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ABSTRACT 

Fischer-Tropsch synthesis (FTS) has received considerable attention as it offers 

alternative route to produce liquid fuels and chemicals from abundant energy sources 

other than crude oil such as natural gas, coal, and biomass. The objective of this work 

is to synthesize, characterize and study the performance of supported iron (Fe) 

nanocatalyst with Fe particle less than 30nm in Fischer-Tropsch synthesis. Supported 

Fe nanoparticles have been formulated using impregnation and precipitation methods. 

Fe nanoparticles loading (3, 6, 10, 15 wt %) were deposited on silica (SiO2) and 

alumina-silica (Al2O3-SiO2) supports. The effect of alkali promoters such as 

potassium (K) and copper (Cu) on the physicochemical properties of the catalyst has 

been investigated. The physicochemical properties of the catalysts were studied using 

N2 physical adsorption, field emission scanning electron microscopy (FESEM), 

transmission electron microscopy (TEM), X-ray diffraction (XRD), and H2 

temperature-programmed reduction (TPR). The FTS performance of the synthesized 

catalysts was examined in a fixed-bed microreactor at atmospheric pressure and 

various reactant ratio (H2/CO), temperature, and space velocity. The size of Fe 

nanoparticle was affected by the Fe loading, synthesis technique, and the type of 

catalyst support. More uniformly distributed and smaller particle size was obtained at 

lower Fe loading. The 6%Fe/SiO2 synthesized via the impregnation method had Fe 

average particles size of 8.6±1.1 nm, as measured by TEM. It resulted in CO 

conversion of 54% and C5+ selectivity of 20% at 523K, 1.5H2/CO v/v ratio, and 3L/g-

cat.h. Under the same reaction conditions, 6%Fe/SiO2 prepared by precipitation 

method with Fe average particles size of 12.8±4.2 nm resulted in CO conversion of 

45% and C5+ selectivity of 8%. The CO conversion trend correlated to the size of Fe 

nanoparticles where the results show that catalysts with average particles size less 

than 9 nm yielded in CO conversion >50% as well as higher selectivity of C5+ and 

olefins, and lower selectivity for light hydrocarbons (C1-C4) compared of those of 

larger particles.     
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ABSTRAK 

Sintesis Fischer-Tropsch telah menerima banyak tumpuan kerana ia menjanjikan satu 

langkah alternatif untuk menghasilkan bahan-bahan api dalam bentuk cecair dan juga 

bahan-bahan kimia daripada sumber-sumber tenaga yang banyak selain minyak 

mentah seperti seperti gas asli, arang batu dan biomas. Objektif penyelidikan ini ialah 

untuk menghasilkan dan mencirikan mangkinnano ferum tersokong serta mengkaji 

aktiviti mangkin yang membunyai saiz zarah Fe kurang dari 30 nm dalam sintesis 

Fischer-Tropsch. Zarahnano ferum yang disokong telah diformulasikan melalui 

kaedah-kaedah penyatuan dan mendakan. Zarahnano ferum mengandungi (3, 6, 10, 15 

berat %) telah dihasilkan di atas penyokong-penyokong silika (SiO2) and alumina-

silika (Al2O3-SiO2). Kesan pembantu-pembantu alkali seperti kalium (K) dan kuprum 

(Cu) terhadap sifat-sifat fizikalkimia mangkin turut diuji. Sifat-sifat fizikalkimia bagi 

mangkin-mangkin telah dikaji dengan menggunakan penjerapan fizikal nitrogen, 

mikroskopi pengesanan elektron medan pemancaran (FESEM), mikroskopi transmisi 

elektron (TEM), tenaga pembelauan sinar-X (XRD) dan program penurunan suhu 

(TPR). Aktiviti FTS bagi mangkin-mangkin yang dihasilkan telah diuji dalam satu 

mikroreaktor lapisan tetap pada tekanan atmosfera serta nisbah bahan suapan 

(H2/CO), suhu dan kelajuan ruang yang berbeza. Kandungan ferum, kaedah sintesis 

dan jenis penyokong mangkin mempengaruhi saiz zarahnano ferum. Pengagihan yang 

lebih seragam dan saiz zarah yang lebih kecil telah didapati pada kandungan ferum 

yang rendah. Mangkin 6%Fe/SiO2 yang dihasilkan menggunakan kaedah penyatuan 

mempunyai purata saiz Fe 8.6±1.1 nm bardasarkan kajian TEM. Ia telah 

menghasilkan penukaran CO sebanyak 54% dan pemilihan C5+ sebanyak 20% pada 

523K, nisbah 1.5H2/CO v/v, dan 3L/g.cat.h. Dalam keadaan-keadaan yang sama, 

mangkin 6%Fe/SiO2 yang dihasilkan melalui kaedah pemendakan mempunyai purate 

saiz Fe 12.8±4.2 nm menunjukkan penukaran CO sebanyak 45% dan pemilihan C5+ 

sebanyak 8%. Corak penukaran CO didapati berhubung kait dengan saiz zarah-zarah 

nano ferum dimana keputusan-keputusan menunjukkan mangkin dengan purata saiz 

zarah kurang dari 9 nm menghasilkan penukaran CO >50% dan juga tahap pemilihan 



 

 

ix 

 

C5+ dan olefin yang lebih tinggi serta tahap pemilihan yang rendah untuk hidrokarbon 

yang ringan (C1-C4) berbanding dengan hasil dari mangkin-mangkin yang mempunyai 

zarah-zarah yang lebih besar. 
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CHAPTER 1 

Introduction 

1.1    Introduction 

The rapid depletion of the world liquid fuel reserves and the dwindling of petroleum 

reserves stimulated the interest to find new routes to hydrocarbon feedstock. Finding a 

suitable way to exploit world’s abundant resource other than crude oil has attracted 

considerable attention in recent years. Several synthetic routes have been existed and 

one method of accomplishing the goal is via the Fischer-Tropsch synthesis (FTS). 

This process was first used in Germany in 1923 for the production of liquid and 

gaseous hydrocarbon fuels, such as gasoline or gas oil, and it was named after the 

German chemists, Franz Fischer and Hans Tropsch. FTS has been considered as a 

promising route for the production of clean transportation fuels and chemical 

feedstock from synthesis gas, a mixture of predominantly CO and H2. Thus, FTS also 

contributed in preserving our environment and in the diversification of our resources. 

Additionally, FTS has two unavoidable characteristics: the production of a wide range 

of hydrocarbon products (olefins, paraffin, and oxygenated) and the liberation of a 

large amount of heat from the highly exothermic synthesis reactions [1].  

FTS can be based on several synthesis gas feedstocks and it has expanded to 

include biomass, coal, and natural gas. Synthesis gas can be synthesized from a 

carbonaceous feedstock, where the only essential requirement for the feed is that it 

has to contain carbon as well as hydrogen to increase the efficiency to produce the 

desired products [2]. Coal and natural gas can be converted into synthesis gas by 

either partial oxidation or steam reforming processes. The conversion of coal to 

synthesis gas is called gasification while for the case of natural gas it is known as 

methane reforming process. The H2/CO ratio of the synthesis gas obtained from these 

two sources is different. The syngas produced from coal has a much lower H2/CO 
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ratio than the one produced from the natural gas. The difference in H2/CO ratio 

between these two resources leads to production of different yields of desired 

hydrocarbon products [3]. Due to the ability of applying different feedstocks in the 

Fischer-Tropsch process, FTS has been considered as a part of the biomass to liquid 

(BTL), coal to liquid (CTL), or gas to liquid (GTL) technologies.  

Generally, there are four main steps in these technologies: syngas generation, 

syngas purification, liquefaction or FTS and, product upgrading. Figure 1-1 shows the 

process flow schematics for production of the synthetic hydrocarbons [4]. The 

Fischer-Tropsch product spectrum consists of a complex multicomponent mixture of 

linear and branched hydrocarbons and oxygenated products. The fuels produced from 

the FT process have high quality due to very low aromaticity and absence of sulfur 

compared to fuels derived from crude oil. 

 

Figure 1-1: Overall process for synthetic hydrocarbon [4]  
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1.2    Background  

The beginning of the 20th century was an exciting period in the development of 

catalysis. During this time Germany faced a severe energy problem due to the lack of 

petroleum reserves, in addition to the growing population. Therefore, looking for 

cheap energy and chemical feedstock to supply the industries received high 

consideration. As a result, great deal of research was focused to investigate alternative 

methods of obtaining fuels and chemical feedstock from several abundant resources 

other than crude oil [5]. The first genesis of this technology started in the early 1902 

when Sabatier and Senderens discovered the ability to hydrogenate the CO over 

cobalt and nickel catalysts and converted it to methane. In 1913, BASF observed the 

potential to produce liquids hydrocarbons over Cobalt (Co)-based catalyst under 

unrealistically severe condition, at the same time the Kaiser Wilhelm Institute was 

constructed. Several research projects were conducted towards developing new 

process to convert coal reserves to fuel and chemicals feedstocks because of the 

availability of the abundant coal reserve in Germany and the dwindling of the crude 

oil resource.  Franz Fischer and Hans Tropsch discovered the synthesis of linear 

hydrocarbons and paraffin using coal-derived gas over Fe-based catalyst in 1923. This 

observation led to the development of the modern FT catalysts. Moreover, the 

synthesis of oxygenated hydrocarbons over alkalized Fe was noted in 1925. In 1925, 

the industrial applications of FTS have been carried out. By 1938, there were fifteen 

plants came on stream, nine plants in Germany having a combined capacity of about 

660×130 ton per year [6], four in Japan, and one each in France and Manchuria [1].  

During the Second World War, Fischer and Pichler developed the Co medium- 

pressure catalyst for producing middle distillates and wax [2]. As a consequence of 

the war effort, supply of Co became scarce which resulted in the development of Fe 

catalysts [1].     

In spite of the huge oil fields discovery in the Middle East between 1955 and 

1970, the world energy was governed by expensive oil supply which led to the 

commercial proposition of FTS. This elucidates that the economic viability of the FTS 

depends on the price of the crude oil which has varied over the last 30 years.  In the 

last decades during the oil crises, an unpredictable forecasts about the fading of world 

oil reserves in the mid of 1970s, the interest as well as the environmental demands, 
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technological developments and change in fossil energy reserves, all of these factors 

enhanced the consideration of the FTS to produce clean transportation fuels and 

chemicals.  

At present, FTS is being practiced at SASOL in South Africa for producing fuel 

and hydrocarbons from coal-derived syngas. Increasing the price of the crude to 

US$30 per barrel prompted SASOL to construct two FTS pilot plants which came 

online in 1980 and 1982. In addition to coal reserves, FTS has been also practiced at 

Mossgas plant in South Africa and Shell in Bintulu, Malaysia which came on stream 

in 1992 and 1993, respectively using the natural gas as a resource for producing the 

syngas. Owing to the difficulty of transporting natural gas by pipeline or liquefying it 

to consumer market, FT process became an interesting option to convert natural gas to 

more readily transportable liquid. Furthermore, Shell built the first FT plant in 1993 

for production of the middle distillates based on natural gas. Approximately 8-10 

plants are in either construction or planning and by 2008-2010 could be producing 

two million barrels per day of premium sulfur-free diesel [7].             

Syngas can be produced from the partial oxidation or steam reforming of natural 

gas. In addition, gasification process was also used to convert coal to syngas. These 

processes are highly endothermic and expensive. The use of natural gas results in 

lower carbon dioxide (CO2) emission (20%) than the use of coal (50%) but higher 

than the use of crude oil. The low cost of coal and natural gas made the FTS 

competitive with producing the fuel from the crude oil [8]. Currently gasification of 

coal is used at the SASOL plant as primary source of the syngas. During gasification 

of coal several saleable products were produced such as ammonia (NH3OH), aromatic 

tars, oil, naphtha and phenol, which have to be separated from the main product. 

Syngas produced by coal was found to be suitable as a feedgas to the wax production 

at low temperature Fischer-Tropsch (LTFT) reactions. While at high-temperature 

Fischer-Tropsch (HTFT) reaction, gasoline and light hydrocarbon will be achieved. 

On the other hand, Shell used methane as a primary source of the syngas. Syngas is 

produced during the partial oxidation of CH4 at high pressure and temperature 

resulted in H2/CO ratio of 1.7 to 2.5. This H2/CO ratio is raised by adding the H2-rich 

gas produced by catalytic steam reforming to the tail gas of FT reactors [6].  
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1.3    Fischer-Tropsch synthesis  

Recently, FTS has been enjoying renewed attention as an option to fabricate a clean 

transportation fuel and chemical feedstock from the carbonaceous abundant resource. 

FTS provides surprising phenomena in heterogeneous catalysts whereas a variety of 

transition metals such as ruthenium (Ru), nickel (Ni), Fe, and Co was used. Moreover, 

FTS was known as an exothermic surface polymerization reaction or carbon chain 

building process. The original process was carried out with Fe filling promoted with 

potassium. The current generation of catalysts includes cobalt and ruthenium as well 

as Fe promoted with copper, potassium, and other oxides [9]. Both Fe and Co are 

commercially used at temperature of 200 to 300 °C and pressure of 10 to 60 bar. 

Synthesis gas can be reacted in the presence of the catalyst to produce hydrocarbons 

and other aliphatic compounds such as methane, synthetic gasoline, waxes, olefin and 

alcohols. Water and carbon dioxide are considered as byproducts. The FT products 

are endowed with a tremendous environmental value because it is free from sulfur and 

nitrogen as well as lack of aromatic structures [10]. FT reaction is highly exothermic 

which makes the heat transfer a major issue in the design of FTS reactors. 

Temperature control is required to avoid catalyst deterioration and carbon formation. 

Depending on the reaction temperature the process will be classified as low 

temperature processes (LTFT) at 200-240°C and high temperature Fischer-Tropsch 

(HTFT) process at 300-350°C. This classification influences the selectivity of the 

hydrocarbon chain. At HTFT process, the selectivity of light hydrocarbon and olefin 

is obtained, while at LTFT process, the selectivity of heavy hydrocarbon and wax was 

improved. The product distribution for FTS was obtained from the stepwise addition 

of carbon atoms to growing chain. According to these phenomena, several 

mechanisms have been proposed to determine the chain growth probability.  

 A simplified reaction model proposed for FTS comprises the adsorption of CO, 

the formation of a surface-intermediate monomer by reaction with hydrogen, and a 

chain growth of surface intermediates with this monomeric species. Moreover, the 

chain close or termination can proceed either by hydrogenation of the surface species 

yielding an n-alkane or by a reductive abstraction to a 1-alkene [11].             
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FT process is a complex system in which a number of different reactions are 

combined. The FT reaction is shown as follows 

  

                                                                          (1.1) 

Where -[CH2]- is the basic building unit of the hydrocarbon molecules in the FT 

reactions. According to the FT reaction equation, this reaction requires H2/CO ratio of 

2. Using lower H2/CO ratio requires catalyst to have the ability to facilitate the water-

gas-shift (WGS) reaction to make up the deficit in H2. Coal is one of the main 

resources for producing syngas with H2/CO ratio of 0.67-1.7. Therefore, Fe-based 

catalysts are proposed as main catalysts used for the syngas derived from coal with 

low H2/CO ratio because Fe has the ability to facilitate the WGS reaction as well as 

the FT reaction. Therefore, it is possible to assume that FT synthesis can be simplified 

as a combination of the FT reactions and two side-reactions namely the WGS reaction 

and the Boudouard reaction. The occurrence of these two reactions depends strongly 

on the nature of the catalyst.   

 There are many parameters playing a role in the FTS, nevertheless temperature 

and pressure are the important factors in hydrogenation capability and polymerization 

process. Temperature influences the number of molecules hitting the surface of the 

catalyst as well as increasing the diffusivity and the velocity of those molecules. 

Although beyond a certain point, temperature shows a reversal effects where the 

velocity of the molecules will increase and hitting the surface very fast and these lead 

to decrease in the contact time between the surface of the active sites and the reactant 

thus decrease the reaction rate. Pressure affects the chain growth probability. 

Therefore, pressure and temperature are both depending on each other in addition to 

the type of the catalysts and reactors that were used [12].  

FT reactions are strongly exothermic reaction, for these reason reactors with 

highly capability of heat removal are important to achieve an optimum performance 

for the overall process, the catalysts and the reactor should be comprehensively 

optimized. Generally many reactors have been proposed and developed for FTS with 

proper heat control. Currently there are various types of reactors which are 

commercially used for FTS such as [2]: 
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• Circulating fluidized bed reactor 

• Fluidized bed reactor  

• Tubular fixed bed reactor  

• Slurry phase reactor    

For designing FT reactors many variables should be considered such as the type 

of the catalysts, feed composition, the range of the desired hydrocarbons, and the 

operational objective. Therefore, it has been observed that the reactor and catalyst 

should be fabricated at the combined fashion where it shows strong interaction 

between the design of the FT reactor and the choice of technology to provide the feed 

(syngas composition or the H2/CO ratio) to the FT process. In addition, separation 

techniques are also important in order to isolate various product components as well 

as the tail gas to generate the recycle streams.       

At present, more than 90% of industrial processes are based on catalytic 

mechanism where the catalytic action accelerates useful reactions at the expense of 

other thermodynamically possible transformation. It is well known that the research 

and development of the catalyst plays an important role in all catalytic reactions [13]. 

Catalytic system is a very complex system. The vast majority of industrial catalysts 

are solids. Solid catalysts often contain two or several solid components, different in 

composition, porosity, and specific surface area. Careful control of the catalytic 

properties leads to optimal activity, selectivity and stability during the catalytic 

reaction. One of the major challenges in catalysts preparation is to synthesize highly 

dispersed solids with a uniform composition at the atomic scale [14]. One of the most 

important applications of the catalytic systems in industries is in the FTS technology 

where the conversion of syngas to hydrocarbon products takes place over the catalyst. 

Consequently, the choice of a suitable catalyst is very important where it is largely 

dictated by the synthesis gas feed composition and the process conditions [15]. A 

series of transition metals was chosen due to preferable active sites for the FT process 

such as ruthenium, nickel, cobalt, and iron [16]. Fe and Co are preferred catalytic 

metals and remaining until today the only ones for industrial applications while 

ruthenium and nickel are not common due to their high cost, limited world source, 

and limitation of product selectivity. Although cobalt is expensive and highly 

sensitive to the process conditions and is less flexible compared to Fe, Co is still 
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widely used for FTS, in addition to Fe [8]. Nevertheless, Fe produced unwanted 

products through the WGS where this reaction helps to make up the deficit of H2 in 

the syngas derive from coal gasification. Fe also has many advantages such as 

availability, low cost, wide range of operating conditions and high WGS activity. In 

addition, Fe catalysts are more useful at low H2/CO ratio for the production of 

alkenes, oxygenates, and branched hydrocarbons which depend on the promoters and 

process conditions employed. In order to obtain a catalyst with high activity, stability 

and optimal selectivity, structural promoters are often added. Several structural 

promoters in the form of metal oxides such as silica, alumina, zeolite, titanium oxide, 

and carbon nano-tube are investigated for applications in the FTS to stabilize the 

small catalyst crystallites from sintering and improve the catalytic mechanical 

properties [17].  

1.4    Problem statement  

Due to the potential for producing liquid fuels and chemical feedstock from abundant 

resources other than crude oil, FTS process is considered as a valuable commercial 

approach to generate a wide product spectrum consisting of complex multi-

component mixture of the hydrocarbons. Moreover, there is a continuing requirement 

for developing the FT catalysts with improved properties to cover the demand of the 

alternative fuels supplies. Although, the use of Fe-based catalysts to catalyze the FT 

reaction dates as far back for more than eight decades, there are no studies performed 

on the effects of the Fe particle size on the performance of the FTS. Therefore 

correlation between the average Fe particle size and the catalytic activity and 

selectivity has been investigated in this study.  

1.5    Research Objectives  

Although FTS has been commercialized for a long time and many studies have been 

reported on the design of the FT reactors and catalysts, there are still attempts to 

improve factors that affect the catalyst performance. Therefore, development of FT 

catalysts is one of the key technology challenges. The impact of metal dispersion and 
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support on the catalytic performance are two particularly important areas. Therefore, 

the preparation of supported Fe catalyst with high metal dispersion still poses a big 

challenge.  

The objectives of this research are:    

• To develop well-dispersed Fe nanocatalyst on oxide supports at the nanoscale 

range for FTS. 

• To evaluate the catalytic performance of supported Fe nanocatalyst for FTS in 

a microreactor under different reaction conditions. 

• To correlate the catalytic performance in FTS to the catalyst properties. 

1.6    Hypothesis 

The physicochemical properties of the catalyst influence its catalytic activity. The 

catalytic performance of the supported Fe-based catalyst depends on the Fe particle 

size. The correlation between Fe particle size and catalytic activity and product 

selectivity can be established.  

1.7    Scope of this study  

Synthesizing well-distributed catalysts with high uniformity and small catalyst 

particles size presented a challenge in FT synthesis. This study aimed to synthesize 

Fe-based Fischer-Tropsch catalysts with Fe particle size less than 25nm on oxide 

supports. Fe loading on the oxide supports were varied at 3, 6, 10, 15 wt%. 

Owing to the influence of catalyst preparation methods on the physicochemical 

properties and the catalytic performance, impregnation and precipitation methods 

were applied to synthesize Fe nanocatalysts. The impregnated and precipitated 

catalysts were subjected to the same pretreatment and reaction conditions in order to 

determine the effect of the synthesis technique on the catalytic properties (structural, 

morphology, and reducibility) and FT performance (activity and selectivity).  

In this study, Fe-based catalysts were prepared on two types of support, namely 

silica (SiO2) and alumina-silica (Al2O3-SiO2) supports. Silica support was chosen due 



 

 

10 

 

to several advantages that made it one of the most common supports, especially for 

Fe-based catalyst. Alumina was added to silica to improve the acidity of the support 

which can result in higher metal-support interaction and better dispersion of Fe 

nanoparticles. The effects of the support and metal-support interaction on the catalysts 

properties, activity, and selectivity in FTS have been studied.  

The catalytic properties of the supported Fe nanocatalyst were modified by 

introduction of Cu and K promoters. Three sets of Fe-based catalysts have been 

prepared and each contained a promoter such as copper, potassium, and mix of copper 

and potassium.  

The synthesized catalyst samples were characterized by various techniques such 

as N2-physical adsorption, field emission scanning electron microscopy (FESEM), 

transmission electron microscopy (TEM), X-ray diffraction (XRD), and H2-

temperature programmed reduction (TPR). The FT performance of oxide-supported 

Fe nanocatalyst prepared under different conditions was evaluated in a fixed-bed 

microreactor system at atmospheric pressure. The effect of operational conditions 

such as H2/CO volumetric feed ratio, reaction temperature, and the space velocity on 

the FTS activity and product selectivity were investigated. Furthermore, the 

correlation between catalyst properties and their catalytic performance in FTS has 

been carried out.   

1.8    Organization of Dissertation  

This dissertation is divided into five chapters. Chapter one serves as introductory 

chapter. The second chapter reviews pertinent literature of catalyst, FT process, and 

the characterization techniques used to determine the physiochemical properties of 

catalyst. The third chapter describes the experimental methods, material and 

equipment used. The fourth chapter overviews the results for the physicochemical 

properties of the catalysts and the FT reactions study using the microreactor system at 

different reaction conditions. Chapter five provides principal conclusions of this work 

and recommendation for further work.  
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CHAPTER 2 

Literature Review 

2.1    Introduction 

Shortage of petroleum fuel derived from crude oil coupled with the unpredictable 

price of crude oil led to significant increase in demand for alternative resources. 

Therefore, FTS has received considerable attention because it offers the possibility to 

produce clean hydrocarbon and liquid fuels which are environmentally friendly, free 

from sulfur, using syngas derived from natural gas, coal or biomass.  FTS is a 

catalytic reaction where the syngas (a mixture of CO and H2) is converted to 

hydrocarbons with carbon number ranging from 1 to over 100 [18]. Syngas with 

different H2/CO ratios (0.5-2.5) is usually derived from natural gas, coal, and 

biomass. In recent years, FTS has come into the picture again especially as a means to 

convert natural gas to liquid fuels. FTS is a catalytic polymerizing process where 

several metals such as ruthenium, iron, cobalt, and nickel have been proposed as 

active sites for this reaction. Although, the FT chemistry is complex, it can be 

simplified as a combination of FT reaction and WGS reaction. The principle purpose 

of the FT process is to produce a synthetic petroleum substitute [4]. Syngas is reacted 

in the presence of catalyst to produce hydrocarbon products such as methane (CH4), 

gasoline (C4-C12), diesel (C8-C21), wax (C25+), and alcohol (CH2OH). FT products are 

a mixture of different species such as linear paraffin, branched hydrocarbons, and 

oxygenates [4].  
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2.2    Fischer-Tropsch process 

 Fischer-Tropsch synthesis as an option for synthesis of hydrocarbons has been 

existed for more than 80 years. Recently, FTS received more attention than ever due 

to the limitation of petroleum reserves and environmental constraints as well as 

availability of other abundant resources such as coal, biomass, and natural gas. FTS is 

directed towards the manufacturing of liquid hydrocarbons involving three process 

steps: generation of the syngas, conversion of the syngas to hydrocarbons product, 

and product upgrading to produce clean transportation fuel [19]. The chemistry of 

FTS has been described as a surprising phenomenon where the gases feed (a mix of 

CO and H2) is passed over a catalyst placed inside the reactor and liquid hydrocarbon 

exits [2].  

FTS is essentially a polymerization process which can be generically represented as 

following stoichiometric reaction [9] 

 n CO + {(m+2n)/2} H2 → CnHm + nH2O                                                               (2.1) 

Where, n and m represent the number of C and H, respectively. CnHm represents the 

formation of hydrocarbons (alkanes and alkenes) in addition to the formation of the 

oxygenated hydrocarbons. The following reactions illustrate the possibility of 

producing different types of hydrocarbons during the FT reaction (equation 2.2-2.5) 

[20].     

Methanation:                                  CO + 3 H2 → CH4+ H2O                                   (2.2) 

Paraffin formation:                      n CO + (2n+2) H2 → CnH2n+2 + n H2O               (2.3) 

Olefin formation:                          n CO + 2n H2 → CnH2n +   n H2O                     (2.4) 

Oxygenate formation:                   n CO + 2n H2 → CnH2n+1OH + (n-1) H2O        (2.5) 

Referring to equation 2.2-2.5, we can conclude that the hydrocarbon formation is 

strongly depended on the chain growth probability where, the length of the chain is 

determined by the nature of the catalyst and the operating conditions. Therefore, an 

appropriate choice of the catalysts and reaction conditions leads to shifting the value 
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of the chain growth probability and results in the production of compounds with 

different compositions. The product distribution was obtained from the stepwise 

addition of carbon atoms to a growing chain. Thus FT process resembles 

polymerization where producing the hydrocarbons start from producing a monomer 

then hydrogenate this monomer to produce the products. This step goes through two 

branches. The first one known as a propagation step leads to the production of 

hydrocarbons chains of various lengths. The second one, the termination step, leads to 

stopping of the polymerization reaction and results in the production of low molecular 

weight hydrocarbons [2]. Therefore, in order to obtain higher selectivity to the 

intermediate, it is necessary to control the rate of carbon deposition and the rate of its 

hydrogenation, in other words the average molecular weight of the product is 

increased when the rate of the propagation step is relatively higher than the rate of 

termination step. In contrast, the same carbon atoms that are the precursor of the 

monomer could also be the precursor of inactive carbon species which cause the 

catalytic deactivation by decreasing the number of the active metal sites. Several 

mechanisms have been proposed to explain this type of product distribution [4].           

FTS is a complex system for producing hydrocarbons with various chain lengths 

through different reactions. FT reactions can be simplified as a compensation of two 

main reactions: FT reaction (equation 2.6) and the WGS reaction (equation 2.7). WGS 

reaction occurs simultaneously with the production of the hydrocarbons during FTS 

over Fe-based catalysts. The extent of the WGS reaction rate can be shown by 

determining the selectivity of CO2, which corresponds to the consumption of CO in 

WGS reaction [21].  

FT reaction:                             CO + 2H2 → -CH2- +H2O                                        (2.6) 

WGS reaction:                         CO+ H2O → CO2 + H2                                            (2.7) 

WGS reaction is also known as one of the two FTS side reactions in addition to 

the Boudouard reaction which is represented in equation 2.8. 

 CO decomposition (Boudouard Reaction):  2 CO → C + CO2                              (2.8) 

The occurrence of these two side-reactions is mainly dependent on the nature of 

the catalyst and the prevailing gas composition. The existence of the WGS reaction is 
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controlled by the availability of water during the reactions. Most of the water formed 

in FT reaction will be consumed in the WGS reaction, resulting in the appearance of 

CO2 in the product stream. In addition, determining the rate of WGS reaction is 

extremely important, especially in the case of using syngas with low H2/CO ratio 

where it provided a makeup of the hydrogen for FTS. 

The performance of the FTS depends mainly on the feed composition (H2/CO 

ratio), formulation of the catalyst, and operation conditions [2].  

2.2.1    Reactor system 

Different reactors have been used in FTS. Catalysts formulation, operation conditions, 

and the operational objectives influence the choice of the reactor. Accordingly, FT 

reactors are classified as LTFT such as tubular fixed-bed reactors and slurry phase 

reactors and HTFT such as fluidized-bed reactor (Figure 2-1) [22].  

 

Figure 2-1: Types of Fischer-Tropsch reactors [22] 

 

The HTFT reactor operates in the temperature range between 573 to 623K; where 

it is higher by 100K than the LTFT which operates in the temperature range from 

473-523K. When the main objective is the production of long chain hydrocarbons, the 
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LTFT reactor is chosen while for producing light hydrocarbons and alkenes the HTFT 

system is more preferable than the LTFT reactors. HTFT system operates at high 

temperature which accelerates the production of undesirable methane and caused 

catalyst damage. Therefore, controlling the rate of the heat transfer from the catalyst 

particles to the heat exchanger is very important [2].  

Fixed-bed reactor is easy to operate compared to the other reactor systems, and it 

provides an easy way to separate the required product from the catalysts. On the other 

hand, strong mass transfer resistance inherent in a catalyst suspended in a slurry 

reactor, resulted in troublesome separation of catalysts from the liquid product [23]. 

Therefore, addition of other equipment is required to achieve the complete separation 

of the catalyst from the product. Furthermore, fixed bed reactor undergoes low 

catalytic deactivation compared with the slurry reactor. Only the upper section of the 

catalysts will deactivate at the tubular fixed-bed reactor while a complete catalytic 

deactivation can be obtained in the slurry reactor. However, the slurry bed reactor has 

the following advantages: lower fabrication cost, minimizing temperature rise across 

the reactor, and preferable hydrocarbon distribution [2].  

In addition to the abovementioned difference between the two types of the LTFT 

reactors, following paragraph illustrate the advantage and disadvantage of using the 

fluidized bed reactor as an example for the HTFT reactor. Formation of the liquid 

phase in the fluidized bed reactor will cause a serious problem due to particles 

agglomeration, de-fluidization of the catalyst bed, and cease the function of the 

process. Therefore, the operation on this reactor required the use of catalysts with low 

alpha values to ensure that the products are in the gas form at the reaction 

temperature. Due to the obvious limitation of using fluidize-bed reactor, this reactor 

cannot be used for producing long chain hydrocarbons product other than gasoline 

(C5-C11).  

Recently, the use of microchannel reactor for the FTS has also been investigated. 

Modeling of a monolithic reactor for the FTS has shown promising result in terms of 

the catalytic performance compared with other reactors. Microchannel reactors have 

become a keen area of interest for parallel catalyst screening involving heat and mass 

transfer. The heat and mass transfer limitations that often plague catalytic processes 
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can be largely avoided through the use of microchannel reactor due to the small 

transportation distance [24].       

2.2.2    Reaction mechanism  

FTS is a catalytic polymerization reaction in which the monomers are being produced 

due to the dissociation of gases reactants (carbon monoxide and hydrogen) over the 

catalyst surface. Therefore, understanding of the fundamental processes taken place at 

the metal surface during the FTS reaction led to mechanistic description for the rate of 

product formation in addition to improved the catalyst design. FT reaction pass 

through three different reactions section (1) generation of the chain initiator, (2) 

propagation or chain growth, (3) desorption or chain termination. Parallel operation 

pathways have been proposed to observe the product distribution in the FTS. A large 

number of the surface spices can be generated from the reactants (H2 and CO) and 

exist on the catalyst surface in the FTS. Hydrogen is the one of those surface species 

where the chemisorption of the hydrogen yield monoatomic hydrogen which has a 

high surface mobility and this make the adsorption of the hydrogen and its 

consumption does not take place at the same metallic site. Carbon monoxide is one of 

the surface species chemisorbed to form surface carbon and oxygen. The diffusion of 

the surface carbon into the bulk of the metal produces carbide carbon or agglomerate 

yielding graphitic carbon which causes the metal deactivation. The hydrogenation of 

the surface carbon yields other surface species such as methylidyne, surface 

methylene, and surface methyl [25]. 

Generally a numerous reaction mechanisms have been proposed for the FT reaction 

and one of the most popular mechanisms is methylene insertion mechanism, where at 

the beginning the reactant adsorbed and dissociated at the surface of the catalyst. H2 

will be adsorbed at the surface of the active site of the catalyst to form chemisorbed 

hydrogen and then chemisorbed carbon monoxide dissociated to yield surface carbon 

and oxygen. Additionally, the surface carbon may diffuse into the bulk of the metal 

yielding carbidic carbon or agglomerated yielding graphitic carbon [2]. The sequential 

hydrogenation of surface carbon yields surface methylene (CH2) which acts as a 
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monomer or initiator for producing the hydrocarbon chain and water. Figure 2-2 

shows the production of the initiator on the catalyst surface [6].  

 

Figure 2-2: Chain initiation [6] 

 

 The CH2 group can be hydrogenated to CH3 species, which ultimately from CH4 

or they can insert into growing chain (propagation steps). Olefin and paraffin are 

presumed due to a propagation step. This steps were followed by a termination step, 

which is known as chain close (Figure2-3) [6]. In order to obtain high activity and 

desired product selectivity, maintaining the balance between the rate of carbon 

deposition and its hydrogenation is required. Increasing the rate of carbon deposition 

and unreactivity of this species lead to decrease of active site and caused catalytic 

deactivation [16]. On the other hand, when the rate of hydrogenation is excessive the 

production of low molecular weight will increase. 

 

Figure 2-3: Chain propagation and termination [6] 
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Gaube and co-works [26] developed a new mechanism of the FTS involving two 

incompatible mechanisms which are methylene insertion and carbon monoxide 

insertion.     

2.2.3    Fischer-Tropsch Catalysts 

Catalysis is a key to chemical transformation and it is an important technology in 

environmental protection.  Catalysis was introduced by Berzelius in 1836 in order to 

explain various decomposition and transformation reactions. In 1895, catalyst was 

defined by Ostwald as an accelerator species for chemical reactions without affecting 

the position of the equilibrium [27]. Catalysts are classified as homogenous and 

heterogeneous. Heterogeneous catalysts are distinguished from homogeneous 

catalysts by the presence of different phases during reaction. Generally heterogeneous 

catalysts are preferable due to the relative ease of catalyst separation from the 

products stream and their tolerance to extreme operation conditions.  A heterogeneous 

reaction involves several steps. It starts with adsorption or diffusion of the reactants 

onto a solid surface, surface reaction of adsorbed species, followed by desorbing the 

product and termination.  

Catalyst design involves many steps: catalysts synthesis, catalysts activation, 

characterization of catalysts, and evaluation of catalytic performance. One of the most 

relevant requirements for solid catalysts to be particularly useful is an appropriate 

dispersion of the active species. FTS is one of the most important processes involving 

catalysts. It is used to produce different hydrocarbon chains from syngas derived from 

different resources. Many catalysts have been utilized for studies of the FTS for 

example ruthenium, cobalt, iron, and nickel. FT catalysts are generally presented in 

the metal oxide form [9]. Fe and Co-based catalysts are widely used compared to the 

other metals and those two catalysts are the ones receiving serious consideration 

today. FT catalysts must break the carbon-oxygen bonds and catalyze the formation of 

carbon-carbon and carbon-hydrogen bonds [28]. Development of effective FT 

catalysts requires an improvement of the attrition resistance, by introducing a suitable 

support without sacrificing either the catalyst activity or selectivity [29]. Preparation 

of FT catalysts involves several important steps: choice of appropriate catalyst carrier 
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or support, choice of suitable method for depositing the active phase, catalyst 

promotion, and reductive treatments. In order to produce good catalysts with 

excellence performance, many attempts were made, such as addition of promoters like 

K, Cu as well as supports including metals oxides such as SiO2, Al2O3, ZnO, and 

TiO2.      

2.2.4    Active metal 

A variety of metals have been used as an active phase for FTS. Transition metals 

appear to be the most active sites for FTS. However, selection of the active phase is 

largely dictated by the composition of the feed. Ru followed by Fe, Co, and Ni are the 

most active metals for hydrogenation of carbon monoxide, however, using those 

active metals affect the production of different average molecular weight of the 

hydrocarbons. Vannice et al. [30] showed that the production of various molecular 

weights of hydrocarbons in presence of the active metals decreased in the following 

sequence Ru>Fe>Co>Rh>Ni>Ir>Pt>Pd. Thus, these metals are considered as the 

most common active components for FTS.  These catalysts must be subjected to an 

activation treatment before the catalysts became active for FTS [9].  

Fe and Co are the metals proposed by Fischer and Tropsch as the first catalysts for 

syngas conversion and are also economically feasible on an industrial scale [25]. Due 

to the limitation of using Ru in terms of their high price, Ru was found to be 

insufficient for large-scale industry. Ni is responsible for producing too much 

methane under practical conditions in addition to poor performance at high pressure 

and lead to production of volatile carbonyls. Accordingly, Co and Fe catalysts were 

selected as stable catalysts for the industrial scale. Although cobalt-based catalysts are 

widely investigated to date, the use of Fe-based catalyst in FTS is also attractive for 

commercial applications [31]. Both Fe and Co can be used in LTFT (473-523K) 

processes for synthesis of linear long hydrocarbons, waxes, and paraffins while Fe can 

be operated at HTFT (573-623K) and pressure. 

Consequently Ru, Fe, Co, and Ni catalysts must be subjected to an activation 

treatment before the catalysts become active for FTS [9]. Ru, Co, and Ni are reduced 
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in flowing hydrogen to form the active phase, which is the metallic state. Different 

activation parameters could be applied in the case of Fe catalysts due to appearance of 

various states (metallic, oxide, and carbide) that constitute the active site for FTS.     

2.2.4.1    Cobalt-based catalysts  

Co-based catalyst has a high activity for hydrogenation of CO and tends to produce 

long chain of paraffins generated from syngas with high H2/CO ratio. Although Co 

and Fe are the preferred catalysts for FTS, the major difference between them is the 

formation of oxygen-containing product where Co rejected the oxygen in the form of 

water while Fe produces CO2. Since Co has lower WGS activity compared to Fe, the 

feed gas must have higher H2/CO ratio (2.0-2.3) and this tend to lower the overall 

operating cost [19]. Co has considerable appeal due to its ability to produce clean 

diesel fuels with extremely low content of sulfur and aromatics from natural gas [32]. 

Co is more expensive compared to Fe but is more resistant to deactivation [33]. Co 

catalysts operate at a very narrow range of temperatures and pressure because the CH4 

selectivity increase with increasing reaction temperature. Due to their stability, higher 

per pass conversion, longer life, lower WGS activity, and higher hydrocarbon 

productivity, cobalt catalysts represent the optimal choice for synthesis of long-chain 

hydrocarbon at LTFT process [25]. 

2.2.4.2    Iron-based catalyst  
Fe-based catalysts are preferred for FTS utilizing synthesis gas with low H2/CO ratio 

(0.5-2.5) derived from coal and biomass due to their excellent activity for the water-

gas-shift reaction [21]. Due to the instability of Fe-based catalyst during the reduction 

or reaction, different phases of Fe have been proposed [28]. In addition, Fe is a 

preferable catalyst due to its ability to offer different types of active sites e.g. Fe-

carbides sites are responsible for producing hydrocarbon (FT reaction) while 

magnetite (Fe3O4) sites are the most active phase for CO2 formation (WGS reaction) 

[29]. Fe-based catalysts are considered as attractive catalyst for FTS due to their low 

cost and excellent WGS activity. WGS reaction helps to make up the deficit of H2 in 

the syngas. Fe catalysts are also less resistant to deactivation, and flexible to any 
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change of the operation conditions such as temperature and pressure. Fe catalyst is 

more versatile than Co catalyst. Fe results in production of less CH4 and geared for 

the production of alkenes oxygenates, and branched hydrocarbons, depending on the 

promoters and process conditions employed. In spite of the sensitivity of Fe-based 

catalyst; sulfur (S) could contaminate and poison Fe catalyst. Therefore, the reactant 

feed should not contain more than 0.2 ppm sulfur when using Fe in FTS. 

Additionally, the main disadvantage of the Fe catalysts is that it can be deactivated 

due to the production of water during the reaction [10].   

Although Fe-based catalyst has many advantages compared to Co-based, Fe 

catalyst is not stable during FTS. Four kinds of Fe species have been identified: iron 

carbide (Fe2C5), magnetite (Fe3O4), hematite (Fe2O3), and metallic (Fe) [34]. 

Accordingly, Fe catalyst is considered to be more complicated catalysts for FTS due 

to extensive Fe phase changes during reaction. This is why the chemistry of Fe FT 

catalysts is so complicated. Since Fe is present in multiphase, this makes it difficult to 

correlate the phase composition with the FT activity and there are no clear 

suggestions on the nature of active sites for Fe catalyst during the FT reaction [35]. 

Moreover the nature and composition of Fe-based catalysts undergo changes during 

the reaction and these changes depend not only on the temperature and the time of 

exposure to the reactant feed but also on the nature and composition of the reactant 

feed and activation conditions (time and temperature). Since the solid state phase 

transformation of Fe catalysts play a major role in determining catalyst activity, 

longevity, and attrition, many works have been done on this area to investigate the 

active site of Fe-based catalyst during the FTS.  

Many factors affect the phase composition and one of those factors is the 

pretreatment condition such as temperature, type of the pretreated gases, and duration 

of the pretreatment. Generally Fe–based catalyst has been reported to be successfully 

activated with hydrogen, carbon monoxide, or syngas. Hydrogen activation is 

performed to reduce the catalyst to metallic iron while carbon monoxide and syngas 

treatments led to the production of a mixture of Fe3O4 and Fe2C5. 

Two models for the role of the Fe2C5 phase have been suggested in a series of 

review articles: the carbide models and the composition model. In the first model 
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(carbide) the active surface sites are located on the bulk carbide phase and it was 

proposed to be responsible for the catalytic activity. The second model proposed that 

the catalytic activity is due to surface Fe atoms and there is competition for the CO 

molecules between the bulk carbidization and hydrocarbon formation. Furthermore, it 

appears that the nature of the carbon may also play an important role in the catalytic 

activity and selectivity. Amorphous carbon may not deactivate the catalysts but it 

influences the catalytic activity while graphitic carbon reinforces the catalyst 

deactivation.           

Bukur et al. [36] studied the effect of activation condition (temperature, time, 

activated media) on the transformation of Fe-based catalysts for FTS as well as the FT 

performance. They found that H2 activation resulted in a mixture of metallic and 

oxide phase at higher temperature (>673OC) while at the low temperature only 

metallic phase was obtained. On the other hand, Fe2C5 phase appeared due to CO and 

syngas activation. However, the picture is still unclear about the composition of the 

catalytically active phase of Fe. Many scientists proposed Fe2C5, which can easily be 

produced from the CO and syngas pretreatment, as an active phase for FTS [37]. 

Nevertheless, hydrogen pretreatment is more favorable in industrial scale because it is 

less expensive and easier to purify [38]. In contrast with the favorability of H2 

pretreatment, Yamada et al. [37] proposed that the reduction with CO provide high 

catalytic activity, on the contrary, low catalytic stability was obtained with H2. This 

result was elucidated due to the significant sintering of the Fe species during the H2 

reduction where lower catalytic surface area was observed. Conversely, during CO 

reduction the sintering did not occur and the catalyst surface area was five times 

bigger than that of H2 reduced catalysts. In addition, mixture of metallic iron and 

Fe2C5 was obtained from the XRD pattern. While only metallic iron phase was found 

from the H2 reduction process. They also concluded that iron carbide played an 

important role in enhancing the catalytic activities of the sample. Both metallic and 

Fe2C5 have high ability for CO dissociation.   

The importance of formation of iron carbide phase was suggested by Shroff et al. 

[9], where they studied the effect of the activation and reaction treatment on the 

catalyst phase transformation and catalytic performance of Fe/Cu/K catalyst. Their 
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results also presented that CO-activated catalyst show higher FT activity (30%) as 

well as higher methane formation compared with those reduced in H2 and syngas 

(H2/CO=0.7). This could be due to increasing of the carbide content in the catalysts. 

CO-activation was able to reduce the FeO rapidly into Fe2C5 which was found to be 

the most activate site for FTS. They found a correlation between the iron carbide 

phase and activity and concluded that carbide formation is important before Fe-FT 

catalyst can exhibit any activity. Neither magnetite nor hematite was found to have 

any FT activity.                      

Several research groups have reported the influence of pretreatment parameters on 

the catalysts activity and selectivity. During the initial German work on FTS, the 

Kaiser Wilhelm Institute favored pertreating catalysts with carbon monoxide at sub-

atmospheric pressure and they suggested that Fe carbide not metallic Fe play a critical 

role in the activity of Fe-based catalysts for FTS.  

 O'Brien et al. [38] suggested the effect of the nature of the pretreatment agent in 

addition to the pretreatment conditions (temperature and pressure) on the precipitated 

Fe/SiO2/K catalysts on the performance of FTS. From their report, syngas treatment 

(H2/CO=0.7) at 543K and 1.3MPa resulted in poor FTS activity. By decreasing the 

pressure to 1.0MPa, a dramatic increase in the FTS activity was observed. CO 

pretreatment is pressure-independent and it also showed higher FTS activity due to 

formation of Fe2C5 phase, less methane selectivity, and more liquid products 

compared with the syngas pretreatment. Their studies support the hypothesis of 

proposing Fe2C5 as the active sites for FTS reaction.  

Ding et al. [39] studied the phase transformation of precipitated Fe-based catalyst 

for FTS under different reduction duration and syngas (H2/CO=1.2) as a reducing 

agent. Different analysis technique such as N2 physisorption, X-ray diffraction, X-ray 

photoelectron spectroscopy, Raman spectroscopy and Mössbauer effect spectroscopy 

were applied to characterize the textural properties and the surface phase composition 

of the catalyst. Their results confirmed that the catalytic surface area decreased with 

increasing reduction time until it reached a stable state and the active phase was 

transformed from hematite to magnetite. With increasing duration of reduction, iron 

carbide phase was progressively formed. They also reported that any change in phase 
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composition influenced the catalytic activity and selectivity.  They also found that 

formation of iron carbide, due to increasing reduction time enhanced the catalytic 

activity as well as the selectivity to the gaseous hydrocarbons while it suppressed the 

selectivity to the heavy hydrocarbons.            

2.2.5    Support   

The use of massive Fe-based catalysts led to a serious problem: production of catalyst 

fines due to volume change during reaction and the physical degradation. These 

catalyst fines caused plugging of the fixed-bed reactor which led to large pressure 

drop and difficulty in catalyst separation for the slurry reactor. To overcome these 

problems, adding structural materials or supports was suggested [10]. Support is a 

thermally-stable material used to fix and disperse small metal particles and inhibit 

sintering. The addition of structural material or supports may improve the catalytic 

mechanical properties by increasing the surface area, stabilizing the small catalyst 

crystallites against sintering, keeping the catalyst away from structure breakage 

during the reactions, and stabilizing the active phase. A support may be used as a 

refractory surface on which an active catalysts substance is dispersed since the 

volume of the support used is considerably greater than that of the active catalytic 

species [25]. The support may also be used in the form of finely divided refractory 

crystals than that of the catalytic species. Based on the desired characteristic of the 

support, selection of the support depends on the following factors: 

• Low cost  

• Inertness 

• Surface area and porosity 

• Desirable mechanical properties such as attrition resistance, hardness, and 

compressive strength  

• Stability under reaction and regeneration condition. 
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 A wide range of materials can be used as support, however, only SiO2, Al2O3, 

and activated carbon possess a good combination of the defined properties. For FTS, 

structural supports have been used to provide stabilization of metal surface area, 

improving the catalytic mechanical properties, decreasing the deactivation rate, and 

improving the catalysts selectivity [40]. Nevertheless, supported catalysts usually 

suffer from lowered FTS activity and these have been attributed to the strong 

interaction between the active metal and support having high surface electron density 

which resulted in lowered reducibility, retarded the FT reaction rates and enhanced 

the selectivity to methane [41].  

Recent studies by Yang et al. [42] have shown that the structural promoters 

display far-reaching effects on the FTS performance of Fe-based catalyst due to the 

strong metal-support interaction. Iglesia et al. [43] concluded that the activity of the 

FTS and hydrocarbon synthesis was proportional to the metal dispersion and 

independent of the metal oxide support. However, this hypothesis was challenged by 

other studies.  

The effect of supports such as SiO2, Al2O3, titanium oxide (TiO2), alumina-silica 

(Al2O3-SiO2), and carbon nano-tubes (CNT) on the FTS performance have been 

reported in several studies [17]. SiO2 has been widely studied and proved to be the 

most preferable structural promoter for FTS in terms of activity and productivity. 

Al2O3 was also one of the preferable supports especially for cobalt-based catalyst and 

it is frequently used for Fe-based catalyst [42] and [44]. SiO2 supported FT catalysts 

showed high activity, high selectivity to the liquid hydrocarbons as well as high 

attrition resistance in a stirred tank reactor [21].  

Wan et al. [45] conducted a study on the influence of silica on the performance of 

precipitated Fe-based catalyst for FTS as well as the contact between Fe/Cu and Fe/K. 

They found that SiO2 influenced the catalyst surface area and resulted in higher 

surface area than that without SiO2. Adding SiO2 suppressed the catalyst reduction 

due to improved dispersion of Fe2O3 and CuO and enhanced contact between them. 

Due to the stronger Fe-SiO2 interaction, weakened contact between Fe/K was 

observed and led to weak surface basicity and a shift of the product distribution to the 
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light hydrocarbon. Their results also show that SiO2 suppressed the carburization, 

catalyst activity, and improve the catalyst stability due to the weak CO adsorption.  

SiO2 is preferred as a support for FT catalyst because it plays an important role in 

the catalyst reducibility, carburization, surface basicity, and FTS performance. In 

recent years, SiO2 was also chosen as the principal structural promoter for the 

preparation of Fe-based catalysts with high attrition resistance using co-precipitated 

method and spray-drying technology. Study of FTS catalyst incorporated with silica is 

extensive. Although SiO2 was chosen as an excellent structural promoter for Fe-based 

catalysts with high catalyst stability and attrition resistance, but it usually suffers from 

lower catalysts activity [45]. Therefore, enormous studies were carried out to 

investigate the effect of SiO2 on FTS performance. Hayakawa et al. [21] studied the 

catalytic performance of co-precipitation for SiO2 supported Fe-based catalyst. They 

concluded that the addition of silica to Fe-based catalyst enhanced the surface area 

and greatly changed the structural properties of the catalysts and catalytic 

performance. In addition, catalyst containing SiO2 showed slightly lower activity of 

FTS along with lower selectivity to methane, higher productivity to C5+ and higher 

stability. They also discovered that increasing the reaction temperature improved 

selectivity to the gases hydrocarbons compared to C5+, while increasing the pressure 

enhanced the selectivity of higher hydrocarbons (C5+). The optimized ratio for H2/CO 

was found to be between 0.4-1.  

Hou et al. [46] reported that the addition of binder SiO2 to a precipitated Fe-based 

catalyst for FTS influence the catalyst stability, activity, selectivity and attrition 

resistance. They concluded that increasing the SiO2 content has little effect on the 

textural properties compared to the catalyst reduction and carburization. SiO2 

improved distribution of FeO phase and led to decrease in crystallite size. Generally, 

the small crystallites were reduced at high temperature; therefore, the addition of SiO2 

resulted in higher reduction temperature. The activity, stability, and product 

selectivity were studied in continuously stirred tank reactor (CSTR) at 250OC, 

1.5MPa, 2NL/g-cat/h, and H2/CO ratio of 2. Their results showed that increasing the 

silica content led to the low FT activity as well as higher WGS reaction and high 

stability due to less carbon deposition. Also, increasing the silica content improved 
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the selectivity to light hydrocarbons and suppressed the selectivity to heavy 

hydrocarbons.  

A large number of studies were carried out to investigate the relation between the 

strong interaction between metal and structural promoter and catalyst performance. 

The interaction of the support with the active species is not only physical in nature but 

there is always a more or less pronounced influence of a chemical nature. However, 

Fe can easily react with the support to form compounds and often suffered from the 

difficult in reduction due to the highly dispersed metal on refractory oxides. 

Consequently, the catalysts containing structural promoter usually suffer from lower 

FT activity due to the strong metal-support interaction.  

The interaction between Fe-Al2O3 in precipitated Fe catalyst for FTS was studied 

by Wan et al. [31] and they reported that a large surface area was observed for the 

Fe/Al2O3 catalyst due to the small catalyst crystallite size. Strong interaction existed 

between Fe-Al2O3 and this interaction suppressed the catalyst reducibility. Reduction 

occurred in two stages; one for transforming the Fe2O3 to Fe3O4 phase or Fe2O3 to 

Fe3O4 and the second for transforming the magnetite phase to metallic phase or Fe3O4 

to Fe. Addition of Al2O3 as a structural promoter or support changed the phase 

transformation from Fe2O3→ Fe3O4→ Fe to Fe2O3→ Fe3O4→ FeO. Al2O3 also retard 

the transformation of FeO, which is a metastable phase of FeO to Fe. Furthermore, the 

strong Fe-Al2O3 interaction weakens surface basicity which suppresses CO adsorption 

and further suppresses the catalyst carburization, and the FTS and WGS activities. 

During the FTS, the incorporation of Al2O3 improved the catalyst stability and 

probably suppresses the reoxidation of iron carbide. The strong interaction of Fe-

Al2O3 enhanced the selectivity of light hydrocarbon and suppressed the selectivity to 

heavy hydrocarbon due to the weak surface basicity.  Therefore, further study on 

incorporation of structural promoters into Fe-based FT catalysts is highly desired. 

Dlamini et al. [47] suggested that the different degrees of metal-support interaction 

influenced catalyst activity. They also found that the strong interaction between Fe 

and SiO2 hinder the catalytic reducibility and carburization due to intimate mixing of 

those two components.  
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The effect of the SiO2 and Al2O3 supports individually on the catalytic 

performance of the Fe-based FT catalyst was conducted by Hai-jun et al. [13]. They 

reported that the addition of SiO2 to Fe-based catalysts enhanced the adsorption of the 

CO compared to that of the Al2O3, which enhanced the adsorption of H2 and 

suppressed the CO adsorption. They also concluded that Al2O3 has strong acidity 

compared to the SiO2 which suppressed the CO adsorption. Therefore, their results are 

in good agreement with most of the literature findings which suggest that strong 

surface basicity facilitated the adsorption of the CO and suppress the H2 adsorption. 

On the other hand, the addition of SiO2 enhanced the FT activity as well as the WGS 

reactivity, while it slowly facilitated the catalytic deactivation compared to that of the 

Al2O3 support, which suppressed the catalytic activity while improved the stability of 

the catalyst due to suppressed carburization and carbon deposition. Additionally, the 

catalyst incorporated with Al2O3 has higher selectivity to methane and light 

hydrocarbons and lower selectivity to the heavy hydrocarbons (C5+), where SiO2 

support provides an opposite trend on the hydrocarbon selectivity compared to that of 

Al2O3.  

Bukur and co-workers [48] and Gaube et al. [49] studied the effect of SiO2 and 

Al2O3 binders on the performance of the precipitated Fe-based (Fe/Cu/K) FT 

catalysts. They found that the change of the catalytic performance became 

pronounced at the high content of the binders where the FT and WGS activity 

decreased with increasing SiO2 content, whereas Al2O3 showed an opposite trend. 

They also found that the addition of SiO2 enhanced the catalysts stability and 

selectivity to the long chain hydrocarbon while it suppressed the selectivity of the 

light hydrocarbon and the catalytic deactivation due to decreasing carbon deposition 

in contrast to that of Al2O3 support.  

Li et al. [17] evaluated the influence of Al2O3/SiO2 ratio and they found that 

increasing Al2O3/SiO2 ratio enlarged the crystallite size and decreased the catalytic 

surface area. The lower Al2O3/SiO2 ratio weakens the interaction between Fe-SiO2 

and resulting in lower reduction temperature and they also reported that the ratio 

between Al2O3/SiO2 influenced the activity and selectivity for FTS. They found that 

the FTS activity increased with increasing ratio between Al2O3 and SiO2 until a 
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certain value and after that the activity shows reverse relation. Although the 

individual effects of Al2O3 or SiO2 supported Fe-based FT catalysts have been 

extensively investigated, there are still some contraries about the effects of SiO2 and 

Al2O3 on the FTS activity and selectivity.  

All these studies revealed that using different supports varied the FT performance. 

Due to the degree of metal-support interaction, strong interaction ascribed to the 

higher supports acidity and resulted in decreasing of the catalysts activity as well as 

enhancing light hydrocarbon selectivity.                                 

2.2.6     Promoters 

Properties of the catalysts, number of the metal sites as well as their characteristics 

and localization on the support could be controlled by promotion with noble metals. 

Promoters have been used to facilitate the reduction of the catalyst in addition to the 

adsorption and dissociation of CO which consequently affects the activity and 

selectivity of the product.  

Structural promoters were often added into Fe-based catalysts to improve the 

catalytic attrition resistance without sacrificing their activity and selectivity. Alkali 

promoters improved the catalytic stability and enhanced the stabilization of Fe against 

the oxidation by water during the FT reaction [49]. Therefore, one of the most 

common promoters used for Fe-based FT catalyst is the alkaline metal group such as 

K, Cu, Na, Mg, and Ca. In particular, K and Cu promoters have been suggested to 

enhance the Fe-based catalytic reduction as well as playing an important role in the 

performance of the FTS. Furthermore, K is well known as a chemical promoter, 

where it was found that adding K to the catalysts enhanced the CO chemisorption, 

increased the rate of WGS reaction, and suppressed the adsorption of H2. These 

factors play important roles at decreasing the selectivity of the light hydrocarbons and 

enhancing the selectivity of longer-chain hydrocarbons and olefin as well as the 

catalytic activity for both reactions (FT and WGS reactions) [50]. Cu, which is also 

known as a reduction promoter, facilitating the reduction of Fe2O3 to Fe3O4 or 

metallic Fe [51] as a result of segregation of Cu from Fe caused the Fe2O3 to Fe3O4 
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transformation to shift to higher temperature. Since both Fe2O3 and Fe3O4 are prone to 

sintering at elevated temperature, copper became beneficial because it facilitates the 

reduction of Fe2O3 to lower temperature. In addition, Cu is also used to enhance the 

mechanical stability of the catalyst and improve the CO conversion.   

Hayakawa et al. [52] have patented the finding on the effect of Cu on the 

precipitated fused catalysts Fe/Cu/SiO2. They found that Cu promoted the catalysts 

reduction as well as the activity. The effect of Cu and K promoters was mostly due to 

formation of Fe2C5 with higher dispersion which increased the catalytic activity [53].  

K and Cu were widely used as promoters for FTS on Fe catalyst to facilitate the 

reduction of FeO, stabilize the high metal surface area, and improve the hydrocarbon 

selectivity. However, the effect of Cu is usually smaller compared to that of K. While 

several studies have been published on the individual effect of K or incorporated with 

Cu or other structural promoters, only a few investigations have been made on the 

individual effect of Cu.  

In addition to the above-mentioned advantages of adding promoters to Fe-based 

catalysts, a promoter also influenced the catalytic properties due to increase in the 

surface basicity and this was reported by Pour et al. [54]. They tested the effect of 

earth alkali metals such as Mg, La, and Ca promoters on the structure, basicity, and 

the catalytic behavior of precipitated Fe/Cu/SiO2 FT catalyst. They found that the 

alkali promoters have a negligible effect on the catalytic structural properties but 

influenced the catalytic basicity which enhanced the carburization and decreased the 

catalysts reducibility by H2. Moreover, the catalytic activity and selectivity to the 

higher hydrocarbon was enhanced and the methane formation was suppressed by 

addition of one of these promoters, in the order Ca>Mg>La> unpromoted. The 

addition of these alkaline promoters increased the catalytic deactivation due to 

enhanced deposition of carbon during the reaction.            

Numerous studies have shown the effect of alkali metals and many reports 

illustrate that the addition of alkali metals can result in an enhancement of the activity 

and selectivity of Fe-based FTS catalysts. For instance, Raje and his co-workers [55] 

discovered the effect of adding different K loadings for the precipitated Fe catalysts 

on the FT activity, selectivity, and the reaction kinetics. They found that increasing 
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the K content enhanced the FT activity due to the increase in the rate of WGS 

reaction. In contrast, increasing K loading lowered the rate constant. They also 

reported that the selectivity to methane and alkenes depended on the K content as well 

as CO conversion, where above 50% conversion the methane selectivity increased 

with decreasing K loading.  

 K can provide high surface basicity on the catalyst which can apparently suppress 

the selectivity to methane. Several studies illustrate the interaction between the K 

promoter and the structural promoters. Zhao et al. [56] discovered the influence of the 

interaction between the K and different structural promoters such as SiO2, Al2O3, and 

zeolite on the performance FTS for Fe-based catalysts. They concluded that the 

interaction of K and the structural promoters influenced the catalytic carburization in 

the sequence of K-Al2O3>K-SiO2>K-ZSM-5>K-free. This sequence mainly depends 

on the acidity of the structural promoters and their ability to facilitate the migration of 

K promoter from the support’s surface to the iron surface. Al2O3 was found to yield 

high catalytic activity as it contains only Lewis acid sites and lower mobility 

compared to zeolite which is a complex mixture of silica and alumina.  Zeolite 

contains both Lewis and Brønsted acid sites as well as inhibiting the migration of K. 

SiO2 has higher interaction with potassium although silica does not contain any high 

acidic site. Therefore, SiO2 was found to provide lower catalytic activity and methane 

selectivity [56]. 

A few studies were also carried out to illustrate the influence of the individual 

promotion of K and Cu and the double promotion of K and Cu without adding any of 

the structural promoters on the FTS performance. These structural promoters may 

significantly influenced the catalytic activity and stability and suppress the effect of 

the promoters. Wan and co-workers [57] discovered the effect of K, Cu, and mixed 

promotion of K/Cu promoters on precipitated Fe-based FTS catalysts. They reported 

that addition of Cu promoter resulted in larger catalyst (Fe/Cu) surface area and 

smaller pore size compared to that of the fresh catalyst (Fe), while addition of K 

promoter decreased the catalysts surface area on Fe/K and Fe/Cu/K catalysts due to 

enhanced aggregation of the catalysts crystallites which led to plugging of pores of 

the catalysts. They also found that Cu promoter promoted the catalyst reducibility by 
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shifting the reduction peak to lower temperature, and suppressed the adsorption of CO 

as well as the carburization. K promoter suppressed the reduction of the catalysts and 

enhanced the catalytic carburization. They have also found that the addition of Cu 

promoter suppressed the catalytic activity and stability and enhanced the deactivation 

and the selectivity for the light hydrocarbon. However, K promoter improved the FTS 

activity, stability, and the chain growth while it suppressed the catalytic deactivation. 

Compared to the individual promotion of K and Cu, the double promotion was found 

to provide better activity and stability. 

Referring to these aforementioned studies about the effect of the promoters on the 

Fe-based FT catalysts, it can be summarized that addition of the alkali promoters 

increased the catalytic activity due to enhance of catalytic carburization and also 

increasing the selectivity to the higher hydrocarbons. K promoter was found to be an 

essential promoter in Fe catalysts for the FTS, since it enhanced the formation of the 

longer chain and olefins hydrocarbons.                                    

2.2.7     Synthesis technique 

Catalysts are highly sophisticated products derived from several types of chemicals 

through different techniques. Therefore, the catalytic performance of FT catalyst 

strongly depends on the preparation method. The preparation condition controlled the 

distribution of an active phase over the support. Different synthesis methods were 

applied in FTS catalysts such as impregnation, precipitation, microemulsion, and 

colloidal. Three main categories can be used to classify the catalysts with respect to 

the synthesis method which are bulk catalysts, impregnated catalysts, and mixed 

agglomerated catalysts [25]. Bulk catalysts mainly consist of the active substance, 

whereas the impregnated catalysts are usually formed by impregnating the support 

with the active substance. A mixed agglomerated catalyst comprises those catalysts 

obtained by mixing the active sites with support precursors and then agglomerated the 

mixture [58].  
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2.2.7.1    Synthesis of nanoparticles 

Fabrication of nanomaterials with control over size, shape, and crystalline structure 

has inspired the application of nanoparticles to numerous fields including catalysis, 

medicine, and electronics [59].  The use of nanomaterials requires the development of 

methods for nanoparticles assembly. Formation of nanoparticles starts with short burst 

of nucleation followed by slow diffusive growth and then formation of monodisperse 

crystalline nanoparticles [60]. Generally, synthesis methods of nanoparticles are 

typically grouped into two categories: the first one involves division of a massive 

solid into smaller portions, whereas the second one deals with condensation of atoms 

or molecular entities in solution or gas phase. The interest in synthesizing 

nanomaterials as catalyst grows rapidly for a variety of homogeneous and 

heterogeneous catalysis applications. In homogeneous catalysis, the colloidal 

transition metal nanoparticles are dispersed in an organic or aqueous solution. 

Heterogeneous nanocatalyst prepared by adsorption of nanoparticles onto supports. 

The most well-known approaches to synthesize nanoparticles are impregnation, 

precipitation, sol-gel, colloidal, and microemulsion methods.   

2.2.7.2    Impregnation method 

Incipient wetness impregnation method is the most common method for preparing the 

supported catalyst. Impregnation method involved three steps: deposition, drying, and 

calcinations [25].  

I. Deposition of active metal on support 

Deposition of the active metal on the support can be observed by using a solution of 

metal precursors. It is possible to start with dry or wet support. As we classify the type 

of impregnation methods by the starting state of the support [25]. In the case of wet 

support, the support is pre-wetted by the solvent and the metal will distribute 

according to diffusion and adsorption; this method is known as wet impregnation or 

diffusional impregnation. While in the case of dry support, the solution of metal 

precursors is added directly to the dry support. After being contacted, the solution is 

aspired by the capillary force inside the pores of the support and this is referred as dry 
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impregnation or capillary impregnation methods. Immediately after the impregnation, 

the interaction between the active phase and support is relatively weak [25]. 

II. Drying  

It is necessary to dry the impregnated sample to eliminate the solvent from the pores 

of the solid. Removal of this solvent resulted in a certain collapse of the structure. 

Therefore, care must be taken to control the drying rate. In addition, drying step led to 

redistribution an active phase over the support which led to initiate strong interaction 

between them. 

III. Calcination  

Calcine the dried catalyst facilitate the interaction between the active phase and the 

support [25]. Calcination is a further treatment beyond the drying process, which 

resulted in the following: modification of the textural (turn the small particles to 

bigger size), modification of the structure (surface area and porosity), generation of 

the active sites, and stabilization of the mechanical properties.  

Reproducing synthesis of the catalysts through impregnation method requires a 

careful control of all impregnation parameters: temperature and time of drying the 

support, rate of addition of the salt solution, temperature and time of the drying. 

Referring to the amount of the metal salt solution used, two methods of contacting 

the metal and the support are distinguished as follows [58]:  

• Excess solution, also as known incipient wetness impregnation method. 

During this method, support will be placed in an excess quantity of 

solution for a certain time required for total impregnation 

• Appropriate amount of the solution and this method known as dry 

impregnation. The support is contacted with appropriate amount of the 

solution which is equal to the total pore volume or slightly less.      
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Assaf et al. [61] reported the effect of impregnation parameters on the diffusion 

profiles experimentally and also compared the experiment results with the 

mathematical models. The concentration of impregnation solution affects the 

penetrated distance and degree of coverage of nickel inside the catalytic pores. They 

showed that the degree of coverage increased by increasing the concentration of the 

solution. By fixing the concentration, the penetrated distance increased due to 

increasing impregnation time.  

2.2.7.3    Precipitation method  
Precipitation aimed to precipitate a solid from the liquid solution. Generally 

precipitation occurs in three main steps: super-saturation, nucleation, and growth. 

Perego and villa [58] illustrated that the super-saturation step was mainly affected by 

three parameters: concentration, temperature, and pH. Super-saturation can be 

approached by increasing the concentration via solvent evaporation or increasing the 

temperature or pH. The particles which were created during the super-saturation 

region developed in two stages namely nucleation and growth. These stages are 

mainly affected by the concentration, temperature, and the pH of the solution. Rapid 

nucleation and growth in a bulk solution must be avoided as it can cause the 

deposition of the active species only at the outside the support pores. Precipitation can 

be explained by the following reaction [25]: 

 

supporton   carbonateor   hydroxide metal  agenton preciptatisupport   solution salt  metal
 

 →+

 

Choosing of the salt depends on several factors, such as the solubility of the salt, 

thermal decomposition to oxide, safety and environmental impact. Of a wide 

possibility of salt precursor only nitrate, hydroxide and carbonate precursors possess a 

good combination of the characteristics mentioned.        

Precipitation method is usually a preferred deposition route for loading metal 

higher than 10-20%, below this range impregnation is usually practiced [25].               
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2.2.7.4    Deposition-precipitation method 

This method is a combination of precipitation and deposition method. It combined all 

the advantages of precipitation method for controlling the size and it diminishes the 

risk of formation of the bulk mixed compounds of support and active phase. The 

process occurs in two main steps (1) precipitation of the bulk solution on the support 

and (2) nitration of the precipitate on the support’s surface. The deposition of metal 

onto the support surface is enhanced by introducing a precipitating agent, which 

initiate a fine and homogenous phase by involving surface OH groups of the support. 

The support’s surface acts as a nucleation media to accelerate the adsorption of the 

metal over it because it coincides with growth and nucleation of a surface compound 

[25]. Therefore, a proper controlling of the preparation variables plays an important 

role in controlling the catalytic behavior of the precipitated catalysts.  

Diffenbach et al. [62] investigated the influence of pH by using two types of 

precipitating agents which are NH4OH and Na2CO3 for the preparation of precipitated 

Fe catalyst. They suggested that Na2CO3-precipitated catalysts at low pH (3.7 and 4.7) 

showed higher activity and higher olefin selectivity compared with the Na2CO3-

precipitated catalyst at high pH (5.8, 7.6, and 9.8) while NH4OH-precipitated catalyst 

obtained lower olefin selectivity and higher catalytic stability.  

Previous studies have indicated the importance of pH on the structure and the 

performance of the catalysts where most of the studies suggested the dependence of 

pH on the type of the precipitating agent. Motjope and his co-workers [63] reported 

the effect of using different precipitating agents (NH3, K2CO3, and Na2CO3) on the 

catalysts performance in the FT reaction by using Mössbauer spectroscopy. They 

found that the nature of the precipitant affect not only the physical properties of the 

catalyst but also the phase composition. They also concluded that increasing the 

precipitation pH (9-10) and irrespective of the precipitating agent resulted in 

formation of larger hematite crystallite compared to the ones at lower pH (7-8). The 

Mössbauer spectroscopy was used to show the influence of the precipitation agent on 

the catalytic composition during the reduction and FT reaction. They also found that 

NH3 and K2CO3 precipitating catalysts exhibited higher CO conversion, due to 

increasing iron carbide phase compared to those catalysts precipitated by Na2CO3. 

The formation of the hydrocarbons has an opposite trend compared to the FT activity, 
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where the catalyst prepared by addition of Na2CO3 resulted in higher selectivity to the 

hydrocarbons compared to that of K2CO3. This suggested that most of the carbon 

atoms dissociated from the CO over the Na2CO3-precipitated catalyst were consumed 

in the production of hydrocarbons.  

2.2.8    Catalysts activation 

Pretreatment of the catalysts before the FTS reaction, especially for the Fe-based 

catalysts plays an important role on the FT performance (activity and selectivity).  

There are three gases that can be employed for activating Fe catalyst: carbon 

monoxide, hydrogen, or syngas. It is well known that the iron oxide (α-Fe2O3) is 

firstly transformed to Fe3O4 irrespective of the activation gas then the magnetite is 

converted to different Fe phases depending on the activation parameters. Variations in 

pretreatment conditions (temperature, pressure, and duration) as well as the reactor 

system would influence the chemical microscopic structure of Fe-based catalysts. 

Numerous studies have been preformed to investigate the relation between the 

activation condition and the FT performance. Some reports proposed Fe3O4 as a main 

active site for FT reaction while other studies claimed iron carbides as the active 

phase for FTS. Davis [19] found that the laboratory-scale activation with CO at 

270OC for 24h provided the maximum CO conversion compared to the other 

activation procedures. Pure H2 is highly recommended for the commercial scale due 

to their availability and the low cost compared to pure CO, where it is only applied at 

the laboratory scale. Reduction of iron oxide (Fe2O3) by H2 proceeds in two or three 

steps. Herranz and his coworkers [10] reported that the reduction of the Fe2O3 

proceeds in three steps as shown in Figure 2-4. The first step displayed transformation 

of Fe2O3 to Fe3O4, second step for reducing Fe3O4 to FeO, and the last step showed 

the transformation of FeO to Fe. Activation with the syngas is highly desirable since a 

common gas supply can be used for activation and synthesis [64].  
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Figure 2-4: Hydrogen reduction profile of Fe-based catalyst [10] 

2.2.9    Catalyst activity and selectivity 

Several factors influenced the activity and selectivity of FT catalysts, which is 

strongly affected by the catalysts chemistry and structural compositions. The 

activation procedure, especially for Fe-based catalysts has a great influence on their 

activity and selectivity. The term selectivity is used to explain the way in which the 

products are distributed. Generally the product selectivity should be controlled to 

minimize the production of undesired products and maximize the production of the 

primary product. According to most of the literature, it was found that the catalyst 

activity and selectivity were influenced by one or more of the following factors: 

catalyst composition, nature of the suppo rt, metal dispersion, metal loading, 

preparation method, type of the reactor, pretreatment conditions, and operation 

conditions. Since Fe-based catalyst has different active sites for FTS therefore, the 

pretreatment has an important influence on the FTS activity and selectivity compared 

to cobalt-based catalyst, which is usually activated with H2 to produce metallic phase 

which is considered as an active site for the FTS [50].  

The nature of the active sites of Fe-based catalysts for FTS is still being debated. 

Activation treatment such as H2, CO, or syngas activation plays an important role at 

initiating different sites of Fe catalysts. Therefore, a lot of works have been published 

regarding to the main active site of Fe catalysts for FTS. Hayakawa and co-workers 

[52] suggested iron carbide as the main active site for FTS because the catalytic 

activity was increased due to the presence of the carbide sites. Conversions with Fe- 
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catalysts have been carried out over a wide range of the operation condition such as 

the H2/CO ratio, temperature, and pressure. Bukur et al. [48] provided detailed 

information about the influence of promoters (K, Cu, and Cu/K), reaction 

temperature, and space velocity for the precipitated Fe-based catalysts on the FTS and 

WGS activity in addition to the product selectivity. They found that the activity for 

the catalyst that was promoted by using different promoters increased with increasing 

of the reaction temperature as well as the time on stream. Furthermore, small shift 

toward the selectivity of the higher molecular weight products was obtained at the 

higher gas space velocity whereas the opposite trend was observed with increasing 

reaction temperature. The olefin selectivity may increase or decrease with the reaction 

temperature and this was interpreted in terms of accelerating the primary or secondary 

reactions. They found that the selectivity of the olefin increased with increasing 

reaction temperature for the catalysts promoted with potassium in contrast to the 

catalyst K with Cu.  

Catalytic activity is influenced by changes in the chemical composition of the 

catalyst and the reaction conditions during some period of time (time-on-stream or 

induction period).  The time-on-stream is longer at the lower reaction temperature and 

for the catalysts with higher alkali content. Moreover, a slight dependence of the 

catalytic activity and selectivity on the H2/CO ratio was observed. Reaction 

temperature and pressure also influence the performance of the FTS. Therefore, to 

produce liquid product lower temperature was utilized due to the lower WGS activity. 

Temperature also played an important role in determining the WGS activity. This is 

the major difference between high or low reaction temperatures. Moreover, the 

temperature also affected the formation of different catalyst phase [19].                                       

The basicity of the Fe-based catalysts is the one of the key factors that controls the 

product selectivity which is maintained by the amount and type of the alkali 

promoters. The amount and the type of alkali group as well as the amount and type of 

the structural promoters and impurities affect the basicity of the catalyst [65]. Table 2-

1 is a summary of the studies that have been performed on the effects of the catalyst 

and reaction conditions on the performance of FTS. As shown in Table 2-1, the 

effects of the Fe particles size on the catalytic performance and the correlation 

between the catalyst properties and the FT performance have not been reported.    
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Table 2-1: Summary of the studies on the FT performance 

Catalyst  Synthesis 
technique 

Fe 
particle 

size  

Reaction 
condition  

CO 
conversion 

(%) 

Product 
selectivity 

(%) 

100Fe/20SiO2
A [44] 

Precipitation - T=523K 
P=1.5MPa 

H2/CO=0.67 

47.2 C1-C4= 48.1 

C5+= 51.8 

100Fe/6Cu/5K
/3Al2O3/22SiO

2
 A [17] 

Co-
precipitation 

and spray 
dried 

- T=523K 
P=20MPa 
H2/CO=2 

74.4 C1-C4= 39 

C5+= 61.4 

50Fe/50Mn/ 
10SiO2 

A
 [66] 

Co-
precipitation  

- T= 673K      
P= 1atm 

H2/CO=0.5 

73 C1-C4= 74.9 

C5+= 2.1 

57Fe/1.9Cu/ 
1.6K/40%SiO2

 

A [67] 

Impregnation  - T=523K 
P=1.31MPa 
H2/CO=0.7 

32 0.2 * 

5%Fe/SiO2
 B 

[10] 
Microemulsio

n  
- T=573K 

P=1.01MPa 
H2/CO=2 

13.5 C1-C4= 88.7 

C5+= 10.1 

100Fe/6Cu/5K 

A [57] 
Co-

precipitated 
and spray-

dried 

- T=533K 
P=1.5MPa 

H2/CO=0.67 

82.2 C1-C4= 18.9 

C5+= 81.1 

100Fe/5Cu/ 
4.2K/ 15SiO2

A 
 

[46] 

Co-
precipitated 
and spray-

dried 

- T=523K 
P=1.5MPa 

H2/CO=0.67 

48.4 C1-C4= 20.3 

C5+= 80.6 

100Fe [21] Precipitation  - T=513K 
P=0.1MPa 
H2/CO=1 

85.9 C1-C4= 32.4 

C5+= 67.6 

*productivity of lower molecular weight 0.2g.h-1.g-1Fe  
A The amount of the element in mass ratio 
B Fe loading (%) 
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2.3    Catalyst characterization 

The performance of the catalysts is strongly influenced by the catalyst properties. 

Therefore, characterization of the catalysts is important at any stage of designing the 

catalysts. For FTS catalysts, properties that must be classified are the surface chemical 

and physical properties, catalyst reducibility, catalytic activity and selectivity. Since 

the active catalyst for FTS is likely to possess a complex microstructures that include 

several co-existing phase, therefore, many different types of analysis have been used 

to explain the catalyst properties.  

2.3.1    Surface area and pore size measurement  

Since the catalytic phenomena occur at the surface of the solid catalysts thus, porous 

solids with a high internal surface are often required in order to achieve the 

responsible value of the activity. Therefore, several techniques were applied to 

determine the surface area for the solid materials. There are relatively large portion of 

the atoms of the solid material which are near the surface. The surface atoms were 

found to be more reactive than the same atoms in bulk form where it suppressed the 

sintering of catalyst at higher temperature and it exhibits great catalytic activity. 

Therefore, the influence of the surface area and structure is pronounced as physical 

composition. The surface area is usually described by the gas adsorption or desorption 

isotherms. Firstly, the sample is evacuated from the moisture by passing non-

adsorbing gas such as helium over the sample. Then the temperature of the evacuated 

sample (adsorbent) is reduced to that of coolant appropriate such as liquid nitrogen or 

argon and the adsorbate allowed gas to be adsorbed via attractive force between the 

exposed surface of the solid material and the gas molecules (adsorbate). The relations 

between the accumulated gas quantities adsorbed versus gas pressure are graphed to 

generate the adsorption isotherm and the data are treated in accordance of gas 

adsorption theories to arrive at a specific surface area for the sample. Generally the 

adsorption isotherms follow one of six IUPAC standard forms as shown in Figure 2-5 

[68]. Type I shows the characteristic of adsorbents with extremely small pores, which 

is known as microspores (dpore < 2nm) solid material. Type II illustrates the 

characteristic of the adsorbents having relatively large pores, indicative of nonporous 
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adsorbents. Type III and V arise under the condition of vapor adsorption or they can 

be observed when the interactions between the adsorbate and adsorbent are weak. 

Type IV appears at the solid that possess mesopores (2-50nm) which is analogous to 

type II. Finally, the rare type VI, is indicative of a nonporous adsorbent with an 

almost completely uniform surface [69].     

     

 

Figure 2-5: Standard adsorption isotherms [68] 

 The phenomena of gas adsorption have been illustrated through many theories to 

provide a clear understanding of the surface characteristics. One of the most 

applicable theories is the BET theory, which is named after the surnames of its 

originators; Brunauer, Emmett and Teller. This theory takes the main advantage from 

the Langmuir theory which only considered the adsorption of monolayer molecule 

and the concept of multimolecular layer adsorption [69], as shown at Figure 2-6 [70].  

 

Figure 2-6:  Concept of multimolecular layers adsorption [70] 

 
The fundamental assumption of the BET theory is that the gas molecules are 

physically adsorbed on a solid in an infinite layer. The layers initiated from the force 

active in the condensation of the adsorbate gas responsible for the binding energy in 
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multimolecular adsorption. Also assumed that there are no interactions between the 

adsorption layers. The BET theory can be expressed through this following equation 

(2.9) [68]. 

  ( ) 







+=

− 0mm 0 P
P 

C V
1- C  

C V
1 

P P αV
P                                                    (2.9) 

Where P and P0 are the equilibrium and the saturation pressure of the adsorbate 

respectively, at the temperature of adsorption, V and Vm are the total and monolayer 

adsorbent gas quantity, respectively. The constant C is expressed by equation (2.10) 

[68]. 

RT
q q exp  L1 −=C                                                                             (2.10) 

Where q1 is the heat of adsorption of the first layer onto solid surface, qL is the latent 

heat of condensation of the adsorbate, R the gas constant, and T the absolute 

temperature. 

The plot of   versus  from equation (2.9) should yield straight 

line where the value of Vm and C can be obtained from the plot with intercept of 

 and slope of . The surface area can be easily calculated after the 

determination of the volume of the monolayer by the following equation (2.11) [68]. 

( ) ( )
( )

3/2

2/1 24
M 0.866 4  








=

ρ
σ

AN
                                                        (2.11)  

Where  is the area per molecules, M the molecular weight, NA Avogadro’s number, 

and  the density of the liquid adsorbate. BET has achieved wide usage for measuring 

the surface area and has become the basis for a number of later theories 

developments. 

The pore size distribution was determined through Barrett-Joyner-Halenda (BJH) 

method. This technique follow the adsorption branch of the isotherm downward from 

high to low pressure or the desorption branch. The condition must be set arbitrarily 

where all the considered pores are filled [64]. The calculation of BJH method scheme 
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on mesopore distribution from nitrogen adsorption data is summarized using equation 

(2.12) [64]. 

( )[ ] ( )[ ]∑∑
+−

>∆+≤∆=
n

ki
kciiikcik xrrtSxrrx

1

k

1-i
i ads V  )(V                             (2.12) 

Where,  

( )kxadsV  = volume of (liquid) adsorbate [cm3/g] at relative pressure kx  (calculated                   
from the value of adsorption expressed in [cm3/g STP] by )(Vads x  = 0.0015468 a(x) ) 

V = pore volume [cm3/g] 

S  = surface area [m2/g] 

t   = thickness of adsorbed layer (in appropriate units)  

r   = pore radius (in appropriate units) 

2.3.2    Catalytic morphology  

Electron microscopy is used to visualize the morphology of the catalysts via the 

bombardment of electrons instead of using photons as a source of image formation. 

The most common types of the electron microscopy are scanning electron microscopy 

(SEM) and transmission electron microscopy (TEM) as shown in Figure 2-7. TEM 

offer the internal study of the material while SEM observes the surface properties 

[71]. 

 

Figure 2-7: TEM and SEM system [71] 



 

 

45 

 

2.3.2.1    Scanning electron microscopy (SEM) 

SEM is one of the most common techniques used to determine the catalytic surface 

properties.  SEM is used to determine the morphological change by scanning the 

sample with a high-energy beam of electrons. The surface topography can be studied 

due to the interaction between the electrons emitted from the electron source and the 

atoms that exist at surface of the sample. The electron is generated from an electron 

source and accelerated under influence of a strong electrical voltage gradient (field) 

with electromagnetic coils. This electron is known as the primary electron and this 

electron is focused and deflected by electronic lenses to produce a narrow scan beam 

that bombards the object (Figure 2-8). The secondary electrons are produced by 

interaction of the electron beam with the atoms at the surface of the sample. The 

signal formed from this interaction provides information that is employed to 

reconstruct a very detailed image of the topography of the surface of the sample [72]. 

The type of the signals produced from the interaction of the electron beam with the 

sample include not only the secondary electrons but also backscattered electrons, 

characteristic X-rays, and other photons at various energy. These signals can be used 

to examine many characteristics of the sample such as surface topography, 

crystallography, and composition. The characteristic X-rays which are also produced 

by the interaction of electrons with the sample, may also be detected in SEM 

equipped for energy-dispersive X-ray spectroscopy (EDS or EDX). 

The EDS system offers rapid phase identification of the sample [73]. The 

electrons that are not captured by the detector would hang like a cloud masking 

around the sample, thus masking the image. In scanning electron microscopy samples 

are coated in advance by a very thin layer of conductive material to clear away 

superfluous electrons [72]. 

 

http://en.wikipedia.org/wiki/Electron�
http://en.wikipedia.org/wiki/X-rays�
http://en.wikipedia.org/wiki/Electrons�
http://en.wikipedia.org/wiki/Energy-dispersive_X-ray_spectroscopy�
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Figure 2-8:  Type of electrons that is used for different analysis [72] 

 

The basic components of the FESEM microscopy are lens system, the electron 

gum, the electron collector, the photo-recording cathode ray tube, and the associated 

electronics (Figure 2-9). 

 

Figure 2-9:  Field emission column [74] 

2.3.2.2    Transmission electron microscopy (TEM) 

TEM is found to be a very powerful system to characterize the nanocrystal materials, 

particularly when the determination of the particle shape and size is important. TEM 

is likely used for revealing the atom distributions on nanocrystal surfaces. TEM is 
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composed of vacuum system, illumination system, a specimen stage, an objective lens 

system, the magnification system, the data recording system, and the chemical 

analysis system (Figure 2-10) [75]. Vacuum system is used to increase the mean free 

path of electron gas interaction. The illumination system includes the electron gun 

which typically uses a field emission source or thermionic emission source to produce 

high spatial resolution microanalysis. The illumination system consists of the 

condenser lenses that are vitally important for forming a fine electron probe. The 

specimen stage is a key to carrying out structure analysis and giving the possibility of 

characterizing the physical properties of individual nanostructures. The objective lens 

is the heart of a TEM which determines the limit of image resolution. The 

magnification system consists of intermediate lenses and projection lenses, and it 

gives a magnification up to 1.5 million. The data recording system tends to be digital.  

 

 

Figure 2-10: Electron source at the TEM [75] 

 

The image formation of the specimen is caused by the interference of the reflected 

electron beams. Areas that scatter few electrons (electron-lucent areas) appear as 

bright areas in the image, while areas that scatter more electrons or absorb electrons 

(electron-dense areas) appear as dark areas (mauricewilkinscentre.org) [76]. Figure 2-

11 shows the schematic diagram of the TEM column.  
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Figure 2-11: Schematic diagram of a transmission electron microscope column 

 [76] 

2.3.3    X-ray powder diffraction (XRD) 

XRD is a versatile technique that reveals detailed information about the chemical 

composition and crystallographic structure of the material. This method is ideally 

suited for characterization and identification of crystalline phases [77]. The XRD 

pattern of a pure substance is like a fingerprint of the substance. The main use of 

powder diffraction is to identify components that existed in the sample by a search 

and match procedure where a thousand components such as organic, inorganic, and 

crystalline phase have been collected and stored on magnetic or optical media as 

standards. The solid material can be described as amorphous or crystalline materials. 

Amorphous substance involves random arrangement of the atoms whereas atoms are 

arranged in a regular pattern for the crystalline material.  

The analyzing procedure is based on the diffraction of X-ray beam by the 

substance [77]. X-rays are electromagnetic radiation similar to light but with a much 

shorter wavelength of about 1Å (10-10m), which is about the same size as an atom. It 

is positioned between gamma-rays and ultraviolet region of electromagnetic spectrum. 

XRD involves a source of the monochromatic radiation and an X-ray detector as 

shown in Figure 2-12. The X-ray detector is situated on the circumference of a 

graduated circle centered on the powder specimen. Encounters between the X-ray 
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beam and a crystal lattice, result in scattering. The relation by which diffraction 

occurs is known as the Bragg law or equation. Because each crystalline material has a 

characteristic atomic structure, it will diffract X-rays in a unique characteristic pattern 

[78]. Bragg low (equation 2.13) explains the cleavage faces on the crystal which 

cause the X-rays to diffract at certain angles and wavelength.  

( ) λθ = sin 2d                                                                                  (2-13) 

Where 

 d = the lattice inter-planar spacing of the crystal 

 θ = the X-ray incidence angle (Bragg angle) 

 λ = the wavelength of the characteristic X-rays.       

 

     

Figure 2-12: Flow diagram of the X-ray diffractometer and reflection of the X-ray 
[78] and [79] 

2.3.4    Temperature-programmed reduction (TPR) 

TPR is a technique to characterize the solid material and finding the most efficient 

reduction condition and studying the metal-support interaction. This technique 

consists of heating the catalyst at a linear temperature ramp in a flow of hydrogen 

while monitoring the hydrogen consumption. A quartz U-tube is used as a sample 

container and it is filled by known amount of the catalyst. The sample vessel is placed 

in a furnace. The sample has been pretreated to remove the moisture and impurities 

via heating in inert gas (nitrogen, argon or helium) at certain temperature and flow 

rate. Then flow is switched to 5%hydrogen in nitrogen and the temperature is 
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increased. The temperature is gradually increased, reaction rate increase depending on 

the activity and the actual degree of reduction of the solid material, until the material 

is completely reduced [80].  

Jozwiak et al. [81] investigated the H2 and CO reduction of various iron oxides by 

using TPR. They concluded that the change of the TPR profile shape was strongly 

influenced by the heating rate. They also found that when fast heating rate was used, 

the complete reduction moved to the higher temperatures of up to 800OC. They 

reported that reduction of Fe2O3 took place in two or three reduction stages. Two 

reduction stages represent transforming Fe2O3→Fe3O4→Fe which occurred at lower 

reduction temperature <500OC, while for the high reduction temperature 700-800OC, 

appearance of wüstite (FeO) phase proved the involvement of the third step in the 

reduction of Fe2O3. 

2.4    Summary     

Referring to the previous reports presented by many researchers confirmed that Fe-

based catalysts was selected to catalyze the FT reaction at low H2/CO ratio where it 

has higher WGS activity, higher flexibility at different reaction condition, higher 

selectivity to the heavy hydrocarbons and olefins compared with the Co-based 

catalyst. Furthermore, most of  the prior studies showed that physical, chemical, and 

mechanical characteristics of Fe-based FTS catalysts was found to be significantly 

affected by applying different preparation techniques as well as supports, and 

promoters. Impregnation and precipitation methods were commonly used to 

synthesize the Fe-based catalysts. Al2O3 and SiO2 supports are commonly used 

supports. Generally supported Fe-based catalyst was found to have lower catalytic 

activity compared to the unsupported one due to the strong interaction between the 

active metal and the support. Several alkali promoters were used to enhance the 

catalytic reducibility as well as the selectivity for hydrocarbons. Reaction condition 

such as temperature, pressure, space velocity, and reactant ratio strongly influenced 

the FTS catalytic performance.           
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CHAPTER 3 

Research Methodology 

3.1    Introduction 

Although numerous studies have been conducted on the FTS over Fe-based catalyst, 

further investigations are required to determine the influence of different synthesis 

parameters on the performance of supported Fe catalyst in FTS process. Therefore, 

this study was aimed to apply various parameters on the catalyst synthesis steps and 

the reaction conditions to extract the effects of these parameters on the performance 

of the supported Fe-based catalyst in FTS. Accordingly, this chapter described the 

experimental work conducted in this study which is divided into three parts: 

preparation of the catalysts, characterization methods, and FT reaction studies.  

The first part deals with the synthesis of the Fe-based catalysts for FT reaction.  

Fe-based catalysts with different Fe loading (3, 6, 10, and 15 wt %) supported on SiO2 

or Al2O3-SiO2 supports were synthesized through two synthesis techniques, namely 

impregnation and precipitation methods. Moreover, supported Fe nanocatalysts were 

modified by adding promoters such as K or Cu.  

 The second part illustrated the influence of the synthesis techniques, Fe loading, 

supports, and promoters on the physical and chemical properties of the catalyst. 

Several analysis techniques such as N2 physical adsorption, FESEM, TEM, XRD, and 

TPR methods were used to characterize the catalysts.  

Finally, the influence of the synthesis parameters for the supported Fe catalysts 

and the operation conditions, such as flow rate, H2:CO ratio and reaction temperature 

on the catalytic performance for FTS were tested in a microreactor system. A 

comparison was made between properties and performance of catalysts prepared 

using different synthesis techniques which have been subjected to the same 
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pretreatment and the reaction condition. The research methodology is summarized 

in the flow chart shown in Figure 3-1.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1: Methodology layout 
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3.2    Materials  

Table 3-1: List of chemicals and gases used in this study 

Materials Molecular 
weight 
(amu) 

Supplier Purity  purpose 

Silica (aerosol OX50) 60.1 Evonik  99.8% Catalyst support  

Aluminum nitrate 
nanohydrate  

375.1 Fluka 98.0% Support precursor  

Iron nitrate 
nanohydrate 

403.9 Merck 99.0% Catalysts precursor  

Copper nitrate 
nanohydrate 

241.8 Merck 99.0% Promoter precursor  

Potassium nitrate 
nanohydrate 

101.1 Merck 99.0% Promoter precursor  

Ammonia  17.0 Merck  25.0% Precipitating agent  

5%hydrogen/nitrogen - Malaysian 
oxygen (MOX) 

99.9% Reduction  

Nitrogen  14.0 MOX 99.9% Pretreatment  

Hydrogen  2.0 MOX 99.9% Reactant gas  

Carbon monoxide  28.0 MOX 99.9% Reactant gas  

Helium  2.0 MOX 99.9% Purging gas and 
carrier  

RGA standard gas - Praxair, Inc for 
Agilent 

technologies  

- Calibration 
standard  

Scott specialty gas - Solution 
engineering 
SDN.BHD, 
(Agilent) 

- Calibration 
standard  
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3.3    Synthesis technique of the FT catalysts  

Generally the catalytic properties of the heterogeneous catalysts are strongly affected 

by every step of the preparation and the composition of the raw material. Although, 

numerous synthesis techniques were applied to synthesize Fe-based FT catalysts, such 

as impregnation, precipitation, sol-gel, colloidal, and micro-emulsion methods, 

impregnation and precipitation methods are commonly used. Therefore, in this study 

impregnation and precipitation methods were used to synthesize supported Fe 

nanocatalyst. Comparison was made between the properties of catalysts prepared by 

both synthesis techniques. The influence of the synthesis technique on the FT 

performance was investigated. The impregnation method was used to synthesize Fe 

nanoparticles on SiO2 and Al2O3-SiO2 supports. Fe-based catalysts supported by SiO2 

support were promoted by K and Cu promoters and the effect of the alkali promoter 

on the catalytic performance was investigated. 

The preparation step consists of two parts. The first parts deal with synthesis of 

the oxide support using impregnation method, while the second part involved 

synthesis of supported Fe-based catalysts via impregnation and precipitation methods. 

3.3.1    Preparation of the catalyst support  

Two types of the catalyst supports used in this study were silica and alumina-silica. 

Commercial non-porous SiO2, supplied by (aerosol OX50, Evonik Industries) with 

small surface area (40.9m2/g) was used as one of the support materials. The Al2O3-

SiO2 support with small surface area was synthesized via impregnation method to 

make the comparison between the two supports possible. 

The Al2O3-SiO2 support was prepared by impregnation method with weight ratios 

of Al2O3:SiO2 set at (5:95, 15:85 and 25:75 w/w). The procedure followed was similar 

to that described by Zhang et al. [82].  Al2O3-SiO2 support was synthesized by 

dissolving a desired amount of alumina precursor Al2O3 (NO3)3.9H2O in glycol at 

353K and stirred for 1h to form a homogenous solution (0.5M) of Al2O3 (NO3)3.9H2O 

(amount of the precursor is shown in Appendix A). Then the solution was added 

dropwise on to the commercial SiO2 at constant stirring for 12h. After impregnation, 
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the support was dried in air at 393K for 12h and calcined at 873K for 4h in following 

of air.    

3.3.2    Preparation of the FT catalysts            

3.3.2.1    Impregnation method 

I. Supported Fe-based catalysts  

Impregnation method is a simple technique that was used to synthesize the FT 

catalysts. Generally, impregnation method was a preferred method to synthesize the 

Fe-based catalysts having Fe loading (less than 10%). Catalysts with Fe loadings of 3, 

6, 10, and 15 wt% were synthesized using the impregnation method. Iron nitrate 

nonahydrate (Fe(NO3)3.9H2O) was used as a metal precursor. Iron nitrate was chosen 

due to the availability of the precursor, high solubility in water, faster decomposition 

to oxide form compared to the other precursors and other safety and environment 

effects. The amount of each precursor was calculated to produce 5g of the total 

catalyst at different Fe loadings on SiO2 and Al2O3-SiO2 supports.  

 The procedure for synthesizing supported Fe-based FT catalysts are as follows. 

Desired amount of Fe(NO3)3.9H2O was dissolved in deionized water to produce an 

aqueous solution (0.5M) of iron nitrate and then the solution was stirred for 1h to 

form a homogenous mixture (calculations are shown in detail in Appendix A). This 

precursor solution was dropped slowly onto the support under constant stirring. The 

impregnated sample was stirred for 24h. Equations 3.1 and 3.2 show the reaction 

which occur due to addition of precursor solution to the support [29].          

Fe3+
(aq) + SiO2(P)    (Fe3+,SiO2)(S)                                                                                             (3.1) 

Where,  

aq = aqueous solution 

p  = powder 

s  = suspension  
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After the stirring period was completed, the sample was dried at 120OC for 12hr 

to remove the moisture and the impurities then calcined under the flow of air at 

600OC for 4h [29].    

(Fe3+, SiO2)S   (Fe2O3/SiO2)(I.C)                                                                    (3.2) 

Where, I.C is impregnated catalyst   

II. Supported Fe-based catalysts incorporated with a promoter 

Copper nitrate nonahydrate (Cu (NO3)2.3H2O) and potassium nitrate (KNO3) used as 

the metal precursors were supplied by Merck. Supported Fe-based catalysts were 

incorporated with alkali promoters (Cu, K, and double promotion of Cu/K) by 

impregnation method. In the case of catalysts promoted with individual promoter 

copper or potassium (Fe/Cu/SiO2 or Fe/K/SiO2), silica support was impregnated with 

an aqueous solution (0.5M) of iron nitrate and copper nitrate or iron nitrate and 

potassium nitrate. The amounts of the materials used are shown in Appendix A. Then 

each of those impregnated mixtures was stirred for 24hr, drying at 120OC for 12h and 

finally calcined for 4h under air flow at 600OC. for synthesis of the double promotion, 

supported Fe-based catalysts (Fe/Cu/K/SiO2), an aqueous solution of iron nitrate and 

copper nitrate (0.5M) were added slowly to the desired amount of silica under a 

constant stirring for 4h. Then an aqueous solution (0.5M) of potassium nitrate was 

added dropwise to the iron-copper mixture, and the final mixture was stirred for 24h. 

The remaining steps were similar to the steps that were applied in the case for the Cu 

and K promotion.  

3.3.2.2    Precipitation method  

Precipitation method involves the formation of a solid from a solution or inside 

another solid during a chemical reaction or by diffusion in a solid. The steps for the 

precipitation procedure are shown as follows: firstly, the Fe precursor, iron nitrate 

nonahydrate, was dissolved in deionized water and stirred for 1h to form a 

homogenous solution. This solution was slowly added to the silica support and the 

http://en.wikipedia.org/wiki/Solution�
http://en.wikipedia.org/wiki/Chemical_reaction�
http://en.wikipedia.org/wiki/Diffusion�
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mixture was stirred for 4hr. Equation (3.3) explained the reaction that occurs due to 

the addition of metal solution to the support.     

Fe3+
(aq) + SiO2(P)    (Fe3+, SiO2)(S)                                                                   (3.3) 

Ammonia hydroxide was chosen as the precipitation agent based on the study that 

was conducted by Diffenbach et al. [62].  NH4OH was used to control the formation 

of the desired precipitate. The solution was heated up to 80OC and treated by 

adjusting the pH between 9 to 11 using 1- 2ml of NH4OH (equation 3.4). This pH 

value was chosen referring to the studies that was published by Motjope and co-

workers [63] on the influence of the pH where the pH of the solution was controlled 

by adding the precipitating agent dropwise under a constant stirring.  

(Fe3+, SiO2)S + NH4OH→ (FeOOH/SiO2)                                                             (3.4) 

Then the solution was stirred for 24hr and after the precipitate was formed, the 

sample was washed several times by deionized water and carefully filtered. After 

filtration, the precipitate was dried at 120OC for 12h and calcined at 600OC for 4h 

under the air flow. The precipitate was dried and calcined in order to remove the 

moisture, and calcination step converting the precipitate to the  more chemical stable 

form (oxide form) as shown in the following equation (3.5) [10].      

(FeOOH/ SiO2)   (Fe2O3/ SiO2)(P.C)                                                              (3.5) 

Where, P.C is precipitated catalyst  

3.4    Characterization techniques 

3.4.1    N2-physical adsorption 

BET theory provides a relationship between the pressure of a gas and the volume of 

the adsorbed monolayer across the surface of the material. The total surface area, pore 

volume and average pore size for all the synthesized Fe-based FT catalysts were 
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determined using micromeritics (ASAP 2000) adsorption equipment shown in Figure 

3-2. This method is based on multipoint nitrogen adsorption-desorption principle. 

Nitrogen (99.9% purity) gas was used as an adsorbate. A sample was degassed by 

heating at 1950C over night under vacuum conditions to remove moisture or any 

adsorbed species or impurities.  

BET equipment consisted of two parts as shown at Figure 3-2: the first part is the 

pretreatment where the sample is thermally pretreated under the flow of N2 to remove 

the moisture or any other impurities. The second part is for sample analysis.  

 

Figure 3-2: Micromeritics (ASAP 2000) equipment used to measure the surface area 
 

Typically, 0.3 g of the catalysts was loaded in the pre-weighed quartz sample 

tube. The sample tube was placed at the degasser where it was degassed overnight 

under the flow of nitrogen at 195OC to remove the moisture and impurities. After 

finishing the degassing period, the sample was cooled to the ambient temperature. The 

sample tube was refilled with nitrogen and then the sample was removed from the 

degassing port and reweighed, to determine the actual sample mass before switching 

it to the analysis port. Subsequently, the sample tube was immersed inside a dewar 
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Heater 
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flask on an elevator filled by liquid nitrogen. Then all the information about the 

sample was keyed into the software to setup the system and to start the analysis. 

Finally, the value for the catalyst surface area was calculated according to the BET 

equation while the value for the pore size distribution was determined from the 

desorption branch of the adsorption isotherm by the Barrett-Joyner-Halenda (BJH) 

method. 

3.4.2    Field-emission scanning electron microscopy (FESEM) 

FESEM permits the surface morphology characterization of heterogeneous organic 

and inorganic material in nanometer (nm) to micrometer (μm) scale. The major reason 

for using the FESEM is to obtain high resolution in the nanometer range [72]. In 

addition, this technique is also known to be one of the most common techniques of 

imaging the surface area of the sample. This system also includes the energy 

dispersive X-ray analysis (EDX), which provides quantitative elemental analysis and 

element localization on samples being analyzed.  

The FESEM analysis for the supported Fe-based catalysts was performed on Zeiss 

Supra 55 VP equipment. Samples of the catalysts powder were prepared by spreading 

powder on the carbon tape and the excess powder was simply shacked off. The 

FESEM was conducted under the following conditions: 

Accelerating voltage = 5KV 

Magnification = 100.00 KX 

Working distance = 4 mm 

3.4.3    Transmission electron microscopy (TEM) 

TEM analysis was conducted to observe information about the catalysts particle size 

and the dispersion of these particles over the support. The powdered sample was 

suspended in heptane then it was sonicated for 30min. A portion of the sample was 

then deposited on a carbon-coated copper grid. Then the grid was placed in the TEM 

machine to analyze the shape of the nanoparticle, the metal particle size, and to 
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observe the metal coverage on the support.  The TEM analysis for the supported Fe-

based catalysts was performed on Zeiss LIBRA 200 FE equipment under the 

following conditions: 

Voltage= 200KV 

Magnifications= 1000KV    

3.4.4    X-ray diffraction (XRD)  

XRD is the most common technique used to investigate the characteristics of 

crystalline materials. This technique is attractive because it requires only small 

amount of material, easy of performance, and is non-destructive technique. 

The composition of the synthesized catalysts was determined using the XRD. 

XRD analyses were performed using a Bruker A&S D8 Advanced Diffractometer 

instrument equipped with a CuKα radiation source, at 40 kV and 30 mΑ, in the 

scanning angle (2θ) range of 2–60° at scanning speed of 1.2°/min. The respective 

XRD peak of the catalyst was compared with the literature to identify the phase 

composition of the catalyst.  

3.4.5     Temperature-programmed reduction (TPR) 

The TPR experiment was performed using a TPD/R/O 1100 CE Instrument equipped 

with a thermal conductivity detector (TCD) in two-stage procedure, namely 

pretreatment and analysis. The prepared catalyst (20mg) was placed between two 

layers of quartz wool inside a conventional atmospheric quartz flow reactor then the 

quartz cell was placed inside the electrical furnace, which is equipped with a 

programmable temperature controller. The sample was pretreated under flowing of 

pure N2 and temperature was programmed to increase from the room temperature to 

250 OC at 10OC/min then the sample was hold at 250OC for one hour in order to 

remove the impurities and the moisture. After completing the pretreatment step, the 

flow was switched to 5%H2/N2 (20ml/min) which was used as the reducing gas and 

temperature was ramped to 900OC at 10OC/min and then the sample was hold at 

900OC for 4 hours. The tail gas was directly passed to the thermal conductivity 
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detector (TCD) to determine the hydrogen consumption in the gas stream. Distinct 

reducible species in the catalyst were shown as peaks in the TPR profile. 

3.5    General description of reactor rig  

The fixed-bed microreactor was supplied by Aseptec Sdn Bhd. Figure 3-3 shows the 

assembly of the microreactor system. The reaction system consisted of three parts 

namely the gas supply, fixed-bed microreactor, and online gas analysis system. Figure 

3-4 shows the schematic diagram of the microreactor system.  

 

Figure 3-3: Overall reactor diagram 
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Figure 3-4: Schematic diagram of a microreactor system 
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3.5.1    Gas supplying system 

Three gases used in the microreactor system were He, H2, and CO (Figure 3-4). The 

inert gas helium was used as a purging gas to purge the overall system whereas; 

hydrogen and carbon monoxide were used as reactant gases. In addition, CO gas was 

also used as a reducing agent to activate the catalysts. Two-stage pressure gas 

regulators were used to control the gas outlet pressure to 2 bars for all the reactant 

gases. The reactant gases were transferred to the reactor through ¼ inch stainless steel 

tubings. Flow rate of the inlet gases CO and H2 were controlled by mass flow 

controllers supplied by Alicat scientific (MC-100SCCM-D with flow rate range of 0-

100ml/min and maximum pressure of 160psi). The flow rate of He and nitrogen were 

controlled using flow meters supplied by Dwyer (flow rate range between 0-

60ml/min, 250OF and 200psi).           

3.5.2    Fixed-bed microreactor   

The fixed-bed microreactor consisted of a vertical micro-tubular fixed-bed reactor 

fabricated from stainless steel (SS316). As shown in Figure 3-5 the fixed-bed 

microreactor has the following dimensions: outer diameter (OD) =5.97mm, inner 

diameter (ID) =5mm, length =100mm, and volume =1962.5mm3. Tubular reactor was 

placed in a vertical electrical furnace (SE799A) capable of producing a temperature 

up to 900OC. The temperature inside the reactor was measured using thermo-couple 

equipped with a PID (proportional integral derivative) controller. This reactor system 

is equipped with separator (25ml) for separating the gas and liquid products. The 

separator has a tap to allow collecting liquid product for offline analysis. The gaseous 

products were analyzed online using a gas chromatography. 
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Figure 3-5: Schematic diagram of a fixed bed micro tubular reactor  

3.5.3    On-line gas chromatograph (GC) system 

The gaseous products were analyzed via on-line Agilent Hewlett Packard (HP) GC 

equipped with TCD and flame ionization detector (FID). The Gas chromatograph 

system consists of three columns designated as GC-AL/KCL, HP-Plot U, HP-

Molesieve columns. The GC-AL/KCL column is ideal for separating hydrocarbon 

components that are gases at room temperature, while the other two columns are 

serially connected to separate light and gases hydrocarbons such as CH4, CO2, H2O, 

CO, and H2. Table 3-2 shows the specification of the GC columns. TCD and FID 

detectors were used to determine the specific components that were separated by 

those three columns. TCD (front detector) was used to identify components such as 

methane, CO, CO2, and H2. The FID (back detector) was applied to identify the 
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hydrocarbons.  The GC-AL/KCL column was connected to the FID detector whereas 

the other two columns were connected serially to the TCD detector. He was used as a 

carrier gas where hydrogen was used for the FID detector.   

 

Table 3-2: Specification of GC columns 

Column Model 
Dimension Max 

Temp.  

     (°C) 

Flow rate 

(ml/min) Length 
(m) 

I.D. 
(μm) 

Film 
(μm) 

GC-
AL/KCL 115-3332 29 530 3.0 200 8.0 

HP-Plot U 19095P-
U04 30 530 20 190 5.0 

HP-MolSiv 19095P-
MS9 15 530 50 300 5.0 

3.5.3.1    Gas sampling system  

The gas sampling system consisted of three pneumatic valves which are valve 1, valve 

2, and valve 3. Figure 3-6 shows the flow diagram for the sequence of valves system. 

Gas analysis was started when these valves were opened at 0.00 min run time to allow 

the gas sample to be injected into the respective columns. 

 

Figure 3-6: Gas sampling valve diagram in the GC 
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The procedures for analyzing the gaseous product from the microreactor are 

shown as follows: 

 Analyze the gas via the front detector (TCD) (Table 3-3)  

• The gas sample entered the line where the valve 3 was turned on and the 

gas was flowed through the HP-Plot U and HP-Molesieve columns. 

• Valve 3 was closed at 0.5 min run time 

• Valve 2 was turned on at 2.6 min run time to prevent H2O and CO2 from 

entering the HP-Molesieve column which can damage the column.   

• Valve 2 was turned off at 3.3 min to let the gas sample to pass through the 

HP-Molesieve. 

•  These gas sample was detected by TCD detector   

Table 3-3: valve setting of the front detector 

Time (min) Specifies  Parameter  Set-point  

0.01 Valve  3 On 

0.50 Valve 3 Off 

2.60 Valve 2 On 

3.30 Valve 2 off 

 

 Analyze the gas through the back detector (FID) (Table 3-4)  

• Valve 1 was turned on at 0.01 min to allow the gas sample to enter the 

line  

• The sample was passed directly to the back line towards GC-AL/KCL 

• The separated gas was detected by FID detector  

Table 3-4: valve setting of the back detector 

Time (min) Specifies Parameter Set-point 

0.01 Valve 1 On 

0.50 Valve 1 Off 

 

The GC calibration was carried out using Refinery Gas Analysis (RGA) standard, 

standard gas mixture containing (Scott specialty gas) CO, CO2, H2, and CH4. The 

standard gases were injected into the GC to determine the retention time and peak 
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area corresponding to its amount. GC Calibration of standards are shown in Appendix 

B. 

3.6    Catalyst pretreatment   

All of the catalysts were reduced under the flow of the CO, 0.6L/h at 253K for 4h. 

This condition was selected based on prior studies in several laboratories [31] and 

[33]. Most of the researchers proposed CO to be the most preferable reducing gas 

especially for Fe-based catalyst, due to formation of Fe2C5, which is considered as the 

primary active species during the FTS.   

3.7    Catalysts testing  

The performance of supported Fe-based catalysts in the FT reaction was examined in 

a fixed-bed microreactor (Figure 3-5) at atmospheric pressure. A detailed description 

of reactor and the product analysis system used in this study was illustrated in section 

3.5.2 and 3.5.3. Briefly, 0.2g of the catalyst was held in the middle of the reactor tube 

between two layers of quartz wool. Then the reactor tube was placed in the electrical 

furnace. The reactor was purged with helium at flow rate of 1.2L/h for 15mins to 

purge the air out of the reactor tube and the line that was connected to the GC. The 

catalyst was firstly reduced in situ at atmospheric pressure in flowing carbon 

monoxide 3L/g-cat.h (0.6L/h) at the temperature of 553K for 4h.  

After completion of the reduction step, the reactor was purged again with helium 

at 1.2L/h for 30mins until the temperature decreased from 553K to reaction 

temperature. The inert gas flow was then switched to a mixture of H2 and CO at a 

desired feed ratio. Typically the FT reactions were conducted for 4h. Effluent gases 

from the reactor were analyzed by an on-line GC. Sampling was conducted at every 

30mins and the evaluation of the CO conversion and product selectivity were made 

based on the average of the 4 reaction hours. 
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3.8    Reaction condition 

FTS reaction was conducted at 1.5H2/CO ratio, 3L/g-cat.h, 523K, and atmospheric 

pressure. Turn on procedure is shown in Appendix B. Additional study was conducted 

to investigate the effect of the reaction temperature (523, 543, and 563K), gas flow 

rate (0.6, 2.4, and 4.8L/h), and H2/CO ratio (0.5, 1, 1.5, and 2) on the performance of 

impregnated and precipitated 6%Fe/SiO2 catalyst.   
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CHAPTER 4 

Results and Discussions 

4.1    Introduction  

One of the key elements to improve FT technology is to modify and develop the 

active catalyst with high FTS performance [66]. This chapter presents the results of 

catalysts characterization and reaction studies. The results are interpreted in terms of 

the catalytic structural properties and the catalytic performance. The catalytic 

properties such as textural properties, morphology, particles distribution, and catalyst 

reducibility were determined by N2 physical adsorption, FESEM, TEM, XRD, and 

TPR. The effects of different synthesis techniques, supports, promoters, and Fe 

loading on the properties of the catalyst as well as the performance of Fe-based 

catalyst in the FTS under various reaction conditions are discussed in this section. The 

correlation between size of Fe nanoparticles and the performance in the FTS is also 

presented in this chapter. 

4.2     Characterization of catalysts 

4.2.1    Physical properties 

 The physical properties of the catalysts include the structural properties which had 

been determined through the N2 physical adsorption measurement. The surface 

morphology and the size of the metal nanoparticles were measured using the FESEM 

and the TEM, respectively. XRD was used to determine the composition of the 

catalysts.   
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4.2.1.1    Textural properties   

The surface area, pore volume, and average pore size of the catalysts were measured 

using N2 physical adsorption. Measuring the surface area and pore volume is 

important since any changes on these properties are indicative of pore plugging and 

material sintering.  

The textural properties of the SiO2 and Al2O3-SiO2 supports are shown in Table 4-

1. The pore volume and the average pore size was determined using BJH method, as 

depicted in Figures 4-1 and 4-2 and their isotherms are shown in Figures 4-3 and 4-4. 

The raw data for N2 adsorption studies are shown in Appendix C.   

 Addition of Al2O3 to the SiO2 support increased the surface area and pore volume of 

the Al2O3-SiO2 support. The BET surface area was strongly dependent on the ratio 

between Al2O3 and SiO2. At Al2O3/SiO2 ratio of (25:75) the largest surface area of 

211.4m2/g was obtained compared to 54.9m2/g from that of the lower Al2O3/SiO2 

(5:95) ratio. The difference in the support’s surface area could be due to the presence 

of the mesopores at higher ratio of Al2O3/SiO2 support. Figure 4-2 shows two kinds of 

pores existed in support with higher Al2O3/SiO2 ratio of (25:75) whereas only one 

kind of pore was obtained in the SiO2 support (Figure 4-1). These indicate that 

textural properties of SiO2 were changed from nonporous material (Figure 4-3) to 

porous support upon addition of Al2O3 (Figure 4-4). Similar trend was also obtained 

by Zhang and co-workers [82], who reported that increasing the surface area was due 

to impregnation of Al2O3 on silica gel to form Al2O3-SiO2 bimodal, where Al2O3-SiO2 

bimodal had a surface area of 101 m2/g compared to silica-gel at 70m2/g. 

Table 4-1: Textural properties of the supports 

Sample  Ratio 
(wt %) 

BET surface 
area (m2/g) 

Pore volume 
(cc/g) 

Average pore 
size (Å) 

SiO2 - 40.9 0.094 91.79 

Al2O3-SiO2 5:95 54.9 0.173 125.96 

Al2O3-SiO2 15:85 106.2 0.282 106.28 

Al2O3-SiO2 25:75 211.4 0.561 106.20 
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Figure 4-1: Desorption pore volume plot by BJH method of SiO2 support 

 

Figure 4-2: Desorption pore volume plot by BJH method of Al2O3-SiO2 (25:50) 
support 

 
Figure 4-3: Isotherm linear plot of SiO2 support 
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Figure 4-4: Isotherm linear plot of Al2O3-SiO2 support    

The BET surface area for SiO2-supported Fe-based catalyst prepared by 

impregnation and precipitation methods at different Fe loadings (3, 6, 10, 15 wt %) 

are shown in Table 4-2 and the data of BET calculation appear in Appendix C. An 

opposite trend was observed between the Fe loading and the BET surface area of the 

catalysts. The BET surface area decreased from 57.8m2/g to 23.9m2/g when Fe 

loading increased from 3% to 15%. This trend agreed with that reported by Pirola et 

al. [29] where they found that the catalyst surface area was strongly affected by the Fe 

loading. They also discovered that increasing Fe loading from 10 to 50 wt% resulted 

in a decrease in the BET surface area from 262 to 143m2/g, respectively.      

The Fe/SiO2 catalyst synthesized via precipitation method displayed larger surface 

area and pore volume compared to samples that were prepared by impregnation 

method. For the same Fe loading e.g. 6wt% Fe/SiO2 catalysts prepared by 

impregnation method had surface area of 39.5m2/g while the one prepared by 

precipitation method had surface area of 45.1m2/g. This difference can be explained in 

terms of the appearance of the small pores in the precipitated catalysts. The lower 

pore diameter permits greater number of pores to be existed in the catalyst structure 

and make it more porous and increased the catalyst surface area. Similar trend for the 

surface area of impregnated catalysts was also obtained due to the influence of the Fe 

loading on the surface area for the precipitated catalysts. BET surface area decreased 

from 45.1 to 40.6m2/g when Fe loading increased from 6 to 15wt%.  
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Table 4-2: Textural properties of Fe/SiO2 catalysts synthesized via impregnation and 
precipitation methods 

sample Fe 
Loading 
(wt %) 

BET 
surface 

area (m2/g) 

Pore 
volume 
(cc/g)  

Average 
pore size 

(Å) 

Preparation 
technique  

SiO2 - 40.9 0.094 91.79 Commercial  

Fe/SiO2 3 57.8 0.258 164.86 Impregnation  

Fe/SiO2 6 39.5 0.155 156.76 Impregnation 

Fe/SiO2 10 23.8 0.088 147.85 Impregnation 

Fe/SiO2 15 23.9 0.071 144.12 Impregnation 

Fe/SiO2 3 47.2 0.151 128.51 Precipitation  

Fe/SiO2 6 45.1 0.124 110.14 Precipitation 

Fe/SiO2 10 43.1 0.140 130.18 Precipitation 

Fe/SiO2 15 40.6 0.118 116.31 Precipitation 

The textural properties of supported Fe-based catalysts having different Fe 

loadings on SiO2 and Al2O3-SiO2 supports, prepared by impregnation method are 

shown in Table 4-3. The BET surface area of the supported Fe nanoparticle catalysts 

was strongly dependent on the loading of the active site (Fe) and the type of the 

support. Increasing the Fe loading resulted in a decrease in the BET surface area of 

the catalysts. Surface areas of the catalysts were also affected by the type of the 

support. Fe-based catalysts supported on Al2O3-SiO2 had bigger surface area and pore 

volume compared to those of SiO2 support. This difference could be due to the bigger 

surface area of the Al2O3-SiO2 compared to the SiO2 support. An opposite trend was 

reported by Wan et al. [17] where larger surface areas were obtained for catalysts that 

were supported on SiO2 and the surface area decreased by increasing of Al2O3/SiO2 

ratio, and reaches the minimum on the catalyst that was only supported on Al2O3 

support. The difference in trend may be due to the fact that Al2O3 is more effective 

than SiO2 in dispersing Fe particles. This discrepancy may be caused by the different 

catalyst preparation procedures, where they used a combination of co-precipitation 

and spray dried method for synthesis of the catalysts and also their catalyst was 

promoted by K and Cu which also influenced the change in surface area.   
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Table 4-3: Textural properties of Fe-based catalyst on SiO2 and Al2O3-SiO2 supported 
synthesized via impregnation method    

sample Fe 
Loading 
(wt %) 

BET 
surface 

area 
(m2/g) 

Pore 
volume 
(cc/g)  

Average 
pore size 

(Å) 

Preparation 
technique  

SiO2 - 40.9 0.094 91.79 Commercial  

Fe/SiO2 3 57.8 0.258 164.86 Impregnation  

Fe/SiO2 6 39.5 0.155 156.76 Impregnation 

Fe/SiO2 10 23.8 0.088 147.85 Impregnation 

Fe/SiO2 15 23.9 0.071 144.12 Impregnation 

Al2O3-SiO2 

(5:95) 
- 54.9 0.173 125.96 Impregnation 

Fe/Al2O3-
SiO2 

3 59.2 0.295 212.46 Impregnation 

Fe/Al2O3-
SiO2 

6 57 0.288 202.73 Impregnation 

Fe/Al2O3-
SiO2 

10 53 0.214 184.28 Impregnation 

Fe/Al2O3-
SiO2 

15 43 0.179 167.03 Impregnation 

The effect of the promoters, such as K and Cu on the catalysts textural properties 

are illustrated in Table 4-4. The promoters influenced the values of surface area, pore 

volume, and average pore size. Fe/SiO2 catalyst was chosen to study the effect of 

promoter because SiO2 which had lower surface area and better morphology 

compared to Al2O3-SiO2 support. Lower surface area at range of 20-60 m2/g is 

required because it showed nonporous materiel which it can be easily used to study 

the influence and distribution of the Fe particles over the support and the catalytic 

morphology. Addition of Cu to Fe/SiO2 resulted in increase the surface area compared 

to un-promoted (Fe/SiO2). The addition of Cu promoter may have facilitated the 

dispersion of the Fe crystallites which resulted in increase in the surface area of the 

catalyst. K promoter has an opposite trend compared to Cu. Surface area was reduced 

by introducing K as a promoter. This result could be due to the fact that K enhanced 

the agglomeration, enlarged the crystallite size of Fe2O3 after calcination, and blocked 
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the pores of the catalyst, which would result in the decrease in the surface area. Work 

of Yang et al. [83] over precipitated Fe/Mn/K catalyst have also led to a similar 

conclusion: increasing the K loading resulted in smaller pore diameters and lower 

specific surface area.  

The effect of a double promotion on the surface area, pore volume and average 

pore size was also investigated using N2 physical adsorption. Compared to Fe/SiO2 

catalyst, a greater loss on the catalyst surface area and pore volume were obtained for 

Fe/Cu/K/SiO2 catalysts. This result showed that the addition of K promoter severely 

decreased the surface area and pore volume of Fe/K/SiO2 and Fe/Cu/K/SiO2 catalysts 

as compared to that of Fe/SiO2 catalyst. Wan et al. [57] observed a similar trend over 

precipitated Fe-based catalysts promoted by K and Cu where they found that addition 

of Cu promoter resulted in a larger surface area compared to Fe, Fe/K, Fe/Cu/K 

catalysts while addition of K promoter resulted in a smaller surface area and pore 

volume. 

Table 4-4: BET surface area, pore volume and average pore size of the promoted 
catalysts prepared via impregnation method 

Sample 
Loading (wt %) BET 

surface area 

(m2/g) 

Pore 

volume 

(cc/g) 

Average 

pore size 

(Å) 

Fe/SiO2 6%Fe 39.5 0.155 156.76 

Fe/SiO2 10%Fe 23.8 0.088 147.85 

Fe/SiO2 15%Fe 23.9 0.071 144.12 

Fe/Cu/SiO2 6%Fe/2%Cu 39.7 0.109 109.90 

Fe/Cu/SiO2 10%Fe/2%Cu 41.7 0.160 153.65 

Fe/Cu/SiO2 15%Fe/2%Cu 65.4 0.196 120.10 

Fe/K/SiO2 6%Fe/4%K 33.2 0.115 138.89 

Fe/K/SiO2 10%Fe/4%K 34.3 0.108 125.51 

Fe/K/SiO2 15%Fe/4%K 38.7 0.095 98.49 

Fe/Cu/K/SiO2 6%Fe/2%Cu/4%K 15.5 0.022 52.91 

Fe/Cu/K/SiO2 10%Fe/2%Cu/4%K 14.0 0.019 56.08 

Fe/Cu/K/SiO2 15%Fe/2%Cu/4%K 6.3 0.032 204.83 
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The findings can be summarized as follows: 

• The surface area of the catalyst was strongly influenced by the preparation 

technique. Precipitation method resulted in larger surface area, pore volume, and 

smaller average pore size compared to those of impregnation method. 

• Both synthesis techniques show similar trend for the influence of the Fe loading. 

Increasing Fe loading from 6 to 15 wt% resulted in significant decrease of the 

surface area from 39.5 to 23.9m2/g, for the catalysts prepared by impregnation 

method and from 45.1 to 40.6m2/g for the catalysts synthesized via the 

precipitation technique. 

• The catalytic textural properties were also affected by the type of the support. Fe- 

based catalyst supported by Al2O3-SiO2 had a bigger surface area compared to that 

of SiO2 support.  

• Addition of Cu promoter resulted in a larger surface area and pore volume while 

the opposite trend was observed by the addition of K promoter.   

4.2.1.2    Catalyst morphology 
Field emission scanning electron microscopy and transmission electron microscopy 

were used to obtain information on the morphology of the catalyst.       

I.  Morphology and elemental analysis   
FESEM-EDX analysis were carried out to study the surface properties of SiO2 and 

Al2O3-SiO2 supported Fe-based containing different Fe loading prepared by the 

impregnation and precipitation methods, and the promoted catalysts: Fe/Cu/SiO2, 

Fe/K/SiO2, and Fe/Cu/K/SiO2.  

The morphologies for the SiO2-supported Fe-based catalyst at different Fe 

loadings synthesized via impregnation technique are shown in Figure 4-5. The SiO2 

particles were roughly spherical with diameter of 100-200nm. Some of the Fe 

particles were attached directly onto the surface of the SiO2 support whereas some of 

them were positioned in between the SiO2 spheres. Although, there was no great 

differences in morphologies among the catalysts with different metal loadings (Figure 
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4-5) higher amount of the Fe nanoparticles were deposited in between the support 

particles. FESEM reveals that the Fe/SiO2 catalysts have diameters ranging from 90-

170nm. 

Compared to the catalysts prepared by impregnation method, precipitated 

catalysts (prepared by precipitation method) showed more agglomeration (Figure 4-6) 

which was due to difference in preparation procedure. As discussed in section 2.4.2 

precipitation method occurred in three steps: super-saturation, nucleation, and growth 

and those steps, specially nucleation and growth of the particles affect the dispersion 

of those particles. This display the presence of agglomeration in the case of 

precipitated catalyst compare to those of impregnated catalyst.     

 

  

Figure 4-5: FESEM micrographs of Fe/SiO2 catalysts prepared via impregnation 
method at Fe loading (A) 3, (B) 6, (C) 10, and (D) 15 wt % 

 



 

 

78 

 

The introduction of Al2O3 in SiO2 support changed the textural properties of the 

support and led to more agglomeration (Figure 4-7). Better dispersion of the Fe 

nanoparticles was observed on the SiO2-supported catalyst prepared by impregnation 

method compared to those supported on Al2O3-SiO2 or synthesized via precipitation 

method. 

 

 

 
Figure 4-6: FESEM images of Fe/SiO2 catalysts prepared by precipitation method at 

Fe loading (A) 3, (B) 6, (C) 10, and (D) 15wt%  
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Figure 4-7: FESEM images Fe nanoparticles on Al2O3-SiO2 prepared by impregnation 
method at Fe loading (A) 3, (B) 6, (C) 10, and (D) 15wt% 

 

The morphological changes which occurred due to addition of promoters are 

shown in Figure 4-8. Compared to the unpromoted catalyst, catalysts promoted with 

Cu, K, and mixed promotion of Cu and K showed highly agglomerated particles with 

irregular shapes. These FESEM images confirmed the results obtained by the N2 

adsorption method where smaller surface areas were obtained for K-promoted 

Fe/SiO2. The catalyst surface area was strongly dependent on the distribution or 

aggregation of the metal particles over the support.  
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Figure 4-8: FESEM images of promoted and unpromoted Fe nanoparticles catalyst 
prepared by impregnation method  

Elemental mapping from EDX was used to determine the distribution of the 

elements and the amount of the elements present over the support. The elemental 

mapping of Fe/SiO2 catalysts prepared by impregnation method is shown in Appendix 

D. A uniform dispersion of the active sites (Fe) was observed on the Fe/SiO2 catalyst 

prepared by impregnation method. This result is in good agreement with the FESEM 

image where it showed that better distribution of the Fe nanoparticles was observed 

for the impregnated catalysts. In addition, the elemental mapping showed that 

distribution of the active metal (Fe) over the support was not affected by the Fe 

loading and this was also confirmed by the FESEM images where no big change was 
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obtained by using different Fe loading. A similar trend was obtained for the Fe/Al2O3-

SiO2 catalysts (shown in Appendix D). While a slight change on the Fe distributions 

was observed by increasing the Fe loading from 6 to 15 wt% of Fe/SiO2 prepared by 

precipitation method and led to more agglomeration of the Fe nanoparticles 

(Appendix D).  

      The elemental composition of the synthesized catalysts was determined using 

EDX and the results are shown in Tables 4-5, 4-6, and 4-7, as well as Figure 4-9. The 

values for the elements obtained by experiments were in good agreement with the 

estimated values, which were calculated based on the amount of each element 

compared to the total catalyst amount. A small deviation was observed between the 

calculated value and the measured value of the Fe. This deviation can be attributed to 

the loss of the elements during the preparation step or drying and calcination steps. 

The oxygen composition increased with increasing the metal loading as Fe existed in 

the oxide form. 

 

Figure 4-9: EDX spectrum of (a) Fe/SiO2 catalyst prepared by impregnation method, 
(b) Fe/Al2O3-SiO2 catalyst prepared by impregnation method, and  (c) Fe/SiO2 

catalyst prepared by precipitation method 
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Table 4-5: EDX elemental analyses over Fe-based catalysts supported by SiO2 and 
Al2O3 

Element Element composition (wt %) 

Fe/SiO2 catalysts Fe/Al2O3-SiO2 catalysts 

Theoretical  
value 

6%Fe 10%Fe 15%Fe 6%Fe 10%Fe 15%Fe 

Fe 5.50 9.12 14.35 6.33 8.74 13.47 

Si 26.94 26.57 26.01 24.83 20.61 20.23 

Al - - - 1.96 1.05 1.62 

O 48.96 46.02 50.22 45.06 47.96 49.25 

C 18.60 18.37 9.42 21.82 21.64 15.43 

Table 4-6: EDX elemental analyses over SiO2 supported Fe-based catalysts prepared 
by impregnation and precipitation 

Element Element composition (wt %) 

Impregnated catalyst Precipitated catalyst 

Theoretical  
value 

6%Fe 10%Fe 15%Fe 6%Fe 10%Fe 15%Fe 

Fe 5.50 9.12 14.35 4.27 7.77 12.68 

Si 26.94 26.57 26.01 23.60 17.36 22.81 

O 48.96 46.02 50.22 49.91 45.82 47.93 

C 18.60 18.37 9.42 22.22 29.05 16.58 

Table 4-7: EDX elemental analyses over SiO2 supported Fe-based catalysts and 
promoted catalyst with Cu, K, and Cu/K 

Element Element composition (wt %) 

6%Fe/SiO2 6%Fe/Cu/SiO2 6%Fe/K/SiO2 6%Fe/Cu/K/SiO2 

Theoretical  
value 

6%Fe 6%Fe, 2%Cu 6%Fe, 4%K 6%Fe, 2%Cu,4%K 

Fe 5.50 4.00 4.92 6.07 

Si 26.94 21.62 28.71 35.22 

O 48.96 49.28 47.55 48.54 

C 18.60 21.90 16.00 5.00 

Cu or K - 2.66 3.16 5.18 
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II. Particle size and distribution  

TEM is a useful tool to determine size of crystallites and its distribution over the 

surface of the support. TEM technique was used in this study to measure the particle 

size of Fe crystallites and the dispersion of Fe particles over SiO2 and Al2O3-SiO2 

supports. The effect of the synthesis technique, Fe loading, and type of the support on 

the particle size of Fe crystallites and distribution were also investigated using TEM 

technique. The average particles size of Fe was calculated using 15-20 Fe particles 

over the support.  

Smaller particles and more uniform distribution of the Fe nanoparticles were 

observed on the Fe/SiO2 catalyst prepared by impregnation method compared to those 

synthesized via the precipitation technique as shown in Figures 4-10 and 4-12. The 

catalyst particle has a strong potential to undergo either fragmentation or growth in 

size depending on the process conditions [84]. The difference in the size of Fe 

nanoparticles and distribution between impregnated and precipitated catalyst was due 

to difference in preparation condition where addition of the precipitating agent in the 

precipitation method accelerated the nucleation and growth of the Fe particles due to 

formation of the precipitate. This resulted in formation of less dispersed and bigger Fe 

nanoparticles over the support for the precipitated catalyst. TEM results show that Fe 

loading affected the distribution and the size of the Fe particles over the support. As 

can be seen from Figure 4-11, catalysts with low Fe loading have smaller particle size 

compared to those at higher loading for Fe/SiO2 prepared by impregnation method. 

The 3%Fe/SiO2 catalysts prepared via impregnation method had average particle size 

of 5.8±1.3 nm whereas at Fe loadings of 6, 10, and 15wt%, average particle size 

increased to 8.6 ± 1.1, 12.6 ± 1.3 and 13 ± 1.2 nm, respectively. Similar trend was 

observed on the Fe/SiO2 catalysts prepared by precipitation where the average particle 

size increased by increasing the Fe loading (Figure 4-13). The precipitation method 

produced Fe nanoparticles with broader size distribution compared to that of 

impregnation method (Figures 4-11 and 4-13).     
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Figure 4-10: TEM image for silica supported Fe catalyst prepared by impregnation 
method at Fe loading (A) 3, (B) 6, (C) 10, and (D) 15wt% 

 

4 6 8 10 12 14 16 18 20
0

10

20

30

40

particle size (nm)

F
re

q
u

e
n

c
y
 (

%
)

 

 

3%Fe
6%Fe
10%Fe
15%Fe

 
Figure 4-11: Particle size distribution for 3, 6, 10, and 15 wt %Fe/ SiO2 catalysts 

prepared by impregnation method   



 

 

85 

 

  

  

Figure 4-12: TEM  image of silica supported Fe-based catalysts prepared by 
precipitation method at Fe loading (A)3, (B)6, (C) 10 and (D) 15wt% 
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Figure 4-13: Particle size distribution for 3, 6, 10, and 15 wt %Fe on SiO2 support 

prepared by precipitation method   
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   Figure 4-14 shows the TEM image of Fe on Al2O3-SiO2 support. The 

morphology of Fe nanoparticles was altered when the support was changed from SiO2 

to Al2O3-SiO2 support. The particle size distribution for Fe on Al2O3-SiO2 support is 

shown in Figure 4-15. Bigger particles with a broader range of distribution were 

observed on the Al2O3-SiO2 support compared to those obtained on the SiO2 support 

(Figure 4-11). The textural properties of the support play an important role in 

controlling the dispersion of the metal on the support. The support with a narrow pore 

range led to production of small metal particles compare to those of larger pore. SiO2 

has smaller average pore size of 91.79 nm compared to those of Al2O3-SiO2 (125.95 

nm). The effect of SiO2 on the dispersion of catalyst crystallites compared to Al2O3 

was reported by Hai-jun et al. [13] and they indicated that SiO2 facilitated the 

dispersion of catalyst crystallites. 

 

 

Figure 4-14: TEM image of Al2O3-SiO2 supported Fe-based catalyst at different Fe 
content (A) 3, (B) 6, (C) 10, and (D) 15 wt% 
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Figure 4-15: Particle size distribution for 3, 6, 10, and 15 wt %Fe on Al2O3-SiO2 

support 

The effect of promoters on the Fe particle size and dispersion were investigated 

via TEM technique and the result is shown in Figure 4-16. Addition of Cu resulted in 

highly agglomerated Fe nanoparticles as shown Figure 4-16A, whereas more 

dispersed Fe particles was observed by the addition of K promoter. Compared to Cu 

and K-promoted catalyst, double promotion of Cu/K catalyst resulted in better Fe 

dispersion and smaller particle size (Figure 4-16C). Cu promoter resulted in highly 

agglomerated and bigger Fe particles. The synergistic effect of the Cu and K promoter 

on the catalyst produced well dispersed Fe particles.  
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Figure 4-16: TEM image of promoted catalyst (A) 6%Fe/Cu/SiO2, (B) 6%Fe/K/SiO2 
and (C) 6%Fe/Cu/K/SiO2 

Table 4-8 shows the average particle size Fe/SiO2 catalysts prepared by 

impregnation and precipitation method and also the Fe/Al2O3-SiO2 catalyst. The trend 

of increasing crystallite size with the Fe loading was reported previously by Hayashi 

et al. [85] where they concluded that for impregnated Fe/SiO2, increasing the Fe 

content from 2 to 10 wt% resulted in an increase in Fe particles size from 5.6 to 

14.2nm.  

Fe loading had a significant effect on the average Fe particle size and catalyst 

surface area. Catalyst with low Fe loading has smaller average particle size and larger 

surface area compared to those at higher Fe loading.   
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Table 4-8: Average particle size of the synthesis supported Fe-based catalysts 

Sample Fe loading (wt 

%) 

Average particle 

size (nm) 

Synthesis 

technique 

Fe/SiO2 3 5.8±1.3 Impregnation  

Fe/SiO2 6 8.6 ± 1.1 Impregnation  

Fe/SiO2 10 12.6 ± 1.3 Impregnation  

Fe/SiO2 15 13.0 ± 1.2 Impregnation  

Fe/SiO2 3 12.8±4.2 Precipitation 

Fe/SiO2 6 17.3±7.3 Precipitation 

Fe/SiO2 10 19.3±6.6 Precipitation 

Fe/SiO2 15 19.3±6.6 Precipitation 

Fe/Al2O3-SiO2 3 6.2±1.6 Impregnation  

Fe/Al2O3-SiO2 6 10.0±2.0 Impregnation  

Fe/Al2O3-SiO2 10 14.0±3.3 Impregnation  

Fe/Al2O3-SiO2 15 17.8±5.3 Impregnation  

          As conclusion, the size of Fe nanoparticles and distribution were strongly 

affected by the synthesis technique, nature of support and Fe loading. The 3%Fe/SiO2 

catalyst prepared by impregnation method showed uniform dispersion of the Fe 

particles and had the smallest average particle size of 5.8±1.3nm.  

4.2.1.3    Phase and crystallinity  

Determining the phase composition is an important step in the characterization of the 

Fe-FT catalyst because Fe could exist in different forms such as oxides or carbides. 

XRD was used to investigate the type of phase present in the calcined catalysts. XRD 

patterns of the supported Fe -based catalysts are presented in Figure 4-17. Catalyst 

with low Fe loading of 6 wt% show amorphous phase compared to that of higher Fe 

loading of 15 wt%. The XRD peak of the 15%Fe/SiO2 catalyst showed hematite phase 

Fe2O3 based on peaks detected between 2θ of 35O and 40O.  The peaks at 2θ between 

15O to 25O represent silica. The XRD results confirmed the presence of the crystalline 

phase in the catalyst with high Fe loading. XRD peaks were not detected for the 

catalyst with low Fe loadings and this could be due to the XRD detection limitation. 
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Lohitharn et al. [51] found that catalyst with small average crystallite sizes <4-5nm 

showed amorphous phase. Similar trend was obtained for the catalysts prepared by 

precipitation method and supported by Al2O3-SiO2. This result is in good agreement 

with the result reported by Mansker et al. [86] where they found that catalyst 

incorporated with SiO2 showed amorphous phase whereas Fe2O3 phase was present 

for SiO2-free catalyst.   

 

Figure 4-17: X-ray diffraction patterns of the Fe/SiO2 catalyst prepared by 
impregnation method at Fe loading of 6, 10 and 15 wt%   

4.2.2    Catalyst reducibility 

The phase transformation during the reaction plays a major role in influencing the 

overall FT performance (activity and selectivity). The Fe-based catalyst was found to 

be initially in the hematite phase (Fe2O3). Although, Fe2O3 is a more stable oxide 

phase of Fe, Fe3O4 and iron-carbide phases were described as the most active site for 

FTS [9] and [38]. Therefore, converting Fe2O3 phase to Fe3O4 or Fe phase was 

desirable. This transformation was proposed to occur in two or three stages depending 

on the composition of the catalyst. The two-step of the H2-TPR profile can be 

represented by the equations (4.1 and 4.2) [81].   

3Fe2O3 + H2 → 2Fe3O4 +H2O                                                                                 (4.1) 
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Fe3O4 +4H2 → 3Fe + 4H2O                                                                                      (4.2) 

The step for transforming the magnetite to metallic Fe can be described by the 

sum of two subsequent steps (equation 4.3 and 4.4)  

Fe3O4 + H2 → 3FeO +H2O                                                                                       (4.3) 

FeO +H2 → Fe + H2O                                                                                               (4.4) 

During H2-TPR reduction, chemical reaction was monitored when a reducing gas 

passed over an oxidized catalyst. Each hydrogen molecule reacted with interface 

oxygen atom giving water molecule and anionic vacancy. The initial stage of reducing 

the FeO involved chemisorptive dissociation of hydrogen molecule due to formation 

of intermediate hydroxyl (OH-) group as shown in equation (4.5) [81]. 

O2- +H2 → 2 OH- → O2- +H2O                                                                                (4.5) 

Thus, the removal of individual water molecule represented by equation (4.5) could 

serve as the measurement reduction degree of the FeO. 

The bulk phase reduction behavior of the catalysts was studied by H2-TPR. Table 

4-9 shows summary of the TPR results for all the synthesized catalysts. The TPR 

profiles of the impregnated catalysts are shown in Figure 4-18. 
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Figure 4-18: TPR profiles of impregnated Fe/SiO2 catalysts with different Fe loading 
after calcination at 873K for 4h 

The results from Figure 4-18 reveals that impregnated catalyst with Fe loading of 

6, 10, and 15 wt% showed two distinct peaks at temperature of 380OC and 720OC. A 

big shift in the reduction peak position was observed for 3%Fe/SiO2 catalyst. The 
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increase in the reduction temperature for the 3%Fe/SiO2 catalyst was mainly due to 

the small size of Fe particles, which was more difficult to reduce at the lower 

temperature. As observed from TEM analysis, the smallest size of Fe particles was 

obtained from the catalyst with lowest Fe loading.   

The results show that all synthesized catalysts were reduced at temperature higher 

than 450OC, except for the promoted catalysts. It is noted in some publications that 

supported catalysts suppressed the catalyst’s reducibility due to the interaction 

between the active metal and the support [44] and [87]. The TPR results for Fe 

catalyst supported on SiO2 suggested that the presence of SiO2 on the catalyst 

increased the reduction temperatures of the Fe for both transformation steps, as 

discussed previously by Wan et al. [45] who reported that increasing of the SiO2 

content suppressed the reduction due to stabilization of the Fe3O4 phase.  

The reduction profiles of the catalysts prepared by precipitation method are shown 

in Figure 4-19.The reduction peaks of the precipitated catalysts existed at higher 

temperature than those of the impregnated catalyst. Although, impregnated catalyst 

has smaller Fe particle size compared to precipitated catalysts, precipitated catalysts 

inhibit the catalyst’s reducibility. The difference in the reducibility of the Fe2O3 

particles between the impregnated and precipitated catalysts may be attributed to the 

difference in the interaction between Fe metals and SiO2 support caused by the 

immobilization processes of the impregnation and precipitation methods. 
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Figure 4-19: TPR profile of Fe/SiO2 catalysts with different Fe loading prepared by 
precipitation method after calcination at 873K for 4h 
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Figure 4-20 shows the reduction peaks obtained from the catalysts supported on 

Al2O3-SiO2. The reduction peak shifted to the higher temperature compared to those 

shown in Figure 4-18, for the catalysts supported on SiO2. As the electrons of the Fe 

atoms are attracted to O atoms of Al2O3-SiO2 support, the fraction of Fe atoms 

interacted with O atoms of Al2O3-SiO2 became larger and this resulted in stronger 

interaction between the metal (Fe) and the support [17]. The acidity of the Al2O3 also 

enhanced the interaction between Fe and the Al2O3-SiO2 and resulted in stronger 

metal-support interaction than the catalysts on SiO2 support [13].     
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Figure 4-20: TPR profiles of Fe/Al2O3-SiO2 catalysts with different Fe loading after 
calcination at 873K for 4h 

The effects of Cu, K, and Cu/K promoters on the catalysts reducibility were also 

investigated via the TPR experiment. Figure 4-21 shows the TPR profile of the 

Fe/SiO2 catalysts promoted by Cu. A big shift on the position of the reduction peaks 

was illustrated by adding Cu to the catalyst compared to those unpromoted catalysts 

(Figure 4-18). These results display that the presence of Cu promoter enhanced the 

reducibility as detected by the decrease in the reduction temperature. This result is in 

good agreement with the literature where most of the studies published confirmed that 

adding Cu facilitated the reducibility of the catalyst [51], [52] , and [40]. The 

reduction of Fe/Cu/SiO2 occurs in three steps: the first step which was presented at 

220OC reflects the transformation of CuO→Cu, the second  step, illustrated at 300OC 

was related to the transformation of Fe2O3→Fe3O4, and the broad peak obtained at the 

temperature ranged between 450-800OC was related to transformation of Fe3O4 to Fe. 
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The TPR profile of Fe/Cu/SiO2 displayed the effect of Fe loading on the catalysts 

reducibility, where for 15%Fe/SiO2 catalyst, the position of the first peak was shifted 

to higher temperature compared to those at other loadings, while the second peak was 

observed at the same temperature as those at other loadings (3, 6, and 10 wt%). This 

result could be due to the effect of the Fe particles where it inhibits the influence of 

the Cu because the percentage of the Cu (2%) was lower compared with the 

percentage of the Fe (15%).   
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Figure 4-21: TPR profiles of Fe/Cu/SiO2 catalysts with different Fe loading after 
calcination at 873K for 4h 

However, K-promoter showed opposite trend compared to that of Cu-promoter as 

shown in Figure 4-22. TPR-profile for K-promoted catalyst showed only one 

reduction peak at temperature between 450-700OC, which indicated that K suppressed 

the catalyst reducibility. This effect might be due to small surface area obtained for 

the catalysts promoted with K promoters, which resulted in decreased contact area 

with H2, thus suppressed the catalysts reducibility. A similar trend was also reported 

by other researchers [57].  
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Figure 4-22 TPR profiles of Fe/K/SiO2 catalysts with different Fe loading after 
calcination at 873K for 4h 

The influence of the double promotion of Cu/K was also studied by the H2-TPR 

analysis. Figure 4-23 shows the TPR profile of Fe/Cu/K/SiO2 catalysts. Compared to 

Cu-promoted catalyst, the double promotion of Cu/K significantly suppressed the 

catalyst reducibility as both of the transformation stages were shifted to the higher 

temperature.  
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Figure 4-23: TPR profiles of Fe/Cu/K/SiO2 catalysts with different Fe loading after 
calcination at 873K for 4h 
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The results of the catalyst reducibility using H2-TPR are summarized in Table 4-9.  

 

Table 4-9: Summary of the TPR results for all the synthesized catalysts 

Sample TR1 (OC) TR2 (OC) TR3 (OC) 

3%Fe/SiO2 400-680 780-900 - 

6%Fe/SiO2 300-500 690-790 - 

10%Fe/SiO2 300-500 690-790 - 

15%Fe/SiO2 300-500 690-790 - 

6%Fe/SiO2 340-490 500-550  

10%Fe/SiO2 450-550 600-700 700-850 

15%Fe/SiO2 450-550 600-710 710-850 

3%Fe/Al2O3-SiO2 410-670 - - 

6%Fe/Al2O3-SiO2 430-560 560-780 - 

10%Fe/Al2O3-SiO2 430-560 560-780 - 

15%Fe/Al2O3-SiO2 430-560 560-780 - 

3%Fe/Cu/SiO2 190-240 260-310 540-710 

6%Fe/Cu/SiO2 190-240 260-310 540-710 

10%Fe/Cu/SiO2 190-240 260-310 540-710 

15%Fe/Cu/SiO2 330-480 540-710 - 

6%Fe/K/SiO2 430-730 - - 

10%Fe/K/SiO2 430-730 - - 

15%Fe/K/SiO2 430-730 - - 

3%Fe/Cu/K/SiO2 340-410 510-580 - 

6%Fe/Cu/K/SiO2 290-390 580-750 - 

10%Fe/Cu/K/SiO2 290-390 580-750 - 

15%Fe/Cu/K/SiO2 290-390 580-750 - 

 

4.3    Summary of the catalysts properties  

The physicochemical properties of the catalysts were strongly affected by the 

preparation parameters such as synthesis technique, support, Fe loading, and 



 

 

97 

 

promoters.  Impregnation method resulted in better properties compared to those of 

precipitation method in terms of particle size, distribution and reducibility. 

Physicochemical properties were strongly influenced by the Fe loading, where lower 

Fe loading resulted in larger surface area, smaller particle size, and better uniformity 

compared to those of higher Fe loading. However, lower Fe loading suppressed the 

reducibility of the catalysts possibly due to the decrease in Fe particle size. The 

physicochemical properties of the catalyst were also affected by the type of the 

support. The reduction of the catalyst and the dispersion of the Fe particles were 

better on SiO2 compared to the Al2O3-SiO2 support. Addition of Cu and K promoters 

also affected the catalyst properties. Cu promoter facilitated the reduction while K 

promoter enhanced the dispersion of Fe particles. The 3%Fe/SiO2 and 6%Fe/SiO2 

catalysts prepared by impregnation method exhibited better properties in terms of all 

the physicochemical properties and particularly on dispersion and size distribution of 

Fe nanoparticles.     

4.4    Fischer-Tropsch performance  

The FTS performance of the supported Fe nanoparticles catalysts were evaluated in a 

fixed-bed microreactor at atmospheric pressure. The performances of the catalysts 

were evaluated in terms of the CO conversation and the product selectivity. 

The CO conversion was calculated using the average CO content (mol %) in the feed 

stream, and in the reactor outlet’s stream, at the respective reaction time (min) 

(equation 4.6) : 

100   
CO of mole

CO of mole -   
    

in

outin ×







=

COofmole
conversionCO                                (4.6) 

The selectivity of the hydrocarbons (HC) produced in the FT reaction was 

determined as the ratio between respective product and the sum of products detected 

in the outlet stream using equation 4.7.  

100  
HC of mole total

produced HC of mole (%)y selectivit ×





=HC                                                 (4.7) 
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 The influence of the reaction conditions such as the ratio of reactant gases 

(H2/CO ratio), reaction temperature, and the space velocity were investigated. 

Calculation and data for the CO conversion and product selectivity are shown in 

Appendix E. Products were analyzed using online GC and typical gas chromatograms 

are shown in Appendix E.  

4.4.1    Pretreatment  

The synthesized supported Fe-based catalyst was firstly reduced in the flow of carbon 

monoxide at 553K and 3L/g-cat.h for 4h. The reduction of Fe-based catalyst with CO 

occurred in two steps (equation 4.8 and 4.9) [88]: 

24332 CO  2Fe  CO  OFe 3 +→+ O                                                                             (4.8) 

22543 26CO  3Fe  CO  5 +→+ COFe                                                                         (4.9) 

The importance of the reduction step on the FT activity investigated by many 

researchers where they reported that reduced catalysts are more efficient in 

dissociating CO, where the disadvantage of the reduction step with CO was it favored 

the transformation of active carbon to an inactive carbon (graphite) [16]. The 

reduction condition that was used in this study was selected based on findings by 

previous studies. Davis [19] had pointed out that activation in CO at 280OC for 24h 

resulted in maximum conversion compared to those obtained by the other activation 

procedures. Compared to activation with H2 and syngas, CO activation was found to 

provide higher fraction of iron carbide, which plays an important role in the catalytic 

activity [50]. Therefore, activation of Fe-based catalysts is generally practiced with 

CO or syngas [89].  

4.4.2    Stability  

The activity of the catalyst was represented by the conversion of the CO. The 

variation of the CO conversion with the time on stream (TOS) represents the stability 

of the catalyst. The stability of the impregnated and precipitated Fe/SiO2 catalysts as 
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well as Fe/Al2O3-SiO2 catalyst with different Fe loadings are demonstrated in Figures 

4-24, 4-25, and 4-26, respectively. The CO conversion was found to be time-

dependent. The activity of catalysts with different Fe loadings gradually increased 

with the time on stream and it reached the maximum at 30min (Figure 4-24). 

Compared with the catalysts at higher Fe loadings, the 6%Fe/SiO2 catalyst exhibited 

higher stability where the catalytic activity slightly increased with the TOS. The 

activity of 3%Fe/SiO2 catalyst decreased from 89% to 52% as the TOS increased 

from 30 min to 270 min. The rapid loss in the activity with the time on stream could 

be due to the accumulation of the inactive carbon on the surface of the catalyst, which 

was more pronounced on the 3%Fe which has the smallest Fe particle size.  
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Figure 4-24: Stability of impregnated SiO2 supported Fe-based catalyst at different Fe 
loadings 3, 6, 10, and 15 wt %Fe under reaction conditions of 523K, 1.5H2/CO, and 

3L/g-cat.h 

Figure 4-25 shows the relation between the CO conversion and the TOS for the 

precipitated Fe/SiO2. The CO conversion over the catalysts with high Fe loadings of 

(10% and 15%) rapidly increased at the beginning of reaction and reach the maximum 

at 30 min then remarkable decline was obtained where the CO conversion over 

10%Fe/SiO2 and 15%Fe/SiO2 decreased from 65 to 21% and from 40 to 22%, 

respectively. The CO conversion over catalysts with low Fe loading (3 and 6 wt %) 

increased at the beginning of the reaction and keep increasing with the TOS and 

reached the maximum conversion at 150min. Although the initial CO conversions 

over the 3% and 6% of Fe/SiO2 were lower than those at higher Fe loadings; however 

this trend changed after 90mins. The Fe loading influenced the catalyst stability where 
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low loading (3 and 6%) of Fe exhibited better catalytic stability than those of higher 

loading. At the same Fe loading (Figure 4-25), precipitation method resulted in 

catalysts with lower CO conversion compared to those synthesized via impregnation 

method (Figure 4-24).     
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Figure 4-25: Stability of precipitated SiO2 supported Fe-based catalyst at different Fe 
loadings of 3, 6, 10, and 15%Fe under reaction conditions of 523K, 1.5H2/CO, and 

3L/g-cat.h 

The influence of the Al2O3-SiO2 support and the Fe loading on the catalytic 

stability was also investigated during the FT reaction. The CO conversion over the 

Fe/Al2O3-SiO2 catalysts at the different Fe loadings was found to be slightly increased 

with the TOS and reached the maximum at 30 min (Figure 4-26). 
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Figure 4-26: Stability of Al2O3-SiO2 supported Fe-based catalyst at different Fe 
loadings of 3, 6, 10, and 15% Fe prepared by impregnation method under reaction 

conditions of 523K, 1.5H2/CO, and 3L/g-cat.h 
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The effect of the promoter Cu, K, and Cu/K on the stability of the catalyst is 

shown in Figure 4-27. The CO conversion over the Fe/Cu/SiO2 and Fe/Cu/K/SiO2 

catalysts increased with the time on stream and achieved the steady state after 90min. 

The CO conversion of silica-supported Fe/Cu catalyst dependent on TOS, where the 

maximum CO conversion was obtained at 30 min and then level off to a constant 

range. Addition of Cu facilitates the catalyst reduction (Figure 4-21) and according to 

the literature Cu also extends the catalyst carburization which enhanced the stability 

of FT catalyst [90].  
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Figure 4-27: Stability of SiO2 supported Fe-based catalyst incorporated with the 
promoter under reaction conditions of 523K, 1.5H2/CO, and 3L/g-cat.h 

The catalytic stability was found to be affected by the synthesis technique, 

support, Fe loading, and type of promoter. SiO2-supported catalysts prepared by 

impregnation method exhibited higher stability than those of precipitation method in 

terms of increase in the CO conversion with the TOS.         

4.4.3    Activity and Selectivity  

The most important key factors for the performance of FT catalyst are activity and the 

product selectivity. The CO conversion was used as indication of the FTS activity; i.e. 

higher CO conversion implies higher catalyst activity. The influence of synthesis 

technique, support, Fe loading, promoter, and reaction conditions such as reactant 

ratio, space velocity, and temperature on the FTS performance was investigated.  
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Due to limitations in GC detection, hydrocarbon product larger than C6 and H2O were 

not quantified. Therefore, the selectivity of products were grouped as follows: 

• Light HC = C1-C4 

• Olefin = C2
=-C4

= 

• Heavy HC (C5-C6) = C5+ 

• Other product: CO2 

4.4.3.1    Effect of synthesis technique 

The influence of the catalysts synthesis techniques on their activity for the FTS is 

displayed in Figure 4-28. The catalyst prepared by impregnation method exhibited 

higher conversion of CO compared to the catalyst that prepared by precipitation 

method. The difference in activity of the catalysts prepared by these techniques could 

be due to difference in physicochemical properties. Compared to impregnated 

catalysts, precipitated catalysts had larger size of Fe nanoparticles, higher 

agglomeration and lower reducibility. These finding suggested decreasing the 

catalytic activity to be affected by the pervious factors.  

 The effect of catalysts preparation method on the product selectivity is shown in 

Figure 4-29. Catalysts synthesized via impregnation method showed lower selectivity 

of the light hydrocarbon (C1-C4) and higher selectivity to the higher hydrocarbon 

(C5+) and olefins (C2
=-C4

=) compared to those of precipitation method. These results 

were in good agreement with the result for stability and activity of those catalysts, 

where impregnated catalysts showed higher catalytic stability and activity compared 

to the precipitated catalysts.      
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Figure 4-28: The activity of supported Fe-based catalysts prepared by impregnation 
and precipitation methods under reaction conditions 523K, H2/CO=1.5, and SV=3 

L/g-cat.h 
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Figure 4-29: Comparison of the preparation methods on the selectivity of the 

hydrocarbons for SiO2 supported Fe-based catalyst at different Fe loading at 523K, 
1.5H2/CO ratio, and 3L/g-cat.h 
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4.4.3.2    Effect of the support 

Hydrogenation of CO is susceptible to metal-support interaction effect. The catalytic 

activity and selectivity were influenced by the type of support that was used to 

synthesize the catalyst via impregnation method. In order to compare between the 

effect of SiO2 and Al2O3-SiO2 supports on FT performance, same synthesis 

techniques, Fe loading and reaction conditions have been used. The CO conversions 

over supported Fe nanoparticles synthesized via impregnation method, are shown in 

Figure 4-30. The catalyst supported on SiO2 was more active than that which was 

supported on Al2O3-SiO2. The differences in activity between Fe nanoparticles on 

Al2O3-SiO2 and SiO2 support may be partly attributed to difference in metal-support 

interaction. As shown by TPR analysis (Figure 4-18 and 4-20), Al2O3-SiO2 support 

suppressed the catalytic reducibility which resulted in reduced catalyst activity. 

Similar trend have been pointed by Dlamini et al.  [47] when they found that the 

catalyst with relatively strong interaction between the active metal and the support has 

lower catalyst activity. Addition of Al2O3 enhanced the catalytic acidity and decreased 

the catalytic carburization [17]. Carburization of Fe-based catalyst was represented by 

formation of the active site, FeC.     
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Figure 4-30: The activity of Fe-based catalysts supported on SiO2 and Al2O3-SiO2 
under reaction conditions 523K, H2/CO=1.5, and SV=3 L/g-cat.h 

 

The influence of the support on the selectivity of hydrocarbons under the reaction 

condition of 523K, 1.5H2/CO ratio and 3L/g-cat.h are observed in Figure 4-31. The Fe 

particles supported on SiO2 showed higher selectivity toward heavy hydrocarbon 
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(C5+) and olefins and diminished the selectivity for the light hydrocarbon, compared 

to the catalyst that was supported on Al2O3-SiO2. Al2O3 has higher acidity compared 

to SiO2; therefore addition of Al2O3 to SiO2 increased the acidity of the support which 

suppressed the catalyst carburization as well as the activity and selectivity to heavy 

hydrocarbons, while it enhanced the selectivity of light hydrocarbon. These results 

agree with the trend reported by Hai-jun et al.[13]. They reported that catalyst 

supported by Al2O3 has high selectivity to C1-C4, whereas lower selectivity of C5+ 

was obtained. 
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Figure 4-31: Selectivity of the hydrocarbons for Fe-based catalyst with different Fe 
loading prepared by impregnation method on SiO2 and Al2O3-SiO2 support under 

reaction conditions of 523K, H2/CO=1.5, and SV=3 L/g-cat.h 
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4.4.3.3    Effect of the active metal (Fe) loading  

The effect of the Fe loading on catalyst activity is demonstrated in Figure 4-32. The 

CO conversion was strongly influenced by the loading of the active metal, where the 

catalyst with the lower Fe loading resulted in the higher CO conversion. This trend 

could be due to difference in physicochemical properties, where catalyst with lower 

Fe loading has a higher surface area, dispersion of the active site over the support, and 

smaller particle size compared to those at higher Fe loading. Pirola et al. [29] 

indicated that the CO conversion is related to the number of Fe active site where it 

increased with increase the amount of Fe. And they also conclude that catalyst with 

Fe charge of 50% resulted in higher activity than the catalyst with lower Fe loading of 

10% and 30%. It was expected that increasing Fe loading would increase the number 

of active sites, and enhanced the catalytic activity. However, our results showed an 

opposite trend, where the dispersion of the active site and the surface area decreased 

with increasing Fe loading. 
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Figure 4-32: Effect of the Fe loading on the CO conversion for SiO2 supported Fe-

based catalyst at 523K, 1.5H2/CO, and 3L/g-cat.h 

The product selectivity was also examined using different Fe loading on SiO2 at 

523K, 1.5H2/CO ratio, and 3L/g-Fe.h. The product selectivity was also found to be 

strongly affected by the loading of Fe. As can be seen from Figure 4-33, selectivity of 

the light hydrocarbon rapidly increased with increasing Fe loading from 3 to 15wt%, 

while the selectivity of C5+ and olefins decreased. Although, the results showed 

decrease in the selectivity of C5+ with increasing Fe loading, the catalyst with Fe 
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loading of 6 wt% displayed slightly higher selectivity of the C5+ at 20.85% compared 

to that of 3wt%, which was only at 10.8%.                

The Fe/SiO2 catalyst at 6%Fe loading resulted in a good balance between the CO 

conversion and the selectivity toward desired product (C5+) where, the catalytic 

activity and product selectivity rapidly declined with increasing the Fe loading (10% 

and 15%).  
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Figure 4-33: Effect of the Fe loading on the selectivity of hydrocarbons over SiO2 
supported Fe-based catalyst prepared by impregnation method at 523K, 1.5H2/CO 

ratio, 3L/g-cat.h  

4.4.3.4    Effect of Fe particle size  

The size of Fe nanoparticle was found to be strongly dependent on the Fe loading. 

This finding has been illustrated by the TEM analysis.  Increasing Fe loading resulted 

in bigger particles. Figure 4-34 shows the effect of Fe particle size on FT performance 

using the average Fe particle size obtained at each Fe loading on SiO2 support 

prepared by impregnation method. For Fe/SiO2 catalysts synthesized by impregnation 

method, Fe particle size ranged from 4-14 nm. The activity decreased from 54 to 30% 

by increasing the average Fe particles size from 8.6 to 13nm, respectively. Similar 

trend was obtained for the precipitated catalysts (Figure 4-35). Although, precipitated 

catalyst has bigger Fe average particle size (ranged between 17-19.5nm) compared to 

those of impregnated catalyst, similar trend was obtained in terms of the catalytic 

activity. The catalyst activity decreased from 45 to 26% by increasing the average Fe 

particles size from 17.3 to 19.3nm        
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Figure 4-34: Variation of activity and hydrocarbon selectivity with Fe average 
particles size for the impregnated Fe-based catalysts supported by SiO2 
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Figure 4-35: Variation of activity and hydrocarbon selectivity with Fe average 
particles size for the precipitated Fe-based catalysts supported by SiO2 

The Fe particle size was also affected by the type of support, where Al2O3-SiO2 

support resulted in bigger particles size (ranged between 4-23nm) (Figure 4-36) 

compared to those on SiO2 support. Different particle size was obtained using 

different type of the support but similar trend of the catalytic activity was obtained.   
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Figure 4-36: Variation of activity and hydrocarbon selectivity with Fe average 

particles size for the Fe-based catalysts supported by Al2O3-SiO2 

 

Increasing the Fe loading resulted in increasing Fe average particle size, which led 

to increase in the light hydrocarbon selectivity and decrease in both the CO 

conversion and selectivity of the heavy hydrocarbons (C5+). The trend could be 

explained due to several factors such as lower dispersion of the Fe over the support 

which decreased the amount of the active site present over the support, agglomeration 

of the metal particles over the support which resulted in decrease of the contact area 

between the reactant and active site. All these factors result in decreasing CO 

conversion and selectivity of C5+ while it increased the selectivity of the light 

hydrocarbon over larger Fe particles. Catalysts with average Fe particle size less than 

9 nm exhibited higher activity and selectivity compared to the catalysts with bigger Fe 

particle size.  

4.4.3.5    Effect of promoters 

The effect of promoters on the performance of Fe-based catalyst in the FTS was 

investigated under reaction condition of 523K, 1.5H2/CO ratio, and 3L/g-cat.h. Both 

K and Cu were found to be the most important alkali promoters which have been 

utilized in supported Fe-based FT catalyst. Table 4-10 shows the variation of the 

catalyst activity and product selectivity in the presence of promoters. Cu-promoted 

catalyst showed lower CO conversion compared to that of K and Cu/K promoted 
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catalyst. Higher activity (28.9%) and selectivity of heavy hydrocarbon (54.4%) was 

obtained by using Fe/K/SiO2 catalyst. These results display that adding K-promoter 

enhanced the selectivity of heavy hydrocarbon and suppressed the light hydrocarbon 

(C1-C4) selectivity. Compared with unpromoted catalyst, catalyst promoted with K 

promoter shows lower CO conversion but higher selectivity of the heavy 

hydrocarbon. Addition of K promoter resulted in smaller surface area which led to 

small contact area between the reactant and active site. It also showed lower catalyst 

reducibility which resulted in small amount of the active sites but at the same time K-

promoter enhanced the basicity of the catalyst and the carburization which resulted in 

enhancing the selectivity to the higher hydrocarbon. All these factors play important 

role in catalytic activity and selectivity. Several studies were carried out to determine 

the effect of both of Cu and K promoters on the performance of the Fe-based FTS. All 

of those studies confirmed that K promoters enhanced the catalytic activity and the 

selectivity of heavy hydrocarbons while an opposite trend was observed on the Cu 

promoters. Wan et al. [57] reported that incorporating of Cu and K promoters 

influenced the catalytic properties as well as FT performance. They concluded that the 

addition of Cu promoter decreased the activity and enhanced the deactivation of the 

catalyst because Cu facilitated conversion of iron carbide to magnetite. The addition 

of K enhanced the catalytic activity and the selectivity of heavy hydrocarbon.    

Table 4-10: Effect of promoter on catalytic performance in fixed-bed microreactor 
(523K, 1.5H2/CO, 3L/g-cat.h) 

Sample Surface 
area 

(m2/g) 

CO 
conversion 

selectivity 

C1-C4 C5+ C2
=-C4

= 

6%Fe/SiO2 39.5 54.02 57.48 20.73 22.65 

6%Fe/Cu/SiO2 39.7 24.37 72.04 8.16 20.66 

6%Fe/K/SiO2 33.2 28.92 31.48 54.42 11.03 

6%Fe/Cu/KSiO2 15.5 26.26 29.36 53.58 17.04 
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4.4.3.6    Effect of the reaction condition 

Catalyst with the low Fe loading (6%) supported on SiO2 prepared by impregnation 

method showed better performance towards FT activity compared to other catalysts. 

Due to the higher FT activity and stability exhibited by 6%Fe/SiO2 catalyst prepared 

by impregnation method; this catalyst was selected to investigate the influence of the 

reaction conditions on the FT performance.  

I. Reactant ratio (H2/CO) 

The effect of the reactant ratio (H2/CO v/v ratio) on the FT catalytic performance of 

the silicSiO2-supported Fe nanoparticles prepared by impregnation method at 523K, 

atmospheric pressure, and 3L/g-cat.h space velocity was investigated. The effect of 

the reactant ratio on the CO conversion is presented in Figure 4-37. The results show 

variation of the CO conversion with H2/CO ratio. At the same Fe loading, the CO 

conversion increased significantly with increasing H2/CO ratio and exhibited a 

maximum at H2/CO ratio of 1.5 then declined with further increase of H2/CO ratio. 

Davis [19] showed that the CO conversion was not strongly affected by the H2/CO 

ratio over the range of 0.7-1.7, where it changed from 79 to 81% by increasing the 

H2/CO ratio from 0.7 to 1.7. Similar conclusion was also published by Mirzaei et al. 

[66] on Fe/Mn/Al2O3 catalyst under atmospheric pressure. They reported that 

increasing the H2/CO ratio from 1/1 to 3/1 resulted in increased the CO conversation 

from 84.4 to 97.2%, respectively.               
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Figure 4-37: Effect of H2/CO ratio on the CO conversion over Fe/SiO2 catalysts 

prepared by impregnation method at 3, 6, 10, and 15% Fe loading 
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The product selectivity showed strong dependency on the H2/CO ratio. As can be 

observed from Figures 4-38, 4-39, and 4-40, selectivity to C5+ and C2
=-C4

= 

respectively, were lower at the high ratio of the reactant, meanwhile selectivity of the 

light hydrocarbon showed opposite trend. Since Fe-based catalyst is also a water-gas-

shift (WGS) catalyst, H2 that was produced from this reaction (WGS) increased the H2 

content and facilitated the termination step and resulted in higher selectivity of 

saturated chain, especially methane.  
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Figure 4-38: Effect of H2/CO ratio at variety of the Fe loading on the selectivity of the 
light hydrocarbon (C1-C4) for SiO2 supported Fe-based catalyst. 
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Figure 4-39: Effect of H2/CO ratio at variety of the Fe loading on the selectivity of the 

heavy hydrocarbon for SiO2 supported Fe-based catalyst. 
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Figure 4-40: Effect of H2/CO ratio at variety of the Fe loading on the selectivity of the 

olefins (C2
=-C4

=) for SiO2 supported Fe-based catalyst. 

II. Space velocity  

The space velocity in the catalyst can be defined as mass space velocity (Vm), 

volumetric space velocity (Vv), and surface space velocity (Vs) where V represents the 

rate of the given reactant per unit mass or volume or surface area of the catalyst, 

respectively. The effect of the Vm on the catalytic performance of silica-supported Fe 

nanoparticles prepared by impregnation method at 523K and 1.5H2/CO ratio was 

monitored as the total flow rate of reactant varied between 0.6, 2.4 and 4.8L/h. As 

seen in Figure 4-41, an opposite trend was obtained between the CO conversion and 

the Vm. The CO conversion decreased with increasing space velocity. The CO 

conversion decreased from 54 to 26% when the Vm increased from 3 to 24L/g-cat.h. 

The same trend was also observed by Liu et al. [15] over commercial Fe/Mn catalyst 

and they found that the CO conversion sharply decreased from 82 to 30% with 

increasing space velocity from 0.46×10-3 to 1.85×10-3Nm3/Kg-cat.s. Davis [19] 

showed the dependency of the CO conversion on the Vm and he also found that 

increasing the space velocity from 5 to 50 NL/g-Fe.h resulted in decreasing CO 

conversion from 82 to 10%. Hayakawa et al. [21] reported that the CO conversion and 

the selectivity of the heavy hydrocarbons increased with increasing residence time (τ) 

or in other word by decreasing the Vm (F/W where W is the weight of the catalyst and 

F is the total flow rate). Results shown in Figure 4-41 show similar trend of the CO 
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conversion with space velocity obtained for different H2/CO ration of 0.5 and 

1.5H2/CO ratio.  
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Figure 4-41: Effect of space velocity on CO conversion over 6% Fe/SiO2 catalysts at 
0.5 and 1.5 H2/CO ratio 

An increase in the Vm generally results in high selectivity of light hydrocarbon 

and lower selectivity of the C5+ (Figure 4-42). The catalyst weight was constant at the 

different Vm which indicated that the Vm was only affected by the total feed flow rate. 

Accordingly, the difference in the product selectivity could be due to difference in 

flow rate. Increasing the feed flow rate resulted in shorter contact time between the 

reactant and catalyst thus reduced the probability of chain growth.   
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Figure 4-42: Effect of the space velocity on the selectivity of hydrocarbons for SiO2- 
supported 6%Fe-based catalyst 
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III. Reaction temperature 

Generally, Fe-based FT catalyst has higher flexibility to the reaction conditions 

compared to Co-based catalyst. Fe-based catalysts can be operated at a wide range of 

temperature; either at low (473-523K) or high (573-623K) temperature. Accordingly, 

Fe catalysts were used for the LTFT and HTFT. The effect of the reaction temperature 

at the range of temperature between 523 and 563K on the catalytic performance of 

impregnated 6%Fe/SiO2 was studied under the reaction condition of 1.5H2/CO ratio 

and 3L/g-cat.h. Figure 4-43 shows decreasing in CO conversion with increasing the 

reaction temperature where, the CO conversion decreased by 28% when the 

temperature was increased from 523 to 563K. Similar trend on the influence of 

reaction temperature on CO conversion was obtained for different H2/CO ratio. For 

each temperature, higher H2/CO ratio (1.5) resulted in higher activity compared to that 

at low H2/CO ratio (0.5). The product selectivity was also affected by the reaction 

temperature, as can be observed from Figure 4-44. C1-C4 selectivity increased by 20% 

and C5+ decreased by 15% as temperature was increased from 523 to 563K. The 

increase in C1-C4 selectivity could be due to higher reaction temperature which 

facilitated the chain termination step and resulted in production of light hydrocarbons. 

Liu et al. [15] reported that an exponential relation has been obtained between the 

temperature and the CO conversion where increasing the temperature from 533 to 

563K caused the CO conversion to increase from 44.8% to 59.45%. The methane 

selectivity increased and the selectivity of heavy hydrocarbon decreased with 

increasing reaction temperature.  
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Figure 4-43: Effect of reaction temperature on the CO conversion for 6% Fe/ SiO2 

catalysts prepared by impregnation method at 0.5 and 1.5H2/CO ratio 
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Figure 4-44: Effect of temperature on the selectivity of hydrocarbons for supported 

6%Fe/ SiO2 catalyst at 1.5H2/CO ratio and 3L/g-cat.h 

In summary, these studies were carried out to determine the effects of the reaction 

conditions such as reactant ratio, space velocity, and reaction temperature on the 

performance of the FTS over 6%Fe/SiO2. The reaction conditions were found to be 

strongly influence the catalyst activity and the product selectivities. The FT 

performance changed with the variation of H2/CO from 0.5 to 2, space velocity from 3 

to 24L/g-cat.h, and the reaction temperature between 523 and 563K. The optimum 

reaction conditions were found to be at 1.5H2/CO, 3L/g-cat.h, and 523K.      

4.4.4    Kinetics of the FT reaction over Fe-based catalysts  

The kinetics of the FT reaction over different types of catalysts has been studied. 

Generally many factors affect the reaction rate such as concentration of the reactants, 

temperature, and nature of the catalysts.  The reaction rate is proportional to the 

temperature and concentration of the reactants raised to a simple power. The rate of 

reactions usually depends more strongly on temperature than concentration. The rate 

may double when the temperature is raised by only 10K. The influence of the 

temperature on rate of reaction was proposed by Arrhenius (1889) where he illustrated 

the dependence of rate constant (KA) on temperature (T) according to equation (4.10). 

RT
E

T
Kln AA =

∂
∂                                                                                            (4.10)    
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Then 

RT
-E

A expA K =                                                                                            (4-11) 

Where,  

KA = specific rate constant, L mol-1 gcat-1 h-1 

A  = frequency factor for reaction, L mol-1 gcat-1 h-1  

EA = activation energy, KJ/mol 

R = gas constant=8.314KJ/mol.K  

T = temperature, K  

The FT reaction kinetics was obtained under the reaction condition of 1.5 H2/CO, 

residence time of 3139.9-392.5 second, reaction temperature between 523 and 563K, 

and total reactant flow rate of 0.6- 4.8L/h using constant weight of 0.2g of 6%Fe/SiO2 

catalyst prepared via impregnation and precipitation method. As can be seen from 

Figures 4-45 and 4-46 for the same reaction temperature, the CO conversion increased 

with increasing W/F (where W is the weight of the catalyst and F is the total flow 

rate) and seemed to reach equilibrium after 800 s, where selectivity of the light 

hydrocarbons and olefins decreased and selectivity to heavy hydrocarbon increased. 

Therefore, the mechanism of FT reactions appeared to be as followed (equation 4-12): 

CO +H2 ↔ LG ↔ Ol ↔ HC                                                                       (4-12) 

Where, LG is light hydrocarbon, Ol is olefins, and HC is heavy hydrocarbon   
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Figure 4-45: Variation of the CO conversion with residence time at different reaction 
temperature of impregnated 6%Fe/SiO2 at 1.5H2/CO ratio 
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Figure 4-46: Variation of the CO conversion with residence time at different reaction 

temperatures over precipitated 6%Fe/SiO2 at 1.5H2/CO ratio 

Reaction kinetics was determined using data presented in Figures 4-47, 4-48, and 

4-49. In addition, for simplifying the kinetics of the CO conversion we assumed the 

reaction to be first order, reversible and at the steady-state. The rate constant was 

calculated by the formula shown in equation (4-13) [91]. Calculation data for k and E 

values is shown in Appendix E.    

τk 
X
X - 1 ln  

Ae

A
AeX=








−                                                                     (4-13) 

Where  

XA= conversion of A 

XAe = equilibrium conversion of A 

k = constant rate   

τ = residence time (W/F) 

 The values of rate constant (k) at different reaction temperature were determined 

from the slope of the plot of (–ln(1-XA/XAe)) vs. τ, as shown in Figure 4-47, 4-48 

and 4-49.  

Figure 4-47, 4-48, and 4-49 show the comparison between the rate constant of 

impregnated and precipitated catalysts at different reaction temperatures. Precipitation 

method resulted in catalyst with higher value of k compared to that of impregnation 

method.  
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Figure 4-47: Comparison between rate constant of impregnated (I) and precipitated 
(P) Fe/SiO2 at 523K and 1.5 H2/CO ratio 

 
Figure 4-48: Comparison between rate constant of impregnated (I) and precipitated 

(P) Fe/SiO2 at 543K and 1.5 H2/CO ratio 

 
Figure 4-49: Comparison between rate constant of impregnated (I) and precipitated 

(P) Fe/SiO2 at 563K and 1.5 H2/CO ratio 
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 Figure 4-50 shows the Arrhenius plot for the impregnated and precipitated 

catalyst. Precipitation method resulted in catalyst with higher activation energy 

compared to those synthesized via impregnation method. The activation energy 

increased from 9.3KJ/mol to 20.5KJ/mol for the precipitated catalyst compared to 

impregnated catalyst. higher values of activation energy have been published by 

Pirola et al. [29] where they found that depending on the reaction temperature, two 

different regimes can be observed and the activation energy for the FT regime on all 

the catalysts (Fe/SiO2 with 10-50% Fe loading) range between 80-130KJ/mol and for 

the second regime (WGS) range between 10-40KJ/mol.   

 
Figure 4-50: Arrhenius plot of 6%Fe/SiO2 prepared by impregnation (I) and 

precipitation (P) methods at 1.5 H2/CO 
The results of kinetics studies are summarized in Table 4-11. The value of k 

decreased with increasing the reaction temperature. 

Table 4-11: Activation energy 

Catalyst Preparation 
method 

Temperature 
(K) 

H2/CO ratio Rate 
constant 

Activation 
energy 

(KJ/mol) 

6%Fe/SiO2 impregnation 523 1.5 0.00055 9.3 

6%Fe/SiO2 impregnation 543 1.5 0.00033 

6%Fe/SiO2 impregnation 563 1.5 0.00029 

6%Fe/SiO2 precipitation 523 1.5 0.00122 20.5 

6%Fe/SiO2 precipitation 543 1.5 0.00036 

6%Fe/SiO2 precipitation 563 1.5 0.00032 
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4.5    Effect of the reaction conditions on the catalyst properties  

The influence of the reaction conditions on the physical and chemical properties was 

investigated using N2-physical adsorption, FESEM, and TEM. Comparison between 

the properties of the fresh and spent catalysts was carried out for the 6%Fe Fe loading 

on SiO2 prepared by impregnation and precipitation method, and 6%Fe on Al2O3-SiO2 

support after the catalysts were exposed to reaction condition of 523K, 5hr, 1.5H2/CO 

and SV=3L/g-cat.h. Spent catalyst showed decrease in the surface area, pore volume 

and average particle size for catalyst. For the spent Fe/Al2O3-SiO2 (Table 4-12) the 

surface area decreased by 20% compared to that of the fresh one. Fe/SiO2 catalyst 

showed slight decrease in the surface area after exposure to the reaction atmosphere. 

The difference in the surface area and pore volume after exposure to reaction can be 

attributed to a partial collapse of the pore or formation of an inactive carbon.  

Table 4-12: Textural properties of the supported Fe-based catalysts before and after 
the FT reaction 

Physical 
properties 

Fresh catalyst Spent catalyst 

6%Fe/
SiO2 (I) 

6%Fe/ 
SiO2 

(P) 

6%Fe/Al2O3

-SiO2 (I) 
6%Fe/ 
SiO2 (I) 

6%Fe/ 
SiO2 (P) 

6%Fe/Al2O3

-SiO2 (I) 

surface 
area 

(m2/g) 

39.47 45.09 56.95 38.54 44.68 35.79 

Pore 
volume 
(cc/g) 

0.155 0.125 0.288 0.104 0.128 0.135 

Average 
pore size 

(Å) 

164.86 110.14 202.73 142.61 114.56 150.97 

Spent catalysts were characterized by FESEM and TEM to determine the 

morphology of the catalyst after the FTS reaction. As shown in Figures 4-51, 4-52, 

and 4-53, significant change in the morphology of the catalyst was obtained after 

exposure to reaction. Small change was observed on the morphology of the Fe/SiO2 

after exposure to reaction (Figure 4-51) due to increasing the amount of the Fe 

particles between the SiO2 spheres. Similar trend of the morphology change was 
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shown on the Fe/SiO2 prepared by precipitation method (Figure 4-52). In addition, 

Figure 4-53 shows a drastic change on the morphology of Fe/Al2O3-SiO2 catalyst after 

the reaction where the particles disintegrated into smaller particles and catalyst pores 

collapsed. This result is in a good agreement with the BET results where the surface 

area and the pore size decreased after the reaction.  

  
Figure 4-51: FESEM images of Fe/SiO2 catalyst prepared by impregnation method 

before (A) and after (B) FTS reaction 

 
Figure 4-52: FESEM images of Fe/SiO2 catalyst prepared by precipitation method 

before (A) and after (B) FTS reaction 

  
Figure 4-53: FESEM images of Fe/Al2O3-SiO2 catalyst prepared by impregnation 

method before (A) and after (B) FTS reaction 
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Table 4-13 shows the changes in the elemental compositions after exposure to 

reaction atmosphere. The weight of carbon increased after the reaction while the 

weight of Fe component decreased. These results suggested that the decrease in the 

catalyst stability and activity with the TOS could be due to increase in of the carbon 

content and decrease in Fe content. The nature of the carbon plays an important role 

in the catalytic activity and stability, for example amorphous carbon influences the 

catalytic activity while graphitic carbon reinforced the catalyst deactivation [2].    

Table 4-13: EDX elemental analyses of the fresh and spent catalysts 

Element Element composition (wt %) 

6%Fe/SiO2 (I) 6%Fe/SiO2 (P) 6%Fe/Al2O3-SiO2 

Fresh Spent Fresh Spent Fresh Spent 

Fe 5.50 4.62 4.27 3.99 6.33 4.98 

Si 26.94 22.25 23.60 20.78 24.83 22.67 

Al - - - - 1.96 1.19 

O 48.96 41.01 49.91 46.47 45.06 46.11 

C 18.60 32.12 22.22 28.76 21.64 24.33 

Total 100.00 100.00 100.00 100.00 100.00 100.00 

 

TEM images of the fresh and spent Fe/SiO2 catalysts prepared by impregnation 

and precipitation methods as well as Fe/ Al2O3-SiO2 catalyst are shown in Figure 4-

54, 4-55 and 4-56, respectively. The morphology of the catalyst was changed after FT 

reaction. After exposure to FTS condition, the size of Fe particles increased, the shape 

became irregular, and SiO2 surface coverage also decreased. An opposite trend was 

observed for Al2O3-SiO2 supported catalyst which showed degradation of particles. 

SiO2 support enhanced the sintering and resulted in bigger Fe particles for the spent 

catalyst compared to the fresh one. 
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Figure 4-54: Comparison between the Fe particle distribution for impregnated 

6%Fe/SiO2 catalyst (a) before reaction and (b) after reaction 

 
Figure 4-55: Comparison between the Fe particle distribution for precipitated 

6%Fe/SiO2 catalyst (a) before reaction and (b) after reaction 

   
Figure 4-56: Comparison between the Fe particle distribution for impregnated 

6%Fe/Al2O3-SiO2 catalyst (a) before reaction and (b) after reaction  
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4.6    Summary of the reaction studies 

The effects of synthesis technique, support, and Fe loading on the physicochemical 

properties of the catalysts were investigated. Good catalytic properties were exhibited 

by the catalyst with low Fe loading (≤ 6 wt %) on SiO2 support, synthesized via 

impregnation method. The 6%Fe/SiO2 catalyst resulted in relatively high CO 

conversion and production of desired hydrocarbon (C5+). Correlation between Fe 

particle size and the FT performance was performed. Small Fe particles resulted in 

higher catalytic activity and C5+selectivity as well as lower selectivity to the light 

hydrocarbon. The effect of the promoter on the catalyst properties and the FT 

performance was also investigated. Addition of Cu promoter enhanced the 

reducibility of the catalysts whereas an opposite trend was obtained by the addition of 

the K promoter. Nevertheless, the addition of K promoter enhanced the selectivity of 

C5+ to a value of 54.42% compared to 20.73% for the unpromoted Fe/SiO2 catalyst.   

Comparisons between the results obtained in this study and those of previous 

studies are demonstrated in Table 4-14. Similar trend between the catalyst loading and 

surface area have been published by Pirola et al. [29] where they reported that the 

surface area of the catalyst decreased by increasing the loading of Fe. They also 

reported that the CO conversion increased with increasing the Fe loading but the 

opposite was observed for C5+ selectivity. The synthesized 10%Fe/SiO2 catalyst in 

this study showed the CO conversion of 48.2% which was relatively higher than the 

CO conversion (6%) reported by Pirola et al. [29] at the same Fe loading 10wt%. 

Synthesized Cu promoted catalyst in this work showed higher activity and selectivity 

to C5+ and lower methane selectivity than that obtained by Lohitharn et al. [51]. The 

performance of the K promoter in this study was found to be lower than that prepared 

by Hayakawa et al. [21] in terms of the CO conversion and selectivity of C5+. This 

can be due to the difference in the reaction conditions as they used higher pressure 

and longer TOS and also due to the difference in the properties of the catalyst where 

they used catalyst with bigger surface area of 175m2/g and Fe loading compared to the 

catalyst that was synthesized in this study. As a comparison with different preparation 

method, 6%Fe/SiO2 catalyst synthesized by impregnation method showed higher 
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activity and selectivity to heavy hydrocarbon than 5%Fe/SiO2 catalyst synthesized by 

microemulsion method [10].     

Table 4-14: Comparison of the Fe-based catalyst performance in FTS 

Catalyst Fe 
loading 
(wt %) 

Average 
particle 
size 
(nm) 

BET 
surface 
area 
(m2/g)  

CO 
conversion 
(%) 

Product 
Selectivity (%) 

C1-C4 C5+ 

Fe/SiO2
A

 (I) 6 8.6±1.1 39.47 54.02 57.48 20.73 

Fe/SiO2
A

 (I) 10 12.6±1.3 23.82 48.24 70.07 14.13 

Fe/SiO2
A

 (I) 15 13±1.2 23.98 44.68 77.37 11.00 

Fe/SiO2
A

 (P) 6 17.3±7.3 54.1 45.7 63.43 9.68 

Fe/Cu/SiO2
A

 (I) 6 - 39.73 24.37 72.04 8.16 

Fe/K/SiO2
A

 (I) 6 - 33.20 28.92 31.48 54.42 

Fe/SiO2
B (I) 10 - 362 6 19 

(CH4) 
47 (<C7) 

Fe/SiO2
B (I) 50 - 143 74 9  

(CH4) 
20 

(<C7) 

Fe/Cu/SiO2
C (P) - - 329 10 95 5 

Fe/K/SiO2
D (P) - - 175 66 26.6 73.4 

Fe/SiO2
E (ME) 5 - 304 13.5 88.7 10.1 

A Reaction condition T=523K, P=1atm, W=0.2g, H2/CO=1.5 
B Reaction condition T=523K, P=2MPa, W=1g, H2/CO=2 [29] 
C Reaction condition T=553K, P=1.8atm, W=0.1g, H2/CO=2, t=300min [51] 
D Reaction condition T=513-553K, P=1-2.85MPa, W=3g, H2/CO=0.4-2, t=100hr [21] 

E Reaction condition T=573K, P=1.01MPa, W=4g, H2/CO=2 [10] 

I= catalyst prepared by impregnation method  

P= catalyst prepared by precipitation method 

ME= catalyst prepared by microemulsion method  
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CHAPTER 5 

 

Conclusion and Recommendations  

5.1    Conclusion 

Fe nanoparticles on SiO2 and Al2O3-SiO2 supports were synthesized via impregnation 

and precipitation methods. The effects of different Fe loading (3, 6, 10, and 15 wt %), 

synthesis technique (impregnation and precipitation), type of support (SiO2 and 

Al2O3-SiO2), and promoter (Cu, K, and Cu/K) on the physicochemical properties of 

the catalysts and performance in the FTS were studied. The catalytic properties were 

evaluated by N2 physical adsorption, FESEM, TEM, XRD, and H2-TPR. Based on 

these characterization results the following conclusions can be drawn: 

• Fe loading was found to have significant influence on the catalytic properties. The 

surface area decreased with increase in Fe loading. The results of FESEM and 

TEM investigations demonstrated that the dispersion of Fe particles over the 

support were uniform at Fe loading (≤ 6 wt %). Narrower particle size distribution 

and smaller size of Fe nanoparticles were obtained at lower Fe loading.   

• Compared to the precipitation method, catalyst synthesized via impregnation 

method had smaller surface area, better distribution of Fe nanoparticles over the 

support, smaller particle size, and lower reduction temperature.   

• SiO2 served as a better support compared to Al2O3-SiO2. 

• Incorporation of Cu and K promoters to the Fe-based catalyst was found to have 

significant effects on the surface area, dispersion, and reducibility of the catalysts. 

Addition of Cu promoter was found to be more useful in term of enhancing the 

reducibility of the catalyst.      
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The supported Fe nanoparticles were evaluated for the FT reaction. The effects of 

different reaction conditions on the FT performance were also investigated. The 

following can be concluded from the catalytic studies: 

• Catalyst with low Fe loading (≤6 wt%) resulted in higher catalytic stability and 

activity as well as higher selectivity to C5+ and olefins. Higher Fe loading 

suppressed the stability, decreased the CO conversion, and enhanced the C1-C4 

selectivity. 

• Catalyst prepared by impregnation method exhibited better stability, activity, and 

selectivity to C5+ compared to the catalyst that was synthesized by precipitation 

method.  

• Al2O3-SiO2 support decreased the catalytic stability and activity and increased the 

selectivity of C1-C4 compared to that of SiO2 support. This difference may be due 

to increase in metal-support interaction, resulted from increase in the catalyst 

acidity in the presence of Al2O3.     

• K promoter resulted in lower CO conversion and higher selectivity to heavy 

hydrocarbon (C5+) compared to the unpromoted catalyst.  

•  Increasing the reactant ratio (H2/CO), Vm, and reaction temperature resulted in 

lower CO conversion and higher C1-C4 selectivity. The optimum reaction 

conditions for FT reaction were found to be at 523K, 1.5H2/CO ratio, and Vm of 

3L/g-cat.h over the impregnated 6%Fe/SiO2 catalyst.   

The comparison between properties and performance of Fe-based catalysts for the 

impregnation and precipitation methods and the effects of Fe particle size for 

supported Fe catalyst have not been reported in the literature. Correlation between Fe 

particle size and FT performance has been illustrated in this work. Particle size plays 

an imported role in the catalytic activity and hydrocarbons selectivity. Conversion of 

CO and C5+ selectivity decreased with increase in Fe particle size.  

Based on the results obtained in this study, catalysts with Fe particle size less than 

9 nm exhibited good FT performance in terms of stability, CO conversion and product 

selectivity. 
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5.2     Recommendation    

Based on the conclusion above, a few recommendations can be drawn for future work 

in this area: 

• Due to the fact that physical and chemical properties of the catalyst affect the 

overall FT reaction performance therefore, improvement of the catalyst 

properties such as higher dispersion of Fe and lower reduction temperature can 

be made by varying the composition of the catalyst, loading of the active site, 

and synthesis technique. 

•  Supported Fe-based catalyst has different active sites and this mainly depends 

on the pretreatment step. Therefore, investigation on the effect of pretreatment 

conditions on the catalyst properties should be preformed. 

• Due to the ability of using Fe-based catalyst in a wide range of the operation 

condition, varying the reaction pressure could help to understand the kinetic of 

the FT reaction and enhanced the selectivity of the higher hydrocarbons. Other 

parameters could also be varied such as type of the reactor and reaction time. 

The reaction time can be prolonged in order to study the reaction kinetic and 

dynamic and also the catalyst deactivation.   

• This work presented the effect of the size of the Fe nanoparticles on the FT 

performance. In order to have better understanding of these phenomena, the 

catalyst should be synthesized at different particles size range, especially less 

than 5nm.    

              

 



 

 

130 

 

REFERENCES 
[1] C. Masters, "The Fischer-Tropsch Reaction," in Advances in Organometallic 

Chemistry, Vol. 17, Amsterdam, Netherland, 1979, pp. 61-100.  

[2] A. Steynberg, M. E. Dry, "Introduction to Fischer-Tropsch technology," in Fisher-

Tropsch Technology, 1st edition, Amsterdam, Netherland, Elsevier, 2004, ch. 1, pp. 1-

59.  

[3] A. P. Raje and B. H. Davis, "Fischer-Tropsch synthesis over iron-based catalysts 

in a slurry reactor: reaction rates, selectivities and implications for improving 

hydrocarbon productivity", Catal. Today, vol. 36, pp. 335-345, Jun. 1997.  

[4] C. H. Bartholomew and R. J. Farrauto, “Hydrogen production and synthesis gas 

reaction”, in Fundamentals of Industrial Catalytic Processes, 2nd edition, New Jersey, 

John Wiley & Sons, Inc., Hoboken, 2006, ch. 6, sec. 6.5, pp. 398-457. 

[5] L. D. Mansker, "Characterization of working iron Fischer-Tropsch catalysts using 

quantitative diffraction methods", Ph.D. dissertation, Dept. Chem. Eng., UNM, New 

Mexico., USA, 1999.  

[6] M. E. Dry, "The Fischer–Tropsch process: 1950–2000", Catal. Today, vol. 71, pp. 

227-241, Jan. 2002.  

[7] C. H. Bartholomew, "History of cobalt catalyst design for FTS", in Proceedings of 

the National Spring Meeting of the American Institute of Chemical Engineers 

(AIChE’03), New Orleans, 2003. 

[8] H. N. Pham, "Agglomerate strength and attrition in slurry phase iron-based 

Fischer-Tropsch catalysts," Ph.D. dissertation, Dept. Chem. Eng., UNM., New 

Mexico, USA., 2001.  

[9] M. D. Shroff, D. S. Kalakkad, K. E. Coulter, S. D. Kohler, M. S. Harrington, N. B. 

Jackson, A. G. Sault and A. K. Datye, "Activation of Precipitated Iron Fischer-

Tropsch Synthesis Catalysts", Catal., vol. 156, pp. 185-207, Oct. 1995.  



 

 

131 

 

[10] T. Herranz, S. Rojas, F. J. Pérez-Alonso, M. Ojeda, P. Terreros and J. L. G. 

Fierro, "Carbon oxide hydrogenation over silica-supported iron-based catalysts: 

Influence of the preparation route", Appl. Catal. A: General, vol. 308, pp. 19-30, Jul. 

2006.  

[11] M. Bakhtiari, F. Khorasheh, A. Zamanian, A. Nakhaeipour and M. Irani, 

"Preparation, Evaluation and Characterization of Monolithic Catalysts for Fischer-

Tropsch Synthesis", Petroleum & Coal, vol. 50, pp. 56–61, Sept. 2008.  

[12] J. Brown, J. McDonald and C. Wilson, "Microreactors for synthetic diesel 

production to optimize nanostructured cobalt catalyst", presented at the 15th IC on 

Solid-State Sensors, Actuators and Microsystems, Denver, Colorado, 2009, pp. 588-

591. 

[13] W. Hai-jun, W. Bao-shan, L. Ting-zhen, T. Zhi-chao, A. Xia, X. Hong-wei and 

L. Yong-wang, "Effects of SiO2 and Al2O3 on performances of iron-based catalysts 

for slurry Fischer–Tropsch synthesis", Fuel Chem. and Tech., vol. 35, pp. 589-594, 

Oct. 2007.  

[14]B. Delmon, "Preparation of heterogeneous catalysts", Thermal Anal. and 

Calorimetry, vol. 90, pp. 49-65, Oct. 2007.  

[15] Y. Liu, B. Teng, X. Guo, Y. Li, J. Chang, L. Tian, X. Hao, Y. Wang, H. Xiang, 

Y. Xu and Y. Li, "Effect of reaction conditions on the catalytic performance of Fe-Mn 

catalyst for Fischer-Tropsch synthesis", Mole. Catal. A: Chem., vol. 272, pp. 182-190, 

Jul. 2007.  

[16]W. J. Cannella, "Factors Influencing Kinetics and Product Distribution in Fischer-

Tropsch Synthesis over Iron Catalysts", Ph.D. dissertation, Dept. chem. Eng., UC 

Berkeley, California, USA, 1984.  

[17] Y. Li, H. Wan, B. Wu, C. Zhang, B. Teng, Z. Tao, Y. Yang, Y. Zhu, and H. 

Xiang, "Effect of Al2O3/SiO2 ratio on iron-based catalysts for Fischer–Tropsch 

synthesis",  Fuel, vol. 85, pp. 1371-1377, Aug. 2006.  

[18] W. Ngantsoue-Hoc, Y. Zhang, R. J. O’Brien, M. Luo and B. H. Davis, 

"Fischer−Tropsch synthesis: activity and selectivity for Group I alkali promoted  iron-

based catalysts", Appl. Catal. A: General, vol. 236, pp. 77-89, Sept. 2002.  



 

 

132 

 

[19] B. H. Davis, "Fischer-Tropsch synthesis: relationship between iron catalyst 

composition and process variables", Catal. Today, vol. 84, pp. 83-98, Aug. 2003.  

[20] J. Xu, "Rational design of silica-supported platinum-promoted iron Fischer-

Tropsch synthesis catalysts based on activity-structure relationships", Ph.D. 

dissertation, chem. Eng. Chemistry, BYU, Provo, Utah, USA, 2003.  

[21] H. Hayakawa, H. Tanaka and K. Fujimoto, "Studies on catalytic performance of 

precipitated iron/silica catalysts for Fischer–Tropsch Synthesis", Appl. Catal. A: 

General, vol. 328, pp. 117-123, Sept. 2007.  

 [22] Google Image, available: http://www.zero.no/transport/biodrivstoff/hva-er-

biodrivstoff/ft3.gif , 2010. 

[23] Y. Wang, A. L. Tonkovich, T. Mazanec, F. P. Daly, D. Vander Wiel, J. Hu, C. 

Cao, C. Kibby, X. Li and M. D. Briscoe, "Fisher-Tropsch synthesis using 

microchannel technology and novel catalyst and microchannel reactor", U.S. Patent 

7084180 Vol. Aug. 1, 2006. 

[24]C. Cao, D. R. Palo, A. L. Y. Tonkovich and Y. Wang, "Catalyst screening and 

kinetic studies using microchannel reactors", Catal. Today, vol. 125, pp. 29-33, 2007  

[25] A. Y. Khodakov, W. Chu and P. Fongarland, "Advances in the Development of 

Novel Cobalt Fischer− Tropsch Catalysts for Synthesis of  Long-Chain Hydrocarbons 

and Clean Fuels", Chem. Rev., vol. 107, pp. 1692-1744, 2007.  

[26]J. Gaube and H. Klein, "Studies on the reaction mechanism of the Fischer–

Tropsch synthesis on iron and cobalt", Molecular Catal. A: Chem., vol. 283, pp. 60-

68, Mar. 2008.  

[27] J. Hagen, “The Phenomenon Catalysis”, in Industrial catalysis, 2nd edition, 

Weinheim, Germany, WILEY-VCH, 2006, ch.1, sec. 1.1, pp. 1-11. 

[28] P. Biloen and W. Sachtler, "Mechanism of hydrocarbon synthesis over Fischer-

Tropsch catalysts", Adva. in Catal., vol. 30, pp. 165-216, 1981.  

[29] C. Pirola, C. L. Bianchi, A. Di Michele, S. Vitali and V. Ragaini, "Fischer 

Tropsch and Water Gas Shift chemical regimes on supported iron-based catalysts at 

high metal loading,"  Catal. Comm., vol. 10, pp. 823-827, Feb. 2009.  

http://www.zero.no/transport/biodrivstoff/hva-er-biodrivstoff/ft3.gif�
http://www.zero.no/transport/biodrivstoff/hva-er-biodrivstoff/ft3.gif�


 

 

133 

 

[30] M. A. Vannice, "The catalytic synthesis of hydrocarbons from H2/CO mixtures 

over the group VIII metals: I. the specific activities and product distributions of 

supported metals", Catal., vol. 37, pp. 449-461, Jun. 1975.  

 [31] H. Wan, B. Wu, X. An, T. Li, Z. Tao, H. Xiang and Y. Li, "Effect of A12O3 

Binder on the Precipitated Iron-Based Catalysts for Fischer-Tropsch Synthesis",  

Natural Gas Chem., vol. 16, pp. 130-138, Jun. 2007.  

 [32] A. Khodakov, B. Peregryn, A. Lermontov, J. S. Girardon and S. Pietrzyk, 

"Transient studies of the elementary steps of Fischer-Tropsch synthesis", Catal. 

Today, vol. 106, pp. 132-136, 2005.  

[33] A. M. Saib, A. Borgna, J. van de Loosdrecht, P. J. van Berge, J. W. Geus and J. 

W. Niemantsverdriet, "Preparation and characterisation of spherical Co/SiO2 model 

catalysts with well-defined nano-sized cobalt crystallites and a comparison of their 

stability against oxidation with water,"  J. of Catal., vol. 239, pp. 326-339, Apr. 2006.  

 [34] J. Niemantsverdriet, A. Van der Kraan, W. Van Dijk and H. Van der Baan, 

"Behavior of metallic iron catalysts during Fischer-Tropsch synthesis studied with 

Mössbauer spectroscopy, x-ray diffraction, carbon content determination, and reaction 

kinetic measurements",  J. Phys. Chem., vol. 84, pp. 3363-3370, 1980.  

[35] Y. Jin, "Phase transformation of iron-based catalysts for Fischer-Tropsch 

synthesis", Ph.D dissertation, Dept. Chem. Eng., UNM, New Mexico, USA, 1999.  

[36] D. B. Bukur, L. Nowicki, R. K. Manne and X. S. Lang, "Activation Studies with 

a Precipitated Iron Catalyst for Fischer-Tropsch Synthesis: II. Reaction Studies", 

Catal., vol. 155, pp. 366-375, Sept. 1995.  

[37] M. Yamada, G. Bian, A. Oonuki, N. Koizumi, and H. Nomoto "Studies with a 

precipitated iron Fischer-Tropsch catalyst reduced by H2 or CO", Molecular Catal. A: 

Chem., vol. 186, pp. 203-213, Jul. 2002.  

[38] R. J. O'Brien, L. Xu, R. L. Spicer and B. H. Davis, "Activation Study of 

Precipitated Iron Fischer− Tropsch Catalysts", Eng. Fuels, vol. 10, pp. 921-926, 1996.  

[39] M. Ding, Y. Yang, B. Wu, J. Xu, C. Zhang, H. Xiang and Y. Li, "Study of phase 

transformation and catalytic performance on precipitated iron-based catalyst for 



 

 

134 

 

Fischer–Tropsch synthesis", Molecular Catal. A: Chem., vol. 303, pp. 65-71, Apr. 

2009.  

[40] Y. Jin and A. K. Datye, "Phase transformations in iron Fischer-Tropsch catalysts 

during temperature-programmed reduction", Catal., vol. 196, pp. 8-17, 2000.  

[41] C. Ngamcharussrivichai, A. Imyim, X. Li and K. Fujimoto, "Active and Selective 

Bifunctional Catalyst for Gasoline Production through a Slurry-Phase Fischer− 

Tropsch Synthesis", Ind Eng Chem Res, vol. 46, pp. 6883-6890, 2007.  

[42] Y. Yang, H. W. Xiang, L. Tian, H. Wang, C. H. Zhang, Z. C. Tao, Y. Y. Xu, B. 

Zhong and Y. W. Li, "Structure and Fischer-Tropsch performance of iron-manganese 

catalyst incorporated with SiO2", Appl. Catal. A: General, vol. 284, pp. 105-122, 

2005.  

[43] E. Iglesia, S. L. Soled and R. A. Fiato, "Fischer-Tropsch synthesis on cobalt and 

ruthenium. Metal dispersion and support effects on reaction rate and selectivity", 

Catal., vol. 137, pp. 212-224, Sept. 1992.  

 [44] C. Zhang, H. Wan, Y. Yang, H. Xiang and Y. Li, "Study on the iron–silica 

interaction of a co-precipitated Fe/SiO2 Fischer–Tropsch synthesis catalyst", Catal. 

Comm., vol. 7, pp. 733-738, Sept. 2006.  

[45] H. Wan, B. Wu, Z. Tao, T. Li, X. An, H. Xiang and Y. Li, "Study of an iron-

based Fischer–Tropsch synthesis catalyst incorporated with SiO2", Molecular Catal. 

A: Chem., vol. 260, pp. 255-263, Dec. 2006.  

[46] W. Hou, B. Wu, Y. Yang, Q. Hao, L. Tian, H. Xiang and Y. Li, "Effect of SiO2 

content on iron-based catalysts for slurry Fischer–Tropsch synthesis", Fuel Process 

Tech., vol. 89, pp. 284-291, Mar. 2008.  

[47] H. Dlamini, T. Motjope, G. Joorst, G. Ter Stege and M. Mdleleni, "Changes in 

Physicochemical Properties of Iron-Based Fischer–Tropsch Catalyst Induced by SiO2 

Addition", Catal. Lett., vol. 78, pp. 201-207, 2002.  

[48] D. B. Bukur, D. Mukesh and S. A. Patel, "Promoter effects on precipitated iron 

catalysts for Fischer-Tropsch synthesis", Ind. Eng. Chem. Res., vol. 29, pp. 194-204, 

1990.  



 

 

135 

 

[49] J. Gaube and H. Klein, "The promoter effect of alkali in Fischer-Tropsch iron 

and cobalt catalysts", Appl. Catal. A: General, vol. 350, pp. 126-132, Nov. 2008.  

[50] M. Luo and B. H. Davis, "Fischer–Tropsch synthesis: activation of low-alpha 

potassium promoted iron catalysts", Fuel Process Tech., vol. 83, pp. 49-65, Sept. 

2003.  

[51] N. Lohitharn, J. G. Goodwin Jr and E. Lotero, "Fe-based Fischer-Tropsch 

synthesis catalysts containing carbide-forming transition metal promoters", Catal., 

vol. 255, pp. 104-113, 2008.  

[52] H. Hayakawa, H. Tanaka and K. Fujimoto, "Studies on precipitated iron catalysts 

for Fischer–Tropsch synthesis", Appl. Catal. A: General, vol. 310, pp. 24-30, Aug. 

2006.  

[53] S. Li, S. Krishnamoorthy, A. Li, G. D. Meitzner and E. Iglesia, "Promoted iron-

based catalysts for the Fischer-Tropsch synthesis: Design, synthesis, site densities, 

and catalytic properties", Catal., vol. 206, pp. 202-217, 2002.  

[54] A. N. Pour, S. M. K. Shahri, H. R. Bozorgzadeh, Y. Zamani, A. Tavasoli and M. 

A. Marvast, "Effect of Mg, La and Ca promoters on the structure and catalytic 

behavior of iron-based catalysts in Fischer–Tropsch synthesis",  Appl. Catal. A: 

General, vol. 348, pp. 201-208, Oct. 2008.  

[55] A. P. Raje, R. J. O'Brien and B. H. Davis, "Effect of potassium promotion on 

iron-based catalysts for Fischer-Tropsch synthesis", Catal., vol. 180, pp. 36-43, 1998.  

[56]G. Zhao, C. Zhang, S. Qin, H. Xiang and Y. Li, "Effect of interaction between 

potassium and structural promoters on Fischer–Tropsch performance in iron-based 

catalysts", Molecular Catal. A: Chem., vol. 286, pp. 137-142, May. 2008.  

[57] H. Wan, B. Wu, C. Zhang, H. Xiang and Y. Li, "Promotional effects of Cu and K 

on precipitated iron-based catalysts for Fischer–Tropsch synthesis," Molecular Catal. 

A: Chem., vol. 283, pp. 33-42, Mar. 2008.  

[58]C. Perego and P. Villa, "Catalyst preparation methods", Catal. Today, vol. 34, pp. 

281-305, Feb. 1997.  

[59] Andrew R. Barron, (2009, May), “Introduction to nanoparticle synthesis”, 

[online], Available: http://www.cnnexion.org   

http://www.cnnexion.org/�


 

 

136 

 

[60] Y. Bao, A. B. Pakhomov, and K. M. Krishnan", A general approach to synthesis 

of nanoparticles with controlled morphologies and magnetic properties", Appl. Phys, 

vol. 97, pp. 10J317-1-10J317-3, May. 2005.  

[61] E. M. Assaf, L. C. Jesus and J. M. Assaf, "The active phase distribution in 

Ni/Al2O3 catalysts and mathematical modeling of the impregnation process", Chem. 

Eng., vol. 94, pp. 93-98, Aug. 2003.  

[62] R. A. Diffenbach and D. J. Fauth, "The role of pH in the performance of 

precipitated iron Fischer-Tropsch catalysts", Catalysis. vol. 100, pp. 466-476, Aug. 

1986.  

[63] T. R. Motjope, H. T. Dlamini, G. R. Hearne and N. J. Coville, "Application of in 

situ Mössbauer spectroscopy to investigate the effect of precipitating agents on 

precipitated iron Fischer–Tropsch catalysts",  Catal. Today, vol. 71, pp. 335-341, Jan. 

2002.  

 [64] A. Pineau, N. Kanari and I. Gaballah, "Kinetics of reduction of iron oxides by 

H2: Part I: Low temperature reduction of hematite", Thermochimica Acta, vol. 447, 

pp. 89-100, Aug. 2006.  

[65] M. E. Dry, "Advances in Fischer-Tropsch Chemistry", Ind. Eng. Chem. Prod. 

Res. Dev., vol. 15, pp. 282-286, 1976.  

[66] A. Ali. Mirzaei, S. Vahid, and M. Feyzi, "Fischer-Tropsch Synthesis over Iron 

Manganese Catalysts: Effect of Preparation and Operating Conditions on Catalyst 

Performance", Adv. In. phys. Chem., vol. 2009, pp. 1-12, Jun. 2008.  

[67] R. J. O’Brien, L. Xu, S. Bao, A. Raje and B. H. Davis, "Activity, selectivity and 

attrition characteristics of supported iron Fischer–Tropsch catalysts", Appl. Catal. A: 

General, vol. 196, pp. 173-178, Apr. 2000.  

           [68] Google Image. Basic Operating Principles of the SORPTOMATIC 1990, 

Available: http://saf.chem.ox.ac.uk/Instruments/BET/isotherms.jpg , 2010. 

 [69] A. Paul, Webb and Clyde Orr, "Surface area and pore structure by gas 

adsorption", in Analytical Methods in Fine Particle Technology, Norcrocess, GA 

USA, Micromeritics instrument Corp., 1997, ch. 3, sec. 3.3.2, pp. 60-63. 

http://saf.chem.ox.ac.uk/Instruments/BET/isotherms.jpg�


 

 

137 

 

          [70] Ferret, BET Surface Area Analysis by Tristar 3000, Available: 

http://www.ferret.com.au/odin/images/171429/BET-surface-area-analysis-by-Tristar-

3000-171429.jpg , 2010. 

           [71] Google Image, Electron Microscopy, Available: 

http://www.vcbio.science.ru.nl/images/TEM-SEM-electron-beam.jpg ,   2010. 

 [72] Google image, EDS SEM, Available: http://www.vcbio.science.ru.nl , 2010. 

 [73] J. Goldstein, D. Newbury, D. Joy, P. Echlin, C. Lyman, E. Lifshin, L. Sawyer, 

and J. Michael, “Introduction”, in Scanning Electron Microscopy and X-Ray 

Microanalysis, 3rd edition, Springer USA, 2003, ch. 1, pp. 1-10. 

           [74] H. Jasksch (1996 October), Filed Emission SEM for True Surface Imaging and 

Analysis, [online]. Available: http://www.zeiss.de/C1256E4600307C70 , 2010. 

 [75] Z. Wang, "Transmission electron microscopy of shape controlled nano-crystals 

and their assemblies," Phys. Chem. B, vol. 104, pp. 1153-1175, 2000.  

 [76]BiovisioNZ, Transmission Electron Microscopy, Available: 

http://www.mauricewilkinscentre.org/bioviz/forstudents/pharmacy/jpg , 2010.  

 [77] Scintag (1999), Inc, Basics of X-ray Diffraction. [online]. Available:   

www.scintag.com, 2010 

           [78] L. J. Poppe, V. F. Paskevich, J. C.Hathwasy, and D. S. Blackwood (2001 October 

10), A Laboratory Manual for X-Ray Powder Diffraction, [online]. Available: 

http://pubs.usgs.gov/of/2001/of01-041/index.htm , 2010.  

           [79] Tutor Visto, Mechanism and laws involved in X-rays diffraction, [online]. 

Available: http://image.wistatutor.com/content/feed/u415/img_mid_5359.gif , 2010.  

[80] P. Heidebrecht, V. Galvita and K. Sundmacher, "An alternative method for 

parameter identification from temperature programmed reduction (TPR) data", Chem. 

Eng. Sci., vol. 63, pp. 4776-4788, Oct. 2008.  

[81] W. Jozwiak, E. Kaczmarek, T. Maniecki, W. Ignaczak and W. Maniukiewicz, 

"Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres",  

Appl. Catal. A: General, vol. 326, pp. 17-27, Mar. 2007.  

http://www.ferret.com.au/odin/images/171429/BET-surface-area-analysis-by-Tristar-3000-171429.jpg�
http://www.ferret.com.au/odin/images/171429/BET-surface-area-analysis-by-Tristar-3000-171429.jpg�
http://www.vcbio.science.ru.nl/images/TEM-SEM-electron-beam.jpg�
http://www.vcbio.science.ru.nl/�
http://www.zeiss.de/C1256E4600307C70�
http://www.mauricewilkinscentre.org/bioviz/forstudents/pharmacy/jpg�
http://www.scintag.com/�
http://pubs.usgs.gov/of/2001/of01-041/index.htm�
http://image.wistatutor.com/content/feed/u415/img_mid_5359.gif�


 

 

138 

 

[82] Y. Zhang, M. Koike, R. Yang, S. Hinchiranan, T. Vitidsant and N. Tsubaki, 

"Multi-functional alumina-silica bimodal pore catalyst and its application for Fischer-

Tropsch synthesis",  Appl. Catal. A: General, vol. 292, pp. 252-258, Jul. 2005.  

 [83] Y. Yang, H. W. Xiang, Y. Y. Xu, L. Bai and Y. W. Li, "Effect of potassium 

promoter on precipitated iron-manganese catalyst for Fischer-Tropsch synthesis",  

Appl. Catal. A: General, vol. 266, pp. 181-194, Apr. 2004.  

[84] A. Sarkar, D. Seth, A. K. Dozier, J. K. Neathery, H. H. Hamdeh and B. H.  

Davis, "Fischer–Tropsch Synthesis: Morphology, Phase Transformation and Particle 

Size Growth of Nano-scale Particles", Catal. Lett., vol. 117, pp. 1-17, Jul. 2007.  

[85] H. Hayashi, M. Kishida and K. Wakabayashi, "Metal-support interaction and 

catalysis of the catalysts prepared using microemulsion", Catal. Surveys, vol. 6, pp. 9-

17, Oct. 2002.  

[86] L. D. Mansker, Y. Jin and A. K. Datye, "Characterization of Iron Fischer-

Tropsch Catalysts ", Appl. Catal. A: General, vol. 186, pp. 277-296, 1999.  

[87] H. Wan, B. Wu, C. Zhang, H. Xiang, Y. Li, B. Xu and F. Yi, "Study on Fe–

Al2O3 interaction over precipitated iron catalyst for Fischer–Tropsch synthesis",  

Catal. Communications, vol. 8, pp. 1538-1545, Oct. 2007.  

[88] M. Luo, H. Hamdeh and B. H. Davis, "Fischer-Tropsch Synthesis: Catalyst 

activation of low alpha iron catalyst", Catal. Today, vol. 140, pp. 127-134, Feb. 2009.  

[89] B. H. Davis, "Technology development for iron Fischer-Tropsch catalysis", 

Federal Eng. Tech. Cen., Morgantown, WV .USA, Tech. Rep. DE--AC22-

94PC94055--13, Jul. 1998. 

[90] Y. Lu and P. Zhou, "Impact of promoters on the performance of the skeleton iron 

catalyst in the application to Fischer-Tropsch synthesis process", Prepr. Pap.-Am. 

Chem. Soc., Div. Fuel. Chem., vol. 49, pp. 660-661, 2004.  

[91] Octave levenspiel, "Constant volume batch reactor," in Chemical Reaction 

Engineering, 3rd edition., Ken Santor, Ed.  John Wiley & Sons,Inc, 1999, ch. 3, sec. 

3.1,pp.39-66.  



 

 

139 

 

Appendix A 

• Amount of chemical for the catalyst preparation  
1. Preparation of Al2O3-SiO2 support  

 For ratio of 5:95 Al2O3:SiO2 

A. Total weight is 20gm 

( ) 3232 support Of Al percent o   ght of the total weig OAlweight of ×=  

( )  100
5 20  O32 ×=gAl  

               = 1g of Al2O3 

Then the weight of precursor (Al(NO3)3.9H2O) is    

32

32233

233

9.
                                 

9.)( 

OAlweight of molecular 
O Al weight ofO H)Al(NOweight of molecular 

 OHNOAlweight of 
×

=
 

102
213759.)( 233

  OHNOAlweight of ××
=   

                        = 7.35g of Al(NO3)3.9H2O 

B. Weight of SiO2  

  ( )  OAlof weight   ght of the total weig SiOweight of 322   support −=  

                                         = 20g – 1 = 19g of SiO2  

C. Volume of glycol (0.5M) solution  

  
solution ofliter 

 volumemolarity   9.)Al(NOfor  moles of 233
×

=OHnumber  

 
molarity

 liter number Volume solution of moles of ×
=  

0.5
1000  0.0196  glycol of ×

=Volume  

         = 39ml of glycol  

5/95 wt% of Al2O3-SiO2 support prepared by dissolving 7.35g of Al(NO3)3.9H2O in 

39ml of glycol and then impregnated the solution on 18g of SiO2  

2. Supported catalyst prepared by impregnation or precipitation 
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Since the total weight of the catalyst is 5gm, the amounts of the chemicals were based 

on the percentage of the metals.  

 For 6%Fe/SiO2 catalyst 

A. The weight of Fe is calculated by the following equation: 

( ) f Fe  percent ocatalyst   ght of the total weigFe weight of ×=               

( )  100
6  5  ×=gFe  

         = 0.3g 

Then the weight of precursor (Fe(NO3)3.9H2O) is    

Feweight of molecular 
 Fe weight ofO H)Fe (NOweight of molecular 

 OHNOFeweight of 
×

=

233

233

9.
                           

 9.)( 
 

 

56
3.086.4039.)( 233

  OHNOFeweight of ×
=   

                              = 1.86g of Fe(NO3)3.9H2O 

 

B. weight of SiO2  

               ( ) of Fe weightcatalyst   ght of the total weigSiOweight of    2 −=  

                                         = 5g – 0.3 = 4.7 g of SiO2  

 

C.  preparation of precursor solution 0.5M  

             Volume MolarityOHNOFeNumber of   9.)( of moles 233 ×=  

              
)/( 

 )(moles of 
Lmolmolarity

n (ml/L)of solutio litermol number Volume ×
=  

 

50
100000460  

.
 . ze water of deioniVolume ×

=   

                                    = 9.2 ml of H2O 

For preparing of 6%Fe/SiO2 catalyst, 1.86g of Fe(NO3)3.9H2O was dissolved in 9ml 

of deionized water and impregnated on 4.7gm of the SiO2 support.  
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 For 10%Fe/SiO2 catalyst 

A. The weight of Fe is calculated by the following equation:  

( ) f Fe  percent ocatalyst   ght of the total weigFe weight of ×=               

( )  100
10  5  ×=gFe  

         = 0.5g 

Then the weight of precursor (Fe(NO3)3.9H2O) is    

Feweight of molecular 
 Fe weight ofO H)Fe (NOweight of molecular 

 

OHNOFeweight of 
×

=

233

233

9.
                         

9.)( 
 

 

56
5.086.4039.)( 233

  OHNOFeweight of ×
=   

                              = 3.61g of Fe(NO3)3.9H2O 

 

B. weight of SiO2  

               ( ) of Fe weightcatalyst   ght of the total weigSiOweight of    2 −=  

                                         = 5g – 0.5 = 4.5 g of SiO2  

 

C.  preparation of precursor solution 0.5M 

                       Volume MolarityOHNOFeNumber of   9.)( of moles 233 ×=  

                      

                       
)/( 

 )(moles of 
Lmolmolarity

n (ml/L)of solutio litermol number Volume ×
=  

 

                      
50

100000890  
.

 . ze water of deioniVolume ×
=   

                                                             = 18 ml of H2O 

For preparing of 10%Fe/SiO2 catalyst, 3.61g of Fe(NO3)3.9H2O was dissolved in 

18ml of deionized water and impregnated on 4.5gm of the SiO2 support.  
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 For 15%Fe/SiO2 catalyst 

A. The weight of Fe is calculated by the following equation:  

( ) f Fe  percent ocatalyst   ght of the total weigFe weight of ×=               

( )  100
15  5  ×=gFe  

         = 0.75g 

Then the weight of precursor (Fe(NO3)3.9H2O) is    

Feweight of molecular 
 Fe weight ofO H)Fe (NOweight of molecular 

 

OHNOFeweight of 
×

=

233

233

9.
                       

9.)( 
 

 

56
75.086.4039.)( 233

  OHNOFeweight of ×
=   

                              = 5.41g of Fe(NO3)3.9H2O 

 

 

B. weight of silica  

               ( ) of Fe weightcatalyst   ght of the total weigSiOweight of    2 −=  

                                         = 5g – 0.75 = 4.25 g of SiO2  

 

 

C.  preparation of precursor solution 0.5M 

               Volume MolarityOHNOFeNumber of   9.)( of moles 233 ×=  

              
)/( 

 )(moles of 
Lmolmolarity

n (ml/L)of solutio litermol number Volume ×
=  

             
50

100001340  
.

 . ze water of deioniVolume ×
=   

                                                 = 27 ml of H2O 

 

For preparing of 15%Fe/SiO2 catalyst, 5.41g of Fe(NO3)3.9H2O was dissolved in 

27ml of deionized water and impregnated on 4.25gm of the SiO2 support.  
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3. Promoted catalyst  

 For 6%Fe/SiO2 catalyst promoted with copper (6%Fe/2%Cu/SiO2) 

A. The weight of Fe is 

( ) f Fe  percent ocatalyst   ght of the total weigFe weight of ×=               

( )  100
6  5  ×=gFe  

         = 0.3g 

Then the weight of precursor (Fe(NO3)3.9H2O) is    

Feweight of molecular 
 Fe weight ofO H)Fe (NOweight of molecular 

 OHNOFeweight of 
×

=

233

233

9.
                               

9.)( 
 

56
3.086.4039.)( 233

  OHNOFeweight of ×
=   

                              = 1.86g of Fe(NO3)3.9H2O 

 

B. Weight of Cu promoter 

               ( ) f Cu  percent ocatalyst   ght of the total weigCu weight of ×=   

( )  100
2  5 Cu ×=g  

                = 0.1g 

Then the weight of Cu(NO3)2.3H2O 

Cuweight of molecular 
 Cu weight ofO HCu (NOweight of molecular 

 OHNOCuweight of 
×

=

223

223

3.)
                                

3.)( 

 

4.63
1.075.2419.)( 223

  OHNOCuweight of ×
=  

                                       = 0.38g of Cu(NO3)2.H2O 

 

C. weight of SiO2 

               ( ) of Fe weightcatalyst   ght of the total weigSiOweight of    2 −=  

                                         = 5g – 0.4 = 4.6 g of SiO2  

 

D. preparation of 0.5M precursor solution  
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             Volume MolarityOHNOCuNumber of   3.)( of moles 223 ×=  

               
Lmol.

Lml mol. ze water of deioniVolume
/50

/100000160  ×
=  

                                                   = 3.14ml of H2O 

6%Fe/2%Cu/SiO2 was synthesized by dissolving 1.86g of Fe(NO3)3.9H2O and 0.38g 

of Cu(NO3)2.3H2O in 12.2ml of H2O and impregnated the solution on 4.6g of SiO2  

 

 For 6%Fe/SiO2 catalyst promoted with potassium (6%Fe/4%K/SiO2) 

  

A. The weight of Fe is 

( ) f Fe  percent ocatalyst   ght of the total weigFe weight of ×=               

( )  100
6  5  ×=gFe  

         = 0.3g 

Then the weight of precursor (Fe(NO3)3.9H2O) is    

Feweight of molecular 
 Fe weight ofO H)Fe (NOweight of molecular 

 OHNOFeweight of 
×

=

233

233

9.
                             

9.)( 
 

 

56
3.086.4039.)( 233

  OHNOFeweight of ×
=   

                              = 1.86g of Fe(NO3)3 

 

B. Weight of K promoter 

               ( ) f K  percent ocatalyst   ght of the total weigK weight of ×=   

( )  100
4  5 K ×=g  

                = 0.2g 

Then the weight of KNO3 

Kweight of molecular 
 K weight of KNOweight of molecular 

 KNOweight of 
×

= 3
3  

39
2.0101 3

  KNOweight of ×
=  

                         = 0.52g of KNO3 
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C. weight of SiO2 

               ( ) of Fe weightcatalyst   ght of the total weigSiOweight of    2 −=  

                                         = 5g – 0.5 = 4.5 g of SiO2  

 

D. preparation of 0.5M precursor solution  

                 of moles 3 Volume MolarityKNONumber of ×=  

               
Lmol.

Lml mol. zed water of deioniVolume
/50

/1000 00520  ×
=  

                                                   = 10.4ml of H2O 

6%Fe/4%K/SiO2 was synthesized by dissolving 1.86g of Fe(NO3)3.9H2O and 0.52g of 

KNO3 in 19.6ml of H2O and impregnated the solution on 4.5g of SiO2 
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Appendix B 

 

 

 
Figure B1: Chromatogram of GC calibration using RGA standard  



 

 

147 

 

 
 

Figure B2: Chromatogram of GC calibration using CO, H2, CO2, and CH4 gas mixture  
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Table B1: Gas Chromatograph calibration of standard gases 

 Retention 
time 
(min)  

Signal  Compound Amount 
(mol %) 

Peak 
Area  

Amount/ 

Area  

1. 2.839 TCD Carbon dioxide 1.272 354.83 3.58512 e-3 

2. 4.118 TCD Hydrogen 59.904 311.87 1.92081 e-1 

3. 5.092 TCD Carbon 
monoxide  

29.999 7712.59 3.88722 e-3 

4. 1.174 FID  Methane  5.000 4163.85 1.20081e-3 

5. 1.426 FID Ethane 3.990 6347.03 6.28640e-4 

6. 1.804 FID Ethylene 2.010 3138.87 6.40357e-4 

7. 2.732 FID Propane 2.010 4792.41 4.19413e-4 

8. 4.579 FID Propylene  0.998 2288.50 4.36092e-4 

9. 5.587 FID Acetylene  0.998 981.06 1.01726e-3 

10. 5.768 FID iso-Butane  0.300 1865.35 1.60827e-4 

11. 5.937 FID 1,2-Propadiene 0.964 922.21 1.04531e-3 

12. 5.993 FID n-Butane 0.299 2232.55 1.33927e-4 

13. 7.757 FID Trans-2-Butene 0.300 939.91 3.19179e-4 

14. 7.865 FID 1-Butene 0.299 967.55 3.09026e-4 

15. 8.440 FID cis-2-Butene 0.299 947.14 3.15685e-4 

16. 9.122 FID iso-Pentane 0.100 399.56 2.50274e-4 

17. 9.456 FID Methyl 
acetylene 

0.987 396.55 2.48891e-3 

18. 9.593 FID n-Pentane 0.100 2263.49 4.41795e-5 

19. 9.869 FID 1,3-Butadiene 0.297 932.921 3.18355e-4 

20. 10.736 FID trans-2-pentene 0.099 380.27 2.60340e-4 

21. 11.015 FID 2-Methyl-2-
butene 

0.0485 144.63 3.35326e-4 

22. 11.050 FID 1-Pentene 0.0997 438.67 2.27276e-4 

23. 11.353 FID cis-2-Pentene  0.0945 366.40 2.57909e-4 

24. 12.657 FID n-Hexane 0.0499 215.28 2.31784e-4 
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Microreactor operating procedure   

The microreactor system (Figure B3) consists of three parts and the following steps 
show the operating procedure of microreactor system:  

1. Connect the reactant gases carbon monoxide and hydrogen and purging gas (helium) 
to each gas inlet port. 

2. Open the regulator for the He cylinder at 2bar to purge the reactor 

3. Purge the reactor with helium  for 15min through the following steps (Figure B3) 

 Turning on valve MV5 to reactor 

 Turn on valve MV6 to separator 

 Turn on valve MV7 to vent 

 Turn on valve MV4 to let He flow to the reactor   

4. After 15min close all the valves that were mentioned at the purging step 

5. Set the CO mass flow controller (MFC) at 10ml/min  

6. Open the regulator for the CO cylinder at 2bar for the reduction step  

7. Adjust the temperature TIC1 to the reduction temperature (280OC) 

8. Turn on MV5 to reactor, MV6 to separator, MV7 to vent, and MV2 to let CO flow to 
reactor  

9. Turn on the heaters TIC2 and TIC3 to increase the temperature of the reactor to the 
reduction temperature. 

10. Keep the temperature at 280OC for 4h.  

11. Turn off the heaters TIC2 and TIC3. 

12. Set TIC1 to reaction temperature (250OC). 

13. Turn off the flow of CO by turning off valve MV2 and turn on the valve MV4 to let 
the He flow to reactor while the temperature decrease to reaction temperature. 

14. Adjust the flow of the CO by FCV1 (mass flow controller) and the flow of H2 by 
FCV2 (mass flow controller) to the desired ratio of H2/CO 

15.  Turn on MV5 to GC vent, MV6 to “from mixed gas”, MV2 to let CO flow, MV3 to 
H2 flow, and MV7 to GC for analyzing the mole percent of the reactant (Molein) 
before starting the reaction. 

16. Turn on the heaters TIC2 and TIC3 

17.  Turn on MV5 to reactor, MV6 to separator, MV7 to vent, and MV2 and MV3 to let 
the reactant (CO and H2)flow to start the reaction  

18. After 30min from starting the reaction, turn on valve MV7 to GC to analyze the 
product and repeat this step every 30min during the 5h reaction.  

19. After finishing the reaction period, turn off the heaters and purge the reactor system 
with He gas.   
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Figure B3: Schematic diagram of Reactor system  
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Appendix C 

 (a)  

(b)  

Figure C1 isothermal plot of (a) 6%Fe/SiO2 and (b) 6%Fe/Al2O3-SiO2 catalyst 
prepared by impregnation method  
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Figure C2 isothermal plot of 6%Fe/SiO2 catalyst prepared by precipitation method  

 

 
Figure C3 Pore size distribution of 6%Fe/SiO2 catalyst prepared by impregnation 

method  



 

 

153 

 

 
Figure C4 Pore size distribution of 6%Fe/SiO2 catalyst prepared by precipitation 

method  

 
Figure C5 Pore size distribution of 6%Fe/Al2O3-SiO2 catalyst prepared by 

impregnation method  
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Figure C6 Pore size distribution of 15%Fe/Cu/SiO2 catalyst prepared by impregnation 

method  

 

 
Figure C7 Pore size distribution of 15%Fe/Cu/K/SiO2 catalyst prepared by 

impregnation method  
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Appendix D 

(a)

 
(b)

 
Figure D1 EDX mapping for SiO2 supported Fe-based catalyst prepared via 

impregnation method at Fe loading of (a) 6 and (b) 15 wt% 
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(a)

 

 
Figure D2 EDX mapping for SiO2 supported Fe-based catalyst prepared via 

precipitation method at Fe loading of (a) 6, and (b) 15 wt% 
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(b)

 
Figure D3 EDX mapping for Al2O3-SiO2 supported Fe-based catalysts at Fe loading 

of (a) 6, and (b) 15 wt% 
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Appendix E 

• Chromatography of the FT reaction 

 

 
Figure E1: Example of reaction products FID chromatogram of impregnated Fe/SiO2 

at reaction condition of 523K, 1.5H2/CO, 3L/g-Fe.h 

 

 
Figure E2: Example of reaction products FID chromatogram of Fe/Cu/SiO2 at 

reaction condition of 523K, 1.5H2/CO, 3L/g-Fe.
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Figure E3: Example of reaction products FID chromatogram of Fe/K/SiO2 at reaction 

condition of 523K, 1.5H2/CO, 3L/g-Fe.h 

 
Figure E4: Example of reaction products TCD chromatogram of 6%Fe/SiO2 at 

reaction condition of 523K, 1.5H2/CO, 3L/g-Fe.h 
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• CO conversion and product selectivity calculations 

1. CO conversion 

100   
CO 

CO  -  
   

in

outin ×







=

CO
X CO  

Example for CO conversion calculation for 6%Fe/SiO2 catalyst at reaction 
condition of 1.5H2/CO, 523K and 5h  

 

   100  
98

44-98  ×





=COX  

         = 55% 

 

2. Product selectivity  

100  
P 
P 

T

×
∑

=pS  

Example for product selectivity calculation for 6%Fe/SiO2 catalyst at 
reaction condition of 1.5H2/CO, 523K and 90min  

 

100  
0.0236106
0.0140206  

4
×=CHS  

        = 59.4 

100  
0.0236106
0.004097  

5
×=+CS  

        = 17.4 

3. CO2 selectivity 

100  
converted CO mole

 produced CO mole
 2

2
×=COS  

Example for the calculation of CO2 selectivity for 6%Fe/SiO2 catalyst at 
reaction condition of 1.5H2/CO and 523K  

          100  
52.94

 3.65 
2

×=COS  

   = 6.8 
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 Kinetics of FT reaction: 

• Calculation of the rate constant 

k value was calculated from equation 4-13 (section 4.4.4) and XAe was 
taken from figure 4-45 4-46 and 4-47 for the impregnated and precipitated 
catalyst.  









−−=

Ae

A

Ae X
X

X
k 1lnτ  

slopeXk Ae ×=  

 

Table E1 Calculation of the rate constant 

Sample Temperature 
(K) 

XAe (%) k 

6%Fe/SiO2 (I) 523 55 0.00055 

543 33 0.00033 

563 29 0.00029 

6%Fe/SiO2 (P) 523 46 0.00122 

543 36 0.00036 

563 32 0.00032 

  

Then E value was calculated by drawing ln k versus 1/T (Figure 4-50) 

slopeRE ×=  
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• Data of CO conversion and product selectivity for all the synthesis catalyst at 
different reaction conditions  

 

Table E2 Activity and selectivity of Fe/SiO2 catalysts with different Fe loading 
prepared by impregnation at different H2/CO ratio, 523K, 0.6L/h, and 5h 

H2/CO 
ratio 

 

Fe 
loading 
(wt %) 

CO 
conversion 

(mol %) 

CO2 
selectivity 
(mol %) 

Selectivity (%) 

C1-C4 C5+ C2=-C4= 

0.5 

3 39.47 12.06 43.66 43.54 15.19 

6 39.42 16.41 51.38 27.70 23.27 

10 23.69 15.09 66.45 19.00 18.73 

15 20.96 26.22 69.77 15.94 19.53 

1 

3 50.87 7.36 66.29 20.32 16.87 

6 47.52 9.83 65.91 6.11 28.64 

10 34.67 14.10 69.83 6.18 23.99 

15 30.53 7.97 76.15 3.29 23.86 

1.5 

3 60.29 5.97 54.38 15.84 27.40 

6 54.02 6.89 57.48 20.73 22.65 

10 48.24 3.42 70.07 14.13 18.36 

15 44.68 20.88 77.37 11.00 19.87 

2 

3 29.96 24.79 79.59 3.98 18.26 

6 50.71 5.91 80.11 4.48 15.40 

10 45.22 4.81 79.58 3.62 15.88 

15 28.85 23.67 81.31 0.92 17.21 
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Table E3 Activity and selectivity of Fe/SiO2 catalysts with different Fe loading 
prepared by precipitation method at 523K, 1.5H2/CO ratio, 3L/g-cat.h 

Fe 
loading 
(wt %) 

CO 
conversion 

(mol %) 

CO2 
selectivity 
(mol %) 

Selectivity (%) 

C1-C4 C5+ C2=-C4= 

3 47.16 6.89 70.31 11.70 18.98 

6 45.76 8.54 73.31 7.70 18.72 

10 33.31 17.12 81.51 3.91 17.36 

15 26.49 22.21 83.24 0.44 16.32 

 

Table E4 Activity and selectivity of Fe/Al2O3-SiO2 catalysts with different Fe loading 
prepared by precipitation method at 523K, 1.5H2/CO ratio, 3L/g-cat.h 

Fe 
loading 
(wt %) 

CO 
conversion 

(mol %) 

CO2 
selectivity 
(mol %) 

Selectivity (%) 

C1-C4 C5+ C2=-C4= 

3 45.96 9.45 69.40 10.80 18.40 

6 41.24 11.93 61.78 20.84 15.41 

10 34.76 13.69 85.17 4.61 14.21 

15 27.98 23.25 87.61 3.87 8.52 
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Table E5 Activity and selectivity of Fe/SiO2 catalysts by impregnation method at 
1.5H2/CO ratio and different reaction temperature and flow rate 

 

Temperature 
(K) 

 

Flow 
rate 
(L/h) 

Fe 
loading 
(wt %) 

CO 
conversion 

(mol %) 

CO2 
selectivity 
(mol %) 

Selectivity (%) 

C1-C4 C5+ C2=-C4= 

523  

0.6 6 

54.02 6.89 57.48 20.73 22.65 

543 32.95 20.52 68.82 8.54 24.31 

563 28.36 21.04 81.29 8.29 14.75 

523  

2.4 6 

47.61 9.77 65.64 14.32 20.40 

543 26.27 24.52 70.73 2.89 28.95 

563 18.71 35.70 64.44 0.56 35.56 

523  

4.8 6 

26.35 24.62 71.87 9.31 21.75 

543 13.20 26.45 72.43 0.59 26.98 

563 6.50 37.56 79.51 0.34 20.38 

 

Table E6 Activity and selectivity of Fe/SiO2 catalysts by precipitation method at 
1.5H2/CO ratio and different reaction temperature and flow rate  

 

Temperature 
(K) 

 

Flow 
rate 
(L/h) 

Fe 
loading 
(wt %) 

CO 
conversion 

(mol %) 

CO2 
selectivity 
(mol %) 

Selectivity (%) 

C1-C4 C5+ 
C2=-
C4= 

523  

0.6 6 

45.76 8.54 73.31 7.70 18.98 

543 35.61 11.89 75.68 5.85 20.41 

563 31.65 15.60 83.89 0.67 16.11 

523  

2.4 6 

29.54 13.92 77.03 3.67 20.40 

543 27.15 19.93 79.54 1.04 19.40 

563 26.69 23.86 85.83 0.31 16.92 

523  

4.8 6 

7.52 17.88 79.07 0.12 20.81 

543 6.72 22.80 82.23 0.45 17.75 

563 17.14 26.77 87.10 0.73 12.09 
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Appendix F 

 

 
Figure F1: EDX mapping of 6%Fe on SiO2 catalyst prepared by impregnation method 

(A) fresh catalyst before reaction and (B) spent catalyst after reaction 
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Figure F2: EDX mapping of 6%Fe on SiO2 catalyst prepared by precipitation method 

(A) fresh catalyst before reaction and (B) spent catalyst after reaction 
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Figure F3: EDX mapping of 6%Fe on Al2O3-SiO2 catalyst (A) fresh catalyst before 

reaction and (B) spent catalyst after reaction 
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