DEDICATION

This dissertation is dedicated to my beloved parents, Mrs. Miskiah Abu Naim and Mr. Mohammad Hj. Seman, and special dedication to my beloved husband Mr. Asan Azhari bin Sahalan. Without their continual love and support, the completion of this dissertation would not have been possible.

ACKNOWLEDGEMENT

In The name of Allah the Beneficent, the Merciful

I would like to express my greatest appreciation to my supervisor, Assoc. Prof. Dr Saikat Maitra for his valuable guidance, assistant, encouragement, friendship and constructive criticisms during my study. Special appreciations for my previous supervisor Prof. Binay Kanti Dutta from Petroleum Institute, Abu Dhabi and Dr. Tushar Kanti Sen from Curtin University, Australia, for their concern, and continously support and assistant. Appreciation is also expressed to my co-supervisor Assoc. Prof. Dr. Mohd Azmi bin Bustam @ Khalil for his encouragement and advice. Not to forget, Prof. Khairun from Chemical Eng. Dept. for her support and advice.

I also acknowledge the help of all personnel from Chemical Engineering Department; especially Mr Yusoff and Miss Norazimah, Mr Anuar from Civil Engineering Department; and Mr. Anuar, Mr. Shairul and Mr. Irwan from Mechanical Engineering Department, and not to forget Pn Kamaliah, Pn Puspa Dahlia, Pn. Nurul Aizat, Mr. Kahar, Mr. Imran, Mr. Jamidi, Mr. Zulkarnaen, Major Borhan and Dr. Mohd Noh from UTP Postgraduate Office for their assistant and providing me with necessary facilities.

Thanks are for all my fellow graduate students and special gratitude is given to my beloved parents, brothers, sisters and husband who always encouraged and supported me throughout my education.

ABSTRACT

In this work, the adsorption potential of physic seed hull (PSH), Jantropha curcas L. as an adsorbent for the removal of metal ions $(Zn^{2+} and Cd^{2+})$ and malachite green dye (MG) from aqueous solution has been investigated. The study also has been extended to investigate the effect of anionic surfactant (tetra sodium N-(1, 2dicarboxy ethyl)-Noctadecyl sulfosuccinamate), known as Aerosol 22, on these adsorption processes. The performance of the adsorbent PSH has also been compared with granular activated carbon (GAC) adsorbent. The adsorbent, PSH was thoroughly characterized by SEM-EDX, BET, CHNS, Zeta potential measurement and FTIR studies. It has been observed that the adsorption of metal ions and dve increased with the increase in initial metal ions/dye concentration, contact time of adsorbent and adsorbate, temperature of adsorption, dosage of adsorbent and pH of the solution in an acidic range, but decreased with the increase in the particle size of PSH. Both PSH and GAC adsorbent exhibited better adsorption ability towards Zn²⁺ than Cd^{2+} from aqueous solution. But the adsorption capacity of PSH was found to the higher than that of GAC for both the metal ions and MG dye. Aerosol 22 was used during the adsorption process to provide the anionic functional group on the surface of PSH for supplying further adsorption site for metal ions. Addition of Aerosol 22 improved the adsorbing capacity of PSH for both the metal ions, but the effect was observed to be more for Zn²⁺. Again, it was further observed that at higher concentration of the surfactant there was a decrease in the adsorption of metal ions. It might be related to the formation of micelles that prevented the adsorption of metal ions. The adsorption process for both the metal ions and dye on PSH was found to be consists of three-staged process - a rapid initial adsorption of the metal ions initially, followed by a period of slower uptake of the metal ions and finally no significant uptake of the metal ions. The kinetics of metal ions adsorption process

was therefore described by a pseudo-second order model. The adsorption equilibrium data were fitted in the three adsorption isotherms, e.g. Freundlich isotherm, Langmuir isotherm and Dubinin-Radushkevich isotherm. The adsorption data fitted best to the Langmuir isotherm indicating the adsorption of metal ions and dye on PSH could be described as a monolayer chemisorption proces. The activating energy for the adsorption of metal ions and dye as calculated using from D-R Isotherm was found to be more than 16kJ/mol which is particle diffusion. The adsorption capacity of PSH was found to be comparable to that for other available adsorbents as cited in literatures. From the study it is evident that as an adsorbent, PSH has significant potential for usage in the separation of metal ions and dye from waste water.

ABSTRAK

Dalam kajian ini, potensi lapisan kulit luar biji buah jarak pagar (PSH), (Jantropha curcas L.) sebagai bahan penjerap untuk membuang sisa logam berat $(Zn^{2+} dan Cd^{2+}) dan pewarna (Malachite Green) dari larutan cecair telah dikaji.$ Kajian tambahan telah dijalankan dengan menambahkan bahan aktif permukaan bersifat anionik (tetra sodium N-(1,2dicarboxy ethyl)-Noctadecyl sulfosuccinamate) atau dikenali sebagai Aerosol 22 dalam process penjerapan ini. Kajian perbandingan juga telah dilakukan terhadap prestasi bahan penjerap PSH dengan menggunakan bahan penjerap karbon teraktif berbutir (GAC). Kajian pencirian juga telah dilakukan terhadap PSH dengan menggunakan teknik SEM-EDX, BET, CHNS, ukuran potensi Zeta dan kajian FTIR. Pemerhatian mendapati penjerapan ion-ion logam dan pewarna bertambah dengan setiap peningkatan kepekatan ion-ion logam/pewarna, masa interaksi bahan penjerap dengan zat terjerap, suhu penjerapan, dos bahan penjerap dan pH larutan dalam julat berasid, tetapi berkurangan apabila saiz butiran PSH bertambah. Kedua-dua bahan penjerap PSH dan GAC menunjukkan keupayaan penjerapan lebih baik ke atas Zn^{2+} daripada Cd^{2+} di dalam larutan cecair. Walaubagaimanapun keupayaan jerapan PSH didapati lebih tinggi daripada GAC bagi kedua-dua ion logam dan pewarna MG. Aerosol 22 telah digunakan dalam proses penjerapan bagi menyediakan kumpulan berfungsi beranion pada permukaan PSH sebagai tapak penjerapan tambahan bagi ion-ion logam. Aerosol 22 mampu memperbaiki keupayaan menjerap PSH bagi kedua-dua ion logam dan kesan lebih baik adalah pada ion Zn^{2+} . Kajian juga mendapati bahawa pada kepekatan bahan aktif permukaan yang lebih tinggi, penjerapan ion-ion logam adalah berkurangan. Ia mungkin berkait dgn pembentukan misel yang menghalang penjerapan ion-ion logam. Proses penjerapan untuk kedua-dua ion logam dan pewarna pada PSH melibatkan tiga peringkat proses - penjerapan pantas pada peringkat awal, diikuti penjerapan perlahan dan akhirnya tiada penjerapan. Proses kinetik penjerapan ion-ion logam dan pewarna juga dapat diterangkan menggunakan model pseudo-peringkat kedua. Data keseimbangan penjerapan adalah bersesuaian dengan tiga isoterma penjerapan - isoterma Freundlich, isoterma Langmuir dan isoterma Dubinin-Radushkevich. Data penjerapan isoterma Langmuir merupakan isoterma yang terbaik digunakan bagi menunjukkan penjerapan ion-ion logam dan pewarna pada PSH merupakan proses selapis serapan kimia. Tenaga pengaktifan bagi penjerapan ion-ion logam dan pewarna yang dikira dengan menggunakan isoterma D-R didapati lebih daripada 16kJ/mol dan ini menunjukkan jerapan partikel. Keupayaan jerapan PSH didapati setanding dengan bahan penjerap lain seperti yang dinyatakan dalam imbasan rujukan. Kajian jelas menunjukkan bahawa bahan penjerap PSH mempunyai berpotensi tinggi dalam proses pengasingan ion logam dan pewarna daripada air buangan.

In compliance with the terms of the Copyright Act 1987 and the IP Policy of the university, the copyright of this thesis has been reassigned by the author to the legal entity of the university,

Institute of Technology PETRONAS Sdn Bhd.

Due acknowledgement shall always be made of the use of any material contained in, or derived from, this thesis.

© Masita Binti Mohammad, 2010 Institute of Technology PETRONAS Sdn Bhd All rights reserved.

TABLE OF CONTENTS

Page

STATUS OF THESIS
APPROVAL PAGEii
TITLE PAGEii
DECLARATIONiv
DEDICATION
ACKNOWLEDGEMENTSvi
ABSTRACTvii
ABSTRAKix
COPYRIGHT PAGExi
TABLE OF CONTENTSxii
LIST OF TABLESxv
LIST OF FIGURESxviii
LIST OF ABBREVIATIONSxxv
CHAPTER 1: INTRODUCTION
Background1
Problem statement4
Objective4
Scope of the study
Conclusions
CHAPTER 2: LITERATURE REVIEW
Adsorption on solid / liquid interface
Environmental applications
Application background9
Particle analysis15

Physic seed n	ut (Jatr	opha curcas L.)21
Lignocellulosic material		
Different inor	rganic a	dsorbents
Heavy metal.	•••••	
Dyes	•••••	
Surfactant		
CHAPTER 3	: METH	IODOLOGY
3.1	Introd	uction54
3.2	Mater	ials
	3.2.1	Adsorbent55
	3.2.2	Chemicals
	3.2.3	Adsorbates
	3.2.4	Apparatus and equipments
3.3	Exper	imental
	3.3.1	The characterization of PSH60
	3.3.2	Batch and equilibrium studies of metal ions adsorption onto
		PSH and GAC as comparison60
	3.3.3	Batch and equilibrium studies of metal ions adsorption with
		the effect of anionic surfactant using PSH64
	3.3.4	Batch and equilibrium studies of Malachite green dye onto
		PSH and GAC64
	3.3.5	Batch kinetic and equilibrium studies of metal ions and MG
		dye using GAC as comparison study65
3.4	Mathe	ematical Models
	3.4.1	General calculations
		3.4.1.1 Adsorption capacity
		3.4.1.2 Percentage removal
	3.4.2	Kinetic models
		3.2.2.1 The Lagergren pseudo-first order model66
		3.2.2.2 Pseudo-second-order model
		3.2.2.3 Intraparticle diffusion model

	3.4.3	Isotherm Models
		3.4.3.1 Freundlich isotherm model
		3.4.3.2 Langmuir isotherm model
		3.4.3.3 Dimensionless constant separation factor
		3.4.3.4 Dubinin-Radushkevich isotherm
		3.4.3.5 Thermodynamic equations69
3.5	Analyt	ical Procedure
	3.5.1	Atomic Adsorption Spectrophotometer (AAS)70
	3.5.2	UV-VIS Spectrophotometer
	3.5.3	pH meter72
	3.5.4	Laboratory shaker
	3.5.5	Water bath shaker72
	3.5.6	FTIR spectroscopy72
	3.5.7	FESEM-EDX72
	3.5.8	CHNS Analyzer73
	3.5.9	X-ray fluorescence analyzer73
	3.5.10	Nitrogen adsorption analysis (BET Method)73
	3.5.11	Zeta Potential and pHzpc73
	3.5.12	Particle size analyzer74
CHAPTER 4:	RESUI	LTS AND DISCUSSION
4.1	Charac	eteristic of the adsorbent
	4.1.1	Elemental Distribution75
	4.1.2	Organic functional group78
	4.1.3	pH, pHzpc and Surface charge81
	4.1.4	Specific surface area, size and pore size distribution82
	4.1.5	Surface morphology and elemental distribution by SEM-EDX
		analysis84
4.2	Adsorp	ption of metal ions (Cd2+ and Zn2+) and MG dye in aqueous
	solutio	n by PSH and GAC as comparison, and the influence of
	anionic	c surfactant on metal ions removal by PSH
	4.2.1	Adsorption kinetics

		4.2.2	Adsorption dynamics	
	4.2.3	Adsor	ption isotherm	133
4.3	Compa	arison c	of adsorption capacity (q _m) for metal ions (C	d^{2+} and Zn^{2+}) and
	MG dy	ve with	different adsorbents	157
CHAP	TER 5:	CONC	LUSIONS AND RECOMMENDATIONS	161
REFE	RENCE	S		
APPE	NDIX A	A: RESI	EARCH PLAN FLOW CHART	
APPE	NDIX E	B: CHE	MICAL PREPARATION PROCEDURE	
APPE	NDIX (C: EXPI	ERIMENTAL PROCEDURES	
APPE	NDIX I	D: DAT	A ANALYSIS	191

LIST OF TABLES

Page

Table

2.1	Comparison between physisorption and chemisorption	8
2.2	Pore size distributions	18
2.3	Chemical compositions of physic nut's kernel, shell and meal	25
2.4	The moisture content of and different parts of the physic nut's fruit	25
2.5	Characteristic of cadmium and zinc	
2.6	Salient properties of Zn ²⁺ and Cd ²⁺	40
2.7	Size of a heavy metal cation (Me ²⁺) in water at different physico	hemical
	states	41
3.1	Composition of Universal buffer mixture	58
4.1	Elemental distribution of PSH and GAC	,
4.2	Functional groups of PSH from FTIR spectrum	78
4.3	Functional groups of GAC from FTIR spectrum	81
4.4	pH and pH _{zpc} of PSH	81
4.5	Specific surface area, size and pore size distribution of PSH and GAC	282
4.6	Kinetic parameters for the adsorption of Zn ²⁺ onto PSH	114
4.7	Kinetic parameters for the adsorption of Cd ²⁺ onto PSH	115
4.8	Kinetic parameters for the adsorption of Zn ²⁺ onto GAC	116
4.9	Kinetic parameters for the adsorption of Cd ²⁺ onto GAC	117
4.10	Intra-particle diffusion parameters for the adsorption of metal io	ons onto
	PSH	120
4.11	Kinetic parameters for the adsorption of MG onto PSH	124
4.12	Kinetic parameters for the adsorption of MG onto GAC	125
4.13	Intra-particle difusion parameter for the adsorption of MG onto PSH.	129

4.14	Kinetic parameters for the adsorption of Cd^{2+} and Zn^{2+} metal ions onto PSH
	with the effect of anionic surfactant at different concentration130
4.15	Intra-particle diffusion parameter for the effect of Aerosol 22 on metal ions
	adsorption onto PSH132
4.16	Freundlich parameters for the adsorption of Cd^{2+} and Zn^{2+} metal ions and
	dye onto PSH and GAC, and the effect of anionic surfactant on metal ions
	removal
4.17	Langmuir Isotherm parameters for the adsorption of metal ions (Cd ²⁺ and
	Zn^{2+}) and MG dye onto PSH, and the effect of anionic surfactant on metal
	ions removal150
4.18	Langmuir isotherm parameters for the adsorption of Cd^{2+} and Zn^{2+} metal
	ions onto PSH at various conditions151
4.19	Calculated thermodynamic parameters for metal ions adsorption on PSH and
	GAC152
4.20	Calculated thermodynamic parameters for MG dye adsorption on PSH152
4.21	D-R Isotherm parameters for the adsorption of metal ions (Cd^{2+} and Zn^{2+})
	and MG dye on PSH and GAC, and the effect of anionic surfactant on metal
	ions removal157
4.22	Comparison of adsorption capacities of various adsorbents for removal of
	Zn ²⁺ 158
4.23	Comparison of adsorption capacities of various adsorbents for removal of
	Cd ²⁺ 159
4.24	Comparison of adsorption capacities of various adsorbents for removal of
	MG dye160

LIST OF FIGURES

Figure		Page
2.1	Characteristic isotherm shapes	13
2.2	Sketches of some essential parts of the physic nut	23
2.3	A middle cleavage of physic nut seed	24
2.4	The uses of Jatropha curcas L	27
2.5	Nutritional and inhibitory effects of heavy metal concentrations on	
	living cells / microorganisms	37
2.6	Structure of Malachite Green 125	48
2.7	Molar extinction coefficient of Malachite green	49
2.8	Idealized diagram showing surfactant behavior	52
3.1	Physic seeds	56
3.2	Physic seed hulls size 0.6 mm	56
3.3	Granular activated carbon size 1.18 mm	56
3.4	Process of producing PSH adsorbent	57
3.5	Chemical structure of Aerosol 22	58
3.6	Flow chart for isotherm and kinetic experiment	62
3.7	The standard curves. Concentration A: εb c	71
4.1	Particle size distribution of PSH	77
4.2	Particle size distribution of GAC	77
4.3	FT-IR spectrum of PSH	78
4.4	FT-IR spectrum of GAC	80
4.5	Zeta potential of PSH	82
4.6	Adsorption desorption Nitrogen	83
4.7	Pore size distribution of PSH	83
4.8	SEM-EDX image of PSH (300mic, ×1000mag)	84

4.9	SEM-EDX image of Zn-loaded PSH (300mic, ×1000mag)	34
4.10	SEM-EDX image of Cd-loaded PSH (300mic, ×1000mag)	36
4.11	SEM-EDX image of GAC (300mic, ×1000mag)8	\$7
4.12	SEM image of PSH after MG dye adsorption (600mic, 1000mag)	38
4.13	SEM image of GAC after MG dye adsorption (600mic, x1000mag)	38
4.14	Effect initial concentrations on the adsorption of Zn ²⁺ onto PSH	90
4.15	Effect of initial concentrations on the adsorption of Cd ²⁺ onto PSH9) 0
4.16	Effect of initial concentrations on the adsorption of Zn^{2+} onto GAC)1
4.17	Effect of initial concentrations on the adsorption of Cd ²⁺ onto GAC	€
4.18	Effect of initial concentrations on MG dye adsorption onto PSH9	<i>)</i> 3
4.19	Effect of initial concentrations on MG dye adsorption onto GAC) 3
4.20	Adsorption kinetic of Zn^{2+} ion on PSH in the presence of different initial	ial
	concentrations of Aerosol 22) 4
4.21	Adsorption kinetic of Cd^{2+} ion on PSH in the presence of different initial	ial
	concentrations of Aerosol 22	95
4.22	Effect of various PSH dosages on Zn ²⁺ ions removal	96
4.23	Effect of various PSH dosages on Cd ²⁺ ions removal	97
4.24	Effect of various GAC dosages on Zn ²⁺ ions removal	97
4.25	Effect of various GAC dosages on Cd ²⁺ ions removal9)8
4.26	Effect of various PSH dosages on MG dye removal9	19
4.27	Effect of temperature on Zn ²⁺ ions removal by using PSH10)1
4.28	Effect of temperature on Cd ²⁺ metal ions removal by using PSH10)1
4.29	Effect of temperature on Zn^{2+} metal ions removal by using GAC10)2
4.30	Effect of temperature on Cd ²⁺ metal ions removal by using GAC10)2
4.31	Effect of temperature on MG dye removal by using PSH10)3
4.32	Effect of pH on the adsorption of Zn ²⁺ onto PSH10)5
4.33	Effect of pH on the adsorption of Cd ²⁺ onto PSH10	05
4.34	Effect of pH on the adsorption of Zn^{2+} onto GAC10)6
4.35	Effect of pH on the adsorption of Cd ²⁺ onto GAC10)6
4.36	Effect of contact time on MG adsorption by PSH with different pH10)8
4.37	Effect of PSH particle size on the adsorption of Zn^{2+} onto PSH10)9
4.38	Effect of PSH particle size on the adsorption of Cd ²⁺ onto PSH10)9

4.39	Effect of GAC particle size on the adsorption of Zn^{2+} onto GAC110
4.40	Effect of GAC particle size on the adsorption of Cd ²⁺ onto GAC 110
4.41	Effect of PSH particle size on MG adsorption onto PSH111
4.42	Intraparticle diffusion plots for Zn^{2+} onto PSH at different initial metal ion
	concentrations119
4.43	Intraparticle diffusion plots for Cd ²⁺ onto PSH at different initial metal ion
	concentrations
4.44	Intraparticle diffusion plots for Zn ²⁺ onto GAC at different initial metal ion
	concentrations
4.45	Intraparticle diffusion plots for Cd ²⁺ onto GAC at different initial metal ion
	concentrations
4.46	Intraparticle diffusion plot at different initial MG concentrations on
	PSH126
4.47	Intraparticle diffusion plot at different initial MG concentrations on
	GAC126
4.48	Intraparticle diffusion plot for MG adsorption on PSH at different
	temperatures127
4.49	Intraparticle diffusion plot for MG adsorption on PSH at different pH128
4.50	Intraparticle diffusion plot for MG adsorption on PSH at different particle
	size128
4.51	Intraparticle diffusion plot at 1 ppm of Aerosol 22 on the adsorption of Zn^{2+}
	on PSH131
4.52	Intraparticle diffusion plot at different initial concentrations of Aerosol 22 on
	the adsorption of Cd ²⁺ on PSH132
4.53	Freundlich isotherm for the adsorption of Zn ²⁺ onto PSH134
4.54	Freundlich isotherm for the adsorption of Cd ²⁺ onto PSH134
4.55	Freundlich isotherm for the adsorption of Zn ²⁺ onto GAC135
4.56	Freundlich isotherm for the adsorption of Cd ²⁺ onto GAC135
4.57	Freundlich plots for MG adsorption on PSH and GAC136
4.58	Freundlich isotherm plots for the effect of Aerosol 22 on the adsorption of
	Zn ²⁺ using PSH136

4.59	Freundlich isotherm plots for the effect of Aerosol 22 on the adsorption of
	Cd ²⁺ using PSH137
4.60	Langmuir isotherm for the adsorption of Cd^{2+} and Zn^{2+} onto PSH139
4.61	Langmuir isotherm for the adsorption of Cd^{2+} and Zn^{2+} onto GAC139
4.62	Linear plot of Langmuir isotherm for the adsorption of Zn^{2+} onto PSH140
4.63	Linear plot of Langmuir isotherm for the adsorption of Cd ²⁺ onto PSH140
4.64	Linear plot of Langmuir isotherm for the adsorption of Zn ²⁺ onto GAC141
4.65	Linear plot of Langmuir isotherm for the adsorption of Cd ²⁺ onto GAC141
4.66	Separation Factor from Langmuir isotherm for Cd^{2+} and Zn^{2+} adsorption
	onto PSH142
4.67	Separation Factor from Langmuir isotherm for Cd^{2+} and Zn^{2+} adsorption
	onto GAC143
4.68	Equilibrium constant plots of Cd^{2+} and Zn^{2+} ions adsorption onto PSH145
4.69	Equilibrium constant plots of Cd^{2+} and Zn^{2+} ions adsorption onto GAC146
4.70	Langmuir plots for MG adsorption on PSH and GAC147
4.71	Variation of separation Factor (from Langmuir isotherm) with initial dye
	concentration for MG adsorption onto PSH and GAC147
4.72	Equilibrium constant plots of MG dye adsorption onto PSH148
4.73	Langmuir isotherm plots for the effect of Aerosol 22 on the adsorption of
	Zn ²⁺ using PSH148
4.74	Langmuir isotherm plots for the effect of Aerosol 22 on the adsorption of
	Cd ²⁺ using PSH149
4.75	Separation Factor from Langmuir isotherm for the effect of metal ions
	adsorption onto PSH149
4.76	D-R isotherm plot for the adsorption of Zn^{2+} onto PSH153
4.77	D-R isotherm plot for the adsorption of Cd ²⁺ onto PSH154
4.78	D-R isotherm plot for the adsorption of Zn ²⁺ onto GAC154
4.79	D-R isotherm plot for the adsorption of Cd ²⁺ onto GAC155
4.80	Dubinin-Radushkevich isotherm plots for MG adsorption on PSH and
	GAC155

4.81	D-R isotherm plots for the effect of Aerosol 22 on the adsorption of Zn^{2+}
	using PSH156
4.82	D-R isotherm plots for the effect of Aerosol 22 on the adsorption of Cd^{2+}
	using PSH156
5.1	Pseudo-first-order kinetic plots for Zn ²⁺ removal at different initial
	concentrations using PSH191
5.2	Pseudo-first-order kinetic plots for Cd ²⁺ removal at different initial
	concentrations using PSH
5.3	Pseudo-first-order kinetic plots for Zn^{2+} removal at different initial
	concentrations using GAC
5.4	Pseudo-first-order kinetic plots for Cd ²⁺ removal at different initial
	concentrations using GAC
5.5	Pseudo-first-order kinetic plots for Zn^{2+} removal at different pH of solution
	using PSH
5.6	Pseudo-first-order kinetic plots for Cd^{2+} removal at different pH of solution
	using PSH194
5.7	Pseudo-first-order kinetic plots for Zn^{2+} removal at different pH of solution
	using GAC194
5.8	Pseudo-first-order kinetic plots for Cd^{2+} removal at different pH of solution
	using GAC195
5.9	Pseudo-first-order kinetic plots for Zn^{2+} removal at different particle size of
	PSH195
5.10	Pseudo-first-order kinetic plots for Cd^{2+} removal at different particle size of
	PSH
5.11	Pseudo-first-order kinetic plots for Zn^{2+} removal at different particle size of
	GAC
5.12	Pseudo-first-order kinetic plots for Cd^{2+} removal at different particle size of
	GAC
5.13	Pseudo-first-order kinetic plots for Zn^{2+} removal at different temperature of
	solution using PSH
5.14	Pseudo-first-order kinetic plots for Cd ²⁺ removal at different temperature of
•	solution using PSH

5.15	Pseudo-first-order kinetic plots for Zn^{2+} removal at different temperature of
	solution using GAC198
5.16	Pseudo-first-order kinetic plots for Cd ²⁺ removal at different temperature of
	solution using GAC199
5.17	Pseudo-second-order kinetic plots for Zn^{2+} removal at different initial
	concentration of solution using PSH199
5.18	Pseudo-second-order kinetic plots for Cd^{2+} removal at different initial
	concentration of solution using PSH200
5.19	Pseudo-second-order kinetic plots for Zn^{2+} removal at different initial
	concentration of solution using GAC200
5.20	Pseudo-second-order kinetic plots for Cd^{2+} removal at different initial
	concentration of solution using GAC201
5.21	Pseudo-second-order kinetic plots for Zn^{2+} removal at different pH of
	solution using PSH201
5.22	Pseudo-second-order kinetic plots for Cd ²⁺ removal at different pH of
	solution using PSH202
5.23	Pseudo-second-order kinetic plots for Zn^{2+} removal at different pH of
	solution using GAC202
5.24	Pseudo-second-order kinetic plots for Cd ²⁺ removal at different pH of
	solution using GAC203
5.25	Pseudo-second-order kinetic plots for Zn^{2+} removal at different particle size
	of PSH203
5.26	Pseudo-second-order kinetic plots for Cd^{2+} removal at different particle size
	of PSH204
5.27	Pseudo-second-order kinetic plots for Zn^{2+} removal at different particle size
	of GAC204
5.28	Pseudo-second-order kinetic plots for Zn^{2+} removal at different particle size
	of GAC205
5.29	Pseudo-second-order kinetic plots for Zn^{2+} removal at different temperature
	of solution using PSH205
5.30	Pseudo-second-order kinetic plots for Cd ²⁺ removal at different temperature
	of solution using PSH

5.31	Pseudo-second-order kinetic plots for Zn^{2+} removal at different temperature
	of solution using GAC206
5.32	Pseudo-second-order kinetic plots for Cd ²⁺ removal at different temperature
	of solution using GAC207
5.33	Langmuir isotherm for the adsorption of Zn^{2+} onto PSH at different pH of
	solution
5.34	Langmuir isotherm for the adsorption of Cd ²⁺ onto PSH at different pH of
	solution
5.35	Langmuir isotherm for the adsorption of Zn^{2+} onto PSH at different particle
	size area
5.36	Langmuir isotherm for the adsorption of Cd ²⁺ onto PSH at different particle
	size area
5.37	Langmuir isotherm for the adsorption of Zn^{2+} onto PSH at different
	temperature of solution
5.38	Langmuir isotherm for the adsorption of Cd ²⁺ onto PSH at different
	temperature of solution
5.39	Pseudo-second-order kinetic model for Zn^{2+} adsorption by PSH at different
	concentrations of Aerosol 22211
5.40	Pseudo-second-order kinetic model for Cd ²⁺ adsorption by PSH at different
	concentrations of Aerosol 22212
5.41	Pseudo-first-order kinetic model for Zn^{2+} adsorption by PSH at different
	concentrations of Aerosol 22212
5.42	Pseudo-first-order kinetic model for Cd^{2+} adsorption by PSH at different
	concentrations of Aerosol 22213
5.43	Pseudo-first-order kinetic model for MG adsorption by PSH at different
	initial dye concentrations
5.44	Pseudo-first-order kinetic model for MG adsorption by GAC at different
	initial dye concentrations
5.45	Pseudo-second-order kinetic model for MG adsorption by PSH at different
	initial dye concentrations
5.46	Pseudo-second-order kinetic model for MG adsorption by GAC at different
	initial dye concentrations

5.47	Pseudo-first-order kinetic model for MG adsorption by PSH at different pH
	of solution
5.48	Pseudo-second-order kinetic model for MG adsorption by PSH at different
	pH of solution217
5.49	Pseudo-first-order kinetic model for MG adsorption by PSH at different
	particle size of adsorbent
5.50	Pseudo-second-order kinetic model for MG adsorption by PSH
	at different particle size of adsorbent
5.51	Pseudo-first-order kinetic model for MG adsorption by PSH at different
	temperature-first-order kinetic model for MG adsorption by PSH at different
	pH of solution218
5.52	Pseudo-second-order kinetic model for MG adsorption by PSH at different
	temperature of solution

LIST OF ABBREVIATIONS

А	area, m^2
AAS	Atomic Absorption Spectrometer
b	Langmuir constant, <i>L/mg</i>
BET	Brunauer-Emmett-Teller
C_i	initial concentration, mg/L
C_e	equilibrium concentration, mg/L
C_t	concentration of the sorbate at time t, mg/L
Cd^{2+}	cadmium ion
cec	cation exchange capacity
D-R	Dubinin Radushkevich
Ε	mean free energy $(kJ mol^{-1})$
EPA	Enviromental Protection Agency.
FDA	United States Food and Drug Administration
FTIR	Fourier Transform Infrared
G	Gibbs free energy
GAC	granular activated carbon
h	initial sorption rate
Н	standard enthalpy
HM	heavy metals.
IUPAC	International Union of Pure and Applied Chemistry.
ki	intraparticle diffusion rate constant
k_1	rate constant for first-order model, <i>min⁻¹</i>
KBr	potassium bromide.
k_f	rate constant for Freundlich
k_2	rate constant for second-order model, g /mg.h,
K_L	rate constant for Langmuir, mg/g
k_a	adsorption equilibrium constant for thermodynamic
L_a	separation factor of Langmuir
т	mass of adsorbent, mg
MG	malachite green
n	adsorption intensity for Freundlich
P_c	critical pressure
pH _{zpc} PSH	pH at zero point charge physic seed hull

q_e	adsorbed amount at equilibrium, mg/g
q_t	adsorbed amount at t time, mg/g
q_m	adsorbed amount at maximum monolayer, mg/g
r	radius
R	gas constant (8.314 J/molK)
R^2	regression correlation coefficient
R_L	separation factor
r _{peak}	peak radius
S	standard entrophy
$S_{l/s}$	spreading coefficient
SEM	Scanning Electron Microscopy
Т	absolute temperature (k)
t	time, minute
$t^{1/2}$	half-time for adsorption, min
UV-VIS	Ultraviolet-visible spectrophotometer
V	solution volume, $m^3 @ mL$
V_{mes}	mesopore volumes.
X_m	maximum adsorption capacity for D-R isotherm (mg/g)
XRD	X-ray diffraction.
Zn^{2+}	zinc ion
Ζ	charge
Z^2/r	ionic potential

Greek letters

Å	Angstrom
λ_{max}	maximum wavelength, nm
Δ	change
З	Polanyi potential
β	constant related to sorption energy $(mol^2 kJ^{-2})$
$\Phi_{\rm S}$	sphericity
θ	contact angle