

Feature Subset Selection in Intrusion Detection Using Soft

Computing Techniques

IFTIKHAR AHMAD

STATUS OF THESIS

Title of thesis:

I, ___

hereby allow my thesis to be placed at the Information Resource Center (IRC) of

Universiti Teknologi PETRONAS (UTP) with the following conditions:

1. The thesis becomes the property of UTP

2. The IRC of UTP may make copies of the thesis for academic purposes only.

3. This thesis is classified as

If this thesis is confidential, please state the reason:

The contents of the thesis will remain confidential for _______ years.

Remarks on disclosure:

 Endorsed by

________________________ ____________________

Signature of Author Signature of Supervisor

Iftikhar Ahmad Assoc. Prof. Dr. Azween Bin Abdullah

Department of Computer Department of Computer

Science, FUUAST, G-8 Information Sciences (CIS)

Islamabad, Pakistan. Universiti Teknologi PETRONAS

Date: ______________ Date: ______________

Confidential

√ Non-confidential

UNIVERSITI TEKNOLOGI PETRONAS

FEATURE SUBSET SELECTION IN INTRUSION DETECTION USING SOFT

COMPUTING TECHNIQUES

By

IFTIKHAR AHMAD

The undersigned certify that they have read, and recommend to the Postgraduate

Studies Programme for acceptance this thesis for the fullfilment of the requirements

for the degree stated.

Signature: ____________________________________

Main Supervisor: Assoc. Prof. Dr. Azween Bin Abdullah

Signature: ____________________________________

Head of Department: Dr. Mohd Fadzil Bin Hassan

Date: _____________________________________

FEATURE SUBSET SELECTION IN INTRUSION DETECTION USING SOFT

COMPUTING TECHNIQUES

by

IFTIKHAR AHMAD

A Thesis

Submitted to the Postgraduate Studies Programme

As a requirement for the degree of

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER AND INFORMATION SCIENCES

UNIVERSITI TEKNOLOGI PETRONAS

BANDAR SERI ISKANDAR

PERAK

FEBRUARY 2011

 iv

IFTIKHAR AHMAD

DECLARATION OF THESIS

Title of thesis Feature Subset Selection in Intrusion Detection Using Soft

Computing Techniques

I, ___

hereby declare that the thesis is based on my original work except for quotations and

citations, which have been duly acknowledged. I also declare that it has not been

previously or concurrently submitted for any other degree at UTP or other institutions.

 Witnessed by

________________________ ____________________

Signature of Author Signature of Supervisor

Iftikhar Ahmad Assoc. Prof. Dr. Azween Bin Abdullah

Department of Computer Department of Computer

Science, FUUAST, G-8 Information Sciences (CIS)

Islamabad, Pakistan. Universiti Teknologi PETRONAS

Date: ______________ Date: ______________

 v

To my beloved parents

 vi

ACKNOWLEDGEMENT

I am very thankful to Almighty Allah, the most beneficent, the most merciful and

the most gracious, for enhancing my courage for the completion of this work

successfully. It is matter of great honor and pleasure for me to express my ineffable

gratitude and profound indebtedness to Prof. Dr. Azween Bin Abdullah for his kind

supervision valuable suggestions and intellectual activities, inexhaustible energy to

steer forth the students. I also appreciate efforts and cooperation of management of

Universiti Teknologi PETRONAS, Malaysia that makes possible for me to conduct

the implementation of this research. I am also greatly obliged to my co-supervisor

Prof. Dr. Abdullah Sharaf Alghamdi, for his keen interest, guidance and moral

support. Also expresses my thanks to all my colleagues who helped me whenever

needed.

I am also greatly obliged to Dr. Muhammd Hussain, Dr. Mohsin Iftikhar, Dr. A.

Rahim, Dr. Anwar, and Dr. Shamim Husain for their kind research guidance and

moral support. I feel proud to have such a nice and distinguished ASER group

fellows, FUUAST colleagues, and friends, Dr. Mahmat Issa, Irshad Ahmad Sumro,

Ayaz Arshad,Imran Baig, Masood Ur Rehman, Hanif Ullah, Gul Faraz, Tazar

Hussain, Muhammad Nasir, Syed Amanullah Qadri, Aman Ul Haq and other

respected fellows for making the whole period a golden era.

I inexpressibly fall short of diction to express my humble obligation to my parents

whose hands always rise in pray for my success and because of their whole moral

support; I feel my entity at this stage. Finally, I apologize if I have happened to annoy

anybody during studies in this great institution. The errors that remain are mine alone.

 vii

ABSTRACT

Intrusions on computer network systems are major security issues these days.

Therefore, it is of utmost importance to prevent such intrusions. The prevention of

such intrusions is entirely dependent on their detection that is a main part of any

security tool such as Intrusion Detection System (IDS), Intrusion Prevention System

(IPS), Adaptive Security Alliance (ASA), checkpoints and firewalls. Therefore,

accurate detection of network attack is imperative. A variety of intrusion detection

approaches are available but the main problem is their performance, which can be

enhanced by increasing the detection rates and reducing false positives. Such

weaknesses of the existing techniques have motivated the research presented in this

thesis.

One of the weaknesses of the existing intrusion detection approaches is the usage

of a raw dataset for classification but the classifier may get confused due to

redundancy and hence may not classify correctly. To overcome this issue, Principal

Component Analysis (PCA) has been employed to transform raw features into

principal features space and select the features based on their sensitivity. The

sensitivity is determined by the values of eigenvalues. The recent approaches use

PCA to project features space to principal feature space and select features

corresponding to the highest eigenvalues, but the features corresponding to the

highest eigenvalues may not have the optimal sensitivity for the classifier due to

ignoring many sensitive features. Instead of using traditional approach of selecting

features with the highest eigenvalues such as PCA, this research applied a Genetic

Algorithm (GA) to search the principal feature space that offers a subset of features

with optimal sensitivity and the highest discriminatory power.

Based on the selected features, the classification is performed. The Support

Vector Machine (SVM) and Multilayer Perceptron (MLP) are used for classification

purpose due to their proven ability in classification. This research work uses the

Knowledge Discovery and Data mining (KDD) cup dataset, which is considered

 viii

benchmark for evaluating security detection mechanisms. The performance of this

approach was analyzed and compared with existing approaches. The results show that

proposed method provides an optimal intrusion detection mechanism that outperforms

the existing approaches and has the capability to minimize the number of features and

maximize the detection rates.

 ix

ABSTRAK

Pencerobohan ke atas sistem rangkaian komputer merupakan isu keselamatan yang

utama dewasa ini. Maka, adalah sangat penting untuk menghalang daripada

pencerobohan ini. Langkah-langkah pencegahan ini bergantung sepenuhnya kepada

sistem pengesanan di mana ia merupakan bahagian terpenting kepada alat

keselamatan seperti Intrusion Detection System (IDS), Intrusion Prevention System

(IPS), Adaptive Security Alliance (ASA), checkpoints dan firewalls. Justeru dengan

itu, pengesanan yang tepat daripada ancaman rangkaian perlu diberi perhatian.

Terdapat pelbagai kaedah pengesanan pencerobohan tetapi masalah utama ialah

prestasi, di mana ia perlu ditingkatkan dengan meningkatkan kadar pengesanan dan

mengurangkan ketidaktepatan. Kelemahan teknik yang sedia ada ini telah memberi

motivasi kepada kajian yang dipersembahkan dalam tesis ini.

Salah satu kelemahan kaedah pengesanan pencerobohan sedia ada adalah

penggunaan set data mentah untuk pengkelasan tetapi pengelas mungkin keliru

disebabkan oleh penindanan data yang mengakibatkan pengkelasan yang tidak betul.

Untuk mengatasi masalah ini, Principle Component Analysis (PCA) telah digunakan

untuk mengubah ciri-ciri mentah kepada ruang ciri-ciri utama dan memilih ciri-ciri

berdasarkan kepada kepekaan mereka. Kepekaan ditentukan dengan eigenvalues.

Kaedah terkini dengan menggunakan PCA untuk menghasilkan ciri-ciri ruang kepada

ruang ciri-ciri utama dan memilih ciri-ciri bergantung kepada eigenvalues yang

tertinggi, namun ciri-ciri ini mungkin tidak memiliki kepekaan yang optimum untuk

pengkelasan disebabkan oleh banyak cirri-ciri yang sensitif. Kajian ini tidak

menggunakan kaedah traditional dalam memilih ciri-ciri dengan menggunakan

eigenvalues seperti PCA, sebaliknya kajian ini menggunakan satu Generic Algorithm

(GA) untuk mencari ruang ciri-ciri utama yang menawarkan satu bahagian ciri-ciri

dengan sensitiviti optimum dan kuasa diskriminasi yang tertinggi.

Berdasarkan kepada ciri-ciri pilihan, pengkelasan dilaksanakan. Support Vector

Machine (SVM) dan Multiplayer Perceptron (MLP) telah digunakan untuk tujuan

 x

pengkelasan kerana bukti keupayaan mereka dalam pengkelasan. Kerja kajian ini

menggunakan Knowledge Discovery and Data Mining (KDD) set data cawan, dimana

ia dianggap sebagai batu pengukur untuk menilai mekanisma pengesanan

keselamatan. Prestasi kaedah ini telah dianalisa dan dibandingkan dengan kaedah-

kaedah yang sedia ada. Keputusan menunjukan kaedah yang dibentangkan

menghasilkan mekanisma pengesanan pencerobohan yang optima dan mengatasi

kaedah-kaedah yang sedia ada dan mempunyai keupayaan untuk mengurangkan

jumlah cirri-ciri dan memaksimakan kadar pengesanan.

.

 xi

In compliance with the terms of the Copyright Act 1987 and the IP Policy of the

university, the copyright of this thesis has been reassigned by the author to the

legal entity of the university,

Institute of Technology PETRONAS Sdn Bhd.

Due acknowledgement shall always be made of the use of any material

contained in, or derived from, this thesis.

 © Iftikhar Ahmad, 2011

Institute of Technology PETRONAS Sdn Bhd

All rights reserved.

 xii

TABLE OF CONTENTS

STATUS OF THESIS…………………………………………………………..……...i

APPROVAL PAGE……………………………………………………………..….....ii

TITLE PAGE………………………………………………………………................iii

DECLARATION OF THESIS ... iv

ACKNOWLEDGEMENT ... vi

ABSTRACT .. vii

ABSTRAK ... ix

TABLE OF CONTENTS ... xi

LIST OF FIGURES ... xii

LIST OF TABLES .. xv

LIST OF ABBREVIATIONS ... xx

CHAPTER 1: INTRODUCTION ... 1

1.1 Research Motivations .. 1

1.2 Problems in Intrusion Detection ... 2

1.3 Research Objectives .. 2

1.4 Research Questions ... 3

1.5 Research Methodology ... 3

1.5.1 Selection of Dataset for Experiments ... 4

1.5.2 Pre-processing of the Dataset ... 4

1.5.3 Classification Approach ... 5

1.5.4 Training the System .. 5

1.5.5 Testing the System .. 5

1.6 Research Activities ... 6

1.7 Research Contributions ... 7

1.8 Organization of the Thesis .. 7

 xiii

CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 10

2.1 Introduction ... 10

2.2 Intrusion Detection Systems .. 10

2.3 IDS Functional Components ... 11

2.3.1 Information Sources .. 12

2.3.3 Response Component .. 12

2.4 Classification of Intrusion Detection Systems .. 12

2.4.1 Host-based IDS ... 13

2.4.2 Network-based IDS ... 14

2.5 Characteristics of Intrusion Detection Systems .. 15

2.6 Foundations of an Intrusion Detection System ... 16

2.6.1 Metrics .. 16

2.6.2 Models ... 16

2.6.3 Profiles .. 17

2.7 Analysis Techniques for Intrusion Detection .. 18

2.7.1 Statistical Analysis .. 18

2.7.2 Rule Based System ... 18

2.7.3 Expert Systems .. 19

2.7.4 Pattern Recognition ... 19

2.7.5 Network Monitoring ... 19

2.8 Approaches to Intrusion Detection .. 20

2.8.1 Anomaly Detection ... 20

2.8.2 Misuse Detection .. 21

2.8.3 Combined Anomaly and Misuse Detection .. 22

2.9 Attack Dataset ... 22

2.9.1 Denial of Service (DOS) Attacks .. 27

2.9.2 Probing Attacks ... 28

2.9.3 Remote to Local (R2L) Attacks .. 29

2.9. 4 User to Root (U2R) Attacks ... 30

2.9.5 Other Attacks .. 31

2.10 Soft Computing ... 31

2.10.1 Unique Property of Soft Computing ... 32

2.10.2 Applications of Soft Computing ... 32

 xiv

2.10.3 Future of Soft Computing ... 32

2.11 Overview of Soft Computing Techniques .. 33

2.11.1 Neural Networks (NN) ... 33

2.11.2 Support Vector Machine (SVM) .. 42

2.11.3 Genetic Algorithm (GA) ... 52

2.12 Principal Component Analysis (PCA) .. 60

2.13 Literature Review .. 63

2.14 A Systematic Review of Related Work .. 79

2.15 Issues in Existing Intrusion Detection Approaches 83

2.16 Summary ... 84

CHAPTER 3: METHODOLOGY .. 85

3.1 Introduction ... 85

3.2. Selection of Dataset for Training and Testing ... 86

3.2.1 Real Traffic ... 86

3.2.2 Sanitized Traffic ... 86

3.2.3 Simulated Traffic .. 87

3.3 Pre-processing of Dataset ... 88

3.3.1 Feature Transformation .. 90

3.3.2 Feature Subset Selection ... 94

3.4 Classification Approach .. 106

3.5 Training the System .. 108

3.6 Testing the System .. 113

3.6.1 Verification Step ... 114

3.6.2 Generalization Step ... 114

3.7 Summary .. 115

CHAPTER 4: SYSTEM DESIGN AND ARCHITECTURE 116

4.1 Introduction ... 116

4.2 Proposed Model .. 116

4.2.1 Dataset used for Experiments ... 117

4.2.2 Dataset Pre-processing for Experiments ... 117

4.2.3 Classification Architectures .. 119

 xv

4.2.4 Implementation ... 133

4.2.5 Training and Testing of the System .. 136

4.2.6 Results Comparison .. 142

4.3 Summary ... 142

CHAPTER 5: RESULTS AND DISCUSSION .. 143

5.1 Introduction ... 143

5.2 Experimental Results ... 143

5.2.1 MLP Experimental Results ... 144

5.2.2 SVM Experimental Results ... 153

5.2.3 Comparison between MLP and SVM ... 161

5.2.4 Comparative analysis of applied approach with other approaches 162

5.3 Research Contributions ... 177

5.4 Summary ... 178

CHAPTER 6: CONCLUSION AND FUTURE WORK ... 179

6.1 Introduction ... 179

6.2 Conclusion ... 179

6.3 Achievements .. 180

6.4 Limitations and Future Work .. 181

REFERENCES .. 182

APPENDIX A ... 188

PUBLICATIONS .. 188

APPENDIX B .. 190

DEFINATION OF TERMINOLOGIES ... 190

 xvi

LIST OF FIGURES

Figure 1.1 Methodology phases .. 4

Figure 1.2 Research activities ... 6

Figure 2.1 Functional components of IDS .. 12

Figure 2.2 Structure of biological neuron ... 34

Figure 2.3 Structure of artificial neuron .. 35

Figure 2.4 Feed -forward ANN ... 36

Figure 2.5 Feedback ANN .. 37

Figure 2.6 Hyper planes for classification of data ... 43

Figure 2.7 Linear SVM ... 44

Figure 2.8 Representation of hyper planes .. 45

Figure 2.9 Representation of Support Vectors .. 46

Figure 2.10 Soft margin classification .. 48

Figure 2.11 Use of kernels .. 49

Figure 2.12 Feature space representation .. 49

Figure 2.13 Roulette wheel ... 55

Figure 2.14 Graph before and after roulette wheel selection .. 56

Figure 2.15 Comparative analysis of intrusion detection approaches 75

Figure 2.16 Comparative analysis of NN intrusion detection approaches 76

Figure 2.17 Comparative analysis of supervised neural networks 77

Figure 2.18 Architecture of hybrid learning for NIDS ... 78

Figure 3.1 Methodology phases .. 85

Figure 3.2 PCA algorithm flow .. 91

Figure 3.3 Algorithm for Principal Component Analysis ... 92

Figure 3.4 Feature subset selection based on GA+SVM .. 95

Figure 3.5 Feature subset selection based on GA+MLP .. 95

 xvii

Figure 3.6 Genetic algorithm flow ... 96

Figure 3.7 Genetic algorithm ... 96

Figure 3.8 Behavior of MSE for training and test datasets .. 111

Figure 3.9 Cross validation vs. training dataset ... 112

Figure 4.1 Block diagram of proposed model .. 117

Figure 4.2 MLP architecture ... 120

Figure 4.3 Activation function of Tanh .. 121

Figure 4.4 Global and local minimum in error surface .. 123

Figure 4.5 Backpropagation Algorithm .. 125

Figure 4.6 SVM applied for intrusion analysis .. 131

Figure 4.7 Kernel Adatron Algorithm .. 132

Figure 4.8 MLP implemented architecture .. 133

Figure 4.9 SVM implemented architecture ... 135

Figure 5.1 Criteria hierarchy .. 163

Figure 5.2 MLPGA10 vs. MLPGA12 (criteria) ... 164

Figure 5.3 MLPGA10 vs. MLPGA12 (sub-criteria) .. 165

Figure 5.4 MLPGA10 vs. MLP-PCA22 (criteria) .. 166

Figure 5.5 MLPGA10 vs. MLP-PCA22 (sub-criteria) ... 166

Figure 5.6 MLPGA10 vs. MLPTF38 (criteria) .. 167

Figure 5.7 MLPGA10 vs. MLP-org-38 (criteria) ... 168

Figure 5.8 MLPGA10 vs. MLP-TF38 (sub-criteria) .. 168

Figure 5.9 MLPGA10 vs. MLP-org-38 (sub-criteria) .. 169

Figure 5.10 MLP Overall performance for intrusion detection 170

Figure 5.11 SVMGA10 vs. SVMGA12 (criteria) .. 171

Figure 5.12 SVMGA10 vs. SVMGA12 (sub-criteria) ... 172

Figure 5.13 SVMGA10 vs. SVMPCA22 (criteria) .. 172

Figure 5.14 SVMGA10 vs. SVMPCA22 (sub-criteria) ... 173

Figure 5.15 SVMGA10 vs. SVMTF38 (criteria) ... 175

Figure 5.16 SVMGA10 vs. SVM-TF38 (sub-criteria) ... 175

Figure 5.17 SVMGA10 vs. ML-org-38 (criteria) ... 176

 xviii

Figure 5.18 SVMGA10 vs. SVM-org-38 (sub-criteria) .. 176

Figure 5.19 SVM Overall performance for intrusion detection 177

 xix

LIST OF TABLES

Table 2.1 Features of KDD cup dataset .. 23

Table 2.2 Connection-based feature ... 25

Table 2.3 Content-based features ... 25

Table 2.4 Time-based features ... 26

Table 2.5 A DOS attack and its normal pattern .. 28

Table 2.6 A Probing attack and its normal pattern ... 29

Table 2.7 A R2L attack and its normal pattern .. 30

Table 2.8 A U2R attack and its normal pattern .. 30

Table 2.9 A sample of another attack and its normal pattern 31

Table 2.10 Systematic review of related work ... 79

Table 3.1 Feature set of a raw dataset .. 89

Table 3.2 Feature set after discarding symbolic features ... 89

Table 3.3 Feature set from PCA space ... 93

Table 3.4 A sample of five chromosomes (CHR) .. 98

Table 3.5 Fitness function .. 99

Table 3.6 Selection method .. 101

Table 3.7 Parameters used for genetic feature subset selection 103

Table 3.8 GA features subset selection based on MLP and SVM 104

Table 3.9 A sample of final subset of features for ten records 106

Table 3.10 A confusion matrix ... 113

Table 3.11 Statistics of dataset used in experiments .. 114

Table 4.1 Components of MLP architecture .. 133

Table 4.2 Components of SVM architecture .. 135

Table 4.3 MLP tuning parameters during training ... 137

Table 4.4 SVM parameters during training .. 138

 xx

Table 4.5 MLP parameters during testing ... 140

Table 4.6 SVM parameters during Testing ... 141

Table 5.1 System specification for experiments ... 144

Table 5.2 MLP-org-38: Sensitivity analysis of training dataset 145

Table 5.3 MLP-org-38: Sensitivity analysis of cross-validation dataset 145

Table 5.4 MLP-org-38: Sensitivity analysis of testing dataset 145

Table 5.5 MLP-org-38: Overall performance of testing phase 145

Table 5.6 MLP-org-38: Overall performance of verification phase 146

Table 5.7 MLP-TF38: Sensitivity analysis of training dataset 146

Table 5.8 MLP-TF38: Sensitivity analysis of cross-validation dataset 146

Table 5.9 MLP-TF38: Sensitivity analysis of testing dataset 147

Table 5.10 MLP-TF38: Overall performance of testing phase 147

Table 5.11 MLP-TF38: Overall performance of verification phase 147

Table 5.12 MLP-PCA22: Sensitivity analysis of training dataset 148

Table 5.13 MLP-PCA22: Sensitivity analysis of cross-validation dataset 148

Table 5.14 MLP-PCA22: Sensitivity analysis of testing dataset 148

Table 5.15 MLP-PCA22: Overall performance of testing phase 149

Table 5.16 MLP-PCA22: Overall performance of verification phase 149

Table 5.17 MLP-GA12: Sensitivity analysis of training dataset 150

Table 5.18 MLP-GA12: Sensitivity analysis of cross-validation dataset 150

Table 5.19 MLP-GA12:Sensitivity analysis of testing dataset 150

Table 5.20 MLP-GA12: Overall performance of testing phase 150

Table 5.21 MLP-GA12: Overall performance of verification phase 151

Table 5.22 MLP-GA10: Sensitivity analysis of training dataset 151

Table 5.23 MLP-GA10: Sensitivity analysis of cross-validation dataset 152

Table 5.24 MLP-GA10: Sensitivity analysis of testing dataset 152

Table 5.25 MLP-GA10: Overall performance of testing phase 152

Table 5.26 MLP-GA10: Overall performance of verification phase 153

Table 5.27 SVM-org-38: Sensitivity analysis of training dataset 153

Table 5.28 SVM-org-38: Sensitivity analysis of cross-validation dataset 154

Table 5.29 SVM-org-38: Sensitivity analysis of testing dataset 154

Table 5.30 SVM-org-38: Overall performance of testing phase 154

 xxi

Table 5.31 SVM-org-38: Overall performance of verification phase 154

Table 5.32 SVM-TF38: Sensitivity analysis of training dataset 155

Table 5.33 SVM-TF38: Sensitivity analysis of cross-validation dataset 155

Table 5.34 SVM-TF38: Sensitivity analysis of testing dataset 155

Table 5.35 SVM-TF38: Overall performance of testing phase 155

Table 5.36 SVM-TF38: Overall performance of verification phase 156

Table 5.37 SVM-PCA-22: Sensitivity analysis of training dataset 156

Table 5.38 SVM-PCA-22: Sensitivity analysis of cross-validation dataset 157

Table 5.39 SVM-PCA-22: Sensitivity analysis of testing dataset 157

Table 5.40 SVM-PCA-22: Overall performance of testing phase 157

Table 5.41 SVM-PCA-22: Overall performance of verification phase 158

Table 5.42 SVM-GA12: Sensitivity analysis of training dataset 158

Table 5.43 SVM-GA12: Sensitivity analysis of cross-validation dataset 158

Table 5.44 SVM-GA12: Sensitivity analysis of testing dataset 158

Table 5.45 SVM-GA12: Overall performance of testing phase 159

Table 5.46 SVM-GA12: Overall performance of verification phase 159

Table 5.47 SVM-GA10: Sensitivity analysis of training dataset 160

Table 5.48 SVM-GA10: Sensitivity analysis of cross-validation dataset 160

Table 5.49 SVM-GA10: Sensitivity analysis of testing dataset 160

Table 5.50 SVM-GA10: Overall performance of testing phase 160

Table 5.51 SVM-GA10: Overall performance of verification phase 161

Table 5.52 MLP performance for intrusion analysis .. 161

Table 5.53 SVM performance for intrusion analysis ... 162

 xxii

LIST OF ABBREVIATIONS

IDS Intrusion Detection System

NN Neural Network

PCA Principal Component Analysis

GA Genetic Algorithm

SVM Support Vector Machine

DOS Denial of Service Attack

R2L Remote to Local

U2R User to Root

KDD Knowledge Discovery and Data Mining

SC Soft Computing

ML Machine Learning

MLP Multilayer Perceptron

BPROP Backpropagation

SNN Supervised Neural Network

CHAPTER 1

INTRODUCTION

This chapter covers the motivation, the prevalent issues in the existing intrusion

detection approaches based on which this work is carried out, and the objectives to be

accomplished. It also describes relevant research questions, which should be

answered, the methodology adopted, and the research workflow followed. Finally, the

chapter concludes with the contributions and the organization of the thesis.

1.1 Research Motivations

The rapid development of computer networks and mostly of the Internet has created

many stability and security problems such as intrusions on computer and network

systems. Further, the dependency of companies and government agencies is

increasing on their computer networks and the significance of protecting these

systems from attack is serious because a single intrusion can cause a heavy loss or the

consistency of network becomes insecure. During recent years, number of intrusions

has dramatically increased. Therefore, it is very important to prevent such intrusions.

The hindrance of such intrusions is entirely dependent on their detection that is a key

part of any security tool such as Intrusion Detection System (IDS), Intrusion

Prevention System (IPS), Adaptive Security Alliance (ASA), checkpoints and

firewalls. Consequently, interest in network intrusion detection has increased among

the researchers (Ahmad et al. 2009), (Ahmad et al. 2008). Several intrusion detection

approaches are available but the main problem is their performance, which can be

enhanced by increasing the detection rates and reducing false alarms. Such

weaknesses of the existing techniques motivated the research presented in this

dissertation.

 2

1.2 Problems in Intrusion Detection

The accurate intrusion detection in computer and network systems has always been an

elusive aim for system administrator and security researchers. Initially, traditional

intrusion detection systems (IDSs) were developed. However, these systems have

many limitations like time consuming statistical analysis, regular updating, non-

adaptive, accuracy and flexibility. After this, intelligent IDSs (rule based, graphical

and hybrid) were introduced but they also suffered many problems such as false

positive, false negative, and performance efficiency. Recently, Neural Network (NN)

inspired by nervous system has become an interesting tool in the applications of

intrusion detection. But it still suffers from many problems; training/learning

overhead, detection rate and false alarms (Zargar and Kabiri 2010).

One of the drawbacks of the existing intrusion detection approaches is the usage

of a raw dataset for classification but the classifier may get confused due to

redundancy and hence may not classify correctly. To handle this problem, Principal

Component Analysis (PCA) has been applied to change raw features into principal

features space and select the features based on their sensitivity (Liu and Yi 2006). The

sensitivity is measured by the values of eigenvalues (Sun et al. 2004). The modern

methods use PCA to project features space to principal feature space and pick features

corresponding to the highest eigenvalues, but the features corresponding to the

highest eigenvalues may not have the finest sensitivity for the classifier due to

ignoring many sensitive features. Therefore, the selection of optimized subset of

features is another important issue for the intrusion detection system. Other problems

include the selection of dataset for training and testing, and the classifier architecture

that classifies connections into normal and intrusive.

1.3 Research Objectives

The main goal of the research is to develop an optimized intrusion detection

mechanism using soft computing techniques that provide the potential to identify

network activity in a robust way. To achieve this goal, a number of specific objectives

have been defined as follows:

 3

 Transformation of raw features set of packet into new feature space.

 Selection of optimized subset of features that has higher discriminatory

power.

 Selection of the most suitable architecture that identifies network activity

into normal and intrusive.

 Development and implementation of the proposed model for intrusion

detection.

 Train and test the develop system.

 Implement the developed system in different case studies.

 1.4 Research Questions

Based on the abovementioned issues and problems, we can derive research questions

as the following:

 Why did we move from conventional to unconventional IDS?

 Why did we use soft computing techniques?

 What are the necessary components (software, services) that are desirable

to support the architectural framework?

 What are the specifications of the ideal network intrusion detection system

(NIDS) that will ensure best performance?

 How can we map soft computing techniques to NIDS?

 Will the adaptation of this approach into NIDS improve NIDS in some

ways or address some issues in NIDS?

 How can we implement /simulate my work?

1.5 Research Methodology

The overall research is divided into several phases, each one is concerned with the

specific goals to finally fulfill the main objective. These phases are described as

follows:

 4

Figure 1.1 Methodology phases

1.5.1 Selection of Dataset for Experiments

The capability of the intrusion detection mechanism depends on the dataset. If the

training data is more accurate then performance of trained system will be improved.

So, the collecting of data for training and testing is a critical dilemma (Liu et al.

2007). Therefore, different issues will be discussed in obtaining or selecting dataset

for experimental purpose in this research work. This phase of methodology will

discuss which dataset is best and why?

1.5.2 Pre-processing of the Dataset

The selected dataset KDD cup consists of 41 raw features, which fall into different

categories such as basic features and derived features (Liu et al. 2007). The basic

features describe single network connection.

The derived features can be divided into content-based features and traffic based

features (Ahmad et al. in 2008). The content-based features are derived using domain

 5

knowledge and the traffic-based features are obtained by studying the sequential

patterns between the connection records as well as the correlation between basic

features. The second step is the pre-processing of data so that it can be given as input

to my designed system. In this phase, this research work will apply PCA for features

transformation and GA for the selection of optimal feature set for this proposed

approach.

1.5.3 Classification Approach

After features selection, the next phase is determining the approach for classification.

This is also another problem. For this purpose, this research work used the Support

Vector Machine (SVM) and Multilayer Perceptron (MLP) for classification purpose

due to their proven ability in classification (Sun et al. 2004) and (Pervez et al. 2007).

Both approaches are applied and tested in different scenarios to compare their

performance.

1.5.4 Training the System

The next phase is training the system. During training, both input patterns and desired

outputs related to each input pattern are available. Further, the dataset is divided into

three parts; (i) cross validation dataset, (ii) test dataset and (iii) training dataset so that

better performance of the developed system may be achieved (Ahmad et al. 2007).

Aim of the training is to minimize the error output produced by the system in

comparison to the desired output. In order to achieve this goal, weights are updated by

carrying out certain steps known as training.

1.5.5 Testing the System

After training, the weights of the system are frozen and performance of the system is

evaluated. Testing the system involves two steps, which are verification step and

generalization step. In verification step, system is tested against the data which is used

in training. Aim of the verification step is to test how well trained system learned the

 6

training patterns in the training dataset. In generalization step, testing is conducted

with data which is not used in training. Aim of the generalization step is to measure

generalization ability of the trained network (Principe et al. 2000). After training, the

system only involves computation of the feed forward phase. For this purpose, this

method used a production dataset that has input data but no desired data.

1.6 Research Activities

To achieve the goals, the research activities have been organized as follows:

Figure 1.2 Research activities

 7

1.7 Research Contributions

The research has significant positive impact on the performance of network intrusion

detection systems, including addressing new open research issues. The main

achievement is the development of intrusion detection mechanism that outperforms

the existing approaches and has the capability to minimize the number of features and

maximize the detection rates.

The major impact of the research span over the following areas:

 Performance optimization such as improving detection rate and reducing

false alarms; false positive and false negative

 Minimizing training overheads and number of features for the intrusion

detection approaches

 Prototype of the architectural framework

 Contribution to the existing intrusion detection technologies, knowledge

and applications

 Help and guidance for the security implementers in the area of intrusion

detection

Therefore, in this research work, an optimized intrusion detection mechanism

using soft computing techniques; PCA, GA, SVM and MLP is proposed and

implemented. This work uses the KDD cup dataset, which is considered a benchmark

for evaluating security detection mechanisms. The performance of this approach was

analyzed and compared with previous approaches. The outcomes demonstrate that

proposed method provides an optimal intrusion detection mechanism that outperforms

the existing approaches and has the capability to reduce the number of features and

increase the detection rates.

1.8 Organization of the Thesis

After describing the motivation, objectives, research questions, methodology,

research workflow and contributions of the work, the remainder of the thesis is

organized as follows:

 8

Chapter 2 introduces the basic ideas about intrusion detection system, its

components, classification, and foundations and describes the related approaches that

are mainly used in designing intrusion detection systems. The chapter thereafter

describes the KDD cup dataset that is considered standard in the evaluation of

intrusion detection mechanism. Then, the chapter highlights the issues in existing

intrusion detection studies and reasoning of using KDD cup dataset. Next, the chapter

discusses the background of soft computing techniques, its unique property, and

future of soft computing. Then, it explains an overview of applied techniques in my

research. The chapter then describes the background of neural networks, Support

Vector Machine and Genetic Algorithm that are basic soft computing techniques. The

chapter then discusses Principal Component Analysis that is applied for features

transformation and organization in this research. Further, the chapter discusses the

literature consulted in order to understand and investigate the research problem in the

field of network intrusion detection. The chapter then summarizes and evaluates

relevant research, and discusses the relationships between different works and

describes how it relates to this research. The chapter finally discusses the issues in

existing literatures and directs towards methodology that is adopted in this research

work.

Chapter 3 explains the set of methods, techniques, and tools used in this research.

The chapter, thereafter, demonstrates the workflow process of designing the system

and architecture for network intrusion detection. Then, it describes different phases of

adopted methodology like selection of dataset, pre-processing of dataset, determine

the architecture, training and testing the designed system. Finally, the chapter

provides directions towards implementation of the proposed model.

Chapter 4 describes the proposed model with its basic architecture in block

diagram, and then details of each part or block of its main architecture. Then, it

explains features description of the dataset used for experiments, feature

transformation process using PCA and optimal features subset selection using GA.

After this, the chapter describes the details of classification architectures with basic

algorithms and mathematical foundation of multilayered perceptron model (MLP) and

Support Vector Machine (SVM).

 9

 Then, the chapter explains system implementation, and the basic parameters used

during training and testing. Finally, the chapter concludes with the contributions, and

the chapter summary

Chapter 5 presents the experimental results obtained by the developed system.

After that, it discusses the performance evaluation of the system by examining the

number of false positives and false negatives that they generated during testing. Then,

it discusses the results and their comparison with existing published results.

Chapter 6 concludes the work by summarizing the main contributions and

findings of the study, the limitations of the study and some possibilities for future

research and development.

The appendix „A‟ provides a list of publications during this research work and

appendix „B‟ describes some terminologies used in this thesis.

CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 Introduction

This chapter describes basic background of intrusion detection systems, their

functional components, classification and characteristics in the following Sequence:

(i) Staging of an overview of IDS foundations and analysis techniques to intrusion

detection. (ii) Description of intrusion detection approaches such as anomaly, misuse

detection and combined or hybrid approach. (iii) Description of attack dataset: KDD

cup dataset, a standard dataset for evaluating security detection mechanisms that is

used to train and test the proposed system. (iv) An overview of the soft computing, its

properties, its applications in a variety of fields and its future usage. Then, the chapter

describe technical background of soft computing techniques: Neural Networks (NN),

Support Vector Machine (SVM), and Genetic Algorithm (GA) utilized in this

research work. Later, the chapter describes the Principal Component Analysis (PCA)

and its different steps towards feature transformation into PCA space. Further, the

chapter presents the literature review to intrusion detection. Followed by, the

presentation of the related study to intrusion detection using SVM, MLP, PCA and

GA. Finally, the chapter describes a systematic review of related work and issues in

the existing intrusion detection approaches.

2.2 Intrusion Detection Systems

This section describes some basic and fundamental concepts to Intrusion Detection

Systems (IDSs). First work in the field of intrusion detection was performed by

Anderson in the early 1980s. Anderson defines an intrusion as any unauthorized

attempt to access, manipulate, modify, or destroy information, or to render a system

 11

unreliable or unusable (Anderson 1980). Intrusions are caused by accessing the

systems from Internet, by attackers, by authorized users of the systems who attempt

to gain additional privileges for which they are not authorized, and authorized users

who misuse the privileges given to them. IDSs are software or hardware products that

monitor the system in question and try to detect any attack against the system. A truly

secure system is still a dream, as there are always bugs in application programs, and

also communication protocols always have vulnerabilities that can be exploited by

attackers. In addition, passwords can be cracked, users can lose their passwords, and

entire crypto system can be broken. As a result, security mechanisms (e.g. firewalls),

which are deployed to protect the information system, may not be able to prevent all

security breaches. IDSs are usually deployed along with the other security

mechanisms, such as access control, authentication and firewalls, as a last defence

line to improve security of the information system (Amini and Jalili 2005). The main

goal of an IDS is to provide high rates of attack detection with very small rates of

false alarms (Pervez et al. 2007). There are two important types of errors in intrusion

detection:

False positives: False positives are the errors occurring when IDS flags a normal

activity as an attack. Simply, false positives are false alarms.

False negatives: False negatives are the errors occurring when IDS fails to detect an

ongoing attack.

2.3 IDS Functional Components

This section explains functional components of IDS. An IDS consists of three

functional components as shown in Figure 2.1 (Bace and Mell 2001): (1) Information

source that provides a stream or flow of event records, (2) Analysis engine that

analyzes and classifies intrusions; and (3) Response component that generates

reactions based on the output of the analysis engine.

 12

Figure 2.1 Functional components of IDS

2.3.1 Information Sources

The first component of an intrusion detection system is the data source, where input

information, which will be analyzed, is collected. Input information can be audit

trails, system logs or network packets.

2.3.2 IDS Analysis

Second component of IDS is the analysis engine, which analyse data from

information source and classify it into normal or intrusive. The IDS analysis engines

are classified into two categories such as misuse detection and anomaly detection.

2.3.3 Response Component

Response component is the third component of an IDS, where reaction to a detected

attack is given. According to the response types, IDS can be either active or passive.

An IDS is said to be active, if it actively reacts to the attack by taking corrective

(closing holes) or proactive actions (logging out possible attackers, closing down

services). If an IDS just generates alarms, it is said to be passive. Passive IDS

responses provide information to system administrator who takes necessary actions

based on that information.

2.4 Classification of Intrusion Detection Systems

This section describes two classes of IDS based on the type of the data source.

According to the data sources used, IDSs can be classified into two categories; host-

based IDSs and network-based IDSs (Jonsson et al. 2004).

 13

2.4.1 Host-based IDS

Host-based IDSs observe activities within an individual computer system and work

on information obtained from these activities (Ahmad et al. 2007). As target

environment was mainframe environment, and all users were local to the system,

initial researches in the field of IDSs were performed on the host-based IDSs. Host-

based IDSs normally use two information sources, operating system audit trails, and

system logs. Operating system trails are generally generated at the kernel level; hence

they are more detailed and better protected than system logs. However, system logs

are simpler and smaller than operating system trails; consequently, they can be

understood more easily. Further, some benefits and drawbacks of this class of IDS are

listed here.

Benefits

 As host-based IDSs monitor local activities, therefore they can detect attack

that can not be detected by network-based IDSs.

 Information sources of the host-based IDSs are generally generated on a

plaintext data, therefore they can successfully operate in an environment

where network traffic is encrypted.

 Performance of the host-based IDSs is not affected by the topology of the

network they operate in. They successfully operate on switched networks.

 Drawbacks

 As host-based IDSs should be placed on every monitored host, it is harder to

manage and configure host-based IDSs.

 Host-based IDSs run on the host targeted by attacks, and it may be disabled by

a successful attack. For instance, certain denial-of-service attacks.

 As host-based IDSs can only see network packets received by its host,

detection rate of host-based IDSs is poor in the case attacks are targeted to the

entire network.

 14

 Amount of information used by network-based IDSs can be huge; hence host–

based IDSs are unable to generate good results.

 IDS may need extra storage on the system on which it is running.

 Host-based IDSs share the computing resources (e.g. CPU, main memory)

with the monitored host. Consequently, they cost additional operational

overheads and may affect the performance of the hosting computer.

2.4.2 Network-based IDS

As computing environments shifted from mainframe to the networks of workstations,

studies on intrusion detection started to focus on attacks targeted to the network.

Network attacks cannot be detected by examining operating system trails or system

logs, or at least detection of network attacks by examining data sources on the host

computer is not an easy task. As a result, network-based IDSs were developed, which

capture network packets and search attacks in these network packets. Network based

IDSs monitor activities on a network segment or switch, so that they can protect hosts

connected to the monitored segment (Amini et al. 2006). Network-based IDSs

generally consist of sensors which are placed at various points (such as at LAN and

WAN backbones) in the network. Sensors collect network packets and feed them to

the network-based IDS that classify them into normal or intrusive class (Cannady

1998). Further, some benefits and drawbacks of network based IDS are listed here.

Benefits

 A huge network can be monitored easily by using a few numbers of sensors, if

sensors are placed at the critical parts of the network (as at hubs, routers or

probes).

 Network-based IDSs are generally passive devices and do not affect the

normal operation of the network.

 Network-based IDSs can be very secure against attacks, and even they can be

made invisible to the attackers.

 15

Drawbacks

 If monitored network is large or network traffic is high, it may be difficult to

process all network packets.

 Problems arise when network-based IDSs are placed on a switched network.

Most of the switches do not provide universal monitoring ports and this fact

limits the monitoring ability of network-based IDS.

 Network-based IDSs can not analyze encrypted traffic. This is due to the fact

that, the sensors analyze packet headers to determine source and destination

addresses and type of data being transmitted, and analyze the packet payload

to discover information in the data being transmitted.

 Distorted network packets may cause a network-based IDS to crash.

2.5 Characteristics of Intrusion Detection Systems

This section listed some characteristics of an ideal IDS (Ahmad et al. 2008).

 Intrusion detection systems should be automatic and reliable to monitor its

front end and back end running programs.

 System should be fault tolerant in such a way that system crash should not

affect its knowledge base where attack pattern are being stored for detecting

intruders activities.

 System must be able to monitor itself to ensure subversion resistant.

 These systems should have less computational overhead to avoid degradation

in system performance.

 System should have capability to detect deviation from normal behaviour.

 Its defence mechanism should be adaptable to new patterns as use patterns of

every system are different.

 As system behaviour changes due to the addition of new applications in the

system. Therefore, the IDS should have potential to adapt these changes and

be able to detect any intrusion.

 Last but not the least its architecture should be like that intruders could not be

successful to modify it for their desired activities.

 16

2.6 Foundations of an Intrusion Detection System

This section describe the basic elements of IDS such as; metrics, models and profiles

(Cannady 1998) and (Pervez et al. 2007). These elements are described here briefly.

2.6.1 Metrics

Any statistical intrusion detection methodology needs the use of a set of metrics.

These metrics characterize the utilization of a variety of system resources (i.e., CPU

usage, number of files accessed, number of login attempts). These metrics are usually

one of three different types. The first metric, event counters identify the occurrences

of a specific action over a period of time. These metrics may include the number of

login attempts, the number of times that a file has been accessed, or a measure of the

number of incorrect passwords that are entered. The second metric, time intervals

identify the time interval between two related events. Each time interval compares the

delay in occurrence of the same or similar event .An example of a time interval metric

is the periods of time between a user‟s logins. The third metric is resource

measurement that includes the expenditure of CPU time, number of records written to

a database, or the number of files transmitted over the network. Keystroke dynamics

is another method of quantifying a user's activities, which offers an effective measure

of user identification. The concept involves the development of an electronic

signature of a user based on their individual typing characteristics. These

characteristics include; (i) typing speed, (ii) intervals in typing, (iii) number of errors,

and (iv) the user's typing rhythm. These characteristics may be verified on login and

monitored throughout a session. Complete intrusion detection mechanisms have been

developed exclusively around the use of keystroke dynamics techniques.

2.6.2 Models

The selected metrics are then used in statistical models, which attempt to identify

deviations from an established norm. The models, which have been most frequently

used, include the operational model, average and standard deviation model, the

multivaried model, the markovian model, and the time series model. The operational

 17

model makes the assumption that an anomaly can be identified through a comparison

of an observation with a predefined limit. This model is frequently used in the

situations where a specific number of events, (i.e., failed logins), is a direct indication

of a possible attack. The average and standard deviation model is based on the

traditional statistical determination of the commonness of an observation based on its

position relative to a specific confidence range. This model offers the advantage that

it “learns” a user‟s behavior over time instead of requiring prior knowledge of the

user‟s activities. As a result, the model can establish a foundation for the

identification of potential anomalies for each user and identify potential problems

from users who consistently behave in a manner, which would indicate normally the

misuse of system resources. This is particularly useful in identifying what is normal

for an individual user without relying on a comparison with other users. The

multivaried model is built upon the average and standard deviation model. The

difference between these two approaches is that the multivaried model is based on a

correlation of two or more metrics. This model permits the identification of potential

anomalies where the complexity of the situation requires the comparison of multiple

parameters. The markovian model is used with the event counter metric to determine

the normalcy of a particular event, based on the events that preceded it. The model

characterizes each observation as a specific state and utilizes a state transition matrix

to determine if the probability of the event is high (normal) based on the preceding

events. This model is particularly useful when the sequence of activities is

particularly important. The final model, the Time Series Model, attempts to identify

anomalies by reviewing the order and time interval of activities on the network. If the

probability of the occurrence of an observation is low, then the event is labeled as

abnormal. This model provides the ability to evolve over time based on the activities

of the users (Denault et al. 1994) and (Denault et al. 1994).

2.6.3 Profiles

These models are then used in the development of a variety of profiles, which attempt

to map the nonintrusive activities of the system. The profiles serve to establish a

baseline of a user‟s behavior, which can then be used for comparisons with the

current observations. Profiles usually consist of specific characteristics, such as login

 18

information, (i.e., frequency, origin, duration), program execution information, (i.e.,

frequency, CPU utilization), database access information, (i.e., tables accessed, data

manipulation functions), and file access information (i.e., types of files accessed,

created, or destroyed) (Jonsson et al. 2004).

2.7 Analysis Techniques for Intrusion Detection

This section explains analysis techniques those are fundamental components in an

intrusion detection system, which examines the captured information into normal or

intrusive class (Cannady 1998) and (Pervez et al. 2007). There are many approaches

towards intrusion detection but this section describes an overview of five common

approaches that have been used in numerous traditional intrusion detection

mechanisms.

2.7.1 Statistical Analysis

This approach involves statistical comparison of specific events based on a

predetermined set of criteria. The data was collected from the system and the

network. This collected data was tested for attack analysis by statistical models.

The models which have been used most frequently, include the operational model,

average and standard deviation model, the multivaried model, the markovian model,

and the time series model. This was much laborious and time consuming work.

2.7.2 Rule Based System

This approach relies on sets of predefined rules, which are provided by an

administrator, automatically created by the system, or both. Each rule is mapped to a

specific operation in the system. The rules serve as operational preconditions, which

are continuously checked in the audit record by the intrusion detection mechanism. If

the required conditions of a rule are satisfied by user activity, the specified operation

is executed. This approach was unable to detect novel intrusion. A frequent update of

rules is required in this approach (Lunt 1989).

 19

 2.7.3 Expert Systems

The use of expert system techniques in intrusion detection mechanisms was a

significant milestone in the development of effective intrusion detection system in

information security systems. An expert system consists of a set of rules, which

encode the knowledge of a human "expert". Unfortunately, expert systems require

frequent updates by a system administrator to remain current. The lack of

maintenance or update will degrade the security of the entire system by causing the

system's users to be misleading into believing that the system is secure, even as one

of the key components becomes increasingly futile over time (Mukherjee et al. 1994).

2.7.4 Pattern Recognition

In this approach, a series of penetration scenarios are coded into the system. Pattern

recognition possesses a distinct advantage over anomaly and misuse detection

methods in that it is capable of identifying attacks, which may occur over an extended

period of time, or by multiple attackers working in concert. This approach is effective

in reducing the need to review a potentially large amount of audit data.

2.7.5 Network Monitoring

This technique monitors network activity for indications of attacks. The greatest

advantage of network monitoring mechanisms is its independence on audit data.

Because this method does not require input from any operating system's audit trail, it

can use standard network protocols to monitor heterogeneous sets of operating

systems and hosts.

 20

2.8 Approaches to Intrusion Detection

The following are the approaches being utilized to accomplish the desirable elements

of an intrusion detection system (Fox et al. 1990). This section describe here these

approaches briefly.

2.8.1 Anomaly Detection

Anomaly detection is the general category of intrusion detection, which works by

identifying activities, which vary from established patterns for users, or groups of

users. Anomaly detection typically involves the creation of knowledge bases which

contain the profiles of the monitored activities (Khan et al. 2007). This approach has

some benefits and drawbacks those are listed below.

Benefits

 As any significant deviation from normal profile will be flagged as

anomalous, anomaly detectors can detect unknown attacks.

 Anomaly detectors do not require constant updating of rules or signatures of

novel intrusion.

 Anomaly detectors can produce information that can in turn be used to define

signatures for misuse detectors.

Drawbacks

 The high false positive rate is the main drawback of the anomaly IDSs. This is

due to the fact that, the normal profile of a system cannot be fully learned

and/or behavior of users or programs may change over time.

 In order to build normal profile of a system, system in question should be

monitored and information should be collected, which in turn will be used to

draw normal behaviour of the system. However, if the collected information

 21

contains attacks, intrusive behavior will be a part of the normal profile, and in

future, these attacks will go undetected.

 Anomaly detection approaches need extensive data sets to build profile of the

system.

2.8.2 Misuse Detection

The second general approach to intrusion detection is misuse detection. This

technique involves the comparison of a user's activities with the known behaviors of

attackers attempting to penetrate a system. Misuse detection also utilizes a knowledge

base of information (Mukherjee et al. 1994). This approach has some benefits and

drawbacks those are listed below.

Benefits

 Misuse IDSs can detect intrusion with a certain degree of certainty. Misuse

detectors are very effective in detecting attacks without giving high false

alarm rates.

 Misuse IDSs can detect all intrusions whose signatures are known.

 Misuse IDSs are easy to implement (state machine, signature analysis) and

deploy (no need to form a profile of the system).

Drawbacks

 Detection ability of misuse detectors is limited to signatures that they posses.

A new intrusion or even a variation of a known intrusion may be undetected.

So misuse IDS require regular updates of signatures in order to remain

current.

 The process of developing a new attack signature is time consuming.

 22

2.8.3 Combined Anomaly and Misuse Detection

Research has also been conducted into intrusion detection methodologies, which

combine the anomaly detection approach and the misuse detection approach. The

combined approach permits a single intrusion detection system to monitor for

indications of external and internal attacks (Pervez et al. 2007).

All current intrusion detection systems make four statements about the systems

that they are designed to protect:

 Activities taken by system users, either authorized or unauthorized, can be

monitored.

 It is possible to identify those actions, which are indications of an attack

on a system

 Information obtained from the intrusion detection system can be utilized

to enhance the overall security of the network.

 A fourth element, which is desirable from any intrusion detection

mechanism, is the ability of the system to make an analysis of an attack in

real-time.

 2.9 Attack Dataset

This section explains attack dataset that has used in this research work. The defense

advanced research projects agency (DARPA) project was prepared and executed by

the Massachusetts Institute of Technology (MIT) Lincoln Laboratory, USA (Pervez et

al. 2007), (Bankovic et al. 2009). One of the reasons for choosing this dataset is that

the dataset is standard. This will make it easy to compare the results of this work with

other similar works. Another reason is that it is difficult to get another data set, which

contains so rich a variety of attacks as the one used here.

There are 41 features, which fall into different categories such as basic features

and derived features. The basic features describe single network connections. The

derived features can be divided into content-based features and traffic based features.

 23

The content-based features are derived using domain knowledge and the traffic-based

features are obtained by studying the sequential patterns between the connection

records as well as the correlation between basic features.

In order to create the feature set, the raw tcpdump data has been pre-processed

into connection records. The basic features are directly obtained from the connection

records. The derived features fall into two groups; (i) Content-based features and (ii)

Traffic based features. Table 2.1 explains 41 features of KDD cup dataset in terms of

feature number, name of feature and type of feature. These features form a record that

represents an attack or normal activity. Table 2.2 shows connection-based features,

Table 2.3 shows content-based features and Table 2.4 shows nine time-based features

from the KDD cup dataset

Table 2.1 Features of KDD cup dataset

Feature # Name of feature Type of feature

1 DURATION CONTINUOUS

2 PROTOCOL_TYPE SYMBOLIC

3 SERVICE SYMBOLIC

4 FLAG SYMBOLIC

5 SRC_BYTES CONTINUOUS

6 DST_BYTES CONTINUOUS

7 LAND SYMBOLIC

8 WRONG_FRAGMENT CONTINUOUS

9 URGENT CONTINUOUS

10 HOT CONTINUOUS

11 NUM_FAILED_LOGINS CONTINUOUS

12 LOGGED_IN SYMBOLIC

13 NUM_COMPROMISED CONTINUOUS

14 ROOT_SHELL CONTINUOUS

15 SU_ATTEMPTED CONTINUOUS

 24

Feature # Name of feature Type of feature

16 NUM_ROOT CONTINUOUS

17 NUM_FILE_CREATIONS CONTINUOUS

18 NUM_SHELLS CONTINUOUS

19 NUM_ACCESS_FILES CONTINUOUS

20 NUM_OUTBOUND_CMDS CONTINUOUS

21 IS_HOST_LOGIN SYMBOLIC

22 IS_GUEST_LOGIN SYMBOLIC

23 COUNT CONTINUOUS

24 SRV_COUNT CONTINUOUS

25 SERROR_RATE CONTINUOUS

26 SRV_SERROR_RATE CONTINUOUS

27 RERROR_RATE CONTINUOUS

28 SRV_RERROR_RATE CONTINUOUS

29 SAME_SRV_RATE CONTINUOUS

30 DIFF_SRV_RATE CONTINUOUS

31 SRV_DIFF_HOST_RATE CONTINUOUS

32 DST_HOST_COUNT CONTINUOUS

33 DST_HOST_SRV_COUNT CONTINUOUS

34 DST_HOST_SAME_SRV_RATE CONTINUOUS

35 DST_HOST_DIFF_SRV_RATE CONTINUOUS

36 DST_HOST_SAME_SRC_PORT_RATE CONTINUOUS

37 DST_HOST_SRV_DIFF_HOST_RATE CONTINUOUS

38 DST_HOST_SERROR_RATE CONTINUOUS

39 DST_HOST_SRV_SERROR_RATE CONTINUOUS

40 DST_HOST_RERROR_RATE CONTINUOUS

41 DST_HOST_SRV_RERROR_RATE CONTINUOUS

 25

Table 2.3 Content-based features

No. Feature name Description

10 HOT Number of hot indicators

11 NUM_FAILED_LOGINS Number of failed login attempts

12 LOGGED_IN 1 if successfully logged in; 0 otherwise

13 NUM_COMPROMISED Number of compromised conditions

14 ROOT_SHELL 1 if root shell is obtained; 0 otherwise

15 SU_ATTEMPTED 1 if su root command attempted; 0 otherwise

16 NUM_ROOT Number of root accesses

17 NUM_FILE_CREATIONS Number of file creation

18 NUM_SHELLS Number of shell prompts

19 NUM_ACCESS_FILES Number of operations on access control files

20 NUM_OUTBOUND_CMDS Number of outbound commands

21 IS_HOST_LOGIN 1 if the login belongs to the host else 0

22 IS_GUEST-LOGIN 1 if the login belongs to the guest else 0

Table 2.2 Connection-based feature

No. Feature name Description

1 DURATION Length (number of seconds) of the connection

2 PROTOCOL_TYPE Type of the protocol, e.g. tcp, udp, etc.

3 SERVICE Network service on the destination

4 SRC_BYTES Number of data bytes from source to destination

5 DST_BYTES Number of data bytes from destination to source

6 FLAG Normal or error status of the connection

7
LAND 1 if connection is from/to the same host/port

8
WRONG_FRAGMENT Number of `wrong' fragments

9 URGENT Number of urgent packets

 26

Table 2.4 Time-based features

No. Feature name Description

23 COUNT
Number of connections to the same host as the current

connection in the past two seconds

Note: The following features refer to these same-host connections.

24 SERROR_RATE % of connections that have ``SYN'' errors

25 RERROR_RATE % of connections that have ``REJ'' errors

26 SAME_SRV_RATE % of connections to the same service

27 DIFF_SRV_RATE % of connections to different services

28 SRV_COUNT
number of connections to the same service as the current

connection in the past two seconds

Note: The following features refer to these same-service connections.

No. Feature name Description

29 SRV_SERROR_RATE
% of connections that have ``SYN''

errors

30 SRV_RERROR_RATE
% of connections that have ``REJ''

errors

31 SRV_DIFF_HOST_RATE % of connections to different hosts

32 DST_HOST_COUNT Number of connection to host

33 DST_HOST_SRV_COUNT Number of services requested to host

34 DST_HOST_SAME_SRV_RATE % of connection with same service

35 DST_HOST_DIFF_SRV_RATE % of connection with different services

36 DST_HOST_SAME_SRC_PORT_RATE
% of connection using the same source

port

37 DST_HOST_SRV_DIFF_HOST_RATE
% of connection with same service but

to different host

 27

No. Feature name Description

38 DST_HOST_SERROR_RATE % of connection that have SNY error

39 DST_HOST_SRV_SERROR_RATE
% of connection with same service that have

SYN error

40 DST_HOST_RERROR_RATE % of connection that have REJ errors

41 DST_HOST_SRV_RERROR_RATE
% of connection with same service that have

REJ errors

The description of these types of attacks requires some domain knowledge and

cannot be done only based on information available in the packet header. Most of

these attacks are R2L and U2R attacks. Traffic based features have been computed

automatically. They are effective for the detection of DOS and probe attacks. A list of

the computer attacks is described briefly that are considered in this research work.

2.9.1 Denial of Service (DOS) Attacks

DOS is a type of attack that aims to make an organization's services or resources

unavailable for an indefinite amount of time by flooding it with useless traffic (Kim et

al. 2005). The examples of DOS attacks are given as follows.

 Ping of Death (pod): It makes the victim host unavailable by sending it

oversized internet control message protocol (ICMP) packets as ping requests.

 Back: It is a denial of service attack against apache web servers. The attacker

sends requests containing many front slashes. The processing of which is time

consuming.

 Land: Spoofed synchronization (SYN) packet sent to the victim host resulting

in that host repeatedly synchronizing with itself.

 Smurf: A broadcast of ping requests with a spoofed sender address which

results in the victim being bombarded with a huge number of ping responses.

 Neptune: The attacker half opens a number of transmission control protocol

(TCP) connections to the victim host making it impossible for the victim host

to accept new TCP connections from other hosts.

 28

 Teardrop: Confuses the victim host by sending it overlapping internet

protocol (IP) fragments: overlapping IP fragments are incorrectly dealt with

by some older operating systems.

Each feature of KDD record is separated by semicolon. A sample of DOS attack

and its normal pattern is shown in Table 2.5.

2.9.2 Probing Attacks

Probing attack involves discovering the algorithms and parameters of the

recommender system itself (Kim et al. 2005). It may be necessary for an intruder to

acquire this knowledge through interaction with the system itself. The examples of

probing attacks are given as follows.

 Ipsweep: It probes the network to discover available services on the network.

 Portsweep: It probes a host to find available services on that host.

 Nmap: It is a complete and flexible tool for scanning a network either

randomly or sequentially.

 Satan: It is an administration tool; it gathers information about the network.

This information can be used by an attacker.

Each record of KDD consists of features that are separated by semicolon. A

sample of probing attack and its normal pattern is shown in Table 2.6

.

Table 2.5 A DOS attack and its normal pattern

Attack pattern Normal pattern

0;18;21;20;1480;0;0;1;0;0;0;0;0;0;0;0;0;0

;0;0;0;0;1;1;0.00;0.00;0.00;0.00;1.00;0.0

0;0.00;1;1;1.0;0.00; 1.00; 0.00; 0.00;

0.00; 0.00; 0.00; 1; 0

0;18;21;20;1480;0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;2

;4;0.00;0.00;0.00;0.00;1.00;0.00;0.50;2;4;1.00;0.00

;1.00;0.50;0.00;0.00;0.00;0.00;0;1

 29

2.9.3 Remote to Local (R2L) Attacks

R2L attack involves unauthorized access from a remote machine (Ahmad et al. 2007).

The examples of remote to local attacks are given below:

 Imap: It causes a buffer overflow by exploiting a bug in the authentication

procedure of the imap server on some versions of LINUX. The attacker gets

root privileges and can execute an arbitrary sequence of commands.

 Ftpwrite: This attack exploits a misconfiguration affecting write privileges of

anonymous accounts on a file transfer protocol (FTP) server. This allows any

ftp user to add arbitrary files to the FTP server.

 Phf: This is an example of badly written common gateway interface (CGI)

scripts that is distributed with the apache server. Exploiting this flaw allows

the attacker to execute codes with the http privileges.

 Warezmaster: This attack is possible in a situation where write permissions

are improperly assigned on a FTP server. When this is the case, the attacker

can upload copies of illegal software that can then be downloaded by other

users.

 Warezclient: This attack consists in downloading illegal software previously

uploaded during a warezmaster attack.

Every feature of KDD record is separated by semicolon. A sample of R2L attack

and its normal pattern is shown in Table 2.7.

Table 2.6 A Probing attack and its normal pattern

Attack pattern Normal pattern

0;6;19;34;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;

1;1;0.00;0.00;1.00;1.00;1.00;0.00;0.00;255;1;

0.00;1.00;1.00;0.00;0.00;0.00;1.00;1.00;1;0

0;6;22;20;259;17289;0;0;0;0;0;1;0;0;0;0;0;0;0;

0;0;0;2;2;0.00;0.00;0.00;0.00;1.00;0.00;0.00;20

;255;1.00;0.00;0.05;0.03;0.00;0.00;0.00;0.00;0;

1

 30

2.9.4 User to Root (U2R) Attacks

U2R attack involves unauthorized access to local super user privileges by a local

unprivileged user (Ahmad et al. 2007). A sample of U2R attack and its normal pattern

is shown in Table 2.8. The examples of such attacks are described as follows.

Loadmodule: This attack exploits a flaw in how SUNOS 4.1 dynamically load

modules. This flaw makes it possible for any user of the system to get root privileges.

Perl: Exploits a bug in some practical extraction and report language (PERL)

implementations on some earlier systems. This bug consists in these PERL

implementations improperly handling their root privileges. This leads to a situation

where any user can obtain root privileges.

Buffer Overflow: It consists in overflowing input buffers in order to overwrite

memory locations containing security relevant information. Table 2.8 shows 38

features of the dataset that are separated by semicolon.

Table 2.7 A R2L attack and its normal pattern

Attack pattern Normal pattern

4;6;29;20;30;93;0;0;0;0;0;1;0;0;0;0;0;0;0

;0;0;0;1;1;0.00;0.00;0.00;0.00;1.00;0.00;

0.00;255;248;0.97;0.01;0.00;0.00;0.00;0.

00;0.01;0.00;1;0

0;6;24;20;1342;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;6;

6;0.00;0.00;0.00;0.00;1.00;0.00;0.00;171;63;0.37;0

.02;0.37;0.00;0.01;0.00;0.00;0.00;0;1

Table 2.8 A U2R attack and its normal pattern

Attack pattern Normal pattern

0;17;19;20;105;147;0;0;0;0;0;0;0;0;0;0;0;

0;0;0;0;0;1;1;0.00;0.00;0.00;0.00;1.00;0.

00;0.00;255;253;0.99;0.01;0.00;0.00;0.00

;0.00;0.00;0.00;0;1

0;17;19;20;105;147;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;

1;1;0.00;0.00;0.00;0.00;1.00;0.00;0.00;255;253;0.9

9;0.01;0.00;0.00;0.00;0.00;0.00;0.00;0;1

 31

2.9.5 Other Attacks

There are some other types of attacks; guessing passwords, making use of spy

programs, and making use of rootkit and multihop attack (Ahmad et al. 2008). A

sample of such attacks and their normal patterns are shown in Table 2.9.

2.10 Soft Computing

This section provides brief information to Soft Computing (SC) in general and

explains applied SC techniques in specific. SC refers to algorithms that are able to

deal with uncertainty and incomplete information and that are still capable of

discovering approximately good solutions to complex computational problems, and

doing so faster from a computational perspective. These algorithms include neural

networks, evolutionary computing (genetic algorithms and genetic programming),

Support Vector Machines and fuzzy logic etc. Actually, the role model for soft

computing is the human mind. The soft computing is tolerant of imprecision,

uncertainty, partial truth, and approximation while hard computing shows precision,

certainty, and rigor (Saad 2008) and (Eiben and Smith 2003). The guiding principle

of soft computing is exploiting the tolerance for imprecision, uncertainty, partial

truth, and approximation to achieve flexibility, robustness and low solution cost

(Jirapummin et al. 2002) and (Bäck 1996). Mostly applications of soft computing

techniques are those areas where imprecision, or inaccuracy is acceptable, and the

solution is tolerable of imprecision.

Table 2.9 A sample of another attack and its normal pattern

Attack pattern Normal pattern

1;6;27;20;2599;293;0;0;0;0;0;1;0;0;0;0;0;

0;0;0;0;0;3;3;0.00;0.00;0.00;0.00;1.00;0.

00;0.00;255;246;0.96;0.04;0.00;0.00;0.00

;0.00;0.04;0.00;1;0

0;17;23;20;44;115;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1

;8;0.00;0.00;0.00;0.00;1.00;0.00;0.38;255;251;0.98

;0.01;0.00;0.00;0.00;0.00;0.00;0.00;0;1

 32

2.10.1 Unique Property of Soft Computing

The unique property of soft computing is described below (Michalewicz 1996).

 The soft computing learns from experimental data.

 The soft computing techniques derive their power of generalization from

approximating to produce outputs from previously unseen inputs by using

outputs from previous learned inputs.

 The generalization is done usually in a high dimensional space.

2.10.2 Applications of Soft Computing

The soft computing has been used in different areas. But few applications of soft

computing are listed here (Bebis et al. 2000).

 Hand written recognition

 Automotive systems and manufacturing

 Image processing and data compression

 Architecture

 Decision-support systems

 Power systems

 Neuro fuzzy systems

 Fuzzy logic control etc.

2.10.3 Future of Soft Computing

Soft computing is playing an important role in science and engineering, but sooner or

later, its influence may extend much farther. It represents a significant paradigm shift

in the aims of computing which reflects the fact that the human mind, unlike current

computers, possesses a remarkable ability to store and process information which is

imprecise, and uncertain (Verikas et al. 2010) and (Jang et al. 1997).

 33

2.11 Overview of Soft Computing Techniques

The primary techniques of soft computing (SC) are fuzzy logic (FL), neural networks

(NN), SVM, evolutionary computation (EC), and machine learning (ML) and

probabilistic reasoning (PR) (Jang et al. 1997). However, this section describes an

overview of applied techniques in this research work such as neural networks, SVMs

and GAs.

2.11.1 Neural Networks (NN)

Neural network is an information processing model that is inspired by the biological

nervous systems, such as the brain, process information. The main element of this

model is the novel structure of the information processing system. It is composed of a

large number of highly interconnected processing elements (neurons) working in

combination to solve particular problems (Hammerstrom 1993).

Neural networks (NNs), like people, learn by example. Neural network is

configured for a specific application, such as pattern recognition or data

classification, through a learning process. Learning in biological systems involves

adjustments to the synaptic connections that exist between the neurons. This is true of

artificial neural networks or neural networks as well (Yu et al. 2005) and (Fausett

2009).

2.11.1.1 Neurobiological Background

The nervous system of living organisms is a structure consisting of many elements or

processing units working in parallel fashion and in connection with one another. This

structure (neural cell of the brain) is known as neuron that is developed in 1836. The

structure of biological neuron is shown in Figure 2.2 as ascribed in the literature

(Fausett 2009).

 34

Figure 2.2 Structure of biological neuron

This is a result worth of the Nobel Prize (1906). The neuron has many-inputs and

one-output units as shown in Figure 2.2 (Fausett 2009). The output can be excited or

not excited, just two possible choices (like a flip-flop). The signals from other

neurons are summed together and compared against a threshold to determine if the

neuron shall excite ("fire"). The input signals are subject to attenuation in the

synapses which are junction parts of the neuron. The concept of synapse was

introduced in 1897.The next important step was to find that the synapse resistance to

the incoming signal can be changed during a "learning" process (1949). If an input of

a neuron is causing the neuron to fire repeatedly and persistently, a metabolic change

happens in the synapse of that particular input to reduce its resistance (Fausett 2009).

2.11.1.2 Artificial Neuron

The first artificial neuron was produced in 1943 by the neurophysiologist Warren

McCulloch and the logician Walter Pits. But the technology available at that time did

not allow them to do too much (Jirapummin et al. 2002). The structure of ANN is

shown in Figure 2.3.

 35

Figure 2.3 Structure of artificial neuron

A simple mathematical expression can be expressed of a neuron model as given

in equation (2.1). The unit‟s output activation is given in Equation 2.1.

 (2.1)

Where is the output activation of unit j and is the weight on the link from

unit j to this unit.

An artificial neuron is a processing element with many inputs and one output. The

neuron has two types of operation; one is the training phase and the other is using or

testing phase. In the training phase, the neuron can be trained to fire (or not), for

specific input patterns or exemplars. In the using or testing phase, when a taught input

pattern or exemplar is detected at the input, its associated output becomes the current

output. If the input does not belong in the taught list of input patterns, the firing rule

is used to determine whether to fire or not (Principe et al. 2000).

 36

2.11.1.3 Architecture of Neural Networks

This section explains two types of neural networks. One is feed-forward and other is

feedback.

a). Feed-forward Networks

Feed-forward ANNs allow signals to travel one way only; from input to output. There

is no feedback (loops) i.e. the output of any layer does not affect that same layer.

Feed-forward ANNs tend to be straightforward networks that associate inputs with

outputs. They are used extensively in pattern recognition (Yu et al. 2005) and

(Ahmad et al. 2007). This type is also referred to as bottom-up or top-down that is

shown in Figure 2.4.

Figure 2.4 Feed -forward ANN

b). Feedback Networks

Feedback networks can have signals traveling in both directions by introducing loops

in the network. Feedback networks are dynamic; their state is changing continuously

until they reach an equilibrium point. They remain at the equilibrium point until the

input changes and a new equilibrium needs to be found. It is also known as interactive

 37

or recurrent (Ahmad et al. 2007) and (Ahmad et al. 2008). This type of neural

network is shown in Figure 2.5.

Figure 2.5 Feedback ANN

2.11.1. 4 Characteristics of Neural Networks

The neural network is popular due to the following characteristics (Fausett 2009).

 The NNs demonstrate capabilities, that is, they can map input patterns to

their associated output patterns.

 The NNs learn by examples. They can be trained with known examples of

a problem before testing.

 The NNs possess the capability to generalize. Thus, they can predict new

outcomes from past trends.

 The NNs are robust systems and are fault tolerant. They can recall full

pattern from incomplete, partial or noisy patterns.

 The NNs can process information in parallel, at high speed, and in a

distributed manner.

 38

2.11.1.5 Learning Methods

There are two main learning methods in neural networks; supervised and

unsupervised. This section describes them briefly.

a). Supervised Learning

It includes an external teacher, so that each output unit is told what its desired

response to input signals ought to be. During the learning process global information

may be required. Models of supervised learning include; (i) error-correction learning,

(ii) reinforcement learning, and (iii) stochastic learning. An imperative issue

regarding supervised learning is the problem of error convergence, i.e. the

minimization of error between the desired and computed unit values. The aim is to

determine a set of weights, which minimizes the error. One well-known method,

which is common to many learning models, is the least mean square (LMS)

convergence (Browne 2000).

b). Unsupervised Learning

It uses no external teacher and is based upon local information only. It is also known

as self-organization, in the sense that it self-organizes data presented to the network

and detects their evolving collective properties. Paradigms of unsupervised learning

are hebbian lerning and competitive learning (Sandhya 2009).

2.11.1.6 Transfer Function

The behavior of an ANN (Artificial Neural Network) depends on both the weights

and the input-output function (transfer function) that is specified for the units. This

function typically falls into one of three categories (Sandhya 2009).

a) Linear

b) Threshold

c) Sigmoid

 39

a) Linear units: The output activity is proportional to the total weighted output.

b) Threshold units: The output is set at one of two levels, depending on whether

the total input is greater than or less than some threshold value.

c) Sigmoid units: The output varies continuously but not linearly as the input

changes. Sigmoid units bear a greater similarity to real neurons than do linear

or threshold units, but all three must be considered rough approximations.

2.11.1.7 Neural Network Analysis

An artificial neural network consists of a collection of processing elements that are

highly interconnected and transform a set of inputs to a set of desired outputs. The

result of the transformation is determined by the characteristics of the elements and

the weights associated with the interconnections among them. By modifying the

connections between the nodes the network is able to tune to the desired outputs

(Bankovic et al. 2007). Unlike expert systems, which can provide the user with an

absolute answer if the characteristics, which are analyzed precisely, match those,

which have been coded in the rule base, a neural network conducts an analysis of the

information and provides a probability estimate that the data matches the

characteristics, which it has been trained to recognize. While the probability of a

match determined by a neural network can be 100 %, the accuracy of its decisions

relies totally on the experience the system gains in examining examples of the stated

problem. The neural network gains the experience initially by training the system to

identify correctly preselected examples of the problem. The response of the neural

network is analyzed and the configuration of the system is clarified until the neural

network‟s analysis of the training data reaches an agreeable level. In addition to the

initial training period, the neural network also gains experience over time as it

conducts analyses on data related to the problem (Hammerstrom 1993) ,(Cannady

2000a) and (Pervez et al. 2007).

 40

2.11.1.8 Neural Network Intrusion Detection Systems

A limited amount of research has been conducted on the application of neural

networks to detecting computer intrusions. Artificial neural networks offer the

potential to resolve a number of the problems faced by the other current approaches to

intrusion detection. Artificial neural networks are alternatives. Neural networks were

specifically proposed to identify the typical characteristics of system users and

identify statistically significant variations from the user's established behavior (Fu

1992). Artificial neural networks have also been designed for use in the detection of

computer viruses. They were proposed as statistical analysis approaches in the

detection of viruses and malicious software in computer networks. The neural

network architecture, which was selected, was SOM a self-organizing feature map

which uses a single layer of neurons to represent knowledge from a particular domain

in the form of a geometrically organized feature map. The proposed network was

designed to learn the characteristics of normal system activity and identify statistical

variations from the norm that may be an indication of a virus (Denault et al. 1994).

2.11.1.9 Advantages of Neural Network-based IDS

The first advantage of a neural network in the detection of instances of misuse would

be the flexibility that the network would provide. A neural network would be capable

of analyzing the data from the network, even if the data is incomplete or distorted.

Similarly, the network would possess the ability to conduct an analysis with data in a

non-linear fashion. Further, because some attacks may be conducted against the

network in a coordinated attack by multiple attackers, the ability to process data from

a number of sources in a non-linear fashion is especially important. The built in speed

of neural networks is another benefit of this approach. Because the protection of

computing resources requires the timely identification of attacks, the processing

speed of the neural network could enable intrusion responses to be conducted before

permanent damage occurs to the system. Because the output of a neural network is

expressed in the form of a probability, the neural network provides a predictive

capability to the detection of instances of misuse. A neural network-based misuse

detection system would identify the probability that a particular event, or series of

events, was indicative of an attack against the system. As the neural network gains

 41

experience it will enhance its aptitude to determine where these events are likely to

occur in the attack process. This information could then be used to generate a series

of events that should occur if this is in fact an intrusion attempt. By tracking the

subsequent occurrence of these events the system would be capable of improving the

analysis of the events and possibly conducting defensive measures before the attack is

successful. However, the most important advantage of neural networks in intrusion

detection is the ability of the neural network to "learn" the characteristics of intrusion

attacks and identify instances that have been observed before by the network. The

probability of an attack against the system may be estimated and a potential threat

flagged whenever the probability exceeds a specified threshold (Fox et al. 1990),

(James 1997) and (Ahmad et al. 2008).

2.11.1.10 Disadvantages of Neural Network-based IDS

There are two primary reasons why neural networks have not been applied to the

problem of misuse detection in the past. The first reason relates to the training

requirements of the neural network. Because the ability of the artificial neural

network to identify indications of an intrusion is completely dependent on the

accurate training of the system, the training data and the training methods that are

used are critical. The training routine requires a very large amount of data to ensure

that the results are statistically accurate. The training of a neural network for intrusion

detection purposes may require thousands of individual attacks sequences, and this

quantity of sensitive information is difficult to obtain (Pervez et al. 2007) and

(Cannady 2000b). However, the most significant disadvantage of applying neural

networks to intrusion detection is the "black box" nature of the neural network.

Unlike expert systems, which have hard-coded rules for the analysis of events, neural

networks adapt their analysis of data in response to the training which is conducted on

the network. The connection weights and transfer functions of the various network

nodes are usually frozen after the network has achieved an acceptable level of success

in the identification of events. While the network analysis is achieving a sufficient

probability of success, the basis for this level of accuracy is not often known.

 42

The "Black Box Problem" has overwhelmed neural networks in a number of

applications. This is an on-going area of neural network research (Cannady 2000a)

and (Fox et al. 1990).

In the last few years, the intrusion detection field has developed significantly and

therefore many IDSs have been developed. The initial IDSs were anomaly detection

tools but now, most of the commercial IDSs are misuse detection tools. IDSs have

become a need, as number of computer and network systems increased seriously. The

purpose of this research is to propose and analyze the applicability of soft computing

in the field of intrusion detection. The proposed network based intrusion detection

system is network-based, because it uses network data to determine whether an

intrusion has taken place or not.

2.11.2 Support Vector Machine (SVM)

SVM was introduced in computational learning theory conference (COLT-92) in

1992. Support vector machines (SVMs) are a set of related supervised learning

methods used for classification and regression (Cortes and Vapnik 1995).

SVM can be applied to the problem of traffic classification in computer network

systems. This technique is suitable for solving classification problems with high

dimensional feature space and small training set size. Although the basic technique

was conceived for binary classification, several methods for single and multi-class

problems have been developed. As a supervised method, it relies on two phases:

training and testing. The algorithm acquires knowledge about the classes by

examining the training set during the training phase. During the evaluation or testing

phase, a classification method examines the evaluation or testing set and associates its

members to the classes that are available. During the training phase, the target of the

algorithm is the estimation of boundaries between the classes described by the

samples in the training sets. To describe the method with a very simple example one

can think of a two class problem where a single regular surface perfectly divides the

features space in two regions, each one fully representative of the corresponding class

(Este et al. 2009). There can be some issues noticed with neural networks. Some of

them are having many local minima and also finding how many neurons might be

 43

needed for a task is another issue, which determines whether optimality of that NN is

reached. Another thing to note is that even if the neural network solutions used tends

to converge, this may not result in a unique solution. SVM performs better in term of

not over generalization (Mitchell 1997).

Figure 2.6 shows two different types of data and there are many hyper planes,

which can classify it. However, which one is better? Which of the linear separators is

optimal? Therefore, the solution of this problem of selecting suitable hyperplane is

SVM (Smith and Gales 2002).

Figure 2.6 Hyper planes for classification of data

From above Figure 2.6, there are many linear classifiers (hyper planes) that

separate the data. However, only one of these achieves maximum separation. The

reason of using hyper plane is to classify data into two classes. However, hyper plane

may be closer to one dataset compared to others and this is not good to happen and

thus the concept of large margin classifier or hyper plane is a clear solution. The next

Figure 3.6 gives the large margin classifier example, which provides a solution to the

above-mentioned problem (Cristianini and Shawe 2000).

 44

Figure 2.7 Linear SVM

The expression for large margin is given as;

(2.2)

Figure 2.7 is the large margin linear classifier with the maximum range. In this

context, it is an example of a simple linear SVM classifier. There are some good

explanations, which include better empirical performance. One advantage is that if

there is a small error in the location of the boundary than this gives a least chance of

misclassification. The other advantage would be avoiding local minima and better

classification. Now, the SVM is expressed mathematically and try to present a linear

SVM. The goals of SVM are separating the data with hyper plane and extend this to

non-linear boundaries using kernel trick (Mitchell 1997). For calculating SVM, the

goal is to classify all the data correctly.

 45

For mathematical calculations, SVM can be represented in the following

equations,

[a] (2.3)

[b] (2.4)

[c] (2.5)

In this equation x is a vector point and w is weight and is also a vector. So to

separate the data [a] should always be greater than zero. Among all possible hyper

planes, SVM selects the one where the distance of hyper plane is as large as possible.

If the training data is good and every test vector is located in radius r from training

vector than chosen hyper plane is located at the farthest possible from the data (Lewis

2004). This desired hyper plane which maximizes the margin also bisects the lines

between closest points on convex hull of the two datasets. Thus afore mentioned

equations (2.3), (2.4) and (2.5) are drawn in Figure 2.8.

Figure 2.8 Representation of hyper planes

 46

Distance of closest point on hyperplane to origin can be found by maximizing the

x as x is on the hyper plane. Similarly, there will be similar scenario for the other side

points. Thus solving and subtracting the two distances, the resultant is the summed

distance from the separating hyperplane to nearest points.

Maximum Margin = M = 2 / ||w||. Now maximizing the margin is same as

minimum (Lewis 2004). Suppose a quadratic optimization problem and there is need

to solve for w and b. To solve this problem, the quadratic function has to optimize

with linear constraints. The solution involves constructing a dual problem and where

a Langlier‟s multiplier αi is associated. The target is to find w and b such that Φ (w)

=½ |w‟||w| is minimized; and for all {(xi, yi)}p: yi (w * xi + b) ≥ 1.

After solving the result is that w =Σαi * xi; b= yk- w *xk for any xk such that αk 0

and the classifying function will have the following form: f(x) = Σαi yi xi * x + b.

Figure 2.9 Representation of Support Vectors

2.11.2.1 SVM Representation

This section describes the quadratic programming (QP) formulation for SVM

classification (Mitchell 1997), (Lewis 2004) and (Burges 1998). The simple

representation of SVM can be expressed as,

 47

SV classification:

 (2.6)

 (2.7)

SVM classification, Dual formulation:

 (2.8)

 Where ; and

Variables i are called slack variables and they measure the error made at point

(xi,yi).Training SVM becomes quite challenging when the number of training points

is large. A number of methods for fast SVM training have been proposed (Mitchell

1997), (Lewis 2004) and (Burges 1998).

2.11.2.2 Soft Margin Classifier

In real world problem, it is not likely to get an exactly separate line dividing the data

within the space and there might have a curved decision boundary. There might be a

hyperplane, which might exactly separate the data, but this may not be desirable if the

data has noise in it. It is better for the smooth boundary to ignore few data points than

be curved or go in loops, around the outliers. This is handled in a different way using

slack variables those are introduced in existing research work (Mitchell 1997),

(Lewis 2004), (Burges 1998). This can be expressed as, yi(w‟x + b) ≥ 1 - Sk.. This

allows a point to be a small distance Sk on the wrong side of the hyper plane without

violating the constraint. This might end up having huge slack variables which allow

any line to separate the data, thus in such scenarios the Lagrangian variable are

 48

introduced which penalizes the large slacks.

(2.9)

Where reducing α allows more data to lie on the wrong side of hyper plane and

would be treated as outliers which give smoother decision boundary (Burges 1998).

Figure 2.10 Soft margin classification

2.11.2.3 Kernel and Feature Space

a). Kernel: If data is linear, a separating hyper plane may be used to divide the data.

However, it is often the case that the data is far from linear and the datasets are

inseparable. To allow for this kernels are used to non-linearly map the input data to a

high-dimensional space. A very simple illustration of this is shown in Figure 2.11.

 49

Figure 2.11 Use of kernels

This mapping is defined by the Kernel:

 (2.10)

b). Feature Space: Transforming the data into feature space makes it possible to

define a similarity measure on the basis of the dot product. If the feature space is

chosen suitably, pattern recognition can be easy.

 (2.11)

Figure 2.12 Feature space representation

Note the legend is not described, as they are sample plotting to make understand

the concepts involved. Now getting back to the kernel trick, when w,b is obtained the

 50

problem is solved for a simple linear scenario in which data is separated by a hyper

plane. The Kernel trick allows SVM‟s to form nonlinear boundaries. The steps

involved in kernel trick are given (Burges 1998), (Cristianini et al. 2002).

 The algorithm is expressed using only the inner products of data sets. This is

also called as dual problem.

 Original data are passed through non linear maps to form new data with

respect to new dimensions by adding a pair wise product of some of the

original data dimension to each data vector.

 Rather than an inner product on these new, larger vectors, and store in tables

and later do a table lookup, this can be represented by a dot product of the

data after doing non linear mapping on them. This function is the kernel

function.

a). Dual Problem

First, the problem is converted with optimization to the dual form in which try to

eliminate w, and a Lagrangian now is only a function of λi. There is a mathematical

solution for it. To solve the problem maximize the LD with respect to λi. The dual

form simplifies the optimization and the major achievement is the dot product

obtained from this method (Burges 1998) and (Cristianini et al. 2002).

b). Inner Product Summarization

This section represents the dot product of the data vectors used. The dot product of

nonlinearly mapped data can be expensive. The kernel trick just picks a suitable

function that corresponds to dot product of some nonlinear mapping instead (Burges

1998) and (Cristianini et al. 2002). A particular kernel is chosen only by trial and

error on the test set, choosing the right kernel based on the problem or application

would enhance SVM‟s performance.

c). Kernel Functions

The idea of the kernel function is to enable operations to be performed in the input

space rather than the potentially high dimensional feature space. Hence the inner

 51

product does not need to be evaluated in the feature space. The function performs

mapping of the attributes of the input space to the feature space. The kernel function

plays a critical role in SVM and its performance. It is based on reproducing Kernel

Hilbert Spaces (Nello 2000).

The below mentioned Equation (2.12) shows mapping from input space to the

feature space.

 (2.12)

If K is a symmetric positive definite function, which satisfies Mercer‟s conditions

than,

(2.13)

 (2.14)

Then the kernel represents a legitimate inner product in feature space. The

training set is not linearly separable in an input space. The training set is linearly

separable in the feature space. This is called the “kernel trick” (Cristianini et al. 2002)

and (Nello 2000). The different kernel functions are listed below.

Polynomial: A polynomial mapping is a popular method for non-linear modeling. The

second kernel is usually preferable as it avoids problems with the hessian becoming

Zero.

 (2.15)

 (2.16)

Gaussian Radial Basis Function: Radial basis functions most commonly with a

Gaussian form.

 52

(2.17)

Exponential Radial Basis Function: A radial basis function produces a piecewise

linear solution which can be attractive when discontinuities are acceptable.

(2.18)

Multi-Layer Perceptron: The long established MLP, with a single hidden layer, also

has a valid kernel representation.

 (2.19)

2.11.2.3 Applications of SVM

The SVM has been used in the following areas (Bebis et al. 2002).

 Hand written recognition

 Data Classification

 Image processing and data compression Geo- and Environmental Sciences

 Character Recognition

 Intrusion Detection

 Bioinformatics

 Face Recognition

 Decision Tree Predictive Modeling

 E-learning etc.

2.11.3 Genetic Algorithm (GA)

Genetic algorithms are a part of evolutionary computing, which is a rapidly growing

area of artificial intelligence. Genetic algorithms (GA) are search algorithms based on

the principles of natural selection and genetics. The bases of GA approach are given

by Holland and it has been deployed to solve wide range of problems (James 1997).

 53

In a GA, a population of strings (called chromosomes or the genotype of the

genome), which encode candidate solutions (called individuals, creatures, or

phenotypes) to an optimization problem, evolves toward better solutions.

Traditionally, solutions are represented in binary as strings of 0s and 1s, but other

encodings are also possible. The evolution usually starts from a population of

randomly generated individuals and happens in generations. In each generation, the

fitness of every individual in the population is evaluated, multiple individuals are

stochastically selected from the current population (based on their fitness), and

modified (recombined and possibly randomly mutated) to form a new population. The

new population is then used in the next iteration of the algorithm (James 1997).

Commonly, the algorithm terminates when either a maximum number of

generations has been produced, or a satisfactory fitness level has been reached for the

population. If the algorithm has terminated due to a maximum number of generations,

a satisfactory solution may or may not have been achieved.

A typical GA requires a genetic representation of the solution domain and a

fitness function to evaluate the solution domain. A standard representation of the

solution is as an array of bits. Arrays of other types and structures can be used in

essentially the same way. The main property that makes these genetic representations

convenient is that their parts are easily aligned due to their fixed size, which

facilitates simple crossover operations. Variable length representations may also be

used, but crossover implementation is more complex in this case. Tree-like

representations are explored in genetic programming and graph-form representations

are explored in evolutionary programming.

The fitness function is defined over the genetic representation and measures the

quality of the represented solution. The fitness function is always problem dependent.

For instance, in the knapsack problem one wants to maximize the total value of

objects that can be put in a knapsack of some fixed capacity. A representation of a

solution might be an array of bits, where each bit represents a different object, and the

value of the bit (0 or 1) represents whether or not the object is in the knapsack. Not

every such representation is valid, as the size of objects may exceed the capacity of

the knapsack. The fitness of the solution is the sum of values of all objects in the

 54

knapsack if the representation is valid, or 0 otherwise. In some problems, it is hard or

even impossible to define the fitness expression; in these cases, interactive GAs are

used. Once the genetic representation and the fitness function are defined, then GA

proceeds to initialize a population of solutions randomly, then improve it through

repetitive application of mutation, crossover, inversion and selection operators

(Bankovic et al. 2009).

2.11.3.1 Initialization

Initially many individual solutions are generated randomly to form an initial

population. The population size depends on the nature of the problem, but typically

contains several hundreds or thousands of possible solutions. Traditionally, the

population is generated randomly, covering the entire range of possible solutions (the

search space). Occasionally, the solutions may be "seeded" in areas where optimal

solutions are likely to be found (Bankovic et al. 2009).

2.11.3.2 Selection

During each successive generation, a proportion of the existing population is selected

to breed a new generation. Individual solutions are selected through a fitness-based

process, where fitter solutions (as measured by a fitness function) are typically more

likely to be selected. Certain selection methods rate the fitness of each solution and

preferentially select the best solutions. Other methods rate only a random sample of

the population, as this process may be very time-consuming. Most functions are

stochastic and designed so that a small proportion of less fit solutions are selected.

This helps keep the diversity of the population large, preventing premature

convergence on poor solutions. Popular and well-studied selection methods include

roulette wheel selection and tournament selection (Bankovic et al. 2009).

a). Roulette Wheel Selection

Parents are selected according to their fitness. The better the chromosomes are, the

more chances to be selected they have. Chromosome with bigger fitness will be

 55

selected more times. Imagine a roulette wheel where all chromosomes in the

population are placed, everyone has its place accordingly to its fitness function as in

Figure 2.13.

Figure 2.13 Roulette wheel

b). Rank Selection

The previous selection will have problems when the fitness differs very much. For

example, if the best chromosome fitness is 90% of all the roulette wheel then the

other chromosomes will have very few chances to be selected (Bankovic et al. 2007).

Rank selection first ranks the population and then every chromosome receives

fitness from this ranking. The worst will have fitness 1, second worst 2 etc. and the

best will have fitness N (number of chromosomes in population).

After this, all the chromosomes have a chance to be selected. However, this

method can lead to slower convergence, because the best chromosomes do not differ

so much from other ones.

Situation before ranking (graph of fitness)

 56

Situation after ranking (graph of order numbers)

Figure 2.14 Graph before and after roulette wheel selection

c). Steady State Selection

This is not particular method of selecting parents. Main idea of this selection is that

big part of chromosomes should survive to next generation (Bankovic et al. 2009).

GA then works in the following way. In every generation a few (good - with high

fitness) chromosomes are selected for creating a new offspring. Then some (bad -

with low fitness) chromosomes are removed and the new offspring is placed in their

place. The rest of population survives to new generation.

2.11.3.3 Reproduction

The next step is to generate a second generation population of solutions from those

selected through genetic operators: crossover (also called recombination), and/or

mutation. For each new solution to be produced, a pair of "parent" solutions is

selected for breeding from the pool selected previously. By producing a "child"

solution using the above methods of crossover and mutation, a new solution is created

which typically shares many of the characteristics of its "parents". New parents are

selected for each new child, and the process continues until a new population of

solutions of appropriate size is generated. Although reproduction methods that are

based on the use of two parents are more "biology inspired", some research suggests

that more than two "parents" are better to be used to reproduce a good quality

chromosome. These processes ultimately result in the next generation population of

chromosomes that is different from the initial generation. Generally the average

 57

fitness will increase by this procedure for the population, since only the best

organisms from the first generation are selected for breeding, along with a small

proportion of less fit solutions (Bankovic et al. 2009).

a). Crossover

Crossover is a genetic operator that combines (mates) two chromosomes (parents) to

produce a new chromosome (offspring). The idea behind crossover is that the new

chromosome may be better than both of the parents if it takes the best characteristics

from each of the parents (Bankovic et al. 2009). Crossover occurs during evolution

according to the Crossover Probability. This probability should usually be set fairly

high (0.9 is a good first choice). There are three basic crossover operators; one-point

crossover, two-point crossover and uniform crossover.

i. One Point - Randomly selects a crossover point within a chromosome then

interchanges the two parent chromosomes at this point to produce two new

offspring. Consider the following two parents that have been selected for

crossover. The” |” symbol indicates the randomly chosen crossover point.

Parent 1: 11001|010

Parent 2: 00100|111

After interchanging the parent chromosomes at the crossover point, the following

offspring are produced:

Offspring1: 11001|111

Offspring2: 00100|010

ii. Two Point - Randomly selects two crossover points within a chromosome then

interchanges the two parent chromosomes between these points to produce two

new offspring. Consider the following two parents that have been selected for

crossover. The “|” symbols indicate the randomly chosen crossover points.

 58

Parent 1: 110|010|10

Parent 2: 001|001|11

After interchanging the parent chromosomes at the crossover point, the following

offspring are produced:

Offspring1: 110|001|10

Offspring2: 001|010|11

iii. Uniform - Decides (with the probability defined by the mixing ratio) which parent

will contribute each of the gene values in the offspring chromosomes. This allows

the parent chromosomes to be mixed at the gene level rather than the segment

level (as with one and two point crossover). For some problems, this additional

flexibility outweighs the disadvantage of destroying building blocks.

Consider the following two parents, which have been selected for crossover:

Parent 1: 11001010

Parent 2: 00100111

If the mixing ratio is 0.5, approximately half of the genes in the offspring will

come from parent 1 and the other half will come from parent 2. Below is a possible

set of offspring after uniform crossover:

Offspring1: 1102120102011112

Offspring1: 0211010211121201

In this research method, one point cross over is used that is simple and performs

the best as compared to others. The crossover probability used in all experiments is

0.9.

 59

b). Mutation

Mutation is a genetic operator that alters one or more gene values in a chromosome

from its initial state. This can result in entirely new gene values being added to the

gene pool. With these new gene values, the GA may be able to arrive at a better

solution than was previously possible. Mutation is an important part of the genetic

search as it helps to prevent the population from stagnating at any local optima.

Mutation occurs during evolution according to the probability defined. This

probability should usually be set fairly low. If it is set too high, the search will turn

into a primitive random search (Bankovic et al. 2007).

2.11.3.4 Termination

This generational process is repeated until a termination condition has been reached

(Bankovic et al. 2007). Common terminating conditions are:

 A solution is found that satisfies minimum criteria

 Fixed number of generations reached

 Allocated budget (computation time/money) reached

 The highest ranking solution's fitness is reaching at such a point that

successive iterations no longer produce better results

 Manual inspection

 Combinations of the above

 Means Square Error (MSE)

 Root Means Square (RMSR)

2.11.3.5 Applications of GA

A list of GA application is given.

 Feature selection

 Optimization

 Bioinformatics

 60

 Computational science

 Engineering

 Economics

 Chemistry

 Manufacturing

 Mathematics

 Physics and other fields

2.12 Principal Component Analysis (PCA)

PCA was invented in 1901 by Karl Pearson (Pearson 1901). PCA is a useful

statistical technique that has found application in fields such as face recognition and

image compression, and is a common technique for finding patterns in data of high

dimension. The entire subject of statistics is based on around the idea that you have

this big set of data, and you want to analyze that set terms of the relationships

between the individual points in that set (Smith 2002).

The goal of PCA is to reduce the dimensionality of the data while retaining as

much as possible of the variation present in the original dataset. It is a way of

identifying patterns in data, and expressing the data in such a way as to highlight their

similarities and differences. However, this method uses PCA for transformation of

input vectors to the new search space. The selection of number of principal

components is done by GA.

The methodology applied in this work consists of different steps that are

described here. The goal is to transform a given data set X of dimension M to an

alternative data set Y of smaller dimension L. Equivalently, the goal is to find the

matrix Y, where Y is the Karhunen–Loève transform (KLT) of matrix X:

 (2.20)

 61

Step 1: Organize the data set

Suppose the data comprises a set of observations of M variables, and the goal is to

reduce the data so that each observation can be described with only L variables, L

< M. Suppose further, that the data are arranged as a set of N data vectors X1,

X2,...........XN with each Xn representing a single grouped observation of the M

variables.

 Write X1....................XN as column vectors, each of which has M rows.

 Place the column vectors into a single matrix X of dimensions M × N.

Step 2: Calculate the empirical mean

 Find the empirical mean along each dimension m = 1,, M.

 Place the calculated mean values into an empirical mean vector u of

dimensions M × 1.

(2.21)

Step 3: Calculate the deviation from the mean

Mean subtraction is an integral part of the solution towards finding a principal

component basis that minimizes the mean square error of approximating the data

(Miranda 2008). Further may be proceeded by centring the data as follows:

 Subtract the empirical mean vector u from each column of the data matrix X.

 Store mean-subtracted data in the M × N matrix B.

 (2.22)

Where h is a 1x N row vector of all 1s:

 (2.23)

Step 4: Find the covariance matrix

Find the M × M empirical covariance matrix C.

 62

(2.24)

Where

 is the expected value operator, is the outer product operator, and * is the

conjugate transpose operator. If B consists entirely of real numbers, which is the case

in many applications, the "conjugate transpose" is the same as the regular transpose.

The covariance matrix in PCA is a sum of outer products between its sample vectors,

indeed it could be represented as B.B*.

Step 5: Find the eigenvectors and eigenvalues of the covariance matrix

Compute the matrix V of eigenvectors that diagonalizes the covariance matrix C:

(2.25)

Where D is the diagonal matrix of eigenvalues of C. This step will typically

involve the use of a computer-based algorithm for computing eigenvectors and

eigenvalues.

Matrix D will take the form of an M × M diagonal matrix, where

 (2.26)

 (2.27)

is the mth eigenvalue of the covariance matrix C, and

Matrix V, also of dimension M × M, contains M column vectors, each of length

M, which represent the M eigenvectors of the covariance matrix C. The eigenvalues

and eigenvectors are ordered and paired. The mth eigenvalue corresponds to the mth

eigenvector.

 63

Step 6: Rearrange the eigenvectors and eigenvalues

 Sort the columns of the eigenvector matrix V and eigenvalue matrix D in

order of decreasing eigenvalue.

 Make sure to maintain the correct pairings between the columns in each

matrix.

Step 7: Select a subset of the eigenvectors as basis vectors

Save the first L columns of V as the M × L matrix W:

 ,

(2.28)

Where . Use the vector g as a guide in choosing an appropriate value

for L. The goal is to choose a value of L as small as possible while achieving a

reasonably high value of g on a percentage basis. For example, you may want to

choose L so that the cumulative energy g is above a certain threshold, like 90 percent.

In this case, choose the smallest value of L such that,

(2.29)

2.13 Literature Review

Intrusion detection initiates from traditional audit systems. In early age of computing

environments, large mainframe systems produced sequential records of system events

which could then be observed manually for purposes such as accounting and security.

In the 1970s, the U.S. Department of Defence (DOD) made security goals for such

audit mechanisms, among which were allowing the discovery of attempts to bypass

protection mechanisms.

Later, James P. Anderson in 1980 introduced the concept of intrusion detection.

Further, he also provided the foundation for future intrusion detection system design

and development (Anderson 1980) . His work was the start of host-based intrusion

ML 1

 64

detection and IDS in general. Denning proposed an intrusion detection model which

became a landmark in the research in this area (Denning 1987). The model, which she

proposed, forms the fundamental core of most of the intrusion detection

methodologies in use these days. Denning conducted a study to create user profiles by

analyzing audit trails of the government mainframe computers. The first prototype for

intrusion detection, the Intrusion Detection Expert System (IDES) was formed with

the help of Denning. IDES analyzes audit trails from government systems and tracks

user activity. IDES provided a foundation to the intrusion detection development.

Further, she explained that how anomalous activity could be used as an indicator of

potential security incidents.

An artificial neural network consists of a collection of processing elements that

are highly interconnected and transform a set of inputs to a set of desired outputs. The

result of the transformation is determined by the characteristics of the elements and

the weights associated with the interconnections among them. By modifying the

connections between the nodes the network is able to adapt to the desired outputs.

Further, they described that a neural network is an implementation of an algorithm

inspired by research into the brain. In fact, one branch of neuroscience uses

computers to model cognitive functions. But the neural networks discussed here have

little to do with biology. Rather, they show technology in which computers learn

directly from data, thereby assisting in classification, function estimation, data

compression, and similar tasks. Neural networks are valuable because these are

adaptive and have generalization ability (Hammerstrom 1993). There are several

methods of responding to a network intrusion, but they all require the precise and

well-timed identification of the attack (Cannady 2000b). The existing approaches to

misuse detection involve the use of rule-based expert systems to identify indications

of known attacks. However, these techniques are less successful in identifying

attacks, which vary from expected patterns. He presented an approach to the process

of misuse detection that utilizes the analytical strengths of neural networks, and he

provided the results from his preliminary analysis of this approach. He made his own

dataset using some software packages like the RealSecure™, the Internet Scanner™

products from Internet Security Systems (ISS), Inc, and the Satan scanner. His

experimental dataset consists of 10,000 packets in which approximately 3000 were

simulated attacks. The nine elements (Protocol ID, Source Port, Destination Port,

 65

Source Address, Destination Address, ICMP Type, ICMP Code, Raw Data Length

and Raw Data) were selected because they were typically present in network data

packets and they provide a complete description of the information transmitted by the

packet. He used Multiple Layered Perceptron (MLP) architecture for training and

testing his proposed approach. He used parameters root mean square error (RMSE),

Training and Testing data correlation to test their result‟s sensitivity. This presented

work has many drawbacks but it was a good initiative towards the application of

neural networks in the area intrusion detection.

Jing and their colleagues described a mechanism in intrusion detection by using

artificial neural network (Jing-Xin et al. 2004). They described that the traditional

intrusion detection systems mainly consist of two kinds, one is misuse IDS, and the

other is anomalous IDS. Misuse IDS works by rule matching, suffering from the

updating, the searching and the matching of the rule sets. Anomalous IDS works by

statistically computing, suffering from the establishment of the exact statistical model

and the selection of the threshold. All of those lower the usability of the traditional

intrusion detection systems. To address these problems, several new methods have

been proposed, such as data mining, artificial neural networks and artificial immune

systems, etc. They mainly discussed the application of the artificial neural networks

in the field of IDS research. They have designed and implemented a network

intrusion detection system based on the artificial neural networks; and the testing

results of the prototype system revealed the validity of the method and the advantages

over other methods suggested. In contrast with the traditional methods, the main

advantages of the artificial neural networks include the fast / rapid information

processing, the stronger ability of tolerance and the ability of self-learning. All of

these help to overcome the problems of the traditional IDS (Jing et al. 2004).

Lilia and their colleagues presented a network intrusion detection method to

identify and classify illegitimate information in TCP/IP packet payload based on the

Snort signature set that represents possible attacks to a network (Lilia et al. 2004).

Further, they used a neural network named Hamming Net for their experiments. They

selected this network on the base of its capability to classify network events in real-

time, and to learn faster than other neural network models, such as, multilayer

perceptron with backpropagation and Kohonen maps.TCP/IP packet payloads were

 66

used as input pattern to the Hamming Net and Snort signature as exemplar patterns.

The challenges faced to model the input and exemplar data and the strategies adopted

to capture and scan relevant data in TCP/IP packets and in Snort signatures were

described in their work. Their system showed 70% accuracy in the classification of

attacks (Lilia et al. 2004).

Este and their colleagues described an approach to traffic classification based on

SVM (Este et al. 2009). They applied one of the approaches to solving multi-class

problems with SVMs to the task of statistical traffic classification, and described a

simple optimization algorithm that allows the classifier to perform correctly with as

little training as a few hundred samples. The accuracy of the proposed classifier is

then evaluated over three sets of traffic traces, coming from different topological

points in the Internet. Their presented results confirmed that SVM-based classifiers

could be very effective at discriminating traffic generated by different applications,

even with reduced training set sizes. Further, they used different data sets for instance

the lawrence berkeley national laboratory (LBNL) data set, the cooperative

association for internet data analysis (CAIDA) dataset and self-simulated data set.

Their results showed 90 % accuracy. The system has some drawbacks; it could not

handle out-of-order packets, packet loss, and fragmentation in a robust way (Este et

al. 2009).

SVM for traffic classification also described in another work by (Li and Guan

2007) . They used a technique to train a classifier to recognize seven different classes

of applications. In this approach, flows are divided in common classes such as bulk,

multimedia, etc. The authors pointed out that changing the features influence the

accuracy of classification results. For regular traffic samples with biased prior

probability, they achieved an accuracy of approximately 99.4%. For un-biased

samples, with uniform prior probability, their method yielded approximately 96.9%

accuracy. The way of selecting features was not much more efficient in their work.

They did not use standard data set and compared their results with recent approaches.

 A detection mechanism was proposed for traffic flooding attacks by Yu and their

colleagues (Yu et al. 2008). They used simple network management protocol (SNMP)

management information base (MIB) statistical data gathered from SNMP agents,

 67

instead of raw packet data from network links. The involved SNMP MIB variables

were selected by an effective feature selection mechanism and gathered effectively by

the MIB update time prediction mechanism. Then, they used a machine learning

approach based on SVM for attack classification. Using MIB and SVM, they

achieved fast detection with high accuracy, the minimization of the system burden,

and extendibility for system deployment. The proposed mechanism is constructed in a

hierarchical structure, which first differentiates attack traffic from normal traffic and

then classifies the types of attack. They used various types of flooding; transmission

control protocol synchronization (TCP-SYN) flooding, user data protocol (UDP)

flooding, and internet control management protocol (ICMP) flooding. Using MIB

datasets collected from real experiments involving a distributed denial of service

(DDOS) attack, they validated the possibility of their approaches. It is shown that

network attacks were detected with high efficiency (97.07 %), and classified with low

false alarms (Yu et al. 2008).

Several researchers have applied data mining techniques in the design of network

intrusion detection system (NIDS) (Khan et al. 2007). One of the promising

techniques is SVM, which has concrete mathematical foundations that provided

satisfying results. SVM separates data into multiple classes (at least two) by a

hyperplane, and simultaneously minimizes the empirical classification error and

maximizes the geometric margin. Thus, it is also known as maximum margin

classifiers.

Osareh and Shadgar applied NN and SVM techniques on the standard KDD cup

99 dataset which has been utilized in the evaluation of security detection mechanism

as a benchmark dataset in several different research works. They selected four

different categories of attack such as DOS, probing, R2L and U2R. They proved

through simulations that the accuracy of NN is higher than that of SVM, but false

alarm and detection rate of SVM is better. They used full features of dataset that

decreases the performance of the NN and SVM architecture that will also affect on

training and testing overheads. Further, their proposed system demonstrated up to

83.5 % accuracy in detection (Osareh and Shadgar 2008).

 68

Even though SVMs have shown good results in data classification, but they are

not favorable for huge dataset because the training complexity is dependent on the

amount of data in the training set. Larger amount of data would lead to higher training

complexity. However, many data mining applications involve millions or even

billions of pieces of data records. For instance, in the KDD cup 1999 dataset, there

are more than 4 million and 3 million records in the training set and test set,

respectively. The SVM technique is powerless to operate at such a large dataset due

to system failures caused by insufficient memory, or may take too long to finish the

training. Since this work used the KDD cup 1999 dataset, to reduce the amount of

data, a combined (PCA+GA) method was applied to preprocess the dataset before

SVM training. This approach improved the performance of the system.

The PCA is an important technique in data compression and feature extraction

(Oja 1992) and it has been also applied to the field of intrusion detection

(Kuchimanchi et al. 2004) , (Labib and Vemuri 2004), (Shyu et al. 2003). A neural

network PCA (NNPCA) and nonlinear component analysis (NLCA) were proposed to

reduce the dimensionality of network traffic; their approaches focused on retaining

the information of the compressed data compared with that of the original data. PCA

was used to detect selected denial-of-service and network Probe attacks; the authors

analyzed the loading values of the various feature vector components with respect to

the principal components (Labib and Vemuri 2004). Based on principal and minor

components, a method called principle component classifier (PCC) studied the use of

robust PCA in outlier detection; this method was able to distinguish the nature of the

anomalies whether they were different form the normal instances in terms of extreme

values or different correlation structures; the PCC achieved about 98% detection rate

with 1% false positive ratio. However, all the mentioned PCA methods are based on

conventional statistical analysis utilizing batch mode computation, which are not

suitable for adaptive learning and online computing (Shyu et al. 2003).

Liu and Yi had worked on unsupervised learning method based on PCA self-

organizing map (PCASOM) for network sessions clustering, and a simplified winner-

takes-all SOM was used to generate data clusters with a mean vector and principal

basis vectors (Liu and Yi 2006).

 69

Liu and their colleagues described a hierarchical ID model based on the PCANN,

which has been used for adaptive computing for both misuse detection and anomaly

detection (Liu et al. 2007). The design of PCANN based classifier is detailed and a

particular selection of features was made by principal components Analysis. First,

they selected 22 features then these features were provided to their system. So, there

is a possibility to lose much important features that are more sensitive for the

classifier (Liu et al. 2007). Although there are many well-known drawbacks of the

PCA neural networks, e.g., the inability to provide a nonlinear mapping, the

convergence speed of stochastic neural PCA learning algorithms, etc, their

simulations perform well for the specific domain of intrusion detection. They

introduced two levels in their proposed model. The top level of model is constructed

with a norm profile, and it can distinguish „bad‟ connections from „good‟ ones at the

first stage; all the lower levels are signature-based misuse detectors which can give a

specified detection; furthermore, their proposed model trained a new classifier using

clustered abnormal connections with data flags, and this enabled them to construct an

integrated IDS. They performed different experiments to demonstrate the

performance of the proposed model on DARPA 1998 evaluation data sets. Their

comparative results showed an improvement in detection performance.

Lakhina and their colleagues described that attacks on the network infrastructure

are major threats against network and information security. Most of the existing

intrusion detection approaches use all 41 features in the network to measure and look

for intrusive pattern some of these features are redundant and irrelevant. The

drawback of this approach is time-consuming detection process and degrading the

performance of intrusion detection system. They presented hybrid algorithm

PCANNA (Principal Component Analysis neural network algorithm) to reduce the

number of computer resources, both memory and CPU time required to detect attack.

They used PCA to reduce the feature and trained neural network to identify attacks.

Test and comparison were made on KDD dataset. They demonstrate that their

proposed model showed improvement up to 80.4% data reduction, approximately

40% reduction in training time and 70% reduction in testing time. Their proposed

method not only reduces the number of the input features and time but also increases

the classification accuracy (Lakhina et al. 2010).

 70

The aforementioned work related to PCA on intrusion detection has emphasized

the issues of feature extraction and classification; however, relatively less attention

has been given to the critical issue of feature selection. The main trend in feature

extraction has been representing the data in a lower dimensional space, for example,

using PCA. Without using an effective scheme to select an appropriate set of features

in this space, however, these methods rely mostly on powerful classification

algorithms to deal with redundant and irrelevant features. Therefore, this method

providing a new way of feature subset selection in the area of intrusion detection.

Bankovic and their colleagues presented a serial combination of two genetic

algorithm-based intrusion detection systems. They proposed many solutions for

intrusion detection based on machine learning techniques, but most of them

introduced major computational overhead, which made them time consuming and

thus increased their period of adapting to the environmental changes. In the first step

of their solution they deployed feature extraction techniques using PCA in order to

reduce the amount of data that the system needed to process. Hence, their system was

simple and reduced significant computational overhead, but at the same time is

accurate, adaptive and fast due to genetic algorithms. Furthermore, on account of

inherent parallelism, their solution offered a possibility of implementation using

reconfigurable hardware with the implementation cost much lower than the that of the

traditional systems. They used two types of classifier; linear and rule based. The

model was tested on KDD99 benchmark dataset and showed 92.1 % detection rate

(Bankovic et al. 2009).

Bankovoc and their colleagues proposed a misuse detection system based on

genetic algorithm (GA) approach. They used the KDD99Cup dataset for evolving and

testing new rules for intrusion detection. Further, they deployed PCA to extract the

most important features of the data (Bankovic et al. 2007). In that way, they were able

to keep the high level of detection rates of attacks while speeding up the processing of

the data. However, there is one drawback that is a chance to miss some important

features that are more sensitive for the classifier. Genetic algorithm (GA) approach is

one of the future approaches in computer security, especially in intrusion detection

systems (IDS) (Folino et al. 2005).

 71

GA operates on a population of potential solutions applying the principle of

survival of the fittest to produce better and better approximations to the solution of

the problem that GA is trying to solve. At each generation, a new set of

approximations is created by the process of selecting individuals according to their

level of fitness value in the problem domain and breeding them together using the

operators borrowed from the genetic process performed in nature, i.e. crossover and

mutation. This process leads to the evolution of populations of individuals that are

better adapted to their environment than the individuals that they were created from,

just as it happens in natural adaptation (Bankovic et al. 2009).

Kim and their colleagues proposed fusions of GA and SVM for efficient

optimization of both features and parameters for detection models (Kim et al. 2005).

Their method provided optimal anomaly detection model which was capable to

minimize amounts of features and maximize the detection rates. In experiments, they

showed that the proposed method was efficient way of selecting important features as

well as optimizing the parameters for detection model and it provided more stable

detection rates. One of the drawbacks of using GA for features selection is that the

raw features are not in well organized form so there are chances to miss some key

features that are important for the classifier (Kim et al. 2005).

Rayan and their colleagues performed one of the first works to intrusion detection

by NN (Ryan et al. 1998). They trained and tested an offline neural network intrusion

detection mechanism (NNIDS) on a system of ten users. They used 2-Layer MLP

architecture for their system and backpropagation for training purpose. The data

source for training and testing was operating system logs in UNIX environment. The

result parameters to evaluate the performance of the system were false positive and

false negative. They implemented their system in the PlaNet neural network simulator

(Ryan et al. 1998). Cannady made another work in the same field. He also used the

2-Layer MLP architecture for his system and backpropagation for training purpose.

The data source for training and testing was network packets collected by real secure.

Nine of the packet characteristics of network data were selected and presented to the

MLP network which has four fully connection layers .He used root means square

error (RMSE) parameter for training and testing data for performance measuring.

 72

Ghosh and their colleagues presented a host based IDS that focused on building

program profiles and used these program profiles to identify normal software

behavior and malicious software behavior. The system was trained and tested on SUN

platform and used basic security module (BSM) as source of data. Input data were

extracted from BSM and a distance metric, which constituted input vectors of the NN.

The IDS presented was a single hidden layer MLP. The number of input nodes was

equal to the number of exemplar strings. Lucky bucket algorithm is used to capture

the temporal locality of anomalous events. Performance analysis was done with

DARPA database. Ghosh and Schwartzbard in 1999 also used Elman Networks for

intrusion detection (Ghosh and Schwartzbard 1999) . Rhodes et al. 2000 described

another work in intrusion detection. They proposed the use of self-organizing neural

networks to recognize anomalies in network data stream. Unlike from other

approaches which use self organizing maps to process entire state of a network or

computer system to detect anomalies, proposed system breaks down the system by

using collection of more specialized maps. A monitor stack was constructed and each

neural network became a kind of specialist to recognize normal behavior of a protocol

and raise an alarm when a deviation from normal profile occurs. The test intrusions

were buffer overflow attempt (Rhodes et al. 2000).

Lippmann and Cunningham of MIT Lincoln Laboratory conducted a misuse

detection model with neural networks, by searching attack specific keywords in the

network traffic. They used a MLP network to detect Unix-host attacks, and attacks to

obtain root-privilege on a server. The data that they presented to the neural network

consisted of attack-specific keyword counts in network traffic. Two neural networks

were used in the system, one for providing an attack probability and one for

classifying attacks. A two-layer perceptron was designed with k input nodes, 2k

hidden nodes and 2 outputs (Lippmann and Cunningham 2000).

In another study by Zhang and their colleagues, statistical analysis was used in

conjunction with MLP networks (Zhang et al. 2001). System is a distributed

hierarchical application in the sense that system consists of hierarchy of Intrusion

Detection Agents (IDAs) at multiple tiers where each tier corresponds to different

network scope. IDAs are IDS components that monitor the activities of a host or a

network. An IDA, which consists of components such as the probe, the event pre-

 73

processor, the statistical processor, the neural network classifier and the post

processor. Probe collects network traffic and abstracts it into statistical variables.

Event pre-processor collects data from probes and other agents and formats it for the

statistical analyzer. Statistical model compares the data to the previously compiled

reference model, which describes the normal state of the system. A stimulus vector is

formed and forwarded to the NN. Neural network analyzes the vector and decides

whether it is anomalous or normal. Post processor generates reports for the agents at

higher tiers or it may display the results through a user interface. Backpropagation,

perceptron, perceptron-backpropagation hybrid, fuzzy ART MAP, radial-basis

function networks with 2-8 hidden nodes were tested. The experimental test bed

consisting of 11 workstations and 1 server was built by using operations network

(OPNET) network simulation software. UDP flooding attack was simulated within

the test bed (Zhang et al. 2001).

Lee and Heinbuch worked on experimental IDS with a hierarchy of neural

networks. Each of the neural networks in the hierarchy focused on different portions

of nominal TCP behavior. Portions of these observed TCP behaviors are connection

establishment, connection termination and port usage. System was trained to detect

three kinds of attack, which are SYN flood, fast SYN port scan, and stealth SYN port

scan (Lee and Heinbuch 2001).

Jirapummin and their colleagues presented an alternative methodology for both

visualizing intrusions by using self organizing map (SOM) and classifying intrusions

by using resilient propagation (Jirapummin et al. 2002). Neptune attack (SYN

flooding), portsweep and satan attacks (port scanning) were selected from KDD cup

1999 data set. For resilient backpropagation (RPROP), 3 layer NN is utilized with 70

nodes in first hidden layer, 12 neurons in second hidden layer and 4 neurons in the

output layer. The transfer functions for the first hidden layer, second hidden layer and

the output layer of RPROP were tan-sigmoidal, log-sigmoidal and log-sigmoidal

respectively (Jirapummin et al. 2002).

Bivens and their colleagues proposed a neural network model for a network-based

intrusion detection system. Their anomaly detection system used MLP network for

detection. System uses tcpdump data (Bivens et al. 2002). Another study was made

 74

by Shyu and their colleagues. They used KDD cup 1999 as a data source for training

and testing of their system. The neural network used by them was PCC (Shyu et al.

2003).

Yu and their colleagues worked on FTP brute force attacks (Yu et al. 2005). They

used samples that were collected from local network traffic. They used Hybrid

backpropagation/chaotic neural network (BP/CNN) as neural network architecture. A

receiver operator characteristics (ROC) curve is used to evaluate the system

performance by them.

Amini and Jalili 2006 worked on intrusion detection by using adaptive resonance

theory1 (ART1) and adaptive resonance theory2 (ART2). They compare both NN and

showed that ART-1 is better in performance wise but ART-2 is better in response

wise. They also used standard data set KDD cup 1999 (Amini and Jalili 2005). In

another work Amini et al. , they worked on IP, TCP, UDP, and ICMP packets in the

local area network (LAN) environment (Amini et al. 2006).

Ahmed and their colleagues worked in the field of intrusion detection. They used

full featured Kddcup 99 data set for their system. They used RBPROP NN for

training and testing of the network (Ahmad et al. 2007). Another work is also

presented by Ahmed et al. in which different backpropagation algorithms were

benchmarked. They used MLP architecture in their system (Ahmad et al. in 2008).

Statistical approach, rule based approach, expert system approach, pattern

recognition approach, graph-based approach, hybrid approach and artificial neural

network approach toward intrusion detection are evaluated using analytic hierarchy

process (AHP) (Pervez et al. 2007) and (Sandhya S 2009). The evaluation process

takes into account two different types of criteria i.e. main criteria and sub-criteria.

The strength of main criteria is based on its efficiency, adaptability, less updating,

suitability and maturity, while the sub-criteria consists of economical, time saving,

detection rate, minimum false positive, minimum false negative and having the

capability to handle varied intrusion and also coordinated intrusion. According to the

study (Ahmad et al. in 2008), it has been concluded that among all the approaches,

the artificial neural network approach is most suitable to tackle the current issues of

intrusions detection systems such as regular updating, detection rate, false positive,

 75

false negative, suitability and adaptability. The comparative analysis is shown Figure

2.15.

Figure 2.15 Comparative analysis of intrusion detection approaches

Different neural networks for intrusion detection mechanism such as self-

organizing map (SOM), adaptive resonance theory (ART), online backpropagation

(OBPROP), resilient backpropagation (RPROP) and SVM are evaluated using Multi-

criteria Decision Making (MCDM) technique (Dutta et al. 2006) and (Yatim and

Utomo 2006). The evaluation based on two types of criteria i.e. the main criteria and

sub criteria. The main criteria consists of adaptable, minimum training, performance,

maturity and aptitude, while on the other side, the sub criteria consist of detection

rate, minimum false positive, minimum false negative, cost, time, handling co-

ordinated and varied intrusion.

The hybrid approach using artificial neural networks is a more suitable tactic

among other approaches to tackle present issues of intrusion detection systems such

as regular updating, detection rate, false positive, false negative, and flexibility. The

comparison among them is shown in Figure 2.16.

 76

Figure 2.16 Comparative analysis of NN intrusion detection approaches

Three supervised neural networks training algorithms are investigated for

intrusion detection mechanism like batch backpropagation (BPROP), online

backpropagation (OBPROP) and resilient backpropagation (RPROP) using Java

object oriented neural environment (JOONE) and multi-criteria analysis (MCA)

technique (Yatim and Utomo 2006) and (Dutta et al. 2006) . The investigation based

on two types of criteria; main criteria and sub criteria. The main criteria consist of

minimum mean squared error (MSE), less training overhead, performance, memory

usage and usability. The criterion “performance” is divided into sub-criteria namely

detection rate, minimum false +ve and minimum false -ve. Further, it had concluded

that RPROP approach is more suitable approach among other approaches to tackle

present issues to intrusion detection systems such as detection rate, false positive,

false negative, MSE and memory usage. The comparison among three investigated

networks is shown in the Figure 2.17.

 77

Figure 2.17 Comparative analysis of supervised neural networks

The supervised neural network (SNN) uses supervised learning algorithms such

as batch backpropagation (BPROP), online backpropagation (OBPROP), and resilient

backpropagation (RBPROP) (Yatim and Utomo 2006) and (Dutta et al. 2006). These

SNN algorithms have only one drawback that is unable to detect novel attacks or

patterns. On the other hand, unsupervised neural network (UNN) such as self

organizing maps (SOMS), and adaptive resonance theory (ART) show poor

performance such as detection rate, false positive and false negative but these are

more efficient in flexibility and adaptivity (Min and Wang 2009) , (Amini and Jalili

2005). So, a design can be presented for neural network intrusion detection system

that merges the advantages of both networks such as SNN and UNN. The working of

the designed architecture consists of three phases and is shown in Figure 2.18. The

brief detail of each phase is described here.

 78

Figure 2.18 Architecture of hybrid learning for NIDS

a) Training SNN

First of all designed SNN is trained on the standard dataset like DARPA. The training

process consists of three steps. (1) The Feedforward of input training pattern. (2) The

calculation and backpropagation of associated error. (3) The adjustment of the

weights.

b) Saving Weights

When SNN is trained well then it freezes its weights. These frozen weights are saved

in a file. These saved weights are given to UNN for its initialization and further

training and testing process.

c) Training and Testing UNN

Every NN needs weights initialization to start its training process. The optimal

assignment of weights to each neuron of neural network is a big issue. A lot of time is

 79

required to reach the optimal weight value through training overhead. Therefore,

saved weights used as a starting point for UNN. This is further trained in

unsupervised manner to improve performance. However, good results could not

obtain due to the problem of different architecture in nature. Because the layered

structure of supervised and unsupervised neural networks are different. Therefore,

several different types of issues arises; training overhead, saving weights, their proper

initialization as inputs for unsupervised neural network architecture.

2.14 A Systematic Review of Related Work

The afore-mentioned work is summarized in a systematic way in Table 2.10. This

review consists of main author, year of publication, data source used for training and

testing, intrusion analysis structure and results parameters used in earlier research.

Table 2.10 Systematic review of related work

Author Year Data Source Structure Results

DOD 1970
System audit

data

Observed

manually

Monitor protection

mechanism

J.P Anderson 1980 Introduce the concept of intrusion detection

Denning 1987

User profile

audit trail of

main frame

system

Proposed an

intrusion

detection expert

system

Anomalous activity

 Oja 1992
compression and

feature extraction
PCA Applied to ID

Hammerstrom

 et al.

1993 Neural Networks (NN) in ID

Ryan et al. 1998
Operating

System Logs
2-Layer MLP

7% FP

4% FN

Cannady 1998

Network packets

collected by

real secure

network

2-Layer MLP

RMSE of 0.0582 for

Training Data

RMSE of 0.069 for Test

Data.

 80

Author Year Data Source Structure Results

Cannady 2000

His own

generated traffic

dataset

MLP
RMSE and data

correlation

Ghosh et al. 1999

Sun‟s Basic

security module

(BSM)

2-Layer MLP

Anomaly Detection:

2.2% FP

22.7% FN

Misuse Detection:

18.7% FP &, 9.1 FN

Ghosh et al. 1999 Sun‟s BSM Elman Networks

No FP

22.7% FN

Rhodes et al. 2000 Buffer overflow SOM

D.R (57%)

BIND server &

rotshb exploit

Lippmann

et al.
2000 Network Packets 2-Layer MLP

One False Alarm per

Day

20% false Negative

D.R 80%

Zhang

et al
2001

Network Packets

Generated by

OPNET

UDP flooding

attack only

Backpropagation,

Perceptron,

Perceptron-

Backpropagaiton

Hybrid,

Fuzzy ART

MAP,

Radial Basis

Function

Networks

BPROP & HPBPROP

performed better than

Perceptron,

Fuzzy ART

MAP,

Radial Basis

Function

networks

RMSE<0.05

Statistical Analysis

Lee & Heinbuch 2001

TCP packets

[port usage, &

connection]

Hierarchy of

Neural

Networks

SYN flood & Port

scanning

Jirapummin

et al.
2002

KDD Cup 1999

[TCP SYN

& Port Scanning]

3-Layer RPROP

with

SOM

D.R 90%

5% FP

10% FN

Bivens

et al.
2002

DARPA 1999

[DOS,DDOS

&Port attacks]

SOM for

Clustering

MLP for

Detection

76% FP

No FN

Shyu

et al.
2003 KDD cup 1999 PCC

DR95%

FA5%

Yu et al. 2004

FTP brute force

attacks samples

from LAN

Hybrid BP/CNN ROC

Jinget al. 2004 Proposed NNIDS
Overcome traditional

IDS issues

Silva et al. 2004
TCP/IP packet

payload
Hamming net Accuracy 70 %

Kuchimanchi 2004 Feature reduction

Applied to ID

Labib 2004 Feature reduction PCA
Applied to ID

 81

Author Year Data Source Structure Results

Shyu 2004 Feature reduction PCA Applied to ID

Kuchimanchi 2004 KDD cup NNPCA

K. Labib 2004 DOS PCA

Folino G et al 2005
KDD cup GA, RULE

BASED

Kim et al 2005
KDD cup

GA+SVM

Amini

et al.
2005 KDD cup99

ART-1

and

ART-2

Compare both

NN

ART-1 better

Performance

ART-2 better in

response wise

Liu et al. 2006 PCASOM

Amini

et al.
2006

LAN

IP

TCP

UDP

ICMP

SOM

+

ART-1

ART-2

Compare three

NN and found

SOM

Optimum

Li et al. 2007 Flow classes SVM Accuracy 96%

Khan et al., 2007 SVM

Liu et al 2007 KDD 22 FEATURES PCA NN

Bankovic 2007 KDD
GA, RULE

BASED

Bankovic 2007 KDD PCA, GA

Ahmad et al. 2007

KDDCUP99

MIT

Lab. USA

Full

Features

Used

RBPROP

D.R compared to

ART-1, ART-2

and

SOM &

RBROP is found

optimum

 82

The above work described in Table 2.10 shows that data can be obtained by one

of the following three methods; by using real traffic , by using sanitized traffic and by

using simulated traffic but generally IDS are tested on a standard dataset KDD cup of

MIT lab. USA. Different researchers used different architectures (NNs, SVM, PCA,

Hybrid and Rule-based) to implement their proposed systems in the field of intrusion

detection. Predominantly parameters for testing their results are false positives, false

Author Year Data Source Structure Results

Yu et al. 2008

SNMP MIB

TCP,UDP

flooding

SVM Accuracy 97 %

Osareh, and Bita, 2008 KDD SVM Accuracy 83 %

Ahmad et al. 2008

KDDCUP99

MIT dataset of

Lincoln

Laboratory

MLP

Online BPROP

Batch PROP

RPROP

RPROP found best as

compared to online and

batch

Bankovic et al 2009

PCA,GA, RULE

BASED AND

LINEAR

Accuracy 92 %

Alice Este et al 2009 CAIDA SVM Accuracy 90 %

Ahmad et al. 2009 Probing KDD 4- Layer MLP Detection rate 98 %

Ahmad et al. 2009

DOS Dataset a

subset of KDD

cup99

Full

Features

MLP

4- Layered and

output layer with

two processing

element/neuron

Detection rate 96.16 %

Lakhina et. al. 2010 KDD cup PCANNA Detection rate 80.4 %

Ahmad et al. 2010

U2R Dataset a

subset of

KDDCUP99

38

Features

GFFNN

3- Layered and

output layer with

two processing

element/neuron

Detection rate 97.7 %

Ahmad et al. 2010

R2L Dataset a

subset of

KDDCUP99

38

Features

FFNN

3- Layered and

output layer with

single processing

element/neuron

 Detection rate 90 %

 83

negatives, detection rates and ROC. They used different tools: MATLAB, PlaNet,

OPNET, JOONE, URANO, NeuralWorks simulators to implement and test their

models for intrusion detection and some of them developed their own systems in a

personalized way.

2.15 Issues in Existing Intrusion Detection Approaches

Undoubtedly, soft computing techniques play down a variety of drawbacks in

traditional IDSs such as time consuming statistical analysis, regular updating, non

adaptive, efficiency, accuracy and flexibility. But they also suffer from several

problems in the research of intrusion detection. For instance, training and

computational overheads, complex classifier‟s architecture, accuracy, false alarms,

dataset availability, tuning overheads, raw feature set and pre-processing issues. One

of the drawbacks of the past intrusion detection methods is the usage of a raw feature

set for classification but the classifier may get confused due to redundancy and hence

may not classify correctly. Some of the existing approaches of intrusion detection

have focused on the issues of feature extraction and classification. However,

comparatively less concentration has been given to the critical matter of feature

selection. The foremost trend in feature extraction has been representing the data in to

another feature space (the PCA space) using PCA. In this method of selecting features

on the basis of highest eigenvectors is not appropriate because the features

corresponding to the highest eigenvalues may not have the optimal sensitivity for the

classifier due to ignoring many sensitive features. As a result, there are many chances

to lose some important features that have higher discriminatory power for the

classifier. Therefore, there must be an effective scheme to select an appropriate set of

features in the PCA space. This leads the classifier to work in an efficient way and

increases the overall performance of the intrusion analysis engine. Because, the

redundant and irrelevant features increases overheads as well as confuses the

classifier.

 Therefore, in this thesis, an argument is made that feature selection is an

important problem in intrusion detection and Genetic Algorithms (GAs) provide a

simple, general, and powerful framework for selecting good subsets of features that

 84

improve detection rates, reduces training and computational overheads, simplify

architectural framework of intrusion analysis engine, reduces false alarms and

memory usage and speed up the testing process in offline and real time mode. After

feature sub set selection, the classification is performed based on adopted

methodology. The selection of classifier and determine its architecture is another

problem.The collecting of dataset for training/testing is another problem. This can be

achieved via three ways; (i) real traffic, (ii) sanitized traffic and (iii) simulated traffic.

However some anomalies hinder the utilization of these approaches. Real traffic

approach is very unbearable while sanitized approach is risky. The creation of a

simulation is also a difficult task and costly. Further, in order to model various

networks, different types of traffic is needed respectively. In order to skip issues

arising out of all three approaches, KDD cup dataset is used for training/testing in the

experimental work. Therefore presently a research is required that will develop

optimized intrusion detection mechanism using soft computing techniques that will

provide the potential to identify network activity in a robust. In addition, this will

reduce overheads as well as increases performance. Thus, in this context, this

research work is based on the adopted methodology that results optimal subset of

features for intrusion detection mechanism in the subsequent chapters.

2.16 Summary

This chapter details the background knowledge of the intrusion detection systems

(IDS), related functional components, classifications and characteristics. Defines

foundations, techniques, approaches (anomaly, misuse detection and combined or

hybrid approach) to the intrusion detection system. Attack data sets such as KDD cup

dataset used in the work. Overview of soft computing, applied techniques (neural

networks, SVM and GA). Also explains PCA and its different steps towards feature

transformation into PCA space. Further, this chapter describes the related work in

intrusion detection using neural networks, SVM, PCA and GA. A tabular presentation

of the above mentioned approaches in intrusion detection. The comparative study of

existing approaches and related issues. The references of the other related works are

also explained.

CHAPTER 3

METHODOLOGY

3.1 Introduction

Based on the identification of the issues via literature review presented in Chapter 3,

this chapter describes the methodology incorporated into this research work. Further,

the chapter explains different phases of applied methodology; The adopted

methodology is divided into five sections; (1) Selection of dataset for training and

testing, (2) Pre-processing of dataset, (3) Classification approach, (4) Training the

system and (5) Testing the system. These sections of methodology are shown in

Figure 3.1. Finally, the chapter concludes with the contributions and directs towards

system design and architecture.

Figure 3.1 Methodology phases

 86

3.2. Selection of Dataset for Training and Testing

The expertise of the intrusion detection mechanism depends on the dataset. Therefore, the

performance depends on accuracy of dataset and vice versa. If the training data is

optimally accurate with rich contents then efficiency of trained system is improved.

Hence, the collection of data for training and testing is a critical dilemma. There are three

ways to collect data for experiments in the field of intrusion detection; (i) real traffic, (ii)

sanitized traffic, and (iii) simulated traffic. Here, this section describes the pros and cons of

these three ways of creating dataset for experimental purposes.

3.2.1 Real Traffic

The dataset is created using real traffic by attacking an organization‟s servers. In this case,

the packets are real but it is unbearable to attack an organization. In addition to that,

privacy of the users in the organization may be violated such as private e-mails,

passwords and user identities may be released. Hence, this method leads to security

and privacy issues.

Advantage

 The dataset consists of real traffic of network packets.

Disadvantage

 Privacy and security issues are raised.

3.2.2 Sanitized Traffic

The problem of security and privacy can be minimized using sanitized traffic. In this

method, sensitive information is removed from the data stream and then attack data are

inserted into the sanitized traffic.

 87

Advantage

 The dataset consists of real packets without sensitive information and it can be

freely distributed for evaluation and experimental purposes.

Disadvantages

 There is a possibility to lose some important features of a packet during the

sanitization process.

 It is possible to release sensitive data because it is practically impossible to

verify huge amount of data during sanitization process.

3.2.3 Simulated Traffic

The third and the most common way to obtain data, is to create a testbed network and

generate background traffic on this network. In the testbed environment, background

traffic is generated either by using complex traffic generators modeling actual

network statistics or by using simpler commercial traffic generators creating small

number of packets at a high rate.

Advantages

 The dataset can be freely distributed, as it does not contain any sensitive

information.

 It is guaranteed that generated traffic does not contain any unknown attacks as

the background traffic is created by simulators.

Disadvantages

 This is very costly and difficult to create a simulation.

 In order to model various networks, different types of traffic is needed so it

increases complexity and cost.

 88

However, aforementioned anomalies hinder the utilization of these approaches. In order

to skip issues arising out of all three approaches, this research work uses the defense

advanced research projects agency (DARPA) dataset known as knowledge discovery

and data mining (KDD) cup for training and testing in my experimental work.

The DARPA project was prepared and executed by the Massachusetts Institute of

Technology (MIT) Lincoln Laboratory, USA. This research work uses the KDD cup

dataset due to the following reasons:

 One of the reasons for choosing this dataset is that the dataset is standard,

which is considered as a benchmark for evaluating security detection

mechanisms.

 I evaluated my classification approaches for intrusion detection by analyzing

the strengths and weakness of each compartment of the dataset.

 This dataset makes it easy to compare the results of my work with other

similar works.

 Another reason is that it is difficult to get another dataset which contains

so rich and variety of attacks as KDD cup includes.

 The analysis of intrusion detection approaches in evaluating KDD cup

may guide DARPA to future research.

3.3 Pre-processing of Dataset

The next step is preprocessing of selected dataset. Each record of KDD cup dataset

consists of three types of features; connection based, content based and time based.

There are nine (09) connection based features; thirteen (13) content based features

and nineteen (19) are time based features. So, the total number of features are fourty

one (41) in each record of KDD cup dataset. Each record represents a network packet

that has 41 features. Each packet contains thirty eight (38) numeric features and three

(03) symbolic features. First of all, three symbolic features are discarded out of fourty

one because these three features do not affect on the applied classification approaches

in this research work. A sample of features of the network activity, „pre‟ and „post‟

discarding of symbolic values is shown in Table 3.1.

 89

Table 3.1 Feature set of a raw dataset

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

0 udp prvt SF 105 146 0 0 0 0 0 0 0

F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26

0 0 0 0 0 0 0 0 0 1 1 0.0 0.0

F27 F28 F29 F30 F31 F32 F33 F34 F35 F36 F37 F38 F39

0.0 0.0 1.0 0.0 0.0 255 254 1.00 0.01 0.0 0.0 0.0 0.0

F40 F41

Table 3.2 Feature set after discarding symbolic features

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

0 105 146 0 0 0 0 0 0 0 0 0 0

F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26

0 0 0 0 0 0 1 1 0.0 0.0 0.0 0.0 1.0

F27 F28 F29 F30 F31 F32 F33 F34 F35 F36 F37 F38

0.0 0.00 255 254 1.00 0.01 0.00 0.00 0.0 0.0 0.0 0.0

The remaining thirty eight (38) features are further processed using Principal

Component Analysis (PCA) and Genetic Algorithm (GA). The preprocessing of

dataset is of great importance as it results in the increase the efficiency of intrusion

detection mechanism in case of training, testing, and classification of network activity

into normal and intrusive. Further, the preprocessing phase is divided into following

parts; (i) feature transformation, and (ii) selection of optimal features.

This part is the actual contribution in the intrusion detection mechanism that

prove that my proposed model perform well as compared to existing intrusion

detection approaches. The following sections explain these the sub phases of

preprocessing.

 90

3.3.1 Feature Transformation

The usage of raw feature set is one of the drawbacks in existing intrusion detection

approaches as it causes others problems in the field of intrusion detection like:-

 The classifier or analysis engine of IDS may get confused and will generate false

alarm.

 It increases training overhead because the system process on each input feature

even it is unimportant for the analysis engine or the classifier.

 This consumes more memory and computational resources of the system during

training and testing process of the system.

 This decreases detection rate of an IDS.

 This makes the intrusion detection architecture more complex and malfunction.

3.3.1.1 Principal Component Analysis (PCA)

In order to overcome above issues, this work uses PCA technique to transform

original numeric features of dataset into PCA space. In past, the PCA has been use for

feature reduction in several different areas; face recognition, hand written text

recognition, image compression and intrusion detection. This is a common technique

for finding patterns in data of high dimension.

Researchers used PCA to transform raw features into principal features space

and select the features based on their sensitivity. The sensitivity is determined by the

values of eigenvalues. But here, few other problems are raised:

 Which features are selected?

 How they are selected?

 If features are selected based on the values of eigenvalues than there are chances

to lose some important features that are more sensitive for the classifier. If all features

are selected based on the values of eigenvalues than it will increases training

overhead as well as increases architecture complexity that leads towards overall

performance degradation. Therefore, This research work uses PCA for feature

transformation and organization into new principal features space. This makes the

 91

features more visible, organized, arranged and sensitive that directly impact on the

performance of intrusion detection mechanism. The PCA algorithm flow applied for

feature transformation and organization is shown in Figure 3.2.

Figure 3.2 PCA algorithm flow

The PCA algorithm used in the pre-processing process for feature transformation

and organization is shown in Figure 3.3.

 92

PCA Algorithm:

Suppose are NX1 vectors. Where M=38.

 Step 1: Find Mean:

Step 2: Calculate deviation from mean: Subtract the mean:

Where i=1, 2,…………………………… M.

Step 3: Find covariance matrix C:

From the matrix A= [] (N*M Matrix),

compute C:

 Φ

 Φ

Step 4: Compute the eigenvalues of

Step 5: Compute the eigenvectors of

Since C is symmetric, form a basis,

 (i.e. any vector x or actually , can be written as a linear combination of the

eigenvectors):

Step 6: Arranged eigenvalues and eigenvectors in descending order.

Step 7: The dimensionality reduction step (based on largest eigenvalues) is skipped as the

selection of principal components is dine using GA.

Figure 3.3 Algorithm for Principal Component Analysis

 93

A set of features from PCA feature space obtained after applying PCA is shown in

Table 3.3.

Table 3.3 Feature set from PCA space

F1 F2 F3 F4 F5 F6 F7 F8

-2660.47 -310.209 -456.64 -3.68476 -4.04363 -0.63091 0.063043 -0.00053

F9 F10 F11 F12 F13 F14 F15 F16

-0.00116 -1.25E-05 0.002827 -0.00243 0.000403 0.000198 0.001066 0.000125

F17 F18 F19 F20 F21 F22 F23 F24

0.00010 0.000186 0.000122 -0.00062 1.78E-05 -0.00013 -4.18E-05 0.000115

F25 F26 F27 F28 F29 F30 F31 F32

1.89E-05 -2.47E-05 -6.49E-05 6.79E-06 4.57E-06 9.75E-08 -9.33E-06 1.59E-06

F33 F34 F35 F36 F37 F38

8.62E-06 1.55E-11 -1.70E-15 6.27E-16 -3.34E-16 1.27E-16

After feature transformation and organization. The next phase is the feature subset

selection. The recent approaches use the PCA to project features space to principal

feature space and select features corresponding to the highest eigenvalues, but the

features corresponding to the highest eigenvalues may not have the optimal sensitivity

for the classifier because of ignoring many sensitive features. Instead of using

traditional approach of selecting features with the highest eigenvalues such as PCA, a

Genetic Algorithm (GA) is applied to search the principal feature space that offers a

subset of features with optimal sensitivity and the highest discriminatory power.

GA method is used to determine subset of feature. An appropriate feature set

helps to build efficient decision model as well as to reduce the population of the

feature set. Feature reduction will speed up the training and the testing process for the

attack identification system considerably but this technically is a compromise

between training efficiency (few PCA components) and the accurate results (a large

 94

number of PCA components). So, there is no any effective scheme to select an

appropriate set of features in the PCA space in the field of intrusion detection. This is

the main problem of feature selection from the principal component space. This

problem confuses the classifier or analysis engine when it deals with redundant and

irrelevant features.

Advantages

 Training and testing efficiency (few principal components)

 Accurate results (a large number of components)

 Simplify the classifier architecture

Disadvantages

 Selecting some percentage of the top principal components may lose some

sensitive features that have higher discriminatory power for the analysis

engine.

 Selecting a large number of principal components decrease training and

testing efficiency. Hence, it increases memory and computational

overheads.

 The classifier architecture becomes more complex as the number of

components increases.

3.3.2 Feature Subset Selection

In order to overcome the above issues, GA is applied to search the principal

components space so that an optimal subset of features are selected. This is my main

contribution that positively impact on the performance of intrusion detection analysis

engine.

 This section describes feature subset selection process using GA. The block

diagram of feature selection is shown in Figure 3.4 and Figure 3.5.

 95

 Figure 3.5 Feature subset selection based on GA+MLP

Figure 3.4 Feature subset selection based on GA+SVM

3.3.2.1 Genetic algorithm

Genetic algorithm operates iteratively on a population of structures, each one of

which represents a candidate solution to the problem at hand, properly encoded as a

string of symbols (e.g., binary). A randomly generated set of such strings forms the

initial population from which the GA starts its search.

Three basic genetic operators guide this search such as selection, crossover, and

mutation. The genetic search process is iterative consisting of evaluation, selection,

and recombination of strings. This continues to iterate in the population (generation)

until some termination condition is reached. The GA algorithm flow is shown in

Figure 3.6. The general GA algorithmic steps are given in Figure 3.7.

GA SVM PCs

GA MLP PCs

 96

Create initial a

population
Evaluate population

 is end of evaluation

reached?
Best individuals

Selection

crossover

Mutation

Generation of new

population

Start Results

Figure 3.6 Genetic algorithm flow

GA Algorithm:

Step 1. [Start]

Generate random population of n chromosomes

Step 2. [Fitness]

Evaluate the fitness f(x) of each chromosome x in the population

a. [New population] Create a new population by repeating following steps:

b. [Selection] Select two parent chromosomes from a population

c. [Crossover] With a crossover probability cross over the parents to form a new offspring

(children). If no crossover was performed, offspring is an exact copy of parents.

d. [Mutation] With a mutation probability, mutate new offspring at each locus (position in

chromosome).

e. [Accepting] Place new offspring in a new population

Step 3. [Replace]

Use new generated population for a further run of algorithm

Step 4.

[Test] If the end condition is satisfied, stop, and return the best solution in current population

Step 5.

 [Loop] Go to step 2

Figure 3.7 Genetic algorithm

 97

Evaluation of each string is based on a fitness function that is problem-dependent.

It determines which of the candidate solutions are better. This corresponds to the

environmental determination of survivability in natural selection. Selection of a

string, which represents a point in the search space, depends on the string‟s fitness

relative to those of other strings in the population. It probabilistically removes, from

the population, those points that have relatively low fitness. Mutation, as in natural

systems, is a very low probability operator and just flips a specific bit. Mutation plays

a pivotal role of restoring lost genetic material. Crossover in contrast is applied with

high probability. It is a randomized yet structured operator that allows information

exchange between points. Its goal is to preserve the fittest individuals without

introducing any new value.

In brief, selection probabilistically filters out solutions that perform poorly,

choosing high performance solutions to concentrate on or exploit. Crossover and

mutation, through string operations, generate new solutions for exploration. Given an

initial population of elements, Genetic Algorithms use the feedback from the

evaluation process to select fitter solutions, eventually resulting into a population of

high-performance solutions. Genetic algorithms do not guarantee a global optimum

solution. However, they have the ability to search through a very large search spaces

and achieve utmost optimal solutions fast. Their ability for fast convergence is

explained by the schema theorem (i.e., short-length bit patterns in the chromosomes

with above average fitness, get exponentially growing number of trials in subsequent

generations) (Sun et al. 2004) and (Goldberg 1989).

a). Feature selection encoding

A simple encoding scheme is used where the chromosome is a bit string whose length

is determined by the number of principal components. Each principal component,

computed using PCA, is associated with one bit in the string. If the i
th

 bit is 1, then the

i
th

 principal component is selected, otherwise, that component is ignored. Each

chromosome thus represents a different subset of principal components.

 98

Table 3.4 A sample of five chromosomes (CHR)

CHR Principal components

1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2

3 1 3 1 3 1 3 1 3 1 3 1

4 3 4 3 4 3 4 3 4 3 4 3

5 1 5 1 5 1 5 1 5 1 5 1

b). Feature subset fitness evaluation

The main goal of feature subset selection is to use less features to achieve the same or

better performance. Therefore, the fitness evaluation contains two terms: (i) accuracy

and (ii) the number of features selected. The performance of SVM and MLP is

estimated using a validation dataset which guides the GA search. Each feature subset

contains a certain number of principal components. If two subsets achieve the same

performance, while containing different number of principal components, the subset

with fewer principal components is preferred. Between accuracy and feature subset

size, accuracy is the major concern. Fitness function is used to demonstrate the

combination the two terms:

fitness = 10
4
Accuracy + 0.5Zeros (3.1)

Where Accuracy corresponds to the classification accuracy on a validation set for

a particular subset of principal components and Zeros corresponds to the number

principal components not selected (i.e., zeros in the chromosome). The Accuracy term

ranges roughly from 0.50 to 0.99, thus, the first term assumes values from 5000 to

9900. The Zeros term ranges from 0 to L −1 where L is the length of the

chromosome, thus, the second term assumes values from 0 to 37 (L=38). Based on the

weights that have been assigned to each term, the Accuracy term dominates the fitness

value. This implies that individuals with higher accuracy will outweigh individuals

 99

with lower accuracy, no matter how many features they contain. On the whole, the

higher the accuracy is, the higher the fitness is. Also, the fewer the number of features

is, the higher the fitness is.

Selecting the weights for the two terms of the fitness function is more objective

dependent than application dependent. For intrusion classification analysis among

many factors, there is need to find the best balance between model compactness and

performance accuracy. Under some scenarios, the best performance is preferable, no

matter what the cost might be. If this is the case, the weight associated with the

Accuracy term should be very high. Under different situations, compact models are

favoured more over accuracy, as long as the accuracy is within a satisfactory range. In

this work, the selection of a higher weight are better for the Zeros term.

In this research work, four different experiments performed using GA and the

classifiers (SVM and MLP). The fitness is calculated as follows;

fitness = 10
4

(.99) + 0.5 (28) = 9900+14=9914 (3.2)

Table 3.5 Fitness function

Experiment#
Time taken by

experiment

No of selected

PCs

No of non

selected PCs
Accuracy Fitness

1-SVM 48 hrs 10 28 0.99 9914

2-MLP 72 hrs 12 26 0.99 9913

3-MLP 78 hrs 20 18 0.98 9808

5-MLP 83 hrs 27 11 0.99 9911

 100

c). Initial population

In general, the initial population is generated randomly, (e.g., each bit in an individual

is set by flipping a coin) (Srinivas M and Patnaik L 1995). This, however, would

produce a population where each individual contains approximately the same number

of 1‟s and 0‟s on the average. To explore subsets of different numbers of features, the

number of 1‟s for each individual is generated randomly. Then, the 1‟s are randomly

scattered in the chromosome. In all experiments, this approach used a population size

of 50 and 100 generations. In most cases, the GA converged in less than 100

generations.

d). Selection

Selection is a genetic operator that chooses chromosomes from the current

generation‟s population for inclusion in the next generation‟s population. Before

making into the next generation‟s population, selected chromosomes may undergo

crossover and mutation. There are five selection operators; roulette, tournament, top

percent, best and random (Eshelman 1989).

 Roulette: The chance of a chromosome getting selected is directly

proportional to its fitness (or rank). This is where the idea of survival of the

fittest comes into play. There is also the option to specify whether the chance

of being selected is based on fitness or on rank.

 Tournament: it uses roulette selection N times (the Tournament Size”) to

produce a tournament subset of chromosomes. The best chromosome in this

subset is then chosen as the selected chromosome. This method of selection

applies addition selective pressure over plain roulette selection. There is also

the option to specify whether the chance of being selected is based on fitness

or on rank.

 Best: Selects the best chromosome (as determined by the lowest cost of the

training run). If there are two or more chromosomes with the same best cost,

one of them is chosen randomly.

 Random: Randomly selects a chromosome from the population.

 101

 Top Percent: Randomly selects a chromosome from the top N percent (the

Percentage”) of the population.

This research work used top percent selection method in experiments because it

gives better performance as compared to other selection operators.

Table 3.6 Selection method

Experiment#
Time taken by

experiment

No of

selected PCs
Selection method Accuracy Fitness

1-SVM 48 hrs 10 Top percent 0.99 9914

2-MLP 72 hrs 12 Top percent 0.99 9913

3-MLP 78 hrs 20 Roulette 0.98 9808

5-MLP 83 hrs 27 Roulette 0.99 9911

e). Crossover

There are three fundamental crossovers types: one-point crossover, two-point

crossover, and uniform crossover. For one-point crossover, the parent chromosomes

are divided at a common point chosen randomly and the resulting sub-chromosomes

are swapped. For two-point crossover, the chromosomes are thought of as rings with

the first and last gene connected (i.e., wrap-around structure). In this case, the rings

are divided at two common points chosen randomly and the resulting sub-rings are

swapped. Uniform crossover is different from the above two schemes. In this case,

each gene of the offspring is selected randomly from the corresponding genes of the

parents (Bebis et al. 2000). For simplicity, this work used one-point crossover here.

The crossover probability used in all of my experiments was 0.9.

 102

e). Mutation

Mutation is a genetic operator that alters one or more gene values in a chromosome

from its initial state. This can result in entirely new gene values being added to the

gene pool. With these new gene values, the Genetic Algorithm may achieve a better

solution than the former. Mutation is an important part of the genetic search as it

helps to prevent the population from stagnating at any local optima. Mutation occurs

during evolution according to the probability defined. This probability should usually

be set fairly low. If it is set too high, the search will turn into a primitive random

search (Zorana et al. 2007). This work uses the traditional mutation operator which

just flips a specific bit with a very low probability. The mutation probability used in

all of my experiments was 0.01.

e). Termination

The GA generational process is repeated until a termination condition has been

reached. There are many conditions on which GA process can be stopped (Bebis et al.

2000) and (Sun et al. 2004). For example;

 Population Convergence – It stops the evolution when the population is

deemed converged. The population is deemed converged when the average

fitness across the current population is less than the Threshold” percentage

away from the best fitness of the current population.

 Gene Convergence – It stops the evolution when the ‘percentage’ of the genes

that make up a chromosome are deemed converged. A gene is deemed

converged when the average value of that gene across all of the chromosomes

in the current population is less than the ‘threshold’ percentage away from the

maximum gene value across the chromosomes.

 Fitness Convergence – It stops the evolution when the fitness is deemed as

converged. Two filters of different lengths are used to smooth the best fitness

across the generations. When the smoothed best fitness from the long filter is

less than the Threshold” percentage away from the smoothed best fitness from

the short filter, the fitness is deemed as converged and the evolution

terminates. Both filters are defined by the following equations.

 103

y(0) = 0.9 * f(0) if the objective is set to maximize (3.3)

y(0) = 1.1 * f(0) if the objective is set to minimize (3.4)

y(n) = (1- b) f(n) + b y(n - 1) (3.5)

where n is the generation number, y(n) is the filter output, y(n-1) is the previous

filter output, and f(n) is the best cost. The only difference between the short and long

filters is the coefficient b. From the above equations, the higher the b, the more that

the past values are averaged in. The short filter uses b = 0.3 and the long filter uses b

= 0.9.

 Fitness Threshold - Stops the evolution when the best fitness in the current

population becomes less than the fitness threshold and the objective is set

to minimize the fitness. This work uses the threshold value as 0.001.

Table 3.7 Parameters used for genetic feature subset selection

S.No Genetic operator(s) Genetic operator value(s)

1 Maximum generation 100

2 Chromosomes 50

3 Selection method Top percent (10%)

4 Crossover One-point

5 Crossover probability 0.9

6 Mutation probability 0.01

7 Population size 50

8 Termination type Fitness threshold (0.001)

 104

S.No Genetic operator(s) Genetic operator value(s)

9 Architecture MLP, SVM

10 Training algorithm Online backpropagation

 The number of features selected during experiments is shown in Table 3.8.

Table 3.8 GA features subset selection based on MLP and SVM

Feature No SVM(10) MLP(12) MLP(20) MLP(27)

1 Х Х √ √

2 Х √ √ Х

3 √ √ √ Х

4 √ Х Х √

5 Х Х √ √

6 Х Х Х √

7 Х Х √ √

8 Х Х √ √

9 Х √ Х Х

10 Х Х √ √

11 Х √ √ Х

12 √ √ √ √

13 Х Х Х Х

14 Х Х Х √

15 Х √ √ √

16 Х Х Х Х

17 Х √ Х √

18 Х √ Х Х

19 Х Х √ Х

20 Х Х √ √

 105

Feature No SVM(10) MLP(12) MLP(20) MLP(27)

21 Х Х Х √

22 √ Х Х √

23 Х Х Х Х

24 Х √ √ Х

25 Х Х √ √

26 √ Х Х √

27 √ √ Х √

28 √ Х √ √

29 Х Х √ √

30 Х Х Х Х

31 Х Х Х √

32 √ Х Х √

33 Х Х √ √

34 √ √ Х √

35 Х Х Х √

36 √ √ √ √

37 Х Х √ √

38 Х Х √ √

This research work found an optimized subset of features with ten features from

the above four subsets of features. Consequently, this work used a subset of features

with ten principal components with different index values. A sample of final subset of

features for ten records is shown in Table 3.9.

 106

Table 3.9 A sample of final subset of features for ten records

Sr Principal components indexes selected based on genetic algorithm

No 3 4 12 22 26 27 28 32 34 36

1
-310.209 -456.64 -0.00116 0.0028 -0.00243 0.00106 0.0010 0.00018 0.00011 -6.49E-5

2
-310.209 -456.64 -0.00116 0.00282 -0.00243 0.00106 0.0010 0.00018 0.0011 -6.49E-05

3
-960.96 268.699 0.26708 0.77291 0.01081 -0.0144 -0.060 0.00072 -0.0476 -0.00198

4
442.687 219.551 0.13768 -0.07388 -0.04755 -0.0302 -0.097 -0.0024 -0.0173 0.00040

5
-299.009 275.682 0.32907 0.70899 0.07318 0.01681 -0.061 0.01833 -0.0413 0.00645

6
-310.209 -456.64 -0.00116 0.00282 -0.00243 0.00106 0.0010 0.00018 0.00011 -6.49E-05

7
485.004 274.342 -0.02324 -0.12817 0.10374 0.01239 0.0067 0.00014 -0.0102 0.00409

8
517.0306 244.1791 0.121362 -0.14683 -0.04805 0.00237 -0.097 0.00345 0.00243 0.000388

9
618.482 255.107 -0.24427 -0.00891 0.037715 0.00984 -0.003 -0.0053 0.00075 -0.00093

10
-310.209 -456.64 -0.00116 0.002827 -0.00243 0.00106 0.001 0.0001 0.0001 -6.49E-05

3.4 Classification Approach

This work used two types of approaches for intrusion detection; multilayered

perceptron (MLP) and Support Vector Machine (SVM). These two architectures are

very popular in different areas of research; image processing, character recognition,

speech recognition, bioinformatics, data classification, intrusion detection and

machine translation (Sun et al. 2004). The MLP with one hidden layer is equivalent to

SVM. In this way, the performance of both architectures can be compared in terms of

their discriminatory power and efficiency to classify network activity into normal and

intrusive. Both the architectures will be described in details in Chapter 4.

 107

3.4.1 MLP Classifier

There are two important characteristics of the multilayer perceptron (MLP). First, its

processing elements (PEs)/neurons are nonlinear. The nonlinearity functionality is

provided by the functions; logistic and hyperbolic tangent. Second, they are massively

interconnected such that any element of a given layer feeds all the elements of the

next layer (Ahmad et al. 2007).

Advantages

The following are some advantages of using MLP in my problem.

 MLPs are very powerful pattern classifiers.

 With one or two hidden layers they can approximate virtually any input-

output map.

 They showed better performance to other classifier in difficult problems.

 They efficiently use the information contained in the input data.

Disadvantages

The following are some disadvantages of MLP.

 They need lots of input data. This can slow training process.

 The setting of parameters can be tricky for difficult problem.

 Stuck in local minima

3.4.2 SVM Classifier

SVMs are primarily two-class classifiers that have been shown to be an efficient and

possess more systematic approach to learn linear or non-linear decision boundaries

(Vapnik V. 1995) and (Burges 1998). Their key characteristic is the mathematical

tractability and geometric interpretation. A rapid growth of interest in SVMs has

been observed over the last few years, demonstrating remarkable success in fields as

diverse as text categorization, bioinformatics, and computer vision (Cristianini et al.

2002). Specific applications include text classification (Tong et al. 2001), speed

 108

recognition (Smith N. and Gales M. 2002) , gene classification (Brown et al. 1999),

and webpage classification(Yu H et al. 2002).

This work used SVM using kernel adatron algorithm. The kernel adatron maps

inputs to a high dimensional feature space, and then optimally separates data into their

respective classes by isolating those inputs that fall close to the data boundaries (Yu et

al. 2008). Therefore, kernel adatron is especially effective in separating sets of data

that share complex boundaries. SVMs are generally useful for classification problems.

Advantages

The following are some advantages of using SVM in my problem.

 SVMs produce excellent results in classification problems.

 SVM performs better in term of not over generalization. SVM control over

training by maximizing the margin.

 There are no parameters specific to the SVM that needs to be configured.

 Some other features of SVMs are the use of kernels, the absence of local

minima, the sparseness of the solution and the capacity control obtained by

optimizing the margin.

Disadvantages

The following are some disadvantages of SVM.

 SVMs assign one gaussian function for each input exemplar in the training

set. This can slow training process.

 SVMs are not suitable for huge datasets.

3.5 Training the System

During the training of the system, both input patterns and desired outputs related to

each input exemplar. The aim of the system‟s training is minimizing the difference

between the output produced by the system and the desired output. In order to achieve

this goal, weights are updated by carrying out certain steps known as training. First

 109

of all, 20,000 samples of network connections are selected randomly from KDD cup

dataset. The selected dataset consists of 12,800 (64%) normal and 7200 (36%)

intrusive ones (DOS, Probe, U2R and R2L). After that, the selected dataset is

transformed into another space (the PCA space). Then, GA is applied for the selection

of optimal features subset as described in section pre-processing. The resultant dataset

is further divided into two parts; training and production datasets.

3.5.1 Training Dataset

The training dataset consists of five thousand (5000) labeled connections (network

records with label as normal or intrusive) that are randomly selected from 20,000

connections. Further, the training dataset (five thousand) is divided into three parts; (i)

cross validation dataset, (ii) test dataset and (iii) training dataset. This section

describes each of these datasets.

3.5.1.1 Cross-validation Dataset

Cross-validation is highly recommended method for training the system. This method

monitors the error on an independent set of data and stops training when this error

begins to increase. The size of dataset for cross-validation is recommended as

follows:

 Normal generalization protection specifies that 20% of data should be for

cross validation.

 High generalization protection specifies that 40% of data should be for

cross validation.

Hence, This work used one thousand (1000) dataset for cross-validation.

 110

3.5.1.2 Testing Dataset

The testing dataset is used to test the performance of the system. Once the system is

trained the weights are then frozen, the testing dataset is fed into the system and the

system output is compared with the desired output. In this work, 30 % of dataset

(5000) that is fifteen hundred (1500) is used to test the performance of trained system.

3.5.1.3 Training Dataset

The training dataset is used to train the system. The 50% of the dataset (5000) that is

2500 is used to train the system. The training of the system (MLP & SVM) should be

stopped when the system has learned the task. There are no direct indicators that

measures how and when to stop the training of the system. However, there are some

ways on the bases of which the training process can be stopped. These methods are

explained in next section.

3.5.2 Training Stop Criteria

There are three common methods; (i) Number of iterations, (ii) Mean Squared Error

(MSE), and (iii) Generalization to stop the training of the system (Principe et al.

2000). This section explains each of these methods.

3.5.2.1 Number of Iterations

First method is the simplest way to stop the training phase. This uses a predefined

value. It does not use any information or feedback from the system before or during

training. When the number of iterations is reached at a predefined value, there is no

guarantee that the learning system has found coefficients that are close to the optimal

values.

 111

3.5.2.2 Mean Squared Error (MSE)

This method uses a recursive analysis of the output MSE to stop the training. There

are two common approaches to stop training that are based on MSE.

 The training is set to terminate when the MSE drops to some threshold.

 The training is set to terminate when the change in the error between epochs is

less than some threshold.

Figure 3.8 Behavior of MSE for training and test datasets

Stop criteria are all based on monitoring the mean square error. Monitor the MSE

for the test set, as in cross validation. One should stop the learning when error in the

test set starts increasing as shown in Figure 3.8. This is where the maximum

generalization takes place.

3.5.2.3 Generalization

The above two methods did not deal with the trouble of generalization, that is, how

well the learning system performs with data that does not belong to the training set.

Recent development in learning theory indicate that after a critical point an MLP

trained with backpropagation will continue to do better in the training set, but the test

set performance will begin to deteriorate. This process is called overtraining. One

method to solve this problem is to stop the training at the point of maximum

generalization. This method is called early stopping or stopping with cross-validation.

 112

It has been experimentally verified that the training error always decreases when the

number of iterations is increased as shown in Figure 3.9. If the error is plot in a set of

data with which the network was not trained (the validation set), than the error

initially decreases with the number of iterations but eventually starts to increase

again. Therefore, training should be stopped at the point of the smallest error in the

validation set and when the error in the cross-validation set starts to increase. This

method has one advantage and one disadvantage.

 This provides an accurate stopping point.

 The cross-validation dataset decreases the size of the training dataset.

Figure 3.9 Cross validation vs. training dataset

This method is recommended for real world applications. Even though, the MSE

is a good overall measure of whether a training run was successful, sometimes it can

be misleading (Principe et al. 2000). This is particularly true for classification

problems.

3.5.2.4 Confusion matrix

This work deals the classification problem and there is a chance of misleading.

Hence, in this research work, a confusion matrix is used to resolve this problem of

misleading and to verify the training. The confusion matrix tallies the results of all

exemplars of the last epoch and computes the classification percentages for every

output vs. desired combination.

 113

There are four parameters in a confusion matrix; (i) true positive, (ii) false positive,

(iii) true negative , and (iv) false negative as shown in Table 3.10.

 True positives: when system classifies normal as normal packet then it will be

called as true positive. True positives indicate correctly prediction of normal

packets.

 False positives: when system classifies normal as intrusive packet then it will

be called as false positive. False positives indicate incorrectly prediction of

normal packets.

 True negative: when system classifies intrusive as intrusive packet then it will

be called as true negative. True negatives indicate correctly prediction of

intrusive packets.

 False negative: when system classifies intrusive as normal packet then it will

be called as false negative. False negatives indicate incorrectly prediction of

intrusive packets.

Table 3.10 A confusion matrix

 Normal Attack

Normal

True Positive

Normal as normal

Correctly predicted

False Positive

Normal as intrusive

Minimize

Attack

False Negative

Intrusive as Normal

Minimize

True Negative

Intrusive and Intrusive

Correctly predicted

3.6 Testing the System

When the training is completed then weights of the system are frozen and

performance of the system is evaluated. Testing the system involves two steps; (i)

verification step, and (ii) generalization step.

 114

3.6.1 Verification Step

In verification step, system is tested against the data which are used in training. Aim

of the verification step is to test how well trained system learned the training patterns

in the training dataset. If a system was trained successfully, outputs produced by the

system would be similar to the actual outputs. This work used 30% of the training

dataset (5000) that is 1500.

3.6.2 Generalization Step

In generalization step, testing is conducted with data which is not used in training.

Aim of the generalization step is to measure generalization ability of the trained

network. After training, the system only involves computation of the feedforward

phase. For this purpose, a production dataset is used that has input data but no desired

data. This research work uses a dataset of fifteen thousand (15,000) as a production

dataset. Further, this technique is also tested on total dataset (20,000) that consist of

both training dataset and production dataset. Table 3.11 shows statistics of the dataset

used for experiments.

Table 3.11 Statistics of dataset used in experiments

S.No Dataset(s) Number of network connections

1
Selected dataset (64%

normal and 36% intrusive)

20,000 network connections are selected

randomly from KDD cup dataset, in which 12800

are normal and 7200 are intrusive connections.

2 Training dataset 5,000 connections are randomly selected

3 Cross-validation dataset 1,000 connections (20 % of 5000)

4 Testing dataset 1,500 connections (30% of 5000)

5 Production dataset 1,5000

 115

3.7 Summary

This chapter describes the five-phased methodology incorporated in my research.

Explains different sections of applied methodology: (i) selection of dataset: There are

three ways of selecting dataset for training and testing purpose such as real, sanitized

and simulated. However, due to security issues and cost ineffectiveness and

complexity this research work used MIT KDD cup, as it is considered a benchmark in

the intrusion detection evaluation world. (ii) Pre-processing of dataset by the

application of PCA and GA. Searching of PCA feature space using GA space for the

selection of optimal feature subset selection is my principal contribution, which has a

magnanimous effect on the overall performance (accuracy improvement,

simplification of the architecture and minimizes training and testing overheads) of the

intrusion analysis engine. The necessity of the preprocessing of the dataset is of prime

importance for the classifier to discriminate data into classes such as normal and

intrusive. (iii) Classification Approach: this technique used MLP and SVM as a

classifier to classify network activity into normal and intrusive. (iv) Training the MLP

and SVM classifier using the back-propagation algorithm and kernel adatron

respectively. (v) Testing: Post-training, the system‟s performance is evaluated by

freezing the weights of the system and this is done in two steps (a) verification and (b)

generalization.

CHAPTER 4

SYSTEM DESIGN AND ARCHITECTURE

4.1 Introduction

This chapter describes the proposed model with its basic architecture via block

diagram, and then details of each part or block of its main architecture. Explains

features description of the dataset used for experiments, feature transformation

process using PCA and optimal features subset selection using GA. The chapter also

describes the details of classification architectures with basic algorithms and

mathematical foundation of multilayered perceptron (MLP) and Support Vector

Machine (SVM). Thus, the chapter explains system implementation, and the basic

parameters used during training and testing followed by the description of the

contributions and summary.

4.2 Proposed Model

The proposed model consist of different parts; dataset used for experiments, feature

transformation and organization, optimal feature subset selection, classification

architectures, implementation, training and testing, and results comparison. The block

diagram of proposed model is shown in Figure 4.1

 117

Figure 4.1 Block diagram of proposed model

4.2.1 Dataset used for Experiments

This research work used KDD cup 99 dataset for my experiments. The selection of

this dataset is due to its standardization, content richness and it helps to evaluate my

results with existing researches in the area of intrusion detection. This has already

been described in Chapter 3 . The raw dataset consists of 41 features.

 Where n=41 (4.1)

4.2.2 Dataset Pre-processing for Experiments

After selection of the dataset, the raw dataset is pre-processed so that it can be given

to the selected classifiers; MLP and SVM. The raw dataset is pre-processed in three

ways; (i) discarding symbolic values, (ii) feature transformation and organization

using PCA, and (iii) optimal features subset selection using GA.

 118

5.2.2.1 Discarding Symbolic Values

In first step of pre-processing, three symbolic values (e.g. udp, private & SF) are

discarded out of 41 features of the dataset. The resultant features are;

 Where m=38

(4.2)

4.2.2.2 Feature Transformation and Organization

In second step of pre-processing, PCA has applied on 38 features of the dataset.

Mostly, PCA is used for data reduction, but here, PCA is used for feature

transformation into principal components feature space and then organized principal

components in descending order.

 Where l=38

(4.3)

4.2.2.3 Optimal Feature Subset Selection

In third step of pre-processing, GA is applied for optimal features subset selection

from principal components search space. Four different experiments are performed as

described in Chapter 3 and selected a subset of ten features that indicated better

performance as compared to others. The aim is to select minimum features that

produce optimal results in accuracy. This definitely impact on overall performance of

the system.

 119

 Ten different principal components are selected using GA process

(4.4)

After features subset selection, this approach used this dataset for training and

testing in the experiments. The features are reduced to 10 from the 41 raw features

set.

4.2.3 Classification Architectures

This work used two classifier approaches; MLP and SVM as an analysis engine for

intrusion classification into normal and intrusive. These both approaches are

commonly used in different areas due to their effective discrimination power as

described in chapter 3. This section explains the MLP and the SVM architectures

applied for experiments.

4.2.3.1 Multilayer Perceptron (MLP)

A MLP is a feed forward neural network that maps sets of input data onto a set of

appropriate output. Here, a MLP architecture is used that consists of three layers;

input, hidden and output. In this architecture, hidden layer and output layer consist of

neurons (processing elements) and each neuron has a nonlinear activation function.

The layers are fully connected from one layer to the next. MLP is an amendment of

the standard linear perceptron, which can discriminate data that is not linearly

separable. The MLP architecture, used in this work is shown in Figure 4.2.

 120

1

2

3

4

38

1

2

22

1

1

2

3

4

10

Input Layer
Hidden

Layer

Output

Layer

MLP applied for intrusion analysis

Figure 4.2 MLP architecture

MLP network used to make basic input-output mapping. MLP network is trained

in such way that, it produces value of 1 if the presented input pattern is intrusive and 0

if the presented input pattern is normal network packet. This section describes the

main components; layers and synapses of above MLP architecture. The architecture

consists of three layers; input, hidden and output that are connected through synapses.

a). Input Layer

The input layer takes input from the input file that contains dataset for training of the

network. The row of the dataset is called a pattern representing an instance of the

input dataset. The neural network reads and elaborates sequentially all the input rows,

and for each one it generates an output pattern representing the outcome of the entire

process. For this purpose, an axon is used that has its activation function as;

 121

 Where input, associated weight and output of input layer is

(4.5)

b). Hidden Layer

This model uses one hidden layer in MLP architecture that represents a good non-

linear element of the neural network. The TanhAxon is used as hidden layer in the

architecture. It can also be used to build whatever layer (hidden or output) of a neural

network. This hidden layer takes inputs from the outputs of the input layer, and

applies its activation function. Then, it sends its output to the output layer. The

TanhAxon applies a bias and tanh function to each neuron in the layer. This will

squash the range of each neuron in the layer to between -1 and 1. Such nonlinear

elements provide a network with the ability to make soft decisions. For this purpose,

the MLP used TanhAxon as shown in Figure 4.3 that has its activation function as;

 Where
 is the scaled and offset activity inherited from the

LinearAxon and parameter represent slope which is not adaptive

(4.6)

Figure 4.3 Activation function of Tanh

 122

c). Output Layer

The output layer allows a neural network to write output patterns in a file that are

used for analysis of intrusion. For this purpose, MLP used TanhAxon that has already

described above in hidden layer section.

d). Synapses

The synapse represents the connection between two layers, permitting a pattern to be

passed from one layer to another. The synapse is also the „memory‟ of a neural

network. During the training process the weight of each connection is modified

according the learning algorithm. The layers are fully connected with each other. For

this purpose FullSynapse object is used that connects all the nodes of a layer (axon)

with all the nodes of the other layer (axon), as showed in Figure 4.2.

Since each axon represents a vector of PEs, the FullSynapse simply performs a

matrix multiplication. For each PE in its output axon, the FullSynapse accumulates a

weighted sum of activations from all neurons in its input axons. The activation

function is described here.

 Where is a connection weight linking PEj to PEi . Time t is

discrete, and it relates to one simulation step and discrete time delay is

d.

(4.7)

e). Training algorithms

This work used backpropagation algorithm that is one of the most popular supervised

learning algorithms (Ahmad et al. 2008). The algorithm consists of two phases:

forward phase and backward phase. In the forward phase, first, the weights of the

network are randomly initialized. Then, the input signals are propagated through the

 123

network. Afterwards, the output of the network is calculated and compared to the

desired value. In the end of the forward phase, the error of the network is calculated.

Error of the output neuron i (ei) is calculated by the formula:

 Where di is the desired response and yi is the output produces by

the neural network in response to the input xi.

(4.8)

Aim of the backpropagation algorithm is to reach global minimum value on the

error surface as shown in Figure 4.4.

Figure 4.4 Global and local minimum in error surface

In backward phase, calculated error signal is propagated backward and in order to

minimize the error, weights are updated. Change in weights can be calculated by

gradient descent learning rule .According to the gradient descent learning rule,

correction applied to the weight wji at the iteration n is denoted by

 , and calculated by

 124

Where is a numerical constant (learning-rate parameter of the

backpropagation algorithm) and is local gradient.

(4.9)

Local gradient of output neurons is equal to the product of the derivative of

activation function,), and error signal, , and defined by

 Where error signal is and is local gradient.

(4.10)

Local gradient for neurons in hidden layer is defined by

 (4.11)

Learning rate parameter, , is used to reduce the training time. But if the learning

rate parameter is chosen too high (e.g. 0.9), algorithm oscillate between local

minimums, and may not achieved to reach the global minimum, whereas selecting

learning rate too small results in long training periods.

One way to speed up the learning when learning rate is chosen small or avoid

oscillation between local minimums when learning rate is chosen to big is to utilize a

parameter, momentum. By introducing the momentum parameter, change in weight,

 wji(n), is made dependent to the previous weight change, wji(n-1). Modified

backpropagation algorithm which uses momentum, , is given;

 (4.12)

After the training was completed, connection weights are frozen. Afterwards, in

order to validate whether the neural network was trained sufficiently or not, a test set,

which is not part of the training set, was presented to the trained network and its

 125

performance is evaluated. Backpropagation algorithm is simple to implement.

However, when dealing with difficult learning tasks, training time of the

backpropagation networks can be lengthy and even algorithm may not converge to the

desired error rate. The pseudo code of the backpropagation algorithm is given in

Figure 4.5.

Backpropagation Algorithm:

Input: training-examples, η, Ø, ,

Output: trained network

Initialize all weights of ;

for each pair < > training-examples do

Step 1 Forward phase;

Present the input to the input layer of the ;

for each unit do

calculate the output of unit ;

Step 2 Backward phase:

Calculate errors:

for each unit output layer, calculate its error do

 ;

for each hidden unit , calculate its errors do

 ;

 Update weights:

for each weight net do

 ;

 ;

Figure 4.5 Backpropagation Algorithm

 126

There is another algorithm used in my implementation known as Levenberg-

Marquardt (LM) algorithm that is one of the most appropriate higher-order adaptive

algorithms used for minimizing the MSE of a neural network (Hagan and Menhaj

1994). It can be used to update the weights in the network just as backpropagation

algorithm. It is reputably the fastest algorithm available for such training. The

Levenberg-Marquardt algorithm is designed specifically to minimize the sum-of-

squares error function, using a formula that assumes that the underlying function

modelled by the network is linear. A move is only accepted if it improves the error,

and if necessary the gradient-descent model is used with a sufficiently small step to

guarantee downhill movement. The weight update vector is calculated as

 (4.13)

Where is the vector of errors, is the learning rate parameter, and J(x) is the

Jacobian matrix that is the matrix of partial derivatives of the errors with respect to

the weights. Jacobian matrix can be calculated with the following formula:

(4.14)

Levenberg-Marquardt outperforms the basic backpropagation and its variations

with variable learning rate in terms of training time and accuracy. However the

computation and memory requirements of the algorithm are high.

4.2.3.2 Support Vector Machine (SVM)

Support vector machines (SVMs) are a very different type of classifier that have

attracted a great deal of attention recently due to the novelty of the concepts that they

 127

bring to pattern recognition, their strong mathematical foundation, and their excellent

results in practical problems. There are two motivating concepts behind SVMs:

 The idea that transforms the data into a high- dimensional space makes

linear discriminant functions practical.

 The idea of large margin classifiers to train the perceptron.

This research work used these two concepts and created the SVM. The advantage

of a kernel machine is that its capacity (number of degrees of freedom) is decoupled

from the size of the input space. By mapping the input to a sufficiently large feature

space, patterns become linearly separable, so a simple perceptron in feature space can

do the classification. Here SVM used the Radial basis function (RBF) network, which

can be considered a kernel classifier. Actually, the RBF places Gaussian kernels over

the data and linearly weights their outputs to create the system output.

When used as an SVM, the RBF network places a Gaussian in each data sample

such that the feature space becomes as large as the number of samples. But an SVM is

much more than an RBF. To train RBF network as an SVM, this work use the idea of

large margin classifiers which uses the Adatron algorithm, which works only with

perceptrons. Training an RBF for large margins will decouple the capacity of the

classifier from the input space and at the same time provides good generalization.

This approach directs towards powerful classifiers. The adatron algorithm can be

extended here in two ways: (i) apply it to kernel-based classifiers such as RBFs, and

(ii) modify the training for nonlinearly separable patterns.

a). Extension of the Adatron to Kernel Machines

The Adatron algorithm is able to adapt the perceptron to maximize its margin.

The idea is to work with data-dependent representations, which lead to a very simple

on-line algorithm to adapt the multipliers. The discriminant function of the RBF in

terms of the data-dependent representation is given in the Equation:

 128

(4.15)

Where represents a Gaussian function, L is the number of PEs in the

RBF, are the weights, N is the number of samples, are a set of multipliers (one

for each sample), and this approach consider the input space augmented by one

dimension with a constant value of 1 to provide the bias.

The inner product of Gaussians is a Gaussian. The kernel function (the Gaussian)

first projects the inputs (x, xi) onto a high-dimensional space and then computes an

inner product there. The amazing thing is that the Gaussian kernel avoids the explicit

computation of the pattern projections into the high-dimensional space, as shown in

Eq. 5.13 (the inner product of Gaussians is still a Gaussian). Any other symmetric

function that obeys the Mercer condition has the same properties. The topology used

in this work is depicted in Figure 5.5, where one can easily see that it is an RBF, but

where each Gaussian is centered at each sample and the weights are the multipliers .

The adatron algorithm can be easily extended to the RBF network by substituting

the inner product of patterns in the input space by the kernel function, leading to the

following quadratic optimization problem:

Subject to

(4.16)

 129

This can define as,

(4.17)

and choose a common starting multiplier (e.g. =0.1), learning rate , and a

small threshold (e.g., t = 0.01).

While M>t, this approach choose a pattern xi and calculate an update

 and perform the update

(4.18)

After adaptation, only some of the are different from zero (called the support

vectors). They correspond to the samples that are closest to the boundary between

classes. This algorithm is called the kernel adatron and can adapt an RBF to have an

optimal margin. This algorithm can be considered the "on-line" version of the

quadratic optimization approach utilized for SVMs, and it can find the same solutions

as Vapnik's original algorithm for SVMs. It is easy to implement the kernel adatron

algorithm since g(xi) can be computed locally to each multiplier, provided that the

desired response is available in the input file. In fact, the expression for g(xi)

resembles the multiplication of an error with an activation, so it can be included in the

framework of neural network learning. The Adatron algorithm essentially prunes the

RBF network of Figure 4.5 so that its output for testing is given.

 130

 (4.19)

b). The Adatron with a Soft Margin

If the patterns in feature space are not linearly separable than an idea is introduce a

soft margin using a slack variable and a function

 , which

penalize the cost function.

Further minimize the function F, but now subject to the constraints

 , and

The new cost function becomes

Where

(4.20)

Normally, instead of computing the optimal C, this method chooses a value. A

priori C can be regarded as a regularizer. This means that the matrix of kernel inner

products is augmented in the diagonal by the factor , that is,

(4.21)

The only difference in the algorithm for this case is the calculation of which

becomes

 (4.22)

 131

These calculations can be easily implemented as an iterative algorithm, but large

data sets produce very large RBF network (one gaussian per data). One disadvantage

is that it does not directly specify the number of support vectors to solve the problem.

In principal, SVMs should be sensitive to outlier, even when using soft computing.

Therefore, this approach used the SVM to transform the data into high-dimensional

space using RBF that places a gaussian at each data sample. The RBF uses the

backpropagation to train a linear combination of the gaussian to produce the results.

The SVM used in my work, however, uses the idea of large margin classifiers for

training. This decouples the capacity of the classifier from the input space and at the

same time provides good generalization. This is an ideal combination for

classification.

1

2

3

4

38

Σ

1

2

3

4

10

SVM applied for intrusion analysis

g(x)

Center at input 1

Center at input 10

α1

α2

α10

b

Figure 4.6 SVM applied for intrusion analysis

The SVM is implemented using the kernel adatron algorithm. The kernel adatron

maps inputs to a high-dimensional feature space, and then optimally separates data

into their respective classes by isolating those inputs which fall close to the data

 132

boundaries. Therefore, the kernel Adatron is especially effective in separating sets of

data which share complex boundaries. The kernel Adatron algorithm is given in

Figure 4.7.

Kernel Adatron Algorithm:

Step 1: Initialize .

Step 2: Starting from pattern , for labeled points

 Calculate

.

Step 3: For all patterns calculate and execute steps 4 to 5 below.

Step 4: Let be the proposed change to the multipliers .

Step 5.1: If then the proposed change to the multipliers would result in a

negative Consequently to avoid this problem set

Step 5.2: If then the multipliers are updated through the addition of the

 i.e. .

Step 6: Calculate the bias from

Where
 are those patterns with class label and

 are those with class label .

Step 7: If a maximum number of presentations of the pattern set has been exceeded then stop,

otherwise return to step 2.

Figure 4.7 Kernel Adatron Algorithm

 133

4.2.4 Implementation

The proposed model is implemented using different types of softwares:

NeuroSolutions, PCA and MS-excel. This work implemented the MLP and the SVM

in two different modules. This section explains briefly their implemented

architectures.

4.2.4.1 MLP Implementation

The MLP architecture consists of different components is shown in Figure 4.8. This

section describes the components that constitute multilayered perceptron neural

network architecture. Further, these components are explained in Table 4.1.

Figure 4.8 MLP implemented architecture

Table 4.1 Components of MLP architecture

S.No Components Description

1 StaticControl It controls the forward activation phase of network.

2
BackStaticControl It controls the backward activation phase of network

(backpropagation).

3
Axon It is a layer of PE's with identity transfer function. It can act

as a placeholder for the File component at the input layer.

 134

S.No Components Description

4 File It is used for network input and desired data from a file.

5
FullSynapse It is a Full matrix multiplication and it is used to connect two

axon layers.

6
BackFullSynapse It is a Back full matrix multiplication. Attaches to "dual"

forward FullSynapse, for use in backpropagation network.

7

Levenberg-

Marquardt (LM)

This pseudo second-order learning algorithm tends to train in

fewer epochs and arrive a lower error. The Levenberg-

Marquardt (LM) algorithm is one of the most appropriate

higher-order adaptive algorithms known for minimizing the

MSE of a neural network

8
TanhAxon It is Layer of PE's with hyperbolic transfer function (output

range –1 to 1).

9

BackTanhAxon It is Layer of PE's with transfer function that is the derivative

of the TanhAxon. It Attaches to "dual" forward TanhAxon,

for use in backpropagation network.

10

L2Criterion It is Square error criterion. Computes the error between the

output and desired signal, and passes it to the

backpropagation network.

11

BackCriteriaControl It provides Input to backpropagation network. It Attaches to

Criterion, for use in backpropagation network. Receives error

from Criterion.

12
MatrixViewer It is a Numerical probe. Displays numerical values at the

current instant in time.

13 DataGraph It is Graphing probe. Displays data versus time.

14 File It is used for network input and desired data from a file.

 135

4.2.4.1 SVM Implementation

The SVM architecture consists of different components is shown in Figure 4.9. This

section describes the components that constitute SVM network architecture.

Figure 4.9 SVM implemented architecture

Table 4.2 Components of SVM architecture

S.No Components Description

1 StaticControl It controls the forward activation phase of network.

2 BackStaticControl
It controls the backward activation phase of network

(backpropagation).

3 Axon It is a Layer of PE's with identity transfer function.

4 File It is used for network input and desired data.

5

FullSynapse

It is a Full matrix multiplication and it is used to connect

two axon layers.

6 GaussianAxon The GaussianAxon implements a radial basis function.

7 Back axon
The back axon Attaches to "dual" forward Axon, for use

in backpropagation network.

 136

S.No Components Description

8 SVM Output Synapse
This is used to implement the "Large Margin Classifier"

segment of the SVM model.

9 BackFullSynapse

It is a Back full matrix multiplication. Attaches to "dual"

forward FullSynapse, for use in backpropagation

network.

10 SVM
This component is used to implement the "Large Margin

Classifier" segment of the SVM model.

11 L2Criterion

L2Criterion is Square error criterion. Computes the error

between the output and desired signal, and passes it to

the backpropagation network.

12 BackCriteriaControl

It provides Input to backpropagation network. It

Attaches to Criterion, for use in backpropagation

network. Receives error from Criterion.

13
MatrixViewer MatrixViewer is a Numerical probe. Displays numerical

values at the current instant in time.

14 DataGraph DataGraph is Graphing probe. Displays data versus time.

15
File File component is used for network input and desired

data from a file.

4.2.5 Training and Testing of the System

The evaluation of system‟s performance consists of two phases; training and testing

as described in chapter 3. This section describes these two phases and their parametric

setting during training and test of the system.

4.2.5.1 Training the System

The system is trained on labeled data set such as intrusive and normal. The aim of

training is the adjustment of networks weights on base of the difference between the

mk:@MSITStore:E:/NS/NeuroSolutionsHelp/neurosolutions.chm::/CONCEPTS/Support_Vector_Machines.htm

 137

output produced by the system and the desired output. This process of weights

adjustment and training is called learning. The parameters used in my experiments to

tune the neural network are given in the following tables. The parametric

specification used for MLP architecture during training phase is given in Table 4.3.

Table 4.3 MLP tuning parameters during training

S.No Parameter Name Value

1 Architecture MLP Feedforward

2 Layers 03 (input, hidden and output)

3 Input samples features 38 (original), 22 (PCA), and 10 (GA)

4 PEs in Input layer It depends on features subset selections. For

examples; 38, 22, & 10.

5 PEs in Hidden Layer If number of features are 10 than PEs are 22 in

hidden layer.

6 Epochs 1000

7 PE in output layer One that has value 0 and 1

8 Activation function Tanh

9 Training algorithm Backpropagation (Forward & Backward)

10 Training dataset 5000 connections in which 20% for cross-validation

and 30% for testing

11 Production dataset 20,000 connections

The parametric specification used for SVM architecture during training phase is

given in Table 4.4.

 138

Table 4.4 SVM parameters during training

S.No Parameter Name Value

1 Architecture SVM

2 Layers 03 (input, gaussian and output)

3 Input samples features 38 (original), 22 (PCA), and 10 (GA)

4 PEs in Input layer It depends on features subset selections.

For examples; 38, 22, & 10.

5 SVM Input Synapse If input are 10 then its outputs are 2500

6 PEs in Gaussian Layer If number of features are 10 than PEs are

2500 in gaussian layer.

7 SVM output Synapse Inputs 2500 and output 1

8 SVM step size 0.01

9 Weight decay 0.01

10 Epochs 1000

11 PE in output layer One that has value 0 and 1

12 Activation function Gaussian

13 Training algorithm Backpropagation (RBF) and Kernel

Adatron (SVM)

14 Training dataset 5000 connections in which 20% for

cross-validation and 30% for testing

15 Production dataset 20,000 connections

 139

 4.2.5.2 Testing the System

When the system is trained well then weights of the system are frozen and

performance of the system is evaluated. Testing of trained system involves two steps;

(i) verification step, and (ii) generalization step.

a). Verification Step

In verification step, trained system is tested against the data which are used in

training. The purpose of the verification step is to investigate how well trained system

learned the training patterns in the training dataset. If a system was trained

successfully than the outputs produced by the system would be similar to the real

outputs. In this research work 30% of the training dataset (5000) is used as

verification that is 1500.

 b). Generalization Step

In generalization step, testing is conducted with data which is not used in training.

The purpose of the generalization step is to measure generalization ability of the

trained network. After training, the system only involves computation of the feed

forward phase. For this purpose, a production dataset is used that has input data but

no desired data.

This work used a dataset of fifteen thousand (15,000) as a production dataset.

Further, the system performance is also tested on total dataset (20,000) that consist of

both training dataset and production dataset.

 140

The parameters used during MLP testing phase are given in Table 4.5.

Table 4.5 MLP parameters during testing

S.No Parameter Name Value

1 Architecture MLP Feedforward

2 Layers 03 (input, hidden and output)

3 Input samples features 38 (original), 22 (PCA), and 10 (GA)

4 PEs in Input layer It depends on features subset selections. For examples; 38,

22, & 10.

5 PEs in Hidden Layer If number of features are 10 than PEs are 22 in hidden layer.

6 Epochs 1

7 PE in output layer One that has value 0 and 1

8 Activation function Tanh

9 Supervised/Teacher

layer

No need of this layer in testing phase.

10 Training algorithm NO. But it involves feedforward phase only.

11 Desired dataset No need of desired dataset in testing phase.

12 Testing dataset 1500 that is 30% of training dataset (5000).

13 Production dataset 20,000 connections

The parametric specification used for SVM architecture during testing phase is

given in Table 4.6.

 141

Table 4.6 SVM parameters during Testing

S.No Parameter Name Value

1 Architecture SVM

2 Layers 03 (input, gaussian and output)

3 Input samples features 38 (original), 22 (PCA), and 10 (GA)

4 PEs in Input layer It depends on features subset selections.

5 SVMInputSynapse If input are 10 then its outputs are 2500

6 PEs in Gaussian Layer If number of features are 10 than PEs are 2500 in

gaussian layer.

7 SVMoutputSynapse Inputs 2500 and output 1

8 SVM step size 0.01

9 Weight decay 0.01

10 Epochs 1

11 PE in output layer One that has value 0 and 1

12 Activation function Gaussian

13 Supervised/Teacher layer No need of this layer in testing phase.

14 Training algorithm Feedforward phase only of Backpropagation (RBF)

and Kernel Adatron (SVM)

15 Training dataset 5000 connections in which 20% for cross-validation

and 30% for testing

16 Production dataset 20,000 connections

 142

4.2.6 Results Comparison

The results of MLP and SVM based systems and their comparison are discussed in

Chapter 5. Further, the detail analysis of results will be discussed as well as their

performance comparison with other recent approaches in the area of intrusion

detection.

4.3 Summary

This chapter decomposes the methodology described in Chapter 3 in general and the

special focus being classification architectures in particular. This is represented using

block diagram, mathematical foundations. Then the block diagram is treated block by

block, as a phase and details of each part or block of its main architecture. The

chapter then explained the features description of the dataset used for experiments,

feature transformation process using PCA and optimal features subset selection using

GA. Thus, the chapter describes the details of classification architectures with basic

algorithms and mathematical foundation of multilayered perceptron model (MLP) and

SVM. The explanation continues to the system implementation level, and the basic

parameters used during training and testing. The selection of optimal features subset

using GA by searching the PCA features space as mentioned before is the main

contribution that makes the architecture simple as well as increases the overall

performance of the intrusion analysis engine. The application of LM learning rule

enhances the MLP training and testing performance as compared to traditional

propagation algorithm. The hybrid architecture of SVM that consists of RBF and

large margin classifier enhanced its performance in intrusion analysis. The evaluation

of these approaches; MLP and SVM will be discussed in Chapter 5.

CHAPTER 5

RESULTS AND DISCUSSION

5.1 Introduction

This chapter describes the experimental results obtained by the utilization of

techniques like Principal Component Analysis (PCA), Genetic Algorithm (GA),

Multilayer Perceptron (MLP) and Support Vector Machine (SVM) in the proposed

network intrusion detection mechanism, whose methodology and designed

architecture already covered in Chapters 3 & 4. After the training process was

completed, testing was conducted in two steps. In the first step, both classifiers (MLP

and SVM) were tested against the training dataset, in order to examine how well the

system „learned‟ the training dataset after the training process. In the second step of

the testing, trained systems were tested against a dataset, which is not a part of the

training set, in order to observe generalization performance of the trained systems. In

both testing steps, performance of the systems was tested by investigating the number

of false positives, false negatives, true positives and the true negatives that they

generated.

5.2 Experimental Results

The SVM and MLP architectures implemented independently to conduct different

experiments with different scenarios. The implemented systems based on MLP and

SVM for network intrusion detection tested on a system having the following

specification as shown in Table 5.1.

 144

Table 5.1 System specification for experiments

Hardware/Software Specification

Operating system Windows vista with service pack 2

System Manufacturer Toshiba

Processor Intel (R) core(TM)2 Duo CPU T5800 2GHz

Memory (RAM) 3.00 GB

The experiments of both classifier architectures; MLP and SVM for intrusion

analysis are performed on different size of datasets to testify the proposed mechanism

for network intrusion detection. This research work performed several experiments on

different feature subsets with GA and without GA. First, the following section present

results obtained using MLP architecture. Then, it illustrate results obtained using

SVM.

5.2.1 MLP Experimental Results

The MLP based intrusion analysis engine is evaluated on different feature subsets.

This section presents MLP results and their sensitivity analysis in different scenarios.

First of all, MLP is tested on original dataset without using PCA and GA, which

consists of 38 features. Five thousand exemplars or input samples are randomly

selected from twenty thousand dataset. Five thousand exemplars contains two types of

connections; normal and intrusive, in which 3,223 are normal and 1,777 are intrusive.

The five thousand dataset is further divided into three subsets; training dataset (2500),

cross-validation dataset (1000) and testing dataset (1500).

 145

 Scenario 1: MLP with original 38 feature set

 Testing Phase Analysis

The purpose of testing phase in scenario 1 is to observe the system‟s learning ability

after the training process with original 38 feature set. The sensitivity results of

mentioned above three datasets are shown in Table 5.2-5.4.

Table 5.2 MLP-org-38: Sensitivity analysis of training dataset

True Positive

(%)

False Positive

(%)

False Negative

(%)

True Negative

(%)

100 0.0 2.59 97

Table 5.3 MLP-org-38: Sensitivity analysis of cross-validation dataset

True Positive

(%)

False Positive

(%)

False Negative

(%)

True Negative

(%)

98.71 1.28 2.25 97.74

Table 5.4 MLP-org-38: Sensitivity analysis of testing dataset

True Positive (%)

False Positive

(%)

False Negative

(%)

True Negative

(%)

97.07 2.92 2.54 97.45

The overall performance of testing phase based one time, epochs, detection

rate and false alarm are expressed in Table 5.5.

Table 5.5 MLP-org-38: Overall performance of testing phase

Training Time

(H:M:S)

Training Epochs

(Number)

Detection rate

(%)

False Alarm

(%)

1:29:36 1000 97.26 2.73

 146

 Verification Phase Analysis

In verification phase, the trained system is tested against a dataset, which is not a

part of the training set, in order to examine generalization performance of the

trained system. The results are presented in Table 5.6 shows system‟s performance

on production dataset.

Table 5.6 MLP-org-38: Overall performance of verification phase

No. of

Features out

of 20K

True

Positives

(Number)

True

Negative

(Number)

Detection rate (%)
False

Alarm

(Number)

Normal

(64 %)

Intrusive

(36 %)

760000 1456 18544 7.28 92.72 11344

Scenario 2: MLP with PCA 38 features set

 Testing Phase Analysis

The purpose of testing phase is to observe the system how well the system „learned‟

the training dataset with PCA38 feature set after the training process. The sensitivity

results of above mentioned datasets are presented in Table 5.7-5.9.

True Positive

 (%)

False Positive

(%)

False Negative

(%)

True Negative

(%)

100 0.0 0.0 100

Table 5.8 MLP-TF38: Sensitivity analysis of cross-validation dataset

True

Positive (%)

False Positive

(%)

False Negative

(%)

True Negative

(%)

99.84 0.153 0.0 100

Table 5.7 MLP-TF38: Sensitivity analysis of training dataset

 147

Table 5.9 MLP-TF38: Sensitivity analysis of testing dataset

True Positive

(%)

False Positive

(%)

False Negative

(%)

True Negative

(%)

100 0.0 0.0 100

Table 5.10 shows overall performance of MLP in terms of time, epochs, detection

rate and false alarm.

 Verification Phase Analysis

In verification phase, the trained system is tested against a dataset, which is not a part

of the training set (such as production dataset), in order to examine generalization

performance of the trained system. Table 5.11 shows MLP performance on

production dataset.

Table 5.11 MLP-TF38: Overall performance of verification phase

No. of

Features out

of 20K

True

Positives

(Number)

True

Negative

(Number)

Detection rate (%)
False

Alarm

(Number)

Normal

(64 %)

Intrusive

(36 %)

760000 12793 7207 63.965 36.035 07

Table 5.10 MLP-TF38: Overall performance of testing phase

Training Time

(H:M:S)

Training Epochs

(Number)

Detection rate

(%)

False Alarm

(%)

1:20:07 1000 100 0.0

 148

Scenario 3: MLP with PCA 22 feature set

 Testing Phase Analysis

The purpose of testing phase is to look at the system how well the system „learned‟

the training dataset in scenario 3 after the training process. The sensitivity analysis of

datasets (training, cross-validation & testing) is given in Table 5.12-5.14.

Table 5.12 MLP-PCA22: Sensitivity analysis of training dataset

True Positive

(%)

False Positive

(%)

False Negative

(%)

True Negative

(%)

100 0.0 0.0 100

Table 5.14 MLP-PCA22: Sensitivity analysis of testing dataset

True Positive

(%)

False Positive

(%)

False Negative

(%)

True Negative

(%)

100 0.0 0.0 100

Table 5.13 MLP-PCA22: Sensitivity analysis of cross-validation

dataset

True Positive

(%)

False Positive

(%)

False Negative

(%)

True Negative

(%)

100 0.0 0.0 100

 149

The overall performance of testing phase in terms of time, epochs, detection rate

and false alarm is shown in Table 5.15.

 Verification Phase Analysis

In verification phase, the trained system is verified against a dataset, which is not a

part of the training set, in order to examine generalization performance of the trained

system in this scenario 3. Table 5.16 shows whole performance on production dataset.

Table 5.16 MLP-PCA22: Overall performance of verification phase

No. of

Features

out of

20K

True

Positives

(Number)

True

Negative

(Number)

Detection rate (%)
False

Alarm

(Number)

Normal

(64 %)

Intrusive

(36 %)

440000 12789 7211 63.945 36.05 11

Scenario 4: MLP with GA12 feature set

 Testing Phase Analysis

The purpose of testing phase is to study the system with GA12 feature set in scenario

4 and monitor how well the system „learned‟ the training dataset after the training

process. The sensitivity analysis of training phase is shown in Table 5.17-5.20.

Table 5.15 MLP-PCA22: Overall performance of testing phase

Training Time

(H:M:S)

Training Epochs

(Number)

Detection rate

(%)

False Alarm

(%)

0:53:28 1000 100 0.0

 150

Table 5.17 MLP-GA12: Sensitivity analysis of training dataset

True Positive (%)

False Positive

(%)

False Negative

(%)

True Negative

(%)

100 0.0 0.0 100

Table 5.18 MLP-GA12: Sensitivity analysis of cross-validation dataset

True Positive

(%)

False Positive

(%)

False Negative

(%)

True Negative

(%)

100 0.0 0.0 100

Table 5.19 MLP-GA12:Sensitivity analysis of testing dataset

True Positive (%)

False Positive

(%)

False Negative

(%)

True Negative

(%)

100 0.0 0.0 100

Table 5.20 MLP-GA12: Overall performance of testing phase

Training Time

(H:M:S)

Training Epochs

(Number)

Detection rate

(%)

False Alarm

(%)

0:53:28 1000 100 0.0

 151

 Verification Phase Analysis

In verification phase, the trained system is assessed against a dataset, which is not

a part of the training set, in order to inspect generalization performance of the

trained system in this scenario 4. The whole performance of MLP with GA 12

feature set on the production dataset is presented in Table 5.21. This approach used

different parameters (number of features, true positives, true negatives, number of

normal connections , number of intrusive connections, detection rate and false

alarms) to verify the MLP classifier with GA 12 feature set.

Scenario 5: MLP with GA10 feature set

 Testing Phase Analysis

The purpose of testing phase is to study the system with ten features as selected by

GA and to observe the behaviour how well the system „learned‟ the training dataset

after the training process. Table 5.22- 5.25 show sensitivity results of testing phase.

Table 5.22 MLP-GA10: Sensitivity analysis of training dataset

True

Positive

(%)

False Positive

(%)

False Negative

(%)

True Negative

(%)

100 0.0 0.0 100

Table 5.21 MLP-GA12: Overall performance of verification phase

No. of

Features out

of 20K

True

Positives

(Number)

True

Negative

(Number)

Detection rate (%)
False

Alarm

(Number)

Normal

(64 %)

Intrusive

(36 %)

440000 12797 7203 63.945 36.05 03

 152

Table 5.24 MLP-GA10: Sensitivity analysis of testing dataset

True Positive (%)

False Positive

(%)

False Negative

(%)

True Negative

(%)

100 0.0 0.0 100

Table 5.23 MLP-GA10: Sensitivity analysis of cross-validation

dataset

True Positive

(%)

False Positive

(%)

False Negative

(%)

True Negative

(%)

100 0.0 0.0 100

Table 5.25 MLP-GA10: Overall performance of testing phase

Training

Time

(H:M:S)

Training Epochs

(Number)

Detection rate

(%)

False Alarm

(%)

0:23:28 174 100 0.0

 153

 Verification Phase Analysis

In verification phase, the trained system is verified on a production dataset in order

to check up generalization performance of the trained system. The whole

performance of MLP with GA 10 feature set is shown in Table 5.26.

Table 5.26 MLP-GA10: Overall performance of verification phase

No. of Features

out of 20K

True

Positives

(Number)

True

Negative

(Number)

Detection rate (%)

False Alarm

(Number)
Normal

(64 %)

Intrusive

(36 %)

200000 12797 7203 63.985 36.01 03

5.2.2 SVM Experimental Results

Scenario 1: SVM with original 38 feature set

 Testing Phase Analysis

The purpose of testing phase is to observe the system how well the system „learned‟

the training dataset after the training process. The sensitivity analysis of confusion

matrix of testing phase is shown in Table 5.27-5.30.

Table 5.27 SVM-org-38: Sensitivity analysis of training dataset

True Positive

(%)

False Positive

(%)

False Negative

(%)

True Negative

(%)

100 0.0 0.0 100

 154

Table 5.28 SVM-org-38: Sensitivity analysis of cross-validation dataset

True Positive

(%)

False Positive

(%)

False Negative

(%)

True Negative

(%)

93.65 6.34 2.47 97.52

Table 5.29 SVM-org-38: Sensitivity analysis of testing dataset

True Positive (%)

False Positive

(%)

False Negative

(%)

True Negative

(%)

93.65 6.34 2.47 97.52

Table 5.30 SVM-org-38: Overall performance of testing phase

True Positive (%)

False Positive

(%)

False Negative

(%)

True Negative

(%)

2:21:17 1000 95.585 4.405

In verification phase, the trained SVM with original 38 feature set is tested on

production dataset, which is not a part of the training set, in order to observe

generalization performance of the trained system. The overall performance of

SVM with 38 raw feature set is shown in Table 5.31.

Table 5.31 SVM-org-38: Overall performance of verification phase

No. of

Features

out of 20K

True

Positives

(Number)

True

Negative

(Number)

Detection rate (%)
False

Alarm

(Number)

Normal

(64 %)

Intrusive

(36 %)

760000 1345 18655 6.72 93.27 11455

 155

Scenario 2: SVM with PCA 38 feature set

 Testing Phase Analysis

The purpose of testing phase of SVM with PCA 38 feature set is to monitor the

system how well the system „learned‟ the training dataset after the training process.

The sensitivity analysis of SVM with PCA 38 feature set (transformed feature set) is

shown in Table 5.32-5.35.

Table 5.32 SVM-TF38: Sensitivity analysis of training dataset

True Positive

(%)

False Positive

(%)

False Negative

(%)

True Negative

(%)

100 0.0 0.0 100

Table 5.33 SVM-TF38: Sensitivity analysis of cross-validation

dataset

True Positive

(%)

False

Positive

(%)

False

Negative

(%)

True Negative

(%)

99.07 0.93 0.58 99.42

Table 5.34 SVM-TF38: Sensitivity analysis of testing dataset

True Positive

(%)

False Positive

(%)

False

Negative

(%)

True Negative

(%)

98.66 1.33 0.759 99.24

Table 5.35 SVM-TF38: Overall performance of testing phase

True Positive

(%)

False Positive

(%)

False

Negative

(%)

True Negative

(%)

2:39:04 1000 98.95 1.0445

 156

 Verification Phase Analysis

In verification phase, the trained system is tested on production dataset, which is not a

part of the training set, in order to check generalization performance of the trained

system with PCA 38 feature set. The whole performance of SVM with TF38

(transformed feature) set is given in Table 5.36.

Table 5.36 SVM-TF38: Overall performance of verification phase

No. of

Features out

of 20K

True

Positives

(Number)

True

Negative

(Number)

Detection rate (%)

False

Alarm

(Number)

Normal

(64 %)

Intrusiv

e

(36 %)

760000 12721 7279 63.605 36.395 79

Scenario 3: SVM with PCA 22 feature set

 Testing Phase Analysis

The purpose of testing phase is to observe the SVM with PCA 22 feature set how well

it „learned‟ the training dataset after the training process. The sensitivity analysis of

SVM with PCA 22 feature set is shown in Table 5.37-5.40.

Table 5.37 SVM-PCA-22: Sensitivity analysis of training dataset

True Positive

(%)

False Positive

(%)

False Negative

(%)

True Negative

(%)

99.37 0.63 0.56 99.44

 157

Table 5.39 SVM-PCA-22: Sensitivity analysis of testing dataset

Table 5.38 SVM-PCA-22: Sensitivity analysis of cross-validation

dataset

True Positive

(%)

False Positive

(%)

False

Negative

(%)

True Negative

(%)

99.50 0.46 0.85 99.14

True Positive

(%)

False Positive

(%)

False Negative

(%)

True Negative

(%)

99.48 0.51 0.95 99.05

 Verification Phase Analysis

In verification phase, the trained system (SVM with PCA 22 feature set) is

evaluated against a dataset, which is not a part of the training set (i.e. the

production dataset), in order to observe generalization performance of the trained

system. The overall performance of this system is given in Table 5.41.

Table 5.40 SVM-PCA-22: Overall performance of testing phase

Training Time

(H:M:S)

Training Epochs

(Number)

Detection rate

(%)

False Alarm

(%)

2:08:18 1000 99.26 0.735

 158

Table 5.41 SVM-PCA-22: Overall performance of verification phase

No. of Features

out of 20K

True

Positives

(Number)

True

Negative

(Number)

Detection rate (%)
False

Alarm

(Number)

Normal

(64 %)

Intrusive

(36 %)

440000 12776 7224 63.88 36.12 24

Scenario 4: SVM with GA12 feature set

 Testing Phase Analysis

The purpose of testing phase is to observe the system (the SVM with GA 12 feature

set) how well the system „learned‟ the training dataset after the training process. The

sensitivity analysis of testing phase is shown in Table 5.42-5.45.

Table 5.42 SVM-GA12: Sensitivity analysis of training dataset

True Positive

(%)

False Positive

(%)

False Negative

(%)

True Negative

(%)

98.30 1.7 0.0 100

Table 5.43 SVM-GA12: Sensitivity analysis of cross-validation

dataset

True Positive

(%)

False Positive

(%)

False Negative

(%)

True Negative

(%)

100 0.0 0.0 100

Table 5.44 SVM-GA12: Sensitivity analysis of testing dataset

True Positive (%)

False Positive

(%)

False Negative

(%)

True Negative

(%)

99.79 0.2 0.75 99.24

 159

 Verification Phase Analysis

In verification phase, the trained system (the SVM with GA12) is tested on

production dataset, which is not a part of the training set, in order to observe its

generalization performance with GA 12 feature set. The whole performance is

given in Table 5.46.

Table 5.46 SVM-GA12: Overall performance of verification phase

No. of

Features out

of 20K

True

Positives

(Number)

True

Negative

(Number)

Detection rate (%)
False

Alarm

(Number)

Normal

(64 %)

Intrusive

(36 %)

240000 12811 7189 64.055 35.945 11

Scenario 5: SVM with GA10 feature set

 Testing Phase Analysis

The purpose of testing phase is to observe the system how well the system „learned‟

the training dataset after the training process. The sensitivity analysis of SVM with

GA 10 feature set is shown in Table 5.47-5.50.

Table 5.45 SVM-GA12: Overall performance of testing phase

Training Time

(H:M:S)

Training Epochs

(Number)

Detection rate

(%)

False Alarm

(%)

0:53:28 1000 99.51 0.485

 160

Table 5.47 SVM-GA10: Sensitivity analysis of training dataset

True Positive (%)

False Positive

(%)

False Negative

(%)

True Negative

(%)

99.38 0.61 0.0 100

Table 5.48 SVM-GA10: Sensitivity analysis of cross-validation dataset

True Positive

(%)

False Positive

(%)

False Negative

(%)

True Negative

(%)

99.38 0.61 0.0 100

Table 5.49 SVM-GA10: Sensitivity analysis of testing dataset

True Positive (%)

False Positive

(%)

False Negative

(%)

True Negative

(%)

99.89 0.10 0.94 99.05

Table 5.50 SVM-GA10: Overall performance of testing phase

Training Time

(H:M:S)

Training

Epochs

(Number)

Detection

rate

(%)

False Alarm

(%)

0:16:14 1000 99.47 0.52

 Verification Phase Analysis

In verification phase, the trained system (the SVM) is verified against a dataset (the

production dataset), which is not a part of the training set, in order to check up

generalization performance of the trained system with GA 10 feature set. The overall

performance of this scenario is shown in Table 5.51.

 161

Table 5.51 SVM-GA10: Overall performance of verification phase

No. of

Features out

of 20K

True

Positives

(Number)

True

Negative

(Number)

Detection rate (%)
False

Alarm

(Number)

Normal

(64 %)

Intrusive

(36 %)

200000 12807 7193 64.035 35.965 07

5.2.3 Comparison between MLP and SVM

This section makes a tabular comparative analysis between five different scenarios for

MLP and SVM respectively based on above-mentioned results. This comparison is

based on number of false alarm, number of epochs, number of features, training time

and the results of confusion matrix and is presented in Table 5.52 and Table 5.53.

Table 5.52 MLP performance for intrusion analysis

Classifier MLP-A10 MLP-A12 MLP-22 MLP-TF38 MLP-org-38

False Alarm 03 03 11 07 11344

Epochs 174 217 1000 1000 1000

Time 00:20:07 00:23:00 01:08:07 01:28:07 01:29:36

Features 200000 240000
44000

0
760000 760000

False + 03 03 11 07 11344

False - 0 0 0 0 0

True + 12797 12797 12789 12793 1456

True - 7203 7203 7211 7207 18544

 162

Table 5.53 SVM performance for intrusion analysis

Classifier SVM-GA10 SVM-A12 SVM-F22 SVM-F38 SVM-org-38

False Alarm 07 12 24 79 11455

Epochs 1000 1000 1000 1000 1000

Time 01:16:14 01:36:01 02:08:18 02:39:04 02:21:17

Features 200000 240000 440000 760000 760000

False + 0 0 24 79 11455

False - 01 11 0 0 0

True + 12807 12811 12776 12721 1345

True - 7193 7189 7224 7279 18655

The above comparison proved that my mechanism using GA to search the PCA

features space provides optimal performance as compared to traditional way of

selecting features from PCA search space. The key focus of my research was to select

sensitive features and minimum features as well as to increase accuracy of the system.

Thus, research work achieved this objective by using GA and PCA that made the

classifier simpler as well as more efficient in performance. Hence, this method shows

that proposed method provides an optimal intrusion detection mechanism that

outperforms the existing approaches and has the capability to minimize the number of

features and maximize the detection rates

5.2.4 Comparative analysis of applied approach with other approaches

This section presents here, a visual comparative analysis of applied approach with

other approaches in the literatures (Liu et al. 2007) as described in Chapter 2. The

analysis is presented in various graphs using the Multi-criteria Decision Making

Technique (MCDM). The main criteria consist of accuracy, minimum training

 163

overhead, more simple architecture, generalization ability, and computational

overhead. The main criteria are further divided into sub criteria. The criterion

„accuracy‟ is subdivided into „detection rate‟ and „minimum false alarm‟. The

criterion „more simple architecture‟ is sub-divided into „minimum features‟ and

„minimum processing elements (PEs)‟. The criterion „computational overhead‟ is

divided into „memory‟ and „processing‟. The criteria hierarchy is shown in Figure 5.1.

Figure 5.1 Criteria hierarchy

5.2.4.1 Comparative Analysis of applied approach based on MLP with other MLP

approaches

This section compares MLP approach based on defined criteria as shown in Figure

5.1 with other approaches based on the obtained results as aforementioned in Table

5.52. The detail comparative analysis is presented in graphs in Figure 5.2 - 5.10.

 164

Figure 5.2 MLPGA10 vs. MLPGA12 (criteria)

Figure 5.2 shows MLP results comparison between two datasets: GA 10 feature

set and GA 12 feature set based on main criteria. The MLP shows better performance

with GA10 feature set as compared to GA12 feature set based on main criteria:

accuracy, minimum training overhead, generalization ability, computational overhead

and in architectural simplification.

 165

Figure 5.3 MLPGA10 vs. MLPGA12 (sub-criteria)

Figure 5.3 shows MLP results comparison between two datasets: GA 10 feature

set and GA 12 feature set based on sub criteria: detection rate, minimum false alarm,

minimum features, minimum processing elements (PEs), usage of memory,

processing time, generalization ability and minimum training overhead. The use of

GA12 feature set increases training and computational overhead as compared to

GA10 feature set. Thus, the MLP with GA10 feature set demonstrates better

performance as compared to MLP with GA12 feature set based on aforementioned

sub criteria.

 166

Figure 5.4 MLPGA10 vs. MLP-PCA22 (criteria)

Figure 5.4 shows MLP results comparison between two datasets: GA10 feature

set and PCA12 feature set based on main criteria. The MLP shows better performance

with GA10 feature set as compared to PCA22 feature set.

Figure 5.5 MLPGA10 vs. MLP-PCA22 (sub-criteria)

 167

Figure 5.5 shows MLP results comparison between two datasets: GA 10 feature

set and PCA22 feature set based on sub criteria: detection rate, minimum false alarm,

minimum features, minimum processing elements (PEs), usage of memory,

processing time, generalization ability and minimum training overhead. The use of

PCA22 feature set increases training and computational overhead as compared to

GA10 feature set. Thus, the MLP with GA10 feature set demonstrates better

performance as compared to MLP with PCA22 feature set based on aforementioned

sub criteria.

Figure 5.6 MLPGA10 vs. MLPTF38 (criteria)

Figure 5.6 shows MLP results comparison between two datasets: GA 10 feature

set and TF38 (Transformed features from raw dataset using PCA) feature set based on

main criteria. The computational overhead increases as used TF38 instead of GA10

feature set. Hence, the MLP shows better performance with GA10 feature set as

compared to TF38 feature set based on main criteria: accuracy, minimum training

overhead, generalization ability, and in architectural simplification.

 168

Figure 5.7 illustrates comparison between MLPs with GA10 and TF38 feature set

on the bases of above mentioned sub criteria. The MLP with GA10 outperforms as

compared to MLP with TF38 feature set.

Figure 5.7 MLPGA10 vs. MLP-org-38 (criteria)

Figure 5.8 MLPGA10 vs. MLP-TF38 (sub-criteria)

 169

Figure 5.8 demonstrate that the MLP with GA10 feature set outperforms the MLP

with original 38 (the raw feature set) feature set based on main criteria. The MLP with

raw feature set suffers computational and training overheads.

Figure 5.9 MLPGA10 vs. MLP-org-38 (sub-criteria)

Figure 5.9 demonstrate that the MLP with GA10 feature set outperforms the MLP

with the raw feature set based on sub criteria. The MLP with raw feature set suffers

processing, memory and training overheads that decrease on the whole performance

of intrusion analysis engine.

Figure 5.10 demonstrates the MLPs results comparison with GA10, GA12,

PCA22, TF38 and org38 (original raw feature) feature set. The MLP with GA10 and

GA12 feature set present optimal results as compared to other approaches; PCA22,

TF38 and org38 based on main criteria and sub criteria. The main criteria consist of

accuracy, minimum training overhead, generalization ability, computational overhead

and in architectural simplification. The sub criteria consist of detection rate, minimum

false alarm, minimum features, minimum processing elements (PEs), usage of

memory, processing time, generalization ability and minimum training overhead. The

selection of feature set by searching the PCA space using GA technique results more

 170

sensitive feature set that directly impact on performance of the intrusion detection

classifier such as MLP.

Figure 5.10 MLP Overall performance for intrusion detection

5.2.4.2 Comparative Analysis of applied approach based on SVM with other SVM

approaches

The comparison of SVM approach based on pre-defined criteria as shown in Figure

5.1 with other approaches based on the achieved results as mentioned in Table 5.53.

The detail comparative analysis of both approaches is depicted in graphs in Figure

5.11 – 5.18.

 171

Figure 5.11 SVMGA10 vs. SVMGA12 (criteria)

Figure 5.11 represents the SVM results comparison between two datasets: GA 10

feature set and GA 12 feature set based on main criteria. The SVM shows enhanced

performance with GA10 feature set as compared to GA12 feature set based on main

criteria: accuracy, minimum training overhead, generalization ability, computational

overhead and in architectural simplification.

 172

Figure 5.12 SVMGA10 vs. SVMGA12 (sub-criteria)

Figure 5.13 SVMGA10 vs. SVMPCA22 (criteria)

 173

Figure 5.12 shows SVM comparative results between two datasets: GA 10 feature

set and GA 12 feature set based on sub criteria: detection rate, minimum false alarm,

minimum features, minimum processing elements (PEs), memory usage, processing

time, generalization ability and minimum training overhead. The utilization of the

GA12 feature set slightly increases training and computational overhead which is a

contrary to the comparative result with GA10 feature set. Thus, the SVM with GA10

feature set demonstrates enhanced performance as compared to SVM with GA12

feature set based on aforementioned sub criteria.

Figure 5.13 shows SVM results comparison between two datasets: GA10 feature

set and PCA22 feature set based on main criteria. The SVM shows better performance

with GA10 feature set as compared to PCA22 feature set.

Figure 5. 14 SVMGA10 vs. SVMPCA22 (sub-criteria)

Figure 5.14 shows SVM comparative results between two datasets: GA 10 feature

set and PCA22 feature set based on sub criteria: detection rate, minimum false alarm,

minimum features, minimum processing elements (PEs), memory usage, processing

time, generalization ability and minimum training overhead.

 174

Hence, the use of PCA22 feature set improvises the training and computational

overhead as compared to GA10 feature set. Thus, the SVM with GA10 feature set

demonstrates better performance than SVM with PCA22 feature set based on

aforementioned sub criteria.

Figure 5.15 shows SVM comparative results between the two datasets: GA 10

feature set and TF38 (Transformed features from raw dataset using PCA) feature set

based on main criteria. The computational overhead amplifies, as used TF38 instead

of GA10 feature set. Hence, the SVM shows better performance with GA10 feature

set than the TF38 feature set based on main criteria: accuracy, minimum training

overhead, generalization ability, and in architectural simplification.

Figure 5.16 illustrates comparative analysis between SVMs with GA10 and TF38

feature set which bases on the supra-mentioned sub criteria. The SVM with GA10

outperforms the SVM with TF38 feature set.

Figure 5.17 demonstrates that the SVM with GA10 feature set outdoes the SVM

with the raw feature set based on sub criteria. The SVM with raw feature set suffers

processing, memory and training overheads traits, which results in the deterioration of

the whole performance of intrusion analysis engine.

Figure 5.18 demonstrates that the SVM with GA10 feature set supersedes than the

SVM with original 38 (the raw feature set) feature set based on main criteria. The

SVM with raw feature set suffers computational and training overheads.

 175

Figure 5.15 SVMGA10 vs. SVMTF38 (criteria)

Figure 5.16 SVMGA10 vs. SVM-TF38 (sub-criteria)

 176

Figure 5.17 SVMGA10 vs. ML-org-38 (criteria)

Figure 5.18 SVMGA10 vs. SVM-org-38 (sub-criteria)

 177

Figure 5.19 SVM Overall performance for intrusion detection

Figure 5.19 demonstrates the SVMs comparative results with GA10, GA12,

PCA22, TF38 and org38 (original raw feature) feature sets. The SVM with GA10 and

GA12 feature set present optimal results as compared to other approaches; PCA22,

TF38 and org38 based on main criteria and sub criteria. The main criteria consist of

accuracy, minimum training overhead, generalization ability, computational overhead

and architectural simplification. The sub criteria consist of detection rate, minimum

false alarm, minimum features, minimum processing elements (PEs), memory usage,

processing time, generalization ability and minimum training overhead. The selection

of the feature set by searching the PCA space using GA technique offers more

sensitive feature set that directly has an impact on the overall performance of the

intrusion detection classifier such as SVM.

5.3 Research Contributions

This section presents research contributions in intrusion detection using soft

computing techniques; MLP, SVM, GA with PCA. The main objective was to induce

an intrusion detection mechanism that produces optimal detection rate and minimize

 178

features that makes architecture simple and reduces training and computational

overheads. A List of the contributions mentioned below:

 Performance optimization in case of detection rate and false alarm: The

applied approach based on PCA and then application of GA for optimal

features subset selection positively affects the accuracy of the proposed

model based on MLP and SVM.

 Minimize training overhead: The adopted mechanism demonstrates less

training time as compared to other approaches. Minimum number of

features and features with higher discriminatory power reduces the training

overheads.

 Simplified Architectural framework: The application of PCA and GA for

features transformation and selection, made the intrusion analysis engine

simple and more efficient.

 Minimize computational overhead: This approach considerably reduces

memory and computational overheads during training and testing process.

The smaller the number of features, the reduced is the memory requirement

as well as processing overheads.

 Contribution in the existing approaches: The applied approach performed

accurately in detection rates, simplification in architecture, and reduced

memory and processing requirements.

 Aides and guides in network security. The applied mechanism provides help

and guides security implementers and researchers in the field of intrusion

detection analysis by using the concepts introduced and applied in my work.

5.4 Summary

This chapter describes the following: (1) the results obtained through MLP and SVM

in different scenarios during testing and verification phases. (2) The overall

performance of both the intrusion analysis engines. Further, the comparison of the

performance of MLP along with GA‟s ten features to other scenarios of MLP and

similarly with SVM based on, criteria and sub-criteria as mentioned in this chapter.

CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Introduction

This chapter emphasizes the conclusion of my work in the vertical of intrusion

detection. This is followed by the explanation of the achievements accomplished

during this research work. Lastly, the chapter discusses limitations of the work and

recommendations/suggestions for the future work.

6.2 Conclusion

Presently, Intrusions on computer and network systems are main security issues.

Therefore, it is very important to adhere to such tribulations. The prevention of such

intrusions is entirely dependent on their detection which is a key part of many

security tools such as: Intrusion Detection System (IDS), Intrusion Prevention System

(IPS), Adaptive Security Alliance (ASA), checkpoints and firewalls. Further, accurate

detection is another important issue in these days. A number of intrusion detection

approaches are available but the main problem is their performance and efficiency,

which has been enhanced by increasing the detection rates (99.96% in case of SVM

and 99.98% in case of MLP) and reducing false alarms (0.04% in case of SVM and

0.02% in case of MLP).

There are some other drawbacks in the existing intrusion detection approaches

such as: usage of raw dataset, bad features extraction, bad features selection, complex

classifier architecture, training overhead, and memory and computational overheads.

To overcome these issues, this research work presented an optimized intrusion

 180

detection mechanism using techniques; PCA, Genetic Algorithm (GA), Multilayer

Perceptron (MLP), and Support Vector machine (SVM). One of the main

contributions is the application of GA for optimal feature subset selection that

positively affects the whole performance of the applied intrusion detection

mechanism. Firstly, a standard dataset; KDD cup is selected and then discard three

symbolic features from it. After this, the dataset is further processed in a system

acceptable format. For this, the pre-processing process is divided into two steps;

feature organization and feature selection. In the first step, the features are organized

and arranged to increase their visual discrimination using Principal Component

Analysis. Secondly, the GA is applied in order to select a subset of principal

components from the principal components space, which offers a subset of features

with optimal sensitivity and highest discriminatory power. Then, the selected

principal components or PCA features are fed to the proposed model for intrusion

analysis. Two classifiers; MLP and SVM are used for intrusion analysis. Firstly, MLP

classifier is trained and tested in different scenarios and the results arising out of it are

evaluated and compared. Secondly, SVM classifier is trained and tested the same

way. Results proved that this research mechanism provides an optimal intrusion

detection mechanism that outperforms the existing approaches and has the capability

to minimize the number of features and maximize the detection rates.

6.3 Achievements

The main achievements of this research work are as follows:

 Accuracy improvement: The applied approach based on PCA and GA for

features subset selection improves substantially the accuracy of the proposed

intrusion model based on MLP and SVM.

 Reduces training overhead: This intrusion detection mechanism reduced

training overheads as compared to other approaches. Smaller number of

features with higher discriminatory power decreases the training overhead.

 Architectural framework Improvement: The application of PCA and GA for

features transformation and selection made the intrusion analysis engine more

simple and efficient.

 181

 Reduces computational overhead: This approach considerably reduces

memory and computational overheads during training and testing process. The

smaller the number of features decreases memory requirement as well as

processing overhead.

 Contribution in existing approaches: The applied approach performed better

in accuracy, and provided a simple architecture that reduced memory and

processing requirements.

 Help and guide in network security: The applied mechanism provides help

and guidance for security implementers and researchers in the field of

intrusion detection by using the concepts introduced and applied in this work.

6.4 Limitations and Future Work

This research work identifies some of the limitations of the applied approach as

follows:

 The proposed system works on two classes; normal and intrusive. This generates

alarm about the network activity, which is analysed as to whether it is normal or

an attack. Therefore, the research can be further extended in the future to classify

network activity based on the categories.

 Principal component analysis is used for features organization and arrangement in

this research. There are some other alternative techniques; K-dimensional scaling,

K-means clustering, self-organizing map, and Kernel PCA. This can further be

explored and applied in the future work.

 The features selection is performed using GA in this work. This selection process

can be further investigated and deployed using some other techniques; greedy

search, back elimination, and Memetic Algorithm (MA) etc.

 This system used two classifiers as intrusive analysis engines; MLP and SVM.

This model can further be testified using some other techniques as modular neural

network, Jordan/Elman network, recurrent network and fuzzy techniques.

 182

REFERENCES

 Ahmad I, Abdullah AB, and Alghamdi AS. 2009a. Application of Artificial Neural

Network in Detection of DOS Attacks. ACM International Conference on

Security of Information and Networks (SIN). Gazimagusa, North Cyprus, Turkey.

p 229-234.

Ahmad I, Abdullah AB, and Alghamdi AS. 2009b. Application of Artificial Neural

Network in Detection of Probing Attacks. IEEE Symposium on Industrial

Electronics and Applications (ISIEA). Kuala Lumpur, Malaysia. p 557 - 562

Ahmad I, Abdullah AB, and Alghamdi AS. 2009c. Artificial Neural Network

Approaches to Intrusion Detection: A Review. Telecommunications and

Informatics conference. Istanbul, Turkey. p 200-205.

Ahmad I, Abdullah AB, and Alghamdi AS. 2010. Towards the selection of best

neural network system for intrusion detection. International Journal of the Physical

Sciences 5(12):1830-1839.

Ahmad I, Ansari MA, and Mohsin S. 2008. Performance Comparison between

Backpropagation Algorithms Applied to Intrusion Detection in Computer Network

Systems. Recent Advances in Systems, Communications & Computers. p 47-52.

Ahmad I, Swati SU, and Mohsin S. 2007. Intrusion Detection Mechanism by

Resilient Back Propagation (RPROP). European Journal of Scientific Research

(EJSR). 17(4):523-530.

Amini M, and Jalili R. 2004. Network Based Intrusion Detection using Unsupervised

Adaptive Resonance Theory. Fourth International ICSC Symposium on

Engineering of Intelligent Systems (EIS), Portugal. p 250-258.

Amini M, Jalili R, and Shahriari HR. 2006. RT-UNNID: A practical solution to real-

time network-based intrusion detection using unsupervised neural networks.

Computers & Security Elsevier Inc 25(6):459-468.

Anderson JP. 1980. Computer Security Threat Monitoring and Surveillance.

Technical Report. J.P. Anderson Company, Fort Washington, Pennsylvania. p 55-

66.

Bace R, and Mell P. 2001. Intrusion Detection Systems. National Institute of

Standards and Technology (NIST) Special Publication. p1-51.

[Online].[Avaialable]: http://csrc.nist.gov/.

 183

Bäck T. 1996. Evolutionary Algorithms in Theory and Practice: Genetic Algorithms,

Evolution Strategies, Evolutionary Programming. Oxford University Press. New

York. p 55-65.

Bankovic Z, Moya JM, Araujo Á, Bojanic S, and Nieto-Taladriz O. 2009. A Genetic

Algorithm-based Solution for Intrusion Detection. Journal of Information

Assurance and Security 4:192-199.

Bankovic Z, Stepanovic D, Bojanic S, and Nieto-Taladriz O. 2007. Improving

Network Security Using Genetic Algorithm Approach, Computers & Electrical

Engineering. Security of Computers & Networks 33(5-6):438-451.

Bebis G, Louis S, Varol Y, and Yfantis A. 2002. Genetic Object Recognition Using

Combinations of Views. IEEE Trans Evol Comput 6(2):132–146. .

Bebis G, Uthiram S, and Georgiopoulos M. 2000. Face Detection and Verification

Using Genetic Search. Int. J. Artif. Intell. Tools. 4(1):225–246.

Bivens A, Palagiri C, Smith R, Szymanski B, and Emrechts M. 2002. Network-

Based Intrusion Detection Using Neural Networks. 12
th

 Proc. Intelligent

Engineering Systems through Artificial Neural Networks (ANNIE), ASME press.

New York, NY. p 579-584.

Browne A. 2000. Neural Network Analysis, Architectures and Applications, Institute

of Physics Publishing (IOP) Press, London. p 98-101.

Burges C. 1998. Tutorial On Support Vector Machines for Pattern Recognition. Data

Mining Knowledge Discovery. 2(2): 955–974.

Cannady J. 1998 Artificial Neural Networks for Misuse Detection.National

Information Systems Security Conference (NISSC'98). Arlington, VA. p443-455.

Cortes C, and Vapnik V. 1995. Support Vector Networks, Journal of Machine

Learning. Springer Netherlands 20(3):273-297.

Cristianini N, Campbell C, Burges C, and 2002. Kernel methods: Current Research

and Future Directions, Journal of Machine Learning, Springer Netherlands. 46(2):

5-9.

Cristianini N, and Shawe J. 2000. An Introduction to Support Vector Machines and

Other Kernel-based Learning Methods: Cambridge University Press. p55-60.

[Online].[Available]:http://www.support-vector.net/.

Denault M, Gritzalis D, Karagiannis D, and Spirakis. 1994. Intrusion Detection:

Approach and Performance Issues of the SECURENET System. Computers and

Security. p 495-507.

Denning D.1987. An Intrusion-Detection Model. IEEE Transactions on Software

Engineering. 13(2):222-232.

 184

Dutta M, Chatterjee A, and Rakshit A. 2006. Intelligent Phase Correction in

Automatic Digital AC Bridges by Resilient Backpropagation Neural Network.

Measurement 39(10): 884–891.

Eiben AE, and Smith JE. 2003. Introduction to Evolutionary Computing. Natural

Computing Series. Springer-Verlag Berlin Heidelberg. p 222-301.

Este A, Gringoli F, and Salgarelli L. 2009. Support Vector Machines for TCP traffic

classification, Computer Networks. p 2476-2490.

Fausett LV. 2009. Fundamentals of neural networks: architectures, algorithms, and

applications. Prentice-Hall, Prentice-Hall, Inc. Upper Saddle River, NJ, USA.

p 33-44.

Folino G, Pizzuti C, and Spezzano G. 2005. GP ensemble for distributed intrusion

detection systems. Pattern Recognition and Data Mining. Lecture Notes in

Computer Science (LNCS), Springer Berlin, 3686 (1). p 54-62.

Fox KL, Henning RR, Reed JH, Simonian RP. 1990. In Proc. 13th National

Computer Security Conference. Information Systems Security. p 124-134.

Fu L. 1992. A Neural Network Model for Learning Rule-Based Systems. In

Proceedings of the International Joint Conference on Neural Networks. p 343-348.

Ghosh A, and Schwartzbard A. 1999. A Study in Using Neural Networks for

Anomaly and Misuse Detection. USENIX Security Symp. Washington, D.C, USA.

p 213-217.

Ghosh AK, Schwartzbard A, and Schatz M. 1999. Learning Program Behavior

Profiles for Intrusion Detection. SANS Workshop on Intrusion Detection and

Network Monitoring. p 51-62.

Gong S. 2001. Dynamic Vision: From Images to Face Recognition: Imperial College

Press.London,UK. p 43-50.

Hammerstrom D. 1993. Neural Networks At Work. IEEE Spectrum. p 26-53.

Lewis JP. 2004. Tutorial on SVM. CGIT Lab, USC. p 14-20. [Online].[Available]:

http://www.dataminingtools.net/.

James C. 2000a. Artificial Neural Networks for Misuse Detection. National

Information Systems Security Conference. p 368–381.

James C. 2000b. Artificial Neural Networks for Anamoly Detection. National

Information Systems Security Conference. p 281–288.

James H. 1997. Adaptation in Natural and Artificial System. MIT press

Cambridge,MA,USA. p 55-62.

Jang JR, Sun CT, and Mizutani E. 1997. Neuro-Fuzzy and Soft Computing. Prentice

Hall. p 212-220.

 185

Jing-Xin W, Zhi-ying W, and Kui D. 2004. A Network Intrusion Detection System

Based on the Artificial Neural Networks. ACM Transaction on information

security 85:166-170.

Jirapummin C, Wattanapongsakorn N. 2002. Hybrid Neural Networks for Intrusion

Detection System. The International Technical Conference on Circuits/Systems,

Computers and Communications (ITC-CSCC). Phuket, Thailand. p 16-19.

Jonsson E, Almgren M, and Alfonso. 2004. Recent Advances in Intrusion Detection.

7th International Symposium, RAID, Sophia Antipolis. p 102-108.

Khan L, Awad M, and Thuraisingham B. 2007. A New Intrusion Detection System

Using Support Vector Machines And Hierarchical Clustering. The International

Journal on Very Large Data Bases 16(4):507–521.

Kim DS, Nguyen HN, Ohn SY, and Park JS. 2005. Fusions of GA and SVM for

Anomaly Detection in Intrusion Detection System. Advances in Neural Networks

Lecture Notes in Computer Science 3498(3):415-420.

Kuchimanchi GK, Phoha VV, Balagami KS, and Gaddam SR. 2004. Dimension

reduction using feature extraction methods for Real-time misuse detection

systems. IEEE Workshop on Information Assurance and Security. p 195–202.

Labib K, and Vemuri VR. 2004. Detecting and Visualizing Denial-of-Service and

Network Probe Attacks Using Principal Component Analysis. Third Conference

on Security and Network Architectures. La Londe, France. p 45-55.

Lakhina S, Joseph S, and Verma B. 2010. Feature Reduction using Principal

Component Analysis for Effective Anomaly–Based Intrusion Detection on NSL-

KDD. International Journal of Engineering Science and Technology 2(6):1790-

1799.

Lee SC, and Heinbuch DV. 2001. Training a Neural-Network Based Intrusion

Detector to Recognize Novel Attacks. IEEE Trans on Systems, Man, and

Cybernetics. p 294-299.

Li RZ, and Guan X. 2007. Accurate Classification of the Internet Traffic Based on the

Svm Method. 42th IEEE International Conference on Communications (ICC

2007).p455-462.

Lilia de sa Silva, Santos AD, Silva JD, and Montes A. 2004. A Neural Network

Application for Attack Detection in Computer Networks. IEEE Transactions.

p 1569-1574.

Lippmann RP, and Cunningham RK. 2000. Improving Intrusion Detection

Performance Using Keyword Selection and Neural Networks. Computer Networks

34(8):597-603.

Liu G, and Yi Z. 2006. Intrusion Detection Using PCASOM Neural Networks.

Lecture Notes in Computer Science. Berlin, Heidelberg: Springer. p 240–245.

 186

Liu G, Yi Z, and Yang S. 2007. A Hierarchical Intrusion Detection Model Based on

the PCA Neural Networks, Neurocomputing. 14th European Symposium on

Artificial Neural Networks. p 1561-1568.

Lunt TF. 1989. Real-Time Intrusion Detection. Proceedings from IEEE COMPCON.

p 455-461.

Michalewicz Z. 1996. Genetic Algorithms, Evolution Programs. Springer Verlag.

Berlin. p 231-236.

Min L, and Wang D. 2009. Anomaly Intrusion Detection Based on SOM. WASE

International Conference on Information Engineering. p 40-43.

Miranda AA, Borgne YB, and Bontempi G. 2008. New Routes from Minimal

Approximation Error to Principal Components , Springer Verlag. Berlin.

p 344-351.

Mitchell T, and Learning M. 1997. Computer Science Series. McGraw-Hill.

p 201-212.

Mukherjee B, Heberlein LT, and Levitt KN.1994. Network Intrusion Detection. IEEE

Network. p 26-41.

Smith N, and Gales M. 2002. Advances in Neural Information Processing Systems.

Cambridge, MA. MIT Press. p 33-38.

Oja E. 1992. Principal Components, Minor Components, and Linear Neural

Networks. Neural Networks 5(6):927–935.

Osareh A, and Shadgar B. 2008. Intrusion Detection in Computer Networks based on

Machine Learning Algorithms. International Journal of Computer Science and

Network Security (IJCSNS), 3 (4):15-23.

Pearson K. 1901. On Lines and Planes of Closest Fit to Systems of Points in Space.

Philosophical Magazine. p 559–572.

Pervez S, Ahmad I, Akram A, and Swati SU. 2007. A Comparative Analysis of

Artificial Neural Network Technologies in Intrusion Detection Systems. WSEAS

Transaction on Computers. p 175-180.

Principe JC, Euliano NR, and Lefebvre WC. 2000. Neural and Adaptive Systems:

Fundamentals through Simulations. New Yor, NY, John Wiley. p 213-218.

Rhodes BC, James AM, and James DC. 2000. Multiple Self-Organizing Maps for

Intrusion Detection. NIST National Information Systems Security (NISS)

Conference. p 344-350.

Ryan J, Lin MJ. 1998. Intrusion Detection with Neural Networks, Advances in

Neural Information Processing Systems. 10 (2):943-949.

 187

Saad A. 2008. An Overview of Hybrid Soft Computing Techniques for Classifier

Design and Feature Selection, Hybrid Intelligent Systems. Eighth International

Conference . p 579-583.

Sandhya S. 2009. Neural Networks for Applied Sciences and Engineering: From

Fundamentals to Complex Pattern. p71-78.

Shyu M, Chen S, Sarinnapakorn K, and Chang L. 2003. A Novel Anomaly Detection

Scheme Based on Principal Component Classifier. ICDM‟03. p 172–179.

Smith LI. 2002. A Tutorial on Principal Components Analysis. Cornell University,

USA. p12-16. [Online]. [Available]:http://www.cs.otago.ac.nz/.

Sun Z, Bebis G, and Miller R. 2004. Object Detection Using Feature Subset

Selection, Pattern Recognition. 37(11):2165-2176.

Verikas A, Kalsyte Z, Bacauskiene M, and Gelzinis A. 2010. Hybrid and Ensemble-

Based Soft Computing Techniques In Bankruptcy Prediction: A Survey, A Fusion

of Foundations, Methodologies and Applications. p 995-1010.

Yatim A, and Utomo W. 2006. Efficiency Optimization of Variable Speed Induction

Motor Drive Using Online Backpropagation. IEEE International Conference on

Power and Energy. p 441-446.

Yu J, Lee H, Kim MS, and Park D. 2008. Traffic Flooding Attack Detection with

SNMP MIB using SVM, Computer Communications. 31(17):4212-4219.

Yu Y, Ge Y, and Fu-xiang G. 2005. A Neural Network Approach for Misuse and

Anomaly Intrusion Detection. Journal of Natural Sciences. Wuhan University

Journals Press. 10 (1) :115-118.

Zargar GR, and Kabiri P. 2010. Selection of Effective Network Parameters in Attacks

for Intrusion Detection, Advances in Data Mining. Applications and Theoretical

Aspects. Lecture Notes in Computer Science (LNCS), 6171(2):643-652.

Zhang Z, Li J, Jorgenson J, and Hide UJ. 2001. A Hierarchical Network Intrusion

Detection System Using Statistical Preprocessing and Neural Network

Classification. IEEE Workshop on Information Assurance and Security. West

Point. p 85-90.

 188

APPENDIX A

 PUBLICATIONS

1 Ahmad I, Abdullah AB, and Alghamdi AS. 2009a. Application of Artificial

Neural Network in Detection of DOS Attacks. ACM International Conference on

Security of Information and Networks (SIN). Gazimagusa, North Cyprus, Turkey.

p 229-234.

2 Ahmad I, Abdullah AB, and Alghamdi AS. 2009b. Application of Artificial

Neural Network in Detection of Probing Attacks. IEEE Symposium on Industrial

Electronics and Applications (ISIEA).Kuala Lumpur, Malaysia. p 557 - 562

3 Ahmad I, Abdullah AB, and Alghamdi AS. 2009c. Artificial Neural Network

Approaches to Intrusion Detection: A Review. Telecommunications and

Informatics conference. Istanbul, Turkey. p 200-205.

4 Ahmad I, Abdullah AB, and Alghamdi AS. 2010a. Applying neural network to

U2R attacks. IEEE Symposium on Industrial Electronics and Applications (ISIEA

2010). Penang, Malaysia. p 1-6.

5 Ahmad I, Abdullah AB, and Alghamdi AS. 2010b. Comparative Analysis of

Intrusion Detection Approaches. IEEE UKSIM. Cambridge University

(Emmanuel College), England. p 586 - 591

6 Ahmad I, Abdullah AB, and Alghamdi AS. 2010c. Evaluating Intrusion detection

Approaches using Analytic Hierarchy process. In: Abstract, editor. IEEE ITSIM.

Kuala Lumpur, Malaysia. p 885 - 890.

7 Ahmad I, Abdullah AB, and Alghamdi AS. 2010d. Evaluating Intrusion Detection

Approaches Using Multi-criteria Decision Making Technique, Information

Sciences and Computer Engineering. International Journal of Information

Sciences & Computer Engineering (IJISCE) 1(1):60-67.

8 Ahmad I, Abdullah AB, and Alghamdi AS. 2010e. Investigating Supervised

Neural Networks to Intrusion Detection. International Journal of Research And

Surveys (IJRS-ICIC-EL) Japan 14(3)2133-2138.

9 Ahmad I, Abdullah AB, and Alghamdi AS. 2010f. Remote to Local Attack (R2L)

Detection Using Supervised Neural Network. IEEE International Conference for

Internet Technology and Secured Transactions (ICITST) [IN PRESS].

 189

10 Ahmad I, Abdullah AB, and Alghamdi AS. 2010g. Towards the designing of

robust IDS through an optimized advancement of neural networks: Lecture Notes

in Computer Science, Springer, Berlin.

11 Ahmad I, Abdullah AB, and Alghamdi AS. 2010h. Towards the Selection of Best

Neural Network System for Intrusion Detection. International Journal of the

Physical Sciences (IJPS)[ISI/SCI] 5(12):1830-1839.

12 Ahmad I, Abdullah AB, and Alghamdi AS. 2011a. Distributed Denial of Service

Attacks Detection Using Support Vector Machine. INFORMATION: An

International Interdisciplinary Journal (ISI/SCI), [IN PRESS].

13 Ahmad I, Abdullah AB, and Alghamdi AS. 2011b. Optimized Intrusion

Detection Mechanism Using Soft Computing Techniques Telecommunication

System (ISI/SCI) [IN PRESS].

14 Ahmad I, Abdullah AB, and Alghamdi AS. 2011c. Features Subset Selection for

Network Intrusion Detection Mechanism Using Genetic Eigen Vectors,

Proceedings of 2011 International Conference on Telecommunication

Technology and Applications (ICTTA 2011), Australia, Sydney, May 2-4, 2011

[IN PRESS].

 190

APPENDIX B

 DEFINATION OF TERMINOLOGIES

Attack: The act of attempts to bypass one or more computer security control to

achieve unauthorized access.

Penetration: The intentional passage through an equipment or computer system by

illegal way.

Anomaly Detection: Activities which vary from established patterns for users, or

groups of users.

Misuse Detection: Comparison of a user's activities with the known behaviors of

attackers.

ANN: A network of highly interconnected processing elements called neurons that

transform a set of inputs to a desired output.

Layer: A component of ANN containing neurons.

Synapse: A component of ANN used as connection between layers.

Intruder: An illegal user that can access network/system resources and play some

thing havoc.

IDS: A system that detect unauthorized access to a computer or network.

Kddcup: An attack database that is standard for the evaluation of IDS.

DOS: A type of attack on a network that is designed to bring the network by flooding

it with useless traffic.

 191

Probing: It involves discovering the algorithms and parameters of the recommender

system itself. It may be necessary for an intruder to acquire this knowledge through

interaction with the system itself.

R2U: It involves unauthorized access from a remote machine.

U2R: It involves unauthorized access to local super user privileges by a local

unprivileged user.

Packet: A basic communication unit.

False Positive: When the system classifies an action as intrusion when it is a legal

action.

False Negative: Intrusion occurred but passed a normal by IDS.

Subversion: The processing of changing behavior of IDS to false negative occurs.

Support Vector Machines (SVMs): SVMs are a set of related supervised learning

methods that analyze data and recognize patterns, used for classification and

regression analysis.

Principal Component Analysis (PCA): PCA is a mathematical procedure that uses

an orthogonal transformation to convert a set of observations of possibly correlated

variables into a set of values of uncorrelated variables called principal components.

Genetic Algorithms (GAs): GAs are adaptive heuristic search algorithm based on

the ideas of natural selection and genetic. The basic concept of GAs is designed to

simulate processes in natural system essential for evolution, particularly those that

follow the principles first laid down by Charles Darwin of survival of the fittest.

