Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, dissertation, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.

A CHANCE-CONSTRAINED APPROACH FOR OPTIMIZATION OF GAS PROCESSING PLANT OPERATION UNDER UNCERTAIN CONDITIONS

GETU, MESFIN GETU (2011) A CHANCE-CONSTRAINED APPROACH FOR OPTIMIZATION OF GAS PROCESSING PLANT OPERATION UNDER UNCERTAIN CONDITIONS. PhD thesis, UNIVERSITI TEKNOLOGI PETRONAS.

[img]
Preview
PDF
Download (3776Kb) | Preview

Abstract

Natural gas plant operations contribute hugely to the economies of many developed nations that depend on hydrocarbon resources. The plant operation is usually subjected to continuous variations in upstream conditions, such as flow rate, composition, temperature and pressure, which propagate through the plant and affect its stable operations. As a result, decision making for optimal operating conditions of an in-operation plant is a complex problem and it is exacerbated with the changing product specifications and variations in energy supplies. This work presents a new solution method to the problem, which is based on chance constrained optimization method. A deterministic model is initially developed from process simulation using Aspen HYSYS and later converted to a chance constrained model. The probabilistic model is then relaxed to its equivalent deterministic form and solved for optimum solution using GAMS. The optimum solution is determined probabilistically using chance constraints that are held at a user-defined confidence level. Optimal solution is represented graphically as a trade-off between reliability of holding the process constraints and profitability of the plant. Three case studies are presented to demonstrate the new method. Optimization results show that uncertainty of plant parameters significantly affect the economic performance of the plant operation. The solution approach developed in this work is able to increase the reliability of maintaining the profit by more than 95% confidence level. As a result, the risk of constraints violation is reduced from more than 50% using the typical deterministic optimization to less than 5% with the chance constrained optimization approach. In addition, the results from this study indicate that the variation of material flow from the plant inlet has greater impact by more than 85.5% on profit compared to variation from the plant outlet, which is less than 2%. The variations of energy flow affect on profit is mainly changes with confidence level measurement higher than 95%, although material flow uncertainty is more sensitive to profit changes than uncertainty in energy flow. Final computational results also highlight the advantage of the developed chance constrained approach, which combines both the profit and the vi reliability of the process constraints, over “worst case” and two-stage programming approaches. Decisions from the “worst case” approach may reach to more than 99% confidence level which can drastically decrease the profit while the optimal decision from the two-stage programming does not clearly show to how much extent that the profit has been held. The developed solution approach in this work can aid as guidelines to flexible plant operation decision making for the in-operating plant by satisfying all the process constraints at certain confidence level.

Item Type: Thesis (PhD)
Subject: UNSPECIFIED
Divisions: UNSPECIFIED
Depositing User: Users 6 not found.
Date Deposited: 05 Jun 2012 08:15
Last Modified: 25 Jan 2017 09:41
URI: http://utpedia.utp.edu.my/id/eprint/2803

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...