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ABSTRACT  

Intrusions on computer network systems are major security issues these days. 

Therefore, it is of utmost importance to prevent such intrusions. The prevention of 

such intrusions is entirely dependent on their detection that is a main part of any 

security tool such as Intrusion Detection System (IDS), Intrusion Prevention System 

(IPS), Adaptive Security Alliance (ASA), checkpoints and firewalls. Therefore, 

accurate detection of network attack is imperative.  A variety of intrusion detection 

approaches are available but the main problem is their performance, which can be 

enhanced by increasing the detection rates and reducing false positives. Such 

weaknesses of the existing techniques have motivated the research presented in this 

thesis.  

One of the weaknesses of the existing intrusion detection approaches is the usage 

of a raw dataset for classification but the classifier may get confused due to 

redundancy and hence may not classify correctly. To overcome this issue, Principal 

Component Analysis (PCA) has been employed to transform raw features into 

principal features space and select the features based on their sensitivity. The 

sensitivity is determined by the values of eigenvalues. The recent approaches use 

PCA to project features space to principal feature space and select features 

corresponding to the highest eigenvalues, but the features corresponding to the 

highest eigenvalues may not have the optimal sensitivity for the classifier due to 

ignoring many sensitive features. Instead of using traditional approach of selecting 

features with the highest eigenvalues such as PCA, this research applied a Genetic 

Algorithm (GA) to search the principal feature space that offers a subset of features 

with optimal sensitivity and the highest discriminatory power.  

Based on the selected features, the classification is performed. The Support 

Vector Machine (SVM) and Multilayer Perceptron (MLP) are used for classification 

purpose due to their proven ability in classification. This research work uses the 

Knowledge Discovery and Data mining (KDD) cup dataset, which is considered 
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benchmark for evaluating security detection mechanisms. The performance of this 

approach was analyzed and compared with existing approaches. The results show that 

proposed method provides an optimal intrusion detection mechanism that outperforms 

the existing approaches and has the capability to minimize the number of features and 

maximize the detection rates. 
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ABSTRAK 

Pencerobohan ke atas sistem rangkaian komputer merupakan isu keselamatan yang 

utama dewasa ini. Maka, adalah sangat penting untuk menghalang daripada 

pencerobohan ini. Langkah-langkah pencegahan ini bergantung sepenuhnya kepada 

sistem pengesanan di mana ia merupakan bahagian terpenting kepada alat 

keselamatan seperti Intrusion Detection System (IDS), Intrusion Prevention System 

(IPS), Adaptive Security Alliance (ASA), checkpoints dan firewalls. Justeru dengan 

itu, pengesanan yang tepat daripada ancaman rangkaian perlu diberi perhatian. 

Terdapat pelbagai kaedah pengesanan pencerobohan tetapi masalah utama ialah 

prestasi, di mana ia perlu ditingkatkan dengan meningkatkan kadar pengesanan dan 

mengurangkan ketidaktepatan. Kelemahan teknik yang sedia ada ini  telah memberi 

motivasi kepada kajian yang dipersembahkan dalam tesis ini.  

Salah satu kelemahan kaedah pengesanan pencerobohan sedia ada adalah 

penggunaan set data mentah untuk pengkelasan tetapi pengelas mungkin keliru 

disebabkan oleh penindanan data yang mengakibatkan pengkelasan yang tidak betul. 

Untuk mengatasi masalah ini, Principle Component Analysis (PCA) telah digunakan 

untuk mengubah ciri-ciri mentah kepada ruang ciri-ciri utama dan memilih ciri-ciri 

berdasarkan kepada kepekaan mereka. Kepekaan ditentukan dengan eigenvalues. 

Kaedah terkini dengan menggunakan PCA untuk menghasilkan ciri-ciri ruang kepada 

ruang ciri-ciri utama dan memilih ciri-ciri bergantung kepada eigenvalues yang 

tertinggi, namun ciri-ciri ini mungkin tidak memiliki kepekaan yang optimum untuk 

pengkelasan disebabkan  oleh banyak cirri-ciri yang sensitif. Kajian ini tidak 

menggunakan kaedah traditional dalam memilih ciri-ciri dengan menggunakan 

eigenvalues seperti PCA, sebaliknya kajian ini menggunakan satu Generic Algorithm 

(GA) untuk mencari ruang ciri-ciri utama yang menawarkan satu bahagian ciri-ciri 

dengan sensitiviti optimum dan kuasa diskriminasi yang tertinggi. 

Berdasarkan kepada ciri-ciri pilihan, pengkelasan dilaksanakan. Support Vector 

Machine (SVM) dan Multiplayer Perceptron (MLP) telah digunakan untuk tujuan 
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pengkelasan kerana bukti keupayaan mereka dalam pengkelasan. Kerja kajian ini 

menggunakan Knowledge Discovery and Data Mining (KDD) set data cawan, dimana 

ia dianggap sebagai batu pengukur untuk menilai mekanisma pengesanan 

keselamatan. Prestasi kaedah ini telah dianalisa dan dibandingkan dengan kaedah-

kaedah yang sedia ada. Keputusan menunjukan kaedah yang dibentangkan 

menghasilkan mekanisma pengesanan pencerobohan yang optima dan mengatasi 

kaedah-kaedah yang sedia ada dan mempunyai keupayaan untuk mengurangkan 

jumlah cirri-ciri dan memaksimakan kadar pengesanan. 
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CHAPTER 1 

INTRODUCTION 

This chapter covers the motivation, the prevalent issues in the existing intrusion 

detection approaches based on which this work is carried out, and the objectives to be 

accomplished. It also describes relevant research questions, which should be 

answered, the methodology adopted, and the research workflow followed. Finally, the 

chapter concludes with the contributions and the organization of the thesis. 

1.1 Research Motivations 

The rapid development of computer networks and mostly of the Internet has created 

many stability and security problems such as intrusions on computer and network 

systems. Further, the dependency of companies and government agencies is 

increasing on their computer networks and the significance of protecting these 

systems from attack is serious because a single intrusion can cause a heavy loss or the 

consistency of network becomes insecure. During recent years, number of intrusions 

has dramatically increased. Therefore, it is very important to prevent such intrusions. 

The hindrance of such intrusions is entirely dependent on their detection that is a key 

part of any security tool such as Intrusion Detection System (IDS), Intrusion 

Prevention System (IPS), Adaptive Security Alliance (ASA), checkpoints and 

firewalls. Consequently, interest in network intrusion detection has increased among 

the researchers (Ahmad et al. 2009), (Ahmad et al. 2008). Several intrusion detection 

approaches are available but the main problem is their performance, which can be 

enhanced by increasing the detection rates and reducing false alarms. Such 

weaknesses of the existing techniques motivated the research presented in this 

dissertation.  
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1.2 Problems in Intrusion Detection 

The accurate intrusion detection in computer and network systems has always been an 

elusive aim for system administrator and security researchers. Initially, traditional 

intrusion detection systems (IDSs) were developed. However, these systems have 

many limitations like time consuming statistical analysis, regular updating, non-

adaptive, accuracy and flexibility. After this, intelligent IDSs (rule based, graphical 

and hybrid) were introduced but they also suffered many problems such as false 

positive, false negative, and performance efficiency.  Recently, Neural Network (NN) 

inspired by nervous system has become an interesting tool in the applications of 

intrusion detection. But it still suffers from many problems; training/learning 

overhead, detection rate and false alarms (Zargar and Kabiri 2010).  

One of the drawbacks of the existing intrusion detection approaches is the usage 

of a raw dataset for classification but the classifier may get confused due to 

redundancy and hence may not classify correctly. To handle this problem, Principal 

Component Analysis (PCA) has been applied to change raw features into principal 

features space and select the features based on their sensitivity (Liu and Yi 2006). The 

sensitivity is measured by the values of eigenvalues (Sun et al. 2004). The modern 

methods use PCA to project features space to principal feature space and pick features 

corresponding to the highest eigenvalues, but the features corresponding to the 

highest eigenvalues may not have the finest sensitivity for the classifier due to 

ignoring many sensitive features. Therefore, the selection of optimized subset of 

features is another important issue for the intrusion detection system. Other problems 

include the selection of dataset for training and testing, and the classifier architecture 

that classifies connections into normal and intrusive. 

1.3 Research Objectives  

The main goal of the research is to develop an optimized intrusion detection 

mechanism using soft computing techniques that provide the potential to identify 

network activity in a robust way. To achieve this goal, a number of specific objectives 

have been defined as follows: 
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 Transformation of raw features set of packet into new feature space. 

 Selection of optimized subset of features that has higher discriminatory 

power. 

 Selection of the most suitable architecture that identifies network activity 

into normal and intrusive. 

 Development and implementation of the proposed model for intrusion 

detection. 

 Train and test the develop system. 

 Implement the developed system in different case studies. 

 1.4 Research Questions 

Based on the abovementioned issues and problems, we can derive research questions 

as the following: 

 Why did we move from conventional to unconventional IDS? 

 Why did we use soft computing techniques? 

 What are the necessary components (software, services) that are desirable 

to support the architectural framework? 

 What are the specifications of the ideal network intrusion detection system 

(NIDS) that will ensure best performance? 

 How can we map soft computing techniques to NIDS? 

 Will the adaptation of this approach into NIDS improve NIDS in some 

ways or address some issues in NIDS? 

 How can we implement /simulate my work? 

1.5 Research Methodology 

The overall research is divided into several phases, each one is concerned with the 

specific goals to finally fulfill the main objective. These phases are described as 

follows:  
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Figure 1.1 Methodology phases 

1.5.1 Selection of Dataset for Experiments 

The capability of the intrusion detection mechanism depends on the dataset. If the 

training data is more accurate then performance of trained system will be improved. 

So, the collecting of data for training and testing is a critical dilemma (Liu et al. 

2007). Therefore, different issues will be discussed in obtaining or selecting dataset 

for experimental purpose in this research work. This phase of methodology will 

discuss which dataset is best and why? 

1.5.2 Pre-processing of the Dataset 

The selected dataset KDD cup consists of 41 raw features, which fall into different 

categories such as basic features and derived features (Liu et al. 2007). The basic 

features describe single network connection.  

The derived features can be divided into content-based features and traffic based 

features (Ahmad et al. in 2008). The content-based features are derived using domain 
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knowledge and the traffic-based features are obtained by studying the sequential 

patterns between the connection records as well as the correlation between basic 

features. The second step is the pre-processing of data so that it can be given as input 

to my designed system. In this phase, this research work will apply PCA for features 

transformation and GA for the selection of optimal feature set for this proposed 

approach. 

1.5.3 Classification Approach 

After features selection, the next phase is determining the approach for classification. 

This is also another problem. For this purpose, this research work used the Support 

Vector Machine (SVM) and Multilayer Perceptron (MLP) for classification purpose 

due to their proven ability in classification (Sun et al. 2004) and (Pervez et al. 2007). 

Both approaches are applied and tested in different scenarios to compare their 

performance.  

1.5.4 Training the System 

The next phase is training the system. During training, both input patterns and desired 

outputs related to each input pattern are available.  Further, the dataset is divided into 

three parts; (i) cross validation dataset, (ii) test dataset and (iii) training dataset so that 

better performance of the developed system may be achieved (Ahmad et al. 2007). 

Aim of the training is to minimize the error output produced by the system in 

comparison to the desired output. In order to achieve this goal, weights are updated by 

carrying out certain steps known as training. 

1.5.5 Testing the System 

After training, the weights of the system are frozen and performance of the system is 

evaluated. Testing the system involves two steps, which are verification step and 

generalization step. In verification step, system is tested against the data which is used 

in training. Aim of the verification step is to test how well trained system learned the 
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training patterns in the training dataset. In generalization step, testing is conducted 

with data which is not used in training. Aim of the generalization step is to measure 

generalization ability of the trained network (Principe et al. 2000). After training, the 

system only involves computation of the feed forward phase. For this purpose, this 

method used a production dataset that has input data but no desired data. 

1.6 Research Activities 

To achieve the goals, the research activities have been organized as follows: 

 

Figure 1.2 Research activities 
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1.7 Research Contributions 

The research has significant positive impact on the performance of network intrusion 

detection systems, including addressing new open research issues. The main 

achievement is the development of intrusion detection mechanism that outperforms 

the existing approaches and has the capability to minimize the number of features and 

maximize the detection rates. 

The major impact of the research span over the following areas: 

 Performance optimization such as improving detection rate and reducing 

false alarms; false positive and false negative 

 Minimizing training overheads and number of features for the intrusion 

detection approaches 

 Prototype of the architectural framework 

 Contribution to the existing intrusion detection technologies, knowledge 

and applications 

 Help and guidance for the security implementers in the area of intrusion 

detection 

Therefore, in this research work, an optimized intrusion detection mechanism 

using soft computing techniques; PCA, GA, SVM and MLP is proposed and 

implemented. This work uses the KDD cup dataset, which is considered a benchmark 

for evaluating security detection mechanisms. The performance of this approach was 

analyzed and compared with previous approaches. The outcomes demonstrate that 

proposed method provides an optimal intrusion detection mechanism that outperforms 

the existing approaches and has the capability to reduce the number of features and 

increase the detection rates. 

1.8 Organization of the Thesis 

After describing the motivation, objectives, research questions, methodology, 

research workflow and contributions of the work, the remainder of the thesis is 

organized as follows: 
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Chapter 2 introduces the basic ideas about intrusion detection system, its 

components, classification, and foundations and describes the related approaches that 

are mainly used in designing intrusion detection systems. The chapter thereafter 

describes the KDD cup dataset that is considered standard in the evaluation of 

intrusion detection mechanism. Then, the chapter highlights the issues in existing 

intrusion detection studies and reasoning of using KDD cup dataset. Next, the chapter 

discusses the background of soft computing techniques, its unique property, and 

future of soft computing. Then, it explains an overview of applied techniques in my 

research. The chapter then describes the background of neural networks, Support 

Vector Machine and Genetic Algorithm that are basic soft computing techniques. The 

chapter then discusses Principal Component Analysis that is applied for features 

transformation and organization in this research. Further, the chapter  discusses the 

literature consulted in order to understand and investigate the research problem in the 

field of network intrusion detection. The chapter then summarizes and evaluates 

relevant research, and discusses the relationships between different works and 

describes how it relates to this research. The chapter finally discusses the issues in 

existing literatures and directs towards methodology that is adopted in this research 

work. 

Chapter 3 explains the set of methods, techniques, and tools used in this research. 

The chapter, thereafter, demonstrates the workflow process of designing the system 

and architecture for network intrusion detection. Then, it describes different phases of 

adopted methodology like selection of dataset, pre-processing of dataset, determine 

the architecture, training and testing the designed system. Finally, the chapter 

provides directions towards implementation of the proposed model. 

Chapter 4 describes the proposed model with its basic architecture in block 

diagram, and then details of each part or block of its main architecture. Then, it 

explains features description of the dataset used for experiments, feature 

transformation process using PCA and optimal features subset selection using GA. 

After this, the chapter describes the details of classification architectures with basic 

algorithms and mathematical foundation of multilayered perceptron model (MLP) and 

Support Vector Machine (SVM). 
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 Then, the chapter explains system implementation, and the basic parameters used 

during training and testing. Finally, the chapter concludes with the contributions, and 

the chapter summary 

Chapter 5 presents the experimental results obtained by the developed system. 

After that, it discusses the performance evaluation of the system by examining the 

number of false positives and false negatives that they generated during testing. Then, 

it discusses the results and their comparison with existing published results.  

Chapter 6 concludes the work by summarizing the main contributions and 

findings of the study, the limitations of the study and some possibilities for future 

research and development.  

The appendix „A‟ provides a list of publications during this research work and 

appendix „B‟ describes some terminologies used in this thesis. 



 

  

 

 

CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW 

2.1 Introduction 

This chapter describes basic background of intrusion detection systems, their 

functional components, classification and characteristics in the following Sequence: 

(i) Staging of an overview of IDS foundations and analysis techniques to intrusion 

detection. (ii) Description of intrusion detection approaches such as anomaly, misuse 

detection and combined or hybrid approach. (iii) Description of attack dataset: KDD 

cup dataset, a standard dataset for evaluating security detection mechanisms that is 

used to train and test the proposed system. (iv) An overview of the soft computing, its 

properties, its applications in a variety of fields and its future usage. Then, the chapter 

describe technical background of soft computing techniques: Neural Networks (NN), 

Support Vector Machine (SVM), and Genetic Algorithm (GA) utilized in this 

research work. Later, the chapter describes the Principal Component Analysis (PCA) 

and its different steps towards feature transformation into PCA space. Further, the 

chapter presents the literature review to intrusion detection. Followed by, the 

presentation of the related study to intrusion detection using SVM, MLP, PCA and 

GA. Finally, the chapter describes a systematic review of related work and issues in 

the existing intrusion detection approaches. 

2.2 Intrusion Detection Systems 

This section describes some basic and fundamental concepts to Intrusion Detection 

Systems (IDSs). First work in the field of intrusion detection was performed by 

Anderson in the early 1980s. Anderson defines an intrusion as any unauthorized 

attempt to access, manipulate, modify, or destroy information, or to render a system 
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unreliable or unusable (Anderson 1980). Intrusions are caused by accessing the 

systems from Internet, by attackers, by authorized users of the systems who attempt 

to gain additional privileges for which they are not authorized, and authorized users 

who misuse the privileges given to them. IDSs are software or hardware products that 

monitor the system in question and try to detect any attack against the system. A truly 

secure system is still a dream, as there are always bugs in application programs, and 

also communication protocols always have vulnerabilities that can be exploited by 

attackers. In addition, passwords can be cracked, users can lose their passwords, and 

entire crypto system can be broken. As a result, security mechanisms (e.g. firewalls), 

which are deployed to protect the information system, may not be able to prevent all 

security breaches. IDSs are usually deployed along with the other security 

mechanisms, such as access control, authentication and firewalls, as a last defence 

line to improve security of the information system (Amini and Jalili 2005).  The main 

goal of an IDS is to provide high rates of attack detection with very small rates of 

false alarms (Pervez et al. 2007). There are two important types of errors in intrusion 

detection: 

False positives: False positives are the errors occurring when IDS flags a normal 

activity as an attack. Simply, false positives are false alarms. 

False negatives: False negatives are the errors occurring when IDS fails to detect an 

ongoing attack. 

2.3 IDS Functional Components 

This section explains functional components of IDS. An IDS consists of three 

functional components as shown in Figure 2.1 (Bace and Mell  2001): (1) Information 

source that provides a stream or flow of event records, (2) Analysis engine that 

analyzes and classifies intrusions; and (3) Response component that generates 

reactions based on the output of the analysis engine. 
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Figure 2.1 Functional components of IDS 

2.3.1 Information Sources 

The first component of an intrusion detection system is the data source, where input 

information, which will be analyzed, is collected. Input information can be audit 

trails, system logs or network packets.  

2.3.2 IDS Analysis 

Second component of IDS is the analysis engine, which analyse data from 

information source and classify it into normal or intrusive. The IDS analysis engines 

are classified into two categories such as misuse detection and anomaly detection. 

2.3.3 Response Component 

Response component is the third component of an IDS, where reaction to a detected 

attack is given. According to the response types, IDS can be either active or passive. 

An IDS is said to be active, if it actively reacts to the attack by taking corrective 

(closing holes) or proactive actions (logging out possible attackers, closing down 

services). If an IDS just generates alarms, it is said to be passive. Passive IDS 

responses provide information to system administrator who takes necessary actions 

based on that information. 

2.4 Classification of Intrusion Detection Systems 

This section describes two classes of IDS based on the type of the data source. 

According to the data sources used, IDSs can be classified into two categories; host-

based IDSs and network-based IDSs (Jonsson et al. 2004).  
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2.4.1 Host-based IDS  

Host-based IDSs observe activities within an individual computer system and work 

on information obtained from these activities (Ahmad et al. 2007). As target 

environment was mainframe environment, and all users were local to the system, 

initial researches in the field of IDSs were performed on the host-based IDSs. Host-

based IDSs normally use two information sources, operating system audit trails, and 

system logs. Operating system trails are generally generated at the kernel level; hence 

they are more detailed and better protected than system logs. However, system logs 

are simpler and smaller than operating system trails; consequently, they can be 

understood more easily. Further, some benefits and drawbacks of this class of IDS are 

listed here. 

Benefits 

 As host-based IDSs monitor local activities, therefore they can detect attack 

that can not be detected by network-based IDSs. 

 Information sources of the host-based IDSs are generally generated on a 

plaintext data, therefore they can successfully operate in an environment 

where network traffic is encrypted.    

 Performance of the host-based IDSs is not affected by the topology of the 

network they operate in. They successfully operate on switched networks. 

 Drawbacks 

 As host-based IDSs should be placed on every monitored host, it is harder to 

manage and configure host-based IDSs. 

 Host-based IDSs run on the host targeted by attacks, and it may be disabled by 

a successful attack. For instance, certain denial-of-service attacks. 

 As host-based IDSs can only see network packets received by its host, 

detection rate of host-based IDSs is poor in the case attacks are targeted to the 

entire network. 
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 Amount of information used by network-based IDSs can be huge; hence host–

based IDSs are unable to generate good results. 

 IDS may need extra storage on the system on which it is running. 

 Host-based IDSs share the computing resources (e.g. CPU, main memory) 

with the monitored host. Consequently, they cost additional operational 

overheads and may affect the performance of the hosting computer. 

2.4.2 Network-based IDS 

As computing environments shifted from mainframe to the networks of workstations, 

studies on intrusion detection started to focus on attacks targeted to the network.  

Network attacks cannot be detected by examining operating system trails or system 

logs, or at least detection of network attacks by examining data sources on the host 

computer is not an easy task. As a result, network-based IDSs were developed, which 

capture network packets and search attacks in these network packets. Network based 

IDSs monitor activities on a network segment or switch, so that they can protect hosts 

connected to the monitored segment (Amini et al. 2006). Network-based IDSs 

generally consist of sensors which are placed at various points (such as at LAN and 

WAN backbones) in the network. Sensors collect network packets and feed them to 

the network-based IDS that classify them into normal or intrusive class (Cannady 

1998). Further, some benefits and drawbacks of network based IDS are listed here. 

Benefits 

 A huge network can be monitored easily by using a few numbers of sensors, if 

sensors are placed at the critical parts of the network (as at hubs, routers or 

probes). 

 Network-based IDSs are generally passive devices and do not affect the 

normal operation of the network. 

 Network-based IDSs can be very secure against attacks, and even they can be 

made invisible to the attackers. 
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Drawbacks 

 If monitored network is large or network traffic is high, it may be difficult to 

process all network packets. 

 Problems arise when network-based IDSs are placed on a switched network. 

Most of the switches do not provide universal monitoring ports and this fact 

limits the monitoring ability of network-based IDS. 

 Network-based IDSs can not analyze encrypted traffic. This is due to the fact 

that, the sensors analyze packet headers to determine source and destination 

addresses and type of data being transmitted, and analyze the packet payload 

to discover information in the data being transmitted. 

 Distorted network packets may cause a network-based IDS to crash. 

2.5 Characteristics of Intrusion Detection Systems 

This section listed some characteristics of an ideal IDS (Ahmad et al. 2008). 

 Intrusion detection systems should be automatic and reliable to monitor its 

front end and back end running programs. 

 System should be fault tolerant in such a way that system crash should not 

affect its knowledge base where attack pattern are being stored for detecting 

intruders activities. 

 System must be able to monitor itself to ensure subversion resistant. 

 These systems should have less computational overhead to avoid degradation 

in system performance. 

 System should have capability to detect deviation from normal behaviour. 

 Its defence mechanism should be adaptable to new patterns as use patterns of 

every system are different. 

 As system behaviour changes due to the addition of new applications in the 

system. Therefore, the IDS should have potential to adapt these changes and 

be able to detect any intrusion. 

 Last but not the least its architecture should be like that intruders could not be 

successful to modify it for their desired activities. 
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2.6 Foundations of an Intrusion Detection System  

This section describe the basic elements of IDS such as; metrics, models and profiles 

(Cannady 1998) and (Pervez et al. 2007). These elements are described here briefly.  

2.6.1 Metrics 

Any statistical intrusion detection methodology needs the use of a set of metrics. 

These metrics characterize the utilization of a variety of system resources (i.e., CPU 

usage, number of files accessed, number of login attempts). These metrics are usually 

one of three different types. The first metric, event counters identify the occurrences 

of a specific action over a period of time. These metrics may include the number of 

login attempts, the number of times that a file has been accessed, or a measure of the 

number of incorrect passwords that are entered. The second metric, time intervals 

identify the time interval between two related events. Each time interval compares the 

delay in occurrence of the same or similar event .An example of a time interval metric 

is the periods of time between a user‟s logins. The third metric is resource 

measurement that includes the expenditure of CPU time, number of records written to 

a database, or the number of files transmitted over the network. Keystroke dynamics 

is another method of quantifying a user's activities, which offers an effective measure 

of user identification. The concept involves the development of an electronic 

signature of a user based on their individual typing characteristics. These 

characteristics include; (i) typing speed, (ii) intervals in typing, (iii) number of errors, 

and (iv) the user's typing rhythm. These characteristics may be verified on login and 

monitored throughout a session. Complete intrusion detection mechanisms have been 

developed exclusively around the use of keystroke dynamics techniques.  

2.6.2 Models 

The selected metrics are then used in statistical models, which attempt to identify 

deviations from an established norm. The models, which have been most frequently 

used, include the operational model, average and standard deviation model, the 

multivaried model, the markovian model, and the time series model. The operational 
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model makes the assumption that an anomaly can be identified through a comparison 

of an observation with a predefined limit. This model is frequently used in the 

situations where a specific number of events, (i.e., failed logins), is a direct indication 

of a possible attack. The average and standard deviation model is based on the 

traditional statistical determination of the commonness of an observation based on its 

position relative to a specific confidence range. This model offers the advantage that 

it “learns” a user‟s behavior over time instead of requiring prior knowledge of the 

user‟s activities. As a result, the model can establish a foundation for the 

identification of potential anomalies for each user and identify potential problems 

from users who consistently behave in a manner, which would indicate normally the 

misuse of system resources. This is particularly useful in identifying what is normal 

for an individual user without relying on a comparison with other users. The 

multivaried model is built upon the average and standard deviation model. The 

difference between these two approaches is that the multivaried model is based on a 

correlation of two or more metrics. This model permits the identification of potential 

anomalies where the complexity of the situation requires the comparison of multiple 

parameters. The markovian model is used with the event counter metric to determine 

the normalcy of a particular event, based on the events that preceded it. The model 

characterizes each observation as a specific state and utilizes a state transition matrix 

to determine if the probability of the event is high (normal) based on the preceding 

events. This model is particularly useful when the sequence of activities is 

particularly important. The final model, the Time Series Model, attempts to identify 

anomalies by reviewing the order and time interval of activities on the network. If the 

probability of the occurrence of an observation is low, then the event is labeled as 

abnormal. This model provides the ability to evolve over time based on the activities 

of the users (Denault et al. 1994) and (Denault et al. 1994). 

2.6.3 Profiles  

These models are then used in the development of a variety of profiles, which attempt 

to map the nonintrusive activities of the system. The profiles serve to establish a 

baseline of a user‟s behavior, which can then be used for comparisons with the 

current observations. Profiles usually consist of specific characteristics, such as login 
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information, (i.e., frequency, origin, duration), program execution information, (i.e., 

frequency, CPU utilization), database access information, (i.e., tables accessed, data 

manipulation functions), and file access information (i.e., types of files accessed, 

created, or destroyed) (Jonsson et al. 2004). 

2.7 Analysis Techniques for Intrusion Detection 

This section explains analysis techniques those are fundamental components in an 

intrusion detection system, which examines the captured information into normal or 

intrusive class (Cannady 1998) and (Pervez et al. 2007). There are many approaches 

towards intrusion detection but this section describes an overview of five common 

approaches that have been used in numerous traditional intrusion detection 

mechanisms. 

2.7.1 Statistical Analysis  

This approach involves statistical comparison of specific events based on a 

predetermined set of criteria. The data was collected from the system and the 

network. This collected data was tested for attack analysis by statistical models.  

The models which have been used most frequently, include the operational model, 

average and standard deviation model, the multivaried model, the markovian model, 

and the time series model. This was much laborious and time consuming work.  

2.7.2 Rule Based System 

This approach relies on sets of predefined rules, which are provided by an 

administrator, automatically created by the system, or both. Each rule is mapped to a 

specific operation in the system. The rules serve as operational preconditions, which 

are continuously checked in the audit record by the intrusion detection mechanism. If 

the required conditions of a rule are satisfied by user activity, the specified operation 

is executed. This approach was unable to detect novel intrusion. A frequent update of 

rules is required in this approach (Lunt 1989).  
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 2.7.3 Expert Systems 

The use of expert system techniques in intrusion detection mechanisms was a 

significant milestone in the development of effective intrusion detection system in 

information security systems. An expert system consists of a set of rules, which 

encode the knowledge of a human "expert". Unfortunately, expert systems require 

frequent updates by a system administrator to remain current. The lack of 

maintenance or update will degrade the security of the entire system by causing the 

system's users to be misleading into believing that the system is secure, even as one 

of the key components becomes increasingly futile over time (Mukherjee et al. 1994). 

2.7.4 Pattern Recognition 

In this approach, a series of penetration scenarios are coded into the system. Pattern 

recognition possesses a distinct advantage over anomaly and misuse detection 

methods in that it is capable of identifying attacks, which may occur over an extended 

period of time, or by multiple attackers working in concert. This approach is effective 

in reducing the need to review a potentially large amount of audit data. 

2.7.5 Network Monitoring 

This technique monitors network activity for indications of attacks. The greatest 

advantage of network monitoring mechanisms is its independence on audit data. 

Because this method does not require input from any operating system's audit trail, it 

can use standard network protocols to monitor heterogeneous sets of operating 

systems and hosts. 
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2.8 Approaches to Intrusion Detection 

The following are the approaches being utilized to accomplish the desirable elements  

of an intrusion detection system (Fox et al. 1990). This section describe here these  

approaches briefly. 

2.8.1 Anomaly Detection 

Anomaly detection is the general category of intrusion detection, which works by 

identifying activities, which vary from established patterns for users, or groups of 

users. Anomaly detection typically involves the creation of knowledge bases which 

contain the profiles of the monitored activities (Khan et al. 2007). This approach has 

some benefits and drawbacks those are listed below. 

Benefits 

 As any significant deviation from normal profile will be flagged as 

anomalous, anomaly detectors can detect unknown attacks. 

 Anomaly detectors do not require constant updating of rules or signatures of 

novel intrusion. 

 Anomaly detectors can produce information that can in turn be used to define 

signatures for misuse detectors. 

Drawbacks 

 The high false positive rate is the main drawback of the anomaly IDSs. This is 

due to the fact that, the normal profile of a system cannot be fully learned 

and/or behavior of users or programs may change over time. 

 In order to build normal profile of a system, system in question should be 

monitored and information should be collected, which in turn will be used to 

draw normal behaviour of the system. However, if the collected information 
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contains attacks, intrusive behavior will be a part of the normal profile, and in 

future, these attacks will go undetected. 

 Anomaly detection approaches need extensive data sets to build profile of the 

system. 

2.8.2 Misuse Detection 

The second general approach to intrusion detection is misuse detection. This 

technique involves the comparison of a user's activities with the known behaviors of 

attackers attempting to penetrate a system. Misuse detection also utilizes a knowledge 

base of information (Mukherjee et al. 1994). This approach has some benefits and 

drawbacks those are listed below.  

Benefits 

 Misuse IDSs can detect intrusion with a certain degree of certainty. Misuse 

detectors are very effective in detecting attacks without giving high false 

alarm rates. 

 Misuse IDSs can detect all intrusions whose signatures are known. 

 Misuse IDSs are easy to implement (state machine, signature analysis) and 

deploy (no need to form a profile of the system). 

Drawbacks 

 Detection ability of misuse detectors is limited to signatures that they posses. 

A new intrusion or even a variation of a known intrusion may be undetected. 

So misuse IDS require regular updates of signatures in order to remain 

current. 

 The process of developing a new attack signature is time consuming. 
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2.8.3 Combined Anomaly and Misuse Detection 

Research has also been conducted into intrusion detection methodologies, which 

combine the anomaly detection approach and the misuse detection approach. The 

combined approach permits a single intrusion detection system to monitor for 

indications of external and internal attacks (Pervez et al. 2007). 

All current intrusion detection systems make four statements about the systems 

that they are designed to protect: 

 Activities taken by system users, either authorized or unauthorized, can be 

monitored. 

 It is possible to identify those actions, which are indications of an attack 

on a system 

 Information obtained from the intrusion detection system can be utilized 

to enhance the overall security of the network. 

 A fourth element, which is desirable from any intrusion detection 

mechanism, is the ability of the system to make an analysis of an attack in 

real-time. 

 2.9 Attack Dataset 

This section explains attack dataset that has used in this research work. The defense 

advanced research projects agency (DARPA) project was prepared and executed by 

the Massachusetts Institute of Technology (MIT) Lincoln Laboratory, USA (Pervez et 

al. 2007), (Bankovic et al. 2009). One of the reasons for choosing this dataset is that 

the dataset is standard. This will make it easy to compare the results of this work with 

other similar works. Another reason is that it is difficult to get another data set, which 

contains so rich a variety of attacks as the one used here.  

There are 41 features, which fall into different categories such as basic features 

and derived features. The basic features describe single network connections. The 

derived features can be divided into content-based features and traffic based features. 
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The content-based features are derived using domain knowledge and the traffic-based 

features are obtained by studying the sequential patterns between the connection 

records as well as the correlation between basic features.  

In order to create the feature set, the raw tcpdump data has been pre-processed 

into connection records. The basic features are directly obtained from the connection 

records. The derived features fall into two groups; (i) Content-based features and (ii) 

Traffic based features. Table 2.1 explains 41 features of KDD cup dataset in terms of 

feature number, name of feature and type of feature. These features form a record that 

represents an attack or normal activity. Table 2.2 shows connection-based features, 

Table 2.3 shows content-based features and Table 2.4 shows nine time-based features 

from the KDD cup dataset 

Table 2.1 Features of KDD cup dataset 

Feature # Name of feature Type of feature 

1 DURATION CONTINUOUS 

2 PROTOCOL_TYPE SYMBOLIC 

3 SERVICE SYMBOLIC 

4 FLAG SYMBOLIC 

5 SRC_BYTES CONTINUOUS 

6 DST_BYTES CONTINUOUS 

7 LAND SYMBOLIC 

8 WRONG_FRAGMENT CONTINUOUS 

9 URGENT CONTINUOUS 

10 HOT CONTINUOUS 

11 NUM_FAILED_LOGINS CONTINUOUS 

12 LOGGED_IN SYMBOLIC 

13 NUM_COMPROMISED CONTINUOUS 

14 ROOT_SHELL CONTINUOUS 

15 SU_ATTEMPTED CONTINUOUS 
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Feature # Name of feature Type of feature 

16 NUM_ROOT CONTINUOUS 

17 NUM_FILE_CREATIONS CONTINUOUS 

18 NUM_SHELLS CONTINUOUS 

19 NUM_ACCESS_FILES CONTINUOUS 

20 NUM_OUTBOUND_CMDS CONTINUOUS 

21 IS_HOST_LOGIN SYMBOLIC 

22 IS_GUEST_LOGIN SYMBOLIC 

23 COUNT CONTINUOUS 

24 SRV_COUNT CONTINUOUS 

25 SERROR_RATE CONTINUOUS 

26 SRV_SERROR_RATE CONTINUOUS 

27 RERROR_RATE CONTINUOUS 

28 SRV_RERROR_RATE CONTINUOUS 

29 SAME_SRV_RATE CONTINUOUS 

30 DIFF_SRV_RATE CONTINUOUS 

31 SRV_DIFF_HOST_RATE CONTINUOUS 

32 DST_HOST_COUNT CONTINUOUS 

33 DST_HOST_SRV_COUNT CONTINUOUS 

34 DST_HOST_SAME_SRV_RATE  CONTINUOUS 

35 DST_HOST_DIFF_SRV_RATE CONTINUOUS 

36 DST_HOST_SAME_SRC_PORT_RATE CONTINUOUS 

37 DST_HOST_SRV_DIFF_HOST_RATE  CONTINUOUS 

38 DST_HOST_SERROR_RATE CONTINUOUS 

39 DST_HOST_SRV_SERROR_RATE CONTINUOUS 

40 DST_HOST_RERROR_RATE CONTINUOUS 

41 DST_HOST_SRV_RERROR_RATE CONTINUOUS 
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Table 2.3 Content-based features 

No. Feature name Description  

10 HOT Number of hot indicators 

11 NUM_FAILED_LOGINS Number of failed login attempts 

12 LOGGED_IN 1 if successfully logged in; 0 otherwise 

13 NUM_COMPROMISED Number of compromised conditions 

14 ROOT_SHELL 1 if root shell is obtained; 0 otherwise 

15 SU_ATTEMPTED 1 if su root command attempted; 0 otherwise 

16 NUM_ROOT Number of root accesses 

17 NUM_FILE_CREATIONS Number of file creation 

18 NUM_SHELLS Number of shell prompts 

19 NUM_ACCESS_FILES Number of operations on access control files 

20 NUM_OUTBOUND_CMDS  Number of outbound commands  

21 IS_HOST_LOGIN  1 if the login belongs to the host else 0  

22 IS_GUEST-LOGIN 1 if the login belongs to the guest else 0  

Table 2.2 Connection-based feature 

No. Feature name Description  

1 DURATION  Length (number of seconds) of the connection  

2 PROTOCOL_TYPE  Type of the protocol, e.g. tcp, udp, etc.  

3 SERVICE  Network service on the destination 

4 SRC_BYTES  Number of data bytes from source to destination  

5 DST_BYTES  Number of data bytes from destination to source  

6 FLAG  Normal or error status of the connection  

7 
LAND  1 if connection is from/to the same host/port 

8 
WRONG_FRAGMENT  Number of `wrong' fragments  

9 URGENT Number of urgent packets 
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Table 2.4 Time-based features 

No. Feature name Description  

23 COUNT  
Number of connections to the same host as the current 

connection in the past two seconds  

Note: The following features refer to these same-host connections. 

24 SERROR_RATE  % of connections that have ``SYN'' errors  

25 RERROR_RATE  % of connections that have ``REJ'' errors  

26 SAME_SRV_RATE  % of connections to the same service  

27 DIFF_SRV_RATE  % of connections to different services  

28 SRV_COUNT  
number of connections to the same service as the current 

connection in the past two seconds  

Note: The following features refer to these same-service connections. 

No. Feature name Description  

29 SRV_SERROR_RATE  
% of connections that have ``SYN'' 

errors  

30 SRV_RERROR_RATE  
% of connections that have ``REJ'' 

errors  

31 SRV_DIFF_HOST_RATE  % of connections to different hosts  

32 DST_HOST_COUNT Number of connection to host 

33 DST_HOST_SRV_COUNT Number of services requested to host 

34 DST_HOST_SAME_SRV_RATE % of connection with same service 

35 DST_HOST_DIFF_SRV_RATE % of connection with different services 

36 DST_HOST_SAME_SRC_PORT_RATE 
% of connection using the same source 

port 

37 DST_HOST_SRV_DIFF_HOST_RATE 
% of connection with same service but 

to different host 
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No. Feature name Description  

38 DST_HOST_SERROR_RATE % of connection that have SNY error 

39 DST_HOST_SRV_SERROR_RATE 
% of connection with same service that have 

SYN error 

40 DST_HOST_RERROR_RATE % of connection that have REJ errors 

41 DST_HOST_SRV_RERROR_RATE 
% of connection with same service that have 

REJ errors 

 

The description of these types of attacks requires some domain knowledge and 

cannot be done only based on information available in the packet header. Most of 

these attacks are R2L and U2R attacks. Traffic based features have been computed 

automatically. They are effective for the detection of DOS and probe attacks. A list of 

the computer attacks is described briefly that are considered in this research work. 

2.9.1 Denial of Service (DOS) Attacks 

DOS is a type of attack that aims to make an organization's services or resources 

unavailable for an indefinite amount of time by flooding it with useless traffic (Kim et 

al. 2005). The examples of DOS attacks are given as follows. 

 Ping of Death (pod): It makes the victim host unavailable by sending it 

oversized internet control message protocol (ICMP) packets as ping requests. 

 Back: It is a denial of service attack against apache web servers. The attacker 

sends requests containing many front slashes. The processing of which is time 

consuming. 

 Land: Spoofed synchronization (SYN) packet sent to the victim host resulting 

in that host repeatedly synchronizing with itself. 

 Smurf: A broadcast of ping requests with a spoofed sender address which 

results in the victim being bombarded with a huge number of ping responses. 

 Neptune: The attacker half opens a number of transmission control protocol 

(TCP) connections to the victim host making it impossible for the victim host 

to accept new TCP connections from other hosts. 
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 Teardrop: Confuses the victim host by sending it overlapping internet 

protocol (IP) fragments: overlapping IP fragments are incorrectly dealt with 

by some older operating systems.  

Each feature of KDD record is separated by semicolon. A sample of DOS attack 

and its normal pattern is shown in Table 2.5.  

2.9.2 Probing Attacks 

Probing attack involves discovering the algorithms and parameters of the 

recommender system itself (Kim et al. 2005). It may be necessary for an intruder to 

acquire this knowledge through interaction with the system itself. The examples of 

probing attacks are given as follows. 

 Ipsweep: It probes the network to discover available services on the network. 

 Portsweep: It probes a host to find available services on that host. 

 Nmap: It is a complete and flexible tool for scanning a network either 

randomly or sequentially. 

 Satan: It is an administration tool; it gathers information about the network. 

This information can be used by an attacker. 

Each record of KDD consists of features that are separated by semicolon. A 

sample of probing attack and its normal pattern is shown in Table 2.6 

.  

 

 

Table 2.5 A DOS attack and its normal pattern 

Attack pattern Normal pattern 

0;18;21;20;1480;0;0;1;0;0;0;0;0;0;0;0;0;0

;0;0;0;0;1;1;0.00;0.00;0.00;0.00;1.00;0.0

0;0.00;1;1;1.0;0.00; 1.00; 0.00; 0.00; 

0.00; 0.00; 0.00; 1; 0 

0;18;21;20;1480;0;0;1;0;0;0;0;0;0;0;0;0;0;0;0;0;0;2

;4;0.00;0.00;0.00;0.00;1.00;0.00;0.50;2;4;1.00;0.00

;1.00;0.50;0.00;0.00;0.00;0.00;0;1 
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2.9.3 Remote to Local (R2L) Attacks 

R2L attack involves unauthorized access from a remote machine (Ahmad et al. 2007). 

The examples of remote to local attacks are given below: 

 

 Imap: It causes a buffer overflow by exploiting a bug in the authentication 

procedure of the imap server on some versions of LINUX. The attacker gets 

root privileges and can execute an arbitrary sequence of commands.  

 Ftpwrite: This attack exploits a misconfiguration affecting write privileges of 

anonymous accounts on a file transfer protocol (FTP) server. This allows any 

ftp user to add arbitrary files to the FTP server. 

 Phf: This is an example of badly written common gateway interface (CGI) 

scripts that is distributed with the apache server. Exploiting this flaw allows 

the attacker to execute codes with the http privileges. 

 Warezmaster: This attack is possible in a situation where write permissions 

are improperly assigned on a FTP server. When this is the case, the attacker 

can upload copies of illegal software that can then be downloaded by other 

users.  

 Warezclient: This attack consists in downloading illegal software previously 

uploaded during a warezmaster attack. 

 

Every feature of KDD record is separated by semicolon. A sample of R2L attack 

and its normal pattern is shown in Table 2.7.  

Table 2.6 A Probing attack and its normal pattern 

Attack pattern Normal pattern 

0;6;19;34;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;

1;1;0.00;0.00;1.00;1.00;1.00;0.00;0.00;255;1;

0.00;1.00;1.00;0.00;0.00;0.00;1.00;1.00;1;0 

0;6;22;20;259;17289;0;0;0;0;0;1;0;0;0;0;0;0;0;

0;0;0;2;2;0.00;0.00;0.00;0.00;1.00;0.00;0.00;20

;255;1.00;0.00;0.05;0.03;0.00;0.00;0.00;0.00;0;

1 
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2.9.4 User to Root (U2R) Attacks 

U2R attack involves unauthorized access to local super user privileges by a local 

unprivileged user (Ahmad et al. 2007). A sample of U2R attack and its normal pattern 

is shown in Table 2.8.  The examples of such attacks are described as follows. 

Loadmodule: This attack exploits a flaw in how SUNOS 4.1 dynamically load 

modules. This flaw makes it possible for any user of the system to get root privileges. 

Perl: Exploits a bug in some practical extraction and report language (PERL) 

implementations on some earlier systems. This bug consists in these PERL 

implementations improperly handling their root privileges. This leads to a situation 

where any user can obtain root privileges. 

Buffer Overflow: It consists in overflowing input buffers in order to overwrite 

memory locations containing security relevant information. Table 2.8 shows 38 

features of the dataset that are separated by semicolon. 

Table 2.7 A R2L attack and its normal pattern 

Attack pattern Normal pattern 

4;6;29;20;30;93;0;0;0;0;0;1;0;0;0;0;0;0;0

;0;0;0;1;1;0.00;0.00;0.00;0.00;1.00;0.00;

0.00;255;248;0.97;0.01;0.00;0.00;0.00;0.

00;0.01;0.00;1;0 

0;6;24;20;1342;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;6;

6;0.00;0.00;0.00;0.00;1.00;0.00;0.00;171;63;0.37;0

.02;0.37;0.00;0.01;0.00;0.00;0.00;0;1 

Table 2.8 A U2R attack and its normal pattern 

Attack pattern Normal pattern 

0;17;19;20;105;147;0;0;0;0;0;0;0;0;0;0;0;

0;0;0;0;0;1;1;0.00;0.00;0.00;0.00;1.00;0.

00;0.00;255;253;0.99;0.01;0.00;0.00;0.00

;0.00;0.00;0.00;0;1 

0;17;19;20;105;147;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;

1;1;0.00;0.00;0.00;0.00;1.00;0.00;0.00;255;253;0.9

9;0.01;0.00;0.00;0.00;0.00;0.00;0.00;0;1 
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2.9.5 Other Attacks 

There are some other types of attacks; guessing passwords, making use of spy 

programs, and making use of rootkit and multihop attack (Ahmad et al. 2008). A 

sample of such attacks and their normal patterns are shown in Table 2.9. 

2.10 Soft Computing  

This section provides brief information to Soft Computing (SC) in general and 

explains applied SC techniques in specific. SC refers to algorithms that are able to 

deal with uncertainty and incomplete information and that are still capable of 

discovering approximately good solutions to complex computational problems, and 

doing so faster from a computational perspective. These algorithms include neural 

networks, evolutionary computing (genetic algorithms and genetic programming), 

Support Vector Machines and fuzzy logic etc. Actually, the role model for soft 

computing is the human mind. The soft computing is tolerant of imprecision, 

uncertainty, partial truth, and approximation while hard computing shows precision, 

certainty, and rigor (Saad 2008) and (Eiben and Smith 2003). The guiding principle 

of soft computing is exploiting the tolerance for imprecision, uncertainty, partial 

truth, and approximation to achieve flexibility, robustness and low solution cost 

(Jirapummin et al. 2002) and (Bäck 1996). Mostly applications of soft computing 

techniques are those areas where imprecision, or inaccuracy is acceptable, and the 

solution is tolerable of imprecision. 

 

Table 2.9 A sample of another attack and its normal pattern 

Attack pattern Normal pattern 

1;6;27;20;2599;293;0;0;0;0;0;1;0;0;0;0;0;

0;0;0;0;0;3;3;0.00;0.00;0.00;0.00;1.00;0.

00;0.00;255;246;0.96;0.04;0.00;0.00;0.00

;0.00;0.04;0.00;1;0 

0;17;23;20;44;115;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;1

;8;0.00;0.00;0.00;0.00;1.00;0.00;0.38;255;251;0.98

;0.01;0.00;0.00;0.00;0.00;0.00;0.00;0;1 
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2.10.1 Unique Property of Soft Computing 

The unique property of soft computing is described below (Michalewicz 1996).  

 The soft computing learns from experimental data.  

 The soft computing techniques derive their power of generalization from 

approximating to produce outputs from previously unseen inputs by using 

outputs from previous learned inputs.  

 The generalization is done usually in a high dimensional space. 

2.10.2 Applications of Soft Computing 

The soft computing has been used in different areas. But few applications of soft 

computing are listed here (Bebis et al. 2000).  

 Hand written recognition  

 Automotive systems and manufacturing 

 Image processing and data compression  

 Architecture  

 Decision-support systems  

 Power systems  

 Neuro fuzzy systems 

 Fuzzy logic control etc. 

2.10.3 Future of Soft Computing 

Soft computing is playing an important role in science and engineering, but sooner or 

later, its influence may extend much farther. It represents a significant paradigm shift 

in the aims of computing which reflects the fact that the human mind, unlike current 

computers, possesses a remarkable ability to store and process information which is 

imprecise, and uncertain (Verikas et al. 2010) and (Jang et al. 1997).  
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2.11 Overview of Soft Computing Techniques  

The primary techniques of soft computing (SC) are fuzzy logic (FL), neural networks 

(NN), SVM, evolutionary computation (EC), and machine learning (ML) and 

probabilistic reasoning (PR) (Jang et al. 1997). However, this section describes an 

overview of applied techniques in this research work such as neural networks, SVMs 

and GAs. 

2.11.1 Neural Networks (NN) 

Neural network is an information processing model that is inspired by the biological 

nervous systems, such as the brain, process information. The main element of this 

model is the novel structure of the information processing system. It is composed of a 

large number of highly interconnected processing elements (neurons) working in 

combination to solve particular problems (Hammerstrom 1993). 

Neural networks (NNs), like people, learn by example. Neural network is 

configured for a specific application, such as pattern recognition or data 

classification, through a learning process. Learning in biological systems involves 

adjustments to the synaptic connections that exist between the neurons. This is true of 

artificial neural networks or neural networks as well (Yu et al. 2005) and (Fausett 

2009).  

2.11.1.1 Neurobiological Background 

The nervous system of living organisms is a structure consisting of many elements or 

processing units working in parallel fashion and in connection with one another. This 

structure (neural cell of the brain) is known as neuron that is developed in 1836. The 

structure of biological neuron is shown in Figure 2.2 as ascribed in the literature 

(Fausett 2009). 
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Figure 2.2 Structure of biological neuron 

This is a result worth of the Nobel Prize (1906). The neuron has many-inputs and 

one-output units as shown in Figure 2.2 (Fausett 2009). The output can be excited or 

not excited, just two possible choices (like a flip-flop). The signals from other 

neurons are summed together and compared against a threshold to determine if the 

neuron shall excite ("fire"). The input signals are subject to attenuation in the 

synapses which are junction parts of the neuron. The concept of synapse was 

introduced in 1897.The next important step was to find that the synapse resistance to 

the incoming signal can be changed during a "learning" process (1949). If an input of 

a neuron is causing the neuron to fire repeatedly and persistently, a metabolic change 

happens in the synapse of that particular input to reduce its resistance (Fausett 2009).

        

2.11.1.2 Artificial Neuron         

The first artificial neuron was produced in 1943 by the neurophysiologist Warren 

McCulloch and the logician Walter Pits. But the technology available at that time did 

not allow them to do too much (Jirapummin et al. 2002). The structure of ANN is 

shown in Figure 2.3. 
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Figure 2.3 Structure of artificial neuron 

A simple mathematical expression can be expressed of a neuron model as given 

in equation (2.1). The unit‟s output activation is given in Equation 2.1. 

             

 

   

  (2.1) 

Where    is the output activation of unit j and      is the weight on the link from 

unit j to this unit. 

An artificial neuron is a processing element with many inputs and one output. The 

neuron has two types of operation; one is the training phase and the other is using or 

testing phase. In the training phase, the neuron can be trained to fire (or not), for 

specific input patterns or exemplars. In the using or testing phase, when a taught input 

pattern or exemplar is detected at the input, its associated output becomes the current 

output. If the input does not belong in the taught list of input patterns, the firing rule 

is used to determine whether to fire or not (Principe et al. 2000). 
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2.11.1.3 Architecture of Neural Networks 

This section explains two types of neural networks. One is feed-forward and other is 

feedback. 

a). Feed-forward Networks        

Feed-forward ANNs allow signals to travel one way only; from input to output. There 

is no feedback (loops) i.e. the output of any layer does not affect that same layer. 

Feed-forward ANNs tend to be straightforward networks that associate inputs with 

outputs. They are used extensively in pattern recognition (Yu et al. 2005) and 

(Ahmad et al. 2007). This type is also referred to as bottom-up or top-down that is 

shown in Figure 2.4.  

 

Figure 2.4 Feed -forward ANN 

b). Feedback Networks 

Feedback networks can have signals traveling in both directions by introducing loops 

in the network. Feedback networks are dynamic; their state is changing continuously 

until they reach an equilibrium point. They remain at the equilibrium point until the 

input changes and a new equilibrium needs to be found. It is also known as interactive 
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or recurrent (Ahmad et al. 2007) and (Ahmad et al. 2008). This type of neural 

network is shown in Figure 2.5. 

 

 

Figure 2.5 Feedback ANN 

2.11.1. 4 Characteristics of Neural Networks 

The neural network is popular due to the following characteristics (Fausett 2009). 

 The NNs demonstrate capabilities, that is, they can map input patterns to 

their associated output patterns. 

 The NNs learn by examples. They can be trained with known examples of 

a problem before testing. 

 The NNs possess the capability to generalize. Thus, they can predict new 

outcomes from past trends. 

 The NNs are robust systems and are fault tolerant. They can recall full 

pattern from incomplete, partial or noisy patterns. 

 The NNs can process information in parallel, at high speed, and in a 

distributed manner. 
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2.11.1.5 Learning Methods 

There are two main learning methods in neural networks; supervised and 

unsupervised. This section describes them briefly. 

a). Supervised Learning 

It includes an external teacher, so that each output unit is told what its desired 

response to input signals ought to be. During the learning process global information 

may be required. Models of supervised learning include; (i) error-correction learning, 

(ii) reinforcement learning, and (iii) stochastic learning. An imperative issue 

regarding supervised learning is the problem of error convergence, i.e. the 

minimization of error between the desired and computed unit values. The aim is to 

determine a set of weights, which minimizes the error. One well-known method, 

which is common to many learning models, is the least mean square (LMS) 

convergence (Browne 2000).  

b). Unsupervised Learning 

It uses no external teacher and is based upon local information only. It is also known 

as self-organization, in the sense that it self-organizes data presented to the network 

and detects their evolving collective properties. Paradigms of unsupervised learning 

are hebbian lerning and competitive learning (Sandhya 2009). 

2.11.1.6 Transfer Function  

The behavior of an ANN (Artificial Neural Network) depends on both the weights 

and the input-output function (transfer function) that is specified for the units. This 

function typically falls into one of three categories (Sandhya 2009).  

a) Linear  

b) Threshold 

c) Sigmoid 
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a) Linear units: The output activity is proportional to the total weighted output.  

b) Threshold units: The output is set at one of two levels, depending on whether 

the total input is greater than or less than some threshold value.  

c) Sigmoid units: The output varies continuously but not linearly as the input 

changes. Sigmoid units bear a greater similarity to real neurons than do linear 

or threshold units, but all three must be considered rough approximations.  

2.11.1.7 Neural Network Analysis       

An artificial neural network consists of a collection of processing elements that are 

highly interconnected and transform a set of inputs to a set of desired outputs. The 

result of the transformation is determined by the characteristics of the elements and 

the weights associated with the interconnections among them. By modifying the 

connections between the nodes the network is able to tune to the desired outputs 

(Bankovic et al. 2007). Unlike expert systems, which can provide the user with an 

absolute answer if the characteristics, which are analyzed precisely, match those, 

which have been coded in the rule base, a neural network conducts an analysis of the 

information and provides a probability estimate that the data matches the 

characteristics, which it has been trained to recognize. While the probability of a 

match determined by a neural network can be 100 %, the accuracy of its decisions 

relies totally on the experience the system gains in examining examples of the stated 

problem. The neural network gains the experience initially by training the system to 

identify correctly preselected examples of the problem. The response of the neural 

network is analyzed and the configuration of the system is clarified until the neural 

network‟s analysis of the training data reaches an agreeable level. In addition to the 

initial training period, the neural network also gains experience over time as it 

conducts analyses on data related to the problem (Hammerstrom 1993) ,(Cannady 

2000a) and (Pervez et al. 2007).          
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2.11.1.8 Neural Network Intrusion Detection Systems 

A limited amount of research has been conducted on the application of neural 

networks to detecting computer intrusions. Artificial neural networks offer the 

potential to resolve a number of the problems faced by the other current approaches to 

intrusion detection. Artificial neural networks are alternatives. Neural networks were 

specifically proposed to identify the typical characteristics of system users and 

identify statistically significant variations from the user's established behavior (Fu 

1992). Artificial neural networks have also been designed for use in the detection of 

computer viruses. They were proposed as statistical analysis approaches in the 

detection of viruses and malicious software in computer networks. The neural 

network architecture, which was selected, was SOM a self-organizing feature map 

which uses a single layer of neurons to represent knowledge from a particular domain 

in the form of a geometrically organized feature map. The proposed network was 

designed to learn the characteristics of normal system activity and identify statistical 

variations from the norm that may be an indication of a virus (Denault et al. 1994).  

2.11.1.9 Advantages of Neural Network-based IDS      

The first advantage of a neural network in the detection of instances of misuse would 

be the flexibility that the network would provide. A neural network would be capable 

of analyzing the data from the network, even if the data is incomplete or distorted. 

Similarly, the network would possess the ability to conduct an analysis with data in a 

non-linear fashion. Further, because some attacks may be conducted against the 

network in a coordinated attack by multiple attackers, the ability to process data from 

a number of sources in a non-linear fashion is especially important. The built in speed 

of neural networks is another benefit of this approach. Because the protection of 

computing resources requires the timely identification of attacks, the processing 

speed of the neural network could enable intrusion responses to be conducted before 

permanent damage occurs to the system. Because the output of a neural network is 

expressed in the form of a probability, the neural network provides a predictive 

capability to the detection of instances of misuse. A neural network-based misuse 

detection system would identify the probability that a particular event, or series of 

events, was indicative of an attack against the system. As the neural network gains 
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experience it will enhance its aptitude to determine where these events are likely to 

occur in the attack process. This information could then be used to generate a series 

of events that should occur if this is in fact an intrusion attempt. By tracking the 

subsequent occurrence of these events the system would be capable of improving the 

analysis of the events and possibly conducting defensive measures before the attack is 

successful. However, the most important advantage of neural networks in intrusion 

detection is the ability of the neural network to "learn" the characteristics of intrusion 

attacks and identify instances that have been observed before by the network. The 

probability of an attack against the system may be estimated and a potential threat 

flagged whenever the probability exceeds a specified threshold (Fox et al. 1990), 

(James 1997) and (Ahmad et al. 2008).  

2.11.1.10 Disadvantages of Neural Network-based IDS    

There are two primary reasons why neural networks have not been applied to the 

problem of misuse detection in the past. The first reason relates to the training 

requirements of the neural network. Because the ability of the artificial neural 

network to identify indications of an intrusion is completely dependent on the 

accurate training of the system, the training data and the training methods that are 

used are critical. The training routine requires a very large amount of data to ensure 

that the results are statistically accurate. The training of a neural network for intrusion 

detection purposes may require thousands of individual attacks sequences, and this 

quantity of sensitive information is difficult to obtain (Pervez et al. 2007) and 

(Cannady 2000b). However, the most significant disadvantage of applying neural 

networks to intrusion detection is the "black box" nature of the neural network. 

Unlike expert systems, which have hard-coded rules for the analysis of events, neural 

networks adapt their analysis of data in response to the training which is conducted on 

the network. The connection weights and transfer functions of the various network 

nodes are usually frozen after the network has achieved an acceptable level of success 

in the identification of events. While the network analysis is achieving a sufficient 

probability of success, the basis for this level of accuracy is not often known.  
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The "Black Box Problem" has overwhelmed neural networks in a number of 

applications. This is an on-going area of neural network research (Cannady 2000a) 

and (Fox et al. 1990). 

In the last few years, the intrusion detection field has developed significantly and 

therefore many IDSs have been developed. The initial IDSs were anomaly detection 

tools but now, most of the commercial IDSs are misuse detection tools. IDSs have 

become a need, as number of computer and network systems increased seriously. The 

purpose of this research is to propose and analyze the applicability of soft computing 

in the field of intrusion detection. The proposed network based intrusion detection 

system is network-based, because it uses network data to determine whether an 

intrusion has taken place or not. 

2.11.2 Support Vector Machine (SVM) 

SVM was introduced in computational learning theory conference (COLT-92) in 

1992. Support vector machines (SVMs) are a set of related supervised learning 

methods used for classification and regression (Cortes and Vapnik 1995).  

SVM can be applied to the problem of traffic classification in computer network 

systems. This technique is suitable for solving classification problems with high 

dimensional feature space and small training set size. Although the basic technique 

was conceived for binary classification, several methods for single and multi-class 

problems have been developed. As a supervised method, it relies on two phases: 

training and testing. The algorithm acquires knowledge about the classes by 

examining the training set during the training phase. During the evaluation or testing 

phase, a classification method examines the evaluation or testing set and associates its 

members to the classes that are available. During the training phase, the target of the 

algorithm is the estimation of boundaries between the classes described by the 

samples in the training sets. To describe the method with a very simple example one 

can think of a two class problem where a single regular surface perfectly divides the 

features space in two regions, each one fully representative of the corresponding class 

(Este et al. 2009). There can be some issues noticed with neural networks. Some of 

them are having many local minima and also finding how many neurons might be 
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needed for a task is another issue, which determines whether optimality of that NN is 

reached. Another thing to note is that even if the neural network solutions used tends 

to converge, this may not result in a unique solution. SVM performs better in term of 

not over generalization (Mitchell 1997). 

Figure 2.6 shows two different types of data and there are many hyper planes, 

which can classify it. However, which one is better? Which of the linear separators is 

optimal? Therefore, the solution of this problem of selecting suitable hyperplane is 

SVM (Smith  and Gales 2002). 

 

Figure 2.6  Hyper planes for classification of data 

From above Figure 2.6, there are many linear classifiers (hyper planes) that 

separate the data. However, only one of these achieves maximum separation. The 

reason of using hyper plane is to classify data into two classes. However, hyper plane 

may be closer to one dataset compared to others and this is not good to happen and 

thus the concept of large margin classifier or hyper plane is a clear solution. The next 

Figure 3.6 gives the large margin classifier example, which provides a solution to the 

above-mentioned problem (Cristianini and Shawe 2000). 
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Figure 2.7 Linear SVM 

The expression for large margin is given as; 

                  
     

       
    

       

    
  

   

 
(2.2) 

Figure 2.7 is the large margin linear classifier with the maximum range. In this 

context, it is an example of a simple linear SVM classifier. There are some good 

explanations, which include better empirical performance. One advantage is that if 

there is a small error in the location of the boundary than this gives a least chance of 

misclassification. The other advantage would be avoiding local minima and better 

classification. Now, the SVM is expressed mathematically and try to present a linear 

SVM. The goals of SVM are separating the data with hyper plane and extend this to 

non-linear boundaries using kernel trick (Mitchell 1997).  For calculating SVM, the 

goal is to classify all the data correctly.  
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For mathematical calculations, SVM can be represented in the following 

equations, 

[a]                   (2.3) 

[b]                   (2.4) 

[c]                       (2.5) 

In this equation x is a vector point and w is weight and is also a vector. So to 

separate the data [a] should always be greater than zero. Among all possible hyper 

planes, SVM selects the one where the distance of hyper plane is as large as possible.  

If the training data is good and every test vector is located in radius r from training 

vector than chosen hyper plane is located at the farthest possible from the data (Lewis 

2004). This desired hyper plane which maximizes the margin also bisects the lines 

between closest points on convex hull of the two datasets. Thus afore mentioned 

equations (2.3), (2.4) and (2.5) are drawn in Figure 2.8. 

 

Figure 2.8 Representation of hyper planes 
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Distance of closest point on hyperplane to origin can be found by maximizing the 

x as x is on the hyper plane. Similarly, there will be similar scenario for the other side 

points. Thus solving and subtracting the two distances, the resultant is the summed 

distance from the separating hyperplane to nearest points.  

 

Maximum Margin = M = 2 / ||w||. Now maximizing the margin is same as 

minimum (Lewis 2004).  Suppose a quadratic optimization problem and there is need 

to solve for w and b. To solve this problem, the quadratic function has to optimize 

with linear constraints. The solution involves constructing a dual problem and where 

a Langlier‟s multiplier αi is associated. The target is to find w and b such that Φ (w) 

=½ |w‟||w| is minimized; and for all {(xi, yi)}p:  yi (w * xi + b) ≥ 1. 

After solving the result is that w =Σαi * xi; b= yk- w *xk for any xk such that αk 0 

and the classifying function will have the following form:   f(x) = Σαi yi xi  * x + b.      

 

Figure 2.9 Representation of Support Vectors 

2.11.2.1 SVM Representation 

This section describes the quadratic programming (QP) formulation for SVM 

classification (Mitchell 1997), (Lewis 2004) and (Burges 1998). The simple 

representation of SVM can be expressed as, 
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SV classification: 

 

   
    

     
 
 
       

 

   

                            (2.6) 

                                                 (2.7) 

 

SVM classification, Dual formulation: 
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   Where                  ;     and          

 

      
 
             

     

 

Variables i are called slack variables and they measure the error made at point 

(xi,yi).Training SVM becomes quite challenging when the number of training points 

is large. A number of methods for fast SVM training have been proposed (Mitchell 

1997), (Lewis 2004) and (Burges 1998). 

2.11.2.2 Soft Margin Classifier  

In real world problem, it is not likely to get an exactly separate line dividing the data 

within the space and there might have a curved decision boundary. There might be a 

hyperplane, which might exactly separate the data, but this may not be desirable if the 

data has noise in it. It is better for the smooth boundary to ignore few data points than 

be curved or go in loops, around the outliers. This is handled in a different way using  

slack variables those are introduced in existing research work (Mitchell 1997),  

(Lewis 2004), (Burges 1998). This can be expressed as, yi(w‟x + b) ≥ 1 - Sk.. This 

allows a point to be a small distance Sk on the wrong side of the hyper plane without 

violating the constraint. This might end up having huge slack variables which allow 

any line to separate the data, thus in such scenarios the Lagrangian variable are 
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introduced which penalizes the large slacks. 

                          
                    

(2.9) 

Where reducing α allows more data to lie on the wrong side of hyper plane and 

would be treated as outliers which give smoother decision boundary (Burges 1998). 

 

 

Figure 2.10 Soft margin classification 

2.11.2.3 Kernel and Feature Space 

a). Kernel: If data is linear, a separating hyper plane may be used to divide the data. 

However, it is often the case that the data is far from linear and the datasets are 

inseparable. To allow for this kernels are used to non-linearly map the input data to a 

high-dimensional space. A very simple illustration of this is shown in Figure 2.11. 
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Figure 2.11 Use of kernels 

This mapping is defined by the Kernel:      

                 (2.10) 

b). Feature Space: Transforming the data into feature space makes it possible to 

define a similarity measure on the basis of the dot product. If the feature space is 

chosen suitably, pattern recognition can be easy. 

                             (2.11) 

 

Figure 2.12 Feature space representation 

Note the legend is not described, as they are sample plotting to make understand 

the concepts involved. Now getting back to the kernel trick, when w,b is obtained the 
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problem is solved for a simple linear scenario in which data is separated by a hyper 

plane. The Kernel trick allows SVM‟s to form nonlinear boundaries. The steps 

involved in kernel trick are given (Burges 1998), (Cristianini et al. 2002). 

 The algorithm is expressed using only the inner products of data sets. This is 

also called as dual problem. 

 Original data are passed through non linear maps to form new data with 

respect to new dimensions by adding a pair wise product of some of the 

original data dimension to each data vector. 

 Rather than an inner product on these new, larger vectors, and store in tables 

and later do a table lookup, this can be represented by a dot product of the 

data after doing non linear mapping on them. This function is the kernel 

function.  

a). Dual Problem 

First, the problem is converted with optimization to the dual form in which try to 

eliminate w, and a Lagrangian now is only a function of λi. There is a mathematical 

solution for it. To solve the problem maximize the LD with respect to λi.  The dual 

form simplifies the optimization and the major achievement is the dot product 

obtained from this method (Burges 1998) and (Cristianini et al. 2002). 

b). Inner Product Summarization 

This section represents the dot product of the data vectors used. The dot product of 

nonlinearly mapped data can be expensive. The kernel trick just picks a suitable 

function that corresponds to dot product of some nonlinear mapping instead (Burges 

1998) and (Cristianini et al. 2002). A particular kernel is chosen only by trial and 

error on the test set, choosing the right kernel based on the problem or application 

would enhance SVM‟s performance. 

c). Kernel Functions 

The idea of the kernel function is to enable operations to be performed in the input 

space rather than the potentially high dimensional feature space. Hence the inner 
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product does not need to be evaluated in the feature space. The function performs 

mapping of the attributes of the input space to the feature space. The kernel function 

plays a critical role in SVM and its performance. It is based on reproducing Kernel 

Hilbert Spaces (Nello 2000).  

The below mentioned Equation (2.12) shows mapping from input space to the 

feature space.  

                     (2.12) 

 

If K is a symmetric positive definite function, which satisfies Mercer‟s conditions 

than, 

           

 

 

                    
(2.13) 

                                  (2.14) 

Then the kernel represents a legitimate inner product in feature space. The 

training set is not linearly separable in an input space. The training set is linearly 

separable in the feature space. This is called the “kernel trick” (Cristianini et al. 2002) 

and (Nello 2000).  The different kernel functions are listed below. 

Polynomial: A polynomial mapping is a popular method for non-linear modeling. The 

second kernel is usually preferable as it avoids problems with the hessian becoming 

Zero. 

                (2.15) 

                    (2.16) 

Gaussian Radial Basis Function: Radial basis functions most commonly with a 

Gaussian form. 
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(2.17) 

Exponential Radial Basis Function:  A radial basis function produces a piecewise 

linear solution which can be attractive when discontinuities are acceptable. 

               
        

    
  

(2.18) 

Multi-Layer Perceptron: The long established MLP, with a single hidden layer, also 

has a valid kernel representation. 

                        (2.19) 

2.11.2.3 Applications of SVM 

The SVM has been used in the following areas (Bebis et al. 2002). 

 Hand written recognition  

 Data Classification 

 Image processing and data compression Geo- and Environmental Sciences 

 Character Recognition 

 Intrusion Detection 

 Bioinformatics 

 Face Recognition  

 Decision Tree Predictive Modeling 

 E-learning etc. 

2.11.3 Genetic Algorithm (GA) 

Genetic algorithms are a part of evolutionary computing, which is a rapidly growing 

area of artificial intelligence. Genetic algorithms (GA) are search algorithms based on 

the principles of natural selection and genetics. The bases of GA approach are given 

by Holland and it has been deployed to solve wide range of problems (James 1997). 
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In a GA, a population of strings (called chromosomes or the genotype of the 

genome), which encode candidate solutions (called individuals, creatures, or 

phenotypes) to an optimization problem, evolves toward better solutions. 

Traditionally, solutions are represented in binary as strings of 0s and 1s, but other 

encodings are also possible. The evolution usually starts from a population of 

randomly generated individuals and happens in generations. In each generation, the 

fitness of every individual in the population is evaluated, multiple individuals are 

stochastically selected from the current population (based on their fitness), and 

modified (recombined and possibly randomly mutated) to form a new population. The 

new population is then used in the next iteration of the algorithm (James 1997). 

Commonly, the algorithm terminates when either a maximum number of 

generations has been produced, or a satisfactory fitness level has been reached for the 

population. If the algorithm has terminated due to a maximum number of generations, 

a satisfactory solution may or may not have been achieved. 

A typical GA requires a genetic representation of the solution domain and a 

fitness function to evaluate the solution domain. A standard representation of the 

solution is as an array of bits. Arrays of other types and structures can be used in 

essentially the same way. The main property that makes these genetic representations 

convenient is that their parts are easily aligned due to their fixed size, which 

facilitates simple crossover operations. Variable length representations may also be 

used, but crossover implementation is more complex in this case. Tree-like 

representations are explored in genetic programming and graph-form representations 

are explored in evolutionary programming. 

The fitness function is defined over the genetic representation and measures the 

quality of the represented solution. The fitness function is always problem dependent. 

For instance, in the knapsack problem one wants to maximize the total value of 

objects that can be put in a knapsack of some fixed capacity. A representation of a 

solution might be an array of bits, where each bit represents a different object, and the 

value of the bit (0 or 1) represents whether or not the object is in the knapsack. Not 

every such representation is valid, as the size of objects may exceed the capacity of 

the knapsack. The fitness of the solution is the sum of values of all objects in the 
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knapsack if the representation is valid, or  0 otherwise. In some problems, it is hard or 

even impossible to define the fitness expression; in these cases, interactive GAs are 

used. Once the genetic representation and the fitness function are defined, then GA 

proceeds to initialize a population of solutions randomly, then improve it through 

repetitive application of mutation, crossover, inversion and selection operators 

(Bankovic et al. 2009).  

2.11.3.1 Initialization 

Initially many individual solutions are generated randomly to form an initial 

population. The population size depends on the nature of the problem, but typically 

contains several hundreds or thousands of possible solutions. Traditionally, the 

population is generated randomly, covering the entire range of possible solutions (the 

search space). Occasionally, the solutions may be "seeded" in areas where optimal 

solutions are likely to be found (Bankovic et al. 2009). 

2.11.3.2 Selection 

During each successive generation, a proportion of the existing population is selected 

to breed a new generation. Individual solutions are selected through a fitness-based 

process, where fitter solutions (as measured by a fitness function) are typically more 

likely to be selected. Certain selection methods rate the fitness of each solution and 

preferentially select the best solutions. Other methods rate only a random sample of 

the population, as this process may be very time-consuming. Most functions are 

stochastic and designed so that a small proportion of less fit solutions are selected. 

This helps keep the diversity of the population large, preventing premature 

convergence on poor solutions. Popular and well-studied selection methods include 

roulette wheel selection and tournament selection (Bankovic et al. 2009).  

a). Roulette Wheel Selection  

Parents are selected according to their fitness. The better the chromosomes are, the 

more chances to be selected they have. Chromosome with bigger fitness will be 
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selected more times. Imagine a roulette wheel where all chromosomes in the 

population are placed, everyone has its place accordingly to its fitness function as in 

Figure 2.13.  

 

Figure 2.13 Roulette wheel 

b). Rank Selection  

The previous selection will have problems when the fitness differs very much. For 

example, if the best chromosome fitness is 90% of all the roulette wheel then the 

other chromosomes will have very few chances to be selected (Bankovic et al. 2007).  

Rank selection first ranks the population and then every chromosome receives 

fitness from this ranking. The worst will have fitness 1, second worst 2 etc. and the 

best will have fitness N (number of chromosomes in population).  

After this, all the chromosomes have a chance to be selected. However, this 

method can lead to slower convergence, because the best chromosomes do not differ 

so much from other ones.  

 

 

Situation before ranking (graph of fitness) 
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Situation after ranking (graph of order numbers) 

Figure 2.14 Graph before and after roulette wheel selection 

c). Steady State Selection  

This is not particular method of selecting parents. Main idea of this selection is that 

big part of chromosomes should survive to next generation (Bankovic et al. 2009).  

GA then works in the following way. In every generation a few (good - with high 

fitness) chromosomes are selected for creating a new offspring. Then some (bad - 

with low fitness) chromosomes are removed and the new offspring is placed in their 

place. The rest of population survives to new generation.  

2.11.3.3 Reproduction 

The next step is to generate a second generation population of solutions from those 

selected through genetic operators: crossover (also called recombination), and/or 

mutation. For each new solution to be produced, a pair of "parent" solutions is 

selected for breeding from the pool selected previously. By producing a "child" 

solution using the above methods of crossover and mutation, a new solution is created 

which typically shares many of the characteristics of its "parents". New parents are 

selected for each new child, and the process continues until a new population of 

solutions of appropriate size is generated. Although reproduction methods that are 

based on the use of two parents are more "biology inspired", some research  suggests 

that more than two "parents" are better to be used to reproduce a good quality 

chromosome. These processes ultimately result in the next generation population of 

chromosomes that is different from the initial generation. Generally the average 
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fitness will increase by this procedure for the population, since only the best 

organisms from the first generation are selected for breeding, along with a small 

proportion of less fit solutions (Bankovic et al. 2009).  

a). Crossover 

Crossover is a genetic operator that combines (mates) two chromosomes (parents) to 

produce a new chromosome (offspring). The idea behind crossover is that the new 

chromosome may be better than both of the parents if it takes the best characteristics 

from each of the parents (Bankovic et al. 2009). Crossover occurs during evolution 

according to the Crossover Probability. This probability should usually be set fairly 

high (0.9 is a good first choice). There are three basic crossover operators; one-point 

crossover, two-point crossover and uniform crossover. 

i. One Point - Randomly selects a crossover point within a chromosome then 

interchanges the two parent chromosomes at this point to produce two new 

offspring. Consider the following two parents that have been selected for 

crossover. The” |” symbol indicates the randomly chosen crossover point. 

 

Parent 1: 11001|010 

Parent 2: 00100|111 

After interchanging the parent chromosomes at the crossover point, the following 

offspring are produced: 

Offspring1: 11001|111 

Offspring2: 00100|010 

ii. Two Point - Randomly selects two crossover points within a chromosome then 

interchanges the two parent chromosomes between these points to produce two 

new offspring. Consider the following two parents that have been selected for 

crossover. The “|” symbols indicate the randomly chosen crossover points. 
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Parent 1: 110|010|10 

Parent 2: 001|001|11 

After interchanging the parent chromosomes at the crossover point, the following 

offspring are produced: 

Offspring1: 110|001|10 

Offspring2: 001|010|11 

iii. Uniform - Decides (with the probability defined by the mixing ratio) which parent 

will contribute each of the gene values in the offspring chromosomes. This allows 

the parent chromosomes to be mixed at the gene level rather than the segment 

level (as with one and two point crossover). For some problems, this additional 

flexibility outweighs the disadvantage of destroying building blocks. 

 

Consider the following two parents, which have been selected for crossover: 

Parent 1: 11001010 

Parent 2: 00100111 

 

If the mixing ratio is 0.5, approximately half of the genes in the offspring will 

come from parent 1 and the other half will come from parent 2. Below is a possible 

set of offspring after uniform crossover: 

 

Offspring1: 1102120102011112 

Offspring1: 0211010211121201 

In this research method, one point cross over is used that is simple and performs 

the best as compared to others. The crossover probability used in all experiments is 

0.9. 
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b). Mutation 

Mutation is a genetic operator that alters one or more gene values in a chromosome 

from its initial state. This can result in entirely new gene values being added to the 

gene pool. With these new gene values, the GA may be able to arrive at a better 

solution than was previously possible. Mutation is an important part of the genetic 

search as it helps to prevent the population from stagnating at any local optima. 

Mutation occurs during evolution according to the probability defined. This 

probability should usually be set fairly low. If it is set too high, the search will turn 

into a primitive random search (Bankovic et al. 2007).  

2.11.3.4 Termination 

This generational process is repeated until a termination condition has been reached 

(Bankovic et al. 2007). Common terminating conditions are: 

 A solution is found that satisfies minimum criteria 

 Fixed number of generations reached 

 Allocated budget (computation time/money) reached 

 The highest ranking solution's fitness is reaching at such a point that 

successive iterations no longer produce better results 

 Manual inspection 

 Combinations of the above 

 Means Square Error (MSE) 

 Root Means Square (RMSR) 

2.11.3.5 Applications of GA 

A list of GA application is given. 

 Feature selection 

 Optimization 

 Bioinformatics  
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 Computational science  

 Engineering 

 Economics 

 Chemistry 

 Manufacturing 

 Mathematics  

 Physics and other fields 

2.12 Principal Component Analysis (PCA) 

PCA was invented in 1901 by Karl Pearson (Pearson 1901). PCA is a useful 

statistical technique that has found application in fields such as face recognition and 

image compression, and is a common technique for finding patterns in data of high 

dimension. The entire subject of statistics is based on around the idea that you have 

this big set of data, and you want to analyze that set terms of the relationships 

between the individual points in that set (Smith 2002).  

The goal of PCA is to reduce the dimensionality of the data while retaining as 

much as possible of the variation present in the original dataset. It is a way of 

identifying patterns in data, and expressing the data in such a way as to highlight their 

similarities and differences. However, this method uses PCA for transformation of 

input vectors to the new search space. The selection of number of principal 

components is done by GA. 

The methodology applied in this work consists of different steps that are 

described here. The goal is to transform a given data set X of dimension M to an 

alternative data set Y of smaller dimension L. Equivalently, the goal is to find the 

matrix Y, where Y is the Karhunen–Loève transform (KLT) of matrix X: 

         (2.20) 
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Step 1: Organize the data set 

Suppose the data comprises a set of observations of M variables, and the goal is to 

reduce the data so that each observation can be described with only L variables,     L 

< M. Suppose further, that the data are arranged as a set of N data vectors X1, 

X2,...........XN with each Xn representing a single grouped observation of the M 

variables. 

 Write X1....................XN as column vectors, each of which has M rows. 

 Place the column vectors into a single matrix X of dimensions M × N. 

Step 2: Calculate the empirical mean 

 Find the empirical mean along each dimension m = 1, ...................., M. 

 Place the calculated mean values into an empirical mean vector u of 

dimensions M × 1. 

     
 

 
        

 

   

 

(2.21) 

Step 3: Calculate the deviation from the mean 

Mean subtraction is an integral part of the solution towards finding a principal 

component basis that minimizes the mean square error of approximating the data 

(Miranda 2008). Further may be proceeded by centring the data as follows: 

 Subtract the empirical mean vector u from each column of the data matrix X. 

 Store mean-subtracted data in the M × N matrix B. 

        (2.22) 

Where h is a 1x N row vector of all 1s: 

                            (2.23) 

Step 4: Find the covariance matrix 

Find the M × M empirical covariance matrix C. 
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(2.24) 

Where 

 is the expected value operator,    is the outer product operator, and * is the 

conjugate transpose operator. If B consists entirely of real numbers, which is the case 

in many applications, the "conjugate transpose" is the same as the regular transpose. 

The covariance matrix in PCA is a sum of outer products between its sample vectors, 

indeed it could be represented as B.B*.  

Step 5: Find the eigenvectors and eigenvalues of the covariance matrix 

Compute the matrix V of eigenvectors that diagonalizes the covariance matrix C: 

         

 

(2.25) 

Where D is the diagonal matrix of eigenvalues of C. This step will typically 

involve the use of a computer-based algorithm for computing eigenvectors and 

eigenvalues. 

Matrix D will take the form of an M × M diagonal matrix, where 

                        (2.26) 

         (2.27) 

is the mth eigenvalue of the covariance matrix C, and         

Matrix V, also of dimension M × M, contains M column vectors, each of length 

M, which represent the M eigenvectors of the covariance matrix C. The eigenvalues 

and eigenvectors are ordered and paired. The mth eigenvalue corresponds to the mth 

eigenvector. 
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Step 6: Rearrange the eigenvectors and eigenvalues 

 Sort the columns of the eigenvector matrix V and eigenvalue matrix D in 

order of decreasing eigenvalue. 

 Make sure to maintain the correct pairings between the columns in each 

matrix. 

Step 7: Select a subset of the eigenvectors as basis vectors 

Save the first L columns of V as the M × L matrix W: 

                 

                        ,                        

(2.28) 

Where                  . Use the vector g as a guide in choosing an appropriate value 

for L. The goal is to choose a value of L as small as possible while achieving a 

reasonably high value of g on a percentage basis. For example, you may want to 

choose L so that the cumulative energy g is above a certain threshold, like 90 percent. 

In this case, choose the smallest value of L such that, 

                         

 

   

  
(2.29) 

2.13 Literature Review 

Intrusion detection initiates from traditional audit systems. In early age of computing 

environments, large mainframe systems produced sequential records of system events 

which could then be observed manually for purposes such as accounting and security. 

In the 1970s, the U.S. Department of Defence (DOD) made security goals for such 

audit mechanisms, among which were allowing the discovery of attempts to bypass 

protection mechanisms.  

Later, James P. Anderson in 1980 introduced the concept of intrusion detection. 

Further, he also provided the foundation for future intrusion detection system design 

and development (Anderson 1980) . His work was the start of host-based intrusion 

ML 1
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detection and IDS in general. Denning  proposed an intrusion detection model which 

became a landmark in the research in this area (Denning 1987). The model, which she 

proposed, forms the fundamental core of most of the intrusion detection 

methodologies in use these days. Denning conducted a study to create user profiles by 

analyzing audit trails of the government mainframe computers. The first prototype for 

intrusion detection, the Intrusion Detection Expert System (IDES) was formed with 

the help of Denning. IDES analyzes audit trails from government systems and tracks 

user activity. IDES provided a foundation to the intrusion detection development. 

Further, she explained that how anomalous activity could be used as an indicator of 

potential security incidents. 

An artificial neural network consists of a collection of processing elements that 

are highly interconnected and transform a set of inputs to a set of desired outputs. The 

result of the transformation is determined by the characteristics of the elements and 

the weights associated with the interconnections among them. By modifying the 

connections between the nodes the network is able to adapt to the desired outputs. 

Further, they described that a neural network is an implementation of an algorithm 

inspired by research into the brain. In fact, one branch of neuroscience uses 

computers to model cognitive functions. But the neural networks discussed here have 

little to do with biology. Rather, they show technology in which computers learn 

directly from data, thereby assisting in classification, function estimation, data 

compression, and similar tasks. Neural networks are valuable because these are 

adaptive and have generalization ability (Hammerstrom 1993). There are several 

methods of responding to a network intrusion, but they all require the precise and 

well-timed identification of the attack (Cannady 2000b). The existing approaches to 

misuse detection involve the use of rule-based expert systems to identify indications 

of known attacks. However, these techniques are less successful in identifying 

attacks, which vary from expected patterns. He presented an approach to the process 

of misuse detection that utilizes the analytical strengths of neural networks, and he 

provided the results from his preliminary analysis of this approach. He made his own 

dataset using some software packages like the RealSecure™, the Internet Scanner™ 

products from Internet Security Systems (ISS), Inc, and the Satan scanner. His 

experimental dataset consists of 10,000 packets in which approximately 3000 were 

simulated attacks. The nine elements (Protocol ID, Source Port, Destination Port, 
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Source Address, Destination Address, ICMP Type, ICMP Code, Raw Data Length 

and Raw Data) were selected because they were typically present in network data 

packets and they provide a complete description of the information transmitted by the 

packet. He used Multiple Layered Perceptron (MLP) architecture for training and 

testing his proposed approach. He used parameters root mean square error (RMSE), 

Training and Testing data correlation to test their result‟s sensitivity. This presented 

work has many drawbacks but it was a good initiative towards the application of 

neural networks in the area intrusion detection. 

Jing and their colleagues described a mechanism in intrusion detection by using 

artificial neural network (Jing-Xin et al. 2004). They described that the traditional 

intrusion detection systems mainly consist of two kinds, one is misuse IDS, and the 

other is anomalous IDS. Misuse IDS works by rule matching, suffering from the 

updating, the searching and the matching of the rule sets. Anomalous IDS works by 

statistically computing, suffering from the establishment of the exact statistical model 

and the selection of the threshold. All of those lower the usability of the traditional 

intrusion detection systems. To address these problems, several new methods have 

been proposed, such as data mining, artificial neural networks and artificial immune 

systems, etc. They mainly discussed the application of the artificial neural networks 

in the field of IDS research. They have designed and implemented a network 

intrusion detection system based on the artificial neural networks; and the testing 

results of the prototype system revealed the validity of the method and the advantages 

over other methods suggested. In contrast with the traditional methods, the main 

advantages of the artificial neural networks include the fast / rapid information 

processing, the stronger ability of tolerance and the ability of self-learning. All of 

these help to overcome the problems of the traditional IDS (Jing et al. 2004). 

Lilia and their colleagues presented a network intrusion detection method to 

identify and classify illegitimate information in TCP/IP packet payload based on the 

Snort signature set that represents possible attacks to a network (Lilia et al. 2004). 

Further, they used a neural network named Hamming Net for their experiments. They 

selected this network on the base of its capability to classify network events in real-

time, and  to learn faster than other neural network models, such as, multilayer 

perceptron with backpropagation and Kohonen maps.TCP/IP packet payloads were 
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used as input pattern to the Hamming Net and Snort signature as exemplar patterns. 

The challenges faced to model the input and exemplar data and the strategies adopted 

to capture and scan relevant data in TCP/IP packets and in Snort signatures were 

described in their work. Their system showed 70% accuracy in the classification of 

attacks (Lilia  et al. 2004). 

Este and their colleagues described an approach to traffic classification based on 

SVM (Este et al. 2009). They applied one of the approaches to solving multi-class 

problems with SVMs to the task of statistical traffic classification, and described a 

simple optimization algorithm that allows the classifier to perform correctly with as 

little training as a few hundred samples. The accuracy of the proposed classifier is 

then evaluated over three sets of traffic traces, coming from different topological 

points in the Internet. Their presented results confirmed that SVM-based classifiers 

could be very effective at discriminating traffic generated by different applications, 

even with reduced training set sizes. Further, they used different data sets for instance 

the lawrence berkeley national laboratory (LBNL) data set, the cooperative 

association for internet data analysis (CAIDA) dataset and self-simulated data set. 

Their results showed 90 % accuracy. The system has some drawbacks; it could not 

handle out-of-order packets, packet loss, and fragmentation in a robust way (Este et 

al. 2009). 

SVM for traffic classification also described in another work by (Li and Guan 

2007) . They used a technique to train a classifier to recognize seven different classes 

of applications. In this approach, flows are divided in common classes such as bulk, 

multimedia, etc. The authors pointed out that changing the features influence the 

accuracy of classification results. For regular traffic samples with biased prior 

probability, they achieved an accuracy of approximately 99.4%. For un-biased 

samples, with uniform prior probability, their method yielded approximately 96.9% 

accuracy. The way of selecting features was not much more efficient in their work. 

They did not use standard data set and compared their results with recent approaches. 

 A detection mechanism was proposed for traffic flooding attacks by Yu and their  

colleagues (Yu et al. 2008). They used simple network management protocol (SNMP) 

management information base (MIB) statistical data gathered from SNMP agents, 
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instead of raw packet data from network links. The involved SNMP MIB variables 

were selected by an effective feature selection mechanism and gathered effectively by 

the MIB update time prediction mechanism. Then, they used a machine learning 

approach based on SVM for attack classification. Using MIB and SVM, they 

achieved fast detection with high accuracy, the minimization of the system burden, 

and extendibility for system deployment. The proposed mechanism is constructed in a 

hierarchical structure, which first differentiates attack traffic from normal traffic and 

then classifies the types of attack. They used various types of flooding; transmission 

control protocol synchronization (TCP-SYN) flooding, user data protocol (UDP) 

flooding, and internet control management protocol (ICMP) flooding. Using MIB 

datasets collected from real experiments involving a distributed denial of service 

(DDOS) attack, they validated the possibility of their approaches. It is shown that 

network attacks were detected with high efficiency (97.07 %), and classified with low 

false alarms (Yu et al. 2008). 

Several researchers have applied data mining techniques in the design of network 

intrusion detection system (NIDS) (Khan et al. 2007). One of the promising 

techniques is SVM, which has concrete mathematical foundations that provided 

satisfying results. SVM separates data into multiple classes (at least two) by a 

hyperplane, and simultaneously minimizes the empirical classification error and 

maximizes the geometric margin. Thus, it is also known as maximum margin 

classifiers. 

Osareh and Shadgar  applied NN and SVM techniques on the standard  KDD cup 

99 dataset which has been utilized in the evaluation of security detection mechanism 

as a benchmark dataset in several different research works. They selected four 

different categories of attack such as DOS, probing, R2L and U2R. They proved 

through simulations that the accuracy of NN is higher than that of SVM, but false 

alarm and detection rate of SVM is better. They used full features of dataset that 

decreases the performance of the NN and SVM architecture that will also affect on 

training and testing overheads. Further, their proposed system demonstrated up to 

83.5 % accuracy in detection (Osareh and Shadgar 2008). 
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Even though SVMs have shown good results in data classification, but they are 

not favorable for huge dataset because the training complexity is dependent on the 

amount of data in the training set. Larger amount of data would lead to higher training 

complexity. However, many data mining applications involve millions or even 

billions of pieces of data records. For instance, in the KDD cup 1999 dataset, there 

are more than 4 million and 3 million records in the training set and test set, 

respectively. The SVM technique is powerless to operate at such a large dataset due 

to system failures caused by insufficient memory, or may take too long to finish the 

training. Since this work used the KDD cup 1999 dataset, to reduce the amount of 

data, a combined (PCA+GA) method was applied to preprocess the dataset before 

SVM training. This approach improved the performance of the system. 

The PCA is an important technique in data compression and feature extraction 

(Oja 1992) and it has been also applied to the field of intrusion detection 

(Kuchimanchi et al. 2004) , (Labib and Vemuri 2004), (Shyu et al. 2003). A neural 

network PCA (NNPCA) and nonlinear component analysis (NLCA) were proposed to 

reduce the dimensionality of network traffic; their approaches focused on retaining 

the information of the compressed data compared with that of the original data. PCA 

was used to detect selected denial-of-service and network Probe attacks; the authors 

analyzed the loading values of the various feature vector components with respect to 

the principal components (Labib and Vemuri 2004). Based on principal and minor 

components, a method called principle component classifier (PCC) studied the use of 

robust PCA in outlier detection; this method was able to distinguish the nature of the 

anomalies whether they were different form the normal instances in terms of extreme 

values or different correlation structures; the PCC achieved about 98% detection rate 

with 1% false positive ratio. However, all the mentioned PCA methods are based on 

conventional statistical analysis utilizing batch mode computation, which are not 

suitable for adaptive learning and online computing (Shyu et al. 2003). 

Liu and Yi  had worked on unsupervised learning method based on PCA self-

organizing map (PCASOM) for network sessions clustering, and a simplified winner-

takes-all SOM was used to generate data clusters with a mean vector and principal 

basis vectors (Liu and Yi  2006). 
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Liu and their colleagues  described a hierarchical ID model based on the PCANN, 

which has been used for adaptive computing for both misuse detection and anomaly 

detection (Liu et al. 2007). The design of PCANN based classifier is detailed and a 

particular selection of features was made by principal components Analysis. First, 

they selected 22 features then these features were provided to their system. So, there 

is a possibility to lose much important features that are more sensitive for the 

classifier (Liu et al. 2007). Although there are many well-known drawbacks of the 

PCA neural networks, e.g., the inability to provide a nonlinear mapping, the 

convergence speed of stochastic neural PCA learning algorithms, etc, their 

simulations perform well for the specific domain of intrusion detection. They 

introduced two levels in their proposed model. The top level of model is constructed 

with a norm profile, and it can distinguish „bad‟ connections from „good‟ ones at the 

first stage; all the lower levels are signature-based misuse detectors which can give a 

specified detection; furthermore, their proposed model trained a new classifier using 

clustered abnormal connections with data flags, and this enabled them to construct an 

integrated IDS. They performed different experiments to demonstrate the 

performance of the proposed model on DARPA 1998 evaluation data sets. Their 

comparative results showed an improvement in detection performance.  

Lakhina  and their colleagues described that attacks on the network infrastructure 

are major threats against network and information security. Most of the existing 

intrusion detection approaches use all 41 features in the network to measure and look 

for intrusive pattern some of these features are redundant and irrelevant. The 

drawback of this approach is time-consuming detection process and degrading the 

performance of intrusion detection system. They presented hybrid algorithm 

PCANNA (Principal Component Analysis neural network algorithm) to reduce the 

number of computer resources, both memory and CPU time required to detect attack. 

They used PCA to reduce the feature and trained neural network to identify attacks. 

Test and comparison were made on KDD dataset. They demonstrate that their 

proposed model showed improvement up to 80.4% data reduction, approximately 

40% reduction in training time and 70% reduction in testing time. Their proposed 

method not only reduces the number of the input features and time but also increases 

the classification accuracy (Lakhina et al. 2010).  
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The aforementioned work related to PCA on intrusion detection has emphasized 

the issues of feature extraction and classification; however, relatively less attention 

has been given to the critical issue of feature selection. The main trend in feature 

extraction has been representing the data in a lower dimensional space, for example, 

using PCA. Without using an effective scheme to select an appropriate set of features 

in this space, however, these methods rely mostly on powerful classification 

algorithms to deal with redundant and irrelevant features. Therefore, this method 

providing a new way of feature subset selection in the area of intrusion detection. 

Bankovic and their colleagues presented a serial combination of two genetic 

algorithm-based intrusion detection systems. They proposed many solutions for 

intrusion detection based on machine learning techniques, but most of them 

introduced major computational overhead, which made them time consuming and 

thus increased their period of adapting to the environmental changes. In the first step 

of their solution they deployed feature extraction techniques using PCA in order to 

reduce the amount of data that the system needed to process. Hence, their system was 

simple and reduced significant computational overhead, but at the same time is 

accurate, adaptive and fast due to genetic algorithms. Furthermore, on account of 

inherent parallelism, their solution offered a possibility of implementation using 

reconfigurable hardware with the implementation cost much lower than the that of the 

traditional systems. They used two types of classifier; linear and rule based. The 

model was tested on KDD99 benchmark dataset and showed 92.1 % detection rate 

(Bankovic et al. 2009). 

Bankovoc and their colleagues proposed a misuse detection system based on 

genetic algorithm (GA) approach. They used the KDD99Cup dataset for evolving and 

testing new rules for intrusion detection. Further, they deployed PCA to extract the 

most important features of the data (Bankovic et al. 2007). In that way, they were able 

to keep the high level of detection rates of attacks while speeding up the processing of 

the data. However, there is one drawback that is a chance to miss some important 

features that are more sensitive for the classifier. Genetic algorithm (GA) approach is 

one of the future approaches in computer security, especially in intrusion detection 

systems (IDS) ( Folino  et al. 2005).  
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GA operates on a population of potential solutions applying the principle of 

survival of the fittest to produce better and better approximations to the solution of 

the problem that GA is trying to solve. At each generation, a new set of 

approximations is created by the process of selecting individuals according to their 

level of fitness value in the problem domain and breeding them together using the 

operators borrowed from the genetic process performed in nature, i.e. crossover and 

mutation. This process leads to the evolution of populations of individuals that are 

better adapted to their environment than the individuals that they were created from, 

just as it happens in natural adaptation (Bankovic et al. 2009). 

Kim and their colleagues proposed fusions of GA and SVM for efficient 

optimization of both features and parameters for detection models (Kim et al. 2005). 

Their method provided optimal anomaly detection model which was capable to 

minimize amounts of features and maximize the detection rates. In experiments, they 

showed that the proposed method was efficient way of selecting important features as 

well as optimizing the parameters for detection model and it provided more stable 

detection rates. One of the drawbacks of using GA for features selection is that the 

raw features are not in well organized form so there are chances to miss some key 

features that are important for the classifier (Kim et al. 2005). 

Rayan and their colleagues performed one of the first works to intrusion detection 

by NN (Ryan et al. 1998).  They trained and tested an offline neural network intrusion 

detection mechanism (NNIDS) on a system of ten users. They used 2-Layer MLP 

architecture for their system and backpropagation for training purpose. The data 

source for training and testing was operating system logs in UNIX environment. The 

result parameters to evaluate the performance of the system were false positive and 

false negative. They implemented their system in the PlaNet neural network simulator 

(Ryan et al. 1998).  Cannady  made another work in the same field. He also used the 

2-Layer MLP architecture for his system and backpropagation for training purpose. 

The data source for training and testing was network packets collected by real secure. 

Nine of the packet characteristics of network data were selected and presented to the 

MLP network which has four fully connection layers .He used root means square 

error (RMSE) parameter for training and testing data for performance measuring.  
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Ghosh and their colleagues presented a host based IDS that focused on building 

program profiles and used these program profiles to identify normal software 

behavior and malicious software behavior. The system was trained and tested on SUN 

platform and used basic security module (BSM) as source of data. Input data were 

extracted from BSM and a distance metric, which constituted input vectors of the NN.  

The IDS presented was a single hidden layer MLP. The number of input nodes was 

equal to the number of exemplar strings. Lucky bucket algorithm is used to capture 

the temporal locality of anomalous events. Performance analysis was done with 

DARPA database.  Ghosh and Schwartzbard in 1999  also used Elman Networks for 

intrusion detection (Ghosh and Schwartzbard 1999) . Rhodes et al. 2000 described 

another work in intrusion detection. They proposed the use of self-organizing neural 

networks to recognize anomalies in network data stream. Unlike from other 

approaches which use self organizing maps to process entire state of a network or 

computer system to detect anomalies, proposed system breaks down the system by 

using collection of more specialized maps. A monitor stack was constructed and each 

neural network became a kind of specialist to recognize normal behavior of a protocol 

and raise an alarm when a deviation from normal profile occurs. The test intrusions 

were buffer overflow attempt (Rhodes et al. 2000).  

Lippmann and Cunningham of MIT Lincoln Laboratory conducted a misuse 

detection model with neural networks, by searching attack specific keywords in the 

network traffic. They used a MLP network to detect Unix-host attacks, and attacks to 

obtain root-privilege on a server. The data that they presented to the neural network 

consisted of attack-specific keyword counts in network traffic. Two neural networks 

were used in the system, one for providing an attack probability and one for 

classifying attacks. A two-layer perceptron was designed with k input nodes, 2k 

hidden nodes and 2 outputs ( Lippmann and Cunningham 2000).  

In another study by Zhang and their colleagues, statistical analysis was used in 

conjunction with MLP networks (Zhang et al. 2001). System is a distributed 

hierarchical application in the sense that system consists of hierarchy of Intrusion 

Detection Agents (IDAs) at multiple tiers where each tier corresponds to different 

network scope. IDAs are IDS components that monitor the activities of a host or a 

network.  An IDA, which consists of components such as the probe, the event pre-
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processor, the statistical processor, the neural network classifier and the post 

processor.  Probe collects network traffic and abstracts it into statistical variables. 

Event pre-processor collects data from probes and other agents and formats it for the 

statistical analyzer. Statistical model compares the data to the previously compiled 

reference model, which describes the normal state of the system. A stimulus vector is 

formed and forwarded to the NN. Neural network analyzes the vector and decides 

whether it is anomalous or normal. Post processor generates reports for the agents at 

higher tiers or it may display the results through a user interface. Backpropagation, 

perceptron, perceptron-backpropagation hybrid, fuzzy ART MAP, radial-basis 

function networks with 2-8 hidden nodes were tested. The experimental test bed 

consisting of 11 workstations and 1 server was built by using operations network 

(OPNET) network simulation software. UDP flooding attack was simulated within 

the test bed (Zhang et al. 2001).  

Lee and Heinbuch worked on experimental IDS with a hierarchy of neural 

networks. Each of the neural networks in the hierarchy focused on different portions 

of nominal TCP behavior. Portions of these observed TCP behaviors are connection 

establishment, connection termination and port usage. System was trained to detect 

three kinds of attack, which are SYN flood, fast SYN port scan, and stealth SYN port 

scan (Lee and Heinbuch 2001).  

Jirapummin and their colleagues presented an alternative methodology for both 

visualizing intrusions by using self organizing map (SOM) and classifying intrusions 

by using resilient propagation (Jirapummin et al. 2002). Neptune attack (SYN 

flooding), portsweep and satan attacks (port scanning) were selected from KDD cup 

1999 data set. For resilient backpropagation (RPROP), 3 layer NN is utilized with 70 

nodes in first hidden layer, 12 neurons in second hidden layer and 4 neurons in the 

output layer. The transfer functions for the first hidden layer, second hidden layer and 

the output layer of RPROP were tan-sigmoidal, log-sigmoidal and log-sigmoidal 

respectively  (Jirapummin et al. 2002).  

Bivens and their colleagues proposed a neural network model for a network-based 

intrusion detection system. Their anomaly detection system used MLP network for 

detection. System uses tcpdump data (Bivens et al. 2002). Another study was made 
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by Shyu and their colleagues. They used KDD cup 1999 as a data source for training 

and testing of their system. The neural network used by them was PCC (Shyu et al. 

2003).  

Yu and their colleagues worked on FTP brute force attacks (Yu et al. 2005). They 

used samples that were collected from local network traffic. They used Hybrid 

backpropagation/chaotic neural network (BP/CNN) as neural network architecture. A 

receiver operator characteristics  (ROC) curve is used to evaluate the system 

performance by them.  

Amini and Jalili 2006 worked on intrusion detection by using adaptive resonance 

theory1 (ART1) and adaptive resonance theory2 (ART2). They compare both NN and 

showed that ART-1 is better in performance wise but ART-2 is better in response 

wise. They also used standard data set KDD cup 1999 (Amini and Jalili 2005). In 

another work Amini et al. , they worked on IP, TCP, UDP, and ICMP packets in the 

local area network (LAN) environment (Amini et al. 2006).  

Ahmed and their colleagues worked in the field of intrusion detection. They used 

full featured Kddcup 99 data set for their system. They used RBPROP NN for 

training and testing of the network (Ahmad et al. 2007). Another work is also 

presented by Ahmed et al. in which different backpropagation algorithms were 

benchmarked. They used MLP architecture in their system (Ahmad et al. in 2008).  

Statistical approach, rule based approach, expert system approach, pattern 

recognition approach, graph-based approach, hybrid approach and artificial neural 

network approach toward intrusion detection are evaluated using analytic hierarchy 

process (AHP) (Pervez et al. 2007) and (Sandhya S 2009).  The evaluation process 

takes into account two different types of criteria i.e. main criteria and sub-criteria. 

The strength of main criteria is based on its efficiency, adaptability, less updating, 

suitability and maturity, while the sub-criteria consists of economical, time saving, 

detection rate, minimum false positive, minimum false negative and having the 

capability to handle varied intrusion and also coordinated intrusion.  According to the 

study (Ahmad et al. in 2008), it has been concluded that among all the approaches, 

the artificial neural network approach is most suitable to tackle the current issues of 

intrusions detection systems such as regular updating, detection rate, false positive, 
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false negative, suitability and adaptability. The comparative analysis is shown Figure 

2.15. 

 

 

Figure 2.15 Comparative analysis of intrusion detection approaches 

Different neural networks for intrusion detection mechanism such as self-

organizing map (SOM), adaptive resonance theory (ART), online backpropagation 

(OBPROP), resilient backpropagation (RPROP) and SVM are evaluated using Multi-

criteria Decision Making (MCDM) technique (Dutta et al. 2006) and (Yatim and 

Utomo 2006). The evaluation based on two types of criteria i.e. the main criteria and 

sub criteria. The main criteria consists of adaptable, minimum training, performance, 

maturity and aptitude, while on the other side, the sub criteria consist of detection 

rate, minimum false positive, minimum false negative, cost, time, handling co-

ordinated and varied intrusion.  

The hybrid approach using artificial neural networks is a more suitable tactic 

among other approaches to tackle present issues of intrusion detection systems such 

as regular updating, detection rate, false positive, false negative, and flexibility. The 

comparison among them is shown in Figure 2.16. 
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Figure 2.16 Comparative analysis of NN intrusion detection approaches 

Three supervised neural networks training algorithms are investigated for 

intrusion detection mechanism like batch backpropagation (BPROP), online 

backpropagation (OBPROP) and resilient backpropagation (RPROP) using Java 

object oriented neural environment (JOONE) and multi-criteria analysis (MCA) 

technique (Yatim and Utomo 2006) and (Dutta et al. 2006) . The investigation based 

on two types of criteria; main criteria and sub criteria. The main criteria consist of 

minimum mean squared error (MSE), less training overhead, performance, memory 

usage and usability. The criterion “performance” is divided into sub-criteria namely 

detection rate, minimum false +ve and minimum false -ve. Further, it had concluded 

that RPROP approach is more suitable approach among other approaches to tackle 

present issues to intrusion detection systems such as detection rate, false positive, 

false negative, MSE and memory usage. The comparison among three investigated 

networks is shown in the Figure 2.17. 
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Figure 2.17 Comparative analysis of supervised neural networks 

The supervised neural network (SNN) uses supervised learning algorithms such 

as batch backpropagation (BPROP), online backpropagation (OBPROP), and resilient 

backpropagation (RBPROP) (Yatim and Utomo 2006) and (Dutta et al. 2006). These 

SNN algorithms have only one drawback that is unable to detect novel attacks or 

patterns. On the other hand, unsupervised neural network (UNN) such as self 

organizing maps (SOMS), and adaptive resonance theory (ART) show poor 

performance such as detection rate, false positive and false negative but these are 

more efficient in flexibility and adaptivity (Min and Wang 2009) , (Amini and Jalili 

2005). So, a design can be presented for neural network intrusion detection system 

that merges the advantages of both networks such as SNN and UNN. The working of 

the designed architecture consists of three phases and is shown in Figure 2.18. The 

brief detail of each phase is described here. 
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Figure 2.18 Architecture of hybrid learning for NIDS 

a) Training SNN 

First of all designed SNN is trained on the standard dataset like DARPA. The training 

process consists of three steps. (1) The Feedforward of input training pattern. (2) The 

calculation and backpropagation of associated error. (3) The adjustment of the 

weights. 

b) Saving Weights 

When SNN is trained well then it freezes its weights. These frozen weights are saved 

in a file. These saved weights are given to UNN for its initialization and further 

training and testing process. 

c) Training and Testing UNN 

Every NN needs weights initialization to start its training process. The optimal 

assignment of weights to each neuron of neural network is a big issue. A lot of time is 
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required to reach the optimal weight value through training overhead. Therefore, 

saved weights used as a starting point for UNN. This is further trained in 

unsupervised manner to improve performance. However, good results could not 

obtain due to the problem of different architecture in nature. Because the layered 

structure of supervised and unsupervised neural networks are different. Therefore, 

several different types of issues arises; training overhead, saving weights, their proper 

initialization as inputs for unsupervised neural network architecture. 

2.14 A Systematic Review of Related Work 

The afore-mentioned work is summarized in a systematic way in Table 2.10. This 

review consists of main author, year of publication, data source used for training and 

testing, intrusion analysis structure and results parameters used in earlier research. 

Table 2.10 Systematic review of related work 

Author  Year  Data Source  Structure  Results  

DOD  1970 
System audit 

data  

Observed 

manually 

Monitor protection 

mechanism 

J.P Anderson 1980 Introduce the concept of intrusion detection 

Denning 1987 

User profile 

audit trail of 

main frame 

system 

Proposed an 

intrusion 

detection expert 

system 

Anomalous activity 

 Oja  1992 
compression and 

feature extraction 
PCA Applied to ID 

Hammerstrom 

 et al. 

1993 Neural Networks (NN) in ID  

Ryan  et al. 1998 
Operating 

System Logs 
2-Layer MLP 

7% FP 

4% FN 

Cannady 1998 

Network packets 

collected by 

real secure 

network 

2-Layer MLP 

RMSE of 0.0582 for 

Training Data 

RMSE of 0.069 for Test 

Data. 
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Author Year Data Source Structure Results 

Cannady 2000 

His own 

generated traffic 

dataset 

MLP 
RMSE and data 

correlation 

Ghosh et al. 1999 

Sun‟s Basic 

security module 

(BSM) 

2-Layer MLP 

Anomaly Detection: 

2.2% FP 

22.7% FN 

Misuse Detection: 

18.7% FP &, 9.1 FN 

Ghosh et al. 1999 Sun‟s BSM Elman Networks 

No FP 

22.7% FN 

 

Rhodes  et al. 2000 Buffer overflow SOM 

D.R (57%) 

BIND server &  

rotshb exploit 

Lippmann 

et al. 
2000 Network Packets 2-Layer MLP 

One False Alarm per 

Day 

20% false Negative 

D.R 80% 

Zhang  

et al 
2001 

Network Packets 

Generated by 

OPNET 

UDP flooding 

attack only 

Backpropagation, 

Perceptron, 

Perceptron- 

Backpropagaiton 

Hybrid, 

Fuzzy ART 

MAP, 

Radial Basis 

Function 

Networks 

BPROP & HPBPROP 

performed better than 

Perceptron, 

Fuzzy ART 

MAP, 

Radial Basis 

Function 

networks 

RMSE<0.05 

Statistical Analysis 

Lee & Heinbuch 2001 

TCP packets 

[port usage, & 

connection] 

Hierarchy of 

Neural 

Networks 

SYN flood & Port 

scanning 

Jirapummin 

et al. 
2002 

KDD Cup 1999 

[TCP SYN 

& Port Scanning] 

3-Layer RPROP 

with 

SOM 

D.R 90% 

5% FP 

10% FN 

 

Bivens 

et al. 
2002 

DARPA 1999 

[DOS,DDOS 

&Port attacks] 

SOM for 

Clustering 

MLP for 

Detection 

76% FP 

No FN 

Shyu 

et al. 
2003 KDD cup 1999 PCC 

DR95% 

FA5% 

Yu et al.  2004  

FTP brute force 

attacks samples 

from LAN  

Hybrid BP/CNN  ROC  

Jinget al. 2004 Proposed NNIDS  
Overcome traditional 

IDS issues 

Silva et al. 2004 
TCP/IP packet 

payload 
Hamming net Accuracy 70 % 

Kuchimanchi  2004 Feature reduction 
 

 

Applied to ID 

 

Labib  2004 Feature reduction PCA 
Applied to ID 

 

 



 81   

 

Author  Year  Data Source  Structure  Results  

Shyu 2004 Feature reduction PCA Applied to ID 

Kuchimanchi 2004 KDD cup NNPCA  

K. Labib  2004 DOS PCA  

Folino G et al  2005 
KDD cup GA, RULE 

BASED 
 

Kim et al  2005 
KDD cup 

GA+SVM  

Amini 

et al. 
2005 KDD cup99 

ART-1 

and 

ART-2 

Compare both 

NN 

ART-1 better 

Performance 

ART-2 better in 

response wise 

Liu et al. 2006 PCASOM 
  

Amini 

et al. 
2006 

LAN 

IP 

TCP 

UDP 

ICMP 

SOM 

+ 

ART-1 

ART-2 

Compare three 

NN and found 

SOM 

Optimum 

Li et al. 2007 Flow classes SVM Accuracy 96% 

Khan et al.,  2007  SVM  

Liu et al 2007 KDD 22 FEATURES PCA NN  

Bankovic  2007 KDD 
GA, RULE 

BASED 
 

Bankovic  2007 KDD PCA, GA  

Ahmad et al.  2007  

KDDCUP99 

MIT 

Lab. USA 

Full 

Features 

Used  

RBPROP  

D.R compared to 

ART-1, ART-2 

and  

SOM & 

RBROP is found 

optimum 
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The above work described in Table 2.10 shows that  data can be obtained by one 

of the following three methods; by using real traffic , by using sanitized traffic and by 

using simulated traffic but generally IDS are tested on a standard dataset KDD cup of 

MIT lab. USA. Different researchers used different architectures (NNs, SVM, PCA, 

Hybrid and Rule-based) to implement their proposed systems in the field of intrusion 

detection. Predominantly parameters for testing their results are false positives, false 

Author  Year  Data Source  Structure  Results  

Yu et al. 2008 

SNMP MIB 

TCP,UDP 

flooding 

SVM Accuracy  97 % 

Osareh, and Bita,  2008 KDD SVM Accuracy 83 % 

Ahmad et al.  2008  

KDDCUP99 

MIT dataset of 

Lincoln 

Laboratory 

  

 

MLP 

Online BPROP 

Batch PROP 

RPROP  

RPROP found best as 

compared to online and 

batch  

Bankovic et al  2009  

PCA,GA, RULE 

BASED AND 

LINEAR 

Accuracy  92 % 

Alice Este et al 2009 CAIDA SVM Accuracy 90 % 

Ahmad et al.  2009  Probing KDD 4- Layer MLP Detection rate 98 % 

Ahmad et al.  2009  

DOS Dataset a 

subset of KDD 

cup99 

Full 

Features 

 

MLP 

4- Layered    and 

output layer with 

two processing 

element/neuron 

Detection rate 96.16 %   

 

Lakhina et. al.  2010 KDD cup PCANNA Detection rate 80.4 % 

Ahmad et al.  2010 

U2R Dataset a 

subset of 

KDDCUP99 

38 

Features 

 

GFFNN 

3- Layered  and 

output layer with 

two processing 

element/neuron 

Detection rate 97.7 %   

Ahmad et al.  2010 

R2L Dataset a 

subset of 

KDDCUP99 

38 

Features 

FFNN 

3- Layered and 

output layer with 

single processing 

element/neuron 

  Detection rate 90 % 
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negatives, detection rates and ROC. They used different tools: MATLAB, PlaNet, 

OPNET, JOONE, URANO, NeuralWorks simulators to implement and test their 

models for intrusion detection and some of them developed their own systems in a 

personalized way.   

2.15 Issues in Existing Intrusion Detection Approaches 

Undoubtedly, soft computing techniques play down a variety of drawbacks in 

traditional IDSs such as time consuming statistical analysis, regular updating, non 

adaptive, efficiency, accuracy and flexibility. But they also suffer from several 

problems in the research of intrusion detection. For instance, training and 

computational overheads, complex classifier‟s architecture, accuracy, false alarms, 

dataset availability, tuning overheads, raw feature set and pre-processing issues. One 

of the drawbacks of the past intrusion detection methods is the usage of a raw feature 

set for classification but the classifier may get confused due to redundancy and hence 

may not classify correctly. Some of the existing approaches of intrusion detection 

have focused on the issues of feature extraction and classification. However, 

comparatively less concentration has been given to the critical matter of feature 

selection. The foremost trend in feature extraction has been representing the data in to 

another feature space (the PCA space) using PCA. In this method of selecting features 

on the basis of highest eigenvectors is not appropriate because the features 

corresponding to the highest eigenvalues may not have the optimal sensitivity for the 

classifier due to ignoring many sensitive features. As a result, there are many chances 

to lose some important features that have higher discriminatory power for the 

classifier. Therefore, there must be an effective scheme to select an appropriate set of 

features in the PCA space. This leads the classifier to work in an efficient way and 

increases the overall performance of the intrusion analysis engine. Because, the 

redundant and irrelevant features increases overheads as well as confuses the 

classifier.  

 Therefore, in this thesis, an argument is made that feature selection is an 

important problem in intrusion detection and Genetic Algorithms (GAs) provide a 

simple, general, and powerful framework for selecting good subsets of features that 
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improve detection rates, reduces training and computational overheads, simplify 

architectural framework of intrusion analysis engine, reduces false alarms and 

memory usage and speed up the testing process in offline and real time mode.  After 

feature sub set selection, the classification is performed based on adopted 

methodology. The selection of classifier and determine its architecture is another 

problem.The collecting of dataset for training/testing is another problem. This can be 

achieved via three ways; (i) real traffic, (ii) sanitized traffic and (iii) simulated traffic. 

However some anomalies hinder the utilization of these approaches. Real traffic 

approach is very unbearable while sanitized approach is risky. The creation of a 

simulation is also a difficult task and costly. Further, in order to model various 

networks, different types of traffic is needed respectively. In order to skip issues 

arising out of all three approaches, KDD cup dataset is used for training/testing in the 

experimental work. Therefore presently a research is required that will develop 

optimized intrusion detection mechanism using soft computing techniques that will 

provide the potential to identify network activity in a robust. In addition, this will 

reduce overheads as well as increases performance.  Thus, in this context, this 

research work is based on the adopted methodology that results optimal subset of 

features for intrusion detection mechanism in the subsequent chapters. 

2.16 Summary 

This chapter details the background knowledge of the intrusion detection systems 

(IDS), related functional components, classifications and characteristics. Defines 

foundations, techniques, approaches (anomaly, misuse detection and combined or 

hybrid approach) to the intrusion detection system. Attack data sets such as KDD cup 

dataset used in the work. Overview of soft computing, applied techniques (neural 

networks, SVM and GA). Also explains PCA and its different steps towards feature 

transformation into PCA space. Further, this chapter describes the related work in 

intrusion detection using neural networks, SVM, PCA and GA. A tabular presentation 

of the above mentioned approaches in intrusion detection. The comparative study of 

existing approaches and related issues. The references of the other related works are 

also explained.  



 

  

 

 

CHAPTER 3 

METHODOLOGY 

3.1 Introduction 

Based on the identification of the issues via literature review presented in Chapter 3, 

this chapter describes the methodology incorporated into this research work. Further, 

the chapter explains different phases of applied methodology; The adopted 

methodology is divided into five sections; (1) Selection of dataset for training and 

testing, (2) Pre-processing of dataset, (3) Classification approach, (4) Training the 

system and (5) Testing the system. These sections of methodology are shown in 

Figure 3.1. Finally, the chapter concludes with the contributions and directs towards 

system design and architecture.  

 

Figure 3.1 Methodology phases 
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3.2. Selection of Dataset for Training and Testing 

The expertise of the intrusion detection mechanism depends on the dataset. Therefore, the 

performance depends on accuracy of dataset and vice versa. If the training data is 

optimally accurate with rich contents then efficiency of trained system is improved. 

Hence, the collection of data for training and testing is a critical dilemma.  There are three 

ways to collect data for experiments in the field of intrusion detection; (i) real traffic, (ii) 

sanitized traffic, and (iii) simulated traffic. Here, this section describes the pros and cons of 

these three ways of creating dataset for experimental purposes. 

3.2.1 Real Traffic  

The dataset is created using real traffic by attacking an organization‟s servers. In this case, 

the packets are real but it is unbearable to attack an organization. In addition to that, 

privacy of the users in the organization may be violated such as private e-mails, 

passwords and user identities may be released. Hence, this method leads to security 

and privacy issues. 

Advantage 

 The dataset consists of real traffic of network packets. 

Disadvantage 

 Privacy and security issues are raised. 

3.2.2 Sanitized Traffic  

The problem of security and privacy can be minimized using sanitized traffic. In this 

method, sensitive information is removed from the data stream and then attack data are 

inserted into the sanitized traffic.  
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Advantage 

 The dataset consists of real packets without sensitive information and it can be 

freely distributed for evaluation and experimental purposes. 

Disadvantages 

 There is a possibility to lose some important features of a packet during the 

sanitization process. 

 It is possible to release sensitive data because it is practically impossible to 

verify huge amount of data during sanitization process. 

3.2.3 Simulated Traffic  

The third and the most common way to obtain data, is to create a testbed network and 

generate background traffic on this network. In the testbed environment, background 

traffic is generated either by using complex traffic generators modeling actual 

network statistics or by using simpler commercial traffic generators creating small 

number of packets at a high rate. 

Advantages 

 The dataset can be freely distributed, as it does not contain any sensitive 

information. 

 It is guaranteed that generated traffic does not contain any unknown attacks as 

the background traffic is created by simulators. 

Disadvantages 

 This is very costly and difficult to create a simulation. 

 In order to model various networks, different types of traffic is needed so it 

increases complexity and cost. 
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However, aforementioned anomalies hinder the utilization of these approaches. In order 

to skip issues arising out of all three approaches, this research work uses the defense 

advanced research projects agency (DARPA) dataset known as knowledge discovery 

and data mining (KDD) cup for training and testing in my experimental work.  

The DARPA project was prepared and executed by the Massachusetts Institute of 

Technology (MIT) Lincoln Laboratory, USA. This research work uses the KDD cup 

dataset due to the following reasons: 

 One of the reasons for choosing this dataset is that the dataset is standard, 

which is considered as a benchmark for evaluating security detection 

mechanisms.  

 I evaluated my classification approaches for intrusion detection by analyzing 

the strengths and weakness of each compartment of the dataset. 

 This dataset makes it easy to compare the results of my work with other 

similar works. 

  Another reason is that it is difficult to get another dataset which contains 

so rich and variety of attacks as KDD cup includes. 

  The analysis of intrusion detection approaches in evaluating KDD cup 

may guide DARPA to future research. 

3.3 Pre-processing of Dataset 

The next step is preprocessing of selected dataset. Each record of KDD cup dataset 

consists of three types of features; connection based, content based and time based. 

There are nine (09) connection based features; thirteen (13) content based features 

and nineteen (19) are time based features. So, the total number of features are fourty 

one (41) in each record of KDD cup dataset. Each record represents a network packet 

that has 41 features. Each packet contains thirty eight (38) numeric features and three 

(03) symbolic features. First of all, three symbolic features are discarded out of fourty 

one because these three features do not affect on the applied classification approaches 

in this research work. A sample of features of the network activity, „pre‟ and „post‟ 

discarding of symbolic values is shown in Table 3.1. 
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Table 3.1 Feature set of a raw dataset 

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 

0 udp prvt SF 105 146 0 0 0 0 0 0 0 

F14 F15 F16 F17 F18 F19 F20 F21 F22 F23 F24 F25 F26 

0 0 0 0 0 0 0 0 0 1 1 0.0 0.0 

F27 F28 F29 F30 F31 F32 F33 F34 F35 F36 F37 F38 F39 

0.0 0.0 1.0 0.0 0.0 255 254 1.00 0.01 0.0 0.0 0.0 0.0 

F40 F41            

Table 3.2 Feature set  after discarding symbolic features 

F1   F2   F3   F4   F5   F6   F7   F8   F9   F10   F11   F12   F13   

0 105 146 0 0 0 0 0 0 0 0 0 0 

F14   F15   F16   F17   F18   F19   F20   F21   F22   F23   F24   F25   F26   

0 0 0 0 0 0 1 1 0.0 0.0 0.0 0.0 1.0 

F27   F28   F29   F30   F31   F32   F33   F34   F35   F36   F37   F38    

0.0 0.00 255 254 1.00 0.01 0.00 0.00 0.0 0.0 0.0 0.0  

The remaining thirty eight (38) features are further processed using Principal 

Component Analysis (PCA) and Genetic Algorithm (GA). The preprocessing of 

dataset is of great importance as it results in the increase the efficiency of intrusion 

detection mechanism in case of training, testing, and classification of network activity 

into normal and intrusive. Further, the preprocessing phase is divided into following 

parts; (i) feature transformation, and (ii) selection of optimal features.  

This part is the actual contribution in the intrusion detection mechanism that 

prove that my proposed model perform well as compared to existing intrusion 

detection approaches. The following sections explain these the sub phases of 

preprocessing. 



 90   

3.3.1 Feature Transformation 

The usage of raw feature set is one of the drawbacks in existing intrusion detection 

approaches as it causes others problems in the field of intrusion detection like:- 

 The classifier or analysis engine of IDS may get confused and will generate false 

alarm. 

 It increases training overhead because the system process on each input feature 

even it is unimportant for the analysis engine or the classifier. 

 This consumes more memory and computational resources of the system during 

training and testing process of the system. 

 This decreases detection rate of an IDS. 

 This makes the intrusion detection architecture more complex and malfunction. 

3.3.1.1 Principal Component Analysis (PCA) 

In order to overcome above issues, this work uses PCA technique to transform 

original numeric features of dataset into PCA space. In past, the PCA has been use for 

feature reduction in several different areas; face recognition, hand written text 

recognition, image compression and intrusion detection.  This is a common technique 

for finding patterns in data of high dimension.  

Researchers used PCA to transform raw features into principal features space 

and select the features based on their sensitivity. The sensitivity is determined by the 

values of eigenvalues. But here, few other problems are raised: 

 Which features are selected?  

 How they are selected? 

 

 If features are selected based on the values of eigenvalues than there are chances 

to lose some important features that are more sensitive for the classifier. If all features 

are selected based on the values of eigenvalues than it will increases training 

overhead as well as increases architecture complexity that leads towards overall 

performance degradation. Therefore, This research work uses PCA for feature 

transformation and organization into new principal features space. This makes the 
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features more visible, organized, arranged and sensitive that directly impact on the 

performance of intrusion detection mechanism.  The PCA algorithm flow applied for 

feature transformation and organization is shown in Figure 3.2. 

 

Figure 3.2  PCA algorithm flow 

The PCA algorithm used in the pre-processing process for feature transformation 

and organization is shown in Figure 3.3. 
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PCA Algorithm:  

Suppose                                 are NX1 vectors. Where M=38. 

 Step 1: Find Mean: 

    
 

 
    

 

   

 

Step 2:  Calculate deviation from mean:  Subtract the mean:               

Where i=1, 2,…………………………… M. 

Step 3: Find covariance matrix C:  

From the matrix A= [                ] (N*M Matrix),  

compute C: 

  
 

 
 Φ  

 
   Φ        

Step 4: Compute the eigenvalues of                        
 

Step 5: Compute the eigenvectors of                       
 

Since C is symmetric,                          form a basis, 

 (i.e. any vector x or actually        , can be written as a linear combination of the 

eigenvectors): 

                                    

 

   

 

Step 6: Arranged eigenvalues and eigenvectors in descending order. 

Step 7: The dimensionality reduction step (based on largest eigenvalues) is skipped as the 

selection of principal components is dine using GA. 

 

Figure 3.3 Algorithm for Principal Component Analysis 
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A set of features from PCA feature space obtained after applying PCA is shown in 

Table 3.3. 

Table 3.3 Feature set from PCA space 

F1   F2   F3   F4   F5   F6   F7   F8   

-2660.47 -310.209 -456.64 -3.68476 -4.04363 -0.63091 0.063043 -0.00053 

F9   F10   F11   F12   F13   F14   F15   F16   

-0.00116 -1.25E-05 0.002827 -0.00243 0.000403 0.000198 0.001066 0.000125 

F17   F18   F19   F20   F21   F22   F23   F24   

0.00010 0.000186 0.000122 -0.00062 1.78E-05 -0.00013 -4.18E-05 0.000115 

F25   F26   F27   F28   F29   F30   F31   F32   

1.89E-05 -2.47E-05 -6.49E-05 6.79E-06 4.57E-06 9.75E-08 -9.33E-06 1.59E-06 

F33   F34   F35   F36   F37   F38   
  

8.62E-06 1.55E-11 -1.70E-15 6.27E-16 -3.34E-16 1.27E-16 

  

After feature transformation and organization. The next phase is the feature subset 

selection. The recent approaches use the PCA to project features space to principal 

feature space and select features corresponding to the highest eigenvalues, but the 

features corresponding to the highest eigenvalues may not have the optimal sensitivity 

for the classifier because of ignoring many sensitive features. Instead of using 

traditional approach of selecting features with the highest eigenvalues such as PCA, a 

Genetic Algorithm (GA) is applied to search the principal feature space that offers a 

subset of features with optimal sensitivity and the highest discriminatory power.  

GA method is used to determine subset of feature. An appropriate feature set 

helps to build efficient decision model as well as to reduce the population of the 

feature set. Feature reduction will speed up the training and the testing process for the 

attack identification system considerably but this technically is a compromise 

between training efficiency (few PCA components) and the accurate results (a large 
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number of PCA components). So, there is no any effective scheme to select an 

appropriate set of features in the PCA space in the field of intrusion detection. This is 

the main problem of feature selection from the principal component space. This 

problem confuses the classifier or analysis engine when it deals with redundant and 

irrelevant features. 

Advantages 

 Training and testing efficiency ( few principal components) 

 Accurate results (a large number of components) 

 Simplify the classifier architecture 

Disadvantages 

 Selecting some percentage of the top principal components may lose some 

sensitive features that have higher discriminatory power for the analysis 

engine. 

 Selecting a large number of principal components decrease training and 

testing efficiency. Hence, it increases memory and computational 

overheads. 

 The classifier architecture becomes more complex as the number of 

components increases. 

3.3.2 Feature Subset Selection  

In order to overcome the above issues, GA is applied to search the principal 

components space so that an optimal subset of features are selected. This is my main 

contribution that positively impact on the performance of intrusion detection analysis 

engine. 

 This section describes feature subset selection process using GA. The block 

diagram of feature selection is shown in Figure 3.4 and Figure 3.5. 
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 Figure 3.5  Feature subset selection based on GA+MLP 

Figure 3.4 Feature subset selection based on GA+SVM 

 

 

 

3.3.2.1 Genetic algorithm 

Genetic algorithm operates iteratively on a population of structures, each one of 

which represents a candidate solution to the problem at hand, properly encoded as a 

string of symbols (e.g., binary). A randomly generated set of such strings forms the 

initial population from which the GA starts its search.  

Three basic genetic operators guide this search such as selection, crossover, and 

mutation. The genetic search process is iterative consisting of evaluation, selection, 

and recombination of strings. This continues to iterate in the population (generation) 

until some termination condition is reached.  The GA algorithm flow is shown in 

Figure 3.6.  The general GA algorithmic steps are given in Figure 3.7. 

 

 

 

 

 

GA SVM PCs 

GA MLP PCs 
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Create initial a 

population
Evaluate population

 is end of  evaluation 

reached?
Best individuals

Selection

crossover

Mutation

Generation of new 

population

Start Results

  

Figure 3.6 Genetic algorithm flow 

GA Algorithm: 

Step 1. [Start]  

Generate random population of n chromosomes  

Step 2. [Fitness]  

Evaluate the fitness f(x) of each chromosome x in the population  

a. [New population] Create a new population by repeating following steps: 

b. [Selection] Select two parent chromosomes from a population  

c. [Crossover] With a crossover probability cross over the parents to form a new offspring 

(children). If no crossover was performed, offspring is an exact copy of parents.  

d. [Mutation] With a mutation probability, mutate new offspring at each locus (position in 

chromosome).  

e. [Accepting] Place new offspring in a new population  

Step 3. [Replace]  

Use new generated population for a further run of algorithm  

Step 4.  

[Test] If the end condition is satisfied, stop, and return the best solution in current population  

Step 5.  

 [Loop] Go to step 2  

Figure 3.7  Genetic algorithm 
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Evaluation of each string is based on a fitness function that is problem-dependent. 

It determines which of the candidate solutions are better. This corresponds to the 

environmental determination of survivability in natural selection. Selection of a 

string, which represents a point in the search space, depends on the string‟s fitness 

relative to those of other strings in the population. It probabilistically removes, from 

the population, those points that have relatively low fitness. Mutation, as in natural 

systems, is a very low probability operator and just flips a specific bit. Mutation plays 

a pivotal role of restoring lost genetic material. Crossover in contrast is applied with 

high probability. It is a randomized yet structured operator that allows information 

exchange between points. Its goal is to preserve the fittest individuals without 

introducing any new value. 

In brief, selection probabilistically filters out   solutions that perform poorly, 

choosing high performance solutions to concentrate on or exploit. Crossover and 

mutation, through string operations, generate new solutions for exploration. Given an 

initial population of elements, Genetic Algorithms use the feedback from the 

evaluation process to select fitter solutions, eventually resulting into a population of 

high-performance solutions. Genetic algorithms do not guarantee a global optimum 

solution. However, they have the ability to search through a very large search spaces 

and achieve utmost optimal solutions fast. Their ability for fast convergence is 

explained by the schema theorem (i.e., short-length bit patterns in the chromosomes 

with above average fitness, get exponentially growing number of trials in subsequent 

generations) (Sun et al. 2004) and (Goldberg 1989). 

a). Feature selection encoding 

A simple encoding scheme is used where the chromosome is a bit string whose length 

is determined by the number of principal components. Each principal component, 

computed using PCA, is associated with one bit in the string. If the i
th

 bit is 1, then the 

i
th

 principal component is selected, otherwise, that component is ignored. Each 

chromosome thus represents a different subset of principal components. 
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Table 3.4 A sample of five chromosomes (CHR) 

CHR Principal components 

1 1 1 1 1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 2 2 2 2 

3 1 3 1 3 1 3 1 3 1 3 1 

4 3 4 3 4 3 4 3 4 3 4 3 

5 1 5 1 5 1 5 1 5 1 5 1 

b). Feature subset fitness evaluation 

The main goal of feature subset selection is to use less features to achieve the same or 

better performance. Therefore, the fitness evaluation contains two terms: (i) accuracy 

and (ii) the number of features selected. The performance of SVM and MLP is 

estimated using a validation dataset which guides the GA search. Each feature subset 

contains a certain number of principal components. If two subsets achieve the same 

performance, while containing different number of principal components, the subset 

with fewer principal components is preferred. Between accuracy and feature subset 

size, accuracy is the major concern. Fitness function is used to demonstrate the 

combination the two terms: 

fitness = 10
4
Accuracy + 0.5Zeros (3.1) 

Where Accuracy corresponds to the classification accuracy on a validation set for 

a particular subset of principal components and Zeros corresponds to the number 

principal components not selected (i.e., zeros in the chromosome). The Accuracy term 

ranges roughly from 0.50 to 0.99, thus, the first term assumes values from 5000 to 

9900. The Zeros term ranges from 0 to L −1 where L is the length of the 

chromosome, thus, the second term assumes values from 0 to 37 (L=38). Based on the 

weights that have been assigned to each term, the Accuracy term dominates the fitness 

value. This implies that individuals with higher accuracy will outweigh individuals 
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with lower accuracy, no matter how many features they contain. On the whole, the 

higher the accuracy is, the higher the fitness is. Also, the fewer the number of features 

is, the higher the fitness is. 

Selecting the weights for the two terms of the fitness function is more objective 

dependent than application dependent. For intrusion classification analysis among 

many factors, there is need to find the best balance between model compactness and 

performance accuracy. Under some scenarios, the best performance is preferable, no 

matter what the cost might be. If this is the case, the weight associated with the 

Accuracy term should be very high. Under different situations, compact models are 

favoured more over accuracy, as long as the accuracy is within a satisfactory range. In 

this work, the selection of a higher weight are better for the Zeros term. 

In this research work, four different experiments performed using GA and the 

classifiers (SVM and MLP). The fitness is calculated as follows; 

 

fitness = 10
4 

(.99) + 0.5 (28) = 9900+14=9914 (3.2) 

 

Table 3.5 Fitness function 

Experiment# 
Time taken by 

experiment 

No of selected 

PCs 

No of non 

selected PCs 
Accuracy Fitness 

1-SVM 48 hrs 10 28 0.99 9914 

2-MLP 72 hrs 12 26 0.99 9913 

3-MLP 78 hrs 20 18 0.98 9808 

5-MLP 83 hrs 27 11 0.99 9911 
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c). Initial population 

In general, the initial population is generated randomly, (e.g., each bit in an individual 

is set by flipping a coin) (Srinivas M and Patnaik L 1995). This, however, would 

produce a population where each individual contains approximately the same number 

of 1‟s and 0‟s on the average. To explore subsets of different numbers of features, the 

number of 1‟s for each individual is generated randomly. Then, the 1‟s are randomly 

scattered in the chromosome. In all experiments, this approach used a population size 

of 50 and 100 generations. In most cases, the GA converged in less than 100 

generations. 

d). Selection 

Selection is a genetic operator that chooses chromosomes from the current 

generation‟s population for inclusion in the next generation‟s population. Before 

making into the next generation‟s population, selected chromosomes may undergo 

crossover and mutation. There are five selection operators; roulette, tournament, top 

percent, best and random (Eshelman 1989). 

 Roulette: The chance of a chromosome getting selected is directly 

proportional to its fitness (or rank). This is where the idea of survival of the 

fittest comes into play. There is also the option to specify whether the chance 

of being selected is based on fitness or on rank. 

 Tournament: it uses roulette selection N times (the Tournament Size”) to 

produce a tournament subset of chromosomes. The best chromosome in this 

subset is then chosen as the selected chromosome. This method of selection 

applies addition selective pressure over plain roulette selection. There is also 

the option to specify whether the chance of being selected is based on fitness 

or on rank. 

 Best: Selects the best chromosome (as determined by the lowest cost of the 

training run). If there are two or more chromosomes with the same best cost, 

one of them is chosen randomly. 

 Random: Randomly selects a chromosome from the population.  
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 Top Percent: Randomly selects a chromosome from the top N percent (the 

Percentage”) of the population. 

This research work used top percent selection method in experiments because it 

gives better performance as compared to other selection operators. 

Table 3.6 Selection method 

Experiment# 
Time taken by 

experiment 

No of 

selected PCs 
Selection method Accuracy Fitness 

1-SVM 48 hrs 10 Top percent 0.99 9914 

2-MLP 72 hrs 12 Top percent 0.99 9913 

3-MLP 78 hrs 20 Roulette 0.98 9808 

5-MLP 83 hrs 27 Roulette 0.99 9911 

e). Crossover 

There are three fundamental crossovers types: one-point crossover, two-point 

crossover, and uniform crossover. For one-point crossover, the parent chromosomes 

are divided at a common point chosen randomly and the resulting sub-chromosomes 

are swapped. For two-point crossover, the chromosomes are thought of as rings with 

the first and last gene connected (i.e., wrap-around structure). In this case, the rings 

are divided at two common points chosen randomly and the resulting sub-rings are 

swapped. Uniform crossover is different from the above two schemes. In this case, 

each gene of the offspring is selected randomly from the corresponding genes of the 

parents (Bebis et al. 2000). For simplicity, this work used one-point crossover here. 

The crossover probability used in all of my experiments was 0.9.  
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e). Mutation 

Mutation is a genetic operator that alters one or more gene values in a chromosome 

from its initial state. This can result in entirely new gene values being added to the 

gene pool. With these new gene values, the Genetic Algorithm may achieve a better 

solution than the former. Mutation is an important part of the genetic search as it 

helps to prevent the population from stagnating at any local optima. Mutation occurs 

during evolution according to the probability defined. This probability should usually 

be set fairly low. If it is set too high, the search will turn into a primitive random 

search (Zorana et al. 2007). This work uses the traditional mutation operator which 

just flips a specific bit with a very low probability. The mutation probability used in 

all of my experiments was 0.01. 

e). Termination 

The GA generational process is repeated until a termination condition has been 

reached. There are many conditions on which GA process can be stopped (Bebis et al. 

2000) and (Sun et al. 2004). For example; 

 Population Convergence – It stops the evolution when the population is 

deemed converged. The population is deemed converged when the average 

fitness across the current population is less than the Threshold” percentage 

away from the best fitness of the current population. 

 Gene Convergence – It stops the evolution when the ‘percentage’ of the genes 

that make up a chromosome are deemed converged. A gene is deemed 

converged when the average value of that gene across all of the chromosomes 

in the current population is less than the ‘threshold’ percentage away from the 

maximum gene value across the chromosomes.  

 Fitness Convergence – It stops the evolution when the fitness is deemed as 

converged. Two filters of different lengths are used to smooth the best fitness 

across the generations. When the smoothed best fitness from the long filter is 

less than the Threshold” percentage away from the smoothed best fitness from 

the short filter, the fitness is deemed as converged and the evolution 

terminates. Both filters are defined by the following equations. 
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y(0) = 0.9 * f(0)  if the objective is set to maximize (3.3) 

y(0) = 1.1 * f(0) if the objective is set to minimize (3.4) 

y(n) = (1- b) f(n) + b y(n - 1) (3.5) 

 

where n is the generation number, y(n) is the filter output, y(n-1) is the previous 

filter output, and f(n) is the best cost. The only difference between the short and long 

filters is the coefficient b.  From the above equations, the higher the b, the more that 

the past values are averaged in. The short filter uses b = 0.3 and the long filter uses b 

= 0.9. 

 Fitness Threshold - Stops the evolution when the best fitness in the current 

population becomes less than the fitness threshold and the objective is set 

to minimize the fitness. This work uses the threshold value as 0.001. 

Table 3.7 Parameters used for genetic feature subset selection 

S.No Genetic operator(s) Genetic operator value(s) 

1    Maximum generation 100 

2    Chromosomes 50 

3    Selection method Top percent (10%) 

4    Crossover One-point 

5    Crossover probability  0.9 

6    Mutation probability 0.01 

7    Population size 50 

8    Termination type Fitness threshold (0.001) 
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S.No Genetic operator(s) Genetic operator value(s) 

9    Architecture MLP, SVM 

10    Training algorithm Online backpropagation 

 The number of features selected during experiments is shown in Table 3.8. 

Table 3.8 GA features subset selection based on MLP and SVM 

Feature No SVM(10) MLP(12) MLP(20) MLP(27) 

1    Х Х √ √ 

2    Х √ √ Х 

3    √ √ √ Х 

4    √ Х Х √ 

5    Х Х √ √ 

6    Х Х Х √ 

7    Х Х √ √ 

8    Х Х √ √ 

9    Х √ Х Х 

10    Х Х √ √ 

11    Х √ √ Х 

12    √ √ √ √ 

13    Х Х Х Х 

14    Х Х Х √ 

15    Х √ √ √ 

16    Х Х Х Х 

17    Х √ Х √ 

18    Х √ Х Х 

19    Х Х √ Х 

20    Х Х √ √ 
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Feature No SVM(10) MLP(12) MLP(20) MLP(27) 

21    Х Х Х √ 

22    √ Х Х √ 

23    Х Х Х Х 

24    Х √ √ Х 

25    Х Х √ √ 

26    √ Х Х √ 

27    √ √ Х √ 

28    √ Х √ √ 

29    Х Х √ √ 

30    Х Х Х Х 

31    Х Х Х √ 

32    √ Х Х √ 

33    Х Х √ √ 

34    √ √ Х √ 

35    Х Х Х √ 

36    √ √ √ √ 

37    Х Х √ √ 

38    Х Х √ √ 

 

This research work found an optimized subset of features with ten features from 

the above four subsets of features. Consequently, this work used a subset of features 

with ten principal components with different index values. A sample of final subset of 

features for ten records is shown in Table 3.9. 
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Table 3.9 A sample of final subset of features for ten records 

Sr Principal components indexes selected based on genetic algorithm 

No 3 4 12 22 26 27 28 32 34 36 

1 
-310.209 -456.64 -0.00116 0.0028 -0.00243 0.00106 0.0010 0.00018 0.00011 -6.49E-5 

2 
-310.209 -456.64 -0.00116 0.00282 -0.00243 0.00106 0.0010 0.00018 0.0011 -6.49E-05 

3 
-960.96 268.699 0.26708 0.77291 0.01081 -0.0144 -0.060 0.00072 -0.0476 -0.00198 

4 
442.687 219.551 0.13768 -0.07388 -0.04755 -0.0302 -0.097 -0.0024 -0.0173 0.00040 

5 
-299.009 275.682 0.32907 0.70899 0.07318 0.01681 -0.061 0.01833 -0.0413 0.00645 

6 
-310.209 -456.64 -0.00116 0.00282 -0.00243 0.00106 0.0010 0.00018 0.00011 -6.49E-05 

7 
485.004 274.342 -0.02324 -0.12817 0.10374 0.01239 0.0067 0.00014 -0.0102 0.00409 

8 
517.0306 244.1791 0.121362 -0.14683 -0.04805 0.00237 -0.097 0.00345 0.00243 0.000388 

9 
618.482 255.107 -0.24427 -0.00891 0.037715 0.00984 -0.003 -0.0053 0.00075 -0.00093 

10 
-310.209 -456.64 -0.00116 0.002827 -0.00243 0.00106 0.001 0.0001 0.0001 -6.49E-05 

3.4 Classification Approach 

This work used two types of approaches for intrusion detection; multilayered 

perceptron (MLP) and Support Vector Machine (SVM). These two architectures are 

very popular in different areas of research; image processing, character recognition, 

speech recognition, bioinformatics, data classification, intrusion detection and 

machine translation (Sun et al. 2004). The MLP with one hidden layer is equivalent to 

SVM. In this way, the performance of both architectures can be compared in terms of 

their discriminatory power and efficiency to classify network activity into normal and 

intrusive. Both the architectures will be described in details in Chapter 4. 

 



 107   

3.4.1 MLP Classifier 

There are two important characteristics of the multilayer perceptron (MLP). First, its 

processing elements (PEs)/neurons are nonlinear. The nonlinearity functionality is 

provided by the functions; logistic and hyperbolic tangent. Second, they are massively 

interconnected such that any element of a given layer feeds all the elements of the 

next layer (Ahmad et al. 2007). 

Advantages 

The following are some advantages of using MLP in my problem. 

 MLPs are very powerful pattern classifiers. 

 With one or two hidden layers they can approximate virtually any input-

output map. 

 They showed better performance to other classifier in difficult problems. 

 They efficiently use the information contained in the input data. 

Disadvantages 

The following are some disadvantages of MLP. 

 They need lots of input data. This can slow training process. 

 The setting of parameters can be tricky for difficult problem. 

 Stuck in local minima 

3.4.2 SVM Classifier 

SVMs are primarily two-class classifiers that have been shown to be an efficient and 

possess more systematic approach to learn linear or non-linear decision boundaries 

(Vapnik V. 1995) and (Burges 1998). Their key characteristic is the mathematical 

tractability and geometric interpretation.  A rapid growth of interest in SVMs has 

been observed over the last few years, demonstrating remarkable success in fields as 

diverse as text categorization, bioinformatics, and computer vision (Cristianini et al. 

2002). Specific applications include text classification (Tong et al. 2001), speed 
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recognition (Smith N. and Gales M. 2002) , gene classification (Brown et al. 1999), 

and webpage classification(Yu H et al. 2002).  

This work used SVM using kernel adatron algorithm. The kernel adatron maps 

inputs to a high dimensional feature space, and then optimally separates data into their 

respective classes by isolating those inputs that fall close to the data boundaries (Yu et 

al. 2008). Therefore, kernel adatron is especially effective in separating sets of data 

that share complex boundaries. SVMs are generally useful for classification problems. 

Advantages 

The following are some advantages of using SVM in my problem. 

 SVMs produce excellent results in classification problems. 

 SVM performs better in term of not over generalization. SVM control over 

training by maximizing the margin. 

 There are no parameters specific to the SVM that needs to be configured. 

 Some other features of SVMs are the use of kernels, the absence of local 

minima, the sparseness of the solution and the capacity control obtained by 

optimizing the margin. 

Disadvantages 

The following are some disadvantages of SVM. 

 SVMs assign one gaussian function for each input exemplar in the training 

set. This can slow training process. 

 SVMs are not suitable for huge datasets. 

3.5 Training the System 

During the training of the system, both input patterns and desired outputs related to 

each input exemplar. The aim of the system‟s training is minimizing the difference 

between the output produced by the system and the desired output. In order to achieve 

this goal, weights are updated by carrying out certain steps known as training.  First 
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of all, 20,000 samples of network connections are selected randomly from KDD cup 

dataset. The selected dataset consists of 12,800 (64%) normal and 7200 (36%) 

intrusive ones (DOS, Probe, U2R and R2L). After that, the selected dataset is 

transformed into another space (the PCA space). Then, GA is applied for the selection 

of optimal features subset as described in section pre-processing. The resultant dataset 

is further divided into two parts; training and production datasets. 

3.5.1 Training Dataset 

The training dataset consists of five thousand (5000) labeled connections (network 

records with label as normal or intrusive) that are randomly selected from 20,000 

connections. Further, the training dataset (five thousand) is divided into three parts; (i) 

cross validation dataset, (ii) test dataset and (iii) training dataset. This section 

describes each of these datasets. 

3.5.1.1 Cross-validation Dataset 

Cross-validation is highly recommended method for training the system. This method 

monitors the error on an independent set of data and stops training when this error 

begins to increase. The size of dataset for cross-validation is recommended as 

follows: 

 Normal generalization protection specifies that 20% of data should be for 

cross validation.  

 High generalization protection specifies that 40% of data should be for 

cross validation.   

Hence, This work used one thousand (1000) dataset for cross-validation. 
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3.5.1.2 Testing Dataset 

The testing dataset is used to test the performance of the system. Once the system is 

trained the weights are then frozen, the testing dataset is fed into the system and the 

system output is compared with the desired output. In this work, 30 % of dataset 

(5000) that is fifteen hundred (1500) is used to test the performance of trained system. 

3.5.1.3 Training Dataset 

The training dataset is used to train the system. The 50% of the dataset (5000) that is 

2500 is used to train the system. The training of the system (MLP & SVM) should be 

stopped when the system has learned the task. There are no direct indicators that 

measures how and when to stop the training of the system. However, there are some 

ways on the bases of which the training process can be stopped. These methods are 

explained in next section. 

3.5.2 Training Stop Criteria 

There are three common methods; (i) Number of iterations, (ii) Mean Squared Error 

(MSE), and (iii) Generalization to stop the training of the system (Principe et al. 

2000). This section explains each of these methods. 

3.5.2.1 Number of Iterations 

First method is the simplest way to stop the training phase. This uses a predefined 

value. It does not use any information or feedback from the system before or during 

training. When the number of iterations is reached at a predefined value, there is no 

guarantee that the learning system has found coefficients that are close to the optimal 

values.  
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3.5.2.2 Mean Squared Error (MSE) 

This method uses a recursive analysis of the output MSE to stop the training. There 

are two common approaches to stop training that are based on MSE. 

 The training is set to terminate when the MSE drops to some threshold. 

 The training is set to terminate when the change in the error between epochs is 

less than some threshold.  

 

 

Figure 3.8 Behavior of MSE for training and test datasets 

Stop criteria are all based on monitoring the mean square error. Monitor the MSE 

for the test set, as in cross validation. One should stop the learning when error in the 

test set starts increasing as shown in Figure 3.8. This is where the maximum 

generalization takes place. 

3.5.2.3 Generalization 

The above two methods did not deal with the trouble of generalization, that is, how 

well the learning system performs with data that does not belong to the training set. 

Recent development in learning theory indicate that after a critical point an MLP 

trained with backpropagation will continue to do better in the training set, but the test 

set performance will begin to deteriorate. This process is called overtraining. One 

method to solve this problem is to stop the training at the point of maximum 

generalization. This method is called early stopping or stopping with cross-validation. 
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It has been experimentally verified that the training error always decreases when the 

number of iterations is increased as shown in Figure 3.9. If the error is plot in a set of 

data with which the network was not trained (the validation set), than the error 

initially decreases with the number of iterations but eventually starts to increase 

again. Therefore, training should be stopped at the point of the smallest error in the 

validation set and when the error in the cross-validation set starts to increase. This 

method has one advantage and one disadvantage.  

 This provides an accurate stopping point. 

 The cross-validation dataset decreases the size of the training dataset.  

 

Figure 3.9 Cross validation vs. training dataset 

This method is recommended for real world applications. Even though, the MSE 

is a good overall measure of whether a training run was successful, sometimes it can 

be misleading (Principe et al. 2000). This is particularly true for classification 

problems.  

3.5.2.4 Confusion matrix 

This work deals the classification problem and there is a chance of misleading. 

Hence, in this research work, a confusion matrix is used to resolve this problem of 

misleading and to verify the training. The confusion matrix tallies the results of all 

exemplars of the last epoch and computes the classification percentages for every 

output vs. desired combination.  
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There are four parameters in a confusion matrix; (i) true positive, (ii) false positive, 

(iii) true negative , and (iv) false negative as shown in Table 3.10. 

 True positives: when system classifies normal as normal packet then it will be 

called as true positive. True positives indicate correctly prediction of normal 

packets. 

 False positives: when system classifies normal as intrusive packet then it will 

be called as false positive. False positives indicate incorrectly prediction of 

normal packets. 

 True negative: when system classifies intrusive as intrusive packet then it will 

be called as true negative. True negatives indicate correctly prediction of 

intrusive packets. 

 False negative: when system classifies intrusive as normal packet then it will 

be called as false negative. False negatives indicate incorrectly prediction of 

intrusive packets. 

Table 3.10 A confusion matrix 

 Normal Attack 

Normal 

True Positive 

Normal as normal 

Correctly predicted 

False Positive 

Normal as intrusive 

Minimize 

Attack 

False Negative 

Intrusive as Normal 

Minimize 

True Negative 

Intrusive and Intrusive 

Correctly predicted 

3.6 Testing the System 

When the training is completed then weights of the system are frozen and 

performance of the system is evaluated. Testing the system involves two steps; (i) 

verification step, and (ii) generalization step.  
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3.6.1 Verification Step  

In verification step, system is tested against the data which are used in training. Aim 

of the verification step is to test how well trained system learned the training patterns 

in the training dataset. If a system was trained successfully, outputs produced by the 

system would be similar to the actual outputs. This work used 30% of the training 

dataset (5000) that is 1500. 

3.6.2 Generalization Step 

In generalization step, testing is conducted with data which is not used in training. 

Aim of the generalization step is to measure generalization ability of the trained 

network. After training, the system only involves computation of the feedforward 

phase. For this purpose, a production dataset is used that has input data but no desired 

data. This research work uses a dataset of fifteen thousand (15,000) as a production 

dataset. Further, this technique is also tested on total dataset (20,000) that consist of 

both training dataset and production dataset. Table 3.11 shows statistics of the dataset 

used for experiments. 

Table 3.11 Statistics of dataset used in experiments 

S.No Dataset(s) Number of network connections 

1 
Selected dataset (64% 

normal and 36% intrusive) 

20,000 network connections are selected 

randomly from KDD cup dataset, in which 12800 

are normal and 7200 are intrusive connections. 

2 Training dataset 5,000 connections are randomly selected  

3 Cross-validation dataset 1,000 connections (20 % of 5000) 

4 Testing dataset 1,500 connections (30% of 5000) 

5 Production dataset 1,5000 
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3.7 Summary 

This chapter describes the five-phased methodology incorporated in my research. 

Explains different sections of applied methodology: (i) selection of dataset: There are 

three ways of selecting dataset for training and testing purpose such as real, sanitized 

and simulated. However, due to security issues and cost ineffectiveness and 

complexity this research work used MIT KDD cup, as it is considered a benchmark in 

the intrusion detection evaluation world. (ii) Pre-processing of dataset by the 

application of PCA and GA. Searching of PCA feature space using GA space for the 

selection of optimal feature subset selection is my principal contribution, which has a 

magnanimous effect on the overall performance (accuracy improvement, 

simplification of the architecture and minimizes training and testing overheads) of the 

intrusion analysis engine. The necessity of the preprocessing of the dataset is of prime 

importance for the classifier to discriminate data into classes such as normal and 

intrusive. (iii) Classification Approach: this technique used MLP and SVM as a 

classifier to classify network activity into normal and intrusive. (iv) Training the MLP 

and SVM classifier using the back-propagation algorithm and kernel adatron 

respectively. (v) Testing: Post-training, the system‟s performance is evaluated by 

freezing the weights of the system and this is done in two steps (a) verification and (b) 

generalization. 

 

 



 

  

 

 

CHAPTER 4 

SYSTEM DESIGN AND ARCHITECTURE 

4.1 Introduction 

This chapter describes the proposed model with its basic architecture via block 

diagram, and then details of each part or block of its main architecture. Explains 

features description of the dataset used for experiments, feature transformation 

process using PCA and optimal features subset selection using GA. The chapter also 

describes the details of classification architectures with basic algorithms and 

mathematical foundation of multilayered perceptron (MLP) and Support Vector 

Machine (SVM). Thus, the chapter explains system implementation, and the basic 

parameters used during training and testing followed by the description of the 

contributions and summary. 

4.2 Proposed Model 

The proposed model consist of different parts; dataset used for experiments, feature 

transformation and organization, optimal feature subset selection, classification 

architectures, implementation, training and testing, and results comparison. The block 

diagram of proposed model is shown in Figure 4.1 
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Figure 4.1 Block diagram of proposed model 

4.2.1 Dataset used for Experiments 

This research work used KDD cup 99 dataset for my experiments. The selection of 

this dataset is due to its standardization, content richness and it helps to evaluate my 

results with existing researches in the area of intrusion detection. This has already 

been described  in Chapter 3 . The raw dataset consists of 41 features. 

 

                                             Where n=41 (4.1) 

4.2.2 Dataset Pre-processing for Experiments 

After selection of the dataset, the raw dataset is pre-processed so that it can be given 

to the selected classifiers; MLP and SVM. The raw dataset is pre-processed in three 

ways; (i) discarding symbolic values, (ii) feature transformation and organization 

using PCA, and (iii) optimal features subset selection using GA.  
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5.2.2.1 Discarding Symbolic Values 

In first step of pre-processing, three symbolic values (e.g. udp, private & SF) are 

discarded out of 41 features of the dataset. The resultant features are; 

 

                     

                                                                           Where m=38 

(4.2) 

4.2.2.2 Feature Transformation and Organization  

In second step of pre-processing, PCA has applied on 38 features of the dataset. 

Mostly, PCA is used for data reduction, but here, PCA is used for feature 

transformation into principal components feature space and then organized principal 

components in descending order. 

 

                            

                                                                                            Where l=38 

(4.3) 

4.2.2.3 Optimal Feature Subset Selection 

In third step of pre-processing, GA is applied for optimal features subset selection 

from principal components search space. Four different experiments are performed as 

described in Chapter 3 and selected a subset of ten features that indicated better 

performance as compared to others. The aim is to select minimum features that 

produce optimal results in accuracy. This definitely impact on overall performance of 

the system. 
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     Ten different principal components are selected using GA process 

(4.4) 

After features subset selection, this approach used this dataset for training and 

testing in the experiments. The features are reduced to 10 from the 41 raw features 

set. 

4.2.3 Classification Architectures 

This work used two classifier approaches; MLP and SVM as an analysis engine for 

intrusion classification into normal and intrusive. These both approaches are 

commonly used in different areas due to their effective discrimination power as 

described in chapter 3. This section explains the MLP and the SVM architectures 

applied for experiments. 

4.2.3.1 Multilayer Perceptron (MLP) 

A MLP is a feed forward neural network that maps sets of input data onto a set of 

appropriate output. Here, a MLP architecture is used that consists of three layers; 

input, hidden and output. In this architecture, hidden layer and output layer consist of 

neurons (processing elements) and each neuron has a nonlinear activation function. 

The layers are fully connected from one layer to the next. MLP is an amendment of 

the standard linear perceptron, which can discriminate data that is not linearly 

separable. The MLP architecture, used in this work  is shown in Figure 4.2. 
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Figure 4.2 MLP architecture 

 

MLP network used to make basic input-output mapping. MLP network is trained 

in such way that, it produces value of 1 if the presented input pattern is intrusive and 0 

if the presented input pattern is normal network packet. This section describes the 

main components; layers and synapses of above MLP architecture. The architecture 

consists of three layers; input, hidden and output that are connected through synapses.  

a). Input Layer  

The input layer takes input from the input file that contains dataset for training of the 

network. The row of the dataset is called a pattern representing an instance of the 

input dataset. The neural network reads and elaborates sequentially all the input rows, 

and for each one it generates an output pattern representing the outcome of the entire 

process. For this purpose, an axon is used that has its activation function as; 
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 Where    input,   associated weight and output of input layer is    

(4.5) 

b). Hidden Layer 

This model uses one hidden layer in MLP architecture that represents a good non-

linear element of the neural network. The TanhAxon is used as hidden layer in the 

architecture. It can also be used to build whatever layer (hidden or output) of a neural 

network. This hidden layer takes inputs from the outputs of the input layer, and 

applies its activation function. Then, it sends its output to the output layer. The 

TanhAxon applies a bias and tanh function to each neuron in the layer. This will 

squash the range of each neuron in the layer to between -1 and 1. Such nonlinear 

elements provide a network with the ability to make soft decisions. For this purpose, 

the MLP used TanhAxon as shown in Figure 4.3 that has its activation function as; 

                
     

  Where   
        is the scaled and offset activity inherited from the 

LinearAxon and   parameter represent slope which is not adaptive 

(4.6) 

 

Figure 4.3 Activation function of Tanh 
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c). Output Layer 

The output layer allows a neural network to write output patterns in a file that are 

used for analysis of intrusion. For this purpose, MLP used TanhAxon that has already 

described above in hidden layer section. 

d). Synapses 

The synapse represents the connection between two layers, permitting a pattern to be 

passed from one layer to another. The synapse is also the „memory‟ of a neural 

network. During the training process the weight of each connection is modified 

according the learning algorithm. The layers are fully connected with each other. For 

this purpose FullSynapse object is used that connects all the nodes of a layer (axon) 

with all the nodes of the other layer (axon), as showed in Figure 4.2. 

Since each axon represents a vector of PEs, the FullSynapse simply performs a 

matrix multiplication. For each PE in its output axon, the FullSynapse accumulates a 

weighted sum of activations from all neurons in its input axons. The activation 

function is described here. 

 

                          

 Where     is a connection weight linking PEj to PEi . Time t is 

discrete, and it relates to one simulation step and discrete time delay is 

d. 

(4.7) 

e). Training algorithms 

This work used backpropagation algorithm that is one of the most popular supervised 

learning algorithms (Ahmad et al. 2008). The algorithm consists of two phases: 

forward phase and backward phase. In the forward phase, first, the weights of the 

network are randomly initialized. Then, the input signals are propagated through the 
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network. Afterwards, the output of the network is calculated and compared to the 

desired value. In the end of the forward phase, the error of the network is calculated. 

Error of the output neuron i (ei) is calculated by the formula: 

         

  Where di is the desired response and yi is the output produces by 

the neural network in response to the input xi. 

(4.8) 

 

Aim of the backpropagation algorithm is to reach global minimum value on the 

error surface as shown in Figure 4.4. 

 

Figure 4.4 Global and local minimum in error surface 

In backward phase, calculated error signal is propagated backward and in order to 

minimize the error, weights are updated. Change in weights can be calculated by 

gradient descent learning rule .According to the gradient descent learning rule, 

correction applied to the weight wji at the iteration n is denoted by  

       , and calculated by 
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Where   is a numerical constant (learning-rate parameter of the 

backpropagation algorithm) and       is local gradient. 

(4.9) 

 

Local gradient of output neurons is equal to the product of the derivative of 

activation function,      ), and error signal,      , and defined by 

            
          

                 Where error signal is       and       is local gradient. 

(4.10) 

 

Local gradient for neurons in hidden layer is defined by 

                              (4.11) 

Learning rate parameter,  , is used to reduce the training time. But if the learning 

rate parameter is chosen too high (e.g. 0.9), algorithm oscillate between local 

minimums, and may not achieved to reach the global minimum, whereas selecting 

learning rate too small results in long training periods.  

One way to speed up the learning when learning rate is chosen small or avoid 

oscillation between local minimums when learning rate is chosen to big is to utilize a 

parameter, momentum. By introducing the momentum parameter, change in weight, 

 wji(n), is made dependent to the previous weight change,  wji(n-1). Modified 

backpropagation algorithm which uses momentum,  , is given; 

 

                               (4.12) 

After the training was completed, connection weights are frozen. Afterwards, in 

order to validate whether the neural network was trained sufficiently or not, a test set, 

which is not part of the training set, was presented to the trained network and its 
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performance is evaluated. Backpropagation algorithm is simple to implement. 

However, when dealing with difficult learning tasks, training time of the 

backpropagation networks can be lengthy and even algorithm may not converge to the 

desired error rate. The pseudo code of the backpropagation algorithm is given in 

Figure 4.5. 

Backpropagation Algorithm: 

Input: training-examples, η, Ø,    ,  

Output: trained network 

Initialize all weights of    ; 

for each pair <        >   training-examples do 

Step 1       Forward phase; 

Present the input    to the input layer of the    ; 

for each unit          do 

calculate the output   of unit  ; 

Step 2      Backward phase: 

Calculate errors: 

for each unit     output layer, calculate its error    do 

                                        ; 

for each hidden unit  , calculate its errors     do 

                                 
         ; 

 Update weights: 

for each weight       net do 

                             ; 

                             ; 

 

Figure 4.5 Backpropagation Algorithm 
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There is another algorithm used in my implementation known as Levenberg-

Marquardt (LM) algorithm that is one of the most appropriate higher-order adaptive 

algorithms used for minimizing the MSE of a neural network (Hagan and Menhaj 

1994). It can be used to update the weights in the network just as backpropagation 

algorithm. It is reputably the fastest algorithm available for such training. The 

Levenberg-Marquardt algorithm is designed specifically to minimize the sum-of-

squares error function, using a formula that assumes that the underlying function 

modelled by the network is linear. A move is only accepted if it improves the error, 

and if necessary the gradient-descent model is used with a sufficiently small step to 

guarantee downhill movement. The weight update vector    is calculated as 

 

                 
  
        (4.13) 

Where   is the vector of errors,    is the learning rate parameter, and J(x) is the 

Jacobian matrix that is the matrix of partial derivatives of the errors with respect to 

the weights. Jacobian matrix can be calculated with the following formula: 

     

 
 
 
 
 
 
 
 
      

   

      

   
  

      

   

      

   

      

   
   

      

   
 

      

   

      

   

      

    
 
 
 
 
 
 
 

 

 

(4.14) 

Levenberg-Marquardt outperforms the basic backpropagation and its variations 

with variable learning rate in terms of training time and accuracy. However the 

computation and memory requirements of the algorithm are high. 

4.2.3.2 Support Vector Machine (SVM) 

Support vector machines (SVMs) are a very different type of classifier that have 

attracted a great deal of attention recently due to the novelty of the concepts that they 
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bring to pattern recognition, their strong mathematical foundation, and their excellent 

results in practical problems. There are two motivating concepts behind SVMs: 

 The idea that transforms the data into a high- dimensional space makes 

linear discriminant functions practical.  

 The idea of large margin classifiers to train the perceptron.  

This research work used  these two concepts and created the SVM. The advantage 

of a kernel machine is that its capacity (number of degrees of freedom) is decoupled 

from the size of the input space. By mapping the input to a sufficiently large feature 

space, patterns become linearly separable, so a simple perceptron in feature space can 

do the classification. Here SVM used the Radial basis function (RBF) network, which 

can be considered a kernel classifier. Actually, the RBF places Gaussian kernels over 

the data and linearly weights their outputs to create the system output. 

When used as an SVM, the RBF network places a Gaussian in each data sample 

such that the feature space becomes as large as the number of samples. But an SVM is 

much more than an RBF. To train RBF network as an SVM, this work use the idea of 

large margin classifiers which uses the Adatron algorithm, which works only with 

perceptrons. Training an RBF for large margins will decouple the capacity of the 

classifier from the input space and at the same time provides good generalization. 

This approach directs towards powerful classifiers. The adatron algorithm can be 

extended here in two ways: (i) apply it to kernel-based classifiers such as RBFs, and 

(ii) modify the training for nonlinearly separable patterns. 

a). Extension of the Adatron to Kernel Machines 

The Adatron algorithm is able to adapt the perceptron to maximize its margin. 

The idea is to work with data-dependent representations, which lead to a very simple 

on-line algorithm to adapt the multipliers.  The discriminant function of the RBF in 

terms of the data-dependent representation is given in the Equation: 
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(4.15) 

Where         represents a Gaussian function, L is the number of PEs in the 

RBF,    are the weights, N is the number of samples,    are a set of multipliers (one 

for each sample), and this approach consider the input space augmented by one 

dimension with a constant value of 1 to provide the bias. 

The inner product of Gaussians is a Gaussian. The kernel function (the Gaussian) 

first projects the inputs (x, xi) onto a high-dimensional space and then computes an 

inner product there. The amazing thing is that the Gaussian kernel avoids the explicit 

computation of the pattern projections into the high-dimensional space, as shown in 

Eq. 5.13 (the inner product of Gaussians is still a Gaussian). Any other symmetric 

function that obeys the Mercer condition has the same properties. The topology used 

in this work is depicted in Figure 5.5, where one can easily see that it is an RBF, but 

where each Gaussian is centered at each sample and the weights are the multipliers  . 

The adatron algorithm can be easily extended to the RBF network by substituting 

the inner product of patterns in the input space by the kernel function, leading to the 

following quadratic optimization problem: 
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(4.16) 
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This can define as, 

             

 

   

             
                         

 

(4.17) 

and choose a common starting multiplier (e.g.    =0.1), learning rate  , and a 

small threshold (e.g., t = 0.01). 

While M>t, this approach choose a pattern xi and calculate an update     

          and perform the update 

 

                                 

                                   

 

                                 

                                                       

(4.18) 

After adaptation, only some of the    are different from zero (called the support 

vectors). They correspond to the samples that are closest to the boundary between 

classes. This algorithm is called the kernel adatron and can adapt an RBF to have an 

optimal margin. This algorithm can be considered the "on-line" version of the 

quadratic optimization approach utilized for SVMs, and it can find the same solutions 

as Vapnik's original algorithm for SVMs. It is easy to implement the kernel adatron 

algorithm since g(xi) can be computed locally to each multiplier, provided that the 

desired response is available in the input file. In fact, the expression for g(xi) 

resembles the multiplication of an error with an activation, so it can be included in the 

framework of neural network learning. The Adatron algorithm essentially prunes the 

RBF network of Figure 4.5 so that its output for testing is given. 
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      (4.19) 

b). The Adatron with a Soft Margin 

If the patterns in feature space are not linearly separable than an idea is introduce a 

soft margin using a slack variable      and a function         
 
   , which 

penalize the cost function. 

Further minimize the function F, but now subject to the constraints 

                ,                     and            

 

The new cost function becomes 

          

 

   

 
 

  
    

 

   

 

   

                 
    

   

 
 

                

 

   

   

Where                            

(4.20) 

 

 

Normally, instead of computing the optimal C, this method chooses a value. A 

priori C can be regarded as a regularizer. This means that the matrix of kernel inner 

products is augmented in the diagonal by the factor    , that is, 

                         
 
                             

(4.21) 

The only difference in the algorithm for this case is the calculation of       which 

becomes 

            

 

   

              (4.22) 
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These calculations can be easily implemented as an iterative algorithm, but large 

data sets produce very large RBF network (one gaussian per data). One disadvantage 

is that it does not directly specify the number of support vectors to solve the problem. 

In principal, SVMs should be sensitive to outlier, even when using soft computing. 

Therefore, this approach used the SVM to transform the data into high-dimensional 

space using RBF that places a gaussian at each data sample. The RBF uses the 

backpropagation to train a linear combination of the gaussian to produce the results. 

The SVM used in my work, however, uses the idea of large margin classifiers for 

training. This decouples the capacity of the classifier from the input space and at the 

same time provides good generalization. This is an ideal combination for 

classification. 
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Figure 4.6 SVM applied for intrusion analysis 

The SVM is implemented using the kernel adatron algorithm. The kernel adatron 

maps inputs to a high-dimensional feature space, and then optimally separates data 

into their respective classes by isolating those inputs which fall close to the data 
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boundaries. Therefore, the kernel Adatron is especially effective in separating sets of 

data which share complex boundaries. The kernel Adatron algorithm is given in 

Figure 4.7. 

 

Kernel Adatron Algorithm: 

Step 1: Initialize     . 

Step 2: Starting from pattern     , for labeled points 

         Calculate                   
 

   
. 

Step 3: For all patterns    calculate           and execute steps 4 to 5 below. 

Step 4: Let              be the proposed change to the multipliers     . 

Step 5.1: If             then the proposed change to the multipliers would result in a 

negative      Consequently to avoid this problem set       

Step 5.2: If             then the multipliers are updated through the addition of the             

    i.e.           . 

Step 6: Calculate the bias    from 

  
 

 
        

          
    

Where    
  are those patterns    with class label     and    

  are those with class label   . 

Step 7: If a maximum number of presentations of the pattern set has been exceeded then stop, 

otherwise return to step 2. 

Figure 4.7 Kernel Adatron Algorithm 
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4.2.4 Implementation 

The proposed model is implemented using different types of softwares: 

NeuroSolutions, PCA and MS-excel. This work implemented the MLP and the SVM 

in two different modules. This section explains briefly their implemented 

architectures. 

4.2.4.1 MLP Implementation 

The MLP architecture consists of different components is shown in Figure 4.8. This 

section describes the components that constitute multilayered perceptron neural 

network architecture. Further, these components are explained in Table 4.1. 

 

Figure 4.8 MLP implemented  architecture 

 

Table 4.1 Components of MLP architecture 

S.No Components Description 

1 StaticControl  It controls the forward activation phase of network. 

2 
BackStaticControl It controls the backward activation phase of network 

(backpropagation). 

3 
Axon It is a layer of PE's with identity transfer function.  It can act 

as a placeholder for the File component at the input layer. 
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S.No Components Description 

4 File It is used for network input and desired data from a file. 

5 
FullSynapse It is a Full matrix multiplication and it is used to connect two 

axon layers. 

6 
BackFullSynapse It is a Back full matrix multiplication. Attaches to "dual" 

forward FullSynapse, for use in backpropagation network. 

7 

Levenberg-

Marquardt (LM) 

This pseudo second-order learning algorithm tends to train in 

fewer epochs and arrive a lower error. The Levenberg-

Marquardt (LM) algorithm is one of the most appropriate 

higher-order adaptive algorithms known for minimizing the 

MSE of a neural network 

8 
TanhAxon It  is Layer of PE's with hyperbolic transfer function (output 

range –1 to 1). 

9 

BackTanhAxon It is Layer of PE's with transfer function that is the derivative 

of the TanhAxon. It Attaches to "dual" forward TanhAxon, 

for use in backpropagation network. 

10 

L2Criterion It is Square error criterion. Computes the error between the 

output and desired signal, and passes it to the 

backpropagation network. 

11 

BackCriteriaControl It provides Input to backpropagation network.  It Attaches to 

Criterion, for use in backpropagation network. Receives error 

from Criterion. 

12 
MatrixViewer It is a Numerical probe. Displays numerical values at the 

current instant in time. 

13 DataGraph It is Graphing probe. Displays data versus time. 

14 File It is used for network input and desired data from a file. 

 

 



 135   

4.2.4.1 SVM Implementation 

The SVM architecture consists of different components is shown in Figure 4.9. This 

section describes the components that constitute SVM network architecture. 

 

Figure 4.9 SVM implemented  architecture 

Table 4.2 Components of SVM architecture 

S.No Components Description 

1 StaticControl  It controls the forward activation phase of network. 

2 BackStaticControl 
It controls the backward activation phase of network 

(backpropagation). 

3 Axon It is a Layer of PE's  with identity transfer function. 

4 File It is used for network input and desired data. 

5 

FullSynapse 

 

It is a Full matrix multiplication and it is used to connect 

two axon layers. 

6 GaussianAxon The GaussianAxon implements a radial basis function. 

7 Back axon 
The back axon Attaches to "dual" forward Axon, for use 

in backpropagation network.  
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S.No Components Description 

8 SVM Output Synapse 
This is used to implement the "Large Margin Classifier" 

segment of the SVM model. 

9 BackFullSynapse 

It is a Back full matrix multiplication. Attaches to "dual" 

forward FullSynapse, for use in backpropagation 

network. 

10 SVM 
This component is used to implement the "Large Margin 

Classifier" segment of the SVM model. 

11 L2Criterion 

L2Criterion is Square error criterion. Computes the error 

between the output and desired signal, and passes it to 

the backpropagation network.  

12 BackCriteriaControl 

It provides Input to backpropagation network.  It 

Attaches to Criterion, for use in backpropagation 

network. Receives error from Criterion. 

13 
MatrixViewer MatrixViewer is a Numerical probe. Displays numerical 

values at the current instant in time. 

14 DataGraph DataGraph is Graphing probe. Displays data versus time. 

15 
File File component is used for network input and desired 

data from a file. 

4.2.5 Training and Testing of the System  

The evaluation of system‟s performance consists of two phases; training and testing 

as described in chapter 3. This section describes these two phases and their parametric 

setting during training and test of the system. 

4.2.5.1 Training the System 

The system is trained on labeled data set such as intrusive and normal. The aim of 

training is the adjustment of networks weights on base of the difference between the 

mk:@MSITStore:E:/NS/NeuroSolutionsHelp/neurosolutions.chm::/CONCEPTS/Support_Vector_Machines.htm
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output produced by the system and the desired output. This process of weights 

adjustment and training is called learning. The parameters used in my experiments to 

tune the neural network are given in the following tables. The parametric 

specification used for MLP architecture during training phase is given in Table 4.3. 

Table 4.3 MLP tuning parameters during training 

S.No Parameter Name Value 

1 Architecture MLP Feedforward 

2 Layers 03 ( input, hidden and output) 

3 Input samples features 38 (original), 22 (PCA), and 10 (GA) 

4 PEs in Input layer It depends on features subset selections. For 

examples; 38, 22, & 10. 

5 PEs in Hidden Layer If number of features are 10 than PEs are 22 in 

hidden layer. 

6 Epochs 1000 

7 PE in output layer One that has value 0 and 1 

8 Activation function Tanh 

9 Training algorithm Backpropagation (Forward & Backward) 

10 Training dataset 5000 connections in which 20% for cross-validation 

and 30% for testing 

11 Production dataset 20,000 connections 

 

The parametric specification used for SVM architecture during training phase is 

given in Table 4.4. 
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Table 4.4 SVM parameters during training 

S.No Parameter Name Value 

1 Architecture SVM 

2 Layers 03 ( input, gaussian and output) 

3 Input samples features 38 (original), 22 (PCA), and 10 (GA) 

4 PEs in Input layer It depends on features subset selections. 

For examples; 38, 22, & 10. 

5 SVM Input Synapse If input are 10 then its outputs are 2500 

6 PEs in Gaussian Layer If number of features are 10 than PEs are 

2500 in gaussian layer. 

7 SVM output Synapse Inputs 2500 and output 1 

8 SVM step size 0.01 

9 Weight decay 0.01 

10 Epochs 1000 

11 PE in output layer One that has value 0 and 1 

12 Activation function Gaussian 

13 Training algorithm Backpropagation (RBF) and Kernel 

Adatron (SVM) 

14 Training dataset 5000 connections in which 20% for 

cross-validation and 30% for testing 

15 Production dataset 20,000 connections 

 



 139   

 4.2.5.2 Testing the System 

When the system is trained well then weights of the system are frozen and 

performance of the system is evaluated. Testing of trained system involves two steps; 

(i) verification step, and (ii) generalization step.  

a). Verification Step  

In verification step, trained system is tested against the data which are used in 

training. The purpose of the verification step is to investigate how well trained system 

learned the training patterns in the training dataset. If a system was trained 

successfully than the outputs produced by the system would be similar to the real 

outputs. In this research work 30% of the training dataset (5000) is used as 

verification that is 1500. 

 b). Generalization Step 

In generalization step, testing is conducted with data which is not used in training. 

The purpose of the generalization step is to measure generalization ability of the 

trained network. After training, the system only involves computation of the feed 

forward phase. For this purpose, a production dataset is used that has input data but 

no desired data.  

This work used a dataset of fifteen thousand (15,000) as a production dataset. 

Further, the system performance is also tested on total dataset (20,000) that consist of 

both training dataset and production dataset.  
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The parameters used during MLP testing phase are given in Table 4.5. 

Table 4.5 MLP parameters during testing 

S.No Parameter Name Value 

1 Architecture MLP Feedforward 

2 Layers 03 ( input, hidden and output) 

3 Input samples features 38 (original), 22 (PCA), and 10 (GA) 

4 PEs in Input layer It depends on features subset selections. For examples; 38, 

22, & 10. 

5 PEs in Hidden Layer If number of features are 10 than PEs are 22 in hidden layer. 

6 Epochs 1 

7 PE in output layer One that has value 0 and 1 

8 Activation function Tanh 

9 Supervised/Teacher 

layer 

No need of this layer in testing phase. 

10 Training algorithm NO. But it involves feedforward phase only. 

11 Desired dataset No need of desired dataset in testing phase. 

12 Testing dataset 1500 that is 30% of training dataset (5000). 

13 Production dataset 20,000 connections 

 

The parametric specification used for SVM architecture during testing phase is 

given in Table 4.6. 
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Table 4.6 SVM parameters during Testing 

S.No Parameter Name Value 

1 Architecture SVM 

2 Layers 03 ( input, gaussian and output) 

3 Input samples features 38 (original), 22 (PCA), and 10 (GA) 

4 PEs in Input layer It depends on features subset selections.  

5 SVMInputSynapse If input are 10 then its outputs are 2500 

6 PEs in Gaussian Layer If number of features are 10 than PEs are 2500 in 

gaussian layer. 

7 SVMoutputSynapse Inputs 2500 and output 1 

8 SVM step size 0.01 

9 Weight decay 0.01 

10 Epochs 1 

11 PE in output layer One that has value 0 and 1 

12 Activation function Gaussian 

13 Supervised/Teacher layer No need of this layer in testing phase. 

14 Training algorithm Feedforward phase only of Backpropagation (RBF) 

and Kernel Adatron (SVM) 

15 Training dataset 5000 connections in which 20% for cross-validation 

and 30% for testing 

16 Production dataset 20,000 connections 
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4.2.6 Results Comparison 

The results of MLP and SVM based systems and their comparison are discussed in 

Chapter 5. Further, the detail analysis of results will be discussed as well as their 

performance comparison with other recent approaches in the area of intrusion 

detection. 

4.3 Summary 

This chapter decomposes the methodology described in Chapter 3 in general and the 

special focus being classification architectures in particular. This is represented using 

block diagram, mathematical foundations. Then the block diagram is treated block by 

block, as a phase and details of each part or block of its main architecture. The 

chapter then explained the features description of the dataset used for experiments, 

feature transformation process using PCA and optimal features subset selection using 

GA. Thus, the chapter describes the details of classification architectures with basic 

algorithms and mathematical foundation of multilayered perceptron model (MLP) and 

SVM. The explanation continues to the system implementation level, and the basic 

parameters used during training and testing.  The selection of optimal features subset 

using GA by searching the PCA features space as mentioned before is the main 

contribution that makes the architecture simple as well as increases the overall 

performance of the intrusion analysis engine. The application of LM learning rule 

enhances the MLP training and testing performance as compared to traditional 

propagation algorithm. The hybrid architecture of SVM that consists of RBF and 

large margin classifier enhanced its performance in intrusion analysis. The evaluation 

of these approaches; MLP and SVM will be discussed in Chapter 5. 

 

 



 

  

 

 

CHAPTER 5 

RESULTS AND DISCUSSION 

5.1 Introduction 

This chapter describes the experimental results obtained by the utilization of 

techniques like Principal Component Analysis (PCA), Genetic Algorithm (GA), 

Multilayer Perceptron (MLP) and Support Vector Machine (SVM) in the proposed 

network intrusion detection mechanism, whose methodology and designed 

architecture already covered in Chapters 3 & 4. After the training process was 

completed, testing was conducted in two steps. In the first step, both classifiers (MLP 

and SVM) were tested against the training dataset, in order to examine how well the 

system „learned‟ the training dataset after the training process. In the second step of 

the testing, trained systems were tested against a dataset, which is not a part of the 

training set, in order to observe generalization performance of the trained systems. In 

both testing steps, performance of the systems was tested by investigating the number 

of false positives, false negatives, true positives and the true negatives that they 

generated. 

5.2 Experimental Results 

The SVM and MLP architectures implemented independently to conduct different 

experiments with different scenarios. The implemented systems based on MLP and 

SVM for network intrusion detection tested on a system having the following 

specification as shown in Table 5.1. 
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Table 5.1 System specification for experiments 

Hardware/Software   Specification 

Operating system Windows vista with service pack 2 

System Manufacturer Toshiba 

Processor Intel (R) core(TM)2 Duo CPU T5800 2GHz 

Memory (RAM) 3.00 GB 

The experiments of both classifier architectures; MLP and SVM for intrusion 

analysis are performed on different size of datasets to testify the proposed mechanism 

for network intrusion detection. This research work performed several experiments on 

different feature subsets with GA and without GA. First, the following section present 

results obtained using MLP architecture. Then, it illustrate results obtained using 

SVM. 

5.2.1 MLP Experimental Results 

The MLP based intrusion analysis engine is evaluated on different feature subsets. 

This section presents MLP results and their sensitivity analysis in different scenarios. 

First of all, MLP is tested on original dataset without using PCA and GA, which 

consists of 38 features. Five thousand exemplars or input samples are randomly 

selected from twenty thousand dataset. Five thousand exemplars contains two types of 

connections; normal and intrusive, in which 3,223 are normal and 1,777 are intrusive. 

The five thousand dataset is further divided into three subsets; training dataset (2500), 

cross-validation dataset (1000) and testing dataset (1500). 
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 Scenario 1: MLP with original 38 feature set 

 Testing Phase Analysis 

The purpose of testing phase in scenario 1 is to observe the system‟s learning ability 

after the training process with original 38 feature set. The sensitivity results of 

mentioned above three datasets are shown in Table 5.2-5.4. 

Table 5.2 MLP-org-38: Sensitivity analysis of training  dataset 

True Positive  

(%) 

False Positive 

(%) 

False Negative 

(%) 

True Negative 

(%) 

100 0.0 2.59 97 

Table 5.3 MLP-org-38: Sensitivity analysis of cross-validation dataset 

True Positive 

(%) 

False Positive 

(%) 

False Negative 

(%) 

True Negative 

(%) 

98.71 1.28 2.25 97.74 

Table 5.4 MLP-org-38: Sensitivity analysis of testing dataset 

True Positive (%) 

False Positive 

(%) 

False Negative 

(%) 

True Negative 

(%) 

97.07 2.92 2.54 97.45 

The overall performance of testing phase based one time, epochs, detection 

rate and false alarm are expressed in Table 5.5. 

Table 5.5 MLP-org-38: Overall performance of testing phase 

Training Time 

(H:M:S) 

Training Epochs 

(Number) 

Detection rate  

(%) 

False Alarm 

(%) 

1:29:36 1000 97.26 2.73 
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 Verification Phase Analysis 

In verification phase, the trained system is tested against a dataset, which is not a 

part of the training set, in order to examine generalization performance of the 

trained system. The results are presented in Table 5.6 shows system‟s performance 

on production dataset. 

Table 5.6 MLP-org-38: Overall performance of verification phase 

No. of 

Features out 

of 20K 

True 

Positives 

(Number) 

True 

Negative 

(Number) 

Detection rate (%) 
False 

Alarm 

( Number) 

Normal 

(64 %) 

Intrusive 

(36 %) 

760000 1456 18544 7.28 92.72 11344 

Scenario 2: MLP with PCA 38 features set 

 Testing Phase Analysis 

The purpose of testing phase is to observe the system how well the system „learned‟ 

the training dataset with PCA38 feature set after the training process. The sensitivity 

results of above mentioned datasets are presented in Table 5.7-5.9. 

 

True Positive 

 (%) 

False Positive 

(%) 

False Negative 

(%) 

True Negative 

(%) 

100 0.0 0.0 100 

Table 5.8 MLP-TF38: Sensitivity analysis of cross-validation dataset 

True 

Positive (%) 

False Positive 

(%) 

False Negative 

(%) 

True Negative 

(%) 

99.84 0.153 0.0 100 

Table 5.7 MLP-TF38: Sensitivity analysis of training dataset 
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Table 5.9 MLP-TF38: Sensitivity analysis of testing dataset 

True Positive 

(%) 

False Positive 

(%) 

False Negative 

(%) 

True Negative 

(%) 

100 0.0 0.0 100 

 

Table 5.10 shows overall performance of MLP in terms of time, epochs, detection 

rate and false alarm. 

 Verification Phase Analysis 

In verification phase, the trained system is tested against a dataset, which is not a part 

of the training set (such as production dataset), in order to examine generalization 

performance of the trained system. Table 5.11 shows MLP performance on 

production dataset. 

Table 5.11 MLP-TF38: Overall performance of verification phase 

No. of 

Features out 

of 20K 

True 

Positives 

(Number) 

True 

Negative 

(Number) 

Detection rate (%) 
False 

Alarm 

( Number) 

Normal 

(64 %) 

Intrusive 

(36 %) 

760000 12793 7207 63.965 36.035 07 

Table 5.10 MLP-TF38: Overall performance of testing phase 

Training Time 

(H:M:S) 

Training Epochs 

(Number) 

Detection rate 

(%) 

False Alarm 

(%) 

1:20:07 1000 100 0.0 
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Scenario 3: MLP with PCA 22 feature set 

 Testing Phase Analysis 

The purpose of testing phase is to look at the system how well the system „learned‟ 

the training dataset in scenario 3 after the training process. The sensitivity analysis of 

datasets (training, cross-validation & testing) is given in Table 5.12-5.14.  

Table 5.12 MLP-PCA22: Sensitivity analysis of training dataset 

True Positive 

(%) 

False Positive 

(%) 

False Negative 

(%) 

True Negative 

(%) 

100 0.0 0.0 100 

 

 

Table 5.14 MLP-PCA22: Sensitivity analysis of testing dataset 

True Positive 

(%) 

False Positive 

(%) 

False Negative 

(%) 

True Negative 

(%) 

100 0.0 0.0 100 

 

 

 

 

Table 5.13 MLP-PCA22: Sensitivity analysis of cross-validation 

dataset 

True Positive 

(%) 

False Positive 

(%) 

False Negative 

(%) 

True Negative 

(%) 

100 0.0 0.0 100 
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The overall performance of testing phase in terms of time, epochs, detection rate 

and false alarm is shown in Table 5.15. 

 Verification Phase Analysis 

In verification phase, the trained system is verified against a dataset, which is not a 

part of the training set, in order to examine generalization performance of the trained 

system in this scenario 3. Table 5.16 shows whole performance on production dataset. 

Table 5.16 MLP-PCA22: Overall performance of verification phase 

No. of 

Features 

out of 

20K 

True 

Positives 

(Number) 

True 

Negative 

(Number) 

Detection rate (%) 
False 

Alarm 

( Number) 

Normal 

(64 %) 

Intrusive 

(36 %) 

440000 12789 7211 63.945 36.05 11 

Scenario 4: MLP with GA12 feature set  

 Testing Phase Analysis 

The purpose of testing phase is to study the system with GA12 feature set in scenario 

4 and monitor how well the system „learned‟ the training dataset after the training 

process. The sensitivity analysis of training phase is shown in Table 5.17-5.20. 

 

 

 

Table 5.15 MLP-PCA22: Overall performance of testing phase 

Training Time 

(H:M:S) 

Training Epochs 

(Number) 

Detection rate  

(%) 

False Alarm 

(%) 

0:53:28 1000 100 0.0 
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Table 5.17 MLP-GA12: Sensitivity analysis of training dataset 

True Positive (%) 

False Positive 

(%) 

False Negative 

(%) 

True Negative 

(%) 

100 0.0 0.0 100 

Table 5.18 MLP-GA12: Sensitivity analysis of cross-validation dataset 

True Positive 

(%) 

False Positive 

(%) 

False Negative 

(%) 

True Negative 

(%) 

100 0.0 0.0 100 

    

Table 5.19 MLP-GA12:Sensitivity analysis of testing dataset 

True Positive (%) 

False Positive 

(%) 

False Negative 

(%) 

True Negative 

(%) 

100 0.0 0.0 100 

 

 

 

 

Table 5.20 MLP-GA12: Overall performance of testing phase 

Training Time 

(H:M:S) 

Training Epochs 

(Number) 

Detection rate 

(%) 

False Alarm 

(%) 

0:53:28 1000 100 0.0 
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 Verification Phase Analysis 

In verification phase, the trained system is assessed against a dataset, which is not 

a part of the training set, in order to inspect generalization performance of the 

trained system in this scenario 4. The whole performance of MLP with GA 12 

feature set on the production dataset is presented in Table 5.21. This approach used 

different parameters (number of features, true positives, true negatives, number of 

normal connections , number of intrusive connections, detection rate and false 

alarms) to verify the MLP classifier with GA 12 feature set. 

Scenario 5: MLP with GA10 feature set  

 Testing Phase Analysis 

The purpose of testing phase is to study the system with ten features as selected by 

GA and to observe the behaviour how well the system „learned‟ the training dataset 

after the training process. Table 5.22- 5.25 show sensitivity results of testing phase. 

Table 5.22 MLP-GA10: Sensitivity analysis of training dataset 

True 

Positive 

(%) 

False Positive 

(%) 

False Negative 

(%) 

True Negative 

(%) 

100 0.0 0.0 100 

 

Table 5.21 MLP-GA12: Overall performance of verification phase 

No. of 

Features out 

of 20K 

True 

Positives 

(Number) 

True 

Negative 

(Number) 

Detection rate (%) 
False 

Alarm 

( Number) 

Normal 

(64 %) 

Intrusive 

(36 %) 

440000 12797 7203 63.945 36.05 03 
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Table 5.24 MLP-GA10: Sensitivity analysis of testing dataset 

True Positive (%) 

False Positive 

(%) 

False Negative 

(%) 

True Negative 

(%) 

100 0.0 0.0 100 

 

 

 

 

 

 

Table 5.23 MLP-GA10: Sensitivity analysis of cross-validation 

dataset 

True Positive 

(%) 

False Positive 

(%) 

False Negative 

(%) 

True Negative 

(%) 

100 0.0 0.0 100 

Table 5.25 MLP-GA10: Overall performance of testing phase 

Training 

Time 

(H:M:S) 

Training Epochs 

(Number) 

Detection rate  

(%) 

False Alarm 

(%) 

0:23:28 174 100 0.0 
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 Verification Phase Analysis 

In verification phase, the trained system is verified on a production dataset in order 

to check up generalization performance of the trained system. The whole 

performance of MLP with GA 10 feature set is shown in Table 5.26. 

Table 5.26 MLP-GA10: Overall performance of verification phase 

No. of Features 

out of 20K 

True 

Positives 

(Number) 

True 

Negative 

(Number) 

Detection rate (%) 

False Alarm 

( Number) 
Normal 

(64 %) 

Intrusive 

(36 %) 

200000 12797 7203 63.985 36.01 03 

5.2.2 SVM Experimental Results 

Scenario 1: SVM with original 38 feature set 

 Testing Phase Analysis 

The purpose of testing phase is to observe the system how well the system „learned‟ 

the training dataset after the training process. The sensitivity analysis of confusion 

matrix of testing phase is shown in Table 5.27-5.30. 

Table 5.27 SVM-org-38: Sensitivity analysis of training dataset 

True Positive 

(%) 

False Positive 

(%) 

False Negative 

(%) 

True Negative 

(%) 

100 0.0 0.0 100 
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Table 5.28 SVM-org-38: Sensitivity analysis of cross-validation dataset 

True Positive 

(%) 

False Positive 

(%) 

False Negative 

(%) 

True Negative 

(%) 

93.65 6.34 2.47 97.52 

Table 5.29 SVM-org-38: Sensitivity analysis of testing dataset 

True Positive (%) 

False Positive 

(%) 

False Negative 

(%) 

True Negative 

(%) 

93.65 6.34 2.47 97.52 

Table 5.30 SVM-org-38: Overall performance of testing phase 

True Positive (%) 

False Positive 

(%) 

False Negative 

(%) 

True Negative 

(%) 

2:21:17 1000 95.585 4.405 

In verification phase, the trained SVM with original 38 feature set is tested on 

production dataset, which is not a part of the training set, in order to observe 

generalization performance of the trained system. The overall performance of 

SVM with 38 raw feature set is shown in Table 5.31. 

Table 5.31 SVM-org-38: Overall performance of verification phase 

No. of 

Features 

out of 20K 

True 

Positives 

(Number) 

True 

Negative 

(Number) 

Detection rate (%) 
False 

Alarm 

( Number) 

Normal 

(64 %) 

Intrusive 

(36 %) 

760000 1345 18655 6.72 93.27 11455 



 155   

Scenario 2: SVM with PCA 38 feature set 

 Testing Phase Analysis 

The purpose of testing phase of SVM with PCA 38 feature set is to monitor the 

system how well the system „learned‟ the training dataset after the training process.  

The sensitivity analysis of SVM with PCA 38 feature set (transformed feature set) is 

shown in Table 5.32-5.35. 

Table 5.32 SVM-TF38: Sensitivity analysis of training dataset 

True Positive 

(%) 

False Positive 

(%) 

False Negative 

(%) 

True Negative 

(%) 

100 0.0 0.0 100 

Table 5.33 SVM-TF38: Sensitivity analysis of cross-validation 

dataset 

True Positive 

(%) 

False 

Positive 

(%) 

False 

Negative 

(%) 

True Negative 

(%) 

99.07 0.93 0.58 99.42 

Table 5.34 SVM-TF38: Sensitivity analysis of testing dataset 

True Positive 

(%) 

False Positive 

(%) 

False 

Negative 

(%) 

True Negative 

(%) 

98.66 1.33 0.759 99.24 

Table 5.35 SVM-TF38: Overall performance of testing phase 

True Positive 

(%) 

False Positive 

(%) 

False 

Negative 

(%) 

True Negative 

(%) 

2:39:04 1000 98.95 1.0445 
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 Verification Phase Analysis 

In verification phase, the trained system is tested on production dataset, which is not a 

part of the training set, in order to check generalization performance of the trained 

system with PCA 38 feature set. The whole performance of SVM with TF38 

(transformed feature) set is given in Table 5.36. 

Table 5.36 SVM-TF38: Overall performance of verification phase 

No. of 

Features out 

of 20K 

True 

Positives 

(Number) 

True 

Negative 

(Number) 

Detection rate (%) 

False 

Alarm 

( Number) 

Normal 

(64 %) 

Intrusiv

e 

(36 %) 

760000 12721 7279 63.605 36.395 79 

Scenario 3: SVM with PCA 22 feature set 

 Testing Phase Analysis 

The purpose of testing phase is to observe the SVM with PCA 22 feature set how well 

it „learned‟ the training dataset after the training process. The sensitivity analysis of 

SVM with PCA 22 feature set is shown in Table 5.37-5.40. 

Table 5.37 SVM-PCA-22: Sensitivity analysis of training dataset 

True Positive 

(%) 

False Positive 

(%) 

False Negative 

(%) 

True Negative 

(%) 

99.37 0.63 0.56 99.44 
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Table 5.39 SVM-PCA-22: Sensitivity analysis of testing dataset 

Table 5.38 SVM-PCA-22: Sensitivity analysis of cross-validation 

dataset 

True Positive 

(%) 

False Positive 

(%) 

False 

Negative 

(%) 

True Negative 

(%) 

99.50 0.46 0.85 99.14 

True Positive 

(%) 

False Positive 

(%) 

False Negative 

(%) 

True Negative 

(%) 

99.48 0.51 0.95 99.05 

 Verification Phase Analysis 

In verification phase, the trained system (SVM with PCA 22 feature set) is 

evaluated against a dataset, which is not a part of the training set (i.e. the 

production dataset), in order to observe generalization performance of the trained 

system. The overall performance of this system is given in Table 5.41. 

 

 

 

Table 5.40 SVM-PCA-22: Overall performance of testing phase 

Training Time 

(H:M:S) 

Training Epochs 

(Number) 

Detection rate 

(%) 

False Alarm 

(%) 

2:08:18 1000 99.26 0.735 
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Table 5.41 SVM-PCA-22: Overall performance of verification phase 

No. of Features 

out of 20K 

True 

Positives 

(Number) 

True 

Negative 

(Number) 

Detection rate (%) 
False 

Alarm 

( Number) 

Normal 

(64 %) 

Intrusive 

(36 %) 

440000 12776 7224 63.88 36.12 24 

Scenario 4: SVM with GA12 feature set  

 Testing Phase Analysis 

The purpose of testing phase is to observe the system (the SVM with GA 12 feature 

set) how well the system „learned‟ the training dataset after the training process. The 

sensitivity analysis of testing phase is shown in Table 5.42-5.45. 

Table 5.42 SVM-GA12: Sensitivity analysis of training dataset 

True Positive 

(%) 

False Positive 

(%) 

False Negative 

(%) 

True Negative 

(%) 

98.30 1.7 0.0 100 

Table 5.43 SVM-GA12: Sensitivity analysis of cross-validation 

dataset 

True Positive 

(%) 

False Positive 

(%) 

False Negative 

(%) 

True Negative 

(%) 

100 0.0 0.0 100 

Table 5.44 SVM-GA12: Sensitivity analysis of testing dataset 

True Positive (%) 

False Positive 

(%) 

False Negative 

(%) 

True Negative 

(%) 

99.79 0.2 0.75 99.24 
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 Verification Phase Analysis 

In verification phase, the trained system (the SVM with GA12) is tested on 

production dataset, which is not a part of the training set, in order to observe its 

generalization performance with GA 12 feature set. The whole performance is 

given in Table 5.46. 

Table 5.46 SVM-GA12: Overall performance of verification phase 

No. of 

Features out 

of 20K 

True 

Positives 

(Number) 

True 

Negative 

(Number) 

Detection rate (%) 
False 

Alarm 

( Number) 

Normal 

(64 %) 

Intrusive 

(36 %) 

240000 12811 7189 64.055 35.945 11 

Scenario 5: SVM with GA10 feature set  

 Testing Phase Analysis 

The purpose of testing phase is to observe the system how well the system „learned‟ 

the training dataset after the training process.  The sensitivity analysis of SVM with 

GA 10 feature set is shown in Table 5.47-5.50. 

 

 

Table 5.45 SVM-GA12: Overall performance of testing phase 

Training Time 

(H:M:S) 

Training Epochs 

(Number) 

Detection rate 

(%) 

False Alarm 

(%) 

0:53:28 1000 99.51 0.485 
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Table 5.47 SVM-GA10: Sensitivity analysis of training dataset 

True Positive (%) 

False Positive 

(%) 

False Negative 

(%) 

True Negative 

(%) 

99.38 0.61 0.0 100 

Table 5.48 SVM-GA10: Sensitivity analysis of cross-validation dataset 

True Positive 

(%) 

False Positive 

(%) 

False Negative 

(%) 

True Negative 

(%) 

99.38 0.61 0.0 100 

Table 5.49 SVM-GA10: Sensitivity analysis of testing dataset 

True Positive (%) 

False Positive 

(%) 

False Negative 

(%) 

True Negative 

(%) 

99.89 0.10 0.94 99.05 

Table 5.50 SVM-GA10: Overall performance of testing phase 

Training Time 

(H:M:S) 

Training 

Epochs 

(Number) 

Detection 

rate 

(%) 

False Alarm 

(%) 

0:16:14 1000 99.47 0.52 

 

  Verification Phase Analysis 

In verification phase, the trained system (the SVM) is verified against a dataset (the 

production dataset), which is not a part of the training set, in order to check up 

generalization performance of the trained system with GA 10 feature set. The overall 

performance of this scenario is shown in Table 5.51. 
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Table 5.51 SVM-GA10: Overall performance of verification phase 

No. of 

Features out 

of 20K 

True 

Positives 

(Number) 

True 

Negative 

(Number) 

Detection rate (%) 
False 

Alarm 

( Number) 

Normal 

(64 %) 

Intrusive 

(36 %) 

200000 12807 7193 64.035 35.965 07 

5.2.3 Comparison between MLP and SVM 

This section makes a tabular comparative analysis between five different scenarios for 

MLP and SVM respectively based on above-mentioned results. This comparison is 

based on number of false alarm, number of epochs, number of features, training time 

and the results of confusion matrix and is presented in Table 5.52 and Table 5.53. 

Table 5.52 MLP performance for intrusion analysis 

Classifier MLP-A10 MLP-A12 MLP-22 MLP-TF38 MLP-org-38 

False Alarm 03 03 11 07 11344 

Epochs 174 217 1000 1000 1000 

Time 00:20:07 00:23:00 01:08:07 01:28:07 01:29:36 

Features 200000 240000 
44000

0 
760000 760000 

False + 03 03 11 07 11344 

False - 0 0 0 0 0 

True + 12797 12797 12789 12793 1456 

True - 7203 7203 7211 7207 18544 
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Table 5.53 SVM performance for intrusion analysis 

Classifier SVM-GA10 SVM-A12 SVM-F22 SVM-F38 SVM-org-38 

False Alarm 07 12 24 79 11455 

Epochs 1000 1000 1000 1000 1000 

Time 01:16:14 01:36:01 02:08:18 02:39:04 02:21:17 

Features 200000 240000 440000 760000 760000 

False + 0 0 24 79 11455 

False - 01 11 0 0 0 

True + 12807 12811 12776 12721 1345 

True - 7193 7189 7224 7279 18655 

The above comparison proved that my mechanism using GA to search the PCA 

features space provides optimal performance as compared to traditional way of 

selecting features from PCA search space. The key focus of my research was to select 

sensitive features and minimum features as well as to increase accuracy of the system. 

Thus, research work achieved this objective by using GA and PCA that made the 

classifier simpler as well as more efficient in performance. Hence, this method shows 

that proposed method provides an optimal intrusion detection mechanism that 

outperforms the existing approaches and has the capability to minimize the number of 

features and maximize the detection rates 

5.2.4 Comparative analysis of applied approach with other approaches 

This section presents here, a visual comparative analysis of applied approach with 

other approaches in the literatures (Liu et al. 2007) as described in Chapter 2. The 

analysis is presented in various graphs using the Multi-criteria Decision Making 

Technique (MCDM). The main criteria consist of accuracy, minimum training 
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overhead, more simple architecture, generalization ability, and computational 

overhead. The main criteria are further divided into sub criteria.  The criterion 

„accuracy‟ is subdivided into „detection rate‟ and „minimum false alarm‟. The 

criterion „more simple architecture‟ is sub-divided into „minimum features‟ and 

„minimum processing elements (PEs)‟. The criterion „computational overhead‟ is 

divided into „memory‟ and „processing‟. The criteria hierarchy is shown in Figure 5.1. 

 

 

Figure 5.1 Criteria hierarchy 

 

5.2.4.1 Comparative Analysis of applied approach based on MLP with other MLP 

approaches 

This section compares MLP approach based on defined criteria as shown in Figure 

5.1 with other approaches based on the obtained results as aforementioned in Table 

5.52. The detail comparative analysis is presented in graphs in Figure 5.2 - 5.10. 
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Figure 5.2 MLPGA10 vs. MLPGA12 (criteria) 

Figure 5.2 shows MLP results comparison between two datasets: GA 10 feature 

set and GA 12 feature set based on main criteria. The MLP shows better performance 

with GA10 feature set as compared to GA12 feature set based on main criteria: 

accuracy, minimum training overhead, generalization ability, computational overhead 

and in architectural simplification. 
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Figure 5.3 MLPGA10 vs. MLPGA12 (sub-criteria) 

Figure 5.3 shows MLP results comparison between two datasets: GA 10 feature 

set and GA 12 feature set based on sub criteria: detection rate, minimum false alarm, 

minimum features, minimum processing elements (PEs), usage of memory, 

processing time, generalization ability and minimum training overhead. The use of 

GA12 feature set increases training and computational overhead as compared to 

GA10 feature set. Thus, the MLP with GA10 feature set demonstrates better 

performance as compared to MLP with GA12 feature set based on aforementioned 

sub criteria.  
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Figure 5.4 MLPGA10 vs. MLP-PCA22 (criteria) 

Figure 5.4 shows MLP results comparison between two datasets: GA10 feature 

set and PCA12 feature set based on main criteria. The MLP shows better performance 

with GA10 feature set as compared to PCA22 feature set. 

 

Figure 5.5 MLPGA10 vs. MLP-PCA22 (sub-criteria) 
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Figure 5.5 shows MLP results comparison between two datasets: GA 10 feature 

set and PCA22 feature set based on sub criteria: detection rate, minimum false alarm, 

minimum features, minimum processing elements (PEs), usage of memory, 

processing time, generalization ability and minimum training overhead. The use of 

PCA22 feature set increases training and computational overhead as compared to 

GA10 feature set. Thus, the MLP with GA10 feature set demonstrates better 

performance as compared to MLP with PCA22 feature set based on aforementioned 

sub criteria.  

 

Figure 5.6 MLPGA10 vs. MLPTF38 (criteria) 

Figure 5.6 shows MLP results comparison between two datasets: GA 10 feature 

set and TF38 (Transformed features from raw dataset using PCA) feature set based on 

main criteria. The computational overhead increases as used TF38 instead of GA10 

feature set. Hence, the MLP shows better performance with GA10 feature set as 

compared to TF38 feature set based on main criteria: accuracy, minimum training 

overhead, generalization ability, and in architectural simplification.  
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Figure 5.7 illustrates comparison between MLPs with GA10 and TF38 feature set 

on the bases of above mentioned sub criteria. The MLP with GA10 outperforms as 

compared to MLP with TF38 feature set. 

 

Figure 5.7 MLPGA10 vs. MLP-org-38 (criteria) 

 

Figure 5.8 MLPGA10 vs. MLP-TF38 (sub-criteria) 
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Figure 5.8 demonstrate that the MLP with GA10 feature set outperforms the MLP 

with original 38 (the raw feature set) feature set based on main criteria. The MLP with 

raw feature set suffers computational and training overheads. 

 

 

Figure 5.9 MLPGA10 vs. MLP-org-38 (sub-criteria) 

Figure 5.9 demonstrate that the MLP with GA10 feature set outperforms the MLP 

with the raw feature set based on sub criteria. The MLP with raw feature set suffers 

processing, memory and training overheads that decrease on the whole performance 

of intrusion analysis engine. 

Figure 5.10 demonstrates the MLPs results comparison with GA10, GA12, 

PCA22, TF38 and org38 (original raw feature) feature set. The MLP with GA10 and 

GA12 feature set present optimal results as compared to other approaches; PCA22, 

TF38 and org38 based on main criteria and sub criteria. The main criteria consist of 

accuracy, minimum training overhead, generalization ability, computational overhead 

and in architectural simplification. The sub criteria consist of detection rate, minimum 

false alarm, minimum features, minimum processing elements (PEs), usage of 

memory, processing time, generalization ability and minimum training overhead.  The 

selection of feature set by searching the PCA space using GA technique results more 
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sensitive feature set that directly impact on performance of the intrusion detection 

classifier such as MLP. 

 

Figure 5.10 MLP Overall performance for intrusion detection 

 

5.2.4.2 Comparative Analysis of applied approach based on SVM with other SVM 

approaches 

The comparison of SVM approach based on pre-defined criteria as shown in Figure 

5.1 with other approaches based on the achieved results as mentioned in Table 5.53. 

The detail comparative analysis of both approaches is depicted in graphs in Figure 

5.11 – 5.18. 
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Figure 5.11 SVMGA10 vs. SVMGA12 (criteria) 

 

Figure 5.11 represents the SVM results comparison between two datasets: GA 10 

feature set and GA 12 feature set based on main criteria. The SVM shows enhanced 

performance with GA10 feature set as compared to GA12 feature set based on main 

criteria: accuracy, minimum training overhead, generalization ability, computational 

overhead and in architectural simplification. 
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Figure 5.12 SVMGA10 vs. SVMGA12 (sub-criteria) 

 

Figure 5.13 SVMGA10 vs. SVMPCA22 (criteria) 
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Figure 5.12 shows SVM comparative results between two datasets: GA 10 feature 

set and GA 12 feature set based on sub criteria: detection rate, minimum false alarm, 

minimum features, minimum processing elements (PEs), memory usage, processing 

time, generalization ability and minimum training overhead. The utilization of the 

GA12 feature set slightly increases training and computational overhead which is a 

contrary to the comparative result with GA10 feature set. Thus, the SVM with GA10 

feature set demonstrates enhanced performance as compared to SVM with GA12 

feature set based on aforementioned sub criteria.  

Figure 5.13 shows SVM results comparison between two datasets: GA10 feature 

set and PCA22 feature set based on main criteria. The SVM shows better performance 

with GA10 feature set as compared to PCA22 feature set. 

 

Figure 5. 14 SVMGA10 vs. SVMPCA22 (sub-criteria) 

Figure 5.14 shows SVM comparative results between two datasets: GA 10 feature 

set and PCA22 feature set based on sub criteria: detection rate, minimum false alarm, 

minimum features, minimum processing elements (PEs), memory usage, processing 

time, generalization ability and minimum training overhead.  
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Hence, the use of PCA22 feature set improvises the training and computational 

overhead as compared to GA10 feature set. Thus, the SVM with GA10 feature set 

demonstrates better performance than SVM with PCA22 feature set based on 

aforementioned sub criteria.  

Figure 5.15 shows SVM comparative results between the two datasets: GA 10 

feature set and TF38 (Transformed features from raw dataset using PCA) feature set 

based on main criteria. The computational overhead amplifies, as used TF38 instead 

of GA10 feature set. Hence, the SVM shows better performance with GA10 feature 

set than the TF38 feature set based on main criteria: accuracy, minimum training 

overhead, generalization ability, and in architectural simplification.  

Figure 5.16 illustrates comparative analysis between SVMs with GA10 and TF38 

feature set which bases on the supra-mentioned sub criteria. The SVM with GA10 

outperforms the SVM with TF38 feature set. 

Figure 5.17 demonstrates that the SVM with GA10 feature set outdoes the SVM 

with the raw feature set based on sub criteria. The SVM with raw feature set suffers 

processing, memory and training overheads traits, which results in the deterioration of 

the whole performance of intrusion analysis engine. 

Figure 5.18 demonstrates that the SVM with GA10 feature set supersedes than the 

SVM with original 38 (the raw feature set) feature set based on main criteria. The 

SVM with raw feature set suffers computational and training overheads. 
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Figure 5.15 SVMGA10 vs. SVMTF38 (criteria) 

 

Figure 5.16 SVMGA10 vs. SVM-TF38 (sub-criteria) 
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Figure 5.17 SVMGA10 vs. ML-org-38 (criteria) 

 

Figure 5.18 SVMGA10 vs. SVM-org-38 (sub-criteria) 
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Figure 5.19 SVM Overall performance for intrusion detection 

Figure 5.19 demonstrates the SVMs comparative results with GA10, GA12, 

PCA22, TF38 and org38 (original raw feature) feature sets. The SVM with GA10 and 

GA12 feature set present optimal results as compared to other approaches; PCA22, 

TF38 and org38 based on main criteria and sub criteria. The main criteria consist of 

accuracy, minimum training overhead, generalization ability, computational overhead 

and architectural simplification. The sub criteria consist of detection rate, minimum 

false alarm, minimum features, minimum processing elements (PEs), memory usage, 

processing time, generalization ability and minimum training overhead.  The selection 

of the feature set by searching the PCA space using GA technique offers more 

sensitive feature set that directly has an impact on the overall performance of the 

intrusion detection classifier such as SVM. 

5.3 Research Contributions 

This section presents research contributions in intrusion detection using soft 

computing techniques; MLP, SVM, GA with PCA. The main objective was to induce 

an intrusion detection mechanism that produces optimal detection rate and minimize 
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features that makes architecture simple and reduces training and computational 

overheads. A List of the contributions mentioned below: 

 Performance optimization in case of detection rate and false alarm: The 

applied approach based on PCA and then application of GA for optimal 

features subset selection positively affects the accuracy of the proposed 

model based on MLP and SVM. 

 Minimize training overhead: The adopted mechanism demonstrates less 

training time as compared to other approaches. Minimum number of 

features and features with higher discriminatory power reduces the training 

overheads. 

 Simplified Architectural framework: The application of PCA and GA for 

features transformation and selection, made the intrusion analysis engine 

simple and more efficient. 

 Minimize computational overhead: This approach considerably reduces 

memory and computational overheads during training and testing process. 

The smaller the number of features, the reduced is the memory requirement 

as well as processing overheads. 

 Contribution in the existing approaches: The applied approach performed 

accurately in detection rates, simplification in architecture, and reduced 

memory and processing requirements. 

 Aides and guides in network security. The applied mechanism provides help 

and guides security implementers and researchers in the field of intrusion 

detection analysis by using the concepts introduced and applied in my work.  

5.4 Summary 

This chapter describes the following: (1) the results obtained through MLP and SVM 

in different scenarios during testing and verification phases. (2) The overall 

performance of both the intrusion analysis engines. Further, the comparison of the 

performance of MLP along with GA‟s ten features to other scenarios of MLP and 

similarly with SVM based on, criteria and sub-criteria as mentioned in this chapter.  



 

  

 

 

CHAPTER 6 

CONCLUSION AND FUTURE WORK 

6.1 Introduction 

This chapter emphasizes the conclusion of my work in the vertical of intrusion 

detection. This is followed by the explanation of the achievements accomplished 

during this research work. Lastly, the chapter discusses limitations of the work and 

recommendations/suggestions for the future work.  

 

6.2 Conclusion 

Presently, Intrusions on computer and network systems are main security issues. 

Therefore, it is very important to adhere to such tribulations. The prevention of such 

intrusions is entirely dependent on their detection which is a key part of many 

security tools such as: Intrusion Detection System (IDS), Intrusion Prevention System 

(IPS), Adaptive Security Alliance (ASA), checkpoints and firewalls. Further, accurate 

detection is another important issue in these days.  A number of intrusion detection 

approaches are available but the main problem is their performance and efficiency, 

which has been enhanced by increasing the detection rates (99.96% in case of SVM 

and 99.98% in case of MLP) and reducing false alarms (0.04% in case of SVM and 

0.02% in case of MLP).  

There are some other drawbacks in the existing intrusion detection approaches 

such as: usage of raw dataset, bad features extraction, bad features selection, complex 

classifier architecture, training overhead, and memory and computational overheads. 

To overcome these issues, this research work presented an optimized intrusion 
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detection mechanism using techniques; PCA, Genetic Algorithm (GA), Multilayer 

Perceptron (MLP), and Support Vector machine (SVM). One of the main 

contributions is the application of GA for optimal feature subset selection that 

positively affects the whole performance of the applied intrusion detection 

mechanism. Firstly, a standard dataset; KDD cup is selected and then discard three 

symbolic features from it.  After this, the dataset is further processed in a system 

acceptable format. For this, the pre-processing process is divided into two steps; 

feature organization and feature selection. In the first step, the features are organized 

and arranged to increase their visual discrimination using Principal Component 

Analysis. Secondly, the GA is applied in order to select a subset of principal 

components from the principal components space, which offers a subset of features 

with optimal sensitivity and highest discriminatory power. Then, the selected 

principal components or PCA features are fed to the proposed model for intrusion 

analysis. Two classifiers; MLP and SVM are used for intrusion analysis. Firstly, MLP 

classifier is trained and tested in different scenarios and the results arising out of it are 

evaluated and compared. Secondly, SVM classifier is trained and tested the same 

way. Results proved that this research mechanism provides an optimal intrusion 

detection mechanism that outperforms the existing approaches and has the capability 

to minimize the number of features and maximize the detection rates. 

6.3 Achievements 

The main achievements of this research work are as follows:  

 Accuracy improvement: The applied approach based on PCA and GA for 

features subset selection improves substantially the accuracy of the proposed 

intrusion model based on MLP and SVM. 

 Reduces training overhead: This intrusion detection mechanism reduced 

training overheads as compared to other approaches.  Smaller number of 

features with higher discriminatory power decreases the training overhead. 

 Architectural framework Improvement: The application of PCA and GA for 

features transformation and selection made the intrusion analysis engine more 

simple and efficient. 
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 Reduces computational overhead: This approach considerably reduces 

memory and computational overheads during training and testing process. The 

smaller the number of features decreases memory requirement as well as 

processing overhead. 

 Contribution in existing approaches: The applied approach performed better 

in accuracy, and provided a simple architecture that reduced memory and 

processing requirements. 

 Help and guide in network security: The applied mechanism provides help 

and guidance for security implementers and researchers in the field of 

intrusion detection by using the concepts introduced and applied in this work.  

6.4 Limitations and Future Work 

This research work identifies some of the limitations of the applied approach as 

follows: 

 The proposed system works on two classes; normal and intrusive. This generates 

alarm about the network activity, which is analysed as to whether it is normal or 

an attack. Therefore, the research can be further extended in the future to classify 

network activity based on the categories. 

 Principal component analysis is used for features organization and arrangement in 

this research. There are some other alternative techniques; K-dimensional scaling, 

K-means clustering, self-organizing map, and Kernel PCA. This can  further be 

explored and applied in the future work. 

 The features selection is performed using GA in this work. This selection process 

can be further investigated and deployed using some other techniques; greedy 

search, back elimination, and Memetic Algorithm (MA) etc. 

 This system used two classifiers as intrusive analysis engines; MLP and SVM. 

This model can further be testified using some other techniques as modular neural 

network, Jordan/Elman network, recurrent network and fuzzy techniques. 
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APPENDIX B 

 DEFINATION OF TERMINOLOGIES 

Attack: The act of attempts to bypass one or more computer security control to 

achieve unauthorized access. 

Penetration: The intentional passage through an equipment or computer system by 

illegal way.  

Anomaly Detection: Activities which vary from established patterns for users, or 

groups of users. 

Misuse Detection: Comparison of a user's activities with the known behaviors of 

attackers. 

ANN: A network of highly interconnected processing elements called neurons that 

transform a set of inputs to a desired output. 

Layer: A component of ANN containing neurons. 

Synapse: A component of ANN used as connection between layers. 

Intruder: An illegal user that can access network/system resources and play some 

thing havoc. 

IDS: A system that detect unauthorized access to a computer or network. 

Kddcup: An attack database that is standard for the evaluation of IDS. 

DOS: A type of attack on a network that is designed to bring the network by flooding 

it with useless traffic.  
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Probing: It involves discovering the algorithms and parameters of the recommender 

system itself. It may be necessary for an intruder to acquire this knowledge through 

interaction with the system itself.  

R2U:  It involves unauthorized access from a remote machine.  

U2R: It involves unauthorized access to local super user privileges by a local 

unprivileged user.  

Packet: A basic communication unit. 

False Positive: When the system classifies an action as intrusion when it is a legal 

action. 

False Negative: Intrusion occurred but passed a normal by IDS. 

Subversion: The processing of changing behavior of IDS to false negative occurs. 

Support Vector Machines (SVMs): SVMs are a set of related supervised learning 

methods that analyze data and recognize patterns, used for classification and 

regression analysis. 

Principal Component Analysis (PCA): PCA is a mathematical procedure that uses 

an orthogonal transformation to convert a set of observations of possibly correlated 

variables into a set of values of uncorrelated variables called principal components. 

Genetic Algorithms (GAs): GAs are adaptive heuristic search algorithm based on 

the ideas of natural selection and genetic. The basic concept of GAs is designed to 

simulate processes in natural system essential for evolution, particularly those that 

follow the principles first laid down by Charles Darwin of survival of the fittest. 

 


