Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, dissertation, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.

A NEW ENERGY EFFICIENT ADAPTIVE HYBRID ERROR CORRECTION TECHNIQUE FOR UNDERWATER WIRELESS SENSORS NETWORKS

HASSAN, AMMAR ELYAS BABIKER HASSAN (2011) A NEW ENERGY EFFICIENT ADAPTIVE HYBRID ERROR CORRECTION TECHNIQUE FOR UNDERWATER WIRELESS SENSORS NETWORKS. PhD thesis, UNIVERSITI TEKNOLOGI PETRONAS.

[img] PDF
Download (1072Kb)

Abstract

Underwater wireless sensors networks find many applications in today's life. However underwater sensors are still relatively expensive. They suffer from short lifetime which is limited by batteries lifetime as it is difficult to recharge or even replace batteries in harsh aquatic medium. When the battery is depleted the sensor is of no use anymore. So designing energy efficient communication protocols is an important issue for underwater sensors networks. Underwater is characterized by variable channel conditions, whereas underwater sensors are mobile due to water currents leading to variable distances between sensors. This variability in channel conditions and distances between sensors leads to inefficiency in energy consumptions when using fixed type of error correction technique. In this thesis, a mathematical energy efficiency derivations for the two main error correction techniques (Automatic Repeat request (ARQ) and Forward Error Correction (FEC)) in underwater environment has been done. The results from those derivations show that one technique is more energy efficient than the other below specific distance, where as the other is more energy efficient after this distance. This specific distance is found to be unfixed and varies with the variation in channel conditions and packet size. So using fixed error correction technique for specific distance is not accurate. Simulation has been done which validate the mathematical derivations. Based on the above derivation results Adaptive Hybrid Error Correction (AHEC) technique which adaptively changes the error correction technique to the technique that gives the highest energy efficiency for the current channel conditions and distances has been proposed. The technique uses an adaptation algorithm which depends on a pre-calculated packet acceptance rate (PAR) ranges look-up table, current PAR, packet length and current error correction technique used. AHEC viii technique has been found to have better energy saving compared with the techniques that depend on pure ARQ or FEC only. This saving ranges from 10 to 70 % in energy saving in ARQ case , and 7 to 10 % in energy saving in FEC case depending on current channel conditions and distance .It has also been compared with the technique that uses variable power supply in adaptation (Adaptive Variable Power Supply (AVPS)) and it achieves between 20 to 60 % in energy saving depending on current channel conditions and distance. It has also been compared with Adaptive Redundancy Reliable Transport Protocol (ARRTP), and it achieves between 10 to 80 % in energy saving depending on the current channel conditions and distance. The adaptation algorithm which depends on PAR has also been applied in adaptation to the ARRTP which originally depends only on inter-node distance in adaptation. PAR take both of distance and channel conditions into consideration. This technique is called PAR-based ARRTP, and the results shows better adaptation than the basic ARRTP in variable channel conditions cases. AHEC technique has also been applied with the bounded distance routing protocol to minimize the effects of variable channel conditions. Bounded distance routing protocol design depends on choosing specific number of relays between sender and receiver that minimize the total energy consumptions. This specific number of relays varies with the variation in channel conditions. The results show a deviation in number of relays from 6 when fixed error correction technique is used to only 2 when AHEC technique is used with it.

Item Type: Thesis (PhD)
Subject: UNSPECIFIED
Divisions: Sciences and Information Technology
Depositing User: Users 6 not found.
Date Deposited: 05 Jun 2012 08:12
Last Modified: 25 Jan 2017 09:41
URI: http://utpedia.utp.edu.my/id/eprint/2776

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...