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ABSTRACT 

Depth-map algorithm allows camera system to estimate depth in many applications. 

The algorithm is computationally intensive and therefore more effective to be 

implemented on hardware such as the Field Programmable Gate Array (FPGA). 

However, the recurring issue in FPGA implementation is the resource limitation. The 

issue is normally resolved by modifying the algorithm. However, the issue can also be 

addressed by implementing hardware architectures without the need to modify the 

depth-map algorithm. In this thesis, five different depth-map processor architectures 

for the sum-of-absolute-difference (SAD) depth-map algorithm on FPGA at real-time 

were designed and implemented. Two resource minimization techniques were 

employed to address the resource limitation issues. Resource usage and performance 

of these architectures were compared. Memory contention and bandwidth constrain 

were resolved by using self-initiative memory controller, FIFOs and line buffers. 

Parallel processing was utilized to achieve high processing speed at low clock 

frequency. Memory-based line buffers were used instead of register-based line buffers 

to save 62.4% of logic element (LEs) used, but require some additional dedicated 

memory bits. A proper use of registers to replace repetitive subtractors saves 24.75% 

of LEs. The system achieves SAD performance of 295 mega pixel disparity per 

second (MPDS) for the architecture with 640x480 pixel image, 3x3 pixel window 

size, 32 pixel disparity range and 30 frames per second. The system achieves SAD 

performance of 590 MPDS for the 64 pixels disparity range architecture. The 

disparity matching module works at the frequency of 10 MHz and produces one pixel 

of result every clock cycle. The results are dense disparity images, suitable for high 

speed, low cost, low power applications. 
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ABSTRAK 

Algoritma peta-dalaman membolehkan sistem kamera untuk menganggarkan 

kedalaman di banyak aplikasi. Algoritma ini pengkomputeran intensif dan kerana itu 

lebih berkesan untuk dilaksanakan pada peranti keras seperti Field Programmable 

Gate Array (FPGA).  Namun, masalah berulang dalam perlaksanaan FPGA adalah 

keterbatasan sumber daya. Masalah ini biasanya diselesaikan dengan mengubah 

algoritma. Masalah ini juga boleh diatasi dengan arsitektur peranti keras 

melaksanakan tanpa perlu mengubah algoritma kedalaman-map. Dalam tesis ini, lima 

berbeza kedalaman-peta arsitektur prosesor untuk jumlah perbezaan mutlak (SAD) 

kedalaman-peta algoritma pada FPGA pada real-time direka dan dilaksanakan. Dua 

sumber daya teknik minimisasi dipekerjakan untuk menangani masalah keterbatasan 

sumber daya. Penggunaan sumber kuasa dan prestasi arsitektur ini dibandingkan. 

Pertengkaran memori dan pengendalian bandwidth diselesaikan dengan menggunakan 

pengendali memori self-inisiatif, FIFO dan garis buffer. Pemprosesan selari 

digunakan untuk mencapai kelajuan pemprosesan tinggi pada frekuensi clock yang 

rendah.  Memori yang berasaskan „buffer line‟ digunakan dan bukan „register line‟ 

dapat mengurangkan penggunaan elemen logic (LE) sebanyak 62.4%, namun 

memerlukan beberapa bit memori tambahan khusus.  Penggunaan tepat register untuk 

menggantikan subtractor dapat menjimatkan 24.75% penggunaan LE.  Sistem dapat 

mencapai prestasi SAD perbezaan 295 mega piksel sesaat (MPDS) untuk arkitektur 

dengan imej 640x480 piksel, 3x3 saiz piksel tingkap, jurang piksel 32 dan 30 frame 

sesaat.  Ia mencapai prestasi SAD 590 MPDS untuk arkitektur dengan disparitas 64 

piksel. Modul perbezaan bekerja pada frekuensi 10 MHz dan menghasilkan satu 

piksel setiap kitaran jam.  Hasilnya adalah gambar perbezaan yang padat, sesuai untuk 

kelajuan tinggi, kos rendah dan aplikasi yang menggunakan kuasa rendah. 
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CHAPTER 1  

INTRODUCTION 

1.1 Image Processing  

Machine vision systems are image processing systems that are able to simulate the 

human vision system by analyzing the scene captured in a digital image. By using 

several image processing operations, a machine vision system is able to acquire 

information such as size, shape, color, material, location and type of an object and 

even the action it is performing. Building a general purpose computational vision 

system is a challenging task. However, researchers have been successful in designing 

algorithms and building systems that deal with some specific tasks of the human 

vision system [1].  

Image processing operations are classified into high and low level operations [2]. 

Low level operations involve algorithms that implement simple arithmetic 

calculations such as addition, subtraction and multiplication and they are performed 

on all pixel data of the image. Low level image processing systems are calculation 

and data intensive systems since they need to process a massive amount of data from 

millions of pixels of the image. Processing each pixel normally requires only the data 

in a small neighborhood around that pixel. Thus, the calculation can be done in 

parallel [2] for many local regions at the same time and the algorithm can be 

implemented on a parallel processing system for very high throughput. Examples of 

low level image processing algorithms are edge detection, down sampling, contrast 

enhancement, image rectification and depth-map calculation.  
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High level image processing tasks include the algorithms such as object 

recognition, motion detection and face identification. They are complex algorithms 

and often involve techniques in the field of artificial intelligence. High level image 

processing algorithms are implemented after the image has been processed by several 

low level algorithms. They acquire information generated by low level algorithms and 

intend to “understand” such information. High level image processing tasks often 

require less computational power than low level tasks because they are applied on 

selected portions of the image rather than uniformly across the entire image [2]. They 

work well on fast serial computational platform like personal computer (PC) and 

general purpose processing system. 

1.2 Three Dimensional Vision 

Among the low level image processing tasks, depth-map algorithm allows computer 

vision system to estimate depth – the distance in the third dimension of the space. The 

ability of perceiving depth is important to generate information for high level image 

processing tasks. Example of this is in the robotic navigation system. With the 

perception of depth, a robotic system is able to navigate the road and avoid obstacles.  

The ability to perceive three dimensions of the space – which are length, width 

and depth – is desired in many artificial vision systems. In image processing, objects 

are characterized by their size, shape and color. The size of the projection of an object 

on a camera sensor depends on the size of the object itself and the distance from the 

object to the camera. Thus, it is important to calculate the length, width and depth 

concurrently. The ability of perceiving depth plays a vital role in modern vision 

systems. It has potential applications in robotic navigation, 3D imaging, camera 

surveillance systems and object recognition. 

By mimicking the natural vision system of human and animals, artificial 3D 

vision systems have been implemented with two cameras [3-5]. They are called stereo 

vision systems. A typical depth estimation system consists of two cameras with 

overlapping field of view and a processing unit [4, 6]. Two images of the same scene 

are captured by two cameras from two different viewpoints. The projection of an 
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object is displaced on an image compared to the other image. One of the two images 

is made as a reference image and the other is made as a displaced image. A search 

algorithm is applied on the displaced image to find the match for a pixel of the 

reference image. Such displacement of a pixel (in the unit of micrometer) is recorded 

in the form of pixel intensity on the result image. The resulting image of a depth 

perceiving system is a set of the displacement values for every pixel of the reference 

image. The displacement value of a pixel is also called the disparity value and the set 

of displacement values for the reference image is called the disparity map or disparity 

image. To implement a 3D (stereo) vision system, it is necessary to develop a 

processing algorithm which performs the search operation to find matching pixels 

between the two images. Such an algorithm is called a depth-map algorithm or 

disparity algorithm. 

1.3 Depth-map Algorithms 

Stereo vision system provides information of depth in the form of pixel intensity. It 

allows estimation of distance between system‟s cameras and the objects. The closer 

object has higher displacement and therefore, it has higher disparity value. Objects at 

infinity distance have zero disparity. This will be illustrated in chapter 2. The 

disparity algorithm is applied on the two images to find the textural matches. It is 

classified under the low level category of image processing algorithms [2]. 

There are several different depth-map algorithms [4]. One which calculates the 

disparity map using the intensity of the input images is called the intensity based 

algorithm. The common intensity based algorithms include absolute difference 

algorithm (AD), sum-of-absolute difference (SAD), squared intensity difference (SD) 

and sum-of-squared difference (SSD) [4]. Other depth-map algorithms are based on 

gradient [7] of the pixel intensity or census transform [8]. These algorithms will be 

described in more detail in chapter 2 – literature review. 
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1.4 Processing Platforms 

Due to the computations and data intensive property of the low level image 

processing algorithms, the depth-map algorithm requires high computational power 

and memory bandwidth. Several attempts have been made to implement the depth-

map algorithm on different computing platforms [6, 9]. These processing platforms 

include general purpose processor (GPP), digital signal processor (DSP), field 

programmable gate array (FPGA) and application specific integrated circuit (ASIC). 

Systems implemented on a general purpose processor often take thousands of clock 

cycles to calculate the disparity value of one pixel. For example, to calculate the 

disparity value for a pixel in a 3x3 window with 32 disparity range, it would require 

3x3x32 = 288 subtractions, 31x2 = 62 comparisons, 288 additions to calculate total 

difference, 288 additions to calculate total similarity and other calculations for index 

increment and read/write process. Each instruction requires four clock cycles. Hence, 

it takes at least (288x3 + 62)x4 = 3704 clock cycles to calculate the disparity value of 

one pixel. In actual measurement, it took approximately 1.15 seconds to calculate the 

disparity map for a pair of images with the size of 500x375 pixels. The program 

implemented simple SAD disparity algorithm using C programming language, ran on 

an Intel‟s core i5 computer, 4GB DDR3 RAM, 1000 MB/s memory bandwidth, 

Windows 7 operating system. Because of the high flexibility, general purpose 

processor can be used to test any complex algorithm. Digital signal processor (DSP) 

can deliver higher throughput compared to general purpose processor running at the 

same clock frequency. This platform is ideal to implement high level tasks such as 

multiplication and division. However, parallelism provided by DSP is very limited. 

Field programmable gate array (FPGA) can take advantage of parallelism inherent in 

many low level image processing tasks. With relatively lower clock frequency than a 

DSP, FPGA can deliver higher throughput. The fastest implementation of disparity 

algorithm is by using application specific integrated circuit (ASIC). However, ASIC 

is a fixed circuit with no flexibility. It is good for end-user products rather than a 

testing platform. 
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1.5 Field Programmable Gate Array (FPGA) 

Many applications require real-time speed of the depth estimation system [5]. 

Software based systems like PC and DSP are too slow for these applications [9]. In 

the recent years, it is realized that FPGA is a good platform to implement low level 

image processing algorithm like depth-map algorithm for research and testing 

purposes [5, 6, 10]. The hardware nature of FPGA allows image processing systems 

implemented on it to achieve performance comparable with ASIC while maintaining 

flexibility with the reconfigurable capability. FPGA is also more cost effective than 

ASIC since it is mass produced. However, FPGAs have a limited amount of 

resources. For a typical Altera‟s FPGA, the available resources are the number of 

logic elements, the number of internal dedicated memory bit, the maximum external 

memory bandwidth, the number of dedicated multipliers and the number of phase 

locked loop (PLL) circuits. Image processing system implemented on FPGA should 

fit within the available resources. Otherwise, multiple FPGAs need to be connected to 

each other with a complex handshaking and data transferring scheme. Consequently, 

resource limitation is an issue when implementing depth-map algorithm on FPGA. 

In this research, the Altera‟s DE2-70 FPGA board was used because it has 

sufficient resources for implementation of depth-map algorithm at low cost. The 

Altera‟s DE2-70 development board includes a Cyclone II FPGA with 68,000 LEs, 

1,152,000 internal dedicated memory bits, 300 nine-bit embedded multipliers and 4 

phase lock loop circuits (PLL). It also has 32 MB of dynamic random access memory 

(DRAM), 2 MB of static RAM (SRAM) and 8 MB of flash memory. 

1.6 Problem Statement and Objectives  

Due to the resources limitation problem, implementing disparity algorithm on FPGA 

is a challenging task [11]. As shown in subsection 1.4, typical depth estimation 

system employs hundreds of subtractors, comparators and adders. These operations 

are built using logic gates and registers, which are implemented using logic elements 

of the FPGA. Depending on the window size and disparity range, large amount of 

internal memory bits is used for different types of line buffers. In the FPGA market, 
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the number of logic elements and memory bits is directly proportional to the cost of 

the FPGA. Therefore, resource saving is important to reduce the cost of FPGA-based 

system. High-end FPGAs (FPGAs with abundant resources and high computational 

power) are more expensive than low-end FPGAs (FPGAs with limited resources). 

Keep in mind that the depth-map algorithm is not the only algorithm being 

implemented in modern vision systems. When a vision system, which employs many 

sophisticated algorithms, exhausts the resource on a single FPGA, the solutions are to 

add another FPGA, modify the algorithm or modify the architecture. Adding other 

FPGA to the system requires the system to be partitioned into smaller circuits [1]. 

Besides that, transferring large amount of data and control signals with limited 

bandwidth and strict timing requirement between two FPGA is a difficult issue [1]. It 

is desired that the whole system is well designed to fit into a single FPGA.  

Apart from the problem of limited logic elements and memory bits on FPGA, the 

finite bandwidth of external memory is another issue for depth-map system as well as 

other low level image processing systems. This is due to the fact that the disparity 

algorithm is data intensive. For instance, to calculate the disparity value of one pixel, 

it requires the data of (32+2)x3+3x3 = 111 neighbor pixels from two images (with the 

window size of 3x3 and disparity range of 32 pixels). Memory bandwidth is also 

considered as an important resource on FPGA boards. When talking about resource 

minimization for FPGA, we imply that memory bandwidth reduction is included.  

In many applications, disparity image is required at real-time. Real-time systems 

are the systems which finished processing and deliver output before new inputs and 

new commands enter the system. In image processing field, real-time systems often 

refer to the systems that can deliver a throughput of more than 30 frames per second 

(fps). This real-time requirement puts more troubles on the task of designing depth 

perceiving systems since a real-time system demands more resource and memory 

bandwidth than a slower system. With the concern to the resource limitation of FPGA 

and real-time requirement, we have made a hypothesis that “Depth-map algorithm 

can be implemented on FPGA with better architecture to save resources and achieve 

real-time performance without modifying the algorithm or losing the quality of the 

resulting image”. With that supposition, the research in this thesis implemented a 
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SAD depth-map system with look-up table and data reuse techniques to achieve real-

time performance with little resource usage.  

Objectives of the research are: 

 To develop different hardware architectures for the SAD depth-map 

algorithm 

 To implement parallel processing techniques to increase throughput and 

achieve real-time performance. 

 To implement the designed depth-map systems on FPGA and apply 

resource minimization techniques to minimize resource usage. 

 To evaluate the resource usage and performance of these systems and 

compare the implemented architectures with other systems in the literature 

for resource usage and performance. 

1.7 Scope and Contribution 

The main contribution is a depth-map processor architecture that achieves processing 

speed of more than 30 frames per second and minimizes resource usage. The system 

was implemented with two types of line buffers, a specifically designed memory 

controller for image processing purpose, and a data reuse technique that reuse the 

available data through the calculation of many disparity pixels. That data reuse 

technique is proven to save large amount of resource of the FPGA. 

The work does not try to come up with a new depth-map algorithm or 

modification of existing algorithm. It rather implements a simple SAD algorithm on 

FPGA with different architectures to minimize resource usage and achieve real-time 

performance. The supported image size is 640x480 pixels. The window size is 5x5 

pixels and the maximum disparity range is 64 pixels. Among the three important 

aspects of system design which are speed, resource usage and power consumption, 

this research focuses on speed and resource utilization only, because the power 

consumed by a FPGA chip is somewhat difficult to measure and is almost unchanged 

for various designs. 
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1.8 Thesis Organization 

This thesis begins with chapter 1, which gives a brief introduction on image 

processing, depth-map algorithm and processing platforms. Hypothesis, objectives 

and scope of the work is also presented in this the first chapter. In chapter 2, a 

literature review on the implementation of a depth-map system is presented. The basic 

theory of depth-map system is discussed. The main focus of this thesis is in chapter 3, 

where the proposed architectures and resource minimization techniques are described. 

Chapter 4 presents the result of the work. Comparisons between our different 

architectures and between our system and other systems are also made in this chapter. 

Chapter 5 concludes the work done in this research and proposes possible further 

work.  

 

 

 



 

 

 

CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

A typical depth-map processing system includes an image acquisition module, a pre-

processing unit, a disparity processing unit and other modules such as memory and 

display modules. The block diagram of a depth-map processing system is shown in 

Figure 2.1. 

 

Figure  2.1 The fundamental components of a depth-map processing system 

In Figure 2.1, the cameras capture and digitalize images from at least two camera 

viewpoints. Output of the camera units should be in digital format. Otherwise, there 

should be an analog to digital converter (ADC) which converts the analog image into 

digital form. 
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After that, the digital image is fed into the pre-processing unit. The pre-processing 

unit performs image rectification and transformation from color images to grayscale 

images. Image rectification is important to increase the accuracy and reliability of the 

disparity algorithm. This step will be discussed more detail in the subsection 2.3.1 – 

Image rectification. The disparity processing unit implements the depth-map 

algorithm and the result is put into the memory for display, storage or further 

processing. This is the main processing unit of a 3D vision system. Each stereo vision 

system is characterized by the disparity algorithm and the architecture implemented in 

this module. 

This chapter reviews the fundamental theory and previous works for each of these 

parts in the system in the flow from input to the output. Available methods for stereo 

camera calibration are presented. The pre-processing procedures along with a detailed 

description of the depth-map algorithms theory are stated. The implementation of the 

depth-map algorithms on different platforms such as personal computer (PC), digital 

signal processor (DSP), (FPGA) and application specific integrated circuit (ASIC) 

will be discussed. This chapter will also talk about the resource minimization 

techniques for FPGA platform. For each of the above issues, several previous works 

are highlighted as examples. 

2.2 Cameras Calibration 

The cameras module in Figure 2.1 is characterized by the way the cameras are 

aligned. There are two ways of calibrating the cameras, one is the cameras system 

with fixed optical axes and the other one is camera system with rotatable axes. We 

will discuss these two camera calibration techniques in sections 2.2.1 and 2.2.2. 

2.2.1 Fixed optical axes camera system 

For the fixed optical axes systems [5, 11], the optical axes of the two cameras are 

aligned in parallel, with a distance l between two optical centres. The Figure 2.2 

shows an example of a fixed optical axes camera system. 
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Figure  2.2 Fixed optical axes camera system [1] 

In Figure 2.2, two cameras are mounted to an aluminum bar, pointing to the same 

direction. The two cameras are able to take pictures of the same scene from two 

different viewpoints. The pictures are then used in the processing unit to produce the 

depth-map image. Figure 2.3 describes how the depth image is estimated using this 

type of camera calibration. 

 

Figure  2.3 Fixed optical axes stereo vision system geometry 

 

l 

d 
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 In Figure 2.3, M and N are the two optical centres. Let l_=_MN be the distance 

between two optical centres M and N. B and C are the projection of a point A on the 

focal plane of the left and right cameras, respectively.  Lets NK // AB. Since the two 

triangles ABC and NKC are similar, we have: 

 

 

 

(2.1) 

Lets KC = d is the displacement of the projection of A on the right image 

compared to the left image. We also have MG = NH is the focal length f, and GB = 

HK. So, 

 

 

(2.2)  

GB is the distance from the pixel being evaluated to the center of the image. So, 

finding GB is straightforward. The problem of finding the distance from A to the left 

camera (AB) is resolved by finding the displacement d. Since the size of a pixel on 

the camera‟s sensor is known, it is only necessary to find the number of pixels that the 

projection of A has been shifted. Then KC = d = µ.P, where µ is the size of a pixel 

and P is the number of pixels between the two points K and C. 

The equation (2.2) leads to 

 

 

(2.3) 

The term AB in the denominator implies that the objects closer to the camera give 

large displacement while distant objects give smaller displacement. On the disparity 

image, distant objects look darker than the objects close to the cameras. 
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This type of camera calibration is popular in many researches [8, 11]. Divyang K. 

Masrani in [11] used this camera calibration technique to test his method of 

expanding disparity range using temporal information available in a video sequence 

without recalculating the disparity of a number of pixels in a frame. To formulate the 

disparity algorithm, Christos Georgoulas in [5] drew the camera system geometry in 

the way that the camera lens centers are at the back and the image plane is in between 

the object and the camera centers. Although this camera geometry model is applicable 

with the assumption that the distance from the lens to the image plane is insignificant 

compared to the distance from the object to the camera, but to make it more accurate, 

in this thesis, the camera system was drawn as shown in Figure 2.3 with the lens in 

between the object and the image plane. In [6], Stefania Perri created a coordinate 

system where he separate the three components longitude x, latitude y and depth z. In 

his paper, the depth component z was calculated. But there no big difference between 

(2.2) and the method described in [6] because by using a simple coordinate 

transformation technique, the method in [6] becomes equivalent to (2.2). 

2.2.2 Rotatable optical axes camera system 

In rotatable axes stereo vision systems [12], the cameras are rotated about two vertical 

axes. This is done by mounting the cameras on two servo motors as shown in Figure 

2.4. The ability to capture images of closer objects is an advantage of this camera 

system. By rotating about the vertical axes, the two cameras are able to point to a 

closer common view.   
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Figure  2.4 Rotatable optical axes camera system [12] 

Figure 2.5 describes the concept of the rotatable optical axes camera system. X, Y 

and Z are the points on the objects being observed. M and N are the optical centers. 

EF and PQ are the vertical projections of the sensor plane. 

 

Figure  2.5 Rotatable optical axes stereo vision system geometry 
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B is the projection of X, Y or Z on the left camera sensor. H, K and J are the 

projection of X, Y and Z on the right camera sensor, respectively. A disparity 

matching algorithm is applied on the two images. If H matches with B then B is the 

projection of X. If K is the match point of B then B is the projection of Y, and so on. 

Assume that B and K are matched. In the triangle BYK we have 

Y

BK

K

BY

B

YK

sinsinsin
  (2.4) 
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(2.5) 

Because Y = (π – B – K), let BK = l be the distance between the two projection of 

Y on the camera system, then 
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 (2.6) 

Angle detectors are used to measure the angle B and K. After that, the distance 

from the object to the camera is calculated using formula (2.6). Kazuhiro 

Shimonomura [12] installed on two cameras on two stepper motors. Another two 

stepper motors were used for rotating the cameras on the horizontal axes (looking up 

and down) in an attempt to mimic human eyes. 

The fixed optical axes stereo vision system exhibits a minimum distance where 

the system is unable to estimate the distance of any point closer than that, because the 

projection of that point falls outside the maximum disparity range [1]. The rotatable 

optical axes system can estimate the distance of very close objects [12]. However, a 

precise mechanical system is required. System response is slow due to the mechanical 

rotation. It also raises controlling difficulty and computational complexity. Human 

eye is a special case of rotatable optical axes stereo vision system, where the 

projections of the object always fall into the two macular. It is able to estimate the 

distance from as close as few centimeters to infinity. 

In this research, the fixed optical axes camera calibration technique was used to 
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avoid the difficulty of building a complex mechanical system. The problem of 

minimum visible distance is solved by reducing the distance between two cameras 

and increasing the disparity range. As shown in equation (2.2), when the distance 

between two cameras, l, is reduced, AB is reduced. When d increases, AB will be 

reduced. Increasing the disparity range requires additional resource on FPGA. But for 

this project, it is more cost effective than building a complex mechanical system. 
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(2.7) 

Equation (2.7) is derived from equation (2.2) to show that the minimum visible 

range can be reduced by increasing the disparity range dmax and reducing the distance 

between two camera, l. 

2.3 Pre-processing 

The pre-processing unit in a general 3D vision system may perform several tasks such 

as contrast enhancement, image rectification and color to grayscale conversion. But in 

this work, only the image rectification and color to grayscale conversion will be 

discussed. Contrast enhancement is not discusses because the depth-map algorithm 

make decision about the depth based on the displacement of the objects rather than the 

contrast in the color. 

2.3.1 Image Rectification 

Depth-map algorithms attempt to find matching patterns of one image on the other 

image by searching on a horizontal line of that image. Thus, it is necessary that the 

images are rectified so that the two projections of an object are brought to the same 

horizontal line (epipolar line) on both images. If the cameras are well calibrated, this 

step is not necessary. But in most cases, the cameras are not well aligned. Sometime 
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they are inclined, tilted or both. Image rectification is a general term referring to 

processes such as image rotation, image shifting and image deformation so that a 

pixel of the same scene is in line with the pixel of that scene on the second image. 

According to Changming Sun in [13], image rectification can improve speed and 

reliability of depth-map estimation process. Richard I. Hartley [14] presented a 

mathematical theory for image rectification. Zezhi Chen et al. [15] reported a practical 

image rectification method, which does not require any camera calibration. The 

technique minimized the pixel information loss along the epipolar line and never split 

a region of the image. 

In this research, when two cameras were installed, it was found that the two 

images were not on the same horizontal line. One image was shifted a few lines below 

the other image. In order to bring the objects to the same epipolar line, some lines on 

the top of an image were cut and the whole image was shifted up to be the same as the 

other image. 

 

Figure  2.6 Original images before rectification 

Figure 2.6 shows the original pair of images that we received from the cameras. 

Notice that the objects are not on the same horizontal scan-line. The top of the triangle 

in the left image is a few pixels lower than one in the right image. If disparity 

algorithm was applied on that horizontal line, it would find no matching texture 

between the left and the right images. In our system, the input images were shifted a 

few lines to bring them to the same epipolar line as shown in Figure 2.7 
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Figure  2.7 Rectified images 

Figure 2.7 shows only the left image being shifted and the right image remains the 

same. In our actual system, the left image was shifted half distance up and the right 

image was moved half the distance down to keep the image size as close to 640x480 

pixels as possible. This image rectification step does not affect the quality of result 

image but rather it makes the image smaller by a few lines.  

2.3.2 Conversion from RGB Format to Grayscale Image 

Depth-map algorithms use either the intensity of the pixels or the gradient between 

pixels to calculate the depth-map image [4]. In both cases, it requires two grayscale 

images. If the outputs from cameras are color images, the color images should be 

converted to grayscale before being used in the disparity module. To generate the 

grayscale image from color image, the luminosity method takes the average of three 

colors with the weight of each color regards to the perception of human eyes. 

Different values of these weighting factors were used in the current systems and 

software [16]. For example, Photoshop 5.0 used the weighting factors of. 

Y = 0.2126R + 0.7152G +0.0724 B (2.8) 
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Another popular formula for the luminance model is [17] 

Y = 0.2989*R + 0.5870*G + 0.1140*B (2.9) 

For images based on subtractive color space (Cyan, Magenta, Yellow), the 

conversion can be done by converting CMY to RGB color space before calculating 

the gray value. The chosen method for our system will be described in section 3.1.1. 

2.4 Depth-Map Algorithms  

Currently, there are a number of depth-map algorithms available [18-21]. They have a 

common purpose of finding the displacement between the projections of the same 

object on two images. Depth-map algorithms can be classified using the localism of 

the calculating window, which are called local and global algorithms. Besides, they 

can also be classified using their matching cost function or gradient versus intensity 

based techniques [4]. This section will describe these types of depth-map algorithms 

in detail.  

2.4.1 Local, global and hierarchical algorithms 

Disparity matching algorithms are classified into global or local (window-based) 

algorithms. There are also some algorithms that take advantages of these two main 

classes, such as cooperative algorithm or hierarchical algorithm. Of course, they 

exhibit more computational complexity. The local based algorithms are based on the 

“winner takes all” basis for each pixel. It performs disparity search for a pixel of the 

reference image and when a local maximum of similarity is found, the corresponding 

pixel on the search image is considered a match with the pixel on the reference image 

(see Figure 2.8). The disparity value of a pixel depends only on the gray level of the 

pixels in its window. The local based algorithm does not take into account the 

smoothness of the disparity value for other pixels of the image explicitly. However, it 

makes implicit smoothness assumption in each window. D. Chaikalis et al. [22] has 

implemented this local search algorithm to calculate disparity value for integral 
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photography (IP) image and video compression purpose. In [3], Bongsoon Kang et al. 

implemented local disparity algorithm on hardware with vertical strip structure to 

minimize resource usage. 

The global algorithms make explicit smoothness assumption by combining data 

and smoothness terms in the matching cost expression. The disparity is found when 

the global cost expression in (2.10) is minimized. 

E(d) = Edata(d) + λEsmooth(d) (2.10) 

Global algorithms perform well on gray continuity area but have a serious 

limitation on the edge of the object where the disparity value changes abruptly. 

The hierarchical algorithms perform disparity search from coarse levels to fine 

levels. The disparity result of coarser levels is used as constraint to calculate the 

disparity value of finer levels [9]. To reduce the computational cost, the images are 

down sampled to a smaller size for coarse disparity calculation. Pascal Fua in [9] 

presented a coarse to fine algorithm to calculate the disparity map with multiple 

cameras. In his paper, an interpolation algorithm was used in the post-processing step 

to fill the textureless and occluded areas. 

2.4.2 Depth-map algorithms classification using matching cost function 

Disparity algorithms are also categorized using their matching cost. Matching cost 

is a function of similarity or difference with the disparity value (d) acting as a 

variable. Generally, disparity algorithms try to find the maxima of the similarity 

function f(d) or the minima of the difference function. Figure 2.8 illustrates the 

similarity function. When the maximum of similarity between two windows is found, 

its corresponding value of disparity (dmatch) is the solution to the depth-map algorithm. 
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Figure  2.8 Matching cost function  

The common matching cost functions are square-intensity-difference (SD), sum-

of-squared-difference (SSD), absolute difference (AD) and sum-of-absolute-

difference (SAD). For example, the matching cost functions of the SAD algorithm 

with the window size of 3x3 pixels is 
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where f is the matching cost function, d is the current disparity value and Ei is the 

difference in intensity between two pixels at the same position of the two comparing 

windows. The two windows are considered “match” when the disparity value d 

minimizes the sum of absolute difference function. The corresponding value of d is 

mapped into the disparity image. Bongsoon Kang, et al. [3] implemented the AD 

algorithm on FPGA that find the disparity value by maximizing the similarity 

function. The system achieves the frame rate of up to 15 frames per second (fps). D. 

Chaikalis, et al. [22] implemented the SAD algorithm on hardware. With the frame 

size of 1024x768 pixels and the disparity range of 64 pixels, the system reach real-
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time performance of 31 fps. Stefania Perri et al. [6] presented a hardware system 

using SAD algorithm with the frame size of 512x512 pixels and the maximum 

disparity range is 255 pixels. The system works at the frame rate of 25.6 fps with the 

clock frequency of 286 MHz. 

2.4.3 Gradient versus intensity based algorithms 

The disadvantage of intensity based matching cost functions is that they are sensitive 

to the camera gain and bias. If the two cameras have different gain (different light 

sensitivity), the intensity value of each pixel may vary and the algorithm becomes 

vulnerable. There are algorithms that take the gradient of pixel values as matching 

cost function. These algorithms are insensitive to camera gain [4, 7]. 

2.4.4 Dense and spare depth-maps 

Some depth-map algorithms do not calculate the disparity value for all pixels on the 

image [9]. Instead, they only calculated the disparity value for the pixels at the edge 

of the object. The disparity value is then propagated through the image by using 

interpolation, diffusion or voting mask. Disparity value of the pixel at the edge of the 

object often has high confidence level. These algorithms are claimed to generate less 

errors. The algorithms with high criteria of truthful disparity reject most of the 

uncertain disparity pixels. They are called the sparse disparity algorithms. Spare 

depth-map algorithms were used in by Pascal Fua [9] and by F. Solari et al. [23]  

Opposed to sparse disparity algorithm is the dense disparity algorithm which 

calculates the disparity value for all the pixels in the image. A method for dense 

depth-map estimation was implemented in by Luis Alvarez et al. [24] Each of these 

algorithms has different applications. For example, robotic system requires spare but 

high confident disparity map for road navigation. 3D image reconstruction system 

requires dense disparity image which has the disparity value of all pixels on the 

image, even the textureless and occluded areas. To generate denser depth-map from a 

sparse depth-map image, J. Ralli et al. [25] proposed a method of spare disparity 
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densification using gradient based voting mask. The algorithm works with the 

assumption that on the same object, disparity value changes gradually and on different 

objects, disparity value is discontinuous and separated by the edge of the object. 

2.5 Implementation of depth-map algorithms 

Depth-map algorithm was implemented on various processing platforms. In 

general, as described in section 1.4, there is a trade-off between flexibility and speed 

of a system. Pascal Fua [9] implemented his algorithm on a workstation (PC), a DSP 

and also a Connection Machine. On the workstation, it takes approximately 2 minutes 

30 seconds to process images with the resolution of 256x256 pixels and the disparity 

range of 50 pixels. In other word, the frame rate is only 0.4 frames per minute. Of 

course, his software program is highly flexible. On the multi-DSP 96002 board, the 

system takes 15 seconds to complete processing a frame. Thus, the frame rate is 4 

frames per minute. In [26] Dustin Lang and James J. Little programmed the graphic 

hardware to perform SAD algorithm and achieve the frame rate of 10 fps for the 

image of 640x480 pixels or 25 fps for the image of 320x240 pixels.  

Implementation of depth-map algorithm on FPGA is popular as presented in [1, 3, 

6, 22]. Divyang K. Masrani et al. [1] implemented the phase correlation depth-map 

algorithm on a platform using four Altera‟s Stratix FPGAs. The system is able to 

process a pair of images with the resolution of 640x480 pixels. The disparity range is 

up top 128 pixels and the frame rate is 30 fps. B. Kang et al. [3] used Altera‟s 

APEX20K1000-EBC652-3 FPGA to perform absolute different (AD) depth-map 

algorithm with the image size of 320x240 pixels, 64 pixels disparity range and 

achieved the frame rate of 15 fps. S. Perri, et al. [6] have implemented SAD algorithm 

on Xilinx FPGA for the image size of 512x512 pixels, disparity range of 255 pixels 

and the frame rate is 25.6 fps. D. Chaikalis, et al. [22] had used the Xilinx Virtex 

XCV-2000E FPGA to implement SAD depth-map algorithm. The system works with 

the frame size of 1024x768 pixels, 8x8 pixels window size and 64 pixels disparity 

range. The frame rate of this system is 31 fps. 
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2.6 Resource Minimization Techniques 

As pointed out in chapter 1, resource minimization is one of the most challenging 

problems for FPGA implementation of depth-map algorithm. Researchers have been 

focusing on modifying the depth-map algorithm to minimize the amount of 

computational load and therefore minimize the resource usage [8, 10, 11]. Pixels with 

small change of depth are not recalculated but disparity value is taken from the 

previous frame. Because the disparity values of some pixels are propagated from 

previous frames, it takes time (in term of a few frames) for the disparity map to be 

filled up. This leads to slow convergence and high failure rate. Divyang K et al. 

presented a method for expanding the disparity range without increasing the 

computational load and therefore save resource usage [11]. 

Another possible method of resource minimization is by designing a resource 

saving architecture. The depth-map algorithm is not changed but instead, the system 

architecture is modified. The system preserves fast response to the change of depth 

while resource usage is reduced. To the best of the author‟s knowledge, there is 

currently no work done on this area. For that reason, the research in this thesis focus 

on developing a new hardware architecture which implements a regular SAD based 

depth-map algorithm with reduced resource utilization. 

 

2.7 Summary 

In this chapter, a literature review on camera calibration, pre-processing, depth-map 

algorithms and resource minimization techniques were presented. There are two 

methods for camera calibration, which are fixed optical axes system and rotatable 

optical axes system. Mathematical model of each camera calibration technique was 

developed. The fixed optical axes method was chosen because it does not require 

complex mechanical system. Depth-map algorithms are classified as local, global and 

hierarchical algorithm. They can also be classified using matching cost function, 

intensity and gradient, or spare or dense depth-map. The algorithm used in this 

research is local method with the intensity based sum-of-absolute-different (SAD) 

matching cost function. The result is a dense depth-map image. Resource utilization 
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on FPGA can be minimized by modifying the depth-map algorithm or designing 

different architectures. This work implements the original depth-map algorithm and 

designs a few different architectures in order to minimize resource utilization.  
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CHAPTER 3 

THE PROPOSED ARCHITECTURE 

 

In this chapter, the design and functionality of a stereo vision system is presented. We 

then propose several techniques to improve system performance and reduce resource 

utilization. Lastly, these techniques were implemented in five different disparity 

matching architectures to compare resource usage and performance. The highlight of 

this work is the effect of these techniques on resource utilization and the performance 

of different proposed architectures.  

3.1 Design of a Stereo Vision System 

Figure 3.1 shows the block diagram of our system. There are three major blocks being 

implemented on FPGA. The first block of the system consists of two camera interface 

modules, which capture the pixel data from two cameras and feed into two FIFOs. 

Pixel data is then written into external memory by a multi-ports memory controller. 

The cameras need to be configured to appropriate parameters such as the parameters 

which set the frame size, brightness, and sequence of the output. This task is taken by 

a camera configuration module inside the camera interface module. The second block 

is the multi-ports memory controller. It manages all the memory access requests from 

other modules and ensures no memory contention. The third block represents the 

processing unit with a disparity matching module. Other blocks are clock circuitry 

module and VGA controller module. In this section, we will describe our system 

according to the flow of data. 
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Figure  3.1 Block diagram of the system 

3.1.1 Image Preparation 

This section discusses the image capturing procedure and how the color image is 

converted to grayscale image in the camera interface module. Output of the camera is 

in RGB format and RGB to grayscale conversion is needed because the SAD depth-

map algorithm requires two grayscale images to be processed. In this design, two 

Terasic‟s THDB-D5M [27] cameras were used as input. The cameras were chosen 

because they have an interface which is compatible with the DE2-70 board. Figure 3.2 

shows the D5M camera pixel array which contains 2592 columns and 1944 rows in 

the active area. Surrounding the active area of the image is a frame of boundary and 

dark pixels. In default operation, only pixels in the active region is read, giving the 

image of 2592x1944 pixels (Figure 3.2). 
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Figure  3.2 Pixel array description [27] 

The D5M camera is a charge coupled device. When the image sensor is exposed 

to the light, the charge level will increase proportionally to the light intensity and the 

exposure time. On the image sensor, each pixel is covered with a color mask. There 

are three types of color masks, corresponding to three colors: red, green and blue. The 

charge level of the pixels under a red color mask is affected only by the red light. And 

the charge level of the pixels under green or blue mask is influenced only by the green 

or blue light, respectively. That charge level is converted into electrical voltage in the 

analog signal chain, and then digitalized by a 12-bit analog-to-digital converter. 

Output of the camera is a series of 12-bit binary numbers. One pixel is output every 

clock cycle. The color of a pixel is determined by the time of its occurrence with 

regard to the frame valid (FVAL) and line valid (LVAL) signal. A frame is defined 

when the FVAL signal is high. The rising edge of FVAL signal is the start of a new 

frame. And the falling edge of FVAL sets the end for the current frame. The time 

interval between the end of the old frame and the start of a new frame is called the 

vertical blanking. An image line is defined when the LVAL signal is high. When LVAL 

signal is low, there will be no output to the data port of the camera. This time interval 

is called the horizontal blanking. When both FVAL and LVAL signals are high, one 12 

bits output pixel is latched to the data bus at every rising edge of the camera clock. 

The readout timing is shown in Figure 3.3 below. 
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Figure  3.3 Pixel output timing [27] 

In Figure 3.3, PIXCLK is the camera clock. FVAL and LVAL are the frame valid 

and the line valid signals. D[11:0] is the twelve-bit data bus. Pi is the pixel number in 

a line. There are 2592 pixels in a line and 1944 lines in a frame. But on the above 

figure, only six pixels were shown when LVAL is high. And only one line was shown 

when FVAL is high. There is a horizontal blank between two lines and a vertical blank 

between two frames. Since a pixel is latched at the positive edge of the PIXCLK, the 

camera interface module was designed to capture it at the negative edge of PIXCLK. 

The pixel color map and the read out sequence are shown in Figure 3.4 below. 

 

Figure  3.4 Pixel color map and read out direction [27] 

Figure 3.4 shows that the first row from the top consists of two colors G1 and R. 

And the pixels on the second row are alternating between B and G2. The first pixel 

being read when the FVAL signal goes high is the pixel at the top right corner (G1). 

And the image pixels are read out in a sequence from right to left and top to bottom as 

shown in the figure. A line and a pixel signal were used to identify R, G1, B and G2 

First 

pixel (0;0) 
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components. At the first pixel, the line and pixel signals both have the value of 0. The 

pixel signal value is altered every clock cycle and the line signal is altered after each 

line. As a result, the G1 color appears at the output of the camera when 

{line,pixel}_=_002. The R component is available at the output when 

{line,pixel}_=_012. The B component is there when {line,pixel} = 102. And the G2 

color should be captured when {line,pixel} = 112. 

The D5M camera has 256 internal-16-bits-programmable registers that control 

many aspects of the camera such as image size, PLL, read mode and black level. 

These registers can be programmed through a serial port. The rows are defined by row 

start, row size, bin, skip, and row mirror registers. Similarly, the columns are defined 

by column registers. These registers were set to appropriate values so that the camera 

outputs an image of 960 rows and 1280 columns of Bayer colors (R, G, B). Note that 

this is not the default image size. The reason of changing from 2592x1944 pixels 

image size to 1280x960 pixels is to fit with the display size and the processing unit. 

From 1280x960 pixels of red, green and blue colors, a grayscale image with the 

resolution of 480x640 pixels was created. The camera output pixel is 12 bits, but to 

make the design simple, only 8 most significant bits were used. The four least 

significant bits were truncated. This actually reduces the resolution of each pixel. But 

8 bits depth is sufficient for most applications. The camera interface module was 

designed such that for the odd rows (1,3,5...) of the color image, it will capture only 

the R element and ignore the G1 element. An internal memory block of 640x8 bits 

was used to store 640 pixels in one row of the Red component before the Blue and 

Green components arrive. B and G2 components are latched into the camera interface 

module in the next row of input. A temporary register were used to store the B color 

pixel for one clock cycle. The RGB to grayscale conversion is performed for each 

pixel as soon as the G2 component is fed into the camera interface module. This is 

done in a combinational logic circuit and the output is read at the negative edge of 

PIXCLK.  
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The common formula to convert from RGB to grayscale is [17] 

Y = 0.2989*R + 0.5870*G + 0.1140*B (3.1) 

The green has the highest weight because human eye is more sensitive to green. 

However, machine does not have different sensitivity for different colors. Therefore, 

all three colors should be treated equally. When the colors are treated the same, the 

luminance formula will be 

Y = 1/3 R + 1/3 G + 1/3 B (3.2) 

But implementing multiplication or division on FPGA is very time consuming and 

resource demanding. Thus, the equation (3.2) was modified so that the system uses 

only addition and shift operation. The formula used is 

Y = 1/4 R + 1/4 G + 1/4 B (3.3) 

Y = (R + G + B)/4 (3.4) 

The result image using formula (3.3) or (3.4) is 25% darker than the one using 

(3.2) because the sum of intensity is divided by 4 rather than 3. But this does not pose 

significant effect to the calculation of disparity value. Division by 4 can be made as a 

2-bits shift right operation or simply truncating the two least significant bits. Equation 

(3.4) was used instead of (3.3) because significant bits may be lost if divisions (or 

shift right) were performed before addition. In the following example, the three 8-bits 

numbers are added and the result is divided by 4. 

R = 00101101 (2) G = 01001011 (2) B = 00110110(2) 

If formula (3.3) is applied, the result will be 

Y1 = 001011(2) + 010010(2) + 001101(2) = 00101010(2) 

If formula (3.4) is applied, the result will be 

Y2 = (00101101(2) + 01001011(2) + 00110110(2)) >> 2 

Y2 = 00101011(2) 
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Comparing Y1 and Y2, the least significant bit is lost when the formula (3.3) is 

applied because the shift right operation is performed before the addition. Only the 

grayscale pixel is latched into a FIFO, waiting to be written into the memory. In this 

way, a huge amount of memory bandwidth is saved for not storing the raw image data 

and re-accessing it again. In fact, if the two cameras were well synchronized, the 

grayscale pixel could be sent directly to the processing unit without being written to 

the memory. However, the two cameras that we are using are not sending the pixel 

data at the same time. So the two input images need to be stored in memory prior to 

being processed. 

3.1.2 FIFO 

Because the cameras, the SRAM, the processing unit and the VGA are working at 

different clock frequency, FIFO is an essential component in this system. It has two 

roles, i.e. passing data to other clock domains and serving as a buffer for immediate 

access. This is a nice two-in-one component. 

The synchronization of multiple changing signals between two different clock 

domains is a difficult task [28]. This is because of the metastability phenomenon [28] 

that happens when the signal is sampled in the other clock domain and the different 

propagation delay of different signals. Metastability is caused when a signal is 

sampled during its transition. If a data signal transition violates a register‟s set up 

time, tSU, or hold time, tH, requirements, the output of the register may go into a 

metastable state [29]. In metastable state, the signal may take an amount of time 

longer than the clock to output time (tCO) of the register to be stable. The signal can be 

resolved to a new value or goes back to its old value after the metastability period. If 

the signal is not resolved after tCO, and if it is read to another register or fed into a 

combinational logic, it will cause a system failure because the data is unknown and 

the output will be unpredictable. In Figure 3.5, the occurrence of the clock edge 

during the signal transition (between tSU and tH) causes the first signal (Output A) to 

be metastable and resolved to new value after tCO. The second signal (Output B) is 

resolved to its old value after tCO. 
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Figure  3.5 Metastability timing 

Circuit failure due to metastability is minimized by introducing a synchronization 

registers chain (Figure 3.6). Synchronization register chain is a sequence of two or 

three registers close to each other, clocked by the same clock frequency. Output of 

one register is connected to the input of the next register in the chain. In Figure 3.6, 

there are three registers. The one in the Clock1 Domain is responsible for sending 

data. Two registers in Clock2 Domain are the receiving registers. The first register in 

Clock2 Domain acts as the synchronization register that takes the data from the 

sending clock domain. Data is then passed into the second register in the 

synchronization chain. If there are more registers in the synchronization chain, they 

will be connected in series. Output of the last register is used in the combinational 

logic circuit of the receiving clock domain. If there are n registers (n = 2,3,4…) in the 

synchronization chain, it will take n clock cycles to pass data from the sending clock 

domain to the combinational logic of the receiving clock domain. It is said that the 

latency of this synchronization chain is n clock cycles. 
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Figure  3.6 Synchronization chain [29] 

The purpose of adding registers in the synchronization chain is to give the 

metastable signal additional time (a few more clock cycles) to resolve to a known 

value before it is used in the rest of the design. When more registers are added to the 

synchronization chain, probability of system failure due to metastability will be lower. 

This increases the mean time between failures (MTBF) of the system. A higher 

MTBF (such as hundreds or thousands of years between metastability failures) 

indicates a more robust design. However, adding a register adds an additional latency 

stage to the synchronization logic, so designers must evaluate whether that is 

acceptable. In our system, two registers are used in each synchronization chain. This 

is justified because our system is not a life critical medical system or nuclear power 

device which requires very high stability. Processing speed is important in our system 

and long latency is not preferred. Besides, two registers synchronization chain is 

typical in most system.  

Synchronization chain works well for a single bit signal. But when passing 

multiple bits of data or control signals to other clock domain, a small skew between 

the signals could cause the two signals to be synchronized into different clock cycles 

within the new clock domain [28]. For example, a data register with two control 

signal “load” and “enable”. If the two signals are synchronized into different clock 

cycle, it would cause the data not to be loaded to the register. 
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Figure  3.7 Problem of passing multiple control signals between clock domains 

In Figure 3.7, the a_load and a_en signals are supposed to be asserted in the same 

clock cycle. However, due to the skew between b_load and b_en, a clock edge that 

occurs right between the two transitions of the two signals sampled them into two 

different clock cycles. In the third clock cycle, a_load is asserted but a_en is low, so 

the data is not loaded into the register. In the fourth clock cycle, a_en is high but 

a_load is low, the data is also not loaded. In our system, 8 bits pixel data needs to be 

transferred from the camera to the memory controller, from the memory controller to 

the processing unit and to the VGA controller module. If a clock edge occurs at the 

transition of the data word, the pixel data might be sampled into a random number. 

To resolve the above problems, FIFO was used in our designs to safely pass multi-

bit data words from one clock domain to another. FIFO is a dual port internal 

memory. One port is controlled by the sender which puts data into the memory as fast 

as one data word per write clock cycle [30]. The other port is controlled by the 

receiver, which pulls data out of memory one data word per read clock cycle (see 

Figure 3.9). Data signals are given sufficient time to be stable inside the FIFO before 

it is used in the receiving clock domain. Conceptually, the task of designing a FIFO 

like a dual port memory seems to be easy. The difficulty associated with doing FIFO 

design is related to generating the FIFO pointers and finding a reliable way to 

determine full and empty status of the FIFO. The FIFO consists of a memory array, a 

read pointer and a write pointer. When the reset signal is asserted low, both pointers 

will be reset to zero, the empty signal is asserted high. Otherwise, the write pointer 
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always points to the next location to be written and the read pointer always points to 

the next location to be read. On a FIFO-write operation, the memory location that is 

pointed to by the write pointer is written, and then the write pointer is incremented to 

point to the next location to be written. After the last location in the FIFO memory 

array is written, the write pointer wraps back to the first location. 

When the FIFO is reset, assertion of the empty signal indicates that there is no 

data in the FIFO. Attempting to retrieve data from the output of the FIFO is not 

allowed. As soon as the first word location in the FIFO is written, the empty signal is 

cleared. The read pointer always points to the next location to be read. So the receiver 

logic doesn‟t have to use two clock cycles to read a data word. If the receiver first had 

to increment the read pointer before reading a FIFO data word, the receiver would 

clock once to output the data word from the FIFO, and clock a second time to capture 

the data word into the receiver. That would be needlessly inefficient. 

 

 

Figure  3.8 FIFO full and empty condition 

In Figure 3.8, the read pointer is incremented to the next location after the data 

word is read. When it caches up with the write pointer, it will point to the last word in 

the FIFO. The FIFO is now determined to be empty and the empty signal should be 

asserted. So the empty condition is simply determined by comparing the read pointer 

and the write pointer. If they are equal then the FIFO is empty. However, when the 

write pointer finishes one round and caches up to the read pointer again, the two 
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pointers are also equal but the FIFO is full (Figure 3.8). This is a problem. The FIFO 

is either empty or full when the pointers are equal, but which? To distinguish between 

the full and empty status, one extra bit was added to each pointer. When the write 

pointer increments past the final FIFO address, it toggles the most significant bit 

(MSB) while setting other bits to zero. The FIFO is empty when the both pointers are 

equal, including the MSBs. If the MSBs are different but the other bits of the two 

pointers are equal, it means the write pointer has wrapped one more time than the read 

pointer, and the FIFO is full. 

As mentioned above, to determine the full and empty status of a FIFO, the read 

pointer and the write pointer need to be compared. But they are generated in two 

different clock domains, so the read pointer must be synchronized to the write clock 

domain and the write pointer must be synchronized to the read clock domain. To do 

that, synchronization register chains were used. However, the pointer itself is a 

multiple bits signal. If the pointer is a binary number, when two or more bits change 

at a time (let say from 0011(2) to 0100(2)), due to the skew between the signals, it 

might become any number after being sampled in the receiving clock domain. The 

sampled pointer will point to an unpredictable word location in the range of the FIFO. 

Solution for this problem is by using Gray code counter to design the pointer instead 

of binary counter. Because the gray code counter only change one bit at a time, so if 

the clock edge occurs at the transition of the Gray code counter, the synchronized 

value will either be the old value or the new value. The FIFOs full and empty signals 

are generated by using the pessimistic value of the synchronized pointers. So the 

FIFO is never overflow or underflow. For this design, the FIFO described in [30] was 

used with some modification of word length and number of location as will be 

described later.  

FIFOs are used mainly for passing data to other clock domain. But in our design, 

FIFO also serves as a line buffer. It provides transparent access to the memory 

because the memory access request from any module can be served immediately by 

reading/writing to the FIFOs. Accessing external memory has latency. For this design, 

two clock cycles are needed to initiate the read operation. Also, many modules are 

trying to access the memory at the same time. Without FIFO, all modules would have 
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to work at the same clock frequency. It takes three clock cycles to read one memory 

location to serve a module, another three clock cycles to serve the second module, and 

so on. During that time, all other modules have to be idle and wait for the SRAM. In 

our system, some modules such as the camera and the VGA have high priority and 

require immediate access to the memory. Thus, an internal line buffer is necessary to 

buffer the data before writing to a slower external memory. The FIFO described in 

[30] has 8 word locations. But with 8 locations, the FIFO will be full/empty too 

quickly; causing excessive overhead clock cycles are needed to access the SRAM. 

The FIFO was modified to have 32 locations so that it can serve the purpose of being 

a line buffer better. Also, because the SRAM word length is 32 bits. So the FIFOs 

word length was modified to be 32 bits to match with the SRAM. 

 

Figure  3.9 FIFO interface 

Figure 3.9 shows the interface of the FIFO. There are five sub-modules in the 

FIFO. The top-level module of the FIFO does not implement any function but just 

wiring the other sub-modules together. When wrst_n signal is asserted low, the write 

pointer will be reset to 0 and the rempty signal is asserted high. If wrst_n is not 

asserted, the winc signal is high, and the FIFO is not full (wfull = 0), the FIFO will 

write one 32-bits data word to its memory at the rising edge of the wclk. At the same 

time, the write pointer will advance to the next memory location. Similarly, when 

rrst_n is low, rinc is high, and rempty is low, the FIFO will pull one data word out 

every rclk clock cycle.  

The FIFO includes five sub-modules, which are fifomem, rptr_empty, wptr_full, 

sync_r2w and sync_w2r. Among the sub-modules, the fifomem module is a dual port 
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memory. It will write one data word to the location pointed by the write pointer when 

there is a valid write command. On the read port, the output data is assigned to the 

memory location pointed by the read pointer. So the output data is always available 

for reading. After a successful read and the FIFO is not empty, the read pointer will 

advance one location. 

The rptr_empty module generates the binary code read pointer which is used in 

the fifomem module to address the data in the memory. It generates the Gray code 

read pointer to be used for synchronization to the write clock domain and compare 

with the write pointer. It receives the synchronized write pointer from the sync_w2r 

module, compare with the Gray code read pointer to generate the rempty signal. 

The wptr_full module generates write pointer in binary code and also in Gray 

code. It compares the Gray code write pointer with the synchronized Gray code read 

pointer taken from the sync_r2w module to generate the wfull signal. 

The sync_r2w module takes the read pointer from the rptr_empty module and 

synchronizes it to the write clock domain through a chain of two registers. This is to 

avoid system failures caused by metastability which might occur during signal 

synchronization. Similarly, the sync_w2r module synchronizes the write pointer to the 

read clock domain. 

When pixel data is taken from the cameras and written to the external memory 

(SRAM), the write port of the FIFO is controlled by the camera and the read port of 

the FIFO is controlled by the multi-ports memory controller. When data is read from 

the memory and fed to other modules such as the processing unit or the VGA 

controller, the multi-ports memory controller will take control of the write port and 

the receiving module will control the read port. 

3.1.3 Multi-Ports Memory Controller 

FPGA has a tiny amount of internal memory bits. This little memory is good only for 

implementing FIFOs and line buffers. It is not possible to store a whole image or 

several frames inside the FPGA. Therefore, an external memory is a necessity. In this 
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system, there are three images that need to be stored in memory, two input images and 

one output disparity image. Each image has 8 bits depth and 640x480 pixels 

resolution. Thus, a minimum of 921600 bytes are required to store all three images. 

The two MBs SRAM chip on the Altera‟s DE2-70 board is used to store all three 

images. 

The SRAM has a command bus and a 32 bits bi-directional data bus. Data is 

shared between the camera, the disparity matching module and the VGA controller 

module. Therefore, a memory controller was designed to control the SRAM through 

the command bus, capture the data during read operation, feed data to the memory 

during write operation and manage the time sharing between access requests. Figure 

3.10 shows the interface of the SRAM. The SRAM has 19 address bits, 32 bits word, 

divided into 4 bytes which can be written individually. 

 

Figure  3.10 The SRAM interface  

The designed interface of our multi-ports memory controller is shown in Figure 

3.11. When the asynchronous reset signal is asserted, the memory controller will go to 

an idle state. The oSRAM_ADSC_N signal is asserted high, making the SRAM to be 

idle. The r_data_avai1 signal and the w_port_avai5 signal will be asserted low, 

telling other modules that accessing to the SRAM is not available. There are four read 

ports and four write ports being implemented on the memory controller. However, in 

the above figure, only two ports are shown. The memory controller decides when a 

port gets access to the external memory. Notice that the read and write ports are made 

separately to achieve simple interface and convenience. If a module requires both read 
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and write operation, it will be provided one read port and one write port, this is 

simpler than using a bi-directional port. After reading/writing to a port, the memory 

controller takes one clock cycle to go back to the idle state, and one clock cycle to 

jump to the next port.  

 

Figure  3.11 Multi-ports memory controller interface 

The memory controller has four read ports and four write ports. The number of 

ports is not a problem in this design. For each read port, there is a 19 bits input 

address bus, a 32 bits output data bus, a data available signal (r_data_avai1) and a 

stop signal to stop the read sequence. The write port has an address bus, a data bus, a 

port available signal (w_port_avai6), a stop signal and a byte write enable signal 

(w_BE_N6) to tell which byte in the memory location should be written to. Each port 

is connected to a FIFO. The read ports of the memory controller are connected to the 

write ports of FIFOs. And the write ports are connected to the read port of the FIFOs. 

The ports are examined sequentially. If a read FIFO is not full, it will be filled up 

without any request. And if a write FIFO is not empty, it will be cleared by taking the 

data from the FIFO and write to the SRAM. 

During a read cycle, oSRAM_ADSC_N is set to low to enable the SRAM. A data 

enable signal (SRAM_D_ena) is set to low. This sets the data port of the SRAM 

controller to high impedance, activates the output enable signal of the SRAM 

(oSRAM_OE_N) and disable the write enable signal (oSRAM_BWE_N). The SRAM 

will take control of the data bus. The first address is presented to the on the address 
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bus. In the next state, the second address is presented to the address bus. So, the 

address is being pipelined into the memory. In the third state, after two clock cycles 

since the first address is presented on the address bus, data available signal 

(r_data_avai1) is asserted, telling the receiving module that the data will be available 

to be captured in the next rising edge of the SRAM clock. After two and half clock 

cycles since the first address is presented, the data is available on the data bus. It is 

captured to a temporary register (SRAM_DR). After another half a clock cycle (total 

of three clock cycles), the data from SRAM_DR can be written into the FIFO. It takes 

three clock cycles to get the first data word. But the address was pipelined into the 

memory in every state. So the next data can be capture at the fourth clock cycle. To 

read n memory location, it takes n+2 clock cycles. The read cycle is stopped when the 

r_stop1 signal is asserted high by the receiving module. This signal is connected to 

the write full (wfull) signal of the FIFO. It means, when the FIFO is full, the read 

cycle will be stopped. 

In a write cycle, oSRAM_ADSC_N is set to low to enable the SRAM. 

SRAM_D_ena signal is set to high. As soon as the byte write enable signal 

oSRAM_BWE_N is asserted low, it will overrule the oSRAM_OE_N signal. The 

SRAM immediately turns its data port to high impedance regardless of the value of 

oSRAM_OE_N. The memory controller takes control of the data port and the write 

cycle begins. Writing is a one clock cycle operation. So, the address and 

corresponding data should be presented to the SRAM at the same time with the 

assertion of oSRAM_BWE_N signal. The write operation is done in one clock cycle. 

However, a pre-writing state was added to the memory controller to make a 

handshaking procedure with the sending module. In this pre-writing state, the memory 

controller captures the first address and set the write port available signal 

(w_port_avai5) to high. When the w_port_avai5 is asserted high, the sending FIFO 

will start feeding data to the memory controller, because the w_port_avai5 was 

connected to the read increment (rinc) signal of the FIFO. N+1 clock cycles are 

required to write n locations in the memory. The write operation is finished when the 

FIFO is empty. This was done by connecting the read empty signal (rempty) of the 

FIFO to the write stop signal (w_stop5) of the memory controller. 
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3.1.4 The Processing Unit 

The processing unit was initially designed as shown in Figure 3.12. But it was 

improved later as will be described in section 3.2. This module consists of two input 

FIFOs that read the pixel data from left and right images, which were stored in 

memory by the camera interface module. The pixel data is then fed into two line 

buffers, which were originally designed as register-based line buffer. The purpose of 

using line buffer is to save memory bandwidth usage as will be described in sub-

section 3.2.3. Initially, the system was designed to implement SAD algorithm with 

3x3 pixels window and 32 pixels disparity range. So, the first line buffer (let‟s call it 

primary line buffer) has three outputs, equivalent to three lines on the input image. 

The primary line buffer has 1280 registers and is the same for both images. In Figure 

3.12, the primary line buffer is shown in the top right corner block. Data from the first 

line buffer‟s outputs is passed into a second register-based line buffer (secondary line 

buffer). The purpose of the second line buffer is to select a segment on a row of image 

data to be processed. The left secondary buffer has only three registers for each line 

(equal to the window size), while the right secondary buffer has 34 registers for the 

disparity range of 32 pixels. Figure 3.12 shows the left and right secondary buffer at 

the top left corner. When new data is fed into the line buffer and previous data is 

shifted to the left, it is similar as a window being moved from left to the right on the 

input image. 

The subtraction D[j][k], sum of absolute difference SAD[k], total similarity 

Sim[k] and comparators (CMP) are modeled as combinational logic circuit, shown at 

the lower block in Figure 3.12. where 0_≤_j_≤ 8 and 0_≤ k_≤_31. At every rising 

edge of the clock, a pixel is shifted to the next location in the left side of the register 

array and a new pixel is fed from the line buffer. 

L[i][k] <= L[k][i+1] i = 1,2,3 0 ≤ k ≤ 3 (3.5) 

R[i][k] <= R[k][i+1] i = 1,2,3 0 ≤ k ≤ 3 (3.6) 

A new pixel is fed from the FIFO to the beginning of the first line buffer. When a 

FIFO is empty, it will be filled with the successive pixels from the same row on the 



   

 

 

45 

 

image. The effect of the above actions is that the 3x3 window will slide from left to 

right on the left image, and the 3x34 pixels window will slide from left to right on the 

right image. 

 

Figure  3.12 The processing unit data path 

In Figure 3.12, D[j][k] is the absolute difference between two pixels. 

D[0+w][k] = |L1[w]-R1[k+w]| w = 0,1,2 (3.7) 

D[3+w][k] = |L2[w]-R2[k+w]| w = 0,1,2 (3.8) 

D[6+w][k] = |L3[w]-R3[k+w]| w = 0,1,2 (3.9) 

 0 ≤ k ≤ 31  
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There are 9x32 = 288 absolute subtractions being performed in parallel. The 

absolute differences are fed into the sum of absolute difference calculation. All 

SAD[k] calculations and comparisons are also done in parallel. 

SAD[k] = ∑ D[j][k] 0 ≤ k ≤ 31 and 0 ≤ j ≤ 8 (3.10) 

If the difference in intensity between two pixels is less than a threshold value T, 

the two pixels are considered similar. Users can set this threshold value through the 

switches on the FPGA board. Typically, T is set to 10. The number of similar pixels is 

added up for each window, having the value from 0 to 9.  
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These sums of absolute difference (SAD[k]) are compared to find the smallest 

value (min SAD[k]). The window on the right line buffer which produces 

min(SAD[k]) and max similar pixels (max(Sim[k])) is consider to be “matched” with 

the left window. Its corresponding displacement is the disparity value. The amount of 

displacement is written into the disparity image as pixel intensity. All of these 

operations are models as combinational logic circuit. The comparators are designed in 

binary tree. So, the level 1 comparison has 16 comparators, level 2 has 8 comparators 

and so on. There are five levels of comparison before the disparity value is found. It 

takes only one clock cycle to pass the data from the line buffers to the disparity 

register at the last comparator. 

3.2 Proposed Resource Minimization Techniques 

The important resources on the DE2-70 FPGA board includes logic elements, 

memory bandwidth, internal memory bits, dedicated multipliers and phase locked 

loop (PLL) circuits. In a depth-map system, logic elements and memory bandwidth 
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are the two most valuable resources. This section discusses the resource minimization 

techniques using different system architectures to save LEs and memory bandwidth. 

3.2.1 Minimization of Logic Elements 

In this section, three methods to minimize logic element usage are proposed. The first 

method is to implement depth-map architecture with single search direction instead of 

searching on both left and right direction to find the disparity match. The second 

technique is to use memory based line buffer to replace register based line buffer. The 

third technique to reduce the number of logic elements usage is by replacing the 

repetitive calculation with a register which store previously calculated result. This 

technique is also called the data reuse technique. 

3.2.1.1 Single Search Direction Method 

The disparity matching module uses large amount of resources. The design shown in 

Figure 3.12 uses approximately 69% the number of logic elements (LE) available in 

the Altera‟s Cyclone II FPGA. However, there is room for optimization. To the 

author‟s knowledge, most of the previous designs (if not all) take a window on an 

image as reference and make a search on both direction of the scan line on the second 

image [9, 11]. This is a waste of time if the system was implemented on general 

purpose processor and waste of resource if the system was implemented on hardware. 

As shown in Figure_2.3, the projection of A on the right image is shifted to the right 

compared to the projection of A on the left image for all position of A within the field 

of view of the camera. Thus, if we take the left image as reference, it is not necessary 

to search on the left side of the referent point on the right image. The system shown in 

Figure 3.12 takes the left image as reference and searches on the right direction of the 

right image only. With a disparity range of 32 pixels, this system has the actual search 

range equivalent to other designs with 64 pixels disparity range. Basically, it saves 

almost half of the resource usage for the same performance. Because with the 

disparity range reduces from 64 to 32 pixels, the number of subtractions required is 

reduced from (64+2)x3x3=576 to (32+2)x9=306 subtractions. The number of 
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comparators required is also reduced by the same percentage. In our actual system, 

the number of logic elements used is cut down from 33,482 LEs to 17,632 LEs. 

3.2.1.2 Memory Based vs. Register Based Line Buffer 

The design in Figure 3.12 uses four line buffers. Two primary line buffers have 1280 

registers each. The secondary line buffer of the left image has a block of 3x3 registers. 

And the secondary line buffer of the right image has a block of 3x34 registers. 

Registers are created using logic gates. Therefore, this method of designing the line 

buffer requires large number of logic elements (LEs) to create the registers for a long 

line buffer. Logic element is a precious resource on FPGA because it is very limited 

and it is useful for many purposes, such as creating combinational logic circuits, 

dedicated registers and memory. On the Altera‟s Cyclone II FPGA, there are 68,416 

LEs and 250 M4K RAM blocks with 1,152,000 memory bits available. The design 

shown in Figure 3.12, which has 3x3 pixels window size and 32 pixels disparity 

range, uses up to 46,933 LEs (69% of total LEs available). The two primary line 

buffers use 30,272 LEs, which is equivalent to 44% of the total LEs available. 

Meanwhile, it used only 13,120 dedicated memory bits (1% of memory bits 

available), mainly for the FIFO‟s memory and the Red component buffer in the 

camera interface module. Another way of designing line buffer is by using on-chip 

dedicated RAM blocks. The line buffer works as an 8x1280 memory block with 

sequential read and write accesses. The line buffer has one input write pointer and two 

output-read pointers as shown in Figure 3.14. The read and write pointers are 

increased at the positive edge of the clock if a pixel data is required by the disparity 

matching module. The first read pointer (rp0) is always 1280 locations behind the 

write pointer (wp) and the second read pointer (rp1) is 640 locations behind the write 

pointer. The third output of the line buffer is taken directly from the input. With the 

memory-based line buffer, it requires only 146 LEs for the read and write pointer 

instead of 30,272 LEs. However, it needs 40,960 dedicated memory bits to store pixel 

data (5% of available memory bit). Thus, we moved from using critical resource to a 

less critical one. Memory bit also require less chip area than a logic register. 
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The question here, why don‟t we use memory-based line buffer for the secondary 

line buffer also? It would save even more resource? Notice that a read pointer is 

required to access a location on the memory-based line buffer. For the secondary line 

buffer, all pixel data need to be read every clock cycle. Thus, if the secondary line 

buffer was designed as memory based, it would require (34+3)x3_=_111 read pointers 

to access these pixels. The pointer is made from registers (LEs) as well. Therefore, it 

will require even more LEs to make the read pointer than to store image pixel data. 

Implementing secondary line buffer using registers is more effective than using 

dedicated memory bits.  

3.2.1.3 Data Reuse Technique 

In Figure 3.12, D20 is the absolute difference of R12 and L12. So, a subtraction 

circuit was used to calculate D20. Similar for D10 and D00: 

D10 = |L11-R11|    ; D00 = |L00-R00| (3.13) 

But the value of L12 is shifted to L11 after one clock cycle and the value of R12 is 

shifted to R11 at the same time. So, the subtraction L11 – R11 has the same value as 

the subtraction of L12 – R12 at the previous clock cycle. It is not necessary to repeat 

the subtraction of the same values three times. Instead of using three subtractors to 

calculate D20, D10 and D00, two registers can be used together with only one 

subtractor for D20. 

D20 = |L12-R12|   

D10 <= D20; D00 <= D10; (3.14) 

This can reduce two third the number of subtractors. On the actual system, this 

step shows a reduction of 24.75% LE usage of the whole system. 
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3.2.2 System Improvement 

With the resource usage being minimized, there is extra resource on the Cyclone II 

FPGA for further improvement of system performance. The system in Figure 3.12 

was improved to 64 pixels disparity range and 5x5 pixels window size. The advantage 

of increasing disparity range is that it will reduce the minimum distance which the 

camera system is able to estimate the depth. In other words, the system can “see” 

closer objects. This is shown in equation (2.7). The drawback is the increasing of 

system complexity and resource usage. With the disparity range being doubled, it 

requires twice the number of registers on the right line buffer, from Ri[0] to Ri[65] 

(i=1,2,3), twice the number of absolute subtractors to find D[j][k] for j=2,5,8; 0≤ k≤ 

64. As in (3.14), it also requires two times the number of registers to store D[j][k] for 

j=0,1,3,4,6,7 and 0 ≤ k ≤ 64. The number of adders to calculate SAD[k] and Sim[k] is 

also increased by two times. On the comparison stage, only the number of 

comparators on the first level (level 1) was doubled. Other levels remain the same. 

However, one more level of comparison is required, making up a total of six levels. 

The critical path is slightly longer, thus, the max clock frequency is reduced. But the 

real-time requirement is still met. 

Increasing the window size from 3x3 pixels to 5x5 pixels makes the depth-map 

algorithm perform better on textureless area. It also increases the sensitivity of the 

comparators for Sim[k] since the resolution of Sim[k] is increased from 9 values to 25 

values. But, the algorithm will perform slightly worse on the intensity discontinuous 

regions (edges of objects). The system complexity was also increased. The primary 

line buffer was increased from two lines with 1280 locations to 4 lines with 2560 

locations. L[i][k] and R[i][k] are increased to 5 lines. The window of D[j][k] was 

expanded to 5x5 pixels. The adders in (3.10) and (3.12) become more complex 

because the number of terms in each adder increased from 9 to 25. The resource 

minimization technique in (3.14) shows greater advantage on a larger window size. 
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3.2.3 Minimization of Memory Bandwidth Usage 

Memory bandwidth is a crucial resource in image processing as it can degrade overall 

system performance. Memory contention is potentially a critical problem in many 

systems. In our design, only one SRAM chip with the capacity of 2 MB was used. We 

have implemented two types of line buffers, FIFO and a specialized memory 

controller to resolve memory contention. 

3.2.3.1 Line Buffers 

The first step that should be taken to reduce memory contention is by minimizing 

the memory bandwidth and the number of memory accesses required by the system. 

The disparity matching module was designed in such a way that it will work at the 

clock frequency of 10 MHz and calculate one disparity pixel every clock cycle. 

Because the window size is 5x5 pixels, 25 pixels are required for each window. Since 

the disparity range is 64 pixels, one window on the left image and 68 windows on the 

right image are required to calculate one pixel of disparity. Thus, the amount of data 

required in each clock cycle is equivalent to (68+1) x 25 = 1725 pixels. In other word, 

1.68 MB of data is required in a clock cycle or 16451 GB/s. However, each pixel was 

used several times in the calculation.  Pixels from the fifth to the 64th on the right 

image are used five times in five adjoining windows of one disparity calculation. The 

1st, 2nd, 3rd, 4th pixels and the 68th, 67th, 66th, 65th pixels were used 1, 2, 3 and 4 

times in the calculation, respectively. So, only 365 pixels are required from the two 

images. These 365 pixels were accessed 1725 times in a clock cycle.  

To take advantage of the data reuse, ten register-based line buffers were 

introduced (the secondary line buffer). These line buffers allow immediate access to 

any pixel in the line buffer at any time. Five line buffers of the left image store 5 

pixels each. And five line buffers of the right image store 68 pixels on each line 

buffer. In the next clock cycle, disparity value of the next pixel needs to be calculated. 

The new neighborhood pixels and search range is also shifted one pixel to the right on 

the same scan line. This was done on the line buffer, the pixel data was shifted one 

pixel to the left every clock cycle as shown in Figure 3.13. 
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Figure  3.13 Shifting pixel data on the secondary line buffer 

A pixel on the left image is used five times in five successive disparity 

calculations and a pixel on the right image is used 64 times in 64 successive disparity 

calculations. The line buffers store the previous pixel data. Therefore, among the 365 

pixels, there are only 10 new pixels from 10 lines are required every clock cycle.  

Also, data from previous rows can be used in the calculation of the next row of 

disparity. Each line is reused 5 times. For each image, a memory-based line buffer 

was used to store four rows of image pixels. The memory-based line buffer has one 

input and 5 outputs. It is actually an on chip memory block with one write pointer and 

five read pointers. The distance between two adjoining read pointers is 640 pixels, 

equivalent to one line on the image. When a pixel is read, the pointer advances to the 

next location. This is different with the register-based line buffer where there is no 

read/write pointer but the pixel data is shifted to the next register. Outputs of the 

memory-based line buffer are sequential, that means, only one pixel can be read from 

each output at a time. With the memory-based line buffer (the primary line buffer), 

the number of pixels required every clock cycle is reduced from 10 pixels to only two 

pixels per clock cycle, one for each image. Figure 3.14 shows the two types of line 

buffers being used together to minimize memory bandwidth required. The right side 

of Figure 3.14 represents the primary line buffer, which was implemented as memory. 

The left side of figure 3.14 shows the secondary line buffer. It is connected to the 

primary line buffer through 3 read ports (rptr1 to rptr3). The reason of using two 

types of line buffers is because of the resource consumption as explained in 

subsection 3.2.1. 
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Figure  3.14 Two types of line buffer 

Furthermore, four 8-bit pixels are combined and written into one 32-bit memory 

location. Thus, each memory access can read four pixels. The number of memory 

accesses required by the input of the disparity matching module is reduced to only 2/4 

= 0.5 accesses/clock cycle.  

3.2.3.2 Specially designed memory controller 

Although the memory bandwidth requirement was greatly reduced by using line 

buffers, memory contention is still a major problem. A naive approach would design 

the memory controller with a read/write-request input signal. The memory controller 

will be idle while waiting for other modules to send their access request signals to 

initiate read/write operations. This naive approach suffers from memory contention 

when there are two or more requests with high priority issued at the same time. In our 

system, the two cameras keep feeding data into the FIFOs every clock cycle of the 

camera clock. The camera clock is generated by a phase locked loop (PLL) inside the 

camera itself. If the camera clock is stopped, several frames will be lost. Therefore, 

the camera FIFOs must be cleared before both of them overflow. The VGA controller 

needs to be supplied with continuous data for a correct display. The worst case 

happens when the two camera FIFOs are full and the VGA FIFO is empty at the same 
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time, because these three modules cannot wait for each other. The disparity matching 

module has lower priority since it may be stopped. In our approach, we used a self 

initiate memory controller. This memory controller always tries to fill/clear the FIFOs 

without any request from other modules. The FIFOs are examined sequentially. The 

one needs to be filled is filled up before it underflows and the one that needs to be 

cleared is cleared out before it overflows. The technique works as long as the external 

memory bandwidth is larger than the total memory bandwidth required by all modules 

plus overhead. 

 

Figure  3.15 State machine of the multi-port memory controller. 

Figure 3.15 shows the state machine of this memory controller. For our system, 

with the line buffers implemented, the two cameras require a peak memory bandwidth 

of 48x2 = 96 MB/s, the processing unit requires 30 MB/s and the VGA controller 

module requires 28 MB/s memory bandwidth. The total required memory bandwidth 

is 96 + 30 + 28 = 154 MB/s. The memory controller needs two clock cycles to initiate 

a read operation and one clock cycle to initiate a write operation. Each read/write 

burst can fill/clear a FIFO of 32 locations long. Thus, the overhead is approximately 

2/32 = 6.3%. The external memory chip must have a minimum bandwidth of 154 x 

1.063 = 163.7 MB/s. A static RAM (SRAM), which can deliver 200 MB/s at clock 

frequency of 50 MHz, was used to ensure no memory contention. 
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Thus, to resolve the memory contention, register based and memory based line 

buffers were used to minimize the amount of required memory bandwidth. A 

specially designed memory controller was used to avoid concurrent multiple access 

requests. 

3.3 Summary 

A stereo vision system was designed with two cameras acting as inputs. The cameras 

were configured to produce a frame size of 640x480 pixels. A detail output timing 

and color pattern of the camera was described in section 3.1.1. The camera interface 

module starts converting the color image into grayscale image when the second line 

of the image (Green and Blue component) is fed from the camera.  FIFOs and line 

buffers were used to minimize external memory bandwidth requirements and to 

transfer data across multiple clock domains. When data is passed from a clock domain 

to the other, metastability phenomenon causes system failure. Metastability rate is 

proportional to the clock frequency of the two clock domain [29]. Thus, FIFO is 

needed to transfer the data safely. Synchronization register chain was used to avoid 

metastability of the FIFO‟s control signals. The line buffer reduces the memory 

bandwidth requirement since it allows data of the recent used pixels to be used several 

times in the FPGA. Two types of line buffers were implemented with different uses. If 

only few (3 to 5) pixels in a line buffer are required in a clock cycle, memory based 

line buffer shows great resource saving advantage. When all pixels in the line buffer 

are required every clock cycle, a register based line buffer shows better efficiency. In 

our system, the FIFO also acts as a short line buffer. In between the memory 

controller and the VGA controller, there is no dedicated line buffer but the FIFO 

behaves as a small data pool. For the disparity processing module, the SAD depth-

map algorithm was implemented. The key idea of the algorithm is to find the 

maximum point of the total similarity function and minimum point of the total 

difference function with regard to disparity value. Disparity value is inversely 

proportional to the distance between camera system and the object. Resource 

minimization techniques were employed in five different hardware architectures. To 

minimize resources usage, line buffers were changed from register based line buffer 
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to memory based line buffer whenever possible. The repetitive subtractions were 

replaced by registers which store previous result for subsequent uses. The memory 

controller was specially designed for image processing tasks. It reads the image data 

and feeds into FIFO automatically without initiate signal from the receiving module. 

Thus, memory contention is eliminated. 

 

 

 

 

 

 

 



 

  

CHAPTER 4 

RESULT AND DISCUSSION 

The disparity matching module was implemented with five different architectures. 

The advantages and disadvantages of these architectures are discussed. Results in 

term of memory bandwidth usage, logic element used and internal memory bits usage 

are described. Experimental results were taken to demonstrate the functionality the 

proposed system. These architectures are compared in term of resource usage, speed 

(frame rate), maximum frequency and timing analysis. Comparison is made between 

the five architectures implemented in this research, and between our architecture and 

the other systems discussed in the literature review. Because the SAD depth-map 

algorithm was not modified, our system maintains the same image quality as other 

systems implementing the same algorithm. 

4.1 Five Implemented Architectures 

In overall, the system consists of two cameras connected to two camera interface 

modules. Each of them is then connected to a FIFO before transferring data to a 

memory controller (as shown in Figure_3.1). Image data is stored in an external 

SRAM chip. The processing unit requests data from the memory and generates 

disparity result. Output disparity image is displayed on a VGA monitor. The 

difference between our five architectures is in the processing unit, where the resource 

minimization techniques were implemented. 
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4.1.1 The first architecture 

The implementation of the first architecture was described in chapter 3. The first 

architecture performs SAD depth-map algorithm for the window size of 3x3 pixels, 

32 pixels disparity range. The processing unit of this architecture was explained in 

sub-section_3.1.4. An illustration of the processing unit is shown in Figure 3.12. 

In figure 3.12, the arrow from A1 to A0 indicates that data is shifted from register 

A1 to register A0. On the secondary line buffer (top right block), data is shifted from 

register L12 to L11 and then to L10. The first architecture was implemented without 

resource minimization techniques. It uses registers for both primary and secondary 

line-buffers. The repetitive subtractors were not replaced with registers. Therefore, it 

takes the large number of logic elements compared to the other four architectures for a 

relatively small window size and small disparity range. The whole design uses 46,933 

LEs, which is 69% the total logic element available on the Altera‟s Cyclone II FPGA. 

The two primary line buffers (each line buffer contains 3 lines of the image) use 

30,275 LEs (44.24% available LEs). The disparity combinational logic block uses 

14,471 LEs (21.15%) and approximately 2000 LEs in other modules. Among the 

14,471 LEs used in the disparity module, a large part of it is used for the secondary 

line buffer. Because the secondary line buffer is inside the disparity module, Quartus 

II software does not have a reliable tool to calculate the number of LEs used by the 

secondary line buffer separately. Beside the logic elements, this architecture also uses 

13,120 memory bits (about 1% of available memory bit) and one out of four dedicated 

phase locked loop circuits (PLL). The memory bits were used in the FIFOs and the 

Camera interface module to store the Red color pixel value as explained in subsection 

3.1.1. Only one phase locked loop circuit was used to generate three different 

frequency clock signals for the disparity matching module, the SRAM controller 

module and the camera interface module. The maximum allowed clock frequency of 

the disparity matching module is 28.72 MHz. But it requires that the disparity 

matching module work at only 10 MHz for the system to achieve real-time 

performance. If the clock frequency is set to 28.7 MHz, this system can achieve the 

frame rate of more than 80 fps.  
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Figure 4.1 is one of the two images taken by the cameras.  

 

Figure  4.1 Input image with object at 2 meters 

 

Figure  4.2 Disparity image of object calculated by the first architecture 

In the experiment, the object (the tripod with a webcam and a piece of paper on it) 

was placed approximately more than 2 meters away from the system‟s cameras. The 

Object Textureless 
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Occlusion 

area 
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object has to be placed at that distance because the first architecture has a disparity 

range of 32 pixels. According to equation (2.7), small disparity range (dmax) results in 

large minimum visible range (ABmin). Experiment shows that the system starts giving 

correct disparity value when the object is more than 2 meters away from the cameras. 

Figure 4.2 shows that the system is able to calculate the disparity image. In Figure 

4.2, the webcam is brighter than the background since it is closer to the cameras. In 

other word, it has higher disparity value than the background. The camera case and 

the webcam appear clearly on the resulting image at higher intensity than the 

surrounding area. Thus, we can conclude that the system is working. 

There is some exception of the disparity value on the resulting image. It can be 

noticed that the input image contains also textureless and occlusion area. Textureless 

area is an area larger than the window size where there are no changes in gray value 

across a horizontal line. In other word, there is nothing in that area. Because the 

depth-map algorithm works by comparing the gray value on a horizontal line of the 

images, if the gray values are identical on a horizontal line, the depth-map algorithm 

is unable to estimate the disparity value. This is an inevitable limitation of the 

algorithm. In Figure 4.2, the textureless areas are filled with black. Because two 

cameras look at a scene from two different angles, there will be some areas which 

appear in one camera but not in the other camera. Those areas are called occlusion 

areas. Occlusion area always occurs beside a front object. Since it doesn‟t appear on 

both cameras, the depth-map algorithm is unable to calculate the depth for it. 

4.1.2 The second architecture 

When the distance from the camera to the scene is less than the minimum visible 

range, the system cannot produce correct disparity value. Thus, it is necessary to 

increase the disparity range so that the ABmin can be reduced. But the first architecture 

uses 69% of the total logic element available on the Cyclone II FPGA. When we tried 

to implement a system with 64 pixels disparity range, the total resource requirement 

was greater than the available resource. Therefore, it is needed to design a better 

architecture that minimizes resource usage before increasing disparity range. The 
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second architecture is an attempt to minimize resource usage. To achieve this goal, 

the second system was implemented based on the first architecture. The block 

diagram of this system is the same as the first architecture, which is shown in Figure 

3.1. Except the primary line buffer was implemented using dedicated memory bits 

instead of register. The primary line buffer of the first architecture is shown in Figure 

4.3 and the primary line buffer of the second architecture is shown in Figure 4.4.  

 

Figure  4.3 Register based primary line buffer 

Note that in Figure 4.3, data is shifted from the right to the left of the line buffer 

and new data is fed from the FIFO to the right most register. In Figure 4.4, the 

primary line buffer was designed as a dual port memory block, which is accessed 

using one write pointer and three read pointers. Instead of shifting data from A1 to 

A0, fixed memory locations are used. The read pointer will advance to the next 

location after a read operation.  

 

Figure  4.4 Memory based primary line buffer 
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Compilation report shows that the line buffer module uses only 146 logic cells 

(0.21% LEs available) for the read/write pointers instead of 30,275 LEs (44% LEs 

available) of the first architecture‟s line buffer. The secondary line buffer and the 

disparity combinational logic claim 14,604 logic elements, which is same as the first 

architecture. So, the total LEs used is 17,632 LEs, which is a reduction of 62.43% 

compared to the first architecture. As a replacement for the logic elements in the line 

buffer, 40,960 bits (3.6%) of dedicated memory were used. The whole system uses 

54,080 memory bits, which is equivalent to 5% of the total internal memory. This is 

an increase of 312% compared to the first architecture. However, memory bit is a less 

critical resource than the logic element. Thus, it makes sense to use memory bits 

instead of logic elements to design the primary line buffer. As reported by Quartus II 

compilation software, the maximum allowed clock frequency for this architecture is 

13.8 MHz. Thus, the system has the potential to process 41 frames per second and 

meet the real-time requirement. Since there is no change in the depth-map algorithm 

compared to the first architecture, the second system produces the same image result 

as the first one. The ABmin is still 2 meters and any object with a distance closer than 

that will give incorrect disparity value. 

4.1.3 The third architecture 

When the resource is minimized with the memory based line buffer as discussed in 

section 4.1.2, there is sufficient resource to implement a SAD algorithm with larger 

disparity range. The third architecture was implemented based on the second 

architecture with the disparity range increased from 32 pixels to 64 pixels and the 

window size remains 3x3 pixels. The processing unit of this architecture is shown in 

Figure 4.5. Compared to the first architecture in Figure 3.12, the right secondary line 

buffer has been changed from 34 registers (R1_0 to R1_33) to 66 registers (R1_0 to 

R1_65). The number of absolute subtractors is also increased by two times, from Dj_0 

to Dj_63 instead of Dj_0 to Dj_31 (0 ≤ j ≤ 8). And the number of SAD and Sim is 

also increased by two times. 



   

 

 

63 

 

 

Figure  4.5 The processing unit data path of the 64 pixels disparity range architecture 

According to equation (2.7), increasing the disparity range dmax reduces the 

minimum visible range_ABmin. Thus, the system can estimate disparity value for 

closer objects. With the disparity range rises to 64 pixels, the minimum visible range 

was reduced to 92 cm (approximately 2 meters for the 32 pixels disparity range 

architecture). However, increasing the disparity range escalates the computational 

power requirement. The system demands more resources and become more complex. 

In addition, the maximum permitted clock frequency is trimmed down because of the 

longer critical path. Compilation report shows that the system requires a total of 

33,482 LEs, which is an increase of 89.9% compared to the second architecture. Since 

the FIFOs and line buffers are unchanged, the total memory bit usage is the same as 
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the second architecture. The maximum allowed clock frequency for the processing 

unit is 12.17 MHz. This sets the maximum frame rate of the system to 39 fps, which 

satisfies the real-time requirement.  

Experiment was set up with the object closer to the cameras than for the first 

architecture. The tripod (Object 1) is 1.06 meters from the camera and the mouse pad 

(Object 2) is 1.56 meters from the camera. Figure 4.6 shows an input image for this 

system. 

 

Figure 4.6. Input image with object at 1 meter 

With the disparity range increases to 64 pixels, the system is now able to estimate 

the depth at a close distance. The term ABmin in equation (2.7) has been reduced. In 

Figure 4.7, the Object 1 has high disparity value; it appears much brighter than the 

Object 2. For another comparison, a set of images has been taken with two subjects. 

In Figure 4.8, the person A was standing about one meter from the cameras and the 

person B was standing approximately 1.8 meters from the camera. It can be observed 

from Figure 4.9 that the disparity image of the person A is brighter than the person B. 

Object 2 Object 1 
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Disparity value of some areas in the background was not calculated correctly because 

the background consists of many large textureless, colorless areas. 

 

Figure  4.7 Disparity image of object calculated by the third architecture 

 

Figure  4.8 Input image with subjects at 1 meter and 1.8 meters 

Person A Person B 
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Figure  4.9 Disparity image of subjects calculated by the third architecture. 

4.1.4 The forth architecture 

When image processing is implemented on FPGA, it is common that the result from 

one calculation is used in other similar calculations of the next pixels. If the is used 

several times in many calculations, the technique is called data reuse. The forth 

architecture was implemented with data reuse technique to further minimize resource 

usage of the third architecture. It was designed based on the third architecture with the 

repetitive subtractors for D[j][k] calculations being replaced by shift registers 

(equation (3.14)). The calculation is done for the first pair of input window and the 

result is passed to a chain of two registers after a clock cycle to avoid repeating the 

same calculation. Figure 4.10 shows the combinational logic block of the third 

architecture and Figure 4.11 shows the combinational logic block of the fourth 

architecture. 
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Figure 4.10 Combinational logic block without data reuse technique 

In Figure 4.10, each D[j][k] is an eight-bit subtractor. In Figure 4.11, two out of 

three subtractors in a row have been replaced by registers and data is shifted from the 

first subtractor to the register after each clock cycle. 

 

Figure 4.11 Combinational logic block with data reuse technique 

Total logic element usage was reduced to 25,195 LEs.  This is a reduction of 

24.75% LEs compared to the third architecture. The maximum clock frequency is 

reduced to 11.69 MHz and the frame rate is decreased to 37 fps. There is no 

difference in the result disparity image since the technique only store the previous 

subtraction result instead of recalculating it. 
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4.1.5 The fifth architecture 

As shown in Figure 4.2, Figure 4.7 and Figure 4.9, depth-map algorithm does not 

perform well on textureless areas. When the textureless area is larger than the window 

size, it cannot calculate the total similarity and total difference effectively. This 

problem is more pronounced on system with high resolution image and small window 

size. But if the window size is too large, it will include many textures with different 

depth and also occlusion areas. Performance of the system at the edge of the objects 

will be degraded. Thus, the window size should not be too small compared to the 

textureless area and not too large compared to the size of a texture. The ideal 

condition to generate correct disparity image is to process high resolution images with 

window size relatively equal to the texture size. The fifth architecture tries to increase 

the window size from 3x3 pixels to 5x5 pixels for comparison. It is the improved 

version of the forth architecture with window size increased to 5x5 pixels. The 

disparity image was calculated in a coarser level. When the window size is increased 

to 5x5 pixels, five lines of image data need to be stored in the line buffer. The number 

of subtractors and the size of the combinational logic circuit are also increased 

dramatically. For the 3x3 pixels window architecture, only nine subtractors are 

required for each pair of input windows. But 25 subtractors are required for each pair 

of input windows in the 5x5 pixels window architecture. Thus, the number of logic 

element was increased from 25,195 LEs in the fourth architecture to 54,338 LEs in the 

fifth architecture. In percentage, the number of LEs has risen by 115.7%. Because five 

lines of image data were stored in the line buffer, the number of required memory bits 

rises from 54,144 bits to 275,328 bits, which is an increment of 408%. The larger 

combinational logic circuit of the 5x5 pixel window architecture has reduced the 

maximum permitted clock frequency of the disparity processing unit to only 11.01 

MHz. The system can achieve a frame rate of 35 fps. For the actual implemented 

system, the clock was set at 10 MHz and the frame rate was 30 fps. If a higher frame 

rate is required by the application, it is necessary that the critical path is broken into 

shorter path with intermediate registers in between. This is the pipelining technique, 

which will speed the system up with the cost of some additional resource and a 

carefully designed controlling/handshaking signal. Pipelining system is out of the 

scope of this research. 
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For the experimental result, the input images are still the same as in Figure 4.6 and 

Figure 4.8. The resulting images are shown in Figure 4.12 for input image with object 

and Figure 4.13 for input image with subjects. 

 

Figure  4.12 Disparity image of object calculated by the fifth architecture 

 

Figure  4.13 Disparity image of subjects calculated by the fifth architecture. 
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Large window size architecture works well with high resolution image. It is a need 

for future research to discuss about high resolution, large window size depth-map 

system. However, the image size in our system is 640x480 pixels, which is relatively 

small as the cameras being used are wide angle cameras. Thus, the size of a texture is 

relatively small compare to the window size. Therefore, the affect of large window 

size in image quality is not much significant. Changing from 3x3 pixels window to 

5x5 pixels window largely increases the resource usage, as shown in Table 4.1. For 

the 5x5 pixels window architecture, the percentage of resource reduction when 

replacing repetitive subtractors with register (equation (3.14)) would be higher. In 

other word, the technique is more effective on large window architecture. But, there is 

not enough resource on the Altera‟s Cyclone II FPGA to implement a system without 

resource minimization to compare with the fifth architecture. 

4.1.6 Discussion 

In term of memory bandwidth requirement, the memory bandwidth is so critical that 

the system wouldn‟t work without the bandwidth minimization techniques described 

in section 3.2.2. Thus, an optimized memory access scheme was used for all five 

architectures in this thesis. The memory bandwidth requirements are the same for all 

architectures, which equals to 163.7 MB/s as calculated in section 3.2.2 and it is 

independent of window size and disparity range.  

The differences between these architectures are in the design of line buffers, 

disparity combinational logic circuit, size of the window and the disparity range. The 

first architecture implement disparity algorithm with 3x3 pixels window size, 32 

pixels disparity range and register based line buffer. The second architecture change 

the primary line buffer from register based to memory based line buffer to save 

resources. The third architecture increases the disparity range from 32 pixels to 64 

pixels to reduce the minimum visible range. The fourth architecture implements data 

reuse technique by replacing repetitive subtractors with registers to minimize resource 

usage of the third architecture. The fifth architecture increase window size from 3x3 

pixels to 5x5 pixels for comparison.   
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Table 4.1 compares the five architectures implemented in this research. The 

comparison is made for window size, disparity range, type of line buffer, subtractor-

register replacement, resource usage and speed. 

Table 4.1 Resource usage of different architectures 

 

Figure 4.14 visualizes the LEs usage of five architectures. It can be observed that 

when a resource minimization technique is applied, the number of LEs usage drops 

(the second and fourth architecture). And when the window size or disparity range 

increases, the system demands more logic elements. 

 

Figure  4.14 Logic element used in each architecture 
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Figure  4.15 Internal memory bit usage 

 

Figure  4.16 Frame rate comparison between five architectures 

As shown in Figure 4.15, the amount of internal memory bit usage depends on the 

window size. When the window size changes from 3x3 pixels to 5x5 pixels, the length 

of the primary line buffer increases. Therefore, memory bit usage is largely increased. 

In Figure 4.16, the frame rate is slightly reduced when the system become more 

complex. 
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The fourth architecture is recommended over other four architectures because it 

has large disparity range, uses a minimized amount of resource and produces a 

resonable image quality. The large disparity range allows it to have shorter minimum 

visible range. The minimized resource techniques let it work in a co-operation with 

other image processing algorithms on a single FPGA without resource constrain. 

4.2 Comparison between proposed architecture and other works 

Table 4.2 summarizes the characteristic of the fifth architecture and other system 

implemented by Pascal Fua [9], Divyang K. Masrani [11], Bongsoon Kang [3], D. 

Chaikalis [22], Stefania Perri [6] and Dustin Lang [26]. In table 4.2, we are comparing 

between our architecture and the first three architectures [3, 9, 11], which implement 

the same SAD depth-map algorithm with similar window size and disparity range. 

The last three architectures implement different algorithms. They are provided for 

additional information. As shown in Table 4.2, our system was implemented on a 

DE2-70 development board, which has an Altera‟s Cyclone II FPGA. According to 

Altera‟s classification, Cyclone II is a low cost FPGA [31]. That means, our 

computation platform is much cheaper, slower and has less logic elements than other 

FPGAs listed in Table 4.2. Especially compared to Divyang‟s work, where he used 

four Stratix FPGAs connected to each other. Stratix is considered high end, expensive 

FPGA. For Pascal Fua, he used a work station and a DSP, which are of course much 

slower than FPGA. Therefore, he achieved the processing speed of only 4 frames per 

minute. 
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Table 4.2 Comparison between proposed system and other systems 

 

Our frame size is comparable with other works. Only Chaikalis used larger frame 

size, which is 1024x768 pixels. Our window size and disparity range are on average. 

Only Bongsoon Kang and D. Chaikalis used larger window size. However, increasing 

the window size does not improve the image quality significantly as shown in Figure 

4.9. Besides, it makes the system performance worse at the edge of objects. Increasing 

disparity range reduces the minimum visible range as shown in equation (2.7) but 

with the cost of large amount of resources. As shown in table 4.3, most of the works 

used disparity range of 32 to 64 pixels. 

We achieved the fastest processing speed among these works. Processing speed is 

important in real-time applications such as robotic navigation and camera 

surveillance. Figure 4.17 illustrates the difference between the processing speeds of 

these systems. 
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Figure  4.17 Frame rate of different systems 

In Figure 4.17, we compared our fifth architecture with other systems. The fifth 

architecture is actually the slowest architecture among our five designs. The fourth 

architecture achieves the processing speed of 37 fps and the third one is 39 fps. 

4.3 Summary 

In this chapter, results of five different architectures implemented in this research 

were discussed. Comparing between these architecture, the first architecture has the 

highest processing speed but produces poor image quality because the subjects were 

closer to the camera than the minimum visible range. The resource usage is most 

inefficient in the first architecture. Image quality and efficiency of resource utilization 

was improved through the second to fifth architecture. The fifth architecture 

implemented the depth-map algorithm with the largest window size, largest disparity 

range and most efficient resource usage. All resource minimization techniques were 

applied on this architecture. In comparison with other works in the literature, our 

system was implemented on the cheapest and slowest FPGA. It has average image 

size, window size and disparity range but achieves the fastest processing speed. 

  

0

5

10

15

20

25

30

35

40

Proposed 
system

D. 
Chaikalis

S. Perri D. Lang Pascal 
Fua

D. K. 
Masrani

B. Kang

Frame rate

Frame rate



   

 

 

76 

 

 

 

 

 



 

  

CHAPTER 5 

CONCLUSION 

Stereo vision is part of low level image processing tasks. The computational intensive 

property makes it difficult to be implemented on general purpose processor or DSP. 

FPGA is the best choice to implement depth-map algorithm for research and testing 

purpose because it offers high parallel processing speed as well as reprogrammable 

ability. When depth-map algorithm is implemented on FPGA, resource limitation of 

FPGA is an issue. To overcome this problem, either the depth-map algorithm or the 

system architecture needs to be modified. 

In this thesis, a design of a stereo vision system was presented. The system was 

implemented with two resource minimization techniques and five different 

architectures. The objective of minimizing resource usage without modification of 

depth-map algorithm was achieved. Real-time processing speed was achieved. 

On the designing stage, the fixed optical axes camera calibration method was 

chosen over the rotatable optical axes system. The original SAD depth-map algorithm 

was used. The algorithm strives to find the maximum of similarity function and the 

minimum of difference function. From there, it gets the corresponding disparity value. 

The system was implemented on an Altera‟s DE2-70 development board and using 

Verilog hardware description language. A special multi-ports memory controller was 

designed which effectively eliminate memory contention. To transfer data between 

different clock domains, FIFO was used. The primary line buffer using dedicated 

memory bits proved to be more resource saving than a register-based line buffer. For 

the secondary line buffer, the register based line buffer uses less resource and is 

simpler than a memory based line buffer. The disparity matching module was 

designed with five different architectures to evaluate the resource usage and 

performance. The resource usage efficiency is better in the second architecture
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compared to the first architecture because the memory based line buffer was 

implemented. And it is better in the fourth architecture compared to the third one 

since the data reuse technique was implemented. 

In the disparity matching module, some of the absolute subtractions are repeated 

several times after each clock cycle. Therefore, a memory unit was used to store the 

result of the previous subtractions to minimize recalculations, which uses the logic 

element unnecessarily. Substituting the subtractors with a register to store the 

previous calculation results significantly reduces the logic elements used and it can be 

applied not only for depth-map processor system but also for other image processing 

systems. The method is more efficient if applied on complex systems such as disparity 

system with multi-scale, multi-dimensional disparity calculation. Increasing the 

disparity range will reduce the minimum visible range of the system but on the 

expense of resource requirement and system complexity. Increasing the window size 

makes the algorithm perform better on the textureless area but it degrades the 

performance at the edge of objects and requires larger amount of resources. 

The depth-map system presented in this thesis proves to be a working prototype 

with minimized resource usage. It was implemented on a low-end FPGA, which is 

Altera‟s Cyclone II. The disparity matching module achieves real-time performance 

of 30 fps. It produces 295 MPDS for the 32 pixels disparity range architecture and 

590 MPDS for the 64 pixels disparity range architecture. The clock frequency of the 

disparity module is only 10 MHz. That implies, the systems processing speed can be 

improved if a higher frame rate is required by the application. To improve the system 

speed, it is necessary that the pipelining technique is utilized. In comparison with 

other work in the literature, our system has average complexity in term of image size, 

window size and disparity range. It achieves the highest processing speed with the 

least amount of resources.  

It is recommended that further work implements pipelining technique to further 

improve the processing speed. The work done in this research uses a low quality 

camera which has low signal to noise ratio, the resulting image has a lot of noise. 

Therefore, we recommend that further works use better cameras and a noise reduction 

circuit if possible. The depth-map algorithm is a low level image processing 
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algorithm; it cannot work alone in a marketable vision system. Thus, this architecture 

should be included in a more complete vision system.  
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