
 

 

 

CHAPTER 5 

RESULTS AND DISCUSSIONS 

 

5.1 Logistic Regression Model 

 

5.1.1 Results and Validation 

 

Data taken from Evans Country case study (Kleinbaum et al., 1982) was used to 

validate the logistic regression model developed using MATLAB. In the case study, 

the data was fitted to the logistic regression model using Java Script developed by 

Sullivan and Pezzullo (2007). Table 5.1 shows the comparison between the 

coefficients generated via Java Script codes and coefficients generated using 

MATLAB. The results showed that the logistic regression model developed in 

MATLAB produced the same coefficients as the results using Java Script by Kevin 

Sullivan. Thus, it is proved that the logistic regression model developed using 

MATLAB is acceptable. 

 

Table 5.1: Comparison between coefficient using Java Script and MATLAB 

Parameters Results generated via Java Script 

(Sullivan & Pezzullo, 2007) 

Results via 

developed model 

Intercept -2.9266 -2.9267 

Variable 1 (catecholamine category) 1.3952 1.3953 

Variable 2 (smoking category) 0.8653 0.8653 

Variable 3 (interaction category) -0.4498 -0.4498 

Log-likelihood 417.8980 417.8980 
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5.1.2 Small Bore Results 

 

The initial coefficients generated for small bore piping systems from MATLAB are 

shown in Table 5.2. It is observed that each of the coefficients are significant based on 

the -value as it is lower than  = 0.05 except for insulation type 1 (calcium silicate) 

which gave higher -value.  Thus, in this analysis, operating temperature showed a 

significant effect but insulation type gave no significance effect and may be removed 

from the model. Re-ran the analysis by excluding data on insulation type using the 

backward stepwise elimination method yields the following results as shown in Table 

5.3. 

  

Table 5.2: Initial coefficients generated for small bore piping systems 

Parameter Coefficient Standard error Wald test p-value 

Intercept -4.1067 0.7491 -5.4822 0.0000 

Age (year of service) 0.2365 0.0410 5.7683 0.0000 

Temperature group     

    Op. Temp G1 1.9212 0.4529 4.2420 0.0000 

    Op. Temp G2 1.7926 0.5634 3.1816 0.0015 

    Op. Temp G3 1.5733 0.5314 2.9607 0.0031 

    Op. Temp G4 1.6528 0.4482 3.6876 0.0000 

    Op. Temp G5 1.3735 0.5284 2.5994 0.0093 

Type of insulation     

     Insulation (calcium 

silicate) 

0.1274 0.3775 0.3375 0.7357 

 

Table 5.3: Final logistic regression model for small bore piping systems 

Parameter Coefficient Standard error Wald Test p-value 

Intercept -3.9804 0.6461 -6.1610 0.0000 

Age (year of service) 0.2366 0.0410 5.7701 0.0000 

Temperature group     

    Op. Temp G1 1.8954 0.4458 4.2515 0.0000 

    Op. Temp G2 1.6749 0.4404 3.8030 0.0001 

    Op. Temp G3 1.4695 0.4317 3.4038 0.0007 

    Op. Temp G4 1.6457 0.4473 3.6793 0.0002 

    Op. Temp G5 1.2761 0.4433 2.8785 0.0040 
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From Table 5.3, all -values have shown significant values as the values were lower 

than  = 0.05. Thus, a general equation of a linear function of independent variables 

for small bore piping systems can be written as 

                 (5.1) 

where   = pipe age (years in service);  = dummy variable for operating 

temperature groups. 

Eq. (5.1) can be further simplified where it will give different values for intercept 

for different operating temperature groups. For example, the new equation for pipe 

with operating temperature group 1 will be 

         (5.2) 

by inserting  and  . Solving Eq. (5.2), the simplified equation is 

                                                                                      (5.3) 

Table 5.4 shows the simplified equation for other groups of operating temperature by 

following the same step. 

 

Table 5.4: The simplified equation for operating temperature group (small bore 

piping) 

Operating temperature group Description Logistic Regression Model 

Group 1 49 C to 93 C  

Group 2 -12 C to 16 C  

Group 3 16 C to 49 C  

Group 4 93 C to 121 C  

Group 5 Less than -12 C  

Group 6 More than 121 C  

Note:  = age of pipes (years in service) 
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Let pi be the probability of CUI occurrence in case i and the logistic regression 

model is (Hosmer & Lemeshow, 1989) 

                                                                (5.4) 

The logistic regression model presents the log odds of CUI occurrence as a linear 

function of pipe age with respect to operating temperature group. To predict the 

probability of CUI occurrence at certain years in service, the proposed model is Eq. 

(5.5) by rearranging Eq. (5.4).  

                                                            (5.5) 

For example, using Eq. (5.3), the probability of CUI occurrence for the pipe after 10 

years of service (age of pipe is 10 years old) is 

                                                                         

This means after 10 years of pipe being in service, there is a 57% chance that the pipe 

will have CUI when the insulation is removed. 

 

Sensitivity Analysis of Model 

 

A sensitivity analysis was also performed to validate the proposed model. The logistic 

model was developed using two scenarios which are using 80% and 90% of the data 

set based on the proposed method by Ariaratnam et al. (2001). He proposed to 

randomly select 80% and 90% of the original data set and performed the logistic 

regression analysis accordingly. These two logistic models were subsequently 

compared to the proposed logistic model. The null and alternative hypotheses,  and 

, respectively, were tested for significance: 

 : The models are equal (no significant difference between models). 

 : The models are different. 
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The three data sets are given in Table 5.6 and the coefficients generated by the three 

groups of data are given in Table 5.5. The results from Kruskal-Wallis test are given 

in Table 5.6. 

 

Table 5.5: Coefficients for 100%, 90% and 80% of sample data (small bore piping) 

 100% of sample data 90% of sample data 80% of sample data 

Variable Estimate p-value Estimate p-value Estimate p-value 

Intercept -3.9804 0.0000 -4.0380 0.0000 -4.0624 0.0000 

Age 0.2366 0.0000 0.2334 0.0000 0.2419 0.0000 

Op. Temp. 1 1.8954 0.0000 2.1649 0.0000 1.9004 0.0002 

Op. Temp. 2 1.6749 0.0001 1.7502 0.0001 1.7586 0.0002 

Op. Temp. 3 1.4695 0.0007 1.6522 0.0003 1.3076 0.0046 

Op. Temp. 4 1.6457 0.0002 1.7561 0.0001 1.8386 0.0004 

Op. Temp. 5 1.2761 0.0040 1.3631 0.0036 1.0156 0.0405 

 

The sensitivity analysis revealed that  compared with . 

Therefore, the null hypothesis can be accepted, indicating that there is no significant 

difference among the three models. The proposed model seems to be a good 

representation of the observed data.  
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Table 5.6: Kruskal-Wallis Test for 100%, 90% and 80% of sample data (small bore 

piping) 

Probability of occurrence Rank Measure 

100% 90% 80% 100% 90% 80% 

0.136 0.163 0.128 2 4 1 

0.166 0.197 0.157 5 7 3 

0.202 0.236 0.192 8 10 6 

0.243 0.281 0.232 11 13 9 

0.289 0.330 0.278 14 16 12 

0.340 0.384 0.329 17 18 15 

0.394 0.440 0.385 20 21 19 

0.452 0.499 0.444 23 24 22 

0.511 0.557 0.504 26 27 25 

0.570 0.613 0.564 29 30 28 

0.627 0.667 0.622 32 33 31 

0.680 0.717 0.677 35 36 34 

0.729 0.762 0.728 38 39 37 

0.773 0.801 0.773 41 42 40 

0.812 0.836 0.813 43 45 44 

0.846 0.865 0.847 46 48 47 

0.874 0.890 0.875 49 51 50 

0.898 0.911 0.900 52 54 53 

0.918 0.928 0.919 55 57 56 

0.934 0.942 0.936 58 60 59 

0.947 0.954 0.949 61 63 62 

0.958 0.963 0.959 64 66 65 

0.966 0.971 0.968 67 69 68 

0.973 0.977 0.975 70 72 71 

0.979 0.981 0.980 73 75 74 

0.983 0.985 0.984 76 78 77 

0.987 0.988 0.987 79 81 80 

0.989 0.991 0.990 82 84 83 

0.992 0.993 0.992 85 87 86 

0.993 0.994 0.994 88 90 89 

  SUM: 1349 1400 1346 

  : 0.089 

 

(KW = Kruskall-Wallis test statistic) 
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5.1.3 Big Bore Results 

 

The logistic model development for big bore piping system followed the same 

procedure as small bore. Table 5.7 provides initial coefficients from MATLAB 

software. 

 

Table 5.7: Coefficients generated from MATLAB for big bore piping systems 

Parameter Coefficient Standard error Wald test p-value 

Intercept -2.3992 0.2809 -8.5411 0.0000 

Age (year of service) 0.1850 0.0163 11.3497 0.0000 

Temperature group     

    Op. Temp G1 0.5016 0.1626 3.0849 0.0020 

    Op. Temp G2 0.1093 0.1962 0.5571 0.5777 

    Op. Temp G3 0.2126 0.1702 1.2491 0.2116 

    Op. Temp G4 0.3720 0.1487 2.5017 0.0124 

    Op. Temp G5 -1.7991 0.3031 -5.9357 0.0000 

Type of insulation     

     Insulation (calcium silicate) -0.8644 0.1179 -7.3316 0.0000 

 

The results showed that the operating temperature and the insulation type are the 

significant variables based on the -values as they were less than  = 0.05 for big 

bore piping system. Note that the insulation type turns to be significant factor for big 

bore pipes. The simplified equation for each group of operating temperature is as 

shown in Table 5.8. 
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Table 5.8: Logistic regression models for big bore piping 

Operating 

temperature group 

Description Insulation type Logistic Regression Model 

Group 1 49 C to 93 C Calcium silicate  

Group 2 -12 C to 16 C Calcium silicate  

Group 3 16 C to 49 C Calcium silicate  

Group 4 93 C to 121 C Calcium silicate  

Group 5 Less than -12 C Calcium silicate  

Group 6 More than 121 C Calcium silicate  

Group 1 49 C to 93 C Cellular glass  

Group 2 -12 C to 16 C Cellular glass  

Group 3 16 C to 49 C Cellular glass  

Group 4 93 C to 121 C Cellular glass  

Group 5 Less than -12 C Cellular glass  

Group 6 More than 121 C Cellular glass  

Note:  = age of pipes (years in service) 

  

Sensitivity Analysis of Model 

 

A sensitivity analysis was also performed and followed the same steps taken as in the 

small bore analysis. 80% and 90% of the sample data and the results generated from 

these two models were subsequently compared to the original logistic model (100% 

sample data). The coefficients generated by the three sample data as shown in Table 

5.10 are given in Table 5.9. The result from Kruskal- Wallis test is given in Table 

5.10. 

 

Table 5.9: Coefficients for 100%, 90% and 80% of sample data (big bore piping) 

 100% of sample data 90% of sample data 80% of sample data 

Variable Estimate p-value Estimate p-value Estimate p-value 

Intercept -2.3992 0.0000 -2.3730 0.0000 -2.3898 0.0000 

Age 0.1850 0.0000 0.1828 0.0000 0.1779 0.0000 

Temp. 1 0.5016 0.0020 0.4143 0.0171 0.6199 0.0006 

Temp. 2 0.1093 0.5777 0.1580 0.4454 0.1396 0.5237 

Temp. 3 0.2126 0.2116 0.2452 0.1685 0.2258 0.2365 

Temp. 4 0.3720 0.0124 0.3747 0.0165 0.5236 0.0015 

Temp. 5 -1.7991 0.0000 -1.6754 0.0000 -1.6419 0.0000 

Insulation type -0.8644 0.0000 -0.8595 0.0000 -0.8555 0.0000 
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Table 5.10: Kruskal-Wallis Test for 100%, 90% and 80% of sample data (big bore 

piping) 

Probability of occurrence Rank Measure 

0.071 0.067 0.080 2 1 4 

0.084 0.079 0.094 5 3 7 

0.099 0.094 0.110 8 6 9 

0.117 0.110 0.129 11 10 12 

0.137 0.130 0.150 14 13 15 

0.161 0.152 0.174 17 16 18 

0.187 0.177 0.201 20 19 21 

0.217 0.205 0.231 23 22 24 

0.250 0.236 0.264 26 25 27 

0.287 0.271 0.300 29 28 30 

0.326 0.308 0.339 32 31 33 

0.368 0.349 0.380 35 34 36 

0.412 0.391 0.422 38 37 39 

0.457 0.436 0.466 41 40 42 

0.503 0.481 0.511 44 43 45 

0.549 0.527 0.555 47 46 48 

0.595 0.572 0.598 50 49 51 

0.638 0.616 0.640 53 52 54 

0.680 0.658 0.680 56 55 57 

0.719 0.698 0.718 60 58 59 

0.755 0.735 0.752 63 61 62 

0.787 0.769 0.784 66 64 65 

0.817 0.800 0.812 69 67 68 

0.843 0.828 0.838 72 70 71 

0.866 0.852 0.861 75 73 74 

0.886 0.874 0.881 78 76 77 

0.903 0.893 0.898 81 79 80 

0.918 0.909 0.913 84 82 83 

0.931 0.923 0.926 87 85 86 

0.942 0.935 0.938 90 88 89 

  Sum 1376 1333 1386 

  : 0.0775 

 

(KW = Kruskall-Wallis test statistic) 

 

The sensitivity analysis has revealed that  = 0.077 compared with . 

Therefore the null hypothesis may be accepted, indicating that there is no significant 
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different among the three models. The proposed model is a good representation of the 

observed data. 

In the analysis, it shows that pipe age and operating temperature are significant 

factors to determine the probability of CUI occurrence for both small bore and big 

bore. Insulation type turned to be an insignificant factor for small bore but not for big 

bore due to the -value for small bore is higher than  0.05.  

 

5.1.4 Effect of Pipe Age 

 

The logistic regression coefficient  for pipe age is 0.236 with exp( ) = 1.267 for 

small bore and 0.185 with exp( ) = 1.203 for big bore. This implies that, when pipe 

age increases by 1 year, the likelihood of small bore pipe will have CUI increases by 

26.68% and for big bore is 20.32%. In overall, the trend still follows the API 

guidelines where operating temperature group 1 (49 C to 93 C) showed the highest 

probability of having CUI when compared to other temperature groups as shown in 

Figure 5.1. 
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(a) Small bore 

 

(b) Big bore 

 

Figure 5.1: Probability of CUI occurrence for each temperature groups for, (a) small 

bore piping systems and (b) big bore piping systems 
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5.1.5 Effect of Operating Temperature 

 

The effect of ranges of operating temperature is as shown in Figure 5.2 and Figure 

5.3. The probability for CUI occurrence for six groups of operating temperature for 

both small and big bore pipes were plotted against years in service. The trend 

produced replicated the API guidelines where operating temperature group 1 (49 C to 

93 C) showed the highest probability of having CUI when compared to other 

temperature groups. When compared between temperature group 5 (less than -12 C) 

and temperature group 6 (more than -12 C), group 5 gave higher probability of failure 

for small bore pipes whereas the results are vice versa for big bore pipes (the failure 

probability was higher for group 6).  
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Figure 5.2: Comparison between small bore and big bore piping system for each 

temperature group (Insulation type = calcium silicate)  

(Note: These graphs are plotted based on Table 5.3 and Table 5.7) 

 

 

(a) Group 5: Less than -12 C 

 

 

(b) Group 2: -12 C to 16 C  

 

 

(c) Group 3: 16 C to 49 C 

 

(d) Group 1: 49 C to 93 C 

 

 

(e) Group 4: 93 C to 121 C 

 

 

(f) Group 6: More than 121 C 
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Figure 5.3: Comparison between small bore and big bore piping system for each 

temperature group (insulation type = cellular glass) 

(Note: These graphs are plotted based on Table 5.3 and Table 5.7) 

  

 

(a) Group 5: Less than -12 C 

 

 

(b) Group 2: -12 C to 16 C 

 

(c) Group 3: 16 C to 49 C 

 

(d) Group 1: 49 C to 93 C 

 

 

(e ) Group 4: 93 C to 121 C 

 

 

(f) Group 6: More than 121 C 
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5.1.6 Effect of Insulation Type 

 

Insulation type was found to be an insignificant factor for small bore pipes whereas 

for big bore pipes, it was a significant factor as shown in Figure 5.4. The result may 

be due to the following possibility. Insulation for big bore pipes are much easier to get 

damage due to inspectors or workers may step onto the big pipes in order to enter 

certain areas which are difficult to access during the daily routine jobs in the plants. 

By continuously stepping onto the pipe, it will affect the condition of the 

insulation/cladding itself. Hence, when the insulation is damaged or the sealant is 

loosed, water easily ingresses into the pipes causing CUI to take place. 

Given that the effect of using cellular glass as the insulation material to the odds 

of pipe deficiency is 1, the effect of calcium silicate on CUI for big bore is exp(-

0.8644) = 0.4213. Therefore, pipes with cellular glass shows higher tendency for 

having CUI instead of calcium silicate. This may be due to the properties of cellular 

glass itself as it is impermeable to liquid and does not absorb moisture (Silowash, 

2010). Calcium silicate acts in different way as it has high physical water absorption 

function and good porosity. With these characteristics, both serves as advantages for 

insulation purposes as it can avoid water from being accumulated inside the 

insulation. Nonetheless, these advantages can counter-back its advantages when the 

condition of insulation is bad, damaged or broken. In that case, if the insulation 

material used is made from cellular glass, the water will accumulate onto the pipe 

surface as this material is not good in absorbing water, and thus it will leave the 

surface continuously wet. On the other hand, if the type of insulation used is calcium 

silicate that has high physical water absorption and avoiding heat losses for high 

temperature, it will reduce the amount of water by absorbing certain amount of it. As 

a result, the pipe surface will not be as wet as under cellular glass.  
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(a) Small bore pipes 

 

(b) Big bore pipes 

Figure 5.4: Comparison between insulation types for temperature group 1 (49 C to 

93 C)  

5.1.7 Discussions 

 

Based on the results, the hypothesis of this research is proved as true where small bore 

and big bore pipes showed different end results where small bore pipes will give 

higher tendency to experience CUI compare to big bore pipes. Using the field data, it 

is proved that operating temperature is considered as one of the factors which can 

contribute directly to the CUI deterioration. This can be explained as follows.  

Consider these two pipes operating within the same temperature between -12 C to 

16 C as shown in Table 5.11. According to API 581, the default corrosion rate is 0.13 

mm/year regardless the pipes size. It showed the small bore pipe will fail first 

compared to big bore pipe. The reason is due to the diameter of the pipe where small 

bore pipes will have thinner wall when compare to big bore pipes. With the same rate 

of corrosion experienced by both small bore and big bore pipes, the time to reach the 

minimum wall thickness for small bore pipe is faster. Thus, it will cause small bore 

pipes to be more prone to fail when compared to big bore pipes. This finding also is in 

agreement with You & Wu (2002) who performed statistical analysis of pressure 

vessel and piping failures. He found that if the diameter of the pipe is smaller, the 

probability to have a failure will be higher. 
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Table 5.11: Example to illustrate why small bore pipe may fail first  

 Small bore Big bore 

Line No. LD-1½”-7004-C1109-C(N31A) PR-6”-7017-D1101-C(N31A) 

Operating temperature -11 C 15 C 

API corrosion rate (mm/year) 0.13 0.13 

Pipe wall thickness (mm) 5.08 7.11 

Minimum wall thickness 

(mm) 

1.41 2.34 

Time to reach the minimum 

wall thickness (years) 

28.23 36.69 

 

This study also produced a mathematical model that provides the likelihood of 

having CUI for an insulated piping system given the pipe age, operating temperature 

and insulation type. These CUI factors have been discussed extensively in the 

literature but no mathematical model has been developed to show the relationship 

between the likelihood of having CUI and its factors. The results revealed that age 

and operating temperature have a significant effect on the deterioration of the small 

bore piping systems whereas for big bore pipes, age, operating temperature and 

insulation type are important factors.  

Intuitively, one knows that the likelihood of having CUI will increase as pipe 

aging. However, in API 581, the time factor is not being discussed explicitly. The 

logistic regression has managed to include time as one of the significant model 

parameters where the probability value can be obtained on certain year in service. 

Like operating temperature and insulation type, both are the factors for CUI discussed 

in API 581; nonetheless, the discussion is more towards a guideline. The logistic 

regression produced a mathematical model to that quantifies the likelihood of having 

CUI given both factors (i.e. operating temperature and insulation type).  

Using a logistic approach also provides a flexible and meaningful model for 

prediction through the use of both qualitative and quantitative variables. This model 

can be used to identify the right candidate of pipes for possible inspection, thus 

eliminating the randomness often associated with inspection/maintenance activity. 

Subjectivity is reduced as a probability, based on historical inspection records, and the 

probability values are provided rather than just the possible factors of having CUI, as 
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stated in API 581. Thus, it results a more systematic way of prediction and offers 

advantage for inspection monitoring system since inspection engineer can forecast 

CUI deterioration at any period of time providing more confidence in managing the 

CUI inspection program. 

Naturally, one should be cautioned as the model results will only be as good as the 

quality of data collected (i.e. the internal visual inspection data). It is recommended 

that this model needs to be improved by having more parameters, such as the 

humidity condition, location of equipment/piping etc., as in this analysis, the final 

model only considered the age, operating temperature group and insulation type as the 

parameters. 

However, the results from the logistic regression model tell us the probability of 

the pipe may have CUI (i.e. what will be the tendency of having corrosion when we 

open the insulation), not the probability of failure due to CUI. In other words, the 

logistic regression model does not tell how severe the corrosion is based on the wall 

thickness. For that reason, the results generated cannot be compared to Table N-16 in 

Appendix A in order to categorize the likelihood category for RBI analysis. In 

conclusion for this section, the logistic regression model can be used as a quantitative 

model in generating the probability value of having CUI in pipes but the model cannot 

be applied in quantitative risk assessment. To overcome this matter, another model 

that has been tested in this study is the degradation analysis model. 

 

5.2 Degradation Analysis 

 

As mentioned earlier in Chapter 3, degradation analysis requires the wall thickness 

data collected at each TMLs during each inspection period to extrapolate the time-to-

failure. In this study, the failure is defined as the time when the wall thickness reaches 

the minimum wall thickness specified. Extrapolation of the time-to-failure was done 

by assuming the degradation follows a linear model, Eq. (3.16): 
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where  = the wall thickness at time  ,  = time and  = the corrosion rate and  = 

the pipe nominal thickness. Corrosion rate was estimated conventionally using long-

term corrosion rate formula, Eq. (4.1): 

 

where tnominal = the pipe nominal thickness, tactual = the actual pipe thickness 

measured at time T  and T = number of years in service. Once the time-to-failure were 

estimated for each TMLs, the data were fitted to an appropriate distribution using 

Weibull++ software in order to find the distribution parameters. 

 

5.2.1 Case Study 

 

A small-bore, insulated pipe from a local gas processing plant was used to 

demonstrate the applicability and usefulness of the above technique in assessing the 

reliability of the piping systems. The insulated small-bore pipe carries high pressure 

condensate steam where the pipe starts from a heat exchanger (T2-351) to a drum 

(M2-751) as shown in Figure 5.5. Details on the pipe design and operating parameters 

are shown in Table 5.12. The corrosion defects and their characteristics became 

known through a periodic inspection (after opening the insulation). 
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Figure 5.5: Case study of insulated pipe 

 

Table 5.12: Data on pipe 

Line No. HC-2”-3504-E6123-H(N20A) 

Line Route: From T2-351 to HC-6”-3504-E6123-H(N20A) 

Design Pressure: 4500 KPA 

Operating Pressure: 3900 KPA 

Design Temperature: 395 C 

Operating Temperature: 249 C 

Line type Steam condensate line 

 

32 data points taken from 32 different TMLs along the pipe were used for this 

degradation analysis. Corrosion rates at each TMLs were calculated as well as the 

time-to-failure as shown in Table 5.13. Then, the time-to-failure data generated were 

analyzed using Weibull++ software in order to find the distribution parameters. Table 

5.14 shows that the data fitted well in the lognormal distribution, followed by the 

exponential 2-parameter and Weibull distributions (in that order) based on the 

likelihood values. 
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Table 5.13: Time-to failure data at each TML 

Location Calculated 

corrosion rate 

(mm/yr) 

Time-to-failure 

(year) 

Location Calculated 

corrosion rate 

(mm/yr) 

Time-to-

failure (year) 

1 0.111 71.4 17 0.142 20.6 

2 0.142 20.6 18 0.144 20.1 

3 0.169 14.9 19 0.120 27.2 

4 0.183 12.7 20 0.274 3.4 

5 0.115 28.9 21 0.103 34.3 

6 0.142 20.6 22 0.155 17.7 

7 0.169 14.9 23 0.053 79.9 

8 0.142 20.6 24 0.132 23.3 

9 0.142 20.6 25 0.072 55.3 

10 0.142 20.6 26 0.077 51.0 

11 0.169 14.9 27 0.053 79.9 

12 0.169 14.9 28 0.053 123.0 

13 0.142 20.6 29 0.051 84.9 

14 0.142 20.6 30 0.077 51.0 

15 0.142 20.6 31 0.051 84.9 

16 0.169 14.9 32 0.077 51.0 

 

Table 5.14: Results for each statistical distribution 

Distribution Parameter Likelihood values 

Lognormal ,  -142.071 

Exponential 2-parameter ,  -143.742 

Weibull ,   -146.304 

 

The time-to-failure data fitted best in the lognormal distribution, where the median 

life,  years (i.e. the median time to failure is 27.7 years). 

(Note that the median life is the value of the random variable that has exactly one-half 

of the area under the probability density function to its left and one-half to its right.). 

The results matched with the discussion in the literature which highlighted that one of 

the degradation processes that follow the lognormal distribution is corrosion and, in 

general, failures resulting from chemical reactions or processes empirically follow 

this distribution.  

If one were to use the 2 parameter exponential distribution, it can be interpreted as 

no failure will occur in 3.40 years after the first installation and the beyond 3.40 years, 
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the failure rate is estimated to be 0.031 failure per year (based on the assumption of 

constant failure rate). If Weibull distribution were to be used, it revealed that the 

failure rate of the pipe is increasing (with ) and the life at which 63.2% of 

units will fails will be at 38.2 years. Figure 5.6 shows the three distributions fitted 

well to the time-to-failure data and Figure 5.7 shows the graphs of the probability of 

failure vs. years in service for all the three distributions. 

 

 

Figure 5.6: Distribution fitting for the time-to-failure data 

 

 

Figure 5.7: Probability of failure generated by assuming a linear degradation model  
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5.2.2 Results 

 

A sample of 30 pipes were collected at various temperatures and the results of the 

analysis showed that either the lognormal distribution or the Weibull distribution gave 

a very good fit to the time-to-failure data extrapolated from a linear degradation 

model (i.e. adopted from API 581). This is because the likelihood values generated by 

these two distributions were greater when compared to other distributions). Table 5.15 

shows the details of the results. 

 

Table 5.15: Sample results at various temperatures 

Operating temperature ( C) Weibull distribution Lognormal distribution 

  Likelihood value   Likelihood value 

-39 0.920 238.12 -158.70 4.877 1.415 -145.87 

15 1.192 214.47 -94.75 4.917 1.015 -94.74 

36 1.326 285.51 -326.86 5.231 0.941 -329.34 

93 2.184 70.36 -122.63 4.004 0.582 -120.86 

290 0.926 431.64 -133.86 5.481 1.384 -129.21 

 

5.2.3 Discussions 

 

Reliability analysis based on time-to-failure data are often hampered by the lack of 

observed failures. The probabilistic model has demonstrated an alternative approach 

to the time-to-failure data in order to assess the piping system reliability subject to 

CUI. Rather than just developing a degradation model of corrosion as normally being 

practiced in the plants, the model also seeks the resulting lifetime model.  The lifetime 

distribution model can be used to predict the probability of failure of the insulated 

piping system at any point in time without having to estimate the corrosion rate. 

Several interesting points can be highlighted using this analysis: 

 The time-to-failure data for CUI which is based on a linear degradation model 

obeys either the lognormal distribution or Weibull. 
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 Based on the Weibull distribution in Table 5.15, the shape parameter   for very 

cold or very hot piping systems (operating temperature < -12 C or > 121 C, 

respectively) is less than 1 which indicates that the failure rate decreases over 

time. Up to a point, the failure rate will become constant. Planned replacement has 

no advantage in these cases because the failure will occur at random. 

 For piping systems that operate between -12 C and 121 C, the shape parameter  

is more than 1 which implies that the failure rate increases over time. The 

increasing failure rate indicates wear out such as corrosion and such pipes will 

have higher risk of failure and thus frequent inspection interval is recommended. 

In overall, the proposed analysis framework intends to simplify the modeling process 

so that the available data can be fully utilized for prediction purposes.  This study has 

also linked a practitioner’s selected degradation model and the resulting lifetime 

model with the objective to predict quantitatively the failure probability. The model 

can be applied easily provided the number of wall thickness data collected is 

sufficient so that the analysis made is sound and credible. However, to have 

abundance of wall thickness data for insulated pipes is not always being the case, 

which means the degradation analysis cannot be carried out. Therefore, the big 

question is how to assess the probability of failure quantitatively? Another model that 

can be employed by taking the advantage of using the wall thickness data as well as 

the design and operating data is the structural reliability analysis. 

 

5.3 Structural Reliability Analysis 

 

5.3.1 Model verification 

 

The FORM algorithm developed using Microsoft Excel was verified using two case 

studies published in the literature (Cardoso et al., 2008; Teixeira et al., 2008). Both 

case studies were not about CUI; however, they were on assessing reliability of 

pipelines with corrosion defect. The developed FORM model produced the same 
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results as published in the papers. For details of the validation results, refer to 

Appendix D. 

 

5.3.2 Establish the distribution 

  

For structural reliability analysis, the probability distribution for each basic random 

variable has to be determined. For operating pressure, operating pressure data were 

analyzed using JMP software, statistical software to establish the probability 

distribution. Figure 5.8 shows the examples of the operating pressure distributions for 

2 insulated pipes. The analysis shows that the operating pressure follows normal 

distribution with COV of 0.02.  

 
(a) Normal (3289.13, 50.66) 

 
(b) Normal (2246.77, 37.36) 

Figure 5.8: Probability distribution for operating pressure taken at two different 

locations; (a) 3PI5003.PV and (b) 3PI4502.PV 

 

Estimation for probability distribution and its parameter for CUI corrosion rate are 

done using two methods, by (1) fitting the distribution and (2) the bootstrap 

resampling method, based on the number of data available. The temperature group 3 

and 6 data were fitted to an appropriate distribution since the number of data is 

reasonable (more than 30 data points) to conduct the distribution fitting method as 

shown in Figure 5.9. For other groups, the bootstrap resampling method has to be 

employed since data is inadequate. Figure 5.10 shows the empirical probability 

distributions produced by this method. 
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Normal(0.11314,0.096) 

(a) Distributions for Group 3 (16 C to 49 C) 

Normal(0.10893,0.065) 

(b) Distributions for Group 6 (more than 121 C) 

Figure 5.9: Probability distribution of CUI corrosion rate established using the 

distribution fitting method for 2 different operating temperatures 

 

 
Normal (0.081,0.075) 

(a) Distributions for Group 1 (less than -12 C) 

 

 
Normal (0.057,0.062) 

 (b) Distributions for Group 2 (-12 C to 16 C ) 

 

 
Normal (0.070,0.036) 

 (c) Distributions for Group 4 (49 C to 93 C ) 

 

 
Normal (0.130, 0.047) 

(d) Distributions for Group 5 (93 C to 121 C ) 

 

Figure 5.10: Probability distribution of CUI corrosion rate established using the 

bootstrap method 
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Once the statistics are known then it will be used for the data analysis of FORM 

model. Table 5.16 summarizes all the results for corrosion rate. 

Table 5.16: API 581 corrosion rate vs. estimated corrosion rate 

   90% Confidence Interval   

Temperature 

range ( C) 

API Corrosion 

Rate* (mm/yr) 

Mean of 

Corrosion Rate 

(mm/yr) 

Lower Bound Upper Bound Std Dev of 

Corrosion Rate 

Coefficient of 

Variation 

(COV) 

Less than -12 0 0.081 0.040 0.123 0.075 0.949 

-12 to 16 0.127 0.057 0.027 0.095 0.062 1.094 

16 to 49 0.0508 0.113 0.083 0.142 0.096 0.850 

49 to 93 0.254 0.070 0.051 0.089 0.036 0.512 

93 to 121 0.0508 0.130 0.106 0.152 0.047 0.364 

More than 121 0 0.109 0.093 0.125 0.065 0.596 

* The corrosion rate is the corrosion rate in marine environment (API, 2003) 

To check whether the estimated corrosion rate is difference when compare to API 

corrosion rate, Student-t test was used.  Student-t test is a statistical hypothesis test in 

which the test statistic is assumed to follow a Student’s  distribution if the null 

hypothesis is true. In this case, the following hypothesis is made: 

 : The means of the corrosion rate for both groups are equal. 

: The means of the corrosion rate for both groups are not equal. 

Using the paired -test, the two-tailed -value equals 0.8112. By conventional 

criteria, the difference is considered to be not statistically significant which means do 

not reject the null hypothesis. In other words, the means of the corrosion rate for both 

groups are equal. It can be implied that the corrosion rate estimated using the field 

data can be used in the structural reliability analysis especially for pipes with 

temperature operating below -12 C or higher than 121 C where API corrosion rate 

are supposed to be zero. When corrosion rate is zero, the structural reliability analysis 

cannot be conducted. 

The results generated using field data look promising as a mean to quantitatively 

predicting the probability of failure. The bootstrap resampling method used also 

provides a way to generate the empirical distribution for the corrosion rates. As what 

has been mentioned by Chernick (2008, pg 173), “Although we have good reasons not 

to trust the bootstrap in very small samples and theoretical justification is asymptotic, 
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the result were surprisingly good even for sample sizes as small as 14 …A main 

concern in small samples is that with only a few values to select from, the bootstrap 

sample will under-represent the true variability since observations are frequently 

repeated and bootstrap samples, themselves, can repeat.”. 

 

5.3.3 The influence of the limit state function 

 

The probability of failure generated was based on the limit state function proposed by 

Khan et al. (2004). The next question is whether the results change if a different limit 

state function is used. As mentioned earlier, another limit state function that is 

typically used is the failure function that is defined as the difference between the pipe 

failure pressure   and the pipe operating pressure . Note that all the variables in 

the modified B31G failure pressure model are the same as the data in the thinning 

model except that the modified B31G failure pressure model requires the axial length 

of the corrosion defects, . In this analysis,  is assumed to be constant. 

Figure 5.11 shows the results of the application of the FORM algorithm to 

compute the pipe failure probability using both the thinning model and the modified 

B31G (i.e. Eq. (4.4) and Eq. (4.5)). A time interval of 25 years was considered. A 

normal distribution was assumed for the load and resistance variables for both 

models. The analysis has been carried out with l = 100 mm, l = 200 mm and    l = 300 

mm.  
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(a) 

 

(b) 

Figure 5.11: (a) Evolution of pipe failure probability with time for thinning model and 

the modified B31G failure pressure model. (b) Evolution of pipe reliability index with 

time for thinning model and the modified B31G failure pressure model. 

The results in Figure 5.11 show that both models used to predict the failure 

probabilities give similar pipe failure probabilities. Even with different axial length of 

defect, the similar pipe failure probabilities are produced. The advantage to use the 

thinning model over the modified B31G is that the equation does not require the axial 

length of corrosion defect where in most cases (in practical), the corrosion defect 

length is seldom measured.  

 

5.3.4 The influence of the reliability algorithm 

 

The results shown in Figure 5.12 were obtained using the FORM algorithm to 

compute pf. As Figure 5.11 shows, the Monte Carlo simulation technique gives results 

that closely approach that obtained by FORM (the thinning model has been used in 

this analysis). Although the Monte Carlo technique produce similar results for both 

models and variable distribution types considered in this study, important 

implementation and performance details have to be considered to select the most 

suitable algorithm when a probability-based analysis is done. The advantage of using 

Monte Carlo simulation is it is easily implemented and does not require partial 

differentiation of the limit state function; therefore, any limit state function can be 

used with this algorithm. The major drawback of this method is the lack of computing 
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efficiency resulting from the large number of trials (about ) required in order to 

ensure an accuracy approaching that obtained using the FORM. In this case 10,000 

trials were found to be enough in order to for converge to take place.  

 

 

Figure 5.12: FORM vs. Monte Carlo algorithms for generating the failure probability 

 

5.3.5 The influence of COV of the load and resistance variables 

 

It is obvious that the pipe reliability is affected by the degree of uncertainty present in 

the random variables. COV of a random variable is a measure of uncertainty present 

in the random variable. Therefore, it is necessary to undertake a sensitivity study on 

parameters in order to demonstrate the effect of variation in COV of random variable 

on the pipe reliability. COV is the ratio of standard deviation to mean of a random 

variable, the variation of COV will result in the behavior of parameter. The sensitivity 

of the pipe reliability to the COV of the load and resistance variables was assessed 

using COV value ranges between 0 and 1. The reliability indices were evaluated for 

various service lives for the above-mentioned pipe in the case study. Figure 5.13 

shows the influence of COV on the load and resistance parameters on the results of 

the probabilistic analysis.  
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In this analysis, the thinning model was used and the load and resistance variables 

were assumed to be normally distributed. The pipe reliability was found to be: 

 Very sensitive to the pipe wall thickness and corrosion rate. 

 Moderately sensitive to pipe material strength.  

 Almost insensitive to operating pressure, pipe diameter.  

From the analysis, it is found that the pipe reliability is almost insensitive to COV 

of operating pressure and the pipe diameter at any service life. It was also found out 

that material strength appears to make a significant relative contribution to the pipe 

failure initially; however, its relative contribution diminishes gradually with time.  

It is observed from the results that the pipe failure probability increases with 

increased values of COV of pipe wall thickness and corrosion rate. This means that, 

even if the mean values of the random variables remain unchanged, the probability of 

failure of the pipe increases with increased values of COV of the pipe wall thickness 

and corrosion rate.  

From Figure 5.13 (i) and (j), it is seen that the change in the failure probability 

with respect to the change in COV of corrosion rate for low service life is not 

significant. However, the sensitivity increases gradually with increased years in 

service. This implies that an accurate or near accurate estimate of the COV value of 

defect depth is needed for when service periods is longer, otherwise the evaluated 

failure probabilities would not be so realistic. Moreover with increased years in 

service, the depth of defect (i.e. wall loss) increases, resulting in a decrease in pipe 

wall thickness and hence the capability of pipe to resist the effect of stresses generated 

by external loads is reduced. In other words, this increases the severity of the 

circumferential stress leading to an increase in failure probability of the pipe. 

From Figure 5.13 (e) and (f), it can be seen that the failure probability is very 

sensitive for the values of COV of the pipe wall thickness. The sensitivity increases 

gradually with increased years in service but it never loses its significance even at the 

high exposure periods. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 
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(i) 

 

(j) 

Figure 5.13: Sensitivity analysis for: (a) – (b) COV of operating pressure, (c) – (d) 

COV of pipe diameter, (e) – (f) COV of pipe thickness, (g) – (h) COV of material 

strength, and (i) – (j) COV of corrosion rate. 

 

5.3.6 The influence of the probability distribution of the load and resistance 

variables 

  

The influence of the distribution type on thickness and corrosion rate on the pipe 

failure probability is shown in Figure 5.14. Figure 5.14 (a) shows the distribution type 

of corrosion rate is of first importance on the pipe safety in the future. The lognormal 

distribution produces the highest failure probabilities, which is as expected since the 

tails of the distributions have on the computed failure probability. Figure 5.14 (b) 

shows that there is no big influence on the probability of failure by having difference 

types of distributions for pipe wall thickness. 

 

 

(a) Distribution of corrosion rate 

 

(b) Distribution of pipe wall thickness 

Figure 5.14: The effect of different probability distribution on the failure probability 
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5.3.7 Case study 

 

Another small-bore, insulated pipe was used to demonstrate how the structural 

reliability analysis the applicability of the above technique in assessing the reliability 

of the piping systems. It is a cold pipe where the medium is propane refrigerant, 

operating at -39 C, however, intermittently used as shown in Figure 5.15. Table 5.17 

shows the pipe details. The data employed to run the analysis are shown in Table 

5.18. 

 

Figure 5.15: Case study of insulated pipe 

   

Table 5.17: Data on pipe 

Line No. PR-2-7039-C3110-C(N31A) 

Line Route: From P3-701 to Spec Brk 

Design Pressure: 2100 KPa 

Operating Pressure: 750 KPA 

Design Temperature: -46/60 C 

Operating Temperature: -39 C 

Line type Propane refrigerant line 
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Table 5.18: Parameter for limit-state function with mean and variance 

Symbol Parameters Mean Variance 

 Yield stress (MPa) 240 11.2896 

 Material thickness (mm) 5.54 0.0767 

 Outside diameter of pipe (mm) 60.3 1.0508 

 Operating pressure (MPa) 0.75 0.0067 

 Corrosion rate (mm/yr) 0.079 0.0039 

 

The plots of the failure probability and the reliability index against year in service 

( ) are presented, as shown in Figure 5.16 and 5.17, to draw the inferences.  It is 

observed that the failure probability generated for the first 15 years are very small. 

However, after the first 15 years in service, the probability of failure increases 

exponentially. It can be seen from Figure 5.16, after 15 years in service, the failure 

probability of the pipe is  with the reliability index of 4.37. Comparing 

the probability value with the failure probability categories in Table N-16 (Appendix 

A), the pipe is now in the likelihood category 3 which is medium category of failure 

probability.  

 

 

Figure 5.16: Failure probability plot 
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Figure 5.17: Reliability index vs. years in service 

 

It can be seen from the reliability index plotting in Figure 5.17 that as the year in 

service increases, the reliability index decreases exponentially. This is as expected 

and may be explained in the following way. With increased year in service, the 

corrosion defect increases, and hence the pipe capability to resist the effect of stresses 

generated by the loads is also reduced. In other words, this increases the severity of 

the circumferential stress leading to an increase in the pipe failure probability. 

The graph in Figure 5.17 can be used to plan effective and economic inspection, 

repair and replacement programs. Not only that, this graph can be used to set effective 

remaining service life. For example, if the hypothetical minimum acceptable value of 

reliability index is set at 3, then it can be said that the remaining service life of this 

pipeline is (20 - 15) years, i.e. 5 years. After the period of the remaining life, even if it 

appears that the pipeline has not failed, it would not be safe to use it. For safety 

reasons, it would be wise for the pipe to be abandoned, repaired or replaced, in order 

to decrease its failure probability if further service is required.  

 

5.3.8 Discussions 

 

A study on the reliability assessment methodology for insulated piping systems 

subject to CUI has been carried out for the purpose of RBI. This study was needed to 
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establish RBI program for piping systems subject to CUI in a more quantitative way. 

Thinning model proposed by Khan et al. (2003) was employed for estimating the 

failure probability of the insulated pipes containing corrosion defects as well as the 

remaining strength of those pipes. The results generated by the thinning model were 

validated with the standard failure pressure model, the modified B31G. FORM was 

adopted for evaluating the limit state function and was validated using Monte Carlo 

simulation. The main results of this study lead to the following conclusions: 

 Both the thinning model and the modified B31G predicted similar values of the 

failure probabilities. 

 FORM and Monte Carlo simulation reliability algorithms produce similar results 

when the limit state function can be linearized and the load and resistance 

variables have normal probabilistic distributions. In this case, with 10,000 runs, it 

is already reaching the convergence. 

 The pipe failure probability increases with increased service life and that the rate 

of change of pipe failure probability also increases gradually with the increase 

service life. 

 At low service life (about 10 to 12 years in service), the pipe reliability is almost 

insensitive to the input variables but the sensitivity of the failure probability 

estimate increases gradually with increased service life. 

 At low service life, the pipe reliability is almost insensitive to COV of the load 

and resistance variables. However, special care must be taken in characterizing 

accurately COV of the variables if the reliability of pipes is assessed for longer 

years in service. Moreover, it is pointed out that if the reduction in pipe safety is 

assessed for long service times, then special care must be taken in charactering 

COV of the variables (1) corrosion rate, (2) pipe wall thickness ( in that order). 

 At any service life, the pipe reliability is almost insensitive to pipe diameter, 

material strength and pipe operating pressure. 

 If the probabilistic distribution of a load and resistance is not experimentally 

available, the sensitivity of the pipe reliability to this variable is the key to assume 

its distribution type. 
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 The probabilistic analysis of a pipe must be performed independently for deep and 

shallow defects in order to ensure a correct repair strategy for shorter and longer 

years in service.   

 It is observed that the pipe falling under very high category indicating the most 

significant pipe needs to be investigated through RBI. 

 The last important point is the interest to better estimate the coefficient of 

variation associated to corrosion rate because it is a parameter of great influence 

towards numerical simulations. 

 Numerical simulations have been performed and allow describing the evolution of 

the safety index of the insulated pipes with time. 

 The graph, reliability index versus years in service would be a good guide to set 

the effective remaining service life. After this period, even if it appears that the 

pipe has not failed, it would not be safe to use it. For reasons of safety, it would be 

wise for the pipe to be repaired or replaced, in order to decrease its failure 

probability if further service is required of it. This graph will be used to plan 

effective and economic inspection, repair and replacement programs. 

From the research presented herein, it can be concluded that the application of FORM 

is very promising in estimating quantitatively the failure probability of insulated 

piping systems for RBI analysis. 

 

5.4 Continuous-Time Markov Model 

 

5.4.1 Model Validation 

 

A three-discrete-state, continuous-time Markov model was employed in this study, as 

shown in Figure 5.18. The model describes the condition of the insulated piping 

systems based on the severity of the corrosion defects which can be categorized into 

three states as shown in Table 5.19. The pipe is assumed to be in any one of the three 

states reflecting the progressive stage of CUI. This model assumes that the insulated 

piping system can either stay in its current state or deteriorate to some lower state. In 
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the presence of repair/maintenance activities, then the pipes is assumed to go back to 

a better state. 

Table 5.19: Description for the 3-state Markov model 

State Definition 

1  less than  

2  is between  and  

3  is more than  

Note:  = the depth of corrosion,  ,   

 

Figure 5.18: Proposed three-state Markov model 

 

The differential equations developed for the three-state Markov model was solved 

analytically using Laplace transforms (refer to Appendix C for the solutions) and once 

such solutions were obtained, the calculation was performed via spreadsheet yielding 

the time dependent probabilities of the piping at each state. To validate the analytical 

closed form solutions to these differential equations, the probability values generated 

were compared to the results generated using MATLAB (i.e. solving it numerically). 

Both values solved using spreadsheet and MATLAB were equal, thus proving that the 

differential equations solved using Laplace transforms and putting the equations in the 

spreadsheet was validated. 

 

  

1 2 3 
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5.4.2 Estimation of transition rates ,  and  

 

The continuous-time Markov model requires the transition rates from State 1 to State 

2,   and from State 2 to State 3, , which were determined using the structural 

reliability analysis based on the limit state functions discussed in Chapter 3. The first 

limit state function was used to estimate   and can be defined as: 

                                         LSF1:             (3.56)                 

where  (in mm), ,  = pipe nominal wall 

thickness,  = minimum wall thickness specified,  is the corrosion rate (in 

mm) and   is the time of inspection which usually 10 years. 

The second limit state function to estimate the transition rate  represents 

transition rate from state 2, which has already crossed the detectable range  to the 

state 3, in which the wall thickness is beyond the minimum wall thickness allowed . 

The LSF for this case would be 

                                         LSF2:                                (3.57) 

Note that, in this model, the State 3 does not specify the actual leak, but represents a 

stage where the corrosion defect reaches the minimum wall thickness. First-order 

reliability method (FORM) was employed to estimate the transition rates. 

 To illustrate how the approximations of transition rates were done, the same 

example of pipe in Section 5.3.7 was used. Running FORM using both limit state 

functions yields the results shown in Table 5.20 and Table 5.21. The reliability data 

for the first limit state function were fitted into the exponential curve  

using MATLAB and the results showed that the estimated  per year 

(with 95% confidence bounds between 0.03101 and 0.04153) and  as 

shown in Figure 5.19 (a). For the second limit state function, the reliability data were 

also fitted into the exponential curve as shown in Figure 5.19 (b) and the results 

showed that the estimated  (with 95% confidence bounds between 

0.02109 and 0.02627) and . 
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Table 5.20: Reliability data generated from the first limit state function. 

Time Reliability Time Reliability 

1 1.000 11 0.837 

2 1.000 12 0.788 

3 1.000 13 0.741 

4 1.000 14 0.695 

5 1.000 15 0.653 

6 0.997 16 0.614 

7 0.986 17 0.579 

8 0.963 18 0.548 

9 0.929 19 0.519 

10 0.885 20 0.507 

 

Table 5.21: Reliability data generated from the second limit state function. 

Time Reliability Time Reliability 

1 1.000 16 0.883 

2 1.000 17 0.852 

3 1.000 18 0.821 

4 1.000 19 0.790 

5 1.000 20 0.760 

6 1.000 21 0.730 

7 1.000 22 0.701 

8 1.000 23 0.674 

9 0.999 24 0.648 

10 0.995 25 0.624 

11 0.988 26 0.600 

12 0.976 27 0.579 

13 0.959 28 0.558 

14 0.937 29 0.539 

15 0.911 30 0.521 
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         (a)                                                                     (b) 

Figure 5:19: Curve fitting method to estimate the transition rate  and  

 

Estimation of repair rate  for the case where repair and maintenance is 

performed may follow the repair rate model suggested by Fleming (2004) in Chapter 

3 using the model given in Eq. (3.58): 

                                                         (3.58) 

where 

 = the probability that piping element with a flaw will be inspected per inspection 

interval. The value will be 1 if it is in the inspection program or else it will be 0 

(Vinod et al., 2003). 

 = the probability that a flaw will be detected given this element is inspected. This 

parameter is related to the reliability of Non Destructive Examination (NDE) 

inspection which is often referred to as Probability of Detection. For most NDE, its 

values are between 0.84 and 0.95 (Vinod et al., 2003). 

= the mean time between inspections for defects (For piping system, the inspection 

interval proposed by API 570 is either 5 or 10 years depending on the piping class. 

Refer to Table 3.1) 

 = the mean time to repair once detected. 
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Using this equation, this study also attempted to estimate the repair rate using the 

values shown in Table 5.22. Monte Carlo simulation was used to generate the result 

and it gave  = 0.044 repair per year (mean time to repair was 22.7 years). This value 

was unreasonable and it did not make sense to have a very, very long repair time. 

Table 5.22: Values used to determine the repair rate 

Repair Rate Parameter Values 

Probability that a pipe element with flaw will be inspected per 

inspection interval (PI) 

1 

Probability that an existing with flaw will be detected; probability of 

detection (PFD) 

Between 0.84 to 0.94 

Mean time between inspections for flaws; inspection interval, in years 

(TFI) 

10 

Mean time to repair the pipe element once flaw is detected, in days (TR) 14 

 

To validate the repair rate model, the actual repair time data was collected and the 

data was fitted to exponential distribution to in order to estimate the repair rate as 

shown in Figure 5.20. The result showed that the mean time to repair was 113 days 

(0.310 year) and converting the value to repair rate yields 3.23 repairs per year. Thus, 

this value will be used as the repair rate in this analysis. 

 

Figure 5.20: Distribution fitting for repair rate data 
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By putting the above-mentioned transition rates into the solved differential equation, 

the failure probabilities were generated as shown in Figure 5.21. 

 

 

Figure 5.21: Probability of failure generated by the 3-state Markov model 

 

5.4.3 Sensitivity analysis 

 

5.4.3.1 The influence of corrosion rate 

 

Estimation of corrosion rate is so critical and important in this analysis. For example, 

the following analysis for two different corrosion rate showed that there was a big 

different for the failure probability values produced as using the transition rates shown 

in Table 5.23. A 10-year inspection interval was used. Figure 5.22 shows the graph of 

the failure probability and it shows a strong relationship between the corrosion rate 

and the probability of failure. 
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Table 5.23: Influence of corrosion rate values on the failure probability values  

 No repair With repair 

Corrosion rate (mm/yr) 0.06 0.10 0.06 0.10 

 0.0363 0.0610 0.0363 0.0610 

 0.0237 0.0376 0.0237 0.0376 

 0 0 3.23 3.23 

 

 

Figure 5.22: Influence of corrosion rate values on the failure probability values 

 

5.4.3.2 The influence of different definition for each state 

 

The definition for each state also investigated in this study. For example, the limit 

state function used to determine the transition rate  from State 1 to State 2 is  

 

where the undetectable defect depth was assumed to be 0.125 of the nominal 

thickness . An analysis was made to by assuming several cases such as 

1. Undetectable defect depth is negligible. 

2. Undetectable defect depth was assumed to be 0.05 of the nominal 

thickness . 

3. Undetectable defect depth was assumed to be 0.10 of the nominal thickness, 

. 
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4. Undetectable defect depth was assumed to be 0.125 of the nominal thickness, 

.  

The sensitivity analysis showed that definition of the state played an important role 

since the probability value produced will increase gradually as shown in Figure 5.23. 

 

 

Figure 5.23: Effects of the failure probabilities to the different definition of State 1  

 

5.4.3.3 The influence of different number of states 

 

Prior study by Fleming (2004) suggested a three-state Markov model for thinning 

mechanism experienced by piping systems. However, what will be the impact if the 

number of states is more than 3? To understand the impact, this study compared the 

three-state Markov model with the four-state Markov model, also proposed by 

Fleming (2004) for all failure mechanisms. Table 5.24 shows the hypothetical 

definitions used to study the sensitivity of having the different number of states in 

generating the failure probability values; however, the last state, State 4 is also 

defined as when the wall thickness reaches the minimum wall thickness specified. 

Figure 5.24 illustrates the depth of corrosion. The same methodology was followed to 

determine the transition rates; however, MATLAB was used to solve the four-state 

Markov model. 
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Table 5.24: Description for the 4-state Markov model 

State Definition 

1  less than  

2  is between  and  

3  is between  and  

4  is more than  

Note:  is the depth of corrosion,  ,  ,    

 

 

Figure 5.24: Illustration of the limit-state functions for 4-state Markov model 

 

Based on Figure 5.25, it showed that the failure probability is sensitive to the number 

of states for Markov model where the three-state Markov model generates higher 

probability of failure when compared to the four-state Markov model. 

 

 Figure 5.25: Effects of the failure probability to the different number of states (3- vs. 

4-state)  

 

 

 

State 4 

State 2 

State 1 

 

 

State 3 



132 

5.4.4 Discussions 

 

It has been demonstrated that the proposed three-state Markov model can be used as a 

tool to estimate the failure probability for piping systems subject to CUI. Also, the 

model can incorporate the impact of alternative strategies for inspection and leak 

detection. The main results of this model is that the failure probability is sensitive to 

the definition of states, the number of states as well as the corrosion rate used to 

calculate the transition rates. 

The Markov model has demonstrated to be a useful tool to study the impact of 

alternative strategies for in-service inspection and leak detection. Together with 

appropriate estimation of its input parameters, the model is capable of making 

reasonable predictions of time dependent piping system reliability. 

 

5.5 Concluding Remarks 

 

Let one compare the four models explored in this study as shown in Table 5.25, Table 

5.26 and Figure 5.26. Using logistic regression, one can see that the probability of 

having CUI if one opens the insulation at 15 years after pipe installation is 0.701 

means that there is a 70.1% chances to have CUI if the insulation is removed. If one 

wait and do nothing to the pipe, the probability 0.962 which 96.2% chances of seeing 

CUI at year 25.  

Degradation analysis shows that no failure can occur before 16 years ( ), 

so the time scale starts at 16 years, and not 0. After year 16 years, the failure 

probability will increase following the Weibull 2-parameter distribution with 

 and  where the time-to-failure data were found fitted well in this 

distribution. 

The failure probabilities at year 15 are close to zero which is 8.97  10
-4

 and 3.83 

 10
-3

 generated by the structural reliability analysis and continuous-time Markov 

model, respectively. However, for year 25, the structural reliability analysis gives the 
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highest probability value which is 0.280 comparing with 0.1514 (degradation 

analysis) and 6.43  10
-3

 (continuous-time Markov model). In other words, as time 

increase, the differences among these three models are very significant. This is 

expected as the underlying assumptions for these three models are different.  

 Degradation analysis assumes the pipe will be at one of the two binary states (0 = 

failure and 1 = no failure). Failure here is defined as the time the wall thickness 

reached the minimum wall thickness specified. The degradation model used to 

extrapolate state 0 (i.e. the time-to-failure) employed different corrosion rate at 

each TMLs.  

 The calculation of the structural reliability analysis is based in the concept of the 

difference between load and strength (or the boundary between desired and 

undesired performance of a pipe). In this case, a mode of pipe failure was when 

the pipe operating pressure or load exceeds the pipe failure pressure or capacity. 

In other words, at time , how much the pipe with corrosion defect can withstand 

the same pressure inside the pipe? 

 The results from the Markov model are the lowest. The main assumption for 

Markov model is that the pipe undergoes several states before the actual failure 

occur (failure is also defined as the wall thickness reached the minimum wall 

thickness specified). The transition rate from State 1 to State 2 is 0.0363/year and 

from State 2 to State 3 is 0.0237/year. In other words, the mean time the pipe will 

reach State 2 and 3 are 27.5 years and 42.2 years, respectively. This result is in 

agreement with the conclusions made by Vinod et al. (2003) where the probability 

of failure generated by Markov model is very small. 

  



134 

Table 5.25: Comparison among the four models 

 Year 15 Year 25 

Model Probability of 

failure at year 15 
Likelihood 

Category 

Probability of 

failure at year 

25 

Likelihood 

Category 

Logistic Regression 0.701 (70.1% 

chances to have 

CUI if the 

insulation is 

removed) 

Cannot compare 

with API 581 

likelihood 

category 

0.962 (96.2% 

chances to have 

CUI if the 

insulation is 

removed) 

Cannot 

compare with 

API 581 

likelihood 

category 

Degradation Analysis 

(Weibull 3-

parameter) 

Zero Very low 0.1514 Very High 

 

Structural Reliability 

Analysis 
8.97  10

-4
  Very high 0.280 Very high 

Continuous-Time 

Markov Model 
3.83  10

-3 Very high 6.43  10
-3 Very high 

 

 

Figure 5.26: Comparison among the three proposed models 
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Table 5.26: Data required, findings and recommendation for each model 

Model Data required Findings Recommendations 

Logistic regression 

model 

Internal visual inspection data 

(binary data, i.e. CUI found = 

1 or CUI is not found = 0) 

 Produced a mathematical model that provides the likelihood of having 

CUI for piping systems given the pipe age, operating temperature and 

insulation type.  

 Proved the research hypothesis which is small bore pipes will give 

higher tendency to experience CUI when compared to big bore pipes. 

To include other factors that 

contribute to CUI such as humidity 

(i.e. marine, temperate, dry), pipe 

complexity (i.e. number of 

branches), etc.  in the mathematical 

model. 

Degradation analysis  Initial/nominal and 

minimum wall thickness 

 Wall thickness data: to 

estimate the corrosion rate; 

to extrapolate the time-to-

failure 

 The time-to-failure data for CUI which is based on a linear degradation 

model obeys either the lognormal or Weibull distributions which were 

not known before. 

 Based on the Weibull distribution, the shape parameter   for very cold 

or very hot piping systems (operating temperature < -12 C or > 121 C, 

respectively) is less than 1 which indicates that the failure rate 

decreases over time. Up to a point, the failure rate will become constant 

(i.e. failure rate = 1). Planned inspection/maintenance has no advantage 

in these cases because failure will occur at random. 

 For piping systems that operate between -12 C and 121 C, the shape 

parameter  is more than 1 which implies that the failure rate increases 

over time. The increasing failure rate indicates wear out such as 

corrosion and such pipes will have higher risk of failure.  

 The main obstacle with this method is to have enough data to establish 

the statistical distribution; else prediction using this method is not 

viable. If plant people were to adopt this method, then more wall 

thickness measurements have to be collected at more TML along a 

specified pipe which may increase the cost of opening the insulation 

and reinsulated the pipe back or the cost of using suitable NDT 

techniques without opening the insulation.  

 To have more TML for pipe 

within the operating temperature 

susceptible to CUI. 

 Frequent inspection interval is 

recommended for piping 

systems with failure rate more 

than 1 (i.e. failure rate increases 

over time). 

 

Structural reliability 

analysis 
 Wall thickness data: to 

estimate the corrosion rate 

 Design data: material yield 

strength, pipe diameter, 

pipe thickness 

 Both the thinning model and the modified B31G predicted similar 

values of the failure probabilities. 

 FORM and Monte Carlo simulation reliability algorithms produce 

similar results when the limit state function can be linearized and the 

load and resistance variables have normal probabilistic distributions. In 

 The probabilistic analysis of a 

pipe must be performed 

independently for deep and 

shallow defects in order to 

ensure a correct repair strategy 
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 Operating data: operating 

pressure 

this case, with 10,000 runs, it is already reaching the convergence. 

 The pipe failure probability increases with increased service life and 

that the rate of change of pipe failure probability also increases 

gradually with the increase service life. 

 At low service life (about 10 to 12 years in service),  

o the pipe reliability is almost insensitive to the input variables but the 

sensitivity of the failure probability estimate increases gradually 

with increased service life. 

o the pipe reliability is almost insensitive to COV of the load and 

resistance variables. However, special care must be taken in 

characterizing accurately COV of the variables if the reliability of 

pipes is assessed for longer years in service. Moreover, it is pointed 

out that if the reduction in pipe safety is assessed for long service 

times, then special care must be taken in charactering COV of the 

variables (1) corrosion rate, (2) pipe wall thickness ( in that order). 

  

 At any service life, the pipe reliability is almost insensitive to pipe 

diameter, material strength and pipe operating pressure. 

 It is observed that the pipe falling under very high category indicating 

the most significant pipe needs to be investigated through RBI. 

 Numerical simulations have been performed and allow describing the 

evolution of the safety index of the insulated pipes with time. 

for shorter and longer years in 

service. 

 If the probabilistic distribution 

of a load and resistance is not 

experimentally available, the 

sensitivity of the pipe reliability 

to this variable is the key to 

assume its distribution type. 

 The last important point is the 

interest to better estimate the 

coefficient of variation 

associated to corrosion rate 

because it is a parameter of 

great influence towards 

numerical simulations. 

 The graph, reliability index 

versus years in service would be 

a good guide to set the effective 

remaining service life. After this 

period, even if it appears that 

the pipe has not failed, it would 

not be safe to use it. For reasons 

of safety, it would be wise for 

the pipe to be repaired or 

replaced, in order to decrease its 

failure probability if further 

service is required of it. This 

graph will be used to plan 

effective and economic 

inspection, repair and 

replacement programs. 

Continuous time 

Markov model 
 Wall thickness data: to 

estimate the corrosion rate 

 Design data: material yield 

 Typically, actual wall thickness data is used to estimate the transition 

rates. However, the data was not enough to do so. Thus, the structural 

reliability analysis (i.e. FORM model) was used to estimate the 

 If plant people were to adopt 

Markov model, then the 

following needs to be done:  
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strength, pipe diameter, 

pipe thickness 

 Operating data: operating 

pressure 

transition rate and it is found that the prediction using this method is 

viable. Taking the wall thickness data periodically will increase the 

cost of opening the insulation and reinsulated the pipe back. 

 The number of states was an important parameter since the generated 

probability of failure by the 3-state and 4-state Markov model were 

statistically significant. 

 The definition of states also was an important factor since the 

generated probability of failure by the difference definition of state 

was statistically significant. 

 To determine the correct 

number of states. 

 To determine the suitable 

definition for each state. 

 



 


