.1949 0.1166 1.7817 3δ , 
3ω  

10&11 -0.6606 ±j 8.4186 0.0782 1.3399 2δ , 2ω  

12 -4.4484 1 0  

13 -2.6394 1 0  

14&15 -0.4258 ±j 0.2684 0.8459 0.0427  

16 -0.1 1 0  

17 0 - -  

18 0 - -  

 

 Gain 1T  2T  3T  
4T  

Machine 2 1.8807 0.3002 0.0492 0.3002 0.0492 

Machine 3 3.5843 0.3001 0.0243 0.3001 0.0243 
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To evaluate the performance of the closed loop system with the designed PSS, 

nonlinear simulations are conducted. The nonlinear simulation is conducted in the 

following procedures.  

Step 1) Initially the load flow is performed using the generated powers, load 

powers, and transmission network data, to obtain the steady state operating point. 

Step 2) The initial conditions of the dynamic states are computed from the 

operating point and the machine data. 

Step 3)  Using the initial conditions the nonlinear dynamic equations of the 

power system are simulated. 

The multi-machine power system is simulated using the nonlinear differential and 

algebraic equations of the power system of Equations (5.1-5.4) and Equation (5.23) or 

(5.50). The simulations have been carried out by numerical integration and as well as 

by MATLAB/SIMULINK. The numerical integration of the differential equations is 

performed using ode45 functions in Matlab. The program is written in M-file. The 

MATLAB/SIMULINK block diagram is given in the Appendix C. Both simulations 

approaches give same results. Under steady state, when no disturbance is present in 

the system, the responses of relative angles and speeds are given in Figure 5.12. Since 

the power system has no infinite bus, and, as such no reference, the responses are 

given relative to each other, and in this study it is with respect to machine 1. 

 In Figure 5.12, 2112 δδδ −= , is the relative angle between machine 1 and 2. 

Similarly the other parameters, 
13δ , 12ω , and 

13ω  are defined. Now the disturbance is 

initiated in the form of three phase fault near bus 7 at the end of line 5-7, of the power 

system in Figure 5.10. The three phase fault is applied at 0.1s and cleared after 0.1s. 

During fault, since 07 ≡V , the rows and columns of the admittance matrix of the 

prefault system Equation (5.78) corresponding to bus 7 will be deleted [16], [17] and 

is given by Equation (5.84). Then the load buses are eliminated and the formulated 

reduced matrix is given by Equation (5.85). The power system network during fault 

can be visualized as in Figure 5.13 and the reduced system network during fault 
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containing only the generator buses, in Figure 5.14. These figures are devised from 

the admittance matrices.  

 

 

Figure 5.12: Responses of relative angle and speed during steady state operation 
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Figure 5.13: The power system network during fault condition. 

 

Figure 5.14: The reduced power system network during fault condition 

After the fault is cleared, the faulted line is either switched back to service (i.e., 

the original prefault system is restored) or opened (i.e., postfault system with line 5-7 

removed from the network), depending on which the admittance matrix is modified. If 

the line is removed for the postfault system as shown in Figure 5.15, then the 

admittance matrix of the network is again computed with the line 5-7 removed and 

then the reduced admittance matrix is calculated and is given by Equation (5.86). The 

reduced postfault system network will appear to be similar to Figure 5.11. 
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2.3516 - 0.26911.2067 + 0.19211.0637 + 0.1824

1.2067 + 0.19212.0151 - 0.37440.7063 + 0.1290

1.0637+ 0.18240.7063 + 0.1290  2.2966 - 1.1386

,

jjj

jjj

jjj

afterfaultdY  (5.86) 
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Figure 5.15: The power system network after fault clearance with transmission line  

5-7 removed. 

The responses for 12δ ,
13δ , power generated by the generators, 12ω , and 

13ω are 

shown in the following Figures 5.16-5.20, respectively for three-phase fault. The 

damping control effort provided by the PSS signal is shown clearly in the figures in 

terms of the overshoot and settling time. The results validate the eigenvalue analysis. 

 

Figure 5.16: Relative angle 12δ  response with and without PSSs 
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Figure 5.17: Relative angle 
13δ  response with and without PSSs 

 

Figure 5.18: Generated power response of each machine with PSSs 
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Figure 5.19: Relative angle 12ω  response with and without PSSs 

 

Figure 5.20: Relative angle 
13ω  response with and without PSSs 
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Figure 5.21: Responses of relative angles when three phase fault occurs and line is 

opened after the clearance of fault 

 

Figure 5.22: Responses of relative angles with change in mechanical input at  

machine 1 
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Figures 5.16-5.20 show the responses when a three phase fault occurs at bus 7, 

and the prefault system is restored after fault clearance. Figure 5.21 shows the 12δ  and 

13δ  response when the line 5-7 is opened after fault clearance, in the presence of 

PSSs. The settling time increases when the postfault system involves the opening of 

the line compared the responses in Figures 5.16-5.17, when the prefault system is 

restored.   

Figure 5.22 shows the rotor angle responses when the disturbance is in the form of 

change in mechanical input at machine 1. A step change of 10% is given at 

mechanical input 
1mP  for a period of 0.1s. The settling time of the oscillations is less 

comparatively.  

Figure 5.23 gives the responses due to line switching between bus 8 and bus 9 

with PSSs. The response of terminal voltages of the three machines due to line 

switching is given in Figure 5.24. The observation of the responses of the multi-

machine power system indicates that the PSS provides sufficient damping to the 

oscillations. 

 

Figure 5.23: Responses of relative angles due to line switching in line 8-9 
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Figure 5.24: Responses of terminal voltages due to line switching in line 8-9 

5.5 Summary 

In this chapter, the multi-machine power system modeling is presented. The third-

order synchronous generator model has been used along with the excitation system 

model for the multi-machine system. Models of load and power balance equations in 

the network are introduced. The transformation of the network into individual 

machine reference frame has been discussed.  

The linearized Phillips-Heffron model of multi-machine power system is 

presented. A case study of multi-machine power system is taken to investigate the 

power system stability. Eigenvalue analysis and nonlinear simulations are carried out 

to evaluate the effectiveness of the PSS control in enhancing the damping of the 

oscillatory modes. The following chapter presents the mathematical modeling of 

multi-machine power system with IPFC.  
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CHAPTER 6 

 

MULTIMACHINE POWER SYSTEM WITH IPFC 

6.1 Introduction 

Large power systems typically exhibit swing modes which are associated with the 

dynamics of power transfers and involve groups of machines oscillating relative to 

each other due to inadequate system damping. Traditionally, PSS’s have been 

designed individually for each generator that is likely to be affected by these 

oscillations to dampen the oscillations. However, due to the complexity of present day 

power systems, it experiences multiple modes of oscillations with different 

frequencies; therefore, the design of an effective PSS has become extremely difficult. 

In this interest, FACTS devices were installed in the system to improve the 

transmission capability and additionally utilized for damping of power system swing 

oscillations.  

IPFC based damping controller design requires adequate mathematical 

representation of power system including the FACTS device for power system 

stability studies. In this chapter, the dynamic models, both nonlinear and linearized, 

for multi-machine system installed with IPFC are presented. The effectiveness of the 

IPFC based controllers, in controlling the power flow and in damping power system 

oscillations is shown by case studies. 

6.2 Modeling of Multi-Machine Power System Incorporating with IPFC 

In general, it is assumed that in an �-machine power system, an IPFC is installed on 

the branches � � � and � � �, as shown in Figure 6.1. Figure 6.2 gives the equivalent 

model of IPFC in the �-machine power system. 
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Figure 6.1: A �-machine power system installed with IPFC 
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Figure 6.2: Equivalent model of IPFC installed in �-machine power system 

The network admittance tY  is formed before the IPFC has been installed, keeping 

n   generator nodes along with the nodes �, �, �.  
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The network equations are given by: 







































=



















G

k

j

i

GGGkGjGi

kGkkkjki
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I
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 (6.1) 

where [ ]TGnGGG IIII L21= , [ ]TGnGGG VVVV L21= . The dimensions of the 

vectors kGjGiG YYY ,,  are n×1  and those of the vectors GkGjGi YYY ,,  are 1×n , 

respectively, and GGY  is an nn×  matrix. With the installation of IPFC between the 

branches � � � and � � �, the network equations are modified as follows: 

021 =+++ GiGi

'

ii VYIIVY  (6.2) 

01 =++− GjGk

'

jkj

'

jj VYVYIVY  (6.3) 

02 =+−+ GkGk

'

kkj

'

kj VYIVYVY  (6.4) 

GGGGkGkjGjiGi IVYVYVYVY =+++  (6.5) 

where  ikijiiii yyYY −−=′ , jijjjj yYY −=′
 
and kikkkk yYY −=′  

From Figure 6.2, the current in the IPFC branches can be written as: 

seijjsei ZVVVI /)( 11 −−=  (6.6) 

seikksei ZVVVI /)( 22 −−=  (6.7) 

The Equation (6.6) in � � � axis can be written as follows: 









−−+=+−−=+

⇒

−−=

jjjij
eVe

vm
eVbgbgVVVii

YVVVI

j

dc

iijijijijjseiqd

seijjsei

θθθ 1

2
)())((

)(

1

111

11

jjj

 



170 

 

)]sin(cos
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  (6.8) 

Similarly transforming Equation (6.7) and separating the real and imaginary parts: 
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
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Substituting the expressions of Equations (6.6) and (6.7), into Equations (6.2-6.4) 

the IPFC bus voltages ,,, kji VVV can be written in matrix form as follows: 

G

kG

jG

iG

se

se

seik

seij

seikseij

t

k

j

i

V

Y

Y

Y

V

V

Z

Z

ZZ

Y

V

V

V

















+































−−

−=
















−

2

11

1
0

0
1

11

 (6.13) 

where, 


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Substituting the voltages ,,, kji VVV from Equation (6.13) into Equation (6.5) and 

eliminating them the generator currents can be written as follows: 

2211 seseseseGGG VYVYVYI ++=  (6.14) 

where  
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The Equations (6.14-6.17) represent the generator currents in terms of the network 

parameters, terminal voltages and IPFC parameters on common reference frame. 

Considering the machine dynamics, the nonlinear model of the complete multi-

machine power system with IPFC is developed. 

6.3 Nonlinear Model of Multi-Machine Power System Installed with IPFC 

The th
i  machine dynamics in � machine power system is given as: 

)1(0 −= ii ωωδ&  (6.18) 

i

Dieimi

i
M

PPP )( −−
=ω&  (6.19) 

( )( )dididiqifdi

doi

qi IxxEE
T

E ′−−′−=′
'

1&  (6.20) 
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( ))(
1

itirefiAifd

iA

ifd VVKE
T

E −+−=&  (6.21) 

where,  

tqiqitdidiei VIVIP +=  (6.22)

 

tqitditiqidii VVVIII jj +=+= , , )1( −= iDi DP ω , (6.23) 

didiqitqiqiqitdi IxEVIxV ′−′== ;  (6.24) 

where, ni L,2,1= ,  n is the number of generators  

The dynamics of the IPFC is described by Equations (6.25-6.27) which has been 

derived in Section 3.3.  

The injected voltages are given by: 

)sin(cos 1112
1

11
1 θθ

θ
j+== mveVV dcsese

j
  (6.25) 

)sin(cos 2222
1

22
2 θθ

θ
j+== mveVV dcsese

j
 (6.26) 

The DC capacitor voltage is given by: 

)sincos(
4

3
)sincos(

4

3
2222

2
1111

1 θθθθ qd

dc

qd

dc

dc ii
C

m
ii

C

m
v +++=&  (6.27) 

The network equation described by Equation (6.14) which is on the 
 � � axis 

frame is transformed into the individual machine reference frame 
ii qd −  axis frame 

using the second type of transformation as explained in Section 5.2.5. Consequently 

the terminal voltages of the generators for the n machine power system in common 

axis frame or 
 � � axis frame is described by Equation (5.44), which is again given 

in Equation (6.28).  

q

j

dqGdq

j

G IexxIxEeV δδπ −′−+′−′= − )()( 2/ j  (6.28) 
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Consequently the rotor angle Equation (6.18) is modified as explained in Section 

5.2.5 and is given by:  

)1(0 −−= ii ωωδ&  (6.29) 

Substituting Equation (6.28) in Equation (6.14), 
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where,  
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1
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−=  (6.31) 

dY ′  is an � } � dimension matrix, 
AY  and  

BY  are vectors of size  � } 1.  

In d-q axis form the generator currents Equation (6.30) can be expressed as: 
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Denoting  

)(
ijd

βj

eYY ijdjdi
′=′   (6.34) 

)( jAβj

eYY jAjA = , 
)( jBβj

eYY jBjB =  (6.35) 

ijdjiijd βδδδ +−=  (6.36) 

1θβ +++= jAijdiijA βδδ  (6.37) 

2θβ +++= jBijdiijB βδδ  (6.38) 
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Separating the real and imaginary parts of Equation (6.33) the direct and 

quadrature components of the generator currents are obtained as follows: 

 ( )idi IrealI = , ( )iqi IimagI =  

[ ]ijBsejBijAsejAqjijddjqj

n

j
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 (6.40) 

Equations (6.18-6.27) and Equations (6.39-6.40) together constitute the nonlinear 

model of the power system installed with IPFC. The nonlinear equations of the system 

are linearized around the operating point obtained from load flow studies to form the 

Phillips Heffron model of the multi-machine power system incorporated with IPFC in 

the following section. 

6.4 Linearized Phillips-Heffron Model of a Multi-Machine Power System 

Including IPFC in State Space Form 

The linear dynamic model of the multi-machine power system with IPFC is obtained 

by linearizing the nonlinear model around an operating point of the power system. 

The operating point is obtained from load flow analysis. The linearized form of 

Equations (6.18-6.24) is as follows: 

ωωδ ∆=∆ 0
&  (6.41)  
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22
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)2( iHdiagM = , )( iDdiagD = , )( '

00 idd TdiagT =′ , 

)( did xdiagx = , )( qiq xdiagx = , )( did xdiagx ′=′   

),.....( 0100 qnqq IIdiagI = , ),.....( 0100 dndd IIdiagI = ,  

0diI , 0qiI  are the values of 
diI , qiI  respectively at the operating point. 

ni ,,1 L=  ,   � is the number of generators.  
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The � � � axis components of the generator currents Equations (6.39)-(6.40) are 

linearized and represented in matrix form as: 
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θδ

∆+∆+

∆+∆+∆+∆+′∆+∆=∆
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 (6.48) 
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From Equation (6.49) qI∆  can be written as:  
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where  

q

-

qq CLD 1= , q

-

qq ELF 1= , q

-

qq PLN 1=  

qA

-

qAq GLR 1= , qA

-

qAq HLS 1= , qB
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qBq GLR 1= , qB

-

qBq HLS 1=  and 
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qq MIL −= , iiddiqiiidiiq xxYL δsin)(1 ′−′−= , ijxxYL ijddjqjijdijq ≠′−′−= δsin)(  

Substitute qI∆ from Equation (6.50) into Equation (6.48) to get: 
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∆+∆+∆+′∆+∆=∆
 (6.51) 

where 

qddd DMCD += , qddd FMEF += , qddd NMPN +=  

AqddAAd RMGR += , AqddAAd SMHS += ,  

BqddBBd RMGR += , BqddBBd SMHS += ,  

Substituting Equations (6.50) and (6.51) into Equations (6.45-6.47) the following is 

obtained:  
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The linearized form of DC capacitor voltage of Equation (6.27) is given by 
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 (6.55) 

From Equations (6.6) and (6.7) 

))(( 11 ijijjsei bgVVVI j+−−=  (6.56) 

))(( 22 ikikksei bgVVVI j+−−=  (6.57) 
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The voltages kji VVV ,,  are written in terms of the terminal voltages of those 

generator buses to which these IPFC buses are connected. However, if the IPFC buses 

kji ,,  are the generator buses, then kjilVV tll ,,, == . Then  

kjilVVV tqltdltl ,,, =+= j , (IPFC buses) (6.58) 

kjilIxEVIxV dldlqltqlqlqltdl ,,,; =′−′==  (6.59) 

In linearized form Equation (6.59) can be represented as: 

kjilIxEVIxV dldlqltqlqlqltdl ,,,; =∆′−′∆=∆∆=∆  (6.60) 

where kjilII dlql ,,,; =∆∆   are obtained from Equations (6.50) and (6.51). 

Equation (6.56) in � � � axis can be written as: 

)))(()()(( 1111 ijijtqjtdjqsedsetqitdiqd bgVVVVVVii jjjjj ++−+−+=+  (6.61) 
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Substituting Equation (6.59) in Equations (6.62) and (6.63) and the resultant 

equations are linearized to obtain qd ii 11 , ∆∆ . Similarly qd ii 22 , ∆∆  are obtained from 

Equation (6.57) which are finally substituted in Equation (6.55) to get, 

22221111987 θθδ θθ ∆+∆+∆+∆+∆−′∆+∆=∆ ccmccmdcqdc KmKKmKvKEKKv&

 (6.64) 

where 
7K , 

8K  are +1 } �. dimension vectors and the other coefficients in (6.64) are 

scalars. Substituting Equations (6.52-6.54) in Equations (6.41-6.44), the linearized 

Phillips Heffron model of the power system installed with IPFC in state space form is 

given by Equation (6.65). The model involves the DC capacitor dynamics. 
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 (6.65) 

The state matrix is utilized to determine the eigenvalues and determine the 

oscillations modes present in the system. The following section gives the analsysis of 

multi-machine power system with IPFC. 

6.5 Case Study: Multi-Machine Power System With IPFC 

The 3 machine 9-bus (WSCC) power system shown in Figure 5.10 [17] is considered 

for the stability analysis. The IPFC is placed in the WSCC system and is analyzed 

with it’s the presence. The IPFC is placed in the branches 7-5 and 7-8 as shown in 

Figure 6.3. In Figure 6.3, IPFC bus sending end � is bus 7, the receiving end buses � 
and � are represented by buses 5 and 8 respectively. The IPFC is placed to regulate 

the power flows in its branches at the specified values 57PPji = = 0.8432 p.u.      

87PPki = = 0.7590 p.u., 57QQ ji = = 0.1157 p.u. The load flow is performed and the 

results are given in Table 6.1.   
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∠
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Figure 6.3: WSCC system with IPFC 

 

Table 6.1: The load flow results of the WSCC 

 Bus Voltage (p.u.) )Y(p.u.) �Y(p.u.) �)7(p.u.) ��7(p.u.) 

1 (swing) 1.04 0.7175 0.1576   

2 (P-V) 1.025y9.6274x 1.63 0.0188   

3 (P-V) 1.025y4.9268x 0.85 0.0577   

4 (P-V) 1.0287y4.08x     

5 (P-Q) 1.0162y�4.02x   1.25 0.5 

6 (P-Q) 0.9843y�1.056x   0.9 0.3 

7 (P-Q) 1.0229y 2.204x     

8 (P-Q) 1.0133y�3.62x   1.0 0.35 

9 (P-Q) 1.032y�2.21x     

1seV = 0.0445  p.u. 
2seV = 0.0533  p.u. 0

1 172.5895=θ  0

2 14.4399-=θ  

57PPji = = 0.8432 p.u.      
87PPki = = 0.7590 p.u.        57QQ ji = = 0.1157 p.u. 

 

Table 6.1 gives the voltages and phase angles at each bus, power flowing through 

the IPFC branches represented by jiP , jiQ ,
 kiP  and the injected voltages  

1seV  and 
2seV  

with their corresponding phase angles 1θ  and 2θ  of VSCs of IPFC. The load flow 

results show the IPFC regulates the power flows to the set points in its branches 

serving its primary function. The initial operating point is computed from the load 

flow results and Table 6.2 gives the initial values computed. The values are given in 

p.u. except where indicated. 
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Table 6.2: Initial conditions computed 

State variable Machine 1 Machine 2 Machine 3 

δ  in radians 1.5075 0.4800 0.7241 
'

qE  1.0498 0.7719 0.8535 

fdE  1.0664 1.7644 1.5464 

mP  0.7175 1.63 0.85 

refV  1.0755 1.0838 1.1796 

IPFC parameters 

dcv  2 dcC  0.2 

1m  0.0445 2m  0.0533 

 

The power system is reduced to the generator buses and the IPFC buses by 

eliminating the load buses and as shown in Figure 6.4. The computed reduced 

admittance matrix redY of the transmission network is given by Equation (6.66) using 

which dY ′ , 
AY  and 

BY  are calculated from Equation (6.31) and are given by Equations 

(6.67-6.69).  
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2seV

 

Figure 6.4: Reduced system containing the generator and IPFC buses  

The #-constants are calculated and the eigenvalues are computed and given in 

Table 6.3. There are a total of 13 eigenvalues with three pair of complex eigenvalues 

which contribute to oscillations and remaining are real eigenvalues. The participation 

factors have been computed and the state variables contributing to these oscillation 

modes have been determined. Table 6.4 gives the normalized participation factors of 

all the eigenvalues. The oscillations modes 4 & 5 and 6 & 7 have the least damping 

ratio as seen in Table 6.3. On observation of Table 6.4, it is noted that these 

oscillations modes 4 & 5 and 6 & 7 are contributed by machine 3 and machine 2, 

respectively. Compare the results with Table 5.7. It is observed that the power system 

without IPFC and with IPFC, both have two pair of oscillation modes 4 & 5 and 6 & 7 

in which the machine 3 and 2 have highest participation factor. This validates the 

mathematical model of the power system with IPFC. 

To increase the damping of these modes, initially the PSS is installed in the 

system. The design of PSS and the eigenvalues with PSS of the WSCC system 

without IPFC are given in Chapter 5. Using those PSS’s whose parameters are given 

in Table 5.10, the WSCC power system is installed with the two PSSs at machine 2 

and 3. The eigenvalues of the WSCC system with IPFC in the presence of the two 

PSS’s are given in Table 6.5.  
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Table 6.3: Eigenvalues of WSCC power system with IPFC 

No.  Eigenvalues  Damping ratio  Frequency Dominant states 

1 -19.3 1 0 3fdE  

2 -17.1802 1 0 2fdE  

3 -15.6798 1 0 1fdE  

4&5 -0.3009 ±j11.2735 0.0267 1.7942 3δ
  3ω  

6&7 -0.2933 ±j j 8.1607 0.0359 1.2988 2δ  2ω  

8 -4.4731 1 0 
'

1qE  

9 -2.7315 1 0 
'

2qE  

10 -0.6816 1 0 
'

3qE  

11&12 -0.0174 ±j j 0.2109 0.0823 0.0336  1δ   1ω  

13 -0.0196 1 0 dcv  

Table 6.4: The participation factors of the eigenvalues  

Eigenvalues 

States 1 2 3 4 5 6 7 8 9 10 11 12 13 

1δ  0 0 0 0 0 0.427 0.427 0 0 0 1 1 0 

2δ  0 0 0 0.212 0.212 1 1 0 0 0 0.305 0.305 0 

3δ  0 0 0 1 1 0.164 0.164 0 0 0 0.157 0.157 0 

1ω  0 0 0 0 0 0.427 0.427 0 0 0 1 1 0 

2ω  0 0 0 0.212 0.212 1 1 0 0 0 0.305 0.305 0 

3ω  0 0 0 1 1 0.164 0.164 0 0 0 0.157 0.157 0 

'

1qE  0 0 0.277 0 0 0 0 1 0 0 0 0 0 

'

2qE  0 0.168 0 0 0 0.109 0.109 0 1 0.061 0.155 0.155 0 

'

3qE  0 0 0 0.064 0.064 0 0 0 0.125 1 0.366 0.366 0 

1fdE  0 0 1 0 0 0 0 0.281 0 0 0 0 0 

2fdE  0.125 1 0 0 0 0 0 0 0.148 0 0 0 0 

3fdE  1 0.128 0 0 0 0 0 0 0 0 0 0 0 

dcv  0 0 0 0 0 0 0 0 0 0 0 0 1 

 

The damping ratios of the concerned oscillation modes have increased with the 

PSS placement in the system as shown in Table 6.5. Complex eigenvalues 11 & 12 in 

Table 6.3 have an oscillation frequency equal to 0.033 Hz, and they are contributed by 

machine 1. The damping ratio of these oscillation modes has also been increased with 

the presence of the two PSSs.  
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Table 6.5: Eigenvalues with PSS 

Eigenvalues  Damping ratio  Frequency Dominant states 

-54.1642 1 0  

-26.8454 1 0  

-22.1998 ± j10.1872 0.9089 1.6213  

-15.7747 ± j 5.8177 0.9382 0.9259  

-15.6979 1 0  

-1.1200 ± j 10.7658 0.1035 1.7134 3δ
   3ω  

-0.6599 ± j 8.3559 0.0787 1.3299 2δ   2ω  

-4.4747 1 0  

-2.5057 1 0  

-0.5183 ± j 0.2606 0.8934 0.0415 1δ   1ω  

-0.0455 ± j 0.0864 0.4654 0.0138  

-0.0198 1 0  

-0.1 1 0  

 

It is seen that the oscillation modes -0.6599 ± j 8.3559 still have slightly less 

damping ratio than 0.1. The damping ratio of this mode can be further increased by 

IPFC Power Oscillation Damping (POD) controller. The most suitable control signal 

for providing additional damping is determined from the controllability index 

computed from the linearized model. The controllability indices are computed and 

given in Table 6.6, from which it is observed that the input signal 1m  has the highest 

value, an indicator for the best signal to provide damping. 

Table 6.6: Controllability indices with different IPFC controllable parameters  

Input signal Controllability index 

1m∆  0.0201 

1θ∆  0.0036 

2m∆  0.0070 

2θ∆  0.0040 

 

The Power Oscillation Damping (POD) controller is shown in Figure 6.5 having 

the error signal, of the active power flow of the IPFC branch � � � or 5 � 7, as its 

input. The structure of POD controller is given in Figure 4.35. The parameters of the 

controller are designed using phase compensation technique as described in Section 

4.7.3, to compensate the phase shift between the control input signal 1m∆  and real 
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power deviation jiP∆ , and improve the damping ratio of the oscillation mode to 

around 0.1. The POD is designed on the system considering the two PSS.  

(ref)jiP

jiP

1m

ref1m

 

Figure 6.5: POD controller of IPFC 

The PI type power flow controllers and DC voltage regulator are present together 

in the system to maintain the power flow and constant DC capacitor voltage. The 

block diagram of the complete closed loop system is shown in Figure 6.6.  
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Figure 6.6: Multi-machine system with IPFC and its controllers 
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Three power flow controllers are placed in the system to control the real and 

reactive power flow in line � � � and real power flow in line � � � respectively. The 

DC voltage regulator maintains the DC voltage constant. The parameters of the 

controllers are: ppk  = 5, pik = 25, qpk =0.06, qik = 0.007, kpk = 0.01, 
kik = 0.01, dpk = 10 

and 
dik =20. The parameters of the POD controller are: 

dck = 0.3554, 
wT = 10s, 

mT = 

0.01s, 1T = 0.20058, 2T = 0.071407, 
cm = 1. The oscillation modes of the closed loop 

system are given in Table 6.7. The PI controllers contribute little damping to the 

oscillation modes. The POD controller significantly increases the damping of the 

concerned oscillation mode. 

The power system incorporating IPFC response is observed in time domain 

simulations. The nonlinear simulation is conducted through numerical integration and 

by MATLAB/SIMULINK. The multi-machine power system with IPFC is simulated 

using the nonlinear differential and algebraic equations of the power system in 

Equations (6.18-6.24, 6.9-6.12, 6.27, and 6.33). The numerical integration of the 

differential equations of the power system is performed using ode45 functions in 

Matlab. The MATLAB/SIMULINK block diagram of the system with IPFC is given 

in the   Appendix D.  

 

Table 6.7: Eigenvalues of the linearized WSCC with IPFC and controllers 

WSCC with IPFC and Controllers Eigenvalues 
Damping 

Ratio 
Frequency 

No controllers 
-0.3009 ±j 11.2735 

-0.2933 ± j 8.1607 

0.0267 

0.0359 

1.7942 

1.2988 

With only PSS 
-1.1200 ± j 10.7658 

-0.6599 ± j 8.3559 

0.1035 

0.0787 

1.7134 

1.3299 

PSS and DC voltage regulator 
-1.1252 ± j 10.7635 

-0.6585 ± j 8.3624 

0.104 
0.0785 

1.7131 
1.3309 

PSS and Power flow controllers and 

DC voltage regulator 

-1.1015 ± j10.7254 

-0.6922 ± j 8.0082 

0.1022 

0.0861 

1.7070 

1.2745 

PSS, power flow controller and DC 

voltage regulator and damping 

controller 

-1.1055 ± j10.7405 

-0.9752 ± j 7.0226 

0.1024   

0.1376 

1.7094 

1.1177 

 

The system is equipped with the PI power flow controllers which regulate the real 

power flow in line � � � or 5 - 7 at 0.8432 p.u., reactive power at 0.1157 p.u. and real 
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power flow in line � � � or 8 - 7 at 0.7590. The DC voltage is maintained at a constant 

value of 2 p.u. by the voltage regulator. The system is subjected to various 

disturbances and the performances of the PSS and IPFC damping controller are 

investigated.  

6.5.1 Disturbance: Step Change in Mechanical Power  

A disturbance in the form of a step variation of 0.01 p.u. in mechanical power input 

2mP , at machine 2 is applied at 0.5s. Oscillations are observed in the system due to the 

disturbance. The power flow in the transmission line is controlled by the series 

injected voltage such that oscillations are damped sufficiently. The magnitude and 

phase angle of the injected series voltages are controlled by the input signals of the 

IPFC which are modulated by the controllers to effectively control the power flows. 

The POD controller increases the damping of the oscillations. The responses of 

various parameters of the power system, i.e., electrical power generated by the 

machines 1 and 2, active power flow in IPFC branches, relative rotor angles and 

relative rotor speeds, respectively in the event of change in mechanical input are 

shown in Figures 6.7-6.14 in the presence of PSSs and POD controller. The PI power 

flow controllers and DC voltage regulator are present simultaneously in the system to 

maintain the power flow and constant DC capacitor voltage. The POD controller 1m  

mitigates the oscillations efficiently during the mechanical input disturbance. The 

response of other parameters such as electrical power generated by machine 3 is 

similar to Figures 6.7 and 6.8 with the initial value at 0.85 p.u. corresponding to its 

generated power.    
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Figure 6.7: Generated power response at machine 1 with mechanical input 

disturbance 

 

Figure 6.8: Generated power response at machine 2 with mechanical input 

disturbance 
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Figure 6.9: Real power flow response in IPFC branch 5 � 7 with mechanical input 
disturbance 

 

Figure 6.10: Real power flow response in IPFC branch 8 � 7 with mechanical input 

disturbance 
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Figure 6.11: Relative rotor angle 12δ  response with mechanical input disturbance  

 

Figure 6.12: Relative rotor angle 
13δ  response with mechanical input disturbance  
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Figure 6.13: Relative rotor angle 
13ω  response with mechanical input disturbance  

 

Figure 6.14: Relative rotor angle 12ω  response with mechanical input disturbance  
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6.5.2 Disturbance: Three Phase Fault 

The disturbance in the form of three phase fault is initiated near bus 9 at the end of 

line 6-9, of the power system in Figure 6.3. The three phase fault is applied at 0.5s 

and cleared after 0.1s. During fault, since 09 ≡V , the rows and columns of the 

admittance matrix of the prefault system corresponding to bus 9 will be deleted. Then 

the load buses are eliminated and the reduced matrix is formulated which given by 

Equation (6.70), following dY ′ , 
AY  and 

BY  are calculated and are given by Equations 

(6.71-6.73).  


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The response of various parameters of the dynamic power system i.e., real power 

flow in IPFC branches, relative rotor angles, electrical power generated by the 

machines, DC capacitor voltage and relative speed are shown with and without the 

POD controller and PSS during three phase fault in Figures 6.15 -6.21 respectively. 

The POD controller 1m  mitigates the oscillations efficiently even during the case of 

three phase fault. The other parameters responses follow in a similar pattern.  

Figure 6.19 gives the electrical power generated by the three machines, where the 

values are given in p.u. Each generator generates the real power initially as given by 

the load flow results given in Table 6.1 which is also the steady state operating 

condition. A disturbance is given at 0.5 s which cause oscillations as seen in the 

response. The oscillations eventually are dampened with the presence of damping 

controller and settle at their steady state values.  

 

Figure 6.15: Real power flow response in IPFC branch 5 � 7 with three phase fault 
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Figure 6.16: Real power flow response in IPFC branch 8 � 7 with three phase fault 

 

Figure 6.17: Relative rotor angle 21δ  response with three phase fault 
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Figure 6.18: Relative rotor angle 
31δ  response with three phase fault 

 

Figure 6.19: Electrical power generated response with three phase fault 
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Figure 6.20: DC capacitor voltage response due to three phase fault 

 

Figure 6.21: Relative rotor angle 12ω  response with three phase fault 
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6.5.3 Disturbance: Change in Power Flow Reference  

The transmission line flows in IPFC branches can be controlled by changing the 

reference set point. Originally the real power flow in line 5 � 7 is 0.8432 p.u. and in 

line 8 � 7 is 0.7590 p.u. as shown in Table 6.1. An increase of 0.01 p.u. real power, 

i.e., 0.8532 p.u. can be made to flow in the transmission line 1 by changing the power 

reference )(refjiP to that value. Subsequently the real power flow set point in 

transmission line 2 is set to )(refkiP = 0.7490 p.u. The change in power reference is 

given at 0.5s in the simulation. To obtain the desired power flow, gain scheduling of 

the concerned PI controller is normally required to achieve the desired change in 

power level. In the case, when a 0.01 p.u. change in power level is required, the gains 

kpk , 
kik  are set to 0.6 and 0.4, respectively. The other parameters remain unchanged.  

The responses of various parameters (power flows in IPFC branches, relative rotor 

angles) are shown in Figures 6.22-6.26. 

 

Figure 6.22: Real power flow response in IPFC branch 5 � 7 with change in power 
reference  
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Figure 6.23: Reactive power flow response in IPFC branch 5 � 7 with change in 
power reference  

 

Figure 6.24: Real power flow response in IPFC branch 8 � 7 with change in power 

reference  
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Figure 6.25: Relative rotor angle 21δ  response with change in power reference  

 

 

Figure 6.26: Relative rotor angle 
31δ  response with change in power reference  
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It is observed from the above studies that the controllers ensure capable operation 

of the IPFC in controlling the power flow and damping oscillations in the 

transmission lines. The power flow controllers regulate the power flows and have 

minor contribution towards damping of oscillations. The damping is increased by 

IPFC POD controller. 

6.6 Summary 

In this chapter, the nonlinear model of the multi-machine power system incorporated 

with IPFC has been developed. The linearized model of the multi-machine power 

system with IPFC is developed to form the Phillips-Heffron model. The oscillation 

modes having low damping ratio are determined by eigenvalue analysis from the 

Phillips-Heffron model. The IPFC POD controller is designed using the phase 

compensation method based on the linearized model to increase the damping of the 

concerned oscillation mode existing in the system.  

The power flow controllers and DC voltage controller are incorporated in the 

IPFC control to regulate the power flow and to maintain the DC voltage across the 

DC link. The effectiveness and robustness of the IPFC controllers are validated 

through eigenanalysis and nonlinear simulation of the power system subjected to 

various disturbances. The IPFC based POD controller and PSS ensure reliable 

damping of the low frequency oscillations in the multi-machine power system with 

IPFC. The following chapter gives the thesis conclusions. 

 

 

 

 

 



 

 

 

 

 

CHAPTER 7 

 

CONCLUSION 

7.1 Conclusion 

Low frequency oscillations are inherent in the modern interconnected power system 

due to continuous disturbances. These oscillations occur as the synchronous 

generators oscillate against each other and have the frequency ranging from 0.1 to      

2 Hz. These oscillations cause limitations on the amount of power that can be 

transmitted within the system and can also lead to widespread system disturbances if 

cascading outages of transmission lines occur due to oscillatory swings. Thus, 

insufficient damping of these oscillations leads to system instability and requires 

supplementary damping devices to mitigate them. As such, these oscillations must be 

considered in planning, operating and designing a power system.  

Traditional approach to provide additional damping is with the use of PSS which 

is placed in the excitation system of the generator. PSS is designed using phase 

compensation method and taking the local generator speed signal as input. A 

relatively new solution is to use FACTS devices such as IPFC, for increasing damping 

of the power system oscillations in addition to performing their primary functions of 

controlling power flow in the transmission lines. IPFC is a multi-line voltage-sourced 

converter-based FACTS device. It facilitates both real and reactive power 

compensation among the transmission lines thus, allowing improved transmission 

system operation. The primary focus in this thesis is on employing the Interline Power 

Flow Controller (IPFC) to damp low frequency oscillations.  

Several studies are involved in investigating the low frequency oscillations. These 

include load flow studies, small signal stability studies, and nonlinear simulation. The 

load flow is used to initialize the nonlinear simulation and small signal stability 

studies for which the steady state model of the power system with the IPFC is 
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required. The small signal stability study involves the linearization of nonlinear 

dynamic model of the power system and eigenvalue analysis. The dynamic model 

represents the synchronous generators, loads, network and IPFC dynamics by 

differential and algebraic equations which are linearized at an operating point given 

by load flow studies. The eigenvalue analysis gives the eigenvalues, eigenvectors, 

participation factors, natural, damped frequencies, and damping ratio. The oscillation 

modes with precise indication of oscillation frequency and damping, primarily 

affecting the stability problem may be identified, with which appropriate action 

should be taken. The nonlinear simulation of the power system verifies the eigenvalue 

analysis. 

7.2 Achievements of Research Objectives  

The steady-state and dynamic models of IPFC have been established in this thesis. 

For power flow studies, the steady state model of IPFC is incorporated with the power 

system network. The algorithm given only for IPFC branches is implemented into a 

full Newton-Raphson load flow program for the complete system incorporated with 

IPFC. The program is written in Matlab. The solution of the load flow gives the 

steady state operating point for stability studies. The � � � axis dynamic model of 

IPFC has been developed incorporating DC link dynamics for stability studies. This 

model includes all the four control signals of IPFC. 

The overall dynamic model of the power system incorporating IPFC is formulated 

by augmenting the models of the various components of system, with IPFC and 

interfacing the network equations with the machine reference frame. Using this 

approach, the nonlinear dynamic models for a single-machine infinite bus (SMIB) and 

multi-machine power system incorporating IPFC are developed to study power 

system oscillations.  

Further the linearized Phillips-Heffron model of power system with IPFC is 

developed. Oscillation modes are identified by eigenvalue analysis. In multi-machine 

power system, the factors associated with each eigenvalues are revealed by 

participation factors. This provides valuable information to identify the generators 
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that may experience oscillations. PSS is placed at the generators according to the 

participation factors to enhance damping of a system. The dynamic performances of 

the proposed modeling of power system incorporating IPFC is examined and verified 

through eigenvalue analysis as well as nonlinear simulations. 

The proposed control strategy for IPFC has three major components: first is the 

control of the real and the reactive power flows on transmission lines where IPFC is 

located which is the primary function of the FACTS device, the second is that of 

controlling the DC link capacitor voltage to a constant value to ensure balanced power 

exchange between the VSCs of IPFC ( loss of DC voltage during disturbances could 

lead to instability) and the third is the damping controller to enhance the damping of 

the oscillations. PI controllers are used to control the power flow and DC link 

capacitor voltage. The parameters of PI controllers are determined using simulation 

response. However, tuning the parameters of the power flow controllers is not the 

main scope of this work.  

A lead-lag damping controller is designed based on the linearized Phillips-Heffron 

model of the power system to increase damping of the un-damped oscillation modes. 

The control signal(s) suitable for providing damping is determined using a 

controllability index. The output of the controller is superimposed on the input signal 

of IPFC thus, varying the magnitude and phase angle of the injected voltage into the 

transmission line which controls the power flow in such a way to dampen the power 

system oscillations. Local measurements such as the real power flow deviation in the 

transmission line are taken as the input to the damping controller as the IPFC is 

normally installed on the transmission lines that are away from any generator. 

Case studies on SMIB and three-machine nine-bus (WSCC) power system have 

been carried out. PSS and IPFC based damping controller is designed using phase 

compensation method.  The effectiveness of the controllers in controlling the power 

flow and in damping the oscillations is examined and verified through eigenvalue 

analysis and nonlinear simulations under different disturbances.  

The work in this thesis includes a complete control system design for IPFC and 

studying its performance. Power flow calculations and dynamic simulation studies 
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demonstrate the potential of the IPFC in increasing the power transfer capability of 

transmission system and enhancing power system stability. 

7.3 Contributions of Research  

The main contributions of this research are summarized as follows: 

1) Development of the load flow program in Matlab for load flow analysis of the 

complete power system incorporating IPFC: 

The steady state model of the IPFC is utilized to integrate it into the power system 

network equations for load flow studies. The load flow program gives the 

operating point around which the power system nonlinear equations are linearized.  

2) Modeling of IPFC for dynamic stability studies: 

This work demonstrates the steps taken in developing a mathematical model of 

IPFC for dynamic stability study. This dynamic model of IPFC is used to 

incorporate it with the power system model to develop one complete dynamic 

model for stability analysis. 

3) Modeling of power system incorporated with IPFC: 

The nonlinear models of SMIB and multi-machine power system with IPFC have 

been developed. The nonlinear equations are linearized at an operating point to 

obtain the linearized Phillips-Heffron state space model of the power system. 

Eigenvalue analysis is performed to identify oscillation modes from the linearized 

model. 

4) Investigations on the control functions of IPFC and its effect on the system 

oscillations: 

 A conventional lead-lag damping controller is designed based on linearized 

model to increase the damping of the oscillations. The performance of the 

controller to different dynamic states in enhancing the damping of the oscillatory 
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modes is confirmed through detailed eigenvalue analysis and nonlinear 

simulation. 

7.4 Suggestions for Future Work 

In summary this research work presents the load flow formulation, nonlinear dynamic 

models, linearized models, damping control design and stability analysis for the 

power system incorporated with IPFC.  

Low frequency oscillations when present in a power system, limits the amount of 

power transfer on the tie-lines between the regions containing the groups of coherent 

generators. Damping of these oscillations contributes to the enhancement of the 

stability limits of the system, signifying greater power transfer through the system. 

The application of IPFC based damping controller to satisfy different end goals, 

namely the damping of local and inter-area modes over a broad range of operating 

points in a multi-area power system, has to be investigated. Torsional modes were 

also not accounted for in the analysis. In modern power systems, apart from a large 

number of generators and associated controllers, there are many types of load, ranging 

from a simple resistive load to more complicated loads with electronic controllers. 

Thus, there are other areas for future research in investigating the control functions of 

IPFC and their effects on damping power system oscillations considering the facts 

mentioned above.  

PI controllers have been used for power flow control. However the gains of these 

controllers have been designed at one operating point. It generally requires gain 

scheduling for different operating conditions in the system. Conventional lead-lag 

damping controller is proposed in this thesis. Alternative control strategies such as 

fuzzy logic and adaptive control could be explored for more robust control. 
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APPENDIX A 

 

JACOBIAN TERMS OF THE POWER FLOW WITH IPFC 
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APPENDIX B 

 

1)  PHILLIPS-HEFFRON MODEL K CONSTANTS OF A SINGLE MACHINE 

INFINITE-BUS POWER SYSTEM EQUIPPED WITH IPFC 
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2) MULTIMODAL DECOMPOSITION 

This method is applicable for multi-machine power system having � machines 

[29]. For a SMIB power system, � � 1. The state space model of the linearized power 

system with IPFC is given by: 

UDXCY

UBXAX

∆+∆=∆

∆+∆=∆ &
 (B.1) 

where [ ]TT

nn ZX ∆∆∆∆∆∆∆=∆ ,,,,,,,, 2121 ωωωδδδ LL ,             (B.2) 

and δ∆ ’s and ω∆ ’s represent the generator angles and speeds respectively. Z∆  

represents the remaining state variables. The system matrices A and B can be written 

in this form: 
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The transformation XuX m ∆=∆ −1
 is applied to (B.1) where 

















=

I

V

V

u

00
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 and 

V  is the right eigenvector matrix of 21A , and the matrix 21A  relates the generator 

angles and the derivative of the speeds, representing the synchronizing effects 
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independent of other state variables. The system equations after transformation will 

become: 
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   The angles and speeds in (B.4) represent the modal variables. For the oscillation 

mode 
iλ  with modal frequency 

nω , the state variables are arranged in the form such 

that the modal angle 
miδ∆  and speed 

miω∆  corresponding to 
iλ  will become the first 

and second state variables resulting in the system representation as follows: 
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where, 1Z∆  represents all other state variables, 
mik  and 

mid  represent the modal 

synchronizing and damping coefficients. The modal frequency is given by 

min k0ωω =  rad/s. This approach is known as single mode evaluation as only one 

mode is focused at a time. The above system can also be expressed in the frequency 

domain given in (B.7) and the block diagram of the above single mode power system 

is constructed using its transfer functions as shown in Figure B.1 [9, 29].   
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Figure B.1: The power system installed with IPFC based damping 

controller 

Figure B.1 represents the linearized model of the closed loop power system 

installed with the IPFC and its damping controller. ,,, iILiOiC KKK and 
miK   are the 

controllability, observability, inner loop and modal  transfer functions, respectively. 

These transfer functions are evaluated at the concerned electromechanical mode of 

oscillation, 
njs ω= . )(sGc

 is the transfer function of the damping controller. When 

evaluated at 
njs ω= , )( niC jK ω provides a measure of how controllable the mode is 

by the control signal U∆ .   

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

APPENDIX C 

 

 

 

 

 

 

 

 

 

 

 



235 

 

 

APPENDIX C 

 

NONLINEAR SIMULATION OF WSCC SYSTEM USING MATLAB/SIMULINK 

Simulink model of the multi-machine power system  

 

Figure C.1: Simulink model of multi-machine power system representing the 

machine equations and stator algebraic equations along with the PSSs 
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Figure C.2: Subsystem 1 

The subsystems 2 and 3 are similar to Figure C.2 

 

Figure C.3: Subsystem 4 

The subsystems 5 and 6 are similar to Figure C.3 

 

Figure C.4: Subsystem 7 

Subsystems 8 and 9 are similar to Figure C.4 
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Figure C.5: Simulink model of multi-machine power system for calculating the � � � axes currents 
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Figure C.6: Simulink model of multi-machine power system for calculating the 

angles from the admittance matrix  
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APPENDIX D 

 

NONLINEAR SIMULATION OF WSCC SYSTEM INCORPORATED WITH IPFC 

USING MATLAB/SIMULINK 

Simulink model of the multi-machine power system with IPFC 

 

Figure D.1: Simulink modelof multi-machine power system with IPFC representing 

the machine equations and stator algebraic equations along with the PSSs 
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Figure D.2: Subsystem 1 

The subsystems 2 and 3 are similar to Figure D.2 

 

Figure D.3: Subsystem 4 

The subsystems 5 and 6 are similar to Figure D.3 

 

Figure D.4: Subsystem 7 

Subsystems 8 and 9 are similar to Figure D.4 
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Figure D.5: Simulink model of multi-machine power system with IPFC for 

calculating the � � � axes currents 
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Figure D.6: Simulink model of multi-machine power system with IPFC for 

calculating the angles from the admittance matrix  
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Figure D.7: Simulink model of multi-machine power system with IPFC for 

calculating the currents in IPFC branches  
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Figure D.8: Simulink model of multi-machine power system with IPFC for 

calculating the voltage across the DC link  

 

 

[vdc]

vdc1

i1d

i2d

i1q

i2q

m1

m2

theta1

theta2

v dc fcn

vdc    

[theta2]

[theta1]

[m2]

[m1]

[i2q]

i2q 

[i2d]

i2d 

[i1q]

i1q 

[i1d]

i1d 

1

s

 



Interline Power Flow Controller Application for Low Frequency 

Oscillations Damping 
 

 

ALIVELU, M. PARIMI IRRAIVAN ELAMVAZUTHI NORDIN SAAD 

Department of Electrical and Electronic Engineering 

Universiti Teknologi Petronas 

Bandar Seri Iskander, 31750, Tronoh, Perak 

MALAYSIA 

alivelup@yahoo.co.in, irraivan_elamvazuthi@petronas.com.my, nordiss@petronas.com.my 
 

 

Abstract: This paper presents the modeling of the power system installed with the Interline Power Flow 

Controller (IPFC), the latest proposed Flexible AC Transmission System (FACTS) controller. The IPFC is 

modeled in d-q axis form, and the dynamic model of a single machine infinite bus (SMIB) power system 

installed with IPFC is developed. Further, the linearized Phillips-Heffron model of the power system is 

established to study the oscillation stability. The damping controllers considering the various control signals are 

designed based on the linearized model. The power oscillation stability is investigated with the use of 

eigenvalue analysis and by nonlinear simulation of the dynamic model of the power system. Studies reveal that 

the most effective input signal of IPFC utilized for damping the low frequency oscillations is found to be the 

input signal 2m , providing  robust performance under different operating conditions.  

 

 

Key-Words: - FACTS, Interline power flow controller, Modelling, Phillips Heffron model, Power oscillation 
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1 Introduction 
The phenomenon that is of great interest and vital 

concern in the power industry is the stability of 

electromechanical oscillations, i.e., the low 

frequency oscillations having an oscillation 

frequency in the range of 0.2 Hz to 2 Hz. These 

oscillations limit the maximum amount of power 

that can be transferred over the transmission lines 

and sometimes may have disastrous consequences to 

the interconnected systems stability, leading to 

partial or total collapses (black-outs).  Therefore, 

equipment and procedures to enhance the damping 

of these oscillations become mandatory for the safe 

system operation, and to allow a better use of the 

existent transmission network. The traditional 

approaches to aid the damping of a power system 

oscillations is by adding a Power System Stabilizer 

(PSS) in the excitation system of the generator for 

which much experience and insight exist in the 

industry [1]-[3]. In the recent years, the rapid 

growth of power electronics has made Flexible AC 

Transmission Systems (FACTS) controllers very 

important in terms of controller application in power 

system damping in addition to their primary purpose 

of reactive power support, controlling line power 

flows etc. Major contributions have been made in 

[4]-[12], in damping of power system oscillations 

where universal approaches are proposed for the 

analysis of the FACTS devices such as Thyristor 

Controlled Series Capacitor (TCSC), Static Var 

Compensator (SVC), Static Synchronous 

Compensator (STATCOM), Static Synchronous 

Series Capacitor (SSSC), Unified Power Flow 

Controller (UPFC).  

Interline Power Flow Controller (IPFC), is the latest 

representative of the Voltage Source Converter 

(VSC) based FACTS devices, and was proposed by 

Gyugyi with Sen and Schauder [13]. Like the 

UPFC, the IPFC is a combined compensator, 

consisting of at least two or more VSCs with a 

common dc link. This dc link provides the device 

with an active power transfer path among the 

converters, thereby facilitating real power transfer 

among the lines of the transmission system which 

enables the IPFC to compensate multiple 

transmission lines at a given substation. Each 

converter also provides reactive power 

compensation independently on its own 

transmission line.  Thus, the IPFC provides the real 

and reactive power compensation to the system. The 

controllability of the line power flow by IPFC has 

been well recognized [14]-[16]. However, very 

limited information is reported [17]-[19] concerning 
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the control of the IPFC to provide additional 

damping during system oscillations. The damping 

function of the IPFC has not been investigated 

thoroughly. Chen et. al. [17, 18], proposed a PID 

controller for oscillation damping enhancement  in a 

SMIB test system. However, due to the complexity 

and nonlinearity of the power system the 

performance of the damping controller is degraded 

to a certain extent. Kazemi et. al [19] proposed a PI 

supplementary controller with its input equal to the 

electrical power of the generator for oscillation 

damping. However, they have not optimized the 

parameters of the controller. 

In the view of this, the primary object of this paper 

is to develop a dynamic model for IPFC for small 

signal stability analysis and examine its damping 

function in mitigating the power system oscillations. 

The rest of the paper is organized as follows: Firstly 

the mathematical model has been developed for 

IPFC in d-q axis form in section 2. Secondly a small 

signal linearized Phillips–Heffron model of a power 

system installed with an IPFC is derived in section 

3. Thirdly the IPFC based damping controller is 

designed on the basis of linearized system model, 

using the phase compensation method as described 

in section 4. Lastly the relative effectiveness of the 

IPFC control signals on which the damping function 

of the IPFC is superimposed is examined and 

analyzed on single machine infinite bus power 

system (SMIB). The performance of IPFC based 

controllers in achieving the damping of low 

frequency oscillations of the power system is 

compared. The effectiveness of the controllers under 

wide variations in operating conditions is studied. 

The ability of the damping controllers during 

various disturbances is examined with nonlinear 

simulation of the dynamic model of the power 

system. The simulation results are given in      

section 5. 

 

 

2 Modeling of IPFC 
The schematic diagram of IPFC is shown in Fig. 1. 

It consists of two three phase Gate turn-off (GTO) 

based VSCs, each providing series reactive 

compensation for the two lines. The VSCs are 

linked together at their dc terminals and are 

connected to the transmission lines through their 

series coupling transformers. The converters can 

transfer the real power between them via their 

common dc terminal. In Fig. 1, 21 , mm  and 21 ,δδ  

refer to amplitude modulation index and phase-

angle of the control signal of each VSC, 

respectively, which are the input control signals to 

the IPFC. To model the IPFC, consider phase ‘a’ of 

the coupling transformer and the VSC 1, arms along 

with the dc link, as shown in Fig. 2.  dcC  is the dc 

link capacitor. 1r  and 1l  are the per phase resistance 

and inductance of transformer on line 1. aC1ς  and 

aC1ς ′  represent the bidirectional switches which can 

be either on or off in Fig. 2.  sr   is the switch on 

state resistance.  

1I

2I

1tseV

2tseV

1δ2δ2m 1m

dcC

 
Fig. 1.  Schematic diagram of IPFC 
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dci2

dci

dcCdcV

 
Fig. 2.  a) Equivalent circuit of phase ‘a’ of coupling 

transformer and VSC 1.  b) Dynamics of dc link 

capacitor. 

 

The mathematical model for each phase  a , b  and 

c  for both the VSC’s are obtained similar to the 

approach in [20]. The three phase differential 

equations of the IPFC are: 
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2.2   IPFC modeled in d-q axis form  
By applying the Park’s transformation, the equations 

(1-3) are developed into the rotating reference          

( oqd −−  axis) frame as: 
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      (6) 
Equations (4-6) represent the three phase dynamic 

differential equations of the IPFC on the rotor axis 

frame. Neglecting the resistance and transients of 

series converter transformers the dynamic model of 

IPFC (4-6) can be written as:  
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where 11 lxt ω= , 22 lxt ω=  are the reactances of the 

series transformers. 

 

 

3 System Model 

 
3.1 Non Linear Model  
Fig. 3 shows a Single machine infinite bus (SMIB) 

power system equipped with an IPFC. The system 

consists of a generator which is connected to the 

infinite bus through the two parallel transmission 

lines. An elementary IPFC consisting of two three-

phase GTO based VSCs, each compensating a 
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different transmission line by series voltage 

injection is installed on the two transmission lines. 

 

1I

tV

tx

tI
2I1V

δ−∠bV
1seV

2seV

2tx

1tx

1δ2δ2m 1m

dcC

Fig. 3.  An IPFC installed in a single machine 

infinite bus system 

 

The VSCs are linked together at their DC terminals 

facilitating real power transfer among the 

transmission lines. The nonlinear dynamic model of 

the power system of Fig. 3 is derived as follows: 
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where 
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21 , PP  are the power flow in each of the 

transmission lines and δ , is the rotor angle of 

synchronous generator in radians, ω  is rotor speed 

in rad/sec, tV  is the terminal voltage of the 

generator, qE ′ɺ  is generator internal voltage, fdE  is 

the generator field voltage, dcv   is the voltage at DC 

link. 1I  and 2I  are the line currents flowing the 

transmission lines.  

From the Fig. 3, we obtain: 
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therefore, 
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Solving the equations we get: 
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where 

12121211 /)(,/ ΣΣ +′== xxxxxxx tLdtdtLd

 

1221121 /,/ ΣΣ ′−== xxxxxx dtdtLd  

22122211 /)(,/ ΣΣ +′−== xxxxxxx tLqtqtLq

 

2222121 /,/ ΣΣ ′−== xxxxxx qtdtLq  
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tddtLttL xxxxxx +′=′+= ,222   

tqqtLttL xxxxxx +=′+= ,111  
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3.2 Linearized model  
The linear Heffron-Phillips model of SMIB system 

installed with IPFC is obtained by linearizing the 

non linear model equations (10-21) which is 

obtained as follows: 
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The model has 28 K-constants which are functions 

of system parameters and the initial operating 

condition. 

 

 

3.3 State Space Model 
The power system is represented in state space as: 
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where the state vector and control vector are: 

T
dcfdq vEEX ][ ∆∆′∆∆∆= ωδ  

TmmU ][ 2211 δδ ∆∆∆∆=                            (31) 

and, state and control matrix are: 
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and 1m∆  is the deviation in pulse width modulation 

index 1m  of voltage series converter 1 in line 1. 

2m∆  is the deviation in pulse width modulation 

index 2m  of voltage series converter 2 in line 2. 

1δ∆  is the deviation in phase angle of the injected 

voltage 1seV . 2δ∆  is the deviation in phase angle of 

the injected voltage 2seV .  

  

 

Fig. 4.  Phillips-Heffron model of SMIB system 

installed with IPFC 
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The extended Phillips-Heffron model of SMIB 

system installed with IPFC (30) is shown as a block 

diagram in Fig. 4. It should be noted that 

cvqp KKKK  and,,  in Fig. 4 are the row vectors 

defined as 
 

][ 2211 δδ ppmppmp KKKKK =  

][ 2211 δδ qqmqqmq KKKKK =  

][ 2211 δδ vvmvvmv KKKKK =  

][ 2211 δδ ccmccmc KKKKK =             

 

From (31), we observe that any of the four inputs 

control signals 211 ,, mm ∆∆∆ δ and 2δ∆  can be 

utilized to superimpose on the damping function of 

IPFC. 

 

4 IPFC Damping Controller 
The damping controller is designed to contribute a 

positive damping torque in phase with the speed 

deviation to the electromechanical oscillation loop 

of the generator. The structure of the IPFC based 

damping controller is shown in Fig. 5, which 

comprises of gain dcK , signal washout block and 

‘n’ lead lag compensator blocks.  
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Fig. 5.  Structure of IPFC based damping controller 

 

The time constants of lead lag compensator are 

determined using the phase compensation method 

[21] to compensate the phase shift between the 

control input signal U∆  and electrical power 

deviation eP∆ . The gain setting dcK  of the damping 

controller is chosen to achieve a required damping 

ratio of the electromechanical mode and the value of 

wT  (the washout filter time constant) is chosen in 

the range of 10 to 20s. The four control parameters, 

1m , 2m , 1δ  and 2δ  can be modulated to produce 

the damping torque. The damping controller based 

on the IPFC input signal 1m  is termed as the 

damping controller 1m  and consequently other 

controller based on input signals 2m , 1δ  and 2δ  are 

termed as damping controller 2m , damping 

controller 1δ  and damping controller 2δ .  

5 Simulation Results 
A single machine infinite bus power system 

installed with IPFC is considered for analysis, 

parameters of which are given in Appendix A. The 

system is operated with various different load 

conditions, i.e., from pu1.0=eP  to pu5.1=eP , 

and pu02.1=tV , pu0.1=bV . The linearized model 

is obtained at each varying condition and eigenvalue 

analysis is performed. The values of the K  

constants of the system at the one operating point      

eP = 0.8 pu is given in the Appendix B. Eigenvalues 

for the power system at this operating point are 

shown in Table 1. The system contains a pair of 

complex eigenvalues having low damping ratio of 

0.0084952. A controller is designed to tune the gain 

dcK   to achieve a damping ratio of 0.1. The various 

damping controllers are designed at the operating 

point eP = 0.8 pu, where the parameters of each 

controller is given in the Appendix C.  

 

Table 1: Eigenvalues of the linearized SMIB at 

operating point eP = 0.8 pu. 

 

Eigenvalues Damping Ratio Frequency  

-100.09 1 0 

-0.09782 ± j11.514 0.0084952 1.8325 

-0.31442 1 0 

-0.0023063 1 0 

 

The dynamic performance of the system is 

examined using the alternative damping controllers 

with varying operating conditions. The responses 

are shown for the operating conditions eP = 0.8 pu 

the nominal condition, eP = 0.2 pu light load 

condition and eP = 1.4 pu the heavy load condition. 

 

5.1 Operating point eeeePPPP  = 0.8 pu 

The effectiveness of IPFC damping controllers at 

the nominal operating condition eP = 0.8 pu at 

which they are designed is observed. The power 

system performance in the presence of the 

controllers is investigated with the non linear 

simulation of the system modelled by the nonlinear 

differential equations (10-21). A three phase fault 

occurs at 1.0 sec at the starting end of the 

transmission line and cleared after 100 ms. The 

response of the system without the controller 

(marked by ‘no controller’) is shown with dotted 

line and the responses with IPFC controller is shown 

with solid line marked by the arrow “with 

controller”.  
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5.1.1 Damping Controller 1111mmmm  

The system eigenvalues in the presence of the 

damping controller 1m  is shown in Table 2.  

 

Table 2: Eigenvalues of the linearized SMIB at 

operating point eP = 0.8 pu with damping controller 

1m  

 

Eigenvalues Damping Ratio Frequency 

0 - 0 

-100.01 1 0 

-1.2986 ± j11.531 0.11191 1.8353 

-6.5463 1 0 

-0.37662 1 0 

-0.095395 1 0 

-0.0023062 1 0 

 

 
 

Fig.6. Rotor Speed response with and without 

damping controller 1m  at  eP = 0.8 pu 

 

 
 

Fig. 7.  Electrical Power response with and without 

damping controller 1m  at  eP = 0.8 pu. 

The complex eigenvalue pair’s damping ratio has 

increased to approximately 0.11 as desired. The 

rotor speed and electrical power response during and 

after the fault clearance, with and without the 

controller is shown in Fig. 6 and Fig. 7 respectively. 

It is clear from these Figures that, the system is 

oscillating without the controller due to the poor 

damping of the oscillation modes and as such power 

system oscillations are clearly observed. It is also 

seen, that the use of the proposed IPFC damping 

controller 1m  the oscillations are suppressed in 

about 4.5 sec. after the fault is cleared i.e at 5.5sec, 

simulation time. 

 

5.1.2 Damping Controller 2222mmmm  

Table 3 gives the eigenvalues of the system in the 

presence of the damping controller 2m . The 

damping ratio of the pair of complex eigenvalues 

has  increased  to  0.10877  with  the  use  of  this   

 

Table 3: Eigenvalues of the linearized SMIB at 

operating point eP = 0.8 pu with damping controller 

2m  

 

Eigenvalues Damping Ratio Frequency 

0 - 0 

-100.08 1 0 

-1.2541 ± j11.461 0.10877 1.8241 

-11.003 1 0 

-0.0023052 1 0 

-0.1 1 0 

-0.31631 1 0 

 

 

 
 

Fig. 8.  Rotor Speed response with and without  

damping controller 2m  at  eP = 0.8 pu 
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Fig. 9.  Electrical Power response with and without  

damping controller 2m  at  eP = 0.8 pu 

 

damping controller at the operating point eP = 0.8 

pu as per the designed requirement. Fig. 8 and Fig. 9 

show the rotor speed and electrical power response 

in the presence of the damping controller 2m  from 

the nonlinear simulation. The oscillations occurring 

due to the fault are mitigated at the time of 4.5 sec 

i.e around 3.5 sec after the fault clearance. The 

controller 2m  is comparatively better than the 

damping controller 1m  and also, in the value of the 

gain dcK  required by the controllers to achieve 

same performance. The gain of the controller 1m  is 

much higher (equal to 182.12) compared to the gain 

of the damping controller 2m  which is equal to 

15.235. As such the damping controller 2m  is much 

more effective than damping controller 1m . 

 

5.1.3 Damping Controller 1111δ  

The eigenvalues of the system with the damping 

controller 1δ  is given in the Table 4. The controller 

achieves the damping ratio of 0.10189 for the pair of  

 

Table 4: Eigenvalues of the linearized SMIB at 

operating point eP = 0.8 pu with damping controller 

1δ  

 

Eigenvalues Damping Ratio Frequency 

0 - 0 

-22.599 ±  j94.966 0.23151 15.114 

-105.84 1 0 

-1.139 ± j11.12 0.10189 1.7698 

-0.31395 1 0 

-0.10005 1 0 

-0.0023063 1 0 

 
 

Fig. 10.  Rotor Speed response with and without  

damping controller 1δ  at  eP = 0.8 pu 

 

 

 
 

Fig. 11.  Electrical Power response with and without  

damping controller 1δ  at  eP = 0.8 pu 

 

complex eigenvalues and phase is compensated by 

two lead lag compensator blocks  (n = 2) as 

compared to controllers 1m  and  2m  which require 

only one lead lag block. The rotor speed response  

ω  and electrical power eP  is shown in Fig. 10 and 

Fig. 11 respectively. It is observed from the 

responses that the oscillations are sustained around 

7.5 sec. The damping controller 1δ  is less effective 

compared to the other two controllers  1m  and  2m  

as it requires more time to dampen the oscillations. 

 

5.1.4 Damping Controller 2222δ  

Table 5 shows the eigenvalues of the system with 

the damping controller 2δ . However, this controller 

does not contribute much to the damping of the 

oscillation mode as seen from the eigenvalues, 
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damping ratio in Table 5, although the gain of the 

damping controller is significantly large.  

    

Table 5: Eigenvalues of the linearized SMIB at 

operating point eP = 0.8 pu  with damping controller 

2δ  

 

Eigenvalues Damping Ratio Frequency 

0 - 0 

-100.09 1 0 

-0.15569 ±  j10.191 0.015275 1.622 

-0.1734 ± j0.21481 0.62812 0.034188 

-0.10615 1 0 

-0.05592 1 0 

-0.0023054 1 0 

 

 

 
 

Fig. 12.  Rotor Speed response with and without  

damping controller 2δ  at  eP = 0.8 pu 

 

 

 
 

Fig. 13.  Electrical Power response with and without  

damping controller 2δ  at  eP = 0.8 pu 

Further increase of the gain of the controller only 

pushes the system to instability as the eigenvalues 

are forced into the RHS of the S plane. The 

responses of the rotor speed and electrical power of 

the system with the damping controller 2δ  is shown 

in Fig. 12 and Fig. 13 respectively. It is seen that the 

effect of the controller on the oscillations is 

negligible and inferior compared to the other three 

controllers. 

 

5.2 Operating point eeeePPPP  = 0.2 pu (light load 

condition) 
The performance of the controllers at different load 

condition, i.e, at a lighter load condition eP = 0.2 pu 

is examined other than the operating point whether 

the controllers have been designed.  

  

5.2.1 Damping Controller 1111mmmm  

The eigenvalues of the power system at eP = 0.2 pu 

with the damping controller 1m  is given in Table 6. 

 

Table 6: Eigenvalues of the linearized SMIB at 

operating point eP = 0.2 pu with damping controller 

1m  

 

Eigenvalues Damping Ratio Frequency 

0 - 0 

-100.18 1 0 

-8.7464 ±  j15.604 0.48895 2.4835 

-3.4176 1 0 

-0.00077924 1 0 

-0.10315 1 0 

-0.34957 1 0 

 

 
 

Fig. 14.  Rotor Speed response with and without 

damping controller 1m  at eP = 0.2 pu. 
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The damping controller is very effective at lighter 

load condition as it increases the damping ratio to a 

higher value of 0.48895 as seen from Table 6.     

Fig. 14 and Fig. 15 show the rotor speed and 

electrical power response with and with out the 

damping controller at eP = 0.2 pu. The damping 

controller 1m  is able to sustain the oscillations at a 

faster rate approximately within 1.0 sec. after the 

fault occurrence as compared to Fig. 6 and Fig., 

where the settling time is 4.5 sec. It is thus observed 

that the damping controller 1m  contributes more 

damping for lighter load conditions. 

      

 

 
 

Fig. 15.  Electrical Power response with and without 

damping controller 1m  at eP = 0.2 pu 

 

5.2.2 Damping Controller 2222mmmm  

Table 7 shows the eigenvalues of the system with 

the damping controller  2m  at the operating point 

eP = 0.2 pu. The damping controller increases the 

damping of the oscillation mode slightly at lighter 

load condition. This is also observed in the response 

of  the  rotor  speed  and  electrical  power in Fig. 16 

 

Table 7: Eigenvalues of the linearized SMIB at 

operating point eP = 0.2 pu with damping controller 

2m  

 

Eigenvalues Damping Ratio Frequency 

0 - 0 

-100.19 1 0 

-1.4903 ±  j12.232 0.12094 1.9468 

-10.987 1 0 

-0.00077932 1 0 

-0.10031 1 0 

-0.34438 1 0 

and Fig. 17 respectively. The damping of the 

oscillation is at 3.5 sec, improving by one sec when 

compared to Fig 8 and Fig. 9 at the operating point 

of   eP = 0.8 pu .  

 

 
 

Fig. 16.  Rotor Speed response with and without 

damping controller 2m  at eP = 0.2 pu. 

 

 

 
 

Fig. 17.  Electrical Power response with and without 

damping controller 2m  at eP = 0.2 pu 

 

5.2.3 Damping Controller 1111δ  

The eigenvalues of the power system with the 

damping controller 1δ  is given in Table 8. The 

damping contributed by this controller is less as 

compared to damping controllers 1m  and 2m  at this 

operating point. The damping ratio of the oscillation 

mode is only 0.034505 which is very less than the 

required 0.1 value. Fig. 18 and Fig. 19 show the 

response  of  the  rotor  speed  and  electrical   power  
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Table 8: Eigenvalues of the linearized SMIB at 

operating point eP = 0.2 pu with damping controller 

1δ .  

 

Eigenvalues Damping Ratio Frequency 

0 - 0 

-71.472 ± j64.643      0.74165         10.288              

-100.81                          1 0 

-0.42678 ±  j12.361    0.034505             1.9673              

     -0.34466                          1 0 

         -0.1                          1 0 

-0.00077932                          1 0 

 

 
 

Fig. 18.  Rotor Speed response with and without 

damping controller 1δ  at eP = 0.2 pu. 

 

 
 

Fig. 19.  Electrical Power response with and without 

damping controller 1δ  at eP = 0.2 pu 

 

respectively   in   the   presence   of   the   damping 

controller 1δ . The settling time is around 9.5 sec 

which is more compared to the settling times when 

the damping controllers  1m  and 2m  are used at the 

two different operating points eP = 0.2 pu and     

eP = 0.8 pu. 

 

5.2.4 Damping Controller 2δ  

Table 9 gives the eigenvalues when the damping 

controller 2δ  is placed in the power system. As 

observed during the operating point eP = 0.8 pu, this 

controller also does not contribute to any damping 

during the operating point eP = 0.2 pu as seen in 

Table 9. This is also verified from the responses of 

rotor speed and electrical power in Fig. 20 and Fig. 

21 respectively. The controller does not help in 

mitigating the power system oscillations. Thus 

damping controller 2δ  is not suitable for improving 

the damping of the oscillation mode. 

 

Table 9: Eigenvalues of the linearized SMIB at 

operating point eP = 0.2 pu with damping controller 

2δ  

 

Eigenvalues 
Damping 

Ratio 
Frequency 

0 - 0 

-100.2                          1 0 

-0.027141± j11.736     0.0023127         1.8678              

-0.00078018                          1 0 

-0.062618                          1 0 

-0.10615                          1 0 

-0.24777 ± j0.049733   0.98044         0.0079153              

 

 

 
 

Fig. 20.  Rotor Speed response with and without 

damping controller 2δ  at eP = 0.2 pu. 
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Fig. 21.  Electrical Power response with and without 

damping controller 2δ  at eP = 0.2 pu 

 

5.3 Operating point eeeePPPP  = 1.4 pu (heavy load 

condition) 
The damping controller performance of the power 

system is observed for the operating point eP = 1.4 

pu i.e at heavy load condition with various damping 

controllers. 

 

5.3.1 Damping Controller 1111mmmm  

The eigenvalues of the power system at eP = 1.4 pu 

with the damping controller 1m  is given in Table 

10. It appears that the damping controller 1m  

contributes negative damping at heavy load 

conditions as observed from Table 10. The 

oscillation mode is forced into the RHS of the S -

plane. But upon the non linear simulation of the 

system with this controller 1m , we observe a 

peculiarity in the responses of the rotor speed and 

electrical power  as  shown  in  Fig. 22  and  Fig. 23 

 

Table 10: Eigenvalues of the linearized SMIB at 

operating point eP = 1.4 pu with damping controller 

1m  

 

Eigenvalues Damping Ratio Frequency 

0 - 0 

-100.19 1 0 

2.6187 ±  j9.2251    -0.27308                     1.4682              

-8.79                          1 0 

-0.81499                          1 0 

-0.097471                          1 0 

6.4304e-005                         -1 0 

 
 

Fig. 22.  Rotor Speed response with and without 

damping controller 1m  at eP = 1.4 pu. 

 

 
 

Fig. 23.  Electrical Power response with and without 

damping controller 1m  at eP = 1.4 pu. 

 

respectively. The oscillation seems to increase in 

amplitude with high peak overshoots as if leading 

the system to instability reflecting the eigenvalues 

computed in Table 10. But at time 4.5 sec the 

oscillation suddenly are mitigated. This unusual 

nature of the damping controller 1m  providing 

excessive damping at light load condition, providing 

damping at heavy load condition with high peak 

values and requirement of higher gain value to 

provide the required damping makes it unreliable for 

damping the power system oscillations consistently 

for all operating conditions. 

 

5.3.2 Damping Controller 2222mmmm  

Table 11 represents the eigenvalues of the power 

system with the damping controller 2m . At heavy 
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load condition the controller provides a damping 

about 5.7%. The oscillations in the rotor speed and  

 

Table 11: Eigenvalues of the linearized SMIB at 

operating point eP = 1.4 pu with damping controller 

2m  

 

Eigenvalues Damping Ratio Frequency 

0 - 0 

-99.847 1 0 

-0.6271 ±  j10.91 0.057388 1.7363 

-11.039 1 0 

-0.71301 1 0 

-0.099809 1 0 

6.4304e-005 -1 0 

 

 

 
 

Fig. 24.  Rotor Speed response with and without 

damping controller 2m  at eP = 1.4 pu. 

 

 
 

Fig. 25.  Electrical Power response with and without 

damping controller 2m  at eP = 1.4 pu. 

electrical power is shown in Fig. 24 and Fig. 25 

respectively. The damping controller 2m  dampens 

the oscillations at about 7.5 sec for heavy load 

condition.  This damping controller 2m  provides 

sufficient damping at lighter load condition eP = 0.2 

pu and nominal load condition eP = 0.8 pu. 

However, its performance in heavy load condition 

eP = 1.4 pu does not meet the designed requirement 

of achieving the damping ratio of 0.1 although it 

mitigates the oscillation consistently. 

 

5.3.3 Damping Controller 1δ  

The eigenvalues of the system with the damping 

controller 1δ  is shown in Table 12. The damping 

controller 1δ  contributes slightly to the oscillation 

mode of interest and it also introduces another set of  

 

Table 12: Eigenvalues of the linearized SMIB at 

operating point eP = 1.4 pu with damping controller 

1δ  

 

Eigenvalues Damping Ratio Frequency 

0 - 0 

-116.91 1 0 

-27.566 ±  j96.088i 0.27576 15.293 

-0.87469±  j9.8899 0.088099 1.574 

-0.69493 1 0 

-0.10006 1 0 

6.4304e-005 -1 0 

 

 

 

 
 

Fig. 26.  Rotor Speed response with and without 

damping controller 1δ  at eP = 1.4 pu. 
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complex eigenvalues, though it has sufficient 

damping ratio. However the responses obtained 

from the nonlinear simulation as shown in Fig. 26 

and Fig. 27 for rotor speed and electrical power 

output respectively indicate the ineptness of this 

controller to provide damping compared to the other 

damping  controllers 1m  and 2m . The responses 

indicate that the controller is ineffective in damping 

the oscillations at heavy load conditions. 

 

 
 

Fig. 27.  Electrical Power response with and without 

damping controller 1δ  at eP = 1.4 pu. 

 

5.3.4 Damping Controller 2δ  

The damping controller 2δ  is not a suitable signal 

for damping as can be observed from Table 13 

where the eigenvalues of oscillation mode are 

shifted to RHS of S-plane making the system 

unstable. This is also seen in Fig 28 and 29 that the 

controller does not provide any damping. 

 

Table 13: Eigenvalues of the linearized SMIB at 

operating point eP = 1.4 pu with damping controller 

2δ  

 

Eigenvalues Damping Ratio Frequency 

0 - 0 

-99.873 1 0 

0.02401 ±  j9.9107 -0.0024226 1.5773 

-0.75652 1 0 

-0.14535 1 0 

-0.10615 1 0 

-0.083081 1 0 

6.4306e-005 -1 0 

 

 
 

Fig. 28.  Rotor Speed response with and without 

damping controller 2δ  at eP = 1.4 pu. 

 

 

 
 

Fig. 29.  Electrical Power response with and without 

damping controller 2δ  at eP = 1.4 pu. 

 

From the analysis we have deducted that the 

controller 2δ  is inept in providing damping to the 

power system oscillations. 1m  and 2m  prove to be 

suitable input signals on which the damping 

function can be added. However the damping 

controller 2m  is more efficient as the required 

damping is provided at minimum control cost, and it 

provides consistent damping throughout the varying 

operating conditions. This is also proved with the 

controllability index given in Table 14; from we can 

observe that the input signal 2m  is the most 

efficient signal for damping as it has higher value of 

controllability index compared to other input 

signals.  
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Table 14: Controllability indices with different IPFC 

controllable parameters  

 

Input signal  Controllability index 

1m  0.0170 

1δ  0.0055 

2m  0.1560 

2δ  0.0079 

 

Furthermore, if the operating condition where the 

IPFC damping controller is least effective is selected 

for the design of damping controller then it becomes 

more effective in damping at other operating 

conditions indicating its robustness. As we have 

seen, the damping controller 2m  is least effective at 

heavy load condition comparatively, and also the 

damping ratio of the concerned oscillation mode is 

the least at the operating condition of eP = 1.4 pu as 

indicated in Table 15. Consequently the damping 

controller is designed at the operating point         

eP = 1.4 pu and its performance at varying operating 

conditions is observed in Fig. 30.  The results of the 

eigenanalysis with damping controller 2m , designed 

at the operating point eP =1.4 pu, at different 

operating conditions are shown in Table 16. It is 

observed that the controller provides damping 

without sharp drops or increases in the damping 

contribution   with   various   operating   conditions  

 

Table 15: Oscillation modes at various operating 

conditions  

 

Op. 

Pt. 

Eigenvalues without damping 

 

Eigenvalues Damping  

ratio 

Frequ-

ency 

0.2 -0.031219 ±  j12.275 0.0025433 1.9536 

0.8 -0.09782 ±  j11.514 0.0084952 1.8325 

1.4 -0.016734 ±  j11.009 0.00152 1.7521 

 

Table 16: Oscillation modes at various operating 

conditions with damping controller 2m designed at 

eP =1.4 pu 

 

Op. 

Pt. 
Eigenvalues with damping 2m  

 

Eigenvalues Damping  

ratio 

Frequ-

ency 

0.2 -2.6316 ± j12.503 0.20596 1.99 

0.8 -2.1822 ± j11.669 0.18382 1.8573 

1.4 -1.1397 ± j10.965 0.10338 1.7451 

making the damping controller 2m  more robust and 

effective. Fig. 30 shows the rotor speed response 

with the damping controller 2m  at different load 

conditions. It is noted that the oscillations are 

mitigated at a faster rate with lighter load conditions 

which validates the results of Table 16. 
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Fig. 30. Rotor Speed response with controller 2m  

with varying operating conditions 

 

The effect of the IPFC damping controller 2m  is 

also verified during a step variation of 0.01 pu in 

mechanical power input mP . Fig. 31 shows the 

response of the electrical power when the 

disturbance is given at 1.0 sec. The effect of the 

damping controller  2m  designed at the two 

operating conditions eP = 0.8 pu and at eP = 1.4 pu 

is compared during this disturbance. 
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Fig. 31.  Electrical Power response without damping 

controller and with damping controller 2m  designed 

at (a) eP = 0.8 pu (b) eP = 1.4 pu 
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It is clearly seen that the damping controller 2m  

designed at the operating point eP = 1.4 pu gives 

better damping as the settling time is at 3 sec. It 

improves the performance by 55%  in comparison 

with the controller designed at eP = 0.8 pu. Thus the 

controller is more robust when designed at the 

operating point at which the damping ratio of the 

oscillation mode is minimum or where it is least 

effective to ensure to effectiveness at other 

operating conditions. The operating point and the 

input signal play a significant role in damping the 

power system oscillations. 

 

 

6 Conclusion 
In this paper the non linear model of the IPFC has 

been developed and the extended linearized Phillips-

Heffron model of a single machine infinite bus 

power system incorporated with IPFC is established. 

The parameters of the IPFC damping controller is 

determined using the phase compensation method 

based on the linearized model. The relative 

effectiveness of the input control signals 

211 ,, mm ∆∆∆ δ and 2δ∆  has been examined on 

example power system subjected to various 

disturbances. Investigations revealed that control 

signal 2m∆  is the most efficient of the input control 

signals to be used for damping in the power system 

whereas the control signal 2δ∆  is inefficient in 

providing the damping. It is found that the IPFC 

damping controller is more robust over various 

operating conditions when the controller is designed 

at appropriate operating condition. The effectiveness 

and robustness of the IPFC damping controller is 

validated through eigenanalysis and non linear 

simulation. The authors are further investigating the 

additional damping provided by the proposed IPFC 

based damping controller in a multi-machine power 

system incorporated with IPFC.   
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Appendix 
 

Appendix A 
 

The parameters of the single machine infinite bus 

power system are as follows (in pu except where 

indicated): 

 

=H 4.0s.,                   =D 0.0,          =′
0dT 5.044s.,     

=dx 1.0,          =qx 0.6,          =′dx 0.3,          

=tx 0.01,         =1tx 0.015,     =2tx 0.015,    

=1Lx 0.05,            =2Lx 0.05,           =AK 10.0,        

=AT 0.01s., =0dcv 225KV, =0eP 0.8,              

=0bV 1.0,                 =tV 1.02. 

 

Appendix B 

 

K  constants at the operating point of eP =0.8 pu 

 

1K =3.166416, 2K =0.323807 3K =3.043796 

4K =0.066681 5K =-0.104002 6K =-0.001198 

7K =0.002149 8K =-0.009759 9K =0.000035 

pvK =0.123469 qvK =-0.004512 vvK =0.012725 

1pmK =1.497362 1δpK =-0.008114 

2pmK =1.578447 2δpK =-0.017687            

1qmK =-0.285734 1δqK =-0.015464            

2qmK =-0.031945 2δqK =-0.144520               

1vmK  =0.129343       1δvK =0.000640 

2vmK =0.165458 2δvK =0.028441               

1cmK =-0.898796 1δcK =0.005237 

2cmK =0.034733                         2δcK =-0.053150 

 

Appendix C 
 

Damping controller designed at eP =0.8 pu 

wT =10 sec 

 

Damping controller 1m  

dcK =182.12, 1T = 0.057312, 2T = 0.13174, n = 1 

 

Damping controller 2m  

dcK =15.235, 1T = 0.083781, 2T = 0.090121, n = 1 

 

Damping controller 1δ  

dcK =5.0117, 1T = 0.73539, 2T = 0.010267, n = 2 

 

Damping controller 2δ  

dcK =34420, 1T = 0.00080155, 2T = 9.4198, n = 2
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Abstract— The Interline Power Flow Controller (IPFC) is a 
voltage-source-converter (VSC)-based flexible ac transmission 
system (FACTS) controller which can inject a voltage with 
controllable magnitude and phase angle at the line-frequency 
thereby providing compensation among multiple transmission 
lines. In this paper, the use of the IPFC based controller in 
damping of low frequency oscillations is investigated. An 
extended Heffron-Phillips model of a single machine infinite 
bus (SMIB) system installed with IPFC is established and used 
to analyze the damping torque contribution of the IPFC 
damping control to the power system. The potential of various 
IPFC control signals upon the power system oscillation stability 
is investigated a using controllability index. Simulation results 
using Matlab Simulink demonstrate the effectiveness of IPFC 
damping controllers on damping low frequency oscillations. 

I. INTRODUCTION

HE present day interconnected power system consists of 
a great number of generators being connected together 

through a high-voltage long transmission network, supplying 
power to loads through lower-voltage distribution systems. 
The phenomenon that is of great concern in the planning and 
operation of interconnected power systems is the low 
frequency electromechanical oscillations. These oscillations 
are the consequence of the dynamical interactions between 
the generator groups. The oscillations associated with groups 
of generators when oscillating against each other are called 
inter-area modes and having frequencies in the range 0.1 to 
0.8 Hz, whereas the oscillations, associated with a single 
generator oscillating against the rest of the system, are called 
local modes and normally have frequencies in the range of 
0.7 to 2.0 Hz [1]. These low frequency oscillations constrain 
the capability of power transmission, threaten system 
security and damage the efficient operation of the power 
system [2-3]. For this reason, the use of controllers to 
provide better damping to the power system oscillations is of 
utmost importance to maintain power stability.  

In the last decade, the flexible ac transmission systems 
(FACTS) devices have been progressively developed to deal 
with the above control objectives [4].  A stream of voltage 
source converter (VSC) based FACTS devices, [5], and [6] 
such as Static Compensator (STATCOM), Static 
Synchronous Series Compensators (SSSC), and Unified 
Power Flow Controller (UPFC) have been successfully 
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applied in damping power system oscillations [7-14]. 
 Interline power flow controller (IPFC) is the latest 

generation of FACTS controllers [15]. It is the combination 
of two or more SSSCs which are coupled via a common DC 
link. With this scheme, IPFC has the capability to provide an 
independently controllable reactive series compensation for 
each individual line and also to transfer real power between 
the compensated lines. There has been growing interest 
recently in studying the IPFC modeling [16], its basic 
function to control power flow among transmission lines 
[17] and oscillation damping [18]. Kazemi and Karimi 
proposed a PI supplementary damping controller for the 
IPFC for damping inter-area oscillations [18]. However, the 
controller parameters are not optimized. Further, no effort 
had been made to identify the most suitable control 
parameter. A supplementary PID damping controller was 
proposed in [19], but the performance degraded due to the 
system nonlinearity and complexity. 

 Therefore, in this paper, the linearised Heffron-Phillips 
model of a single machine infinite bus (SMIB) power system 
installed with an IPFC is first established. It is of same form 
as that of the unified model presented in [20-22] for UPFC. 
Phase compensation method [23] is applied for the design of 
IPFC damping controllers based on the established 
linearized model. The relative effectiveness of modulating 
alternative IPFC control parameters for damping power 
system oscillations at the nominal point of the system is 
examined. The controllability index is used to determine the 
most effective output control signal among 

),,,( 2211 θθ andmm  from the damping controller. 

II. MODEL OF THE SYSTEM STUDIED

A single machine infinite bus (SMIB) system installed 
with IPFC is considered for the analysis of stability. Fig. 1. 
shows the generator connected to the infinite bus through the 
two parallel transmission lines. The static excitation system, 
model type IEEE-ST1A, has been considered. PSS is not 
taken into account in the power system. A simple IPFC is 
incorporated into the system, which consists of two, three 
phase GTO based voltage source converters (VSC’s), each 
providing a series compensation for the two lines. The 
converters are linked together at their dc terminals and 
connected to the transmission lines through their series 
coupling transformers. This configuration allows the control 
of real and reactive power flow in line 1. For the series 
converter in line 2, it is assumed that active power flow 
constraint is used while reactive power flow is relaxed.  

Interline Power Flow Controller (IPFC) Based Damping Controllers 
for Damping Low Frequency Oscillations in a Power System 
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Fig. 1: SMIB system installed with an IPFC.  

The system data and the initial operating conditions of the 
system are as follows: 

Generator:    M=2H=8.0 MJ/MVA   D=0    doT ′ =5.044s  
      dx =1.0pu       qx = 0.6pu     dx′ = 0.3pu 

Excitation system : aK = 50  aT = 0.05s 
Transmission line   : 1Lx = 2Lx = Lx =0.5 pu   
Transformers          : tx = 0.15pu 1.021 == tt xx pu 
Operating condition: 8.0=P 19580.Q = tV =1.0 pu 
            bV =1.0pu f = 60 Hz 
IPFC parameters  : 1m = 0.15, 2m = 0.1. 
          dcV =2 pu, dcC = 1 pu 

A. Power system Non Linear Dynamic Model 
A non-linear dynamic model of the system is derived by 

neglecting the resistances of all the components of the 
system (generator, transformer, transmission lines and series 
converter transformers) and the transients of the 
transmission lines and transformers of the IPFC. The IPFC 
considered is based on pulse width modulation. The non-
linear dynamic model of the power system in Fig. 1 is  
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Where δ , is the rotor angle of synchronous generator in 
radians, ω  is rotor speed in rad/sec, tV  is the terminal 

voltage of the generator, qE ′  is generator internal voltage,  

fdE  is the generator field voltage, dcV   is the voltage at DC 
link. More details are given in Appendix I. The voltages 
injected by the IPFC converters in d-q coordinates are 
obtained as follows: 
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where 2,1, =iV ise  is the complex controllable series 

injected voltage, 1tx and 2tx are the reactance’s of the 
transformers in line 1 and 2. 

B. Power System Linear Model  
The linear Heffron-Phillips model of SMIB system 

installed with IPFC is obtained by linearizing the non linear 
model around an operating condition, which is obtained 
from power flow analysis [24]. The linearized model 
obtained is given as:  
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The model has 28 K-constants. These constants are 
functions of system parameters and the initial operating 
condition.  

C. State space Model 
In state-space representation, the power system can be 

modeled as 
BUAXX +=  (15) 

where the state vector and control vector are as follows: 
T

dcfdq VEEX ][ ΔΔ′ΔΔΔ= ωδ
TmmU ][ 2211 θθ ΔΔΔΔ=   (16) 

The system matrix and control matrix are: 
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and 1mΔ  is the deviation in pulse width modulation index 

1m  of voltage series converter 1 in line 1. By controlling 1m ,
the magnitude of series injected voltage in line 1 can be 
controlled. 2mΔ  is the deviation in pulse width modulation 
index 2m  of voltage series converter 2 in line 2. By 
controlling 2m , the magnitude of series injected voltage in 
line 2 can be controlled. 1θΔ  is the deviation in phase angle 
of the injected voltage 1seV . 2θΔ  is the deviation in phase 

angle of the injected voltage 2seV .

III. DESIGN OF IPFC DAMPING CONTROLLERS

To improve the damping of low frequency oscillations the 
damping controllers are provided to produce the additional 
damping torque. The speed deviation ωΔ  is considered as 
the input to the damping controllers which reflects the 
swings on the machines and lines of interest. As such, the 
output of the controller is in phase with the speed deviation.  

dcK
w

w

sT
sT
+1 2

1

1
1

)(
sT
sT

sGc +
+

=
ωΔ

uΔ

Fig. 2: Structure of IPFC based damping controller. 

The structure of IPFC based damping controller is shown 
in Fig. 2. It consists of gain, signal washout and phase 
compensation blocks. The optimum parameters of the 
damping controller are obtained using the phase 
compensation technique [22]. The design is presented in 
Appendix II. The time constants of the phase compensator 
are chosen such that the phase angle of the system is fully 
compensated. For the nominal operating condition, the 

magnitude and phase angle of transfer function, UPe ΔΔ / , 
will be computed for njs ω= . The gain setting of the 
damping controller is chosen to achieve the required 
damping ratio of 0.1. As observed from (16) there are four 
choices of input signals ),,,( 2211 θθ andmm  of the IPFC to 
modulate. The signal which can achieve effective damping 
control at minimum control cost will be the most efficient. 
This selection is made at open loop condition before 
installation of damping controller. The concept of 
controllability index is used to select the most suitable IPFC 
control parameter from the damping controller for 
modulation [25].  

IV. SIMULATION RESULTS

The effectiveness of IPFC damping controllers on 
damping low frequency oscillations is demonstrated using 
Matlab simulink. First, the system is simulated without 
IPFC. The K-constants are computed as given in table I. The 
system is simulated using these values and the change in 
rotor speed ( ωΔ ) response is obtained, by making 1% step 
increase in mP  i.e. 01.0=Δ mP , as shown in Fig. 3. The 
response clearly indicates that the system is unstable. 

TABLE I
K-CONSTANTS FOR THE SYSTEM WITHOUT IPFC

1K =0.8674 4K =-0.2854 1K =0.8674 

2K =1.0192 5K =-0.0994 2K =1.0192 

3K =0.7143 6K =0.5179 3K =0.7143 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Time (s)

Fig. 3: Rotor speed deviation without IPFC 

The system is incorporated with IPFC. Load flow analysis 
is performed to obtain the operating point which is given as 
follows: 

0211958090000 .V.Q,.P te ===
43110379501 1 .V.VV doseb ===

718505469092440 000 .I.I.V qdq ===
0

20
0

10
0

0 7250756517160567 ... ===
The system is linearized about this operating point. The  

ωΔ
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K-constants for the system installed with IPFC, are 
computed as follows:  
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The eigenvalues corresponding to oscillatory modes of the 
system are computed as given in table II.  From the table II, 
we observe that the system consists of both local modes and 
inter area modes. The inter area modes are sufficiently 
damped, whereas, the local modes are lightly damped. 

TABLE II
EIGENVALUES OF THE SYSTEM 

Eigenvalues Damping ratio of 
oscillatory modes 

Natural frequency of 
oscillations (Hz) 

9.8410j0.0032- ±

4.5122j-10.0698 ±

-0.0000291 

0.0003 

0.9126 

1.0000 

1.5662 

0.7181 

0

For the nominal operating point, the natural frequency of 
oscillation nω  is equal to 9.8410j rad/sec. This mode is 
responsible for the low frequency oscillation of around 1.5 
Hz with very less damping of 0.0003. The damping 
controllers are designed to provide the additional damping. 
The parameters of the controllers are computed assuming a 
damping ratio (ξ  ) of 0.1. The gain and phase angle of 

)(sGc  for the various inputs are computed and given in  
table III.  

TABLE III
MAGNITUDE AND PHASE ANGLE OF THE TRANSFER FUNCTION

)(sGc )(sGc )(sGc∠

1/ mPe ΔΔ 0.055447 -1.54260

1/ θΔΔ eP 0.037634 -0.895110

2/ mPe ΔΔ 0.25303 -0.0422850

2/ θΔΔ eP 0.0044907 -179.980

It can be seen that the phase angle of the system for the 
control parameter 2θΔ  is near to -1800, therefore the system 
becomes unstable when the controller )( 2θΔ  is used. This 
controller is not considered in further investigations. Table- 

IV shows the parameters of the remaining three alternative 
damping controllers computed at the nominal operating 
point. 

TABLE IV 
PARAMETERS OF THE IPFC DAMPING CONTROLLERS

 K 1T

Damping controller 1mΔ 276.44 0.10439 

Damping controller 1θΔ 411.91 0.10321 

Damping controller 2mΔ 62.183 0.10169 

 Fig. 4 shows the response of ωΔ  with the three 
alternative damping controllers. The response of  ωΔ  is 
obtained with a step perturbation of mPΔ  = 0.01. Fig.4 
shows the responses are identical which indicates that any of 
the IPFC damping controllers, provide satisfactory 
performance at the nominal operating point.   
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Fig. 4: Dynamic response for ωΔ  with different damping controllers. 

However, in order to select the most effective IPFC 
control signal for damping, the controllability index is 
computed. The index is computed for the electromechanical 
mode ( 9.8410j rad/sec) to be damped taking into account all 
the control signals one at a time. Table V gives the 
computed values of the indices. 

TABLE V
CONTROLLABILITY INDICES WITH DIFFERENT IPFC CONTROLLABLE 

PARAMETERS 

IPFC Control Parameters Controllability index 

1mΔ 0.17974 
2mΔ 0.8202 

1θΔ 0.12194 

2θΔ 0.014551 

Table V reveals that the controllability index 
corresponding to IPFC control parameter  2mΔ , is highest 
and that of  2θΔ , is insignificant compared to the other 

ωΔ

1-damping controller )( 1m
2-damping controller )( 1θ
3-damping controller )( 2m
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control parameters. Hence, 2mu Δ=Δ  is the best selection 
for the design of the IPFC damping controller since the 
minimum control cost (the lowest gain) is needed to provide 
the required damping (as also observed in table 3). From 
now on, the damping controllers based on 2mΔ  shall be 
denoted as damping controller 2mΔ . Fig. 5 shows the 
dynamic response of the system with and without the 
damping controller 2mΔ .

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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0

0.5

1

1.5
x 10
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1-without damping controller
2-with damping controller1

2

Fig. 5: Rotor speed deviation for D=0, with and without damping controller

The dynamic performance of the system is further 
examined considering a case in which two damping 
controllers operate simultaneously.  Fig. 6 shows the 
dynamic response for ωΔ  with damping controller 1mΔ ,

2mΔ  and simultaneous operation of both the controllers 
(dual controller).  
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Fig. 6: Dynamic response with different damping controllers. 

It is observed that the dynamic response of the system has 
improved with the use of dual controllers, and thus, more 
effective than individual controllers.  

V. CONCLUSIONS 

The linearized modified Heffron-Phillips model of a 
single machine infinite bus system installed with IPFC has 
been established. The linearized model is applied to study 

the effect of alternative IPFC damping controllers on 
oscillation damping. Controllability index is utilized to 
determine the most effective damping control signal for the 
design of IPFC damping controller. From the study it is 
revealed that the IPFC control signal 2mΔ  is the most 
effective. However, the dual damping controller which 
modulates the control signals 1mΔ  and 2mΔ  is more 
effective in providing significant damping torque. 
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tV  : Terminal voltage of generator  
HM 2= : is the inertia constant 

)1( −= ωDPD , D: Damping coefficient 
'

doT  : Open circuit d-axis time constant in sec 

aK  : AVR gain, 

aT  : Time constant of AVR in sec 

eP  : Electrical power of the generator 

mP  : Mechanical power input to the generator 

refV : Reference voltage 

dcC  : DC link capacitor  

1m  : Modulation index of VSC 1 

2m  : Modulation index of VSC 1 

ωΔ

ωΔ

1-damping controller 1mΔ
2-damping controller 2mΔ
3-dual controller 
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1θ  : Phase angle of series converter 1 voltage 

2θ  : Phase angle of series converter 2 voltage  

dI1  : d-axis current in line 1 

qI1  : q-axis current in line 1 

dI 2  : d-axis current in line 2 

qI 2  : q-axis current in line 2 

APPENDIX II 
Design of IPFC damping controller.
Compute the natural frequency of oscillation  nω  from the 

mechanical loop as MKn 01ωω = .  Let γ  be the angle 

of the transfer function 
u
P

sG e
s Δ

Δ
=)( , (phase lag of between 

uΔ  and ePΔ , where ),,,( 2211 θθ ΔΔΔΔ=Δ andmmu  ) as 
shown in Fig. A at njs ω= .   
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Fig. A: Transfer function of the system relating component of electrical 
power ePΔ  produced by damping controller uΔ

The controller designed is made up of washout filter and 
lead-lag block, with the following transfer function: 
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wT  is the washout filter time constant and its value can be 
taken as a number between 1 and 20 sec. Assume for the 
lead-lag network, 21 aTT = , where )sin1/()sin1( γγ −+=a

and )/(12 aT nω= . The required gain setting for the 

desired ratio ξ  is obtained as, 
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)(sGs  and )(sGc  are evaluated at njs ω= .

REFERENCES

[1] P. Kundur, Power System Stability and Control. Mc Graw-Hill, New 
York, 1994, ch. 12. 

[2] IEEE/CIGRE Joint Task Force on Stability Terms and Definition, 
“Definition and classification of power system stability,” IEEE Trans. 
Power Systems, vol. 19, pp. 1387-1401, May 2004.  

[3] P. Kundur, L. Wang, “Small signal stability analysis: experience, 
achievements, and challenges,” International Conference on Power 
System Technology Proceedings, vol. 1, 2002, pp. 6-12.  

[4] Y.H. Song and A.T. Johns, Flexible AC Transmission systems, IEE 
Power and Energy series 30, 1999. 

[5] Gyugyi, L. “Dynamic compensation of AC transmission lines by 
solid-state synchronous voltage sources,” IEEE Trans. Power 
Delivery, vol. 9,  pp. 904–911, 1994.  

[6] N.G. Hingorami, L.Gyugyi, “Understanding FACTS: Concepts and 
Technology of Flexible AC Transmission system,” IEEE Press 

[7] Haque, M.H. “Use of energy function to evaluate the additional 
damping provided by a STATCOM,” Electric Power Systems 
Research, vol. 72, pp. 195–202, 2004.  

[8] Abido, M.A. “Analysis and assessment of STATCOM-based damping 
stabilizers for power system stability enhancement,” International 
Journal of Electric Power System Research, vol. 73, pp. 177–185, 
2005. 

[9] Abido, M. A.,  Al-Awami,  A. T.,. Abdel-Magid,  Y. L., “Analysis and 
design of UPFC damping stabilizers for power system stability 
enhancement,” IEEE ISIE, July 2006, Montreal, Quebec, Canada,   pp. 
2040-2045. 

[10] Nadarajah Mithulananthan, Claudio A. Canizares , John Reeve, and 
Graham J. Rogers, “Comparison of PSS, SVC, and STATCOM 
controllers for damping power system oscillations,” IEEE Trans.  
Power Systems, vol. 18, no. 2, pp. 786-792, May 2003. 

[11] H.F. Hang, “Design of SSSC damping controller to improve power 
system oscillation stability,” IEEE 1999. 

[12] R. Sadikovic, P. Korba and G. Andersson, “Application of FACTS 
devices for damping of power system oscillations,” IEEE PowerTech,
Russia, June 2005. 

[13] P.K.Dash, S.MishraA, G.Panda, “Damping multimodal power system 
oscillation using a hybrid fuzzy controller for series connected 
FACTS devices,” IEEE Trans. Power Systems, vol. 15, no. 4, pp. 
1360-1366, November 2000.  

[14] N.Tambey and M.L.Kothari, “Damping of power system oscillation 
with unified power flow controller,” IEE Proc. Gener. Trans. Distib.
vol. 150, no. 2, March 2003, pp. 129-140. 

[15] L.Gyugyi, K.K.Sen, C.D.Schauder, “The interline power flow 
controller concept: A new approach to power flow management in 
transmission Systems,” IEEE Trans. Power Delivery, vol. 14, no. 3, 
pp. 1115-1123, July 1999. 

[16] R. Leon Vasquez-Arnez and Luiz Cera Zanetta, “A novel approach for 
modeling the steady-state VSC-based multiline FACTS controllers 
and their operational constraints,” IEEE Trans. power delivery, vol. 
23,    no. 1, January 2008. 

[17] Jun Zhang, and Akihiko Yokoyama, “Optimal power flow control for 
congestion management by interline power flow controller (IPFC),” 
International Conference on Power System Technology, 2006. 

[18] Kazemi, A.; Karimi, E, “The effect of interline power flow controller 
(IPFC) on damping inter-area oscillations in the interconnected power 
systems,” Industrial Electronics, 2006 IEEE International 
Symposium, volume 3, July 2006, pp. 1911 – 1915. 

[19] J. Chen, T.T. Lie, D.M. Vilathgamuwa, “Design of interline power 
flow controller,” 14th  PSCC, Sevilla, June 2002. 

[20] A. Nabavi-Niaki and M. R. Iravani, “Steady-state and dynamic 
models of unified power flow controller (UPFC) for power system 
studies,” IEEE Trans. Power Systems, vol. 11, no. 4, pp. 1937-1943, 
Nov. 1996. 

[21] H. F. Wang, “Damping function of unified power flow controller,” 
IEE Proceedings Generation Transmission and Distribution, vol. 146, 
no. 1, 1999, pp. 81-87.  

[22] H. F. Wang, “Application of modeling UPFC into multi-machine 
power systems,” IEE Proceedings Generation Transmission and 
Distribution, vol. 146, no. 3, 1999, pp. 306-312. 

[23] Richard C. Dorf, Modern Control Systems, Addison-Wesley 
Publishing Company, 1992. 

[24] X.-P. Zhang, “Modelling of the interline power flow controller and the 
generalised unified power flow controller in Newton power flow,” 
Generation, Transmission and Distribution, IEE Proceedings-
vol. 150, no. 3, May 2003, pp. 268 – 274. 

[25] Wang, H. F. “Selection of robust installing locations and feedback 
signals of FACTS –based stabilizers in multi-machine power 
systems,” IEEE Trans.  Power Systems, vol. 14, no. 2, pp. 569-574, 
1999. 

339



2nd IEEE International Conference on Power and Energy (PECon 08), December 1-3, 2008, Johor Baharu, Malaysia 

Damping of Inter Area Oscillations Using 
Interline Power Flow Controller Based Damping 

Controllers  
 

Alivelu M. Parimi*, Irraivan Elamvazuthi** and Nordin Saad*** 
Universiti Teknologi PETRONAS, Tronoh, Perak, Malaysia.  

Email: *alivelu_manga@utp.edu.my 
** irraivan_elamvazuthi@petronas.com.my 

***nordiss@petronas.com.my 
 
 
 

Abstract—This paper investigates the effect of Interline 
Power Flow Controller (IPFC), an advanced Flexible AC 
Transmission System (FACTS) controller, in damping low 
frequency oscillations via supplementary control. For this 
purpose, a modified linearised Phillips-Heffron model for a 
Single machine Infinite Bus (SMIB) system installed with 
IPFC is established, and the power oscillation damping 
controller is designed. The effect of this damping controller 
on the system, subjected to wide variations in loading 
conditions and system parameters, is investigated. Results of 
simulation investigations in Matlab are presented to validate 
the proposed approach. 

Keywords IPFC; inter area oscillation; damping controller 

I. INTRODUCTION 
Today’s heavily loaded and stressed power 

transmission networks exhibit complex dynamic system 
behavior. They are continually exposed to sudden, small 
and large, disturbances in load, generation and 
transmission network configuration. As such the 
appearance of low frequency electromechanical 
oscillations in the interconnected power systems is a 
reasonably frequent phenomenon. Growing oscillations 
eventually lead to loss of synchronism in a power system 
causing either damage or making the parallel operation 
infeasible. In this context, damping devices are imperative 
for the modern power systems to improve system stability 
and suppress undesirable oscillations. The 
electromechanical oscillations are usually in the range 
between 0.1 and 2 Hz [1]. The oscillations in the range 0.1 
to 0.8 Hz are called inter-area modes which are associated 
among groups of generators or groups of plants. 
Oscillations associated with a single generator or more in 
an area with respect to the rest of the system are called 
local modes having frequencies in the range 0.8 to 2.0 Hz.  

In recent years, Flexible AC Transmission System 
(FACTS) controllers are found to be more capable of 
handling power flow control, transient stability and 
oscillation damping enhancement as reported in [2-6]. 
Researchers have presented design of FACTS-based 
stabilizers for SVC, TCSC, TCPS, and Unified Power 
Flow Controller (UPFC) in [7]. Interline Power Flow 
Controller (IPFC) is an advanced voltage sourced 
converter based FACTS controller [8] which employs a 
number of dc to ac converters each providing a series 
compensation for a different line. The converters are 

linked together at their dc terminals and connected to the 
ac systems through their series coupling transformers. The 
IPFC allows to simultaneously and independently inject, 
over each transmission line, a controllable series voltage 
which enables to equalize both real and reactive power 
flow between the lines; transfer power demand from 
overload to under loaded lines; compensate against 
resistive line voltage drops and the corresponding reactive 
power demand; increase the effectiveness of the overall 
compensating system for dynamic disturbances. Though 
the primary function of the IPFC is to control power flow 
on a given line, it can also be utilized for damping power 
system oscillations by judiciously applying a damping 
controller.  

A supplementary PID damping controller along with 
power flow control was proposed in [9], but the 
performance is degraded due to nonlinearity of the system. 
The effect of IPFC on damping inter-area oscillations with 
a PI damping controller, with electrical power as input, 
was proposed by Kazemi [10]. However, the parameters 
of the controller are not optimized. In the view of this, the 
main purpose of this paper is to extend the design of 
damping controllers for UPFC previously proposed by the 
authors [5, 11] to IPFC. Adopting similar techniques, the 
modified linearized Phillips-Heffron model for a single 
machine infinite bus (SMIB) system with IPFC is derived. 
Thereafter, an IPFC based power oscillation damping 
controller is designed. The performance of the damping 
controller under wide variations in loading conditions and 
in system parameters (equivalent line reactance) is 
investigated. 

II. SYSTEM INVESTIGATED 
A single machine infinite bus system installed with 

IPFC as shown in Fig. 1 is considered.  

 
Figure 1.  IPFC installed in a SMIB system 
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The IPFC is installed on the two parallel transmission 
lines. The IPFC is assumed to be based on pulse width 
modulation (PWM) converters. 

A. Non Linear Dynamic Model of the System with IPFC 
A non-linear dynamic model of the system is derived 

by neglecting the resistances of all the components of the 
system (generator, transformer, transmission lines, and 
series converter transformers); the transients of the 
transmission lines and transformers of the IPFC. The non-
linear dynamic model of the system using IPFC is derived 
as follows 
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where 
δ  : Rotor angle of synchronous generator in radians 
ω  : Rotor speed in rad/sec 

tV  : Terminal voltage of generator  
HM 2= : is the inertia constant 

)1( −= ωDPD , D: Damping coefficient 
'

doT  : Open circuit d-axis time constant in sec 

aK  : AVR gain, 

aT  : Time constant of AVR in sec 

eP  : Electrical power of the generator 

mP  : Mechanical power input to the generator 

qE ′�  : Generator internal voltage 

fdE : Generator field voltage  

refV : Reference voltage 

dcV  : Voltage at DC link  

dcC  : DC link capacitor    

1m  : Modulation index of VSC 1 

2m  : Modulation index of VSC 1 

1θ  : Phase angle of series converter 1 voltage 

2θ  : Phase angle of series converter 2 voltage  

dI1  : d-axis current in line 1 

qI1  : q-axis current in line 1 

dI 2  : d-axis current in line 2 

qI 2  : q-axis current in line 2 

The equivalent controllable injected voltage source 
magnitude and angle of the series converter are 
constrained by : 

 
maxmin

iseiseise VVV ≤≤
                        (6) 

πθπ ≤≤− i  

where 2,1=i ; and maxmin , iseise VV  are the minimal and 
maximal voltage limits of iseV , respectively [12]. 
According to the principle of IPFC, the operating 
constraint representing the active power exchange ( PE ) 
between or among the converters via the common DC link 
is given by: 

 )2,1(0 ===� iPPE
i

ise                  (7) 

where  )2,1()Re( * == iIVP iseiseise , *
iseI  is the conjugate 

of iseI  [12]. General pulse width modulator is used for the 
VSC’s. The voltages injected by the IPFC converters in  
d-q coordinates are obtained as follows: 
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iseiqseidseise eVjVVV θ=+=    (8) 

where 1tx  and 2tx  are the reactance’s of the 
transformers in line 1 and 2.  

B. Linear Dynamic Model (Modified Heffron-Phillips 
Model of an SMIB System including IPFC) in State 
Space form 

A linear dynamic model is obtained by linearising the 
non linear model (1) to (5) around an operating condition 
which is obtained from power flow analysis. The 
linearised model in state space form is obtained as  

 BUAXX +=�        (9) 

 where  T
dcfdq VEEX ][ ΔΔ′ΔΔΔ= ωδ  
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The control vector  u  is defined as follows: 

TmmU ][ 2211 θθ ΔΔΔΔ=                                  (10) 

where 

1mΔ  : Deviation in pulse width modulation index 1m  
of voltage series converter 1 in line 1. By controlling 1m , 
the magnitude of series injected voltage in line 1 can be 
controlled.  

2mΔ  : Deviation in pulse width modulation index 2m  
of voltage series converter 2 in line 2. By controlling 2m , 
the magnitude of series injected voltage in line 2 can be 
controlled.  

1θΔ   : Deviation in phase angle of the series injected 
voltage 1seV .  

2θΔ  : Deviation in phase angle of the series injected 
voltage 2seV  

Fig. 2 shows the modified Phillips-Heffron transfer 
function model of the system incorporating IPFC. The 
model has 28 constants similar to SMIB model with 
UPFC [5]. These constants are functions of system 
parameters and the initial operating condition. It should be 
noted that cvqp KKKK  and,,  in Fig. 2 are the row 
vectors defined as 

][ 2211 θθ ppmppmp KKKKK =  

][ 2211 θθ qqmqqmq KKKKK =  

][ 2211 θθ vvmvvmv KKKKK =  

                   ][ 2211 θθ ccmccmc KKKKK =             (11) 
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Figure 2.  Modified Heffron-Phillips model of SMIB system with IPFC 
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C. Computation of Constants of the Power System 
The initial d-q axes voltage and current components 

computed for the nominal operating point 
.).0.1,0.1.,.4.0.,.8.0( upVbVupQupP tee ====

 are as follows:  
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The system parameters are given in appendix. The 
data is required for computing the constants of the 
system model. The constants for the nominal condition 
are as follows 
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D. Design of Damping Controllers 
The damping controllers are designed to provide an 

additional electrical torque in phase with the speed 
deviation. The speed deviation ωΔ  is considered as 
the input to the damping controller whose output is used 
to modulate the controlled parameter 2m  which 
controls the series voltage injected in line 2. It is 
assumed that, for the series converter in line 2, the 
active power flow control constraint is used while the 
reactive power flow constraint is relaxed. The structure 
of IPFC based damping controller is shown in Fig. 3. It 
consists of gain, signal washout and phase 
compensation blocks. 
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Figure 3.  Structure of IPFC based damping controller 

 The parameters of the damping controller are 
determined using the phase compensation technique 
[13]. The magnitude and phase angle of transfer 

function, 2/ mPe ΔΔ  is computed for njs ω=  at 

nominal operating condition where
M

K
n

01ωω = . The 

gain setting of the damping controller is chosen to 
achieve required damping ratio equal to 0.5. The time 
constants computed to compensate the phase angle of 
the transfer function 2/ mPe ΔΔ  for the system at 

is 7314.6=  are sT 1478.01 = and sT 1493.02 = . The 
gain setting dcK  is equal to 511.0965. The value of wT  
(the washout filter time constant) is chosen as 20s 
which should be high enough to pass low frequency 
oscillations unchanged. Then, the dynamic performance 
of the system is investigated with the designed 
controller while varying the loading conditions and the 
equivalent line reactance ex  over the range of  %20±   
from its nominal value considering a step perturbation 

..01.0 upPm =Δ  

III. RESULTS AND DISCUSSION  
To examine the effect of IPFC based damping 

controller on the system, simulations are performed 
using Matlab simulink on the system, first without IPFC 
and then, with IPFC and damping controller. The K-
constants for the system without IPFC are computed 
which are given as follows: 

7182.01706.01744
8467.07385.02884.0
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Using these values the Phillips-Heffron linear model 
of the single machine infinite bus without IPFC is 
simulated in Matlab. The response of change in speed 

ωΔ  for the system when there is no IPFC is given in 
Fig 4. which indicates the system is unstable and 
requires additional damping to sustain the oscillation.  
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Figure 4.  Dynamic response for ωΔ  without IPFC  

The system is incorporated with IPFC and the 
operating point is obtained from load flow. The K- 
constants are computed using the system parameters 
and initial operating point, as given in section C and the 
system is simulated. The response of ωΔ  for the 
system with the IPFC based damping controller 

ωΔ
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included is shown in Fig 5. It shows the damping 
controller provides satisfactory performance at the 
nominal operating condition. The robustness of the 
damping controller designed at the nominal operating 
point is examined by varying the loading conditions of 
the system. The load condition of the system is varied 
from 1.0=eP  to 0.1=eP . The dynamic responses of 
the system are obtained for each loading condition. 
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Figure 5.  Dynamic response for ωΔ  with the IPFC based damping 

controller 
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Figure 6.  Dynamic response for ωΔ  with the IPFC based damping 

controller for different loading conditions 

Fig 6, shows the dynamic responses of ωΔ  for 
2.0=eP  (light loading),  8.0=eP  (nominal loading) 

and 0.1=eP  (heavy loading). It can be seen that the 
responses are similar in terms of settling time which 
indicates that the damping controller provides 
satisfactory performance under wide variation in 
loading conditions. The performance of the damping 
controller is further investigated with variation in 
equivalent reactance ex . Fig. 7 shows the dynamic 
performance of the system for variation in ex  for 

%20±  from the nominal value.  
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Figure 7.  Dynamic response for ωΔ  with the IPFC based damping 

controller for different variations in ex  

The damping controller provides a satisfactory 
response even with variation in equivalent reactance 

ex . 

IV. CONCLUSION 
The effectiveness of the IPFC based damping 

controller has been investigated in damping low 
frequency oscillations. Dynamic simulations results 
have emphasized that the damping controller which 
modulates the control signal 2m  provides satisfactory 
dynamic performance under wide variations in loading 
condition and system parameters. Further work will be 
carried on applying the controller design for a multi-
machine system.  
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APPENDIX  

The nominal parameters and the operating condition 
of the system are given as follows: 

Generator: sdo THM 044.5'  0,DMJ/MVA    0.82 ====  

        3.0',6.0,1.0 === dXqXdX  

Excitation system: 05.0,50 == aa TK  

Transformer : 01.0.,.0.1 21 ==== lllt xxxupx  

                  2)2.001.0(0.1,2.021 ++=== ett xxx  

Operating Condition: ..4.0.,.8.0 upQupP ee ==  

                                   0.1,.0.1 == tb VupV  

IPFC   parameters: 1.0,15.0 21 == mm  

Parameters of DC link: ..1.,.2 upCupV dcdc ==
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Dynamic Modeling of Interline Power Flow 
Controller for Small Signal Stability  
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Abstract—This paper addresses the formulation of the non-
linear dynamic model of the power system installed with 
Interline Power Flow Controller (IPFC). The linearized 
model for both single-machine infinite-bus and multi-
machine power system installed with IPFC is developed and 
incorporated into the Phillips-Heffron model. These models 
lay the foundation for small signal stability studies of the 
power system using IPFC. The application of the models is 
demonstrated for a Multi-machine power system. 

Keywords IPFC; power system modelling; Phillips-Heffron 
model  

I. INTRODUCTION

The Interline Power Flow Controller (IPFC) belongs to 
the converter-based FACTS Controllers, representing the 
new generation of transmission controllers, employing the 
self commutated, voltage-sourced converters (VSC). An 
IPFC consists of a number of VSCs linked together at 
their dc terminals. Each VSC injects a controllable ac 
voltage to its respective transmission line providing series 
compensation [1, 2], whilst the common dc link facilitates 
the transfer of real power flow among the transmission 
lines. Thus, real power is transferred from overloaded to 
under-loaded lines and increases the capacity of the 
transmission lines. The IPFC simultaneously compensates 
multiple transmission lines by equalizing the real and 
reactive power flows in between the lines. IPFC also 
provides voltage control, improves transient stability, and 
enhances oscillation damping. Recently, modelling of 
IPFC and its various control functions has come under 
intensive investigation. Work has been established to 
model the IPFC into the power systems in a steady-state 
mode of operation for load flow studies and power flow 
control [3-5]. Control strategies for damping improvement 
such as supplementary PI controller or lead lag controller 
had been suggested for IPFC in [6-9]. These controllers 
were designed based on linear models of single machine 
infinite bus (SMIB) power system installed with IPFC. 
Studies on this system reveal good damping 
characteristics of IPFC. However, modelling of the IPFC 
into a multi-machine power system (MMPS) for small 
signal stability is very limited. The small signal stability 
analysis based on eigenvalue technique is suitable for 
planning and operation of the power systems, to examine 
the problems associated with oscillations and to mitigate 
the power system oscillations using various control 
methods [10]. The Phillips-Heffron model of the power 
system with the FACTS device is suitable for 

understanding of system damping in the area of small 
perturbation stability. It presents an insight into the 
operation of the damping control of the FACTS device 
and is useful in studying the small signal stability of the 
power system.  

In this view, the non-linear dynamic model of a power 
system installed with an IPFC is initially developed. 
Further, the linearized Phillips-Heffron model is modified 
to include the FACTS device, IPFC, which is utilized to 
perform the small signal stability analysis. Consequently, 
in the following sections the non-linear model of SMIB 
power system and MMPS installed with IPFC is 
developed. Then the small signal linearized Phillips–
Heffron model of these systems is derived. The linearized 
model of a power system with an IPFC obtained, is in 
similar form to that of the unified Phillips-Heffron model 
presented in [11-14] for other FACTS devices such as, 
Static VAR Compensator (SVC), Thyristor-Controlled 
Series Compensator (TCSC), Thyristor-Controlled Phase 
Shifter (TCPS) and Unified Power Flow Controller 
(UPFC) for single machine and multi-machine power 
systems. On the basis of linearized system model, the 
IPFC controllers are designed and their effect is 
investigated on oscillation stability. 

II. SINGLE MACHINE INFINITE BUS POWER SYSTEM 

A SMIB system installed with IPFC as shown in Fig. 1 is 
considered. The IPFC is installed on the two parallel 
transmission lines through series transformers.  The IPFC 
consists of two VSCs which are linked together at the dc 
link.  

1I

tV

tX

tI
2I

1V

δ−∠bV
1seV

2seV

2tX

1tX

1θ2θ2m 1m

dcC

Figure 1. IPFC installed in a SMIB system 

The voltages injected by the IPFC converters are given 
by [7, 8]: 

1
11 2

θjdc
se em

v
V = , 2

22 2
θjdc

se em
v

V =  (1) 
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where dcv  is the voltage at DC link, 1m and 2m are the 
modulation indices of VSC 1 and 2, 1θ and 2θ are the 
phase angles of series converter 1 and 2. The dc capacitor 
voltage is given by 

)sincos(
4
3

)sincos(
4
3

2222
2

1111
1

θθ

θθ

qd
dc

qd
dc

dc

ii
C
m

ii
C
m

v

+

++=
 (2) 

where, dcC  is the dc link capacitor, di1 and di2 are the d-
axis currents in line 1 and 2, qi1 and qi2  are the q-axis 
current in line 1 and 2 respectively. From the Fig. 1 we 
obtain, 

1VIjxV ttt +=   (3) 

bLset VIjxVIjxV +++= 111111  (4) 

bLset VIjxVIjx +++= 22222

where, 1tx  and 2tx  are the reactance of the transformers 
in line 1 and 2 respectively and 1Lx  and 2Lx  are the 
reactance of the transmission line 1 and 2 respectively. 
Solving (3) and (4) we get the currents in d-q axis as 
follows: 
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where, 12121211 /)(,/ ΣΣ +′== xxxxxxx tLdtdtLd

          1221121 /,/ ΣΣ ′−== xxxxxx dtdtLd

22122211 /)(,/ ΣΣ +′−== xxxxxxx tLqtqtLq

2222121 /,/ ΣΣ ′−== xxxxxx qtdtLq

                 tddtLttL xxxxxx +′=′+= ,222

                 tqqtLttL xxxxxx +=′+= ,111

))(().( 1221 tLtLdttLdt xxxxxx +′+′=Σ

))(().( 1222 tLtLqttLqt xxxxxx +′+′=Σ

A. Non-linear model of Single Machine Infinite Bus  
The non-linear dynamic model of the power system 

incorporated with IPFC is derived as follows [7 - 9]: 

)1( −= ωωδ o

( ) MPPP Dem /−−=ω

dofdqq TEEE ′+−=′ /)(

atrefafdfd TVVKEE /))(( −+−=   (9) 

where δ is the rotor angle of synchronous generator in 
radians, ω is the rotor speed in rad/sec, tV  is the terminal 
voltage of generator, )2( HM = is the inertia constant, 

)1( −= ωDPD ,  D is the damping coefficient, '
doT is the 

open circuit d-axis time constant in sec, aK is the AVR 
gain, aT is the time constant of AVR in sec, eP  is the 
electrical power of the generator, mP is the mechanical 
power input to the generator, '

qE is the generator internal 
voltage, fdE is the generator field voltage, refV is the 
reference voltage,  

B. Linearized  Model of an SMIB System including 
IPFC in State Space form 

A linear dynamic model is obtained by linearizing the 
non-linear model (9) around an operating condition which 
is obtained from power flow analysis. The linearized 
model in state space form is obtained as , 

BUAXX +=      (10) 
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The control vector  u  is defined as follows: 

TmmU ][ 2211 θθ ΔΔΔΔ=                                   (11) 

where, 1mΔ  ( 2mΔ ) is the deviation in pulse width 
modulation index 1m ( 2m ) of voltage series converter      
1 (2) in line 1 (2). By controlling 1m ( 2m ), the magnitude 
of series injected voltage in line 1 (2) can be controlled. 

1θΔ  ( 2θΔ ) is the deviation in phase angle of the series 
injected voltage 1seV  ( 2seV ).  

Fig. 2 shows the modified Phillips-Heffron model of 
the power system with IPFC. The model has 28 constants 
which are functions of system parameters and the initial 
operating condition. It should be noted that 

cvqp KKKK and,,  in Fig. 2 are the row vectors defined 
as 

][ 2211 θθ ppmppmp KKKKK =

][ 2211 θθ qqmqqmq KKKKK =

][ 2211 θθ vvmvvmv KKKKK =

][ 2211 θθ ccmccmc KKKKK =             (12) 

Figure 2. Phillips Heffron model of SMIB with IPFC 

III. MULTI-MACHINE POWER SYSTEM 

Without loss of generality, we assume that in an n 
machine power system, an IPFC is installed on the 
branches 4-2 and 4-3, as shown in Fig. 3. For developing 
the dynamic model of the system, the network is 

represented by taking out the buses connecting the lines in 
which IPFC is installed. 
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Figure 3. An n-machine power system installed with an IPFC 

The network admittance tY  is formed before the IPFC has 
been installed, keeping n generator nodes along with the 
nodes 41− . The equation of the network is given by: 

=
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 (13) 

where,  

[ ]Tgngg III 21=gI

[ ]Tgngg VVV 21=gV

With the installation of IPFC between the branches 4-2 
and 4-3, the network equations are modified as follows: 

2114 III +=

0141
'

11 =++ g15 VYIVY

012
'

22 =+− g25 VYIVY

023
'

33 =+− g35 VYIVY

gg55535251 IVYYYY =+++ 321 VVV  (14) 

where, 141111 yYY −=′ , 242222 yYY −=′ , 343333 yYY −=′

From Fig. 3 we have, 

414141 VIjxV +=
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where, 1111 seset VIjxtV += , 2222 seset VIjxtV +=

Substituting (1) in (15) and solving for currents we obtain,  
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where, ))(()( 2214112214 tLtLtL xxxxxxxxx +++++=Σ

Substituting (16-17) in (14) and deleting nodes 1-4 we 
obtain, 
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A. Nonlinear model of the multi-machine power system 
installed with IPFC 

The nonlinear model of the multi-machine power 
system with IPFC, is developed as follows: 
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where, 
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and,  i =1,2 ..n, n is the number of generators. 

The terminal voltage of the generators for the n 
machine power system can also be expressed in the 
common coordinates as [15]: 

QDQgDqg I)X(XIXEV ′−−′−′= jj  (20) 

Substituting (20) in (18) we get, 
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In d-q axis form the generator currents (21) can be 
expressed as 
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Denoting  
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B. Linearised Model of an Multi-machine Power System 
including IPFC in State Space form 

The linear dynamic model of the multi-machine power 
system with IPFC is obtained by linearizing the non-linear 
equations (2, 19, 23, and 24) around an operating point of 
the power system. The modified Phillips Heffron model of 
the multi-machine power system installed with IPFC 
along with the capacitor dynamics in state space form is as 
follows: 
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Fig. 4 shows the block diagram of Phillips Heffron 
model of a multi-machine system including IPFC. In this 
model, fd

'
q E,E,,  are n dimensional vectors, 

61 KK − are nn× matrices and 

]KKK[KK ppm2ppm1p =

]KKK[KK qqm2qqm1q =

]KKK[KK vvm2vvm1v =
]KKK[KK ccm2ccm1c =  (26) 

The elements of the above vectors are n dimensional 
column vectors. All the constants of the model are 
functions of the system parameters and operating 
condition. 

s
Io

DMs
1
+

Σ

mP

Σ

Σ Σ

1K

2K
6K

Σ

4K 5K

sTK
1

do3 ′+ a

a

sT1
K
+

refV

8K

sK +9

1

dcVΔ

7K

cK
U

pK

qK vK

pvK

qvK vvK

eP

qE′

Figure 4. Modified Heffron- Phillips model of n-machine system with 
IPFC installed 

IV. SYSTEM INVESTIGATED

A three machine example power system [13] shown in 
Fig 5 is considered for MMPS analysis. An IPFC is 
installed into the two parallel transmission lines through 
the transformers between bus 3 and bus 1. The parameters 
of the system are given in the Appendix. 

Figure 5. Three-machine, power system installed with IPFC 

 A generalized load flow program based on Newton 
technique with embedded IPFC [16] has been developed 
to obtain steady state operating point. For this initial 
condition the system equations are linearized and the 
constants of the system model are computed. The study 
focuses on the improvement in rotor angle oscillation 
damping. Table 1 shows the oscillation modes computed 
from the linearized system. The system has one inter area 
mode where all machines oscillate together, and one local 
area modes where machine 2 and 3 oscillate against each 
other which is determined using the participation factors 
[10]. 
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TABLE I.                                                                                             
OSCILLATION MODES

Multi-machine 
system 

Local mode Inter area mode 

With no IPFC and 
no PSS 

Damping 
   Frequency 

0.0146 - 6.7033i 

0.0022
1.0669

-0.0020 + 3.9599i 

0.0005
0.6302

With PSS at 
machine 3 
Damping 

   Frequency 

-0.6686 + 6.4833i 

0.1026            
1.0319

-0.0868 + 3.9289i 

0.0221            
0.6253

IPFC along with 
PSS at machine 3 

Damping 
   Frequency 

-0.6993 + 6.9322i 

0.1004            
1.1033

-0.1151 + 4.0879i 

0.0281            
0.6506

IPFC installed with 
damping controller 
along with PSS at 

machine 3 
Damping 

   Frequency 

-0.6996 + 6.9269i 

0.1005            
1.1024

-0.4912 + 4.1193i 

0.1184            
0.6556

The oscillation modes have very low damping. PSS is 
installed at machine 3, which is designed based on the 
linearized system to increase the damping ratio to 0.1, 
using phase compensation technique. The PSS is able to 
sufficiently increase the damping of the modes as 
observed from the table. However the damping ratio of the 
inter area modes is still less. The IPFC is now installed in 
the power system. We observe that in the presence of the 
IPFC there is no significant change in the damping of the 
oscillation modes. The damping controller having a lead 
lag structure [9] is designed using phase compensation 
technique based on the Phillips Heffron model to increase 
the damping of the inter area mode.  The IPFC based 
controller improves the damping of the inter area modes 
without effecting the local mode as shown in the Table 1. 

V. CONCLUSION

The mathematical modeling of the power system 
installed with IPFC is outlined in this paper.  A dynamic 
model for both SMIB and multi-machine power system is 
developed. Further the procedure for formulation of the 
extended Phillips Heffron model of the power system 
installed with IPFC for these systems have been 
established. The model also includes the dc capacitor 
dynamics. The developed formulation is general and the 
models are applicable for small signal stability analysis. 
The application of the model for small signal stability 
analysis is using eigenvalue analysis is demonstrated for a 
three machine power system. The IPFC based controller, 
designed based on the linearized model of the power 
system, significantly improves the damping of the 
concerned oscillation modes. 
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APPENDIX

Parameters of the three machine power system (in p.u 
except where indicated) . 
Generator: sH 09.201 = , sH 09.202 = , sH 8.113 =

0321 === DDD ,

sTd 5.7'
01 = , sTd 5.7'

02 = , sTd 7.4'
03 = ,

19.01 =dx , 19.02 =dx , 41.03 =dx ,

16301 .xq = , 163.02 =qx , 33.03 =qx ,

0765.0'
1 =dx , 0765.0'

2 =dx , 173.0'
3 =dx

Exciter : 2031 == aa KK , 1002 =aK ,

sTT aa 05.031 == , sTa 01.02 =

Transmission lines: 2.113 jZ = for each line,  
03.024 jZ = , 03.034 jZ =

588
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Abstract—In this paper, the nonlinear dynamic model of a 
typical multi-machine power system incorporated with 
Interline Power Flow Controller (IPFC) has been developed. 
The oscillation modes with low damping ratio are identified 
from the eigenvalue analysis of the linearized Phillips-
Heffron model. A power oscillation damping controller has 
been designed for the IPFC using phase compensation 
technique to enhance the transient stability of the system. 
Additional power flow controllers have also been 
incorporated into the system, to control the power flow 
demand in the transmission lines on which the IPFC is 
connected. The performance of the designed IPFC 
controllers has been assessed by simulation studies on a 
multi-machine system for power flow demand control as 
well as overall power system damping. 

Keywords— IPFC; multi-machine power system; Phillips-
Heffron model; damping control. 

I. INTRODUCTION 
The Interline Power Flow Controller (IPFC) is a 

converter-based FACTS Controller, representing the new 
generation of transmission controllers. It employs self 
commutated, voltage-sourced converters (VSC). An IPFC 
can consist of a number of VSCs linked together at their 
common dc terminals. Each VSC injects a controllable ac 
voltage to its respective transmission line for series 
compensation [1, 2]. The dc link facilitates real power 
flow among the transmission lines enabling real power 
transfer from overloaded to under-loaded lines. The IPFC 
provides simultaneous compensation for multiple 
transmission lines by real and reactive power flow control 
in the lines. It also provides voltage control, improves 
transient stability, and enhances oscillation damping. 
Recently, modelling of IPFC and its various control 
functions have undergone rigorous research. In [3-5], the 
steady state model of IPFC with the power system is 
developed for load flow studies and power flow control. 
Control strategies with the help of supplementary PI 
(proportional-integral) controller or lead-lag controller for 
damping enhancement are suggested in [6-9]. These 
controllers were designed based on linear models of single 
machine infinite bus (SMIB) power system installed with 
IPFC. However, studies on modeling of IPFC in a multi-
machine power system [10] for stability analysis are very 
limited. The stability analysis based on eigenvalue 

technique is suitable for planning and operation of the 
power systems, to examine the problems associated with 
oscillations and to mitigate the power system oscillations 
using various control methods [11]. The Phillips-Heffron 
model of power system with the FACTS (Flexible AC 
Transmission System) device is suitable for understanding 
of system damping for small perturbation stability.  

In this paper, the nonlinear dynamic model of a multi-
machine power system installed with an IPFC is 
developed. Further, the linearized Phillips-Heffron model 
is modified to include IPFC; this model is of similar 
structure as that of the unified Phillips-Heffron model 
presented in [12-15]. This Phillips-Heffron model is 
utilized for investigating small signal stability analysis by 
identifying the oscillation modes with low damping ratio. 
Based on this analysis and the linearized model, an 
oscillation damping controller has been designed for the 
IPFC using phase compensation technique. This 
supplementary controller is added to the standard power 
flow demand controllers used for the IPFC. The efficacy 
of the overall control architecture has been evaluated by 
eigenvalue analysis as well as computer simulation 
experiments. 

The paper is organized as follows. Section 2 presents 
the development of nonlinear and linearized models of a 
typical multi-machine power system incorporated with an 
IPFC. In Section 3, the details of damping controller and 
power flow controllers are provided. The simulation 
results and analysis are presented in Section 4.  Section 5 
concludes the paper. 

II. MULTI-MACHINE POWER SYSTEM WITH IPFC 
A typical installation of IPFC in a multi-machine 

system is shown in Fig. 1. It is assumed that an IPFC is 
installed on the branches ji −  and ki − . The network 
admittance tY  is formed before the IPFC has been 
installed, keeping n generator nodes along with the nodes 

kji  and, . The network equation is given by: 
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where, [ ]Tgng II ,,1 L=GI and [ ]Tgng VV ,,1 L=GV . 
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Figure 1.  An n-machine power system installed with an IPFC 

With the installation of IPFC between the branches 
ji − and ki − , the network equations are modified as: 

021 =+++ GiG VYIIVY i
'

ii   (2)  

01 =++− GjG VYk
'
jkj

'
jj VYIVY  (3)

 

02 =+−+ GkG VYIVYVY k
'

kkj
'

kj  (4)  

GGGGGkGjGi IVYYYY =+++ kji VVV  (5) 

where ikijiiii yyYY −−=′ , jijjjj yYY −=′ and

kikkkk yYY −=′ . From Fig. 1, the currents in the IPFC 
branches can be written as: 

seijjsei ZVVVI −−= 11   (6) 

seikksei ZVVVI −−= 22   (7) 

Substituting the currents (6) and (7), into (2-4) the IPFC 
buses voltages ,,, kji VVV can be written in matrix form 
as follows: 
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Substituting the voltages ,,, kji VVV from (8) into (5) 

and eliminating them the generator currents can be written 
as the follows: 

21 sese VV se2se1GGG YYVYI ++=  (9) 

where, 
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A. Nonlinear model of the multi-machine power system 
installed with IPFC 

The nonlinear dynamic model of the multi-machine 
power system with IPFC is developed as follows: 
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where TDDTQQe VIVIP += , QQTD IXV = , 

DD
'
qTQ IX-EV ′= & , [ ]Tnδδ L1=δ  , 

[ ]Tnωω L1=ω , [ ]Tqnq EE ''
1 L='

qE  , 

[ ]Tfdnfd EE L1=fdE  , [ ]Tdnd II L1=DI , 

[ ]Tqnq II L1=QI , [ ]Ttnddt VV L1=TDV , 

[ ]Ttnqqt VV L1=TQV , 22
tiqtidTi VVV += ,

)2( iHdiag=M , )( iDdiag=D , )( '
0idTdiag='

D0T , 
)( dixdiag=DX , )( qixdiag=QX , )( dixdiag=′DX   

and,  i =1,2 …,n, n is the number of generators. 
The terminal voltage of the generators for the n- machine 
power system in the common coordinates is [16]:  

Q
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B YYY = . In d-q axis form, the generator currents 
are: 
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Denoting 
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B. Linearised Model of an Multi-machine Power System 
including IPFC in State Space form 

The linear dynamic model of the multi-machine power 
system with IPFC is obtained by linearizing the non-linear 
equations around a steady state operating point of the 
power system. The modified Phillips Heffron model of the 
multi-machine power system installed with IPFC along 
the capacitor dynamics in state space form is as follows:  
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In this model, fd
'
q ΔE,ΔEΔω,Δδ,  are n-dimensional 

vectors, 61 KK − are nn× matrices. The other vector 
elements are n-dimensional column vectors. All the 
constants of the model are functions of the system 
parameters and operating condition.  

III. CONTROLLERS FOR IPFC 
The IPFC is installed with three separate controllers. 

They are: (1) Power flow controller, (ii) DC voltage 
regulator, and (iii) Power Oscillation Damping controller. 

A. Power Flow Controller 
The power flow controller regulates the power in the 

transmission lines. The structure of the PI-type power 
flow controller is shown in Fig. 2.  

(ref)jiP

jiP

s
k

k pi
pp +

1θ

ref1θ

 
Figure 2.  Power flow controller 

The controller regulates real power in the transmission 
line 1 to the specified value of (ref)jiP  in the system. The 
real power can be controlled by varying the phase angle 

1θ of the series injected voltage of VSC 1. Generally the 
input signal 1m can also be used to regulate the active 
power of the transmission line, however, the range in 
which 1m )10( 1 ≤≤ m  can be regulated is narrower than 

that of 1θ  ( 0
1 3600 ≤≤ θ ). Modulating the input signal 

1θ , the currents in both the transmission lines are 
controlled, as they are function of  1θ . Thus, the active 
and reactive powers in both the lines are modulated. 
Similar to the structure of Fig. 2, two more power flow 
controllers are also placed in the system to the control the 
reactive power in line 1and real power in line 2. 

B. DC Voltage Regulator 
The DC voltage regulator functions by controlling 
exchange of active power between the two VSCs and the 
power system.  It has to ensure that the net exchange of 
real power is zero. This is achieved by maintaining 
constant voltage across the capacitor. The DC voltage 
regulator is of PI type as shown in Fig. 3. 

dcv
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k
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Figure 3.  DC voltage regulator 

As this regulator is responsible for converting the same 
amount of real power to replace the power drained by the 



VSC-1 through the DC link, the regulator is used to 
modulate the input signal 2θ , the phase angle of the 
injected voltage of VSC 2. In the Fig. 3 dc(ref)v  is the 
reference voltage. Since the currents flowing in the 
transmission lines are function of 2θ , this controller 
make sure the net active power exchanged is zero. 

C. Power Oscilation Damping Controler 

Since the FACTS device is incorporated on the 
transmission lines it is more appropriate to select a signal, 
given to the damping controller, in its vicinity. Usually 
the local input signals are always preferred, such as the 
active or reactive power flow through FACTS device. As 
such the error signal between the set point and the 
measured signal of the active power flow will be taken as 
the input to the damping controller as shown in Fig. 4.  
The design of the damping controller is based on phase 
compensation technique such that its output is in phase 
with the real power flow deviation. This active power has 
been obtained from the line on which the VSC of IPFC 
has been installed. The structure of the damping 
controller is given in Fig. 5. The most suitable control 
signal for providing additional damping is determined 
from the controllability index computed from the 
linearized model [17]. It is observed that the input signal 

1m  has the highest value, an indicator for the best signal 
to provide damping. 
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Figure 4.  Power oscillation damping controller 
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Figure 5.  Structure of the damping controller 
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Figure 6.  Multi-machine system with IPC and its controllers 

The complete IPFC based multi-machine power system 
with all the controllers in place is shown in Fig. 6. 

IV. SIMULATION RESULTS 
A three machine example power system [18] shown in 

Fig 7 is considered for computer simulation experiments. 
An IPFC is installed in the branches 7-5 and 7-8.  
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Figure 7.  Three-machine power system installed with IPFC 

 A generalized load flow program based on Newton 
technique with embedded IPFC [19] has been developed 
to obtain steady state operating point. For this initial 
condition the system equations are linearized and the 
constants of the system model are computed. Table 1 
gives the eigenvalues of the system from which the 
participation factors of all the eigenvalues are computed. 
It is revealed that the oscillation modes 4&5, 6&7 have 
the least damping ratio contributed by machine 3 and 2, 
respectively. In order to increase the damping ratio, PSS is 
installed in the system for machine 2 and 3.  The 
eigenvalues of the systems with PSS are shown in Table 
2.  It is seen that the damping ratios of the concerned 
modes have increased.  However, there is still a pair of 
eigenvalues having a damping ratio less than 0.1. This can 
be increased by means of the IPFC POD controller. The 
most suitable signal for providing additional damping is 
determined from the controllability index computed from 
the linearized model [17]. Table 3 shows the 
controllability indices. It is observed that the input signal 

1m  has the highest index, an indicator for best signal for 
damping. 

TABLE I.  EIGENVALUES OF THE SYSTEM 

No.  Eigenvalues  Damping 
ratio  Frequency Dominant 

states 

1 -19.3 1 0 3fdE  

2 -17.1802 1 0 2fdE  

3 -15.6798 1 0 1fdE  

4,5 -0.3009 ±j11.2735 0.0267 1.7942 3δ 3ω  

6,7 -0.2933 ± j 8.1607 0.0359 1.2988 2δ 2ω  

8 -4.4731 1 0 '
1qE  

9 -2.7315 1 0 '
2qE  

10 -0.6816 1 0 '
3qE  

11,12 -0.0174 ± j 0.2109 0.0823 0.0336 1δ 1ω  

13 -0.0196 1 0 dcv  
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TABLE II.  EIGENVALUES WITH PSS 

Eigenvalues  Damping 
ratio  Frequency Dominant 

states 
-54.1642 1 0  

-26.8454 1 0  

-22.1998 ± j10.1872 0.9089 1.6213  

-15.7747 ± j 5.8177 0.9382 0.9259  

-15.6979 1 0  

-1.1200 ± j 10.7658 0.1035 1.7134 3δ 3ω  

-0.6599 ± j 8.3559 0.0787 1.3299 2δ 2ω  

-4.4747 1 0  

-2.5057 1 0  

-0.5183 ± j 0.2606 0.8934 0.0415  

-0.0455 ± j 0.0864 0.4654 0.0138  

-0.0198 1 0  

-0.1 1 0  

TABLE III.  CONTROLLABILITY INDICES 

Input signal Controllability index 

1mΔ  0.0201 

1θΔ  0.0036 

2mΔ  0.0070 

2θΔ  0.0040 
 
With the IPFC controllers in place, the performance 

evaluation of the designed controllers is carried out by 
computer simulation studies under various disturbance 
conditions. The results are shown below. 

 

A. Step Change in Mechanical Power Input 
A disturbance in the form of a 1% step change of in 

mechanical power input to machine 2 is applied. The 
IPFC controllers control the power flow in the lines to 
damp out the oscillations.  The transient responses, 
shown in Fig. 8, highlight the efficacy of controllers. 

 
Figure 8.  Relative rotor angle and rotor speed deviations with respect 

to machine 1 for mechanical power input change in machine 2 

B. Three-phase Fault 
A three-phase fault of 100 ms duration is simulated 

near bus 9 (at the end of line 6-9).  The dynamic 
responses of the system states are shown in Fig. 9. This 
again establishes the elegance of the proposed IPFC 
controllers under a severe disturbance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.  Relative rotor angle and rotor speed deviations (with respect 
to machine 1) and capacitor voltage transient response for 3-phase fault 

C. Change in Power Flow Reference 
The power flow in the lines can be controlled by IPFC 

by change of reference set point. This is verified by 
changing the reference power flow in line 5-7 by 1%. The 
test results are delineated in Fig. 10. 

 
 
 
 
 
 
 
 
 
Figure 10.  Dynamic response for real power flow in line 5-7 with a 

change in reference power flow 

V. CONCLUSION 

The nonlinear model of multi-machine power system 
with IPFC is developed. The linearized Phillips-Heffron 
model is formulated. The modes having low damping 
ratio are found by eigenvalue analysis. The IPFC POD 
controller is designed using the phase compensation 
method to increase the damping of the concerned 
oscillation mode The power flow controllers and DC 
voltage controller are incorporated to regulate the power 
flow and to maintain DC link voltage. The effectiveness 
the IPFC controllers are validated through nonlinear 
simulations of the power system subjected to various 
disturbances. The IPFC based POD controller and PSS 
ensure reliable damping of the low frequency oscillations 
in the multi-machine power system with IPFC.  
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APPENDIX 
Nomenclature:  
δ  is the rotor angle in electric radians, ω  is generator 
rotor speed in p.u, fπω 20 = in rad/s, tV  is the terminal 
voltage in p.u., qE ′&  is internal quadrature-axis voltage in 

p.u., fdE  is the field voltage in p.u, dcv   is the voltage at 
DC link in p.u, HM 2= , H  is the inertia constant in 
p.u., mP  is the mechanical input in p.u, eP  is the electrical 
output in p.u, D  is the damping coefficient, dd xx ′,  are 
the d-axis reactance and d-axis transient reactance in p.u, 

'
doT is the open circuit d axis time constant in sec, dI , qI  

are the direct and quadrature axis components of stator 
current in p.u, tqtd VV ,  are the d, and q  axis components 

of terminal voltage in p.u., aT  and aK   are time constant 
and gain of voltage regulator. dcv is the capacitor voltage 
of the DC link of the IPFC. 1m and 2m are the 
modulation indices of VSC 1 and 2, 1θ and 2θ are the 
phase angles of series converter 1 and 2. dcC  is the dc 
link capacitor, di1 and qi1 are the d-q axis components of 

current 1I  in line ji −  and  di2 and qi2  the d-q axis 

components of 2I  in line ki −  respectively. 
 
PSS structure and parameters:  
the structure of PSS is given in Fig. 11. The parameters 
are designed by phase compensation method and are 
given in the following table. 
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Figure 11.  Power system stabilizer  

TABLE IV.  PARAMETERS OF THE PSS 

 
IPFC Controller Parameters:  
The parameters of the IPFC controllers are ppk  = 5 , 

pik = 25, qpk =0.06, qik = 0.007, kpk = 0.01, kik = 0.01, 

dpk = 10 and dik =20. The parameters of the POD 
controller are dck = 0.3554, wT = 10s, mT = 0.01s, 1T = 
0.20058, 2T = 0.071407, and cm = 1. 

PSS Gain 1T  2T  3T  4T  
Machine 2 1.8807 0.3002 0.0492 0.3002 0.0492 
Machine 3 3.5843 0.3001 0.0243 0.3001 0.0243 
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