ACKNOWLEDGEMENTS

First and foremost, I would like to express my greatest gratitude to my supervisor, Associate Professor Ir. Dr. Mokhtar Che Ismail, and my co-supervisor, Zamaluddin Ali whose encouragement, guidance and support from the initial to the final stage of my study enabled me to develop an understanding of the subject.

My sincere thanks go to the Head of Mechanical Engineering Department, Associate Professor Dr. Ahmad Majdi Abdul Rani for his consistent moral support. I am tremendously indebted to many of my colleagues especially to the reliability asset integrity (RAI) research team, Associate Professor Ir. Dr. Mohd Amin Abdul Majid, Masdi Muhammad and Hilmi Hussin for sharing their valuable knowledge and experience related to reliability modelling. In most of the critical parts of the study, Masdi Muhammad was always there to help me out in understanding the statistical and reliability theory, in using several software such as Matlab and Weibull++ and in improving the thesis writing as well as for being there to bear the brunt of my frustration and rages in conducting this research.

Many thanks to the Director of Postgraduate Studies, Associate Professor Dr. Mohd Noh Karsiti and staffs in Postgraduate department for their guidance and consistent support. It is also a pleasure to thank Universiti Teknologi PETRONAS for the continuous financial support throughout this study.

I would like to make a heartily thankful to Abu Bakar Zainordin who was the inspection manager of PETRONAS Gas Berhad (PGB), the place where the case studies were collected. Without his team corporation, I could not have gotten such relevant data. PGB team members who helped me a lot were Khairul Ismail, Shahrullizam Shahid, M Ruzwin Rusli, Hasmawati Hassan, Azman Md Hashim, M Baki Mansor, Khairil Nizam Khirudin and all inspection team members of PGB. The leisure time spent during the data collection in Kerteh would be too boring if I had not brought along Nooratikah Mohd Saari. I thank her for sharing her wits and laughs. Many thanks also go to P-RBI CoP teams members and P-RBI team in GTS.

Words fail me to express my appreciation to my beloved husband, Syukri Baharudin, who always give his dedication, love and persistent confidence in me as well as has taken the load off my shoulder. I owe him for being unselfishly let his intelligence, passions and ambitions collide with mine. Not to forget, my adorable children, Ilham, Adam and Lydia, thank you for the love, understanding, patience and sacrifice during these 4 years of study.

My family and family-in-law deserve a special mention for their inseparable support and prayers. My late father, Mokhtar Abdul Shukor, was the person who showed the joy of intellectual pursuit ever since I was a child. My mother, Som Md Hussain, is the one who sincerely raised me with her caring and gently love. Azman, Nizam, Lan and Afina, thanks for being supportive and caring siblings.

Finally, I would like to thank each and everyone who was important to the successful realization of thesis, as well as expressing my apology that I could not mention personally one by one.

ABSTRACT

Corrosion under insulation (CUI) is found to be a major problem for insulated piping systems in refineries, petrochemical and gas processing plants. Since those pipes carry hydrocarbons or other dangerous process fluids, gradual thinning due to CUI may cause the pipes to leak, leading to a hazardous situation. Due to the nature of CUI which is hidden, the challenge is in the monitoring, detection and, hence, prediction of CUI. Also, due to scarcity of data, the current CUI inspection and maintenance strategy adopts the risk-based inspection (RBI) approach where the assessment of the probability of failure for CUI adopts either the qualitative or semiquantitative methods. These approaches were highly subjective and to overcome this drawback, the quantitative approach is usually employed where this approach bases the failure probability estimates on historical failure data.

This study presents a methodology for quantitatively estimating the probability of failure of piping systems subject to CUI based on the type of data available. In the absence of failure data and wall thickness data, logistic regression model was proposed by considering the inspection data as a binary data. When the wall thickness data is available, the probabilistic models, namely degradation analysis, structural reliability analysis and Markov chain model, were proposed.

The study recommended that for the case where wall thickness data is minimal, a good model that can be used for quantitative risk assessment is the structural reliability analysis. If more wall thickness data is available, degradation analysis and Markov chain model are the potential models. This study also demonstrated that the logistic regression model is not applicable for quantitative risk assessment. In summary, the quantitative approach is necessary as a means for quantitatively establishing future reliability for piping systems subject to CUI. Even though applying the quantitative method is optional in the current RBI analysis, quantitative risk assessment is, in fact, now a required element of the maintenance optimization methodology.

ABSTRAK

Kakisan di bawah penebatan (CUI) didapati menjadi satu masalah utama untuk sistem-sistem perpaipan tertebat di kilang penapis, kilang petrokimia dan pemprosesan gas. Oleh kerana paip-paip itu menyalirkan hidrokarbon atau cecair-cecair proses berbahaya, pengurangan ketebalan paip secara beransur-ansur yang disebabkan oleh CUI boleh menyebabkan paip-paip untuk bocor, seterusnya membawa kepada satu keadaan berbahaya. Disebabkan sifat CUI yang tersembunyi, cabaran telah dihadapi untuk mengawas, mengesan dan meramal CUI. Dan juga disebabkan oleh kekurangan data, kaedah pemeriksaan CUI dan strategi penyelenggaraan telah mengikut kaedeh pemeriksaan berasaskan risiko (RBI) di mana penilaian kebarangkalian kegagalan disebabkan oleh CUI mengambil salah satu kaedah-kaedah kualitatif atau separa kuantitatif. Pendekatan-pendekatan ini amat subjektif dan untuk mengatasi kelemahan ini, pendekatan kuantitatif biasanya diambil di mana pendekatan ini berdasarkan anggaran kebarangkalian kegagalan.

Kajian ini membentangkan satu kaedah secara kuantitatif untuk menganggarkan kebarangkalian kegagalan sistem-sistem perpaipan tertakluk kepada CUI berdasarkan jenis data yang boleh didapati. Tanpa data kegagalan dan data ketebalan dinding paip, model regresi logistik adalah dicadangkan dengan mempertimbangkan data pemeriksaan sebagai data perduaan atau data 'binary'. Bila data ketebalan dinding tersedia ada, model-model kebarangkalian, iaitu analisis degradasi, analisis kebolehpercayaan struktur dan model Markov, telah dicadangkan.

Kajian mencadangkan untuk kes di mana data ketebalan dinding adalah minimum, model yang baik yang boleh digunakan untuk penilaian risiko kuantitatif ialah analisis kebolehpercayaan struktur. Jika lebih banyak data ketebalan dinding tersedia ada, analisis degradasi dan model Markov adalah model-model potensi. Kajian ini juga mendemonstrasikan yang model regresi logistik tidak boleh digunakan untuk penilaian risiko kuantitatif. Rumusannya, pendekatan kuantitatif adalah perlu sebagai satu cara untuk meramal secara kuantitatif kebolehpercayaan di masa akan datang untuk sistem-sistem perpaipan tertakluk kepada CUI. Walaupun kaedah kuantitatif dalam analisis RBI adalah sebagai salah satu pilihan yang ada, penilaian risiko kuantitatif kini adalah satu kaedah yang dikehendaki untuk pengoptimuman penyelenggaraan.

COPYRIGHT

In compliance with the terms of the Copyright Act 1987 and the IP Policy of the university, the copyright of this thesis has been reassigned by the author to the legal entity of the university,

Institute of Technology PETRONAS Sdn Bhd.

Due acknowledgement shall always be made of the use of any material contained in, or derived from, this thesis.

© Ainul Akmar Mokhtar, 2011 Institute of Technology PETRONAS Sdn Bhd All rights reserved.

TABLE OF CONTENTS

Status of Thesis	i
Approval Page	ii
Title Page	iii
Declaration	iv
Acknowledgements	v
Abstract	vii
Abstrak	viii
Copyright Page	х
Table of Contents	xi
List of Tables	xiv
List of Figures	xvi
List of Abbreviations	xix
Nomenclatures	XX

Chapter

1.	INT	RODUCTION	1
	1.1	Background of Study	1
	1.2	Problem Statement	2
	1.3	Objectives	4
	1.4	Scope of Study	4
	1.5	Organization of the Thesis	5
2.	LITI	ERATURE REVIEWS	7
	2.1	Corrosion under insulation	7
	2.2	Risk-Based Inspection	8
	2.3	Failure Probability Assessment for Piping Systems	11
		2.3.1 Statistical Estimation based on Failure/Inspection Data	12
		2.3.2 Structural Reliability Analysis	13
		2.3.3 Markov Model	17
		2.3.4 Logistic Regression Model	19
	2.4	Concluding Remarks	21
3.	COF	ROSION MODELING.	23
	3.1	Corrosion under insulation	23
		3.1.1 Factors for Corrosion under Insulation	25
	3.2	Piping Systems Inspection Strategy	28
		3.2.1 Inspection Strategy based on API 570	28
		3.2.2 Inspection Strategy based on Risk Assessment	34
		3.2.2.1 Risk-Based Inspection	34

	3.2.3	Principles of Failure Probability Assessment	35
	3.2.4	Failure Probability Approaches in RBI Methodology	37
	3.2.5	Quantitative Failure Probability Assessment in API 581	38
3.3	Logisti	c Regression Model	40
	3.3.1	Wald Test	44
	3.3.2	Backward Stepwise Elimination	45
	3.3.3	Kruskal Wallis Test	46
3.4	Degrac	lation Analysis	47
	3.4.1	Degradation models	47
	3.4.2	Lifetime Distributions	49
3.5	Structu	Iral Reliability Analysis	51
	3.5.1	Limit State Function	51
	3.5.2	Reliability Analysis Methodologies	53
	3.5.3	First-Order Reliability Method	56
	3.5.4	Bootstrap Method	58
3.6	Marko	v Model	61
	3.6.1	Continuous-Time Markov Chains	62
	3.6.2	Solution to Differential Equations	65
	3.6.3	Method to Estimate the Transition Rate	66
	3.6.4	Hazard Rate for Markov Model	70
3.7	Conclu	Iding Remarks	70

4.	MOI	DEL DEVELOPMENT	71
	4.1	Research Framework	71
	4.2	Logistic Regression Model Framework	72
	4.3	Degradation Analysis Framework	77
	4.4	Structural Reliability Analysis Framework	79
	4.5	Continuous-Time Markov Model Framework	82
	4.6	Concluding Remarks	83
5.	RES	ULT AND DISCUSSIONS	85
	5.1	Logistic Regression Model	85
		5.1.1 Results and Validation	85
		5.1.2 Small Bore Results	86
		5.1.3 Big Bore Results	91
		5.1.4 Effect of Pipe Age	94
		5.1.5 Effect of Operating Temperature	96
		5.1.6 Effect of Insulation Type	99
		5.1.7 Discussions	100
	5.2	Degradation Analysis	102
		5.2.1 Case Study	103

		5.2.2 Results	107
		5.2.3 Discussions	107
	5.3	Structural Reliability Analysis	108
		5.3.1 Model Verification	108
		5.3.2 Establish the Distribution	109
		5.3.3 The Influence of the Limit State Function	112
		5.3.4 The Influence of the Reliability Algorithm	113
		5.3.5 The Influence of COV of the Load and Resistance Variables	114
		5.3.6 The Influence of the Probability Distribution of the Load and	
		Resistance Variables	117
		5.3.7 Case Study	118
		5.3.8 Discussions	120
	5.4	Continuous-Time Markov Model	122
		5.4.1 Model Validation	122
		5.4.2 Estimation of Transition Rates ϕ , λ and ω	124
		5.4.3 Sensitivity Analysis	128
		5.4.3.1 The Influence of Corrosion Rate	128
		5.4.3.2 The Influence of Different Definition of Each State	129
		5.4.3.3 The Influence of Different Number of States	130
		5.4.4 Discussions	132
	5.5	Concluding Remarks	132
C	CON		120
6.		Canalasiana	139
	0.1		139
	6.2	Significance of the Project	142
	6.3	Future works	142
7.	BIBI	LIOGRAPHY	145
	List o	of Publications	163
	App	endix A: Technical Module Subfactor for Corrosion under Insulation	165
	Ann	endix B: Further Details Related to Logistic Regression Model	173
	7 . PP	Endry D. Further Detunis Related to Ebgistic Regression Wodel	173
	App	endix C: Further Details Related to Continuous-Time Markov Model	179
	•		107
	App	endix D: Further Details Related to Structural Reliability Analysis	185

LIST OF TABLES

Table 2.1:	Data requirement for the proposed models	22
Table 3.1:	Recommended maximum inspection intervals for piping systems (API,	
	2001)	29
Table 3.2:	Description for the piping class (API, 2001)	29
Table 3.3:	CUI corrosion rate default matrix for carbon steel (API, 2000)	31
Table 3.4:	Recommended extent of CUI inspection following visual inspection	
	(API, 2001)	31
Table 3.5:	Risk, fuzziness and ignorance (Giribone & Valette, 2004)	37
Table 3.6:	Suggested generic failure frequencies for piping systems (API, 2000)	39
Table 3.7:	Description for the three-state Markov model	68
Table 3.8:	Strategies to estimate Markov model parameters	69
Table 4.1:	Classification for types of piping insulation class (Engineering	
	Specification for Thermal Insulation Design, 1994)	74
Table 5.1:	Comparison between coefficient using Java Script and MATLAB	85
Table 5.2:	Initial coefficients generated for small bore piping systems	86
Table 5.3:	Final logistic regression model for small bore piping systems	86
Table 5.4:	The simplified equation for operating temperature group (small bore	
	piping)	87
Table 5.5:	Coefficients for 100%, 90% and 80% of sample data (small bore piping)	89
Table 5.6:	Kruskal-Wallis Test for 100%, 90% and 80% of sample data (small	
	bore piping)	90
Table 5.7:	Coefficients generated from MATLAB for big bore piping systems	91
Table 5.8:	Logistic regression models for big bore piping	92
Table 5.9:	Coefficients for 100%, 90% and 80% of sample data (big bore piping).	92
Table 5.10	: Kruskal-Wallis Test for 100%, 90% and 90% of sample data (big bore	
	piping)	93
Table 5.11	: Example to illustrate why small bore pipe may fail first	101

Table 5.12: Data on pipe	104
Table 5.13: Time-to failure data at each TML	105
Table 5.14: Results for each statistical distribution	105
Table 5.15: Sample results at various temperatures	107
Table 5.16: API 581 corrosion rate vs. estimated corrosion rate	111
Table 5.17: Data on pipe	118
Table 5.18: Parameter for limit-state function with mean and variance	119
Table 5.19: Description for the 3-state Markov model	123
Table 5.20: Reliability data generated from the first limit state function	125
Table 5.21: Reliability data generated from the second limit state function	125
Table 5.22: Values used to determine the repair rate	127
Table 5.23: Influence of corrosion rate values on the failure probability values	129
Table 5.24: Description for the 4-state Markov model	131
Table 5.25: Comparison among the four models	134
Table 5.26: Data required, findings and recommendation for each model	135

LIST OF FIGURES

Figure 2.1: 1	Development of maintenance philosophy (Arunraj & Maiti, 2006)	9
Figure 3.1:	CUI mechanism - Corrosion cell in carbon steel covered by insulation	24
Figure 3.2:	Illustration for water being introduced by internal sources in insulated	
S	systems	26
Figure 3.3: 7	Typical injection point piping circuit (API, 2001)	33
Figure 3.4: 1	Data picture of CUI for logistic regression model	41
Figure 3.5: 1	Logistic function	43
Figure 3.6: 1	Illustration of time-to-failure using linear degradation model	48
Figure 3.7: 7	The concept of a distribution model for failure data	49
Figure 3.8: 1	Design point and equivalent normal dispersion ellipsoids illustrated in	
1	the plane (Low & Tang, 2004)	57
Figure 3.9: S	Schematic representation of the bootstrap resampling procedure	
((Riesch-Oppermann et al., 2007)	60
Figure 3.10:	Example of a three-state continuous time Markov model	64
Figure 3.11:	Three-state continuous time Markov model (Fleming, 2004)	65
Figure 3.12:	Illustration for the limit-state functions used to estimate the transition	
1	rate for the Markov model	68
Figure 4.1: 1	Research framework	71
Figure 4.2: 1	Logistic regression model flowchart for CUI	73
Figure 4.3: 1	Degradation analysis framework to estimate reliability of piping	
S	system subject to CUI	77
Figure 5.1: 1	Probability of CUI occurrence for each temperature groups for, (a)	
S	small bore piping systems and (b) big bore piping systems	95
Figure 5.2:	Comparison between small bore and big bore piping system for each	
1	temperature group (Insulation type = calcium silicate)	97
Figure 5.3:	Comparison between small bore and big bore piping system for each	
t	temperature group (insulation type = cellular glass)	98

Figure 5.4: Comparison between insulation types for temperature group 1 (49°C to	
93°C)	100
Figure 5.5: Case study of insulated pipe	104
Figure 5.6: Distribution fitting for the time-to-failure data	106
Figure 5.7: Probability of failure generated by assuming a linear degradation	
model	106
Figure 5.8: Probability distribution for operating pressure taken at two different	
locations; (a) 3PI5003.PV and (b) 3PI4502.PV	109
Figure 5.9: Probability distribution of CUI corrosion rate established using the	
distribution fitting method for 2 different operating temperatures	110
Figure 5.10: Probability distribution of CUI corrosion rate established using the	
bootstrap method	110
Figure 5.11(a): Evolution of pipe failure probability with time for thinning model	
and the modified B31G failure pressure model	113
Figure 5.11(b): Evolution of pipe reliability index with time for thinning model and	
the modified B31G failure pressure model	113
Figure 5.12: FORM vs. Monte Carlo algorithms for generating the failure	
probability	114
Figure 5.13: Sensitivity analysis for: (a) – (b) COV of operating pressure, (c) – (d)	
COV of pipe diameter, (e) – (f) COV of pipe thickness, (g) – (h) COV	
of material strength, and $(i) - (j)$ COV of corrosion rate	116
Figure 5.14: The effect of different probability distribution on the failure	
probability	117
Figure 5.15: Case study of insulated pipe	118
Figure 5.16: Failure probability plot	119
Figure 5.17: Reliability index vs. years in service	120
Figure 5.18: Proposed three-state Markov model	123
Figure 5.19: Curve fitting method to estimate the transition rate ϕ and λ	126
Figure 5.20: Distribution fitting for repair rate data	127
Figure 5.21: Probability of failure generated by the 3-state Markov model	128
Figure 5.22: Influence of corrosion rate values on the failure probability values	129
Figure 5.23: Effects of the failure probability values to the different definition of	
State 1	130

Figure 5.24: Illustration of the limit-state functions for 4-state Markov model	131
Figure 5.25: Effects of the failure probability to the different number of states (3-	
vs. 4-state)	131
Figure 5.26: Comparison among the three proposed models	134

LIST OF ABBREVIATIONS

API	American Petroleum Institute
CUI	Corrosion under insulation
COV	Coefficient of variation
FE	Equipment modification factor
FM	Management systems evaluation factor
FORM	First-order reliability method
FOSM	First order second moment
iid	Independent and identically distributed
ISGSS	Intergranular stress corrosion cracking
LOCA	Loss of coolant accident
LSF	Limit state function
MCS	Monte Carlo simulation
MLE	Maximum likelihood estimation
MTBF	Mean time between failures
NDE	Non-destructive examination
NDT	Non-destructive testing
PFM	Probabilistic fracture mechanics
PRAISE	Piping Reliability Analysis including Seismic Events
PSQUIRT	Probabilistic Seepage Quantification of Upsets in Reactor Tubes
RBI	Risk-based inspection
TML	Thickness measurement location

NOMENCLATURES

General Notation

t _{actual}	Actual pipe thickness measured at the time of inspection for a given
	location (in mm)
t _{required}	Required pipe thickness at the same location as t _{actual} computed by the
	design formulas before corrosion allowance and manufacturer's
	tolerances are added (in mm)
t _{initial}	Initial pipe thickness at the same location as t _{actual} measured at initial
	installation or at the commencement of new corrosion rate
	environment (in mm)
t _{previous}	Pipe thickness at the same location as tactual measured during one or
	more previous inspections (in mm)
t _{nominal}	Nominal pipe thickness (in mm)

Symbols for Logistic Regression Model

Y	Binary response (either 0 or 1)
f(z)	Logistic function
Ζ	Linear sum of the independent variables
n	Number of independent variables
$x_1, x_2, \dots x_n$	Independent variables of interest
eta_0,eta_1,eta_n	Coefficient for each independent variable

Symbols for Degradation Analysis

t	Time
d(t)	Pipe wall thickness at time t
а	Corrosion rate (in mm/yr)
b	Pipe nominal thickness (in mm)
f(t)	Probability density function
F(t)	Cumulative density function

Symbols for Structural Reliability Analysis

g(x)	Limit-state function or a failure function
x_n	Basic random variables
n	Number of random variables

R Resistance

S	Load
$f_R(\sigma)$	Probability density function of resistance R
$f_S(\sigma)$	Probability density function of load S
$f_n(x_n)$	Probability densities of the basic variables x_n
$f_{RS}(r,s)$	Joint probability density function of $f_R(r)$ and $f_S(s)$
p_f	Probability of failure
F	Failure domain
μ	Mean
σ^2	Variance
N_H	Total number of trials where failure has occurred in MCS
Ν	Total number of trials conducted in MCS
β	Reliability index
Φ(.)	Cumulative distribution function of a variable
S	Material strength (in MPa)
Р	Operating pressure (in MPa)
D	Outer diameter of the pipe (in mm)
t	Pipe wall thickness (in mm)
Т	Number of years in service (in years)
d(T)	Depth of corrosion in at time T (in mm)
l	Axial length of corrosion defect (in mm)
CR	Corrosion rate (in mm/yr)

Symbols for Continuous-time Markov Model

- ϕ Occurrence rate of flaw
- λ Occurrence rate of a leak from a flaw state
- ω Inspection and repair rate of a flaw state