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ABSTRACT 

The growth in demand for extra power in rechargeable batteries has encouraged 

intense research to develop new materials with even higher capacities. The main focus 

of this work is to investigate the electrochemical characteristics of mesoporous tin 

phosphate as alternative anode host material for Li-ion batteries. Mesoporous tin 

phosphate was synthesized based on a surfactant templating method, where an anionic 

surfactant, sodium dodecyl sulfate, was used as the structure directing agent and tin 

(IV) chloride (SnCl4) as the inorganic source. The synthesized powder was 

characterized by means of thermal, X-ray diffraction (XRD), nitrogen gas sorption 

and scanning electron microscope (FE-SEM) techniques. The surfactant synthesized 

tin phosphate (SnP2O7) calcined from 200-400°C exhibited amorphous, mesoporous 

characteristics. Average pore size distribution obtained for the mesoporous SnP2O7 

was around 10-18 nm. The electrochemical behaviour of the synthesized tin 

phosphate anode was studied using a combination of electrochemical analysis from 

cyclic voltammogram and differential capacity plots. The mesoporous SnP2O7 anode 

exhibited electrochemical reactions with lithium within the potential range of 0-2 V 

vs. Li+/Li as indicated by cyclic voltammetry analysis. These reactions consist of the 

irreversible reaction to form lithium phosphate matrix phases and the reversible 

reaction of lithium insertion and extraction upon subsequent charging and 

discharging. The formation of the irreversible lithium phosphate phase leads to 

substantial losses of more than 50% in lithium ion storage capacity upon the first 

discharge cycle. The mesoporous SnP2O7 anodes performed averagely better in terms 

of delivering higher discharge capacity when compared to that of the non-mesoporos 

SnP2O7 anodes. A narrower cutoff operating voltage range within 0-1.2 V exhibited 

better galvanostatic cycling performance of the mesoporous SnP2O7 calcined at 400°C 

for 2 hours. This anode delivered a reversible discharge capacity (lithium ion storage 

capacity) of 780 mAh/g upon the second cycle and retained 134 mAh/g upon the 

fiftieth cycle. The mesoporous structure helps to absorb some volume change of the 
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tin particles during lithium alloying and de-alloying process thus improving 

cyclability.  
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ABSTRAK 

Pasaran bateri cas semula kini menyaksikan permintaan yang semakin meningkat 

dalam bateri cas semula yang dapat memberikan kuasa yang lebih tinggi. Ini telah 

menggiatkan usaha penyelidikan yang lebih intensif dalam mengenalpasti dan 

membangunkan bahan-bahan baru yang berpotensi memberikan kapasiti yang lebih 

tinggi untuk diaplikasikan dalam bateri cas semula. Thesis ini menumpu kepada 

kajian pencirian sifat elektrokimia bahan mesoporos tin phosphat sebagai alternatif  

bahan anod dalam bateri cas semula lithium-ion. Mesoporos tin phosphat disintesis 

menggunakan kaedah pencontoh surfaktan (‘surfactant templating method’) di mana 

surfaktan anionik, sodium dodecyl sulfat digunakan sebagai agen pengarah struktur 

manakala precursor inorganik yang digunakan adalah tin (IV) klorida (SnCl4). Serbuk 

yang dihasilkan dicirikan menggunakan teknik analisa termal, teknik pembelauan 

sinar-X (XRD), teknik penjerapan gas Nitrogen dan teknik imbasan elektron 

mikroskop (FESEM). Serbuk SnP2O7 yang dihasilkan dengan menggunakan surfaktan 

yang dibakar pada suhu 200-400°C mempunyai ciri-ciri amorfus dan mesoporos. 

Purata taburan saiz liang yang diperolehi dari serbuk SnP2O7 yang terhasil adalah 

sekitar 10-18 nm. Mekanisma tindakbalas elektrokimia bahan anod ini dikaji 

menggunakan kombinasi teknik analisis elektrokimia seperti kitaran voltamogram 

(cyclic voltammogram) and plot perbedaan kapasiti (yakni perubahan kapasiti dengan 

perubahan bezaupaya sel). Bahan anod mesoporos tin phosphat menunjukkan 

tindakbalas elektrokimia dengan lithium dalam julat bezaupaya 0-2V vs. Li+/Li 

berdasarkan analisis kitaran voltamogram. Tindakbalas elektrokimia ini merujuk 

kepada tindakbalas tak berbalik membentuk fasa matrik lithium phosphat dan 

tindakbalas berbalik penyisipan dan pengekstrakan ion lithium semasa proses cas dan 

discas. Pembentukan fasa tak berbalik lithium phosphat ini menyebabkan kehilangan 

kapasiti muatan ion lithium yang amat besar iaitu lebih 50%, semasa proses discas 

dalam kitaran pertama. Julat operasi bezaupaya yang lebih kecil sekitar 0-1.2V dapat 

memberikan prestasi kitaran galvanostatik yang lebih baik bagi bahan mesoporos tin 
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phosphat yang dibakar pada suhu 400°C selama 2 jam. Bahan anod ini berupaya 

menghasilkan kapasiti discas (kapasiti muatan ion lithium) berbalik sebanyak 780 

mAh/g pada kitaran yang kedua dan mampu mengekalkan kapasiti sebanyak 134 

mAh/g pada kitaran ke-limapuluh. Struktur mesoporos ini didapati berupaya 

mengurangkan kesan perubahan isipadu partikel-partikel tin ketika proses berbalik 

pengaloian dan nyah-aloi justeru meningkat prestasi cas semula bahan anod ini. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xi 
 

COPYRIGHT 

 
In compliance with the terms of the Copyright Act 1987 and the IP Policy of the 

university, the copyright of this thesis has been reassigned by the author to the legal 
entity of the university, 

Institute of Technology PETRONAS Sdn Bhd. 
 

Due acknowledgement shall always be made of the use of any material contained 
in, or derived from, this thesis. 

 
          © Siti Munirah Hasanaly, 2010 

Institute of Technology PETRONAS Sdn Bhd  
All rights reserved. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 
 

TABLE OF CONTENTS 

 

DECLARATION OF THESIS……………………………………………………….. 

ACKNOWLEDGEMENTS……………………………………………………………. 

DEDICATION…………………………………………………………………………. 

ABSTRACT……………………………………………………………………………. 

ABSTRAK…………………………………………………………………………… 

COPYRIGHT …………………………………………………………………………. 

TABLE OF CONTENTS………………………………………………………………. 

LIST OF TABLES…………………………………………………………………… 

LIST OF FIGURES………………………………………………………………….... 

 

Chapter  

1. INTRODUCTION……………………………………………………………. 

1.1.  Age of Electricity……………………………………………………..... 

1.2.  Battery………………………………………………………………… 

1.3.  Types of Battery……………………………………………………… 

1.4.  Rechargeable Battery………………………………………………… 

1.5.  The Lithium-Ion Battery……………………………………………… 

1.6.  Research Motivation…………………………………………………… 

1.7.  Organization of Thesis……………………………………………….… 

 

2.   LITERATURE REVIEW……………………………………………………. 

 2.1.  Historical Development of Lithium-Ion Battery……………………… 

 2.2. Reaction Mechanism of Rechargeable Lithium-Ion Battery…………… 

 2.3.  Characteristics of Electrode Materials………………………………… 

 2.4.  Anode Material for Lithium-Ion Cells………………………………… 

  2.4.1.  Graphite………………………………………………………… 

  2.4.2.  Lithium Alloys………………………………………………… 

  2.4.3.  Tin Composite Oxide………………………………………… 

  2.4.4. Tin-Based Intermetallics……………………………………… 

  2.4.5. Tin Phosphate………………………………………………… 

 2.5. Potential of Mesoporous Tin Phosphate as Anode Material for 

  Lithium-Ion Battery……………………………………………………. 

1 

1 

2 

3 

3 

4 

6 

8 

10 

10 

12 

15 

16 

16 

19 

22 

24 

27 

 

iv 

v 

vi 

vii 

ix 

xi 

xii 

xv 

xvi 

29 



xiii 
 

3.   METHOD OF INVESTIGATION……………………………………………… 

 3.1.  Overview…………………………………………………………….. 

 3.2.  Materials and Chemicals…………………………………………….… 

 3.3.  Synthesis of Mesoporous Tin Phosphate by Sodium Dodecyl 

  Sulfate Templating Method…………………………………………… 

 3.4.  Methods of Characterization…………………………………………… 

  3.4.1.  Thermal Analysis……………………………………………… 

  3.4.2.  Powder X-Ray Diffraction…………………………………… 

  3.4.3.  Field-Emission Scanning Electron Microscope……………… 

  3.4.4.  Physisorption Study……………………………………………. 

  3.4.5.  Fourier Transform Infrared Spectroscopy……………………… 

 3.5.  Electrode Fabrication and Cell Assembly……………………………... 

 3.6. Electrochemical Performance Assessment……………………………. 

  3.6.1.  Cyclic Voltammetry…………………………………………… 

  3.6.2.  Galvanostatic Charge-Discharge Tests………………………… 

 

4. STRUCTURAL AND MORPHOLOGICAL CHARACTERIZATION OF TIN 

PHOSPHATE………………………………………………….............................           

 4.1.  Overview …………………………………………………………….. 

4.2 Synthesis of Mesoporous Tin Phosphate…………………………….. 

 4.3.  Thermal Analysis on Tin Phosphate………………………………….. 

 4.4.  X-Ray Powder Diffraction Analysis on Tin Phosphate………………. 

 4.5.  Physisorption Studies Based on Nitrogen Sorption Isotherm…………. 

 4.6.  FESEM Analysis on Tin Phosphate……………………………………. 

 4.7.  Summary……………………………………………………………….. 

 

5. ELECTROCHEMICAL PERFORMANCE OF MESOPOROUS TIN   

PHOSPHATE AS ANODE MATERIAL…………………………....................        

 5.1.  Overview………………………………………………………………. 

5.2. Cyclic Voltammetry Analysis on Mesoporous and Non- 

Mesoporous Tin Phosphate Electrode……………………………..... 

5.3.  Voltage Profile on Initial Charge and Discharge Cycle of 

Mesoporous and Non-Mesoporous Tin Phosphate Anode………….. 

5.4.  Ex-Situ Analysis of Mesoporous Tin Phosphate Anode Using 

Infrared Technique………………………………………………….. 

5.5.  Comparison on Cycling Behavior between Mesoporous and     Non-

Mesoporous Tin Phosphate Anodes……………………….............. 

5.6.  Ex-Situ FESEM Analysis on Cycled Mesoporous and Non-

Mesoporous Tin Phosphate Anodes……………………………........ 

 

 

 

48 

48 

48 

50 

54 

60 

68 

72 

73 

73 

 

75 

 

81 

 

88 

 

93 

 

100 

32 

32 

33 

 

34 

36 

36 

36 

38 

40 

42 
43 

45 

45 

46 



xiv 
 

5.7.  Effects of Voltage Cutoff on Charge-Discharge Performance of 

Mesoporous Tin Phosphate Anode………………………………… 

 5.8.  Cycling Profile of Mesoporous Tin Phosphate Anode…………….. 

 5.9.  Summary…………………………………………………………… 

 

6. STRUCTURAL INFLUENCE OF MESOPOROUS TIN PHOSPHATE 

ON ITS ELECTROCHEMICAL PROPERTIES………………………… 

6.1. Overview………………………………………………………….. 

6.2. Crystallographic Features and the Electrochemical Properties of 

Tin Phosphate………………………………………………………. 

6.3. Mesoporous Morphology and the Electrochemical Properties of 

Tin Phosphate……………………………………………………… 

6.4. Summary…………………………………………………………… 

 

7.   CONCLUSION…………………………………………………………...... 

 7.1.  Review of Study……………………………………………………. 

 7.2.  Suggestions for Future Studies…………………………………….. 

 

REFERENCES…………………………………………………………………….. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

113 

113 

 

114 

 

116 

120 

125 

121 

121 

124 

103 

110 

112 



xv 
 

LIST OF TABLES 

 

Table 2.1: Theoretical capacities for selected lithium alloy and graphite…........ 20 

Table 3.1: 

Table 4.1: 

Materials and chemicals used……………………………………….. 

BET surface areas of synthesized SnP2O7 powders………………… 

33 

64 

Table 4.2: Structural properties of SDS synthesized SnP2O7 calcined at 
different temperature……………………………………………....... 

 
59 

Table 5.1: Initial charge discharge capacity of SnP2O7 anodes cycled between
0.0-2.0 V……………………………………………………………... 

 

81 

Table 5.2: Discharge and charge capacities for MP200, MP300, MP400, 
MP4004 anodes………………………………………………………. 

 
94 

Table 5.3: Discharge and charge capacities for MP500, TP500 and graphite 
anodes…………………………………………………………………

 

95 



xvi 
 

LIST OF FIGURES 

 

Figure 1.1: Energy storage performance of different battery chemistries………… 5 

Figure 2.1: Schematic representation of a lithium-ion cell in charging mode…….. 14 

Figure 2.2: Schematic representation of a lithium-ion cell in discharging mode…. 14 

Figure 2.3: Structure of graphite…………………………………………………. 16 

Figure 2.4: The in-plane structure of LiC6……………………………………………………………. 17 

Figure 3.1: Flowchart on research phase and experimental techniques applied…. 32 

Figure 3.2: Flowchart on the synthesis of mesoporous SnP2O7 by surfactant 
templating method…………………………………………………… 

 
35 

Figure 3.3: Schematic representation of Bragg’s law……………………………. 37 

Figure 3.4: Schematic diagram of a three-electrode configuration 
electrochemical test cell……………………………………………… 

 
41 

Figure 3.5: Schematic diagram of a two-electrode configuration electrochemical 
test cell…….......................................................................................... 

 

41 
Figure 3.6: (a) WonATech WBCS Battery Cycler equipment  (b) Two-electrode 

electrochemical cell being connected to the battery cycler equipment 
 

47 

Figure 4.1: TG-DTA curves for tin phosphate…………………………………… 51 

Figure 4.2: TG-DTA curves for surfactant synthesized tin phosphate…………... 52 

Figure 4.3: XRD pattern for tin phosphate synthesized without SDS surfactant  
(a) 2θ = 1-10° and (b) 2θ = 10-80°………………..…………………. 

 
55 

Figure 4.4: XRD pattern of tin phosphate synthesized with SDS surfactant (a) 2θ 
= 1-10° and (b) 2θ = 10-80°…………………………………………. 57 

Figure 4.5: XRD pattern of mesostructured tin phosphate calcined at 400°C for 
2h and 4h…………………………………………………………….. 

 

59 

Figure 4.6: Nitrogen adsorption/desorption isotherms for SDS synthesized 
SnP2O7 calcined for 2hr at (a) 200°C; (b) 300°C; (c) 400°C (d) 
400°C for 4h and (e) 500°C…………….……………………………. 

 

61 

Figure 4.7: Nitrogen adsorption/desorption isotherms for non-SDSsynthesized 
SnP2O7 calcined at (a) 200°C; (b) 300°C; (c) 400°C and (d) 500°C… 63 



xvii 
 

Figure 4.8: Pore size distribution of mesoporous SnP2O7 calcined for 2h at 
200, 300 and 400°C and for 4 h at 400°C………………………….. 

  

66

Figure 4.9: FESEM images of  SDS synthesized SnP2O7 calcined at (a) 200°C 
for 2 hr, (b) 300°C for 2 hr, (c) 400°C for 2 hr and (d) 400°C for 4 
hr and (e) 500°C for 2 hr…………………………………………… 

 
 

69

Figure 4.10: FESEM images of non-SDS synthesized SnP2O7 calcined at (a) 
200°C for 2 hr, (b) 300°C for 2 hr, (c) 400°C for 2 hr and (d) 
500°C for 2 hr..................................................................................... 71

Figure 5.1: Cyclic voltammograms of mesoporous SnP2O7 calcined at; (a) 
200°C for 2 hr (MP200), (b) 300°C for 2 hr (MP300), (c) 400°C for 
2 hr (MP400) and (d) 400°C for 4 hr (MP4004)…………………… 77

Figure 5.2: Cyclic voltammograms of (a) SDS synthesized SnP2O7 calcined at 
500°C for 2 hr (MP500) and (b) non-SDS synthesized SnP2O7 
calcined at 500°C (TP500)……………………………………..…... 

  
 

80

Figure 5.3: First cycle data on charge discharge curve and differential capacity 
plot for mesoporous SnP2O7 anodes, MP200, MP300, MP400 and 
MP4004.............................................................................................. 83

Figure 5.4: First cycle data on charge discharge curve and differential capacity 
plot for non-mesoporous SnP2O7 anodes, MP500 and TP500…....... 85

Figure 5.5: FTIR spectra of (a) pristine MP400 anode, (b) MP400 discharged 
to 1.1 V, (c) MP400 discharge to 0 V and (d) MP400 charged to 
2.0 V………………………………………………………………... 90

Figure 5.6: Discharge capacity of mesoporous SnP2O7 anodes (MP200, 
MP300, MP400 and MP4004), non-mesoporous SnP2O7 anodes 
(MP500 and TP500) and graphite anode…...................................... 93

Figure 5.7: FESEM images of MP400 anode (a) before cycling, (b) after 1 
cycle and (c) after 10 cycles………………………………………. 101

Figure 5.8: FESEM images of TP500 anode (a) before cycling, (b) after 1 
cycle and (c) after 10 cycles………………………………………. 101

Figure 5.9: Voltage profile for MP400 cycled between (a) 0-1.2 V, (b) 0-1.6 
V and (c) 0-2.0 V………………………………………………….. 105

Figure 5.10: Discharge capacity vs. cycle number of MP400 anode cycled 
between 0-1.2 V, 0-1.6 V and 0-2.0 V. R10/2 denotes the capacity 
retention index…………………………………………………….. 

  
 

106
 

 

 

 

 



xviii 
 

Figure 5.11: Differential capacity plots of MP400 cycled within specified voltage 
range; (a) 2nd cycle (0-1.2V), (a’) 10th cycle (0-1.2V), (b) 2nd cycle 
(0-1.6V), (b’) 10th cycle (0-1.6V) and (c) 2nd cycle (0-2.0V) and (c’) 
10th cycle (0-2.0V)………………………………………………… 108

Figure 5.12: Charge-discharge capacity and Coulombic efficiency versus cycle 
number for MP400 cycled within 0-1.2 V…………………………. 105

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

CHAPTER 1 

INTRODUCTION 

1.1      Age of Electricity 

Energy is a key component of human society. The search for energy sources to 

provide comfort and smooth life style has taken place since the beginning of 

civilization. Global environmental concern over the reliance of fossil fuel has aroused 

a worldwide search for more efficient, pollution-free, economically viable and 

sustainable sources of energy. Electricity is a popular source of energy as it is clean, 

safe and convenient to use.  The present age is often called the Age of Electricity 

because humanity has become dependent on electricity, a product that made 

technological advancements possible. The need for mobility has resulted in the advent 

of mobile technology in electric powered consumer devices such as mobile phones, 

laptops, camcorders etc. Since portable consumer electronic devices have been 

introduced into the market, they have continued to grow more important and 

indispensable from everyday human lives as we step into the new and modern age. 

Mobile electronic devices from mobile phones and laptops to wearable or implanted 

medical devices have already become or will soon become a necessity in people’s 

lives. The increasing interest and dependency of the modern society on mobile 

electronic devices has generated the need for portable energy storage. Portable 

electrochemical energy storage systems include batteries, fuel cells and 

electrochemical capacitors. Battery is a popular choice of portable energy storage 

system to supply power to the components in the mobile device to operate. Almost all 

portable electronic gadgets today contain a battery. 
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1.2      Battery 

When a chemical reaction is caused by an external voltage or if a voltage is caused by 

a chemical reaction, it is called an electrochemical reaction. A battery is defined as a 

self–supporting energy storage medium that store chemical energy contained in its 

active materials (positive and negative electrodes) and on demand, converts it directly 

into electrical energy to power an intended device [1]. A battery is composed of one 

or several electrochemical cells that are connected in series and/or in parallel to 

provide the required voltage and capacity, respectively [2].  

The electrochemical cell is the working chemical unit inside a battery. Each cell 

consists of a positive electrode and a negative electrode, separated by an electrolyte 

solution containing dissociated salts which enable ion transfer between the two 

electrodes [2]. The battery functions by providing separate pathways for electrons and 

ions to move between the site of oxidation and the site of reduction. The electrons 

pass through the external circuit where they can provide work such as powering a 

portable device. The ions, on the other hand, pass though the ionically conducting and 

electronically insulating electrolyte that lies between the two electrodes inside the 

battery. The ionic current is separated from the electronic current. When a battery is in 

use or discharged, an electrochemical oxidation reaction takes place at the negative 

electrode (anode) where ions and electrons are generated. Electrons travel through the 

external circuit while ions flow through the electrolyte to the positive electrode 

(cathode). A simultaneous electrochemical reduction reaction proceeds at the cathode 

where electrons are accepted from the external circuit, thereby completing the 

electrical circuit. The amount of ionic charge carried through the electrolyte is the 

same as the electronic charge carried through the external circuit. 
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1.3       Types of Battery 

Batteries can be classified into three general classes: primary, secondary and specialty 

batteries. Primary battery generates electrical energy from chemical reaction until 

exhausted. It is designed to be used once and discarded. Primary batteries are often 

called disposable batteries. Discharge is the process of a battery during operation and 

primary batteries are assembled in the charged state [1]. Common types of primary 

batteries include zinc-carbon batteries and alkaline batteries. Secondary battery, also 

known as rechargeable battery is discharged during operation and could be restored to 

its original condition by applying an electric current which reverses the chemical 

reactions that occur during discharge [1]. Devices to supply the appropriate current 

are called chargers or rechargers. Secondary batteries are usually assembled in the 

discharged state; they have to be charged first before they can undergo discharge in a 

secondary process [1]. Examples of rechargeable batteries are lead acid batteries, 

nickel cadmium batteries, nickel-metal hydrides batteries and lithium-ion batteries. 

Specialty battery is a primary battery that is designed to fulfil a specific purpose. 

These batteries are mainly for military and medical applications that have limited and 

specified market production [1]. 

1.4      Rechargeable Battery 

Every year billions of batteries are produced and sold worldwide. Many are alkaline 

batteries which are discarded after single use. Ongoing research and advances in 

battery technology have steadily replaced single use alkaline batteries with higher 

capacity and environmentally friendly rechargeable batteries that last far longer and 

can be used hundreds of times. The rapid outbreak of technology in consumer 

electronics has been paralleled by achievements in energy storage devices. The 

increasing demand for portable devices such as laptops, mobile phones, audio digital 

players (e.g. MP3, iPods) and cordless power tools has boosted the sales of 

rechargeable batteries in recent years.  
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The concept of rechargeable battery has been around since 1859 when French 

physicist Gaston Plante invented the lead acid cell which was the world’s first 

rechargeable battery [3]. The same chemistry is still used in today’s car battery.  

Different types of rechargeable batteries utilise different chemistry systems to store 

electricity. The nickel cadmium (Ni-Cd) battery uses nickel oxide hydroxide and 

metallic cadmium as electrodes [3]. This battery was banned for most uses by 

European Union in 2004 as cadmium is a toxic element. These batteries have been 

almost completely superseded by nickel-metal hydride (Ni-MH) batteries. The Ni-MH 

battery uses hydrogen-absorbing alloy and nickel oxide hydroxide as electrodes and 

has two to three times the capacity of an equivalent size nickel cadmium battery [3]. 

The lithium-ion (Li-ion) battery uses graphite and a layered oxide material such as 

lithium cobalt oxide as electrodes. The energy is stored in these batteries through the 

movement of lithium ions [3].  

1.5      The Lithium-Ion Battery 

When Li-ion batteries were introduced into the market in 1991 by Sony Corporation, 

it represented a revolution in the power source industry. Sony developed a carbon 

anode that is capable of reversibly intercalating and de-intercalating lithium ions and 

paired it with a high voltage positive electrode material using lithiated cobalt oxide. A 

comparison on energy density characteristics showed that Li-ion batteries outperform 

other competing rechargeable battery systems, as observed in Figure 1 [4]. Lithium 

polymer batteries are technologically improved version of the Li-ion battery where 

the lithium salt electrolyte is being held by a polymer membrane instead of an organic 

solvent. Lithium polymer battery is more flexible and robust to physical damage. 

Energy density is a characteristic parameter of a battery indicating the amount of 

electrical energy stored per unit weight or volume [4]. Weight based energy density is 

often called specific energy or gravimetric energy density [1]. Volume based energy 

density is often called energy density or volumetric energy density [1]. The energy 

density is typically expressed as watt-hour/kilogram (W h kg-1) or watt-hour/liter (W 

h l-1).  
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The Li-ion battery has several advantages over the Ni-Cd and Ni-MH batteries. A 

Li-ion battery can store more than twice the energy compared with other conventional 

rechargeable batteries of the same size and weight. The Li-ion battery provides a 

higher average potential of 3.6 V which is almost three times than that of NiCd and 

NiMH batteries and delivers twice higher capacity compared to that of Ni-Cd and Ni-

Mh batteries. The Li-ion batteries have no memory effect which means that they do 

not have to completely be discharged before recharging as with other rechargeable 

batteries. Self-discharge refers to the loss of charge when a battery is not in use. A 

lithium-ion battery have a low self-discharge rate of approximately 5% per month 

compared to a 20% per month and 30% per month in NiCd batteries and NiMH 

batteries, respectively [3].  

 

 

 

 

 

 

 

 

 

 

 

 

 

A market research carried out by SBI Reports reported that rechargeable batteries 

are a continuing strong market, with worldwide sales of USD $36 billion in 2008 [5]. 

The rechargeable battery market will rise to USD $51 billion by 2013. Whether it is a 

Figure 1.1: Energy storage performance of different battery chemistries 
(adapted from [4]). 
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battery for the latest laptop, energy storage for a hybrid electric vehicle, or backup 

power for a remote telecommunications site, everyone wants a battery that has the 

highest energy density, best safety factor, and longest life in term of discharge cycles 

and ease of maintenance while still being environmentally friendly. These are the 

drivers behind rechargeable battery research around the world today. Lithium-ion is 

the battery chemistry of choice for future generations of portable electronics and 

hybrid and plug-in hybrid electric vehicles. In 2008, lithium-ion battery research had 

more funding than all other battery technologies combined [5]. Nanotechnology and 

chemistry advances in electrode design are the key research topics that companies are 

using to push lithium-ion to be the dominant energy storage technology in the future. 

The portable rechargeable battery market, of which lithium-ion has a 75% share, is 

the fastest growing segment of the rechargeable battery market, showing world 

market growth of 20% in 2008 [5]. Nickel-cadmium (Ni-Cd) batteries are still 

important for power tools and back-up systems but will decline rapidly in market 

share by 2013 due to stricter environmental controls on cadmium [5].  

1.6      Research Motivation 

Despite the huge success in mass production of millions of Li-ion battery, this battery 

technology still has a long way to go. As improvements continue to progress in the 

communication and consumer electronics sector together with the emerging hybrid 

vehicle technology, Li-ion batteries are expected to evolve in order to meet the 

ongoing market innovations. Many on-going research activities are focussed on the 

development of electrode materials that could enhance the performance of Li-ion 

batteries. 

The specific capacity (quoted in mAh/g) of cathode material is often lower than 

anode material. Batteries of increased capacity can be designed by using the high 

capacity anode material to accommodate more of the low capacity cathode material. 

The graphite anodes that are currently employed in the commercial Li-ion batteries 

will soon be unable to meet the ever-increasing capacity requirements of innovative 
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portable electronic devices due to its restricted theoretical capacity of 372 mAh/g. 

New host materials with even higher lithium ion storage capacity than graphite need 

to be developed.  One possible candidate as anode material is the tin-based materials 

with a high theoretical capacity of 993 mAh/g and low potential of lithium insertion 

of less than 1 V [6]. Unfortunately, efforts to commercialize them have been hindered 

by severe volume change in lithium ion insertion and extraction reactions that occur 

during charging and discharging. The mechanical stress induced by the volume 

change causes the disintegration of the anode material and loss of material cyclability 

[6]. Several approaches have been developed by researchers to resolve the effects of 

volume changes of tin based materials during cycling such as by reducing the particle 

size of the active tin particles as well as using intermetallic multiphase alloys and 

mixed-conductor composite materials [6]. 

This research work employs a mesoporous, active-inactive tin based material 

concept to compensate the detrimental effect of volume changes experienced by the 

active tin material during repeated charge-discharge cycles. A mesoporous tin 

phosphate was synthesized and its electrochemical reaction with lithium was studied 

in this work. Tin phosphate has been reported to be able to reversibly insert and 

extract lithium ions within its structure [7]. Phosphate serves as an inactive matrix that 

supports and holds the lithium-tin regions together with minimal volume change [7]. 

Mesoporous materials have been widely investigated for their potential application as 

catalysts, electrical insulators and optics. Their application as electrode materials in 

Li-ion battery is not widely studied. It is postulated that a mesoporous anode may 

further reduce the extent of electrode disintegration by alleviating the volume 

expansion caused during cycling. Hence, mesoporous tin phosphate anode may offer 

benefits of a more stable cycling performance. The objective of this work is to assess 

the electrochemical behaviour of mesoporous tin phosphate upon reaction with 

lithium and deliberate on its potential application as anode material for lithium-ion 

batteries. 
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1.7      Organisation of Thesis 

This thesis presents findings based on experimental work carried out on the 

laboratorial synthesized mesoporous tin phosphate. This thesis has been sectioned into 

several chapters, starting with Introduction and coherently followed by chapters 

detailing on the research methodology and results obtained. Brief descriptions on the 

subsequent chapters are as follows;  

Chapter Two contains a brief background on rechargeable lithium ion battery 

science, comprehensive literature review based on researches carried out on 

alternative anode materials from tin based materials to provide new insights to 

investigate the potential of mesoporous tin phosphate as the next generation of anode 

material for Li-ion battery. 

Chapter Three provides explanation on the experimental methodology used in this 

work. Synthesis of mesoporous tin phosphate was carried out using an anionic 

surfactant, sodium dodecyl sulphate whereas the non-mesoporous tin phosphate was 

synthesized without the presence of the surfactant. Characterization tools that were 

used to analyze the physical and electrochemical properties of the synthesized tin 

phosphate are elaborated here. 

In Chapter Four, the physical and morphological characterization results of the 

synthesized tin phosphate are discussed extensively. The mesostructured 

characteristics of the tin phosphate synthesized in the presence of the surfactant was 

indicated by means of powder X-Ray Diffraction (XRD) and physisorption technique. 

The particle surface morphologies of the mesoporous and non-mesoporous tin 

phosphate was examined using Field Emission Scanning Electron Microscope 

(FESEM).  

In Chapter Five, the electrochemical performance of the mesoporous and non-

mesoporous tin phosphate was analyzed by means of cyclic voltammetry and charge-

discharge measurements. The electrochemical mechanism entailing the irreversible 

and reversible reaction was further discussed using various analysis perspective based 
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on the electrochemical performance data. Ex-situ analysis using infrared 

spectroscopic and microscopic techniques were carried out on cycled anode to 

determine the after effects of the electrochemical redox reaction with lithium. 

Chapter Six summarizes and concludes the findings of this research together with 

some suggestions for future work in this research subject. 
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CHAPTER 2 

REVIEW OF LITERATURE 

2.1 Historical Development of Lithium-Ion Battery 

The first concept of rechargeable Lithium battery, developed based on the insertion 

compound chemistry was proposed by Whittingham in 1970s where an insertion 

material (titanium sulphide) was used as the lithium-ion accepting cathode material, 

metallic lithium metal as the negative material and lithium perchlorate in dioxolane as 

the electrolyte [8]. The electrode materials could host lithium ions inside its structure 

and at the same time reduce transitional metals from their higher oxidation state. This 

electrochemical reaction would occur reversibly without major phase changes. 

However, this system was undermined by safety issues associated with dendritic 

lithium formation during charging and discharging cycles which can cause short 

circuits and explosion hazards. Two research approaches were taken to overcome the 

safety concerns in handling lithium metal in rechargeable lithium batteries. The first is 

to replace the lithium metal negative electrode with an electrode made of lithium 

insertion compound. A second approach was to use conducting polymers instead of 

organic liquids as electrolytes. Conducting polymers do not react with metallic 

lithium as organic liquid so the safety issues could be eliminated. 

In 1976, Besenhard and Fritz studied the reversible electrochemical intercalation 

of lithium into graphite and established that graphite can intercalate one lithium atom 

for every six carbon atoms [9]. In 1980, Lazzari and Scrosati proposed the rocking 

chair concept which describes the use of two insertion compounds based on lithium 

tungsten oxide and lithium titanium sulphide [10]. The lithium insertion compounds 

are capable of acting as host solid for reversible insertion of lithium guest ions. The 

rocking chair battery functioned on the principle of simultaneous lithium- 
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ion insertion and extraction in both electrodes. During discharge, lithium ions are 

removed from the host anode insertion compound and are inserted into the host 

cathode insertion compound. Upon reversing the current flow where the charging 

process occurs, the reverse reaction takes place. The charge-discharge process 

involves the cyclic transfer of lithium ions (similar to rocking) from the anode to the 

cathode and vice-versa. This system was much safer as lithium is utilised in its ionic 

state rather than in metallic state. However, this cell was only working at an average 

voltage of 1.8 V. In 1983, Basu investigated the performance of lithium intercalated 

graphite (LiC6) anode in an electrolyte containing lithium hexafluoroarsenate 

(LiAsF6) dissolved in dioxolane [10]. The graphite was pre-lithiated before cell 

assembly and the cathode material, niobium selenide (NbSe3) did not contain lithium 

ions at the initial state.  

Goodenough et al. discovered lithium ions could be reversibly inserted and 

extracted from a layered lithium cobalt oxide (LiCoO2) in 1980 [6] at a higher 

working potential of 4.2 V versus metallic lithium. Capitalizing on earlier findings on 

the reversible lithium ion intercalation and de-intercalation process in carbonaceous 

material and on reversible lithiation and de-lithiation of lithium cobalt oxide, Tazawa 

and Nagaura published their work describing the creation of the C/LiCoO2 rocking 

chair cell, its construction and performance which was shortly followed by 

commercialization of the first Li-ion battery by Sony Corporation in June 1991 [12]. 

Researches on electrolyte have led to the concept of solid polymer electrolyte 

which involves the use of a polymer matrix swollen with liquid solvent and lithium 

based salt [13], [14]. Combining the technology of liquid Li-ion batteries and the 

manufacturing advantages presented by the polymer technology, Bellcore researchers 

introduced polymeric electrolytes in a liquid Li-ion battery system [15], which is 

known as polymer Li-ion battery. This technology involves the usage of a copolymer 

of vinylidene difluoride with hexafluoropropylene (PVdF-HFP) binder bonded to the 

electrodes. These types of batteries which has been commercialize in 1999, offer 
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shape versatility, flexibility, lightness and present many advantages in the electronic 

miniaturization technology trend. 

2.2 Reaction Mechanism of Rechargeable Lithium-Ion Battery 

The working principle of rechargeable lithium ion (Li-ion) batteries is based on an 

electrochemical reaction referred to as electro-insertion reaction. This electro-

insertion reaction is basically a host/guest solid state redox reaction involving 

electrochemical charge transfer coupled with insertion of mobile guest ions into the 

host material without major structural changes. A common convention in the literature 

of Li-ion battery is that intercalation is regarded as a special case of insertion. The 

term intercalation implies the restricting condition that a layered host takes up guests 

within its interlayer gaps which may result in a volume change perpendicular to the 

layers, but which causes no other structural changes [6]. Any other lithium storage 

process in materials without significant layered structure is considered as insertion 

process. 

A basic Li-ion cell consists of a positive electrode (cathode) composed of a 

lithium ion source material, lithium cobalt oxide (LiCoO2) and a negative electrode 

(anode) from graphite. The two electrodes are separated by a porous film soaked in 

lithium hexafluorophosphate (LiPF6) dissolved in dimethyl carbonate (DMC) and 

ethylene carbonate (EC). The guest ions are lithium ions (Li+) and the host solid is 

graphite (usually denoted as C6). As illustrated in Figure 2.1, during charging under 

applied voltage, Li+ are extracted from LiCoO2 cathode into the electrolyte and 

simultaneously an equivalent amount of Li+ from the electrolyte are intercalated 

between the carbon layers in the graphite anode. Electrons are driven out through the 

external circuit to the anode. The cathode compensates the removal of lithium by the 

oxidation of the transition metal present in the lattice (Co+3 → Co+4). The chemical 

reaction at this electrode is given below: 

 ������  �  ��	
����� � 
���  � 
�
               (2.1) 



 

 

13 
 

The intercalated Li+ will recombine with the electrons resulting in reduction of the 

graphite, which is represented by the chemical equation below; 

�� �  
��� �  
�
  �  �����                        (2.2) 

Upon discharging as shown in Figure 2.2, the reverse process takes place where 

Li+ are moved out of the graphite, through the electrolyte and back to the cathode 

where cobalt is subsequently reduced and LiCoO2 is reformed, while electrons flow 

from anode to cathode powering the external circuit. The Li+ are transferred back and 

forth between anode and cathode through the electrolyte during the charging 

(reduction) and discharging (oxidation) processes. One electrode intercalates Li+ 

while the other de-intercalates Li+ at the same time. Accordingly, the cells have been 

termed as rocking-chair batteries. 
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Figure 2.2: Schematic representation of a lithium-ion cell in discharging mode. 
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Figure 2.1: Schematic representation of a lithium-ion cell in charging mode. 
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2.3 Characteristics of Electrode Materials 

The strategy of using lithium insertion compounds as electrode materials in Li-ion 

battery should satisfy several important criteria in order for them to deliver high 

performance. A lithium insertion compound should be able to allow a large amount of 

lithium ion insertion/extraction to take place in order to maximise the cell capacity, 

have good electronic and ionic conductivity, and stable chemical and structural 

stabilities [6]. Good electronic and ionic conductivity properties could minimize 

polarization losses during the charging and discharging process and thereby support a 

high current and power density. The reversible Li+ insertion and extraction reaction 

should have no or minimal changes to the host structure in order to provide a longer 

cycle life for the cell. From a commercial point of view, the insertion compounds 

should be inexpensive, environmentally safe and lightweight. 

The main difference between the anode and cathode insertion hosts is that the 

anode should have a low lithium chemical potential in order to maximise the cell 

voltage.  Careful selection of cathode and anode pairs is required to maintain an 

acceptable cell voltage of at least 3 V [6]. The anode and cathode insertion hosts 

should have the lowest and highest voltages versus metallic lithium, respectively in 

order to maximise the cell voltage. Lithium insertion compound such as lithium cobalt 

oxide (LiCoO2), lithium manganese oxide (LiMn2O4) and lithium nickel oxide 

(LiNiO2) make attractive cathode materials as they have high electrode potential of 4 

V [6]. Lightweight carbonaceous materials such as graphite and coke have lower 

electrode potential of less than 1 V versus lithium which made them attractive anode 

material [6].  



 

 

2.4 Anode Materials for Lithium Ion Cells

2.4.1 Graphite 

Lithium can be intercalated into carbonaceous materials. Graphite with a high degree 

of crystallinity appears to be the most desirable candidate due to the high host 

capacity (LiC6), low and flat electrode potential profile similar to that of lithium metal 

(0.01-0.02 V) [6]. Graphitic carbons basically comprise of sp

atoms which are arranged in a hexagonal network known as the graphene layer. Van 

der Waals forces provide a weak bonding between the graphene layers leading to the 

layered graphite structure [6]. Graphite has its graphene layers stacked in an ABAB 

order. The B layer is shifted by 1/3 of a unit cell along the 110 crystal direction with 

respect to the A layer (Figure 4) [16]. 
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Figure 2.3: Structure of graphite (adapted from [16]).
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The capacity of a cell is expressed as the total quantity of electricity involved in 

the electrochemical reaction and is defined in terms of Coulombs or ampere-hours. 

The ampere-hour capacity of a battery is directly associated with the quantity of 

electricity obtained from active materials. The quantity of electricity can be expressed 

as the number of moles of electrons passing through a cell. Faraday’s first law of 

electrolysis states that the mass of a  substance deposited, evolved or dissolved at an 

electrode is proportional to the quantity of electrical charge passed during electrolysis. 

The amount of electricity passing through the circuit in a given time is the number of 

moles of electrons passing through the circuit in that time and the charge, Q is related 

to the current by, 

 � � ��                   (2.3) 

One Coulomb corresponds to a current of 1 Ampere during one second. One mole of 

electrons has a charge of 96,487 Coulombs of electricity that produces one gram 

equivalent of a substance by electrolysis. In transferring one mole of electrons in an 

hour basis, the current required is, 

96487 ������� �  ��3600 !�"�#$!% 

                                  � �  26.8 (�)�*� +��* 

 

Figure 2.4: The in-plane structure of LiC6 (adapted from [16]). 
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Theoretical specific capacity of an electrode material expressed in mAh/g is given by, 

 !)�"�,�" "-)-"��. � ��./ 
01  2 1000                 (2.4) 

Where n is the number of moles of the anode material required to transfer 1 mole of 

charge and m is the molar mass (g/mol) of the anode material. During the charging 

process, the electrochemical reaction at graphite is expressed as follows: 

 6� � ��� � �
  4  ����                 (2.5) 

The above reaction showed that transferring one mole of Li+ from cathode to anode 

results in the simultaneous transfer of one mole of charge through the external circuit. 

Graphite can intercalate one lithium atom for every six carbon atoms. Therefore, the 

theoretical specific capacity of graphite can be calculated based on Equation (2.4) as 

follows:  

!)�"�,�" "-)-"��. �, 5*-)+��� � 26.8 (+
6����% 2 12.011 6 5

���7
 2 1000 

                                                                   � 372 �(+/5 

Theoretically, the intercalation of Li+ into graphite is fully reversible with a 

specific capacity of 372 mAh/g. This, however only applies to the case of a perfect 

crystal. In practical cases, graphite produced industrially does not have a perfect 

crystal structure. The capacity is also affected by irreversible reactions experienced by 

graphite during the cell’s charging and discharging process, which leads to some 

losses in capacity. The initial interaction between graphite and electrolyte during the 

first charging process causes the electrolyte to be reduced by forming a passivating 

film on the surface of the carbon particles. This film, known as the solid electrolyte 

interface (SEI) is composed of mainly lithium carbonate and lithium alkyl carbonate 

as the electrolyte solvents generally contains alkyl carbonates and highly soluble 

lithium salts [17]. The SEI film is electronically insulating and permeable to Li+ [17]. 

The formation of this film consumes lithium which is provided from the cathode and 
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electrolyte during the charging process. This reaction is irreversible and results in 

some charge loss, which is referred to as irreversible capacity [18]. Since the cathode 

is the only lithium source in the Li-ion cell, these losses are detrimental to the 

capacity of the whole cell. Another major problem of graphite anodes is that the 

intercalation of Li+ from organic solvent electrolytes proceeds together with the 

organic solvent and yields large interlayer expansion and the subsequent degradation 

of graphite structure and additional irreversible capacity [18]. 

2.4.2 Lithium Alloys  

Other possible alternative anode material that has been considered to replace the 

lithium metal in rechargeable lithium cells are lithium alloys as they are expected to 

be safer. Lithium (Li) is able to form intermetallic phases with some elements from 

the Group III, Group IV and Group V of the periodic table such as aluminium(Al), 

silicon (Si), germanium (Ge), tin (Sn), Plumbum (Pb), antimony (Sb) and bismuth 

(Bi), at room temperature if the metal is polarized to a negative potential in a Li+ 

containing liquid organic electrolyte [6][19]. These elements show different reaction 

with Li ranging from 1.0 to 0.1 V [6]. Early work on lithium alloys were connected 

with their use in high temperature cells (~400°C), which operate in molten salt 

electrolytes. Lithium alloys were used because metallic lithium (Li) melts around 

180°C [19]. Lithium alloys were used as negative electrode in thermal battery under 

high temperature condition. Matsushita commercialised the first cell using lithium 

alloy operating at ambient temperature based on Wood’s metal (an alloy of Bi, Pb, 

Cd, Sn) in 1980s, however, the commercial success was short lived as this cell was 

found to deteriorate with increased depth of discharge [2]. The reversible reaction of 

Li with storage metal M (M= Al, Sn, Si, Pb, Sb, etc) to form lithium alloy (LixM) 

follows according to [19], 

 
��� � 
�
 �  9                    ���9                         (2.6) 
charge 

discharge 
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Table 2.1 shows the theoretical specific capacity for selected lithium storage 

metals and graphite, calculated using Equation (2.4).  The theoretical specific 

capacities of lithium alloys are higher than that of lithiated graphite as these metals 

can store and release large amount of lithium. Lithium alloys also assure high voltages 

when combined with metal oxide cathodes and do not suffer from solvent co-

intercalation issues [19].   

Despite these advantages, lithium alloys are still not utilized in commercial Li-ion 

cells because they suffer from cyclability issues. The storage metals undergo major 

changes in structure and in volume while alloying with lithium. These alloys are not 

intercalation compounds. The lithium stored in the metal host is in the ionic form and 

not in atomic form.  During the charging and discharging process, the insertion and 

removal of Li+ is accompanied by large volume changes in the host material. The 

lithium alloys, LixM are of highly ionic character and therefore they are usually brittle 

[19], [20]. Mechanical stresses induced from the volume changes, lead to the 

deterioration in mechanical stability of the anode [19], [20]. This will then cause the 

anode to crack and pulverize thus reducing the anode lifetime [19], [20]. 

 

 

 

 

Host metal properties such as particle size, shape, texture and porosity strongly 

affect the macroscopic dimensional stability during lithium alloying and de-alloying 

process [19]. Although volume changes of metal hosts upon alloying with lithium are 

in the order of several 100%, large absolute volume changes can be avoided when the 

Unlithiated metal Fully lithiated metal Capacity (mAh/g) 

Al LiAl 994 

Pb Li4.4Pb 569 

Sb Li3Sb 660 

Si Li4.4Si 4199 

Sn Li4.4Sn 993 

C, graphite LiC6 372 

Table 2.1:  Theoretical capacities for selected lithium alloy and graphite 
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size of metallic host particles is kept small [19]. The practicality of this concept was 

checked by Besenhard, Yang and Winter by employing tin anodes of different particle 

sizes which have been prepared by electroplating on copper substrates from aqueous 

solutions containing tin cations (Sn2+) [20], [21]. In the case of coarse tin particles, the 

formation of large cracks and the delamination of active material from substrate are 

much stronger and appear earlier during cycling than in the case of finer tin particles. 

The cracks allow the electrolyte to penetrate into fissures between copper current 

collector and tin deposit, where it is decomposed to electronically insulating products 

[20], [21]. Due to loss of electronic contact between particles as well as between 

particles and the current collector, lithium cannot be extracted effectively [21]. 

Consequently, the amount of active material which is accessible for lithium storage 

decreases which the leads to the eventual failure of the anode material. The magnitude 

of cracks and pulverization is lesser in finer tin particle size. Although the smaller 

particle size tin outperforms the coarse one, the cycling stability is still not sufficient 

[20], [21].  

Another approach to lessen the effects of pulverization resulting from large 

volume changes of lithium alloys during cycling was proposed by Huggins et al. [22]. 

They proposed the ‘mixed-conductor matrix’ concept where particles of the 

electrochemically active storage metal (reactant) are finely dispersed within a solid, 

electronically conducting metallic matrix. The matrix should allow rapid transport of 

electroactive species (Li+), act as a current collector and maintain the morphology 

microstructure of the dispersed reactants. The application of tin based composite 

oxide as anode material was based on this concept where the active tin is dispersed in 

the formed oxide phases which act as the inactive matrix component [23]-[26]. This 

concept was also exploited extensively on the study of tin based intermetallics anode 

material by Dahn et al. [28], [29], Tackeray et al. [30], [31], and Besenhard et al. 

[21], [32], [33].  
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2.4.3 Tin Composite Oxide 

When Sony Corporation introduced its carbon based anode in its commercial Li-ion 

batteries in 1991, research on lithium alloys was dampened. Most researchers 

concentrate their efforts into development various carbonaceous materials as anode 

material. Limitations in gravimetric and volumetric capacity of graphite based anode 

however, have resulted in search for new materials that could supplant it in the next 

generation of mobile devices that requires higher energy density. In 1997, Fuji Photo 

Film Celltec Co. announced its new patent on Li-ion technology known as the 

Stalion® Li-ion battery, which claimed to have higher energy density than 

conventional carbon anode based Li-ion battery [23]. This Stalion® Li-ion battery uses 

an amorphous tin-based composite oxide as its anode material instead of carbon. The 

tin based composite oxide active material has a basic formula represented by SnMxOy, 

where M is a group of glass-forming metallic elements whose stoichiometric number 

is equal to or more than that of tin (x ≥ 1) and is typically comprised of a mixture of 

Boron (B), Phosphorus (P) and Aluminium (Al) [24]. One typical composition is 

Sn1.0B0.56P0.40Al0.42O3.6, was prepared by mixing SnO, B2O3, SnP2O7 and Al2O3 and 

heated at 1100°C, followed by quenching to yield a yellowish transparent glass [23]. 

Following the release of the patent, Y. Idota  et al. reported the electrochemical 

behaviour of this composite by assuming Sn (II) behaves as the electrochemically 

active element for Li insertion whereas the other elements provide an 

electrochemically inactive network of -(M-O)- that expands anisotropically, allowing 

the dispersion of the Sn particles as well as Li+ diffusion [24]. This anode was 

reported to be able to deliver a reversible capacity of more than 600 mAh/g, which is 

much higher that the theoretical capacity of graphite anode which is limited to only 

372 mAh/g [24]. This has aroused new interest in the research on alloy based 

compounds as alternative anode material for Li-ion batteries based on the concept that 

electrochemical lithium insertion into an active metal centre which is embedded in a 

composite matrix or into transition metal intermetallics. 
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Few details were provided to explain the electrochemical mechanism of tin based 

oxide anode by Courtney and Dahn [25], [26]. They proposed a mechanism on the 

lithium reaction with tin oxide (SnO and SnO2) anode based on their studies using in-

situ X-ray diffraction [25], [26].  This mechanism comprise of two electrochemical 

reaction. In the first step, tin oxide reacts with Li to form an amorphous lithium oxide 

(Li2O) phase and the reduced form of metallic Sn. The newly formed Sn particles 

further react with Li to form Li-Sn alloy up to the composition of SnLi4.4 [25]. The 

simplified electrochemical reactions are represented as follows [25]; 

 :#�; �  2. ��  �   :# � .����                  (2.7) 

 
��� �  
�
 �  :#  <   ���:#   (0 ≤ x ≤ 4.4)             (2.8) 

The reversible reaction in the Sn oxide-based anodes as shown in Equation (2.8), 

involves the alloying and de-alloying of Li with very small grains of Sn, while Li2O 

phase formed during the first discharge and the other components in the glass remains 

inert during the subsequent cycles. The reaction in the first step to form the Li2O 

phase (Equation (2.7)) is irreversible and result in large irreversible loss. Despite this, 

the irreversible, amorphous Li2O phase serves as a binding medium that resists the 

cracking of the electrode induced by the large volumetric change occurring in the Sn-

Li alloys during cycling [25], [26]. Courtney and Dahn further studied the reaction of 

lithium with tin oxide composite glass [26]. The electrochemical reactions are 

represented as follows;  

 4�� � :#�=>��  � 2���� � 2:# � 1 2? =��@ �  1 2? >��A             (2.9)       

 8.8�� � 2���� � 2:# �  1 2? =��@ �  1 2? >��A   

      B 2��C.C:# �  1 2? =��@ �  1 2? >��A �  2����          (2.10)

  

The active component in this type of anode is the tin oxide whereas the other 

components act as spectators.  The spectator ions here are the glass network formers 

such as Boron (B) and Phosphorus (P), have been presumed to be inert to 
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electrochemical reaction, serving to prevent aggregation of Sn atoms during repeated 

cycles of charging and discharging [26]. This leads to improved cyclability in 

comparison to the use of pure Sn metal as the anode.  

The Stalion® battery however was never commercialized despite of its earlier 

announcement. This was most likely due to poor prolonged cycling performance and 

the large, irreversible capacity loss during the first cycle. In February 2005, Sony 

Corporation announced its first hybrid Li-ion battery dubbed as the NexelionTM 

batteries in its press release [27]. This new battery utilizes a tin-based amorphous 

material and is reported to deliver 30% increase in capacity per volume ratio 

compared to conventional Li-ion battery which uses graphite-based materials for the 

anode. The newly developed tin-based amorphous anode consists of multiple 

elements such as tin, cobalt and carbon which are mixed in nanometer level. The 

presence of several elements in the tin-based anode was claimed to be able to 

minimize the change in particle shape during charge and discharge [27].  

2.4.4 Tin-Based Intermetallics 

The concept suggested by Huggins et al. [6], [22] was applied by Dahn’s group in 

their study on iron-tin (Sn2Fe) compound as anode material [28], [29]. This concept 

involves using an intermetallic compound, MM’ where M is the active element that 

alloys with Li while M’ is the inactive element that serves as a matrix that surrounds 

the active element. The role of the inactive matrix also serves to absorb massive 

volume changes that occur within the anode upon lithiation (expansion) and 

delithiation (contraction) processes. Sn2Fe decomposed to nano-sized iron and form 

lithium-tin alloy upon reaction with lithium. The LixSn (x ≤ 4.4) alloy is surrounded 

by elemental Fe. The fine Fe atoms do not alloy with lithium but acts as inactive 

matrix and supports the intergrain electronic contact in the material. During the de-

lithiation process, Fe atoms aid Li removal by reacting with Sn to reform small grains 

of Sn2Fe. However, due to large volume expansion during reaction with Li, some Sn 

regions gradually lose connection, leading to an incomplete reformation of the starting 
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material. This compound exhibited high specific capacities of 800 mAh/g and 650 

mAh/g during the first discharge and charge cycle, respectively. However, upon long 

term cycling, significant loss of capacity was observed. 

Tackeray et al. studied the copper-tin (Cu6Sn5) intermetallic insertion compound 

[30], [31]. Their approach which is similar to the one taken by Dahn’s group [28], 

[29], which is also based on the concept as proposed by Huggins et al. [6], [22] in 

utilizing an intermetallic compound, MM’. The Cu6Sn5 hexagonal structure comprises 

of layers of tin atoms sandwiched between sheets of copper atoms [30]. Initial 

reaction of Cu6Sn5 with lithium follows according to this reaction [6]; 

 ���:#A �  10��  �   5�����:# � ��             (2.11) 

During the reaction with lithium, half of the tin atoms are displaced to form columns 

of tin, while copper and the other half of tin atoms remain spatially intact, creating 

small hexagonal channels in which lithium can be inserted to form Li2CuSn [6], [30]-

[31]. They discovered that this intermetallic compound is capable of topotactic 

lithium intercalation. This topotactic reaction is accompanied by a volume expansion 

of 61% [6], [30], [31].  Further lithiation of Li2CuSn results in the extrusion of the 

remaining copper atoms from the structure before Li4.4Sn is formed at around 0.4V 

[6]. This reaction can be represented as; 

 ��:# � 
��  �   �������	
;:# � .�   (0 ≤ x ≤ 2.4; 0 ≤ y ≤1)          (2.12) 

In principle, the Cu6Sn5 insertion intermetallic compound can exhibit high specific 

capacity without the drawback of massive volume expansion problems associated 

with alloy formation. 

Besenhard’s team also studied the ‘mixed conductor matrix’ concept as suggested 

by Huggins et al. [6], [22] by taking on a different approach in studying an all active 

multiphase compound, SnSb as anode material [21], [32], [33]. The multiphase 

compound, SnSb has two active phases which have different potentials for the onset 

of lithium alloying reaction [27]. In the initial reaction, Li is inserted into the Sb host 
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structure to form Li3Sb whereas tin is displaced from the structure [21], [32], [33].  

This can be represented by the reaction below; 

 :#:� � 3��� �  3�
  <  ��@:� � :#             (2.13) 

When a certain potential is reached, the more reactive phase will react first 

whereas the other remains ductile and can buffer the expansion of the first phase. 

Once the Li3Sb domain is completely formed, the remaining Sn particles react further 

with Li to form LixSn alloy [32]. During the Li removal (charging) process, the SnSb 

phase is restored. The good cyclability of this compound can be attributed to the fact 

that both component react sequentially where Li3Sb formation takes place at ~0.8-

0.85 V vs Li+/Li which is then followed by LixSn alloy formation at ~ 0.65-0.7 V 

[32]. Therefore, at each step of the reaction, the lithiated phase is embedded in an 

inactive matrix. It is believed that the continuous phase separation and restoration 

during cycling could to some extent counteract the aggregation of finely dispersed Sn 

to large Sn regions, which leads to an increase in volume changes [21], [32]. 

However, low voltage reaction involving formation of tin alloys result in further 

electrode expansion and loss of interparticle contact between Li3Sb and Sn causing 

irreversibility and capacity fading [33]. 
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2.4.5 Tin Phosphate 

Work on crystalline and amorphous forms of tin pyrophosphate (Sn2P2O7) by Xiao et 

al. [7] shown that the amorphous version showed better performance. Amorphous 

Sn2P2O7 was prepared by melt quenching the crystalline Sn2P2O7. The first discharge 

curve is similar to the reaction mechanism of the tin based oxide with lithium as 

discussed in the earlier section (2.4.3) by reduction of the tin phosphate to tin and 

followed by reversible Li-Sn alloying and de-alloying reactions. The reduction 

reaction in the first cycle was proposed to proceed as follows [7]; 

 3��� �  :#�>��E �  3�  �   ��@>�C �  3 2? :# � :#	 �? >�@           (2.14) 

 ��� � :#	 �? >�@ �  � �  ��>�@ �  1 2? :#              (2.15) 

It was found that P2O7
2- dissociates in PO4

3- and PO3
-  after repeated cycling based 

on investigation using Infra-red spectroscopy [7]. The tin atoms dispersed in Li3PO4 

and LiPO3 networks are hosts for further reversible Li-Sn alloying and de-alloying 

reaction. The proposed reversible alloying and dealloying reaction of Li-Sn is similar 

to the reversible reaction for tin oxide based anode material as represented in 

Equation (2.8). Xiao et al. found that the amorphous and crystalline Sn2P2O7 

delivered reversible capacities of 520 mAh/g and 400 mAh/g, respectively [7]. A 

higher potential was required for complete extraction of Li+ in crystalline Sn2P2O7 

which explains the lower capacity obtained from this polymorph.  

Wan et al. [34] reported the charge-discharge performance of amorphous tin 

phosphate (Sn2P2O7) prepared from different heat treatment temperatures of 500, 550, 

600 and 700°C and tin phosphate incorporated with manganese. It was found that tin 

phosphate synthesized from thermal decomposition of tin (II) hydrogen phosphate at 

700°C recovered a reversible capacity of around 500 mAh/g from its initial discharge 

capacity of around 1020 mAh/g. This anode suffered a 50% loss in irreversible 

capacity. The SnMn0.5PO4 prepared at 700°C exhibited initial discharge capacity of 
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635 mAh/g followed by a reversible capacity of around 470 mAh/g. This manganese 

doped tin phosphate only experienced 26% loss in irreversible capacity.    

Tirado and Vicente’s research group [35] studied the performance of an 

orthorhombic tin (II) phosphate chloride (Sn2PO4Cl) electrochemical behaviour as 

anode material. The structure of Sn2PO4Cl resembles that of SnO, difference being the 

chlorine atoms are located in the interlayer space. The product after the first discharge 

was considered a matrix of LiCl and Li3PO4 that finely disperses Sn-Li alloys. The 

presence of chlorine does not affect the reduction of tin. The phosphate group suffers 

limited volume changes on cycling. Capacity retention stabilizes after a decrease 

during the first ten cycles which is attributed to the increase in the size of tin domains. 

The reversible capacities remain close to 300 mAh/g for up to 40 cycles.  

Behm and Irvine investigated the influence of the structure and composition of 

different tin phosphates on their electrochemical performance as anode material [36]. 

The materials studied were crystalline cubic and layered SnP2O7, LiSn2(PO4)3, 

Sn2P2O7 and Sn3(PO4)2 and amorphous Sn2BPO6. The best result was obtained with a 

cubic SnP2O7 anode which showed an initial reversible capacity of more than 360 

mAh/g and the ability to retain 96% of the initial reversible capacity when cycled up 

to 50 cycles between 0.02 and 1.2 V vs. Li+/Li but when further cycled to more than 

100 cycles, capacity retention sank to 75% [36]. Capacity retention in these phosphate 

systems was found to be better for the Sn (IV) starting materials than for Sn (II) 

starting materials. This was partly explained by higher proportion of inert matrix. If 

the active tin particles are dispersed well in the inactive matrix, the aggregation of tin 

will be slowed down. The higher spectator atoms to tin ratio leads the tin atoms to be 

farther apart thus decreasing formation of tin clusters thereby improving capacity 

retention. The cubic SnP2O7 cycled better than its layered polymorph, which showed 

that the structure of the initially inserted matrix of the starting material influences the 

capacity retention [36]. Another important conclusion drawn from this study is that it 

is not necessary for the starting material to be amorphous, or if crystalline, to have 

small grain size in order to have good cyclability [36].  



 

 

29 
 

2.5 Potential of Mesoporous Tin Phosphate as Anode Material in Lithium-Ion 

Battery 

Large losses in irreversible capacity of tin oxide based anode have often been 

associated with the formation of irreversible phases such as Li2O and volume changes 

resulting from repeated reversible alloying and de-alloying of Li-Sn reactions. Despite 

these disadvantages, tin based anodes are still widely investigated because of its high 

gravimetric and volumetric capacity. Different approaches have been taken to retain 

its high capacity and relieve mechanical strain during cycling by resorting to 

modifying structure and morphology and using multi-component tin based composite 

materials [20]-[36]. 

Porous materials may be regarded as crystalline or amorphous solids which permit 

the reversible passage of molecules (gas, liquid, solid) through their structures via 

holes in their surface. Pore dimensions cover a very wide range and according to the 

International Union of Pure and Applied Chemistry (IUPAC), pores are classified into 

three main groups depending on the pore size: where pore size between 0.7 to 2 nm 

are termed micropore, those between 2 and 50 nm are termed mesopores, and those 

greater than 50 nm are termed macropores [37]. Since the discovery of M41S silicates 

by Mobil’s scientists in 1992, mesoporous material, possessing large internal surface 

area and narrow pore size distribution, have attracted considerable attention for their 

potential application as molecular sieves, catalysts, absorbents and host materials 

[38]. The mesoporous materials are mostly derived with supramolecular assemblies of 

surfactant which acted as templates of the inorganic components during synthesis.  In 

the broadest sense, a template may be defined as a central structure within which a 

network forms in such a way that removal of the template creates a filled cavity with 

morphological related to those of the template [39]. Surfactants have been shown to 

organize silica into a variety of mesoporous forms, through the mediation of 

electrostatic, hydrogen-bonding, covalent and van der Waals interactions [40]. 

Surfactants are usually organic compounds that are amphophilic in nature. 

Amphophilic means they contain both hydrophobic group (tails) and hydrophilic 

groups (heads). Therefore they are both soluble in both organic solvents and water. 
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Generally a clear homogeneous solution for surfactants in water is required to obtain 

ordered mesostructures. Surfactants can be classified as cationic, anionic and non-

ionic surfactants [39], [40].  

The surfactant templating technique in synthesizing mesostructured materials has 

been extended to metal oxides, sulfides and phosphates. Over the past decades, the 

phosphates of tetravalent metals have been extensively studied because of their 

potential application in ion exchange, proton conductors, sensors and catalysis [41]. 

Layered tin phosphates are particularly interesting because of their structural 

flexibility and they have been widely applied in ion exchange, catalysis, encapsulation 

of semiconductor particles and electrical conductivity [41]. Recently, Kim et al. 

published an exciting report on the performance of mesoporous tin phosphate as 

anode component for Li-ion battery [42]. They prepared mesoporous/crystalline tin 

phosphate composite using cetyltrimethylammonium (CTAB) surfactant and found 

that it exhibited higher reversible capacity of around 580 mAh/g [42]. They suggested 

that tin phosphate was first decomposed to an active Li4.4Sn alloy and an inactive 

amorphous lithium phosphate phase which serves as a supporting matrix [42]. The 

highlight of this report was the claim that the synthesized mesoporous/crystalline tin 

phosphate exhibited reversible pore expansion and contraction during the Li insertion 

and extraction reaction. This reversible pore change was said to be able to minimize 

volume changes effects often associated with tin based anodes [42]. 

The requirement for the starting anode material to be amorphous is hard to 

understand since different studies as cited earlier [7], [23]-[26], [28]-[36], have 

showed that even crystalline materials lose their long-range order and become 

amorphous when they are electrochemically lithiated. The most important factor 

should be that the starting material when lithiated attains a structure and composition 

that it manages to stop tin from aggregating while it still allows transport of lithium 

ions and electrons. It is important to continue efforts to understand why certain 

structures and compositions of tin phosphate anode could impart higher capacity and 

better cycling performance.  
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Phosphates of tetravalent metals were claimed to possess promising physical and 

chemical properties such as outstanding superionic interlayer conductivity, improved 

capacity as intercalation compound and noteworthy electrical conductivity of the solid 

matrix [43]. These criterions motivate efforts to research the potential of mesoporous 

tin phosphate as anode host material for Li-ion battery. The approach taken to 

improve the structural stability in order achieve satisfactory cycling performance was 

to incorporate a mesoporous framework in the tin phosphate anode to relieve 

mechanical strain during charging and discharging cycles. The lamellar structured 

mesoporous tin phosphate has not been widely studied of its electrochemical behavior 

with lithium. The lamellar, mesoporous tin phosphate in this work has been 

synthesized via an anionic surfactant (sodium dodecyl sulfate) templating method. 

This thesis deliberates on the electrochemical behavior of mesoporous tin (IV) 

phosphate upon reaction with lithium.  
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CHAPTER 3 

METHOD OF INVESTIGATION 

3.1 Overview 

The methodology of this study systematically covers four research phases as 

described by the flowchart shown in Figure 3.1.  

Figure 3.1: Flowchart on research phase and experimental techniques applied. 

Phase 1 

Synthesis of Tin Phosphate 

Phase 2 

Morphological and 
Structural Characterizations 

Phase 3 

Electrochemical Cell 
Assembly  

• Anionic Surfactant Templating Method 

• Heat treatment 

• Thermal Analysis (TG/DTA) 

• X-Ray Diffraction (XRD) 

• Scanning Electron Microscopy (FE-SEM) 

• Physisorption Study (N2 sorption method) 

• Cyclic Voltammetry 

• Galvanostatic Charge-Discharge Test 

• Ex-situ analysis on cycled anode using 

Infrared Spectroscopy (FTIR) and Scanning 

Electron Microscopy (FESEM) method 

Phase 4 

Electrochemical 
Characterization  

• Electrode Preparation 

• Cell Assembly 
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Phase 1 covers the synthesis of the tin phosphate material, Phase 2 covers 

morphological and structural characterization of tin phosphate, Phase 3 covers 

electrochemical cell assembly of tin phosphate anodes and subsequently followed by 

Phase 4 which covers electrochemical characterization of tin phosphate anodes.  

3.2 Materials and Chemicals 

Details of materials and chemicals used in this experiment are stated in Table 3.1. 

Chemicals supplied for this experiment were reagent grade. All chemicals were used 

as received, without further purification.  

 

 

 

 

 

 

Materials/Chemicals Formula Purity Supplier 

Tin tetra-chloride SnCl4 99% Sigma-Aldrich 

Sodium dodecyl sulfate  NaCl2H25SO4 99% Sigma-Aldrich 

Orto-Phosphoric acid H3PO4 86% J.T. Baker 

Ethanol C2H5OH 99.7% R&M Chemicals 

Lithium foil (thickness = ±0.75mm) Li 99.9% Sigma-Aldrich 

Lithium hexa-florophosphate in 

ethylene carbonate: di-methyl carbonate  

(1:1, v/v) 

LiPF6 in EC:DMC - Mitsubishi 

Chemical 

Corporation 

Teflonized acetylene black C - Timcal Co. Ltd 

Glass microfiber filters (φ 20 mm) - - Whatman 

Table 3.1: Materials and chemicals used 
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3.3 Synthesis of Mesoporous Tin Phosphate by Sodium Dodecyl Sulfate 

Templating Method 

Mesoporous tin phosphates were synthesized via a surfactant templating method in 

aqueous solution. This research focused on the usage of an anionic surfactant, sodium 

dodecyl sulfate, as the templating surfactant. Mesoporous tin (IV) phosphate was 

synthesized by reacting aqueous solution of tin tetrachloride (SnCl4), sodium dodecyl 

sulfate (SDS, NaCl2H25SO4) and ortho-phosphoric acid (H3PO4) based on molar ratio 

of 1:1:4. As SnCl4 is an extremely reactive and corrosive chemical, the synthesis 

procedure was carried in an Argon-filled glove box (MBraun), under room 

temperature at 25°C, for safety purpose.   

Aqueous solution of SDS was prepared by adding 5.625 g of SDS into distilled-

deionized water (DDW) to make 20 ml solution. A cloudy white solution was formed. 

The solution was continuously stirred until it turned into a transparent solution. 

Phosphoric acid was diluted by adding 4 ml H3PO4 to make a 20 ml dilution. The 

SDS solution was poured into the diluted H3PO4 solution while maintaining stirring. 

The aqueous SnCl4 solution was prepared by adding 2.35 ml of SnCl4 into DDW to 

make 20 ml solution. White fumes were emitted during this process. This solution 

was mixed shortly before being was transferred into a pipette. The SnCl4 aqueous was 

added drop-wise from a pipette into the SDS-H3PO4 solution with vigorous stirring. 

An exothermic reaction took place during this process as the beaker was found to be 

warm to touch. After the addition of around 10 ml of SnCl4 aqueous solution, the 

mixed solution starts to turn cloudy. This may indicate initial formation of precipitate. 

Further addition of SnCl4 solution resulted in a more cloudy and viscous solution. 

Upon completion of SnCl4 solution addition into the SDS-H3PO4 solution, a thick, 

whitish gel was formed. This mixture was left with vigorous stirring overnight. The 

resulting mixture was then taken out of the glove box and placed into a Teflon lined 

stainless steel vial and then loaded into an autoclave and kept at 100°C for 5 days. 

After cooling to room temperature, precipitates formed during the aging process was 

recovered by filtration, followed by repeated washing with distilled water, and then 

dried in a vacuum oven at 100°C for 2 days. The as-prepared powder were grounded 
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and calcined at 200, 300, 400 and 500°C for 2 hours, yielding mesoporous tin 

phosphate. The synthesis procedure is simplified in a flow chart shown in Figure 3.2. 

For reference purpose, a non-mesoporous tin phosphate was prepared without the 

presence of the SDS surfactant in the glove box. Aqueous solution of SnCl4 was 

slowly added into the stirring H3PO4 solution, based on molar ratio of 1:3. This 

mixture turned cloudy and became more viscous. This mixture was left for continuous 

stirring overnight before taken out from the glove box. The resulting thick solution 

was transferred into a Teflon lined stainless steel vial and then loaded into an 

autoclave and kept at 100°C for 5 days. Upon cooling to room temperature, 

precipitates were washed and filtered and then in a vacuum oven at 100°C for 2 days. 

The as-prepared powder were then grounded and calcined at 200, 300, 400 and 500°C 

for 2 hours.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Flowchart on the synthesis of mesoporous SnP2O7 by surfactant 
templating method. 

Sodium dodecyl sulfate  Phosphoric acid  

Formation of whitish gel 

Precursor 

Mesoporous SnP2O7 powders 

Tin tetra chloride  

Continuous stirring at 25°C in 
an Argon-filled glove box 

Aging at 100°C for 5 days. 
Precipitates filtration, 
washing and drying 

Heat treatment at 200, 300 
and 400°C for  2 hr 
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3.4 Methods of Characterization 

The produced mesostructured and non-mesostructured tin phosphate batches were 

subjected to structural and morphological characterizations by means of thermal 

analysis, powder x-ray diffraction and scanning electron microscopy coupled with 

energy dispersive x-ray methods. Mesoporous structure of tin phosphate was further 

investigated using physisorption methods based on Brunauer-Emmett-Teller theory. 

Ex-situ characterizations on the tin phosphate anodes after electrochemical tests were 

carried out by means of Fourier transform infrared spectroscopy and scanning 

electron microscope. The following sections cover brief explanations on the 

techniques used in this experiment. 

3.4.1 Thermal Analysis 

Thermal analysis is a branch of materials science where the properties of materials are 

studied as they change with temperature. In this strudy, thermal behavior of tin 

phosphate was investigated using thermogravimetric-differential thermal analysis 

(TG-DTA) method. Thermal analyses of the as-synthesized oven dried tin phosphate 

powder were carried out with an EXSTAR TG/DTA 6300 thermal analyzer (SII 

NanoTechnology Inc, Japan). All measurements were carried out under static air 

condition with sample mass of less than 10 mg placed in a platinum pan. The heating 

profile consisted of a 5°C/min linear ramp from 30°C to 800°C. The TG-DTA data 

was analyzed using the EXSTAR 6000 software.  

3.4.2 Powder X-Ray Diffraction  

Powder X-ray diffraction is a technique used to characterize crystallographic 

structure, crystallite size and preferred orientation in polycrystalline or powdered 

solid samples. The wavelength of X-rays is comparable to the size of atoms; therefore 

they are ideally suited for probing the structural arrangement of atoms and molecules 

in a wide range of materials [44]. This technique provides information on types and 
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nature of crystalline phases, degree of crystallinity, amorphous phase, micro-strain 

and size of crystallites.  

Diffraction is one of the most basic phenomena occurring when a wave interacts 

with an obstacle. When applied to the study of solid matter, Bragg’s diffraction is 

generally considered. In this type of diffraction, the crystal structure of solid acts as a 

three dimensional grating. The waves scattered at various angles interact between 

them and the resulting diffracted waves have a maximum intensity when they satisfy 

the famous Bragg’s law [44] : 

 2$ sin θ � #λ                    (3.1) 

(where d is the distance between two inter-atomic planes, θ is the angle at which the 

radiation hits the crystal and λ is the wavelength of the radiation).  

 

 

 

 

 

 

 

 

 

 

 

Bragg’s law can be easily derived graphically, as shown in Figure 3.3 [44]. 

Considering two rows of atoms, the distance between them (AB) is equal to the 

interplanary distance, d. In order to have constructive interference between waves 1 

and 2, scattered by the two planes, it is needed that the additional path travelled by 

wave 2 is an integer number of wavelengths. It is possible to write BC + BD = nλ and 

BC and BD can be estimated from trigonometry as BC = BD = $ sinθ. Therefore, 

 

Figure 3.3: Schematic representation of Bragg’s law (adapted from [44]). 
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Bragg’s law is obtained as 2$ sin θ � #λ [44]. The characteristic set of d-spacings 

generated in a X-ray diffraction pattern provides a unique ‘fingerprint’ of the 

materials present in the sample. When compared with standard reference patterns, this 

‘fingerprint’ allows for identification of the material. 

All materials prepared in this work have been characterized by powder X-ray 

diffraction (XRD) using a Bruker D8 Advance Diffractometer (40kV, 40 mA) with 

monochromatized Cu Kα radiation source. The wavelength of the incident X-rays 

was 1.54060 Å and data were collected with a step size of 0.02° and a time per step of 

1second. Low angle diffraction with a 2θ range of 1-10° was employed to investigate 

the long range order of the synthesized mesoporous tin phosphate. A higher angle 

XRD pattern with 2θ range of 10-80° was applied to further investigate and identify 

the crystallographic structure of the prepared powders. All XRD patterns were 

analyzed using the Diffrac Plus EVA version 9 software and further matched with the 

existing structural data from Powder Diffraction File database of the International 

Centre for Diffraction Data (ICDD). 

3.4.3 Field-Emission Scanning Electron Microscope 

The scanning electron microscope (SEM) is a type of electron microscope that images 

sample surface by scanning it with a high-energy beam of electrons in a raster scan 

pattern [45]. The electrons interact with the atoms that make up the sample and 

produce signals that contain information about the sample’s surface morphology. The 

types of signals produced by SEM include secondary electrons, back-scattered 

electrons, characteristics X-rays, light, specimen current and transmitted electrons 

[45]. Secondary electron detectors are common in all SEMs but it is rare that one 

equipment would have detectors for all possible signals. In most common detection 

mode, secondary electron imaging can produce vey high resolution images of a 

sample surface, revealing details about less than 5 nm in size. Due to very narrow 

electron beam, SEM micrographs have a large depth of field yielding a characteristic 
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three-dimensional appearance useful for understanding the surface structure of a 

sample. 

Field-emission scanning electron microscope (FE-SEM) is a high-resolution 

imaging technique which provides topographical and structural information [45]. The 

FESEM can be classified as a high vacuum instrument (less than 1x10-7 Pa). The 

vacuum allows electron movement along the column without scattering and helps 

prevent discharges inside the instrument [45]. The vacuum design is a function of the 

electron source due to its influence on the cathode emitter lifetime [45]. Emitter type 

is the main difference between the SEM and the FESEM. There are two classes of 

emission source: thermionic emitter and field emitter. Thermionic emitters use 

electrical current to heat up a filament; the two most common materials used for 

filaments are Tungsten (W) and Lanthanun Hexaboride (LaB6) [45]. When the heat is 

enough to overcome the work function of the filament material, the electrons can 

escape from the material [45]. Thermionic sources have relative low brightness, 

experiences cathode material evaporation and thermal drift during operation [45]. 

Field emission is one way of generating electrons that avoids these problems. A Field 

Emission Source (FES), also called a cold cathode field emitter, does not heat the 

filament. The emission is reached by placing the filament in a huge electrical potential 

gradient. The FES is usually a wire of Tungsten (W) fashioned into a sharp point. The 

significance of the small tip radius (~100 nm) is that an electric field can be 

concentrated to an extreme level, becoming so big that the work function of the 

material is lowered and electrons can leave the cathode [45]. FESEM that uses FES 

produces cleaner images, less electrostatic distortions and spatial resolution of less 

than 2 nm (which is three to six times better than SEM) [45]. 

 In this study, a FE-SEM (LEO Gemini 1530) was used for inspecting 

morphology of the prepared tin phosphate samples. Prior to imaging analysis, samples 

were prepared by depositing a thin layer of gold (Au) on the surface using a 

POLARON Sputter Coater SC7640, mini sputtering system. 
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3.4.4 Physisorption Study  

The characterization of amorphous networked materials is problematic because the 

structure of the materials is enormously complex. Most porous materials have 

amorphous structure. Pore shape is mainly unknown but it could be approximated by 

an appropriate model Three basic pore models exist are; cylindrical pores, ink-bottle 

pores and slit-shaped pores [46]. Gas adsorption method plays an important role in the 

characterization of a wide range of porous materials. Gas adsorption methods allow 

probing of entire surface area of solid including irregularities and pore interiors [46]. 

Physical gas adsorption (physisorption) is a preferred technique to study porous 

characteristics of solid materials therefore this technique is chosen to investigate the 

mesoporous structure of the prepared tin phosphate. The isotherm obtained from these 

adsorption measurements provides information on the surface area, pore volume and 

pore size distribution. Nitrogen (N2) adsorption at 77K and at sub-atmospheric 

pressures is the most popular technique, providing information on size distributions in 

the micro-, meso- and macroporosity range [46].  

Before performing gas sorption experiments, solid surfaces of the powders must 

be freed from contaminants such as water and oils by means of a surface cleaning 

method known as out-gassing. Out-gassing is often carried out by placing the sample 

in a glass cell and heating it under vacuum. Once clean, the sample is brought to a 

constant temperature by means of an external bath. Small amounts of a gas 

(adsorbate) are introduced in steps into the evacuated sample chamber. Adsorbate 

molecules quickly find their way to the surface of every pore in the solid (adsorbent). 

As more molecules are introduced into the system, the adsorbate molecules tend to 

form a thin layer that covers the entire adsorbent surface. Based on the well-known 

Brunauer, Emmett and Teller (B.E.T.) theory, one can estimate the number of 

molecules required to cover the adsorbent surface with a monolayer of adsorbed 

molecules, Nm [46], [47]. Multiplying Nm by the cross-sectional area of an adsorbate 

molecule yields the sample's surface area [46], [47]. Continued addition of gas 

molecules beyond monolayer formation leads to the gradual stacking of multiple 

layers (or multi-layers) on top of each other. As the equilibrium adsorbate pressure 
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approach saturation, the pores become completely filled with adsorbate. Knowing the 

density of the adsorbate, one can calculate the volume it occupies and, consequently, 

the total pore volume of the sample [46], [47]. If at this stage one reverses the 

adsorption process by withdrawing known amount of gas from the system in steps, 

one can also generate desorption isotherms. Adsorption and desorption isotherms 

rarely overlay each other. The resulting hysteresis leads to isotherm shapes that can be 

mechanistically related to those expected form particular pore shapes. Computational 

methods such as Barrett, Joyner and Halenda (BJH) allow the determination of pore 

sizes from equilibrium gas pressures, as simply given by the equation below [46], 

[47];    

 (I�*-5� >�*� J�-����* �  4KL :MNOP                 (3.2) 

where Vp is the mesopore volume and SBJH is the BJH specific surface area.  

Surface area measurements and pore size distribution of the synthesized 

mesoporous tin phosphates in this study were evaluated using the physisorption 

technique. Physisorption of nitrogen (N2) at the temperature of liquid nitrogen, 77K 

on the samples were conducted using an automatic Quantachrome Autosorb-1C gas 

sorption apparatus. Powders were weighed, placed in a PyrexTM glass tube and fitted 

into the chamber of the equipment and out-gassed at 150°C under N2 gas flow 

overnight (±18 h) prior to measurement. The N2 adsorption-desorption  isotherms 

were measure within a relative pressure of P/Po ranging  between 0.05 to 0.975, 

where P is the absolute pressure and Po is the vapor saturation pressure of pure N2 at 

temperature of the measurement. Surface areas (BET area) were obtained using the 

multipoint BET method. Pore size distributions were analyzed by the BJH method. 
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3.4.5.  Fourier Transform Infrared Spectroscopy  

Spectroscopy is the measurement of a quantity as a function of either wavelength or 

frequency. Infrared spectroscopy utilizes the fact that molecules have specific 

frequencies at which they rotate or vibrate corresponding to discrete energy levels 

[48]. In infrared spectroscopy, infrared radiation is passed through a sample where 

some are absorbed by the sample and some of it is passed through (transmitted). The 

resulting spectrum represents the molecular absorption and transmission, creating a 

molecular fingerprint of the sample [48]. The peaks in the spectrum correspond to the 

frequencies of vibrations between the bonds of the atoms making up the compound 

[48]. Because each different compound is a unique combination of atoms, no two 

compounds produce the exact same infrared spectrum [48]. Fourier Transform 

Infrared Spectroscopy (FTIR), like other forms of spectrometry, can be used to 

identify compounds or investigate sample composition. 

When a material is irradiated with infrared radiation, absorbed IR radiation 

usually excites molecules into a higher vibrational state. The wavelength of light 

absorbed by a particular molecule is a function of the energy difference between the 

at-rest and excited vibrational states [48]. The wavelengths that are absorbed by the 

sample are characteristic of its molecular structure. The FTIR spectrometer uses an 

interferometer to modulate the wavelength from a broadband infrared source [48]. A 

detector measures the intensity of transmitted or reflected light as a function of its 

wavelength [48]. The signal obtained from the detector is an interferogram, which 

must be analyzed with a computer using Fourier transforms to obtain a single-beam 

infrared spectrum [48]. The FTIR spectra are usually presented as plots of intensity 

versus wavenumber (cm-1). Wavenumber is the reciprocal of the wavelength. The 

intensity can be plotted as the percentage of light transmittance or absorbance at each 

wavenumber. The plotted IR spectrum is compared with standard spectra in computer 

databases or with a spectrum obtained from a known material, in order to identify the 

material of the specimen. Absorption bands in the range of 4000-1500 cm-1 are 

typically due to functional groups (e.g., -OH, C=O, N-H, CH3, etc.) [48]. The region 

from 1500 - 400 cm-1 is referred to as the fingerprint region [48]. Absorption bands in 
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this region are generally due to intramolecular phenomena and are highly specific to 

each material [48].  

In this experiment, solid sample (~2 mg) is mixed with potassium bromide (KBr) 

to form a fine powder using an agate mortar. This powder is then compressed into a 

thin pellet. KBr is transparent in the IR region. FTIR spectra were measured using a 

Nicolet Magna 560 IR spectrometer with a resolution of 4 cm-1. 

3.5 Electrode Fabrication and Cell Assembly 

The electrode was fabricated by mixing the synthesized tin phosphate powders with a 

conductive binder known as teflonized acetylene black (TAB) at a ratio of 80:20, in 

an agate mortar. Few micro-liter of ethanol was dropped into this mixture to aid the 

mixing process. The mixture was then spread uniformly onto stainless steel mesh, 

which serves as a current collector and pressed under a pressure of about 1500 psi in 

an uniaxial hydraulic press (Enerpac). For cyclic voltammetry measurement, samples 

were prepared with less than 10 mg of anode material, which was then spread and 

pressed onto a 50 mm2 (5mm x 10mm) stainless steel mesh spot welded to a stainless 

steel wire of around 4 cm long. For galvanostatic charge-discharge performance tests, 

20 mg of anode material was spread and pressed onto a 15 mm diameter stainless 

steel mesh. All pressed electrodes were dried in an oven at 120°C overnight before 

they were transported into an argon-filled glove box (Mbraun, Germany). Assembly 

of all electrochemical test cells was carried in a circulating argon (Ag) glove box 

where both moisture and oxygen contents were below 1 ppm each. 

A three electrode custom designed electrochemical cell casing was fabricated for 

cyclic voltammetry characterization. Li foils were used as both counter and reference 

electrodes. The prepared anode acts as the working electrode. All three electrodes 

were immersed in a 1 M LiPF6 in EC:DMC (1:1) electrolyte contained in a glass 

bottle, sealed with a NeopreneTM stopper. The schematic diagram of the three 

electrode cell assembly for cyclic voltammetry measurement is shown in Figure 3.4.  
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Figure 3.4: Schematic diagram of a three-electrode configuration 
electrochemical test cell. 
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Figure 3.5:  Schematic diagram of a two-electrode configuration 
electrochemical test cell. 
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Another custom designed electrochemical test cell was also fabricated to evaluate 

the charge-discharge cycle performance of the tin phosphate anode. The tin phosphate 

anode was assembled versus a Li foil as the counter electrode. A glass micro-fibre (φ 

20 mm) which has been pre-soaked in 1 M LiPF6 in EC:DMC (1:1, v/v) electrolyte, 

was used as a separator. This two electrode configuration (anode / LiPF6 in EC:DMC 

/ Li) is schematically represented in Figure 3.5. This cell is screwed in place before 

transferred out from the glove box.  

3.6 Electrochemical Performance Assessment 

3.6.1 Cyclic Voltammetry 

Cyclic voltammetry (CV) is a simple electrochemical technique widely applied in the 

study of redox reactions of electrode in electrochemical cells. CV is a type of 

potentiodynamic electrochemical measurement, in which a voltage is applied to a 

working electrode and current flowing at the working electrode is plotted versus the 

applied voltage to give a cyclic voltammogram. This technique is performed by 

scanning the voltage between two chosen voltage limits and measuring the current 

response arising from any electron transfer process within the two voltage limits. This 

process is repeated for a desired number of cycles. The voltage limits will define the 

electrode reaction that takes place, therefore the starting voltage is preferentially 

chosen at a value where no electrode reaction will occur (open circuit voltage) and 

swept towards positive or negative potentials to investigate oxidation or reduction 

processes, respectively. The resulting potential measured between the reference 

electrode and working electrode and the current measured between the working 

electrode and counter electrode is the plotted as current (I) vs. potential (V) [49]. The 

forward scan produces a current peak for any analytes that can be reduced through the 

range of the potential scan. The current will increase as the potential reaches the 

reduction potential of the analyte, but then falls off as the concentration of the analyte 

is depleted close to the electrode surface. As the applied potential is reversed, it will 
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reach a potential that will re-oxidize the product formed in the first reduction reaction 

and produce a current of reverse polarity from the forward scan. This oxidation peak 

will usually have a similar shape to the reduction peak. The I-V response curves for a 

simple reversible electrode reaction are characterized by asymmetrical peaks.  

 In this work, CV measurements on the electrode samples were carried out with 

a Solartron 1287A Electrochemical Interface equipment. The configuration of the CV 

electrochemical cell is shown earlier in Figure 3.4. The three-electrode cell consists of 

the tin phosphate electrode as the working electrode and Li foils which were used as 

both counter and reference electrodes. This cell is connected to the equipment with 

alligator clips prior to cyclic voltammetry measurements. The potential was scanned 

between 0 and 2.0 V versus Li/Li+ at a rate of 0.100 mV/s for three cycles. The first 

scan always commenced cathodically from the rest potential or open circuit voltage 

(OCV). The voltametric responses of the samples were analyzed using a CorrWare 

version 2.3 (Scribner, Inc) software. 

3.6.2 Galvanostatic Charge-Discharge Tests 

Galvanostatic charge-discharge cycling tests were conducted on the electrochemical 

cells using the WonATech WBCS 3000 Battery Cycler System as shown in Figure 

3.6. The custom-designed electrochemical cell with a two-electrode configuration 

(anode / LiPF6 in EC:DMC / Li) as shown in Figure 3.5, is also known as a half-cell. 

Li foil is applied here as both counter and reference electrode. This half-cell is 

connected with alligator clips to a WonATech Battery Cycler System prior to 

galvanostatic charge-discharge tests, as shown in Figure 3.6 (b). 

In order to use the full capacity of the active tin phosphate anode material, the test 

cell was initially discharged (lithium insertion) from OCV to 0 V (vs. Li/Li+) before 

being charged (lithium extraction) to the selected upper voltage limit. In this 

experiment, the battery cycler system was programmed using the equipment’s 

software, WBCS English version 1.11. to perform glavanostatic discharge and charge 



 

 

47 
 

cycling to the pre-set potential limits of 0-1.2 V, 0-1.6 V and 0-2.0 V (vs. Li/Li+) at a 

constant current of 0.5 mA. This current value was selected depending on the 

theoretical capacity and the active weight of the tin phosphate anode under 

investigation, as cited from literatures [7], [25], [26], [42]. Differential capacity 

analysis was carried out using the IVMAN DA software developed by WonATech. 

Differential capacity plots were constructed based on the charge-discharge data 

obtained earlier from the WBCS software. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: (a) WonATech WBCS Battery Cycler equipment, (b) A two-electrode 
electrochemical cell connected to the battery cycler equipment for galvanostatic 

cycling test. 
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CHAPTER 4 

STRUCTURAL AND MORPHOLOGICAL CHARACTERIZATION  

OF TIN PHOSPHATE 

4.1 Overview 

This research work highlights the possible application of a lamellar, mesoporous 

structured tin phosphate as anode material in Li-ion batteries. In the first phase on this 

research, the lamellar, mesoporous tin phosphate was synthesized via a surfactant 

templating method where an anionic surfactant, sodium dodecyl sulfate (SDS) was 

used.  For reference purpose, another batch of tin phosphate was synthesized in 

absence of the SDS surfactant. The next crucial phase of this research was to 

determine the physical characteristics of the tin phosphate batches produced. This 

chapter elaborates on the structural and morphological properties of both tin 

phosphate batches produced based on characterizations by means of 

Thermogravimetric-Differential Thermal Analysis (TG-DTA), powder X-Ray 

Diffraction (XRD), nitrogen physisorption and Field-Emission Scanning Electron 

Microscope (FESEM).  

4.2 Synthesis of Mesoporous Tin Phosphate 

Lamellar materials feature a number of important and interesting properties due to 

qualities induced by them by the addition of guest components placed within the 

interlayer spacing. Among interesting properties shown by these materials is the 

ability of these solids to host a variety of molecules in-between their interlayer 

spacing and that the lamellar structure can undergo reversible swelling [43]. 
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Porous solids have high scientific and technological interest as well. They are able 

to interact with atoms, ions and molecules at surfaces and throughout the bulk 

material. Distribution of sizes, shapes and volumes of the void spaces in porous 

materials are directly related to their ability to perform desired function in a particular 

application.  

Supramolecular arrays of amphiphiles led to mesostructures which can often be 

created by a variety of amphiphilic species; the resultant mesostructured products are 

periodically ordered by amorphous with respect to their short range atomic structure 

[50]. The main role of surfactants in the synthesis of mesostuctured materials is to act 

out as templates or directing agents for the effective control of mesophase structures. 

In principle, the morphology of the solid is imposed by the tri-dimensional (3D) 

mesostructure of a surfactant, which acts as a nucleating agent and which is finally 

removed after the growth of the inorganic material [50]. 

In the synthesis of mesostructured materials, lamellar structures are often obtained 

from utilizing anionic surfactants [51]. Therefore, the anionic surfactant, sodium 

dodecyl sulfate was used as structure directing species in the synthesis of the 

mesoporous tin (IV) phosphate (SnP2O7) discussed in this study. The synthesis of 

lamellar or cubic tin phosphate phase strongly depends on the phosphoric acid to tin 

chloride (P:Sn) molar ratio. Phosphoric acid content of 4 molar leads to the formation 

of layered tin phosphate structure whereas phosphoric acid content of 16 molar leads 

to the formation of cubic tin phosphate [52].  

Charge density matching between surfactant and the inorganic species is 

important for the formation of the organic-inorganic mesophases. Stucky and co-

workers [53], [54] proposed a generalized mechanism of formation based on the 

specific type of electrostatic interaction between a given inorganic precursor, I and 

surfactant head group, S and by extension where a counterion, X was involved. Four 

general synthetic routes were suggested, which are S+I-, S-I+, S+X-I+ and S-X+I- (S+ is 

the cationic surfactant, S- is the anionic surfactant, I+ is the inorganic precursors 

cation, I- is the inorganic precursors anion, X+ is the cationic counterion and X- is the 
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anionic counterion) [53], [54]. To yield mesoporous materials it is important to adjust 

the chemistry of the surfactants headgroups which can fit the requirement of the 

inorganic components.  

In this study, the mesoporous tin phosphate was synthesized using anionic 

surfactant (sodium dodecyl sulfate) and tin chloride (SnCl4) as inorganic precursor 

under acidic condition from phosphoric acid source. Under low concentration, 

surfactant molecules usually exist in micellar forms, and no long-range organized 

surfactant structures exist [50]. Sodium dodecyl sulfate (SDS) is an anionic surfactant 

with a structural formula of CH3-(CH2)11-O-SO3
(-) Na(+). SDS contains the negatively 

charged ionic headgroup, �:�@
. This negatively charged headgroup interacts with the 

positively charged inorganic metal precursor (Sn4+) following the S-I+ pathway. In this 

synthesis, phosphoric acid enhances electrostatic interactions between Sn4+ and 

surfactant assemblies. The aging process in this experiment was carried out at 100°C 

for 5 days to promote further assemblies of the inorganic-organic network and the 

formation of the rigid inorganic framework based on the Sn-O-P bonds. After this, the 

recovered resulting precipitates were removed of the SDS surfactant by means of 

heat-treatment in order to produce the mesoporous structure. It is often in such 

surfactant-assisted pathway, part of the surfactant headgroup is incorporated into the 

final material after heat treatment [50].  

4.3 Thermal Analysis on Tin Phosphate 

Thermal analysis study has been carried out to gain more information on the 

transformation that occurred during the heating of both batches of as-synthesized tin 

phosphate powders; one synthesized without the SDS surfactant, and the other with 

the SDS surfactant. The SDS synthesized tin phosphate was expected to produce 

mesoporous tin phosphate whereas that synthesized in the absence of the SDS serves 

as reference purpose. Thermal behavior of both samples in the temperature range of 

30-800°C was analyzed based thermogravimetric and differential thermal analysis 

(TG-DTA) method. The thermal analysis in this study was limited to 800°C because 
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phosphorus loss and decomposition of tin phosphate to tin oxide (SnO2) occur above 

this temperature, as reported by C. Velásquez et al. [43]. 

 

 

 

 

 

 

 

 

 

 

The thermal behavior of tin phosphate synthesized without SDS surfactant is 

shown in Figure 4.1. There are three peaks observed in the DTA curve. The first peak 

centered at 126°C, is endothermic and was accompanied by a weight loss of about 

11% within the temperature range of 70-200°C in the TG curve. This effect can be 

ascribed to the evaporation of moisture from the tin phosphate precursor. Subsequent 

weight loss of around 8% was recorded within 210-390°C on the TG curve. This loss 

was complemented with an endothermic peak at 268°C on the DTA curve. This 

weight loss may be attributed to structural water release due to dehydration of 

hydrogen phosphate (HPO4) group [55]. Elimination of water molecules in 

crystallization water can occur at temperature higher than 100°C [56]. Traces of tin 

phosphate is initially present in the form of tin hydrogen phosphate (Sn(HPO4)2). The 

Figure 4.1: TG-DTA curves for tin phosphate. 
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condensation of phosphate group may occur at 328°C that causes Sn(HPO4)2 to be 

transformed into SnP2O7, as represented in the reaction below; 

 :#�Q>�C%�  � :#>��E � Q��                 (4.1) 

The third peak observed on the DTA curve at 328°C is exothermic and this peak was 

not accompanied by appreciable weight loss in the TG curve. This incidence may be 

assigned to phase transition of tin phosphate from amorphous to crystalline [56]. Total 

mass loss of the as-synthesized tin phosphate recorded from 30-800°C was about 

21%. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Thermal analysis on tin phosphate synthesized with SDS surfactant is shown in 

Figure 4.2. This thermogram differs from the one observed for tin phosphate 

synthesized without SDS. There are three endothermic peaks observed in this DTA 

curve. The first endothermic peak around 110°C is accompanied by a weight loss of 

around 23%. This could be assigned to dehydration of absorbed moisture in the tin 
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Figure 4.2: TG-DTA curves for surfactant synthesized tin phosphate. 
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phosphate precursor.  A continuous and slow weight loss is observed around 115-

400°C on the TG curve and a small endothermic peak was recorded at 305°C on the 

DTA curve. Possible causes for this weight loss may be due to release of coordinated 

water during the dehydration of HPO4 group in Sn(HPO4)2 to form SnP2O7. The 

temperature of this endothermic peak is slightly higher than the one observed for the 

reference tin phosphate in Figure 4.1 for the same effects, occurring at 268°C. 

Another explanation for this phenomenon is the possibility of another effect co-

occurring around 305°C. This effect may be referred to the onset of the decomposition 

of the SDS surfactant which would lead to the dissociation and rearrangement of 

bonds between SDS surfactant and metal ions [50], [51] and [57].   A subsequent 

decline was observed further along the TG curve around the temperature of 420-

500°C, resulting in a weight loss of 8%. The third endothermic peak was observed at 

428°C. This peak may be contributed by the decomposition of SDS surfactant. It is 

postulated that SDS surfactant started to decompose around 300°C and was 

completely decomposed around 500°C as no significant weight loss is observed at a 

temperature above 500°C. A total mass loss of about 48% was recorded for the 

synthesized mesoporous tin phosphate. This is two times higher than the one recorded 

for non-mesoporous tin phosphate due to additional weight loss from decomposition 

of the SDS surfactant. 

Based on TG-DTA analysis, it was observed that well defined weight loss 

accompanied by structural transformation occurs between 200° and 500°C for both 

mesoporous tin phosphate and non-mesoporous tin phosphate. In order to gain further 

insights on the structural changes, a series of physical characterization techniques 

were carried on both tin phosphate batches calcined at 200,300, 400 and 500°C. The 

following sections elaborate on the structural transformation of the synthesized tin 

phosphate upon calcination. 
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4.4 X-Ray Powder Diffraction Analysis on Tin Phosphate 

The structure of both tin phosphates batches; one was synthesized using the SDS 

surfactant and the other without the surfactant, was studied by means of X-ray powder 

diffraction using a BRUKER D-8 Advance X-Ray powder diffractometer. X-ray 

diffraction (XRD) studies were performed on both batches of synthesized tin 

phosphates, which were each heat-treated at 200, 300, 400 and 500°C for 2 hours. The 

powder diffraction pattern of the samples were analyzed in two separate spectrums; 

one on the lower 2θ angle (1-10°) and the other on the higher 2θ angle (10-80°). 

Materials such as mesoporous and nano-materials feature very large d-spacing. 

Therefore, XRD measurements need to start at very low 2θ angles to unambiguously 

determine the crystalline structure and execute qualitative or quantitative phase 

identification. The lower 2θ angle powder diffraction pattern was employed here to 

detect the presence of mesostructure phase whereas the higher angle XRD pattern was 

used to further investigate and identify the crystallographic structure. 

The powder diffraction patterns of tin phosphate synthesized without SDS 

surfactant calcined at different temperature for 2 hours are shown in Figure 4.3. No 

peaks were observed in the lower 2θ angle diffraction pattern for tin phosphate 

calcined from 200-500°C, as shown in Figure 4.3 (a). This indicates that no 

mesostructure characteristics were observed for this tin phosphate.  The XRD pattern 

of 2θ = 10-80° which contained diffraction patterns of all the calcined tin phosphate 

powders, is shown in Figure 4.3 (b). Tin phosphate calcined at 200°C exhibited some 

weak peaks in the XRD pattern which suggests the phase present here is largely 

amorphous. A broad band exists between 20° and 23° and some tiny peaks around 

28°, 31° and 44°. The occurrence of these weak peaks was indicative of the presence 

of Sn(HPO4)2. When the sample was further calcined at 300°C, it exhibited crystalline 

peaks which was matched to the standard Sn(HPO4)2 (no. 00-028-1390) from the 

Powder Diffraction File (PDF) database. The asterisks observed in this diffraction 

pattern denote the main reflections of the Sn(HPO4)2. Other diffraction peaks 
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observed at 2θ = 19.5°, 22°, 29° and 34° agrees well with those reported for SnP2O7 

by Behm and Irvine [36], Velásquez et al.[43] and L. Kórösi et al. [58]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: XRD pattern for tin phosphate synthesized without SDS surfactant 
(a) 2θ = 1-10° and (b) 2θ = 10-80°.  
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It has been assumed earlier based on TG-DTA analysis in section 4.3 (Figure 4.1) 

that the mass loss of 8% within 210-390°C was attributed to the effects of dehydration 

of HPO4 group. The XRD patterns of tin phosphate calcined at 300° and 400°C 

support that this weight loss corresponds to the structural transition of Sn(HPO4)2 to 

SnP2O7, as expressed by Equation 4.1. Peaks previously assigned to traces of 

Sn(HPO4)2 for tin phosphate calcined at 300°C  have disappeared in the XRD pattern 

for tin phosphate calcined at 400°C and appearance of new crystalline peaks were 

observed in  XRD pattern. The position of the diffraction peaks of tin phosphate fired 

at 400°C is similar to that fired at 500°C. Higher peak intensities were observed for 

tin phosphate calcined at 500°C. The indexation of Bragg reflections in the XRD 

pattern for the sample at (100), (021), (040), (121) and (131) provided evidence on the 

presence of cubic SnP2O7 [36], [43], [58]. As intensity of peak increases, crystallinity 

of SnP2O7 increases as well. Calcination at higher temperature causes the tin 

phosphate phase to undergo further structural ordering to form cubic SnP2O7 crystal 

structure. The appearance of this SnP2O7 crystal structure has been anticipated based 

on earlier findings on the TG-DTA curve in Figure 4.1 which showed an exothermic 

peak indicative of phase transition from amorphous to crystalline at 328°C.  

Low-angle XRD pattern (2θ = 1-10°) for the tin phosphate synthesized using SDS 

template technique as shown in Figure 4.4 (a) confirmed that the materials calcined at 

200-400°C possess mesoporous characteristics. The mesostructured characteristic is 

evidenced by the presence of low angle reflections of (100) around 2θ = 1.6°. The 

findings from the low angle XRD pattern provide initial evidence that the SDS 

synthesized tin phosphate exhibit mesoporous structure.  Mesoporous tin phosphate 

calcined at 200°C showed a broad peak between 1.3° and 2° indicating that poorly 

ordered mesophase has begun to form at this temperature. A d-spacing value of 24 nm 

was determined for this sample. When this mesostructured tin phosphate was further 

calcined to 300°C, a narrower peak with increased intensity was observed in the XRD 

pattern as shown in Figure 4.4 (a). This shows the ordering of the mesostructure has 

taken place. Stronger intensity indicates higher ordering.  

 



 

 

57 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The low angle peak characteristic for the sample heated at 300°C did not change 

much when heated to 400°C. This showed that the mesostructure is still preserved 

during the removal of SDS surfactant at this range of temperature. Both tin 

Figure 4.4: XRD pattern for tin phosphate synthesized with SDS 
surfactant (a) 2θ = 1-10° and (b) 2θ = 10-80°. 
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phosphates calcined at 300 and 400°C showed strong reflection at (100) with d-

spacing value of around 22 nm. The position of the low angle peaks and the d-spacing 

value for both of these calcined powders did not show obvious differences which 

indicate that the gradual losses of the SDS surfactant at 300 and 400°C did not cause 

significant mesostructural changes. However, when calcination temperature was 

further increased, the mesostructure phase collapsed. This is indicated by the 

disappearance of the low angle reflection from the XRD pattern for the SDS 

synthesized tin phosphate calcined at 500°C. The mesophase structure of the SDS tin 

phosphate was completely destroyed at this temperature. 

This finding supports the assumption made earlier in the thermal analysis that 

decomposition of SDS surfactant occurs between 110-500°C, as depicted by the 

weight loss in the TG-DTA curve shown in Figure 4.2 and complete removal of the 

SDS surfactant takes place above 428°C. Complete removal of surfactant in non-

thermally stable mesoporous materials is often associated with the collapse of 

mesoporous structure at high temperature [50]. The wide angle XRD pattern at 2θ = 

10-80° for the calcined mesostructured tin phosphate is shown in Figure 4.4 (b). The 

diffraction pattern indicated that mesoporous tin phosphate is largely amorphous at 

calcination temperature of 200, 300 and 400°C and a similar broad band between 2θ = 

19° and 38° exists for all of them. This band when indexed according to their 

corresponding crystalline SnP2O7 synthesized without the SDS surfactant as discussed 

earlier, could be attributed to the presence of Sn(HPO4)2 and SnP2O7 phases. It is 

observed that not only did the SDS synthesized tin phosphate calcined at 500°C, 

showed broad diffraction, it also displayed reflection peaks of SnP2O7 at 2θ = 19.5° 

and 22°. The XRD diffraction pattern for SDS synthesized tin phosphate fired at 

500°C indicates that this material contains crystalline phase and presence of residual 

amorphous phase but is non-mesostructured. XRD patterns of amorphous and 

crystalline structures shows different diffraction peak signals and crystallinity 

properties. The diffraction peaks of amorphous sample are broader than those of the 

crystalline material, thus indicating that the mean crystallite size in the amorphous 

phase is smaller than that of the crystalline phase. Broad diffraction peaks observed in 
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Figure 4.4 (b) for mesoporous SnP2O7 fired at 200, 300 and 400°C may indicate the 

possibilities that the amorphous phase consists of crystallite size that are much smaller 

than that of the crystalline cubic SnP2O7 or that the calcined mesoporous tin 

phosphate consists of nanocrystalline domains within amorphous walls of SnP2O7.  

For comparison purpose, one of the SDS synthesized SnP2O7 batch was calcined 

at 400°C for 4 hours.  Figure 4.5 showed the low-angle XRD pattern for mesoporous 

SnP2O7 calcined at 400°C for 2 hours and 4 hours. The SnP2O7 calcined at 400°C for 

4 hours displayed a small shift of the low angle reflection to higher 2 θ angle along 

with a slight increase in the width of reflection indicating that the pore structure 

experienced changes during surfactant removal at prolonged calcination. This slightly 

broader peak suggests that the degree of mesostructure ordering was reduced whereas 

the peak shift indicates contraction to the structure. The d-spacing of this sample is 20 

nm whereas that of the SnP2O7 calcined at 400°C for 2 hours is 22 nm. This suggests 

that prolonged calcination at 400°C influences the mesostructure features.  
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Figure 4.5: XRD pattern of mesostructured tin phosphate calcined at 400°C 
for 2h and 4h. 
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4.5 Physisorption Studies Based on Nitrogen Sorption Isotherm 

The mesoporous characteristics of the SDS synthesized SnP2O7 was further analyzed 

by means of nitrogen adsorption. The nitrogen (N2) adsorption/desorption isotherms 

at 77 K for the calcined SDS-synthesized SnP2O7 are shown in Figure 4.6. Each 

isotherm consists of 10 points of adsorption and 10 points of desorption. The shape of 

the isotherms obtained for SnP2O7 fired at 200, 300 and 400°C corresponds to the 

Langmuir Type IV isotherm which is characteristic of mesoporous materials [37], as 

shown in Figures 4.6 (a)-(d). As mentioned earlier in Chapter Two (section 2.5) based 

on IUPAC definition, mesoporous materials are porous solids with pore size pore size 

between 2 to 50 nm [37].  The isotherm of the SDS synthesized SnP2O7 calcined at 

500°C (Figure 4.6 (e)) however, showed no obvious desorption characteristics and 

can be classified as Type II isotherm which is associated with non-porous or 

macroporous adsorbent materials [46]. The hysteresis profile observed for SDS 

synthesized SnP2O7 calcined at 200, 300 and 400°C are similar. A slight slope 

observed at low relative pressure, P/Po of less than 0.10 is associated with behavior of 

nitrogen adsorption in the inner layer of the mesopore to form a molecular monolayer 

[37]. After this, more nitrogen molecules are gradually adsorbed to form multilayer. 

This mechanism is known as mesopore filling. This gradual multilayer built up 

behavior does not show dramatic slope changes in P/Po region between 0.15 to 0.75. 

The third behavior depicted by the steep increase in adsorbed volume at P/Po ranging 

from 0.80 to 0.99, is caused by complete filling of nitrogen molecules in the confined 

mesopores [37]. The fourth adsorption behavior was observed when P/Po reached 

nitrogen saturation pressure at the peak of 0.99, where capillary condensation of 

nitrogen occurs in the mesopores and at this point when the adsorption process is 

reversed by withdrawing the nitrogen molecules from P/Po at 0.99 down to 0.05, a 

desorption isotherm is generated [37].  A hysteresis loop was observed between P/Po 

from 0.95 to 0.75. Hysteresis suggests presence of obstruction of pore channels in the 

synthesized mesoporous SnP2O7. The shapes of hysteresis loops have often been 

identified with specific pore structures. Mesoporous SnP2O7 calcined at 200, 300 and 
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400°C exhibited similar hysteresis contour of a H4 type which is often associated with 

narrow slit-shaped pores [37].  
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Figure 4.6: Nitrogen adsorption/desorption isotherms for SDS-synthesized 
SnP2O7 calcined for 2 hr at (a) 200°C, (b) 300°C,  (c) 400°C, (d) 400°C for 4h               

and (e) 500°C. 
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The presence of the Type IV isotherm with the hysteresis loop suggests that the 

SDS synthesized SnP2O7 is mesoporous when calcined between 200 and 400°C. 

Based on the analysis of these sorption isotherms, it is assumed that the SDS 

surfactant filled the wall linings of the mesopores in the initial state. When the 

precursors were heat treated, gradual removal of the SDS surfactant occurs. The 

residual SDS remaining in the inner walls of the mesopores was believed to provide 

some support to the mesostructure. When the precursor was calcined to 500°C, SDS 

surfactant is completely removed from the mesoporous framework. This in turn has 

initiated the crystallization of the inorganic pore wall structure of SnP2O7 which led to 

the total collapse of the mesoporous structure. This analysis is complemented by 

findings from thermal analysis (section 4.3) where complete decomposition of SDS 

surfactant was found to occur around 428°C in the TG-DTA curve and also by 

findings from the XRD pattern for the SDS synthesized SnP2O7 calcined at 500°C 

(Figure 4.4, section 4.4) where no low angle reflections characteristic of mesoporous 

material were present and tiny peaks appeared in the wide angle spectrum indicating 

formation of crystalline phases. This N2 sorption isotherm results strongly helps to 

conclude that the SDS synthesized SnP2O7 displayed mesoporous characteristics 

when calcined between 200 to 400°C but when fired to 500°C, the mesoporous 

structure collapses.  

For reference purpose, N2 adsorption studies were also conducted on the non-SDS 

synthesized SnP2O7 powders and the isotherms obtained for samples calcined at 200, 

300, 400 and 500°C are shown in Figure 4.7 (a)-(d). All the isotherms revealed a 

Langmuir Type II isotherm which is characteristic isotherm for finely divided non-

porous materials [37]. At relatively low P/Po pressures of less than 0.1, a monolayer 

of adsorbed N2 gas molecules is formed on the surface of the material. At relatively 

high P/Po pressures, multi-layer adsorption takes place where only a very small 

amount of gas was adsorbed. No capillary condensation takes place at higher P/Po 

pressure which explained the absence of hysteresis loops. The only useful information 

that can be extracted from this sorption analysis is the surface area. 
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Table 4.1 lists the measured Brunauer-Emmett-Teller (BET) surface area of the 

synthesized SnP2O7 powders. The BET surface area of the powders were calculated 

from the linear part of the BET plot (P/Po = 0.05 to 0.10). The surface area of the 

mesoporous SnP2O7 samples was estimated from the surface area of mesoporous 

porewall. As observed for mesoporous SnP2O7 samples, with increasing calcination 

temperature, the BET surface area began to decrease. The mesostructure SnP2O7 

produced after calcination at 200°C and 300°C has a BET surface area of 138 m2/g 

and 125 m2/g, respectively. Mesoporous SnP2O7 calcined at 400°C for 2 hours has a 

BET surface area of 115 m2/g whereas that calcined at the same temperature for 4 

hours showed a BET surface area of 106 m2/g. The SDS synthesized SnP2O7 calcined 
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Figure 4.7: Nitrogen adsorption/desorption isotherms for non-SDS synthesized tin 
phosphate calcined at (a) 200°C; (b) 300°C; (c) 400°C and (d) 500°C. 
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at 500°C has a low surface area of 13 m2/g. Low surface areas of around 4-9 m2/g 

were also obtained for non-SDS synthesized SnP2O7 powders which is typical for 

non-porous materials. In characterization of very low specific surfaces such as the 

non-porous materials, it is necessary to generate a very high vacuum degree and to 

measure very low equilibrium pressures.  The measuring gas commonly used for this 

case is krypton.  However, there are some limitations in characterizing non-porous 

using the physisorption method with the present gas sorption apparatus 

(Quantachrome Autosorb-1C) as it is not designed to collect equilibrium pressures in 

a very low and restricted pressure range and it is better suited for characterization of 

porous solids.  

 

 

SnP2O7 samples Surface Area
*
 (m

2
/g) 

SDS synthesized SnP2O7  

200°°°°C for 2h 138 

300°°°°C for 2h 125 

400°°°°C for 2h 115 

400°°°°C for 4h 106 

500°°°°C for 2h 13 

Non-SDS synthesized SnP2O7  

200°°°°C for 2h 9 

300°°°°C for 2h 7 

400°°°°C for 2h 4 

500°°°°C for 2h 4 

* Surface area determined using the BET method. 

 

 

Table 4.1: BET surface areas of synthesized SnP2O7 powders 
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Based on XRD and physisorption results, it has now been established that the SDS 

synthesized SnP2O7 powder calcined at 500°C and the non-SDS synthesized SnP2O7 

batch are not mesostructured and non-porous. Further analysis on porous 

characteristics shall now be focused on SDS synthesized SnP2O7 powders calcined at 

200, 300 and 400°C as they displayed the mesoporous characteristics.  

The pore size distribution of the mesoporous SnP2O7 powders were determined 

using the Barrett-Joyner-Halenda (BJH) model and the desorption branch isotherm. 

Figure 4.8 shows the pore size distributions for the mesostructured SnP2O7 as 

determined using the Barrett-Joyner-Halenda (BJH) model and the desorption branch 

isotherm. BJH analyses showed that the mesoporous SnP2O7 exhibits a mean pore 

size of 10.6, 13.5 and 15.8 nm when calcined to 200, 300 and 400°C for 2 hours, 

respectively. Mesoporous SnP2O7 calcined at 400°C for a longer duration of 4 hours 

has an average pore size of 17.9 nm. All the calcined mesoporous SnP2O7 powders 

posses a relatively narrow pore size distribution. It was observed from Figure 4.8 that 

with increasing calcine temperature, peak pore diameters shifted to a higher value and 

pore size distribution becomes wider. The same effects hold true when mesoporous 

SnP2O7 was calcined for prolonged duration of 4 hours at 400°C. The SDS surfactant 

partially occupies the mesopores and when calcination temperature increases, the SDS 

surfactant slowly decomposes resulting in the smaller pore which then collapse into 

larger pores. The number of pore decreases as a result of sintering while at the same 

time the pore size increases.  
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Pore volume values shown in Table 4.2 was taken from volume of nitrogen 

adsorbed at P/Po = 0.99. Pore volume increases when calcined from 200 to 400°C for 

2 hours. However, a slight drop of 2.64 m3/g in adsorbed volume was recorded for the 

mesoporous SnP2O7 calcined at 400°C for 4 hours. There is no known determined 

relationship on how surface area and pore diameter are correlated with pore volume. 

The correlation strongly depends on the pore type and shape. It was mentioned earlier 

that the Type IV isotherm for the mesoporous SnP2O7 has a hysteresis loop of Type 

H4 which is associated with narrow slit-shaped pores. The initial increase in pore 

volume may be due to the increase in gas accessible areas where smaller pores 

collapse to form larger pores when calcined from 200 to 400°C for 2 hours. However, 

when calcined at 400°C for a prolonged duration, the complex slit-shaped pore 

network began to experience sintering of pore walls and this initiated crystallization 

of the SnP2O7 particles. This causes the pore structure to be further disordered thus 

Figure 4.8: Pore size distribution of mesoporous SnP2O7 calcined for 
2h at 200, 300 and 400°C and for 4 h at 400°C. 
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imparting some constrictions for gas to be accessible in some areas which led to a 

slight decrease in adsorbed volume. 

 

 

Mesoporous 

SnP2O7 

Pore diameter
a 

(nm) 

Pore volume
b 

(m
3
/g) 

d100
c 

(nm) 

Pore wall
d 

(nm) 

200°C for 2h 10.6 53.78 24 13.4 

300°C for 2h 13.5 75.68 22 8.5 

400°C for 2h 15.8 79.86 22 6.2 

400°C for 4h 17.9 77.22 20 2.1 

a Pore diameter is determined using the desorption branch isotherm and BJH model. 
b Volume of N2 adsorbed at P/Po = 0.99. 
c d100 is the d spacing for reflections at (100). 
d The pore wall thickness is determined by subtracting the pore diameter from the d   
   spacing. 

 

The low angle diffraction peak for the calcined mesoporous SnP2O7 provides 

an estimate of the average distance between framework pores based on the d-spacing 

values. Therefore, pore wall size can be estimated from the difference between d-

spacing and pore size value. D-spacing values shown in Table 4.2 for the calcined 

mesoporous SnP2O7 was determined from reflection at (100) in the XRD pattern 

(Figure 4.4, section 4.3). The thicker pore wall size at lower calcination temperature 

may be due to the occupation of the organic SDS surfactant which lined the pore 

walls. For higher calcination temperature, the SDS gradually decomposes causing the 

SDS lining in the inner mesopore to become thinner resulting in decreased pore wall 

thickness. Various studies showed that the choice of surfactant is critical to the size 

and shape of the particles and SDS surfactant is known to produce mesoporous 

materials with larger mesopore sizes of ~ 10 nm [50], [59], [60]. 

 

 

 

 

Table 4.2: Structural properties of SDS synthesized SnP2O7 calcined at 
different temperature 
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4.6 FESEM Analysis on Tin Phosphate 

Morphology of the synthesized mesoporous and non-mesoporous SnP2O7 powders are 

examined using the Field Emission Scanning Electron Microscopy (FE-SEM, LEO 

Gemini 1530). The microscope images of the calcined mesoporous SnP2O7 and non-

mesoporous SnP2O7 magnified at 20, 000 times are shown in Figures 4.9 and 4.10, 

respectively. 

The SDS synthesized mesoporous SnP2O7 powders showed spherical morphology 

with foam-like structure, as observed from Figure 4.9 (a)-(d). These four micrographs 

of the calcined mesoporous SnP2O7 powder showed uniform spherical particles with a 

narrow size distribution. The mesoporous SnP2O7 calcined at 200°C consists of very 

fine spherical particles with an average size of around 20 nm as shown in Figure 4.9 

(a). These nanoparticles are loosely clustered together forming uniform pores of 

several nanometers between them. Observations made on the FESEM images in 

Figure 4.9 revealed larger aggregates of fine particles were formed when the 

calcination temperature was increased. The interconnected aggregates that form the 

mesoporous SnP2O7 network and the voids between them were noticeably larger 

when calcined to a higher temperature of 400°C, as shown in Figure 4.9 (c) and (d). 

When the firing temperature increases, the SDS surfactant decomposes and this in 

turn causes the particles to aggregate and form agglomerates thus leaving larger voids 

in the mesoporous SnP2O7 structure. The average particle size when calcined to 

400°C is around 30 nm. The mesoporous SnP2O7 calcined at 400°C for 4 hours 

showed a more compact agglomerate morphology compared to that of the 

mesoporous SnP2O7 calcined at 400°C for 2 hours, as observed from Figure 4.9 (c) 

and (d). Prolonged calcination may induce sintering effects on the SnP2O7 particles 

causing them to grow and form larger crystallites.  
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Figure 4.9: FESEM images of SDS synthesized SnP2O7 calcined at (a) 200°C for 2 
hr, (b) 300°C for 2 hr, (c) 400°C for 2 hr, (d) 400°C for 4 hr and (e) 500°C for 2 hr. 
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The morphology of the SDS synthesized SnP2O7 powders calcined at 500°C as 

shown in Figure 4.9 (e) did not exhibit morphology similar with that observed for the 

mesoporous SnP2O7 samples. Particles observed here displayed irregular 

morphologies. It is harder to determine the average particle size since irregularly 

shaped particles tends to have a very broad particle size distribution. Obvious 

sintering effects on the particles were observed as the powder displayed compact 

arrangement of layered SnP2O7 clusters. The TG-DTA results obtained earlier in 

section 4.3 indicated that the decomposition of SDS surfactant occurred around 

428°C. It is believed when the sample was fired to 500°C, the rate of particle growth 

was more rapid and this eventually led to the collapse of the mesostructure and 

formation of SnP2O7 aggregates which were held closely together. 

Figure 4.10 shows the FESEM images of the non-SDS synthesized SnP2O7 

powders. The FESEM image of the non mesoporous SnP2O7 samples calcined at 

200°C displayed stacked layers of irregularly shaped particle aggregates, as shown in 

Figure 4.10 (a). As the non-mesoporous samples are calcined at higher temperature, 

they revealed a cauliflower like morphology as observed from Figure 4.10 (b)-(d). At 

higher calcination temperature, uniform distribution of spherical shape SnP2O7 

aggregates form larger agglomerates that are compactly arranged. FESEM images of 

the non-SDS synthesized SnP2O7 showed uniform arrangement of particle 

morphology with increasing firing temperature. This complements the XRD analysis 

on non-mesoporous SnP2O7 samples in Section 4.3 that indicated the SnP2O7 

experiences structural ordering with increasing calcination temperature to form the 

crystalline phase. Based on Figure 4.10 (c) and (d), the uniform spherical particles of 

non-mesoporous SnP2O7 calcined at 400 and 500°C have a narrow particle size 

distribution of around 0.2 µm, which is very much larger than that obtained for the 

mesoporous SnP2O7. 
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Figure 4.10: FESEM images of non-SDS synthesized SnP2O7 calcined at (a) 200°C 
for 2 hr, (b) 300°C for 2 hr, (c) 400°C for 2 hr and (d) 500°C for 2 hr. 
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4.7 Summary 

For SnP2O7 powders synthesized in absence of the SDS, no mesoporous 

characteristics were detected by means of XRD or N2 physisorption analysis. 

Crystalline phase of Sn(HPO4)2 begun to form when the powder was calcined at 

300°C. When further calcined to 400°C, this compound transformed to crystalline 

SnP2O7. The degree of crystallinity increases with increasing calcination temperature. 

Low surface areas of around 6-11 m2/g were obtained for the non-mesoporous SnP2O7 

samples that were calcined between 200 to 500°C. FESEM observations revealed 

average particle size distribution of around 0.2 µm non-mesoporous SnP2O7 powders 

calcined at 400°C. 

Mesostructured, amorphous tin (IV) phosphate (SnP2O7) synthesized via the SDS 

surfactant was successfully obtained when calcined at 200, 300 and 400°C as 

indicated by the presence of the low angle reflection in the XRD pattern. The 

mesoporous characteristics were further confirmed by N2 physisorption analysis 

which showed a Type IV isotherm. Average pore size as determined for mesoporous 

SnP2O7 calcined at 200, 300 and 400°C for 2 hours and at 400°C for 4 hours are 10.6, 

13.5, 15.8 and 17.9 nm, respectively. Increasing calcination temperature causes 

gradual decomposition of SDS surfactant which led to the collapse of smaller pores to 

form larger pore. Average particle size of around 30 nm was observed from FESEM 

images for mesoporous SnP2O7 powders calcined at 400°C. Heating up to 500°C 

resulted in the destruction of the mesoporous structure. A semi-crystalline, non-

mesoporous phase was obtained for the SDS synthesized SnP2O7 calcined at 500°C.  
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CHAPTER 5 

ELECTROCHEMICAL PERFORMANCE OF MESOPOROUS  

TIN PHOSPHATE AS ANODE MATERIAL 

5.1 Overview 

The electrochemical performance of the mesoporous tin phosphate as anode material 

is the resounding theme of this research work. The performance here refers to the 

measured capacity (mAh/g) over a number of charge and discharge cycles. This 

research phase covers investigation on the electrochemical properties of the 

synthesized SnP2O7 anode using electroanalytical techniques such as the Cyclic 

Voltammetry (CV) and galvanostatic charge-discharge cycling performance tests. 

This chapter begins with the analysis on the redox behavior of the synthesized SnP2O7 

anodes upon reaction with Li, subsequently followed by extensive investigation 

analysis on the voltage profile and cycling performance of the anodes. In the previous 

research phase, the synthesized non-mesostructured tin phosphate powders which 

were calcined at different temperatures have been characterized along side with the 

mesoporous SnP2O7 for reference purpose. It has been established in Chapter 4 that 

the SDS synthesized SnP2O7 calcined at 200, 300 and 400°C are mesoporous whereas 

that calcined at 500°C along with the non-SDS synthesized SnP2O7 calcined between 

200 to 500°C are non-porous materials. All the mesoporous SnP2O7 samples produced 

are amorphous whereas the SDS synthesized SnP2O7 powder calcined at 500°C is 

semi-crystalline phase and the non-SDS synthesized SnP2O7 powders calcined 

between 300 to 500°C are crystalline. It would be interesting to analyze the 

electrochemical performance of synthesized SnP2O7 anodes with different structures. 
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In this chapter, the electrochemical behavior of all the mesoporous SnP2O7 anodes 

were compared with that of the SDS synthesized SnP2O7 calcined at 500°C and the 

non-SDS synthesized SnP2O7 anode calcined at 500°C.  This selection was made to 

provide a more focus comparison analysis on the electrochemical performance of 

amorphous, mesoporous SnP2O7 anodes with the non-porous SnP2O7 anodes with a 

semi-crystalline and crystalline structure. The non-SDS synthesized SnP2O7 calcined 

at 500°C was chosen because it has the highest degree of crystallinity in its batch. A 

control half-cell consisting of a commercial graphite anode was constructed and tested 

in the same manner as the mesoporous and non-mesoporous SnP2O7 samples for 

performance comparison purpose as well. In the later part of this study, the best 

performing mesoporous SnP2O7 anode was singled out for performance evaluation 

within different voltage limits and for prolonged cycling tests For ease of sample 

reference in this chapter, the synthesized SnP2O7 investigated in this study shall be 

denoted as follows; 

Mesoporous SnP2O7 calcined at 200°C for 2 hr   →    MP200 

Mesoporous SnP2O7 calcined at 300°C for 2 hr   →    MP300 

Mesoporous SnP2O7 calcined at 400°C for 2 hr   →    MP400 

Mesoporous SnP2O7 calcined at 400°C for 4 hr   →    MP4004 

SDS synthesized, semi-crystalline SnP2O7 calcined at 500°C for 2 hr →  MP500 

Non-SDS synthesized, crystalline SnP2O7 calcined at 500°C for 2 hr →  TP500 

Some ex-situ analysis on the cycled anode samples were carried out using Fourier 

Transform Infrared and Field-Emission Scanning Electron Microscope methods to 

further complement electrochemical analysis on the SnP2O7 anodes. 
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5.2 Cyclic Voltammetry Analysis on Mesoporous and Non-Mesoporous Tin 

Phosphate Electrodes 

The cyclic voltammetry (CV) technique was used to elucidate electrochemical 

behavior of the synthesized amorphous, mesoporous tin phosphate (SnP2O7) 

electrodes during reduction and oxidation. The preparation of the mesoporous SnP2O7 

electrode for CV tests has been described earlier in Chapter 3 (section 3.5). The 

fabricated electrode was assembled in a three-electrode custom designed 

electrochemical cell casing with Li foils as both counter and reference electrode and 1 

M LiPF6 in EC:DMC (1:1) as the electrolyte. Li metal is believed to be minimally 

polarized due to low current densities, thus giving a reliable reference potential. All 

potentials will be referred to the Li/Li+ electrode throughout this thesis. The assembly 

configuration of the CV cell is schematically represented in Figure 3.4 (Chapter 3, 

section 3.5). Once assembled the test cells were immediately subjected to CV tests 

[49].  The cells were scanned within a potential of 0 to 2.0 V with a slow scan rate of 

0.100 mV/s for three cycles. The first scan always begins cathodically from the rest 

potential or open circuit voltage (OCV) which is around 3.0 V for the tin phosphate 

anodes investigated here. During this potential scan, changes in current resulting from 

redox (reduction and oxidation) reactions in the cell were recorded as shown in the 

cyclic voltammograms in Figures 5.1 and 5.2.  

Cyclic voltammograms of mesoporous SnP2O7 calcined from 200 to 400°C are 

shown in Figure 5.1. The voltammetric responses as observed from the figure for all 

four calcined samples looked fairly similar. The potential sites of redox peaks for the 

calcined mesoporous SnP2O7 anodes are only different by a magnitude of ± 0.02 V 

when compared to each other. It can also be observed from all the voltammograms 

shown in Figure 5.1 that the appearance of the first sweep from OCV (~3.0) to 0.0V is 

very different from subsequent cycles. During the first sweep, essentially all the 

irreversible reactions occur. All four cyclic voltammograms of the calcined 

mesoporous SnP2O4 electrodes exhibited four cathodic peaks in the initial first cycle 

scan. Regardless of which mesoporous SnP2O7 sample is being referred to, the first 

three peaks which were detected around 1.67, 1.10 and 0.69 V only appears once 
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during the first cathodic scan. The underlying reactions are irreversible because no 

similar features were observed from the second scan onward. Reaction occurring 

around 1.65 to 1.67 V may be attributed to the electrolyte decomposition on the active 

anode surface to form a passivating film known as the solid electrolyte interface (SEI) 

[61]. Initial contact of the electrolyte and Li metal causes the organic solvent of the 

electrolyte to be reduced resulting in the formation of the SEI film on the surface of 

SnP2O7 electrode [61]. This passive film is only a few nanometers thick and its 

composition consists mainly of lithium alkylcarbonates [61]. This passive film is 

fragile and easily oxidized when exposed to air.  It is difficult to conduct ex-situ XRD 

analysis to determine the stability of mesoporous SnP2O7 anode upon interaction with 

the electrolyte as these SEI films are largely amorphous. The formation of this SEI 

film is irreversible. The following reaction proceeds whereby Li+ pass through the 

passive film and react with the SnP2O7.   

Courtney and Dahn had reported the electrochemical properties of two different 

tin oxide systems (SnO and Sn2BPO6) [25], [26]. In both systems, the irreversible 

reactions during the first discharge process involve the reduction of the starting tin 

oxide based materials to form tin and lithium oxide (Li2O) phase. For SnO, the 

decomposition begins at 1.2 V and involves 2 mol of lithium per mole of SnO [25], 

[62]. For Sn2BPO6, the decomposition begins at 1.5 V and consumes 4 mole of 

lithium per mole of Sn2BPO6 [26], [61]. The reduction products would be microscopic 

tin particles dispersed in an inactive matrix consisting of lithium phosphate phases 

[7], [26], [36]. The irreversible reaction of SnP2O7 with Li in the first cycle can be 

expressed in equation (5.1) as proposed by Xiao et al. [7]; 

 4��� �  :#>��E �  4�
  �   :# �  ��@>�C �  ��>�@          (5.1) 

The reduction reaction expressed in Equation 5.1 should be indicated by the 

presence of an irreversible peak in the cyclic voltammogram. In line with this, the 

presence of next irreversible cathodic peak after the irreversible formation of the 

passive film around 1.65 - 1.67 V can be associated with the reduction of SnP2O7. 
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Figure 5.1: Cyclic voltammograms of mesoporous SnP2O7 calcined at; (a) 200°C for 
2 hr (MP200), (b) 300°C for 2 hr (MP300), (c) 400°C for 2 hr (MP400) and             

(d) 400°C for 4 hr (MP4004). 
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However, in the case of the mesoporous SnP2O7 electrode, there are two 

irreversible cathodic peaks observed around 1.10 and 0.69 V. This could mean that 

there are two energetically different environments for the reduction of SnP2O7 to 

occur in the mesoporous structure. It is hypothesized that during the initial reduction 

reaction of the amorphous, mesoporous SnP2O7, some partially reduced tin phosphate 

may first be formed at 1.10 V. This was the case reported by Xiao et al. [7] in their 

study on amorphous tin phosphate anode. The unstable tin phosphate (Sn0.5PO3) phase 

when further reacted with the remaining Li was reduced to tin (Sn) particles and 

lithium phosphate phase at a different potential site. Therefore, the reduction reaction 

in the first cycle for mesoporous SnP2O7 was assumed to proceed in the following 

stepwise order [7]; 

  3��� �  :#>��E � 3�
  �  ��@>�C �  :# � :#	/�>�@                        (5.2) 

  ��� �  :#	/�>�@ �  �
  �   ��>�@ �  1 2? :#                     (5.3) 

The electrochemical reactions (Equations (5.2) and (5.3)) that gave rise to 

these two peaks result in large irreversible losses as there is a wide gap observed 

between this curve in the first cycle and the following curve in the second cycle. The 

fourth cathodic peak located around 0.18 V was subsequently followed by an 

oxidation peak around 0.52 V on the reverse anodic scan. This pair of redox peaks 

appeared in all three cycles in the voltammograms which indicate reversible reaction. 

This reaction is associated with the reversible Li insertion and extraction reaction. 

This pair of reversible redox peaks was found to decrease in size with increasing cycle 

number indicating gradual loss in recyclability.  

Based on other studies carried out on tin phosphate based anodes [7], [26], 

[36], [42], the reversible reaction is said to be identical with that of the tin oxide based 

anodes as discussed earlier in Chapter Two (section 2.4.3).  The microscopic Sn 

particles dispersed in the Li3PO4 and LiPO3 matrix behave as hosts for further Li+ 

insertion possibly through the formation of various Li-Sn alloy composition. The de-

alloying process is expected to occur during the charging process to release Li+ and to 

restore the metallic Sn.  
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This reversible reaction is represented as below; 

  
��� �  
�
 �  :#  <   ���:#   (0 ≤ x ≤ 4.4)       (5.4)  

Based on structural and morphological analysis discussed in Chapter 4, different 

calcination temperature and duration produced mesoporous SnP2O7 with different 

pore size distribution and morphology. However, the cyclic voltammetric response 

observed for all the mesoporous SnP2O7 samples showed that neither the calcination 

temperature nor duration has a pronounced influence on the electrochemical 

behaviour.  This is because all the amorphous, mesoporous SnP2O7 anodes have the 

same energetic sites for reaction with Li, therefore they all displayed similar redox 

reactions despite the difference in mesostructure characteristics,.   

For references purpose, CV measurements were also carried out on different non-

mesostructured SnP2O7 electrodes such as the SDS synthesized semi-crystalline 

SnP2O7 calcined at 500°C (MP500) and the non-SDS synthesized crystalline SnP2O7 

calcined at 500°C (TP500). It is essential to determine if the crystallographic feature 

has any influence on the redox behaviour of SnP2O7 anodes. TP500 was chosen 

because it has the highest degree of crystallinity. The cyclic voltammograms of these 

two samples are shown in Figure 5.2.  

For MP500 anode, the presence of the three irreversible peaks during the initial 

scan was associated with the same reactions occurring in mesoporous SnP2O7 

electrodes during the CV measurements. The first peak at 2.02 V was assigned to the 

initial decomposition of electrolyte species to form the passive layer on the electrode 

surface. The irreversible peaks at 1.43 and 0.80 V were referred to the initial 

reduction of SnP2O7 to form Sn particles and the irreversible lithium phosphate phases 

(Li3PO4 and LiPO3), as expressed by Equations (5.2) and (5.3). The only difference 

detected in this cyclic voltammogram when compared to the ones for mesoporous 

SnP2O7 is the potential at where these reactions take place. This difference is believed 

to be influenced by their crystallographic features. The presence of some crystalline 

phase may cause the irreversible reaction to take place at different potential sites. The 

next cathodic peak was found at around 0.20 V and upon the reverse anodic scan, a 
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small peak was detected around 0.52 V. These peaks are visible in the second and 

third cycles indicating the reactions occurring here are reversible. This pair of 

reversible redox peaks was found to be similar with that observed for mesoporous 

SnP2O7 electrodes which are associated with the reversible Li+ insertion and 

extraction reactions as represented by Equation (5.4). 

 

 

 

 

 

 

 

 

 

 

The cyclic voltammogram for TP500 is shown in Figure 5.2 (b). This 

voltammogram has a very different profile when compared to that of MP500 and the 

rest of the mesoporous SnP2O7 electrodes. The small peak at 2.08 V is ascribed to the 

initial passive film formation. Further on, a large irreversible cathodic peak at 1.23 V 

was observed. This cathodic peak is referred to the initial irreversible reduction of 

SnP2O7 to form Sn particles and the irreversible lithium phosphate phases (Li3PO4 and 

LiPO3). This single peak conforms to the reaction expressed in Equation (5.1). The 

pair of reversible redox peaks located at 0.18 V and 0.54 V for TP500 anode was 

found to be similar with that obtained for MP500 and mesoporous SnP2O7 electrodes. 

These peaks were attributed accordingly to the reversible reaction of Li insertion and 

Figure 5.2: Cyclic voltammograms of (a) SDS synthesized SnP2O7 calcined at 500°C 
for 2 hr (MP500) and (b) non-SDS synthesized SnP2O7 calcined at 500°C (TP500). 
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extraction reaction. This cyclic voltammogram profile for TP500 was found to be 

similar with that obtained by Behm and Irvine [36] in their work on crystalline 

SnP2O7 synthesized via a solid state reaction.  

5.3 Voltage Profile on Initial Charge and Discharge Cycle of Mesoporous and 

Non-Mesoporous Tin Phosphate Anodes 

All the mesoporous SnP2O7 anodes (MP200, MP300, MP400 and MP4004) and 

non-mesoporous anodes SnP2O7 (MP500 and TP500)  fabricated in this study, were 

assembled in a custom designed two-electrode electrochemical cell (Figure 3.4) with 

1 M LiPF6 in EC:DMC (1:1) as the electrolyte and Li foil as the counter electrode. 

The assembled cells were allowed to rest overnight before galvanostatic tests. This is 

done in order to obtain a more thorough wetting of particle’s surface areas by 

allowing the anode to soak in the liquid electrolyte for some time in the sealed 

electrochemical test cell.  In this initial study on the charge discharge profile, the 

assembled cell was discharged (Li+ insertion) and charged (Li+ extraction) at a 

constant current of 0.5 mA between 0.0  to 2.0 V. The voltage cutoff was specified at 

0.0 V and 2.0 V in order to obtain a deep discharge and charge state profile to study 

the Li+ storage and extraction capacity of the synthesized SnP2O7 anode. This current 

value of 0.5 mAh was selected depending on the theoretical capacity and the active 

weight of the tin phosphate anode under investigation, as cited from literatures [7], 

[25], [26], [42]. The capacity expressed here is the specific capacity per gram of the 

active SnP2O7 anode.  Differential capacity plot was constructed based on the first 

charge and discharge data of the corresponding SnP2O7 anode under investigation 

using the IVMAN DA software. Although similar electro-analytical information can 

be obtained from differential capacity plots and the CV technique, the derivation of 

data are based on different methodology.  In the CV technique, a voltage is applied 

and the electrode’s electrochemical reaction is detected by measuring the current 

changes during the potential scan and it is common practice for the CV cells to be 

tested immediately after assembly to detect immediate redox reactions [49].  The 

galvanostatic charge-discharge test on the other hand was conducted by applying 
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current to a cell within a voltage range to evaluate capacity of the cell. The differential 

capacity plot is derived from the galvanostatic cycling data to gauge subtle changes 

arising from electrochemical reactions, not discernible in the voltage profile during 

charging and discharging.  These analyses from differential capacity plots for MP200, 

MP300, MP400, MP4004, MP500 and TP500 could complement the electroanalysis 

obtained from the corresponding cyclic voltammograms from section 5.2. The 

differential capacity plots are placed next to the first discharging and charging curves 

of the fabricated mesoporous and non-mesoporous SnP2O7 anodes as shown in 

Figures 5.3 and 5.4, respectively.  

The mesoporous SnP2O7 anodes; MP200, MP300, MP400 and MP4004 exhibited 

similar charge-discharge curve profile as observed from Figures 5.3 (a)-(d). The 

initial discharge profile for all the mesoporous SnP2O7 anodes displayed a plateau 

around 1.1 V before the voltage drops down to 0.0 V. This plateau is related to the Li+ 

insertion into the anode and the reduction of Sn4+ to Sn as reported by several authors 

[36], [62]. Subsequent charging up to 2.0 V gives the charge capacity that reflects on 

how much Li+ could be extracted out. The charge curve has a shorter profile 

compared to the discharge curve and this indicates during the charging process, not all 

the inserted Li+ were extracted out resulting in some irreversible capacity loss. 
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Figure 5.3: First cycle data on charge discharge curve and differential capacity 
plot for mesoporous SnP2O7 anodes, MP200, MP300, MP400 and MP4004. 
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The differential capacity plot provides a mean to analyze the electrochemical 

reactions that cause the losses that occurred during the discharging and charging 

process within a voltage limit. On an average estimation based on the differential 

capacity plots for MP200, MP300, MP400 and MP4004, there are two cathodic peaks 

detected around 1.1 V and 0.7 V as shown in Figures 5.3 (a)’-(d)’. These peaks match 

those found in the first cycle scan in the cyclic voltammogram shown in Figures 5.1 

(a)-(d), which indicate the reduction of SnP2O7. The first reduction reaction resulted 

in formation of lithium phosphate (Li3PO4), unstable tin phosphate (Sn0.5PO3) phase 

and Sn particles [7]. This unstable Sn0.5PO3 when further reacted with Li was believed 

to be reduced at a different potential to form LiPO3 and Sn particles [7]. These 

irreversible reactions were expressed in Equations (5.2) and (5.3). There is no 

distinctive peak present in all the differential capacity plots in Figures 5.3 (a)-(d)  that 

indicates the electrolyte decomposition reaction to form passive SEI films on the 

active anode surface as was observed in the corresponding cyclic voltammograms in 

Figures 5.1 (a)-(d). This is because this test cell has been left to rest overnight prior to 

charge-discharge test and the SEI film formation had already taken place during this 

rest period. This explains why the electrolyte decomposition reaction was not detected 

in the differential capacity plot. It was assumed based on the cyclic voltammogram 

analyses that the alloying and dealloying reactions of LixSn are the reversible 

reactions that occur during the discharging and charging process. Correspondingly, 

the peaks located around 0.17 V and 0.54 V in Figures 5.3 (a)-(d) represents the 

reversible Li+ insertion and extraction reactions, respectively. The potential sites of 

these peaks in the differential capacity plots agree well with those obtained in the 

cyclic voltammograms in Figures 5.1 (a)-(d). Alloying and de-alloying reactions of 

Li-Sn which covers a number of alloy phases with different compositions are 

expected to take place within this potential range.  

 For non-mesoporous anode, MP500, there are three cathodic peaks observed at 

1.2, 0.80 and 0.20 V in the differential capacity plot shown in Figure 5.4 (a)’. The 

reactions occurring at 1.2 and 0.8 V were attributed the irreversible reactions of 

SnP2O7 reduction as expressed in Equations (5.2) and (5.3), which is similar with the 
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reactions occurring for mesoporous SnP2O7 anodes. This differential capacity plot 

corresponds with the findings obtained from the MP500 cyclic voltammogram in 

Figure 5.2 (a). The reversible Li+ insertion and extraction reaction peaks which were 

located at 0.20V and 0.52V, respectively in this plot are also similar with that 

obtained from the corresponding cyclic voltammogram.  

 

 

 

 

 

 

 

 

 

 

 

For non-mesoporous TP500 anode, there is only one cathodic peak observed at 

1.22V in the differential capacity plot shown in Figure 5.4 (b)’. This is similar with 

that obtained from the corresponding cyclic voltammogram at 1.23 V as shown earlier 

in Figure 5.2 (b). This peak is attributed to the reduction of SnP2O7 to form lithium 

phosphate phases (Li3PO4 and LiPO3) and Sn particles, as expressed earlier in 

Equation (5.1). The reversible Li-Sn alloying and de-alloying reaction of TP500 

anode are represented by the pair of peak at 0.18 V and 0.58 V, which was also 

similar with that found in the corresponding cyclic voltammogram.  
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Figure 5.4: First cycle data on charge discharge curve and differential capacity 
plot for non-mesoporous SnP2O7 anodes, MP500 and TP500. 
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The voltage profiles of the first cycle and the differential capacity plots observed 

for all the mesoporous SnP2O7 samples basically showed similar electrochemical 

behavior profile, as displayed in Figure 5.3. The main difference lies in the measured 

capacity value. Based on Figures 5.3 (a)-(d), when the anode was discharge to 0.0 V, 

the discharge capacity value was obtained and accordingly when the anode was 

charged to 2.0 V, the charge capacity was obtained. Table 5.1 summarizes the first 

cycle charge discharge capacity data of the SnP2O7 anodes cycled between 0.0-2.0V. 

Among the six different SnP2O7 anodes tested, MP400 delivers the highest initial 

discharge capacity (1650 mAh/g) whereas the lowest discharge capacity was obtained 

from MP500 (705 mAh/g).  

 

 

Idota et al. considered the reaction between lithium and the tin composite oxide 

anode as a reversible intercalation reaction and that it does not involved the formation 

of tin [24]. Their explanation could not easily resolve the large amount of lithium that 

is taken up by tin (4.4 moles of Li per mole of Sn) as most intercalation systems 

typically involve ½ to 1 mole of Li per mole of Sn. Courtney and Dahn have preferred 

to consider the presence of LixSn alloys and their inter-conversions to be responsible 

for charge storage and withdrawal [25], [26]. They proposed that the reversible Li-Sn 

alloying and de-alloying reaction, as represented by Equation (5.4) gives the anode 

material its reversible charge storage capacity [25], [26]. In theory, 4.4 Li atoms can 

Anode 1
st
 cycle discharge 

capacity (mAh/g) 

x, (LixSn) 1
st
 cycle charge 

capacity (mAh/g) 

Irreversible 

losses (%) 

MP200 897 4 182 79.7 

MP300 1010 4.5 350 65.3 

MP400 1650 7.3 590 64.2 

MP4004 1240 5.5 508 59 

MP500 705 3.1 150 78.7 

TP500 821 3.6 275 66.5 

Table 5.1: Initial charge discharge capacity of SnP2O7 anodes cycled       
between 0.0-2.0V 
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be electrochemically inserted reversibly per atom of Sn to form the Li4.4Sn alloy, 

which would give the tin anode a maximum theoretical capacity of 993 mAh/g [25], 

[26]. The calculation of the theoretical capacity has been explained earlier in Chapter 

Two (section 2.4.1).    

For this investigation, it is assumed that the charge consumed during the 

discharging process (Li insertion process) is for the reduction of Sn4+ to Sn and Li+ to 

Li to form LixSn alloy. The equivalent moles of Li+, x to form the alloy, LixSn for all 

the SnP2O7 anodes tested as shown in Table 5.1 was calculated using the discharge 

capacity obtained in the first cycle based on the alloying theory outlined by Courtney 

and Dahn [25], [26].   The other mesoporous SnP2O7 samples such as MP300, MP400 

and MP4004 performed better in terms of accommodating higher amount of Li+ as 

reflected by the higher initial discharge capacities and x number of Li+ moles to form 

the LixSn alloy as observed from Table 5.1.  
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5.4 Ex-Situ Analysis on Mesoporous Tin Phosphate Anode Using Infrared 

Techniques 

The rechargeability of tin phosphate is based on the reversibility in electrochemical 

reactions involving structurally related phases of Li-Sn alloy.  The alloy phase is 

believed to be dispersed in a phosphate matrix consisting primarily of the 

decomposition products formed during the first Li insertion reaction. It was proposed 

by Xiao et al. that tin phosphate decomposes to lithium phosphate phases (Li3PO4 and 

LiPO3) and Sn particles upon reaction with Li, as expressed in Equation (5.1) [7]. It is 

essential to investigate the presence of irreversible phosphate matrix that was formed 

during the reduction of SnP2O7 upon reaction with Li in order to determine its 

influence on the reversibility of the synthesized SnP2O7 anodes as analyzed based on 

results from cyclic voltammograms, initial charge-discharge curves and differential 

capacity plots which was covered in sections 5.2 and 5.3, above.  In order to explain 

the processes of Li insertion into the SnP2O7, changes in the structure of the anode 

during the discharge process is investigated by means of infrared techniques. Ex-situ 

analysis was not carried out with XRD technique mainly because the mesoporous 

anode structure is largely amorphous and based on literatures [7], [25], [26], [36], the 

lithium phosphate phases are also amorphous.  

Infrared spectroscopy is often used to characterize solid phosphates based on 

vibrations of the P-O bonds. In this study, ex-situ analysis on the discharged and 

charged mesoporous SnP2O7 was carried out by means of Fourier Transformed 

Infrared (FTIR) technique. Based on analysis on cyclic voltammograms and 

differential capacity plots for the SnP2O7 anodes, it was found that the peak and 

plateau observed around 1.1 - 1.2 V is related to the Li+ insertion into the anode 

causing reduction of the SnP2O7 to form lithium phosphate phases and Sn particles. 

Therefore, it is interesting to analyze the structure of the SnP2O7 anode at the state of 

discharge around 1.1 V. The mesoporous SnP2O7 anode, MP400 was chosen for this 

analysis as it delivers the best initial charge-discharge performance. The term 

lithiation shall be used in this context to refer to the state where the anode structure is 

inserted with Li and accordingly the term delithiation refers to the state of the anode 
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when Li+ are extracted out. FTIR analysis was carried out on pristine MP400 anode, 

MP400 anode discharged to 1.1 V, MP400 anode discharged to 0.0 V and MP400 

anode charge to 2.0 V. Attempts to extract information from FTIR spectra of freshly 

discharged and charged anode samples are tough due to reactions of the electrolyte 

with the atmosphere and to the presence of solvent used to support the electrolyte in 

the cells (EC and DMC) as they could mask the possible signals of the phosphate 

phase.  The charged and discharged cells were disassembled in a glove-box, where the 

anode was removed and soaked in methanol to remove traces of the electrolyte 

solvent and then left to dry. Once dried, the anode was taken out of the glove box 

where part of the anode material was scraped out and prepared in KBr pellets under 

ambient conditions.  

Figure 5.5 shows the FTIR spectra of the lithiated and delithiated MP400 anode. 

Initial FTIR spectra analysis showed relatively weak absorption bands owing to the 

presence of the acetylene black and polytetrafluoroethylene from the teflonized 

acethylene black binder around spectral region of 600 cm-1 and these were of less 

significant importance therefore the further FTIR spectra analysis were normalized 

from above 600 cm-1 to eliminate these signals.  The features in the frequency range 

from 1300 to 700 cm-1 are of greater diagnostic value as they encompass the 

stretching of PO3 terminal group and the ‘P-O-P’ bridge in the pyrophosphate, >��EC
 

anion [63]-[65]. This FTIR analysis could only deduce the existence of phosphate 

phases whereas the appearance of Sn and Li-Sn alloys are not easily identifiable.  

In Figure 5.5 (a), three main bands dominate the spectrum for pristine MP400 

anode. Using characteristics frequencies of phosphorous compounds found in 

literature [63]-[65] the strong band at 742 cm-1 can be assigned to the symmetric 

stretching of bridging P-O-P, νs(P-O-P). The next band at 1007 cm-1 is assigned to the 

symmetric stretching vibration of PO3 units, νs(PO3) [63]-[65].  The narrow band at 

1142 cm-1 is related to the asymmetric stretching of PO3 units, νas(PO3) [63]-[65]. All 

of these bands are characteristics of the  >��EC
 anion.  
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The spectrum for the MP400 anode discharged at 1.1 V can be seen in Figure 5.5 

(b). The small, narrow bands at 1163 and 857 cm-1 are attributed to traces of lithium 

alkylcarbonate from the electrolyte residuals that remains in this lithiated MP400 

anode [61]. The band around 1130 cm-1 exhibited a doublet appearance resulting from 

the PO3 vibration split. This doublet appearance may be due to the unequal 

environments of the PO3 groups in the anode structure [63] and is assigned to the 

asymmetric stretching, νas(PO3). The bands at 1130 and 1002 cm-1 are ascribed to the 

asymmetric and symmetric stretching of PO3 units, respectively. They are similar with 

the bands observed in the spectrum for pristine MP400 at 1142 and 1007 cm-1 as 

Figure 5.5: FTIR spectra of (a) pristine MP400 anode, (b) MP400 discharged 
to 1.1 V, (c) MP400 discharge to 0 V and (d) MP400 charged to 2.0 V. 
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shown in Figure 5.5 (a), except that in this spectrum displayed in Figure 5.5 (b), these 

bands have reduced intensities and have moved slightly toward the lower frequency 

upon the progression of the lithiation process. The symmetric stretching, νs(P-O-P) is 

observed around 739 cm-1 [63]-[65]. A new band around 940 cm-1 appears for this 

lithiated MP400 anode. This band is assigned to the symmetric stretching of the PO4, 

νs(PO4) [63]-[65].   Based on claims from literatures [7], [25], [36], tin phosphate 

based anode is said to be reduced to form the lithium phosphate phases (Li3PO4 and 

LiPO3) and Sn particles upon initial reaction with Li. The changes and presence of 

bands related to the P-O groups observed in this spectrum is due to the changing of 

the coordination from >��EC
 to  >�C@
 and >�@
. This spectrum showed strong 

evidence that upon reaction with Li, SnP2O7 is reduced to form Li3PO4 and LiPO3 

around 1.1 V.  

The spectrum for the fully discharged MP400 anode at 0 V is shown in Figure 5.5 

(c). Apart from the bands at 1170 and 858 cm-1 which are attributed to the lithium 

alkylcarbonate residuals, there are three bands observed for the phosphate groups at 

983, 910 and 739 cm-1. The band at 983 cm-1 was assigned to the symmetric 

stretching, νs(PO3) [63]-[65]. The band at 910 cm-1 is ascribed to the symmetric 

stretching of the PO4, νs(PO4) [63]-[65]. When these two bands are compared to their 

identical counterparts in the spectrum shown in Figure 5.5 (b), it was observed that 

these two bands have moved to the lower frequency region implying a decrease in 

bond order of the terminal P-O bonds. The symmetric stretching vibration, νs(P-O-P) 

with a broader band profile remains the same at around 739 cm-1 [63]-[65].  

The spectrum for the charged MP400 is shown in Figure 5.5 (d). It was observed 

that the characteristics bands for  >��EC
 anion around 1142, 1007 and 742 cm-1 

originally displayed in Figure 5.5 (a) for the pristine MP400, are no longer apparent in 

the spectrum in Figure 5.5 (d), attesting to the destruction of the >��EC
 anion upon 

cycling. This spectrum only exhibited a band around 979 cm-1 which was assigned to 

the symmetric stretching of >�@
, νs(PO3) [63]-[65]. The bands at 853 and 1170 cm-1 

are referred to the alkylcarbonate groups from the electrolyte residuals. 
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To aide explanation on the phosphate phases formed during the electrochemical 

charging and discharging of the mesoporous SnP2O7 anode, interpretations of IR 

spectral features in the IR investigation on a series of mixed zinc alkali pyrophosphate 

glasses by A.M. Efimov [65] are applied. The IR spectra were interpreted based on 

the equilibrium between the >��EC
 anions and their disproportion products in the melt 

during the glass formation. The equilibrium equation is given as below; 

 �>�@ R  � R  >�@%C
  S    >�C@
 �  >�@
         (5.5) 

For SnP2O7 anode, the above equilibrium is shifted to the right when it first reacts 

with Li. This change in environment is indicated by a decrease in intensity of the 1142 

and 1007 cm-1 band (PO3 asymmetric and symmetric stretch, respectively) in the 

pristine MP400 and its slight shift towards the lower frequency at 1130 and 1002 cm-1 

as observed in Figure 5.5. (b). Additional evidence for displacing the equilibrium to 

the right is the appearance of the band at 940 cm-1 which is assigned to the symmetric 

stretching of PO4, νs(PO4). The findings from this FTIR spectrum confirms the 

analysis made based on cyclic voltammograms and differential capacity plots from 

sections 5.2 and 5.3 which suggested that upon initial reaction with Li, the >��EC
 

anion of the SnP2O7 anode material is dissociated to form the irreversible Li3PO4 and 

LiPO3. 
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5.5 Comparison on Cycling Behavior between Mesoporous and Non-

Mesoporous Tin Phosphate Anodes 

The cycling performance of the amorphous, mesoporous SnP2O7 anodes (MP200, 

MP300, MP400 and MP4004) were compared with that of the semi-crystalline and 

crystalline non-mesoporous SnP2O7 (MP500 and TP500) and the graphite anode as 

well. Graphite is currently the most common anode material used in the commercial 

Li-ion battery. In this part of the study, the graphite anode was assembled in the same 

manner as the synthesized SnP2O7 anodes, based on a lithium half-cell configuration 

as described in Chapter 3 (section 3.5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: Discharge capacity of mesoporous SnP2O7 anodes (MP200, MP300, 
MP400 and MP4004), non-mesoporous SnP2O7 anodes (MP500 and TP500)      

and graphite anode. 
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Figure 5.6 shows the specific discharge capacities (per gram of active anode 

material) obtained from the mesoporous and non-mesoporous SnP2O7 anodes along 

with graphite anode, when cycled between 0.0 to 2.0 V with a constant current of 0.5 

mA for 10 cycles. Variation in discharge capacity with cycle number for all the 

anodes tested showed that the best cycling performance with the highest value in 

discharge capacity was observed for MP400 anode. This was duly followed by 

MP4004, MP300, graphite, TP500, MP200 and MP500 anodes. Tables 5.2 and 5.3 

summarize the discharge and charge capacity collected for all the SnP2O7 anodes and 

the graphite anode from the first to the tenth cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cycle 

no. 

MP200 MP300 MP400 MP4004 

D C D C D C D C 

1 897 182 1010 350 1650 590 1240 508 

2 195 145 391 311 728 541 685 498 

3 148 110 332 309 620 491 530 407 

4 125 99 307 280 512 423 433 381 

5 116 92 273 267 446 382 320 311 

6 108 88 251 248 385 340 282 270 

7 98 82 213 206 341 325 265 233 

8 91 77 176 170 333 298 238 204 

9 83 71 156 149 317 283 213 185 

10 77 68 122 119 295 267 197 179 

Table 5.2: Discharge and charge capacities for MP200, MP300, 
 MP400 and MP4004 anodes 
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The mesoporous SnP2O7 (MP400) shows remarkably high initial Li storage 

capacity of 1650 mAh/g. Both MP400 and MP4004 delivered relatively high 

reversible charge capacity of 590 mAh/g and 508 mAh/g, respectively when charged 

to 2.0 V. This shows that the lamellar, mesoporous SnP2O7 synthesized could host 

larger amount of Li+ in-between their interlayer spacing. The reversible charge 

capacity in the first cycle indicates how much Li+ could be extracted from the SnP2O7 

anodes. All the SnP2O7 anodes exhibited enormous loss in irreversible capacities in 

the first cycle. MP400 anode suffered a loss of 1060 mAh/g in irreversible capacities 

whereas MP4004 lost about 732 mAh/g. First cycle irreversible capacity losses 

experienced by MP300 and MP200 are 660 mAh/g and 715 mAh/g whereas non-

mesoporous anodes of MP500 and TP500 suffered losses of 555 mAh/g and 546 

mAh/g, respectively. A higher Li+ storage capacity is an indication of additional loss 

of irreversible capacity.  Although the graphite anode delivered low initial discharge 

capacity of 188 mAh/g when compared to the SnP2O7 based anodes, it only 

Cycle 

no. 

MP500 TP500 Graphite 

D C D C D C 

1 705 150 821 275 188 153 

2 135 88 278 251 148 145 

3 117 83 236 220 139 136 

4 105 79 205 194 133 129 

5 90 72 186 180 130 127 

6 84 68 165 160 127 125 

7 76 65 136 135 122 121 

8 78 66 115 115 117 116 

9 75 65 100 100 115 113 

10 74 63 88 78 113 111 

Table 5.3: Discharge and charge capacities for 
 MP500, TP500 and graphite anodes 



 

  

96 
 

experienced a loss about 35 mAh/g in irreversible capacities in  the first cycle as 

observed from Table 5.3.  

The large losses in irreversible capacity in the first cycle are caused by formation 

of SEI passive film and the reaction between Li and SnP2O7 to form irreversible 

lithium phosphate phases and metallic Sn. As have been discussed earlier in section 

5.2-5.3, for amorphous, mesoporous SnP2O7 anodes, the irreversible reaction follows 

the reaction as shown in Equation (5.2) and (5.3). For non-mesoporous, crystalline 

SnP2O7 anodes however, the irreversible reaction takes place according to Equation 

(5.1).  Findings obtained from cyclic voltammograms from Figure 5.1 and 5.2 support 

that the initial irreversible reduction reaction contributes to large losses in capacity as 

indicated by the large gap observed between the irreversible peaks in the first cycle 

with the curves in subsequent cycles. Cyclic voltammogram results also pointed out 

that electrolyte decomposition on the active anode surface may also add to the first 

cycle capacity loss. Graphite anodes do not experience large initial losses in 

irreversible capacities like tin-based anodes because they have different 

electrochemical reaction mechanism with Li+. The working mechanism of graphite 

anode is based on the intercalation concept whereby Li+ can be reversibly intercalated 

and de-intercalated from the graphite host during charging and discharging process 

and this reaction does not involves formation of irreversible phases [16]. When tin-

based anode materials react with Li+, they are first reduced to form irreversible phases 

and their reversible reaction is based on the concept LixSn alloying and dealloying 

[25], [26]. The irreversible losses experienced by graphite anode are due to the 

formation of the passive SEI film upon interaction with the electrolyte [16]-[18].  

Upon further cycling, capacity fading was evident for all the SnP2O7 anodes as 

displayed in Figure 5.6. The reversible discharge capacity gradually decreases from 

the second cycle to the tenth cycle based on the data shown in Tables 5.2 and 5.3. 

Upon reaching the 10th cycle, a discharge capacity of 295 mAh/g was retained for 

MP400. This value is still comparatively higher than that obtained from the other 

synthesized anodes such as MP200, MP300, MP4004, MP500 and TP500. The 

graphite anode in this experiment retained about 113 mAh/g upon the 10th cycle with 
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minimal capacity fading during cycling. Although the graphite anode has a much 

lower discharge capacity in the first cycle when compared to all the SnP2O7 anodes in 

this experiment, it did not exhibit rapid capacity fading upon reaching the 10th cycle. 

The stable cycling behavior and low capacity fading rate are the main advantages 

graphite anodes have over tin-based anode materials [16], [17].  

The detrimental effects of tin aggregation on capacity fading shall be explained 

based on investigations carried by Dahn’s group on tin based anode host materials 

[25], [26], [62]. The discharging and charging process which involves the insertion 

and extraction of large amount of Li+ causes the tin based anode host material to 

expand and contract. This causes volume changes in the host material that induces 

mechanical stresses which leads to rapid decay in mechanical stability. The anode 

then suffers from cracking and pulverization, resulting in rapid capacity loss and 

failure after a few cycles [25], [26]. One potential solution to solve the cracking 

problem is to embed active tin based anode material in an inactive matrix to buffer 

volume changes.  In this regard, investigation on the electrochemical behaviour of 

glassy tin based materials (SnO-B2O3-P2O5) where the glass network formers, B2O3-

P2O5 acts as the inactive matrix was conducted by  Dahn et al. [62]. Although this 

investigation has shed light on some aspects of the structural changes during 

reversible Li insertion and extraction reaction, significant capacity fading upon 

cycling has been observed. Based on their analysis on the cycled tin oxide composite 

glasses anode using the ex-situ XRD method, they suggested that the loss of capacity 

upon cycling with this anode material is associated with the aggregation of Sn atoms 

to form clusters in the anode material [62]. As the repeated reversible reaction of Li 

proceeds with the anode, these clusters grow in size resulting in large volume 

changes. The volume change imparts large mechanical strain on the anode material 

which can lead to cracking and such morphological changes cause partial 

disconnection or full disconnection in electrical and ionic contacts between the anode 

particles [19], [25], [26], [62]. In the latter case, active anode material is lost thus 

resulting in poor charge-discharge cycling performance. In the glassy (SnO-B2O3-

P2O5) anodes, the atoms other than Sn such as Oxygen (O), Boron (B) and 
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Phosphorus (P) do not appear to participate in the reversible electrochemical reaction 

[62]. These atoms that remain inert during the reversible electrochemical redox 

reaction are known as spectator atoms [62]. The presence of these spectator atoms are 

said to hinder the motion of Sn particles to form aggregates based on results presented 

by Dahn et al. that showed that the rate of tin aggregation and capacity fade decreases 

with increasing number of spectator atoms [62]. Tin aggregates slower and into the 

smaller clusters in anode material with the most number of spectator atoms [62]. This 

is probably because these spectator atoms form a matrix that disperse tin initially and 

keeps tin atoms far apart. Thus, the Sn particles have to move over greater distances 

to aggregate into clusters. However, the increased of spectator atoms will result in 

lower contents of active Sn particles for the reversible Li-Sn alloying and de-alloying 

reaction. There is a trade-off between good cyclability and large specific capacity 

when tin phosphate is used as anode material instead of tin oxide.  

Upon initial reaction with Li, the structure of both mesoporous and non-

mesoporous SnP2O7 anode was altered to form lithium phosphate matrix that 

dispersed the Sn particles. The lithium phosphate (Li3PO4 and LiPO3) phases formed 

in the initial cycle were expected to play a similar role as the lithium oxide 

irreversible phase (Li2O) in tin oxide systems, namely as a glue that keeps the tin 

alloy particles mechanically connected and retard aggregation of Sn particles into 

large agglomerates during large volume changes in alloying and de-alloying [25]. 

However, it was discovered through this study these matrices alone were not able to 

minimize the rate of Sn atoms clustering upon further cycling thus resulting in 

capacity fading.  

Other factors that contribute to capacity fading upon cycling are the usage of Li 

metal as counter electrode which forms dendritic deposition that could contaminate 

the electrolyte or the break-off of the solid electrolyte interface (SEI) passive film 

during charge and discharge [66]. Volume changes that cause anode material to crack 

will be followed by filming of the passive film. Whenever fresh surface of active 

material gets into contact with the electrolyte new passive film formation takes place 

and the cracked film is repaired. As a consequence, filming reactions will extend over 
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a number of cycles and this will cause gradual losses in capacity as Li+ are consumed 

irreversibly for this formation [66]. Based on the capacity data for SnP2O7 anodes 

from the second cycle onwards in Tables 5.2 and 5.3, it was noticed that the reversible 

charge capacity is much lower compared to the discharged capacity of the same cycle. 

This indicates that not all of the Li+ inserted for the Li-Sn alloying formation can be 

efficiently removed during the de-alloying process upon charging to 2.0 V. Some Li+ 

are trapped in the structure as LixSn alloys (where x is much lower than 4.4) and they 

remain electrochemically inactive towards further Li reaction. The capacity which can 

actually be cycled decreases as the remaining amount of active Li+ for the reversible 

Li-Sn alloy formation is reduced. 

It was mentioned earlier in section 5.2 that the cyclic voltammetric response of all 

the mesoporous SnP2O7 is not influenced by the difference in mesostructure. The 

cycling performance of the SnP2O7 on the other hand was found to be influenced by 

the structural features of the SnP2O7 material. The mesoporous SnP2O7 anodes 

performed averagely better than the non-mesoporous SnP2O7 anodes as observed from 

Tables 5.2 and 5.3. The best charge-discharge performance was contributed by 

MP400 which delivered the highest capacity. This promising performance is believed 

to be due to the complex mesostructure from the SDS synthesized SnP2O7 that was 

formed upon calcination at 400°C that enabled this anode material to host a large 

number of Li+ during the discharging process and effectively extracting it upon the 

charging process. The structure of the anode material has an important influence in 

facilitating the Li+ insertion and extraction from the anode host material during the 

discharging and charging process. 
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5.6 Ex-Situ FESEM Analysis on Cycled Mesoporous and Non-Mesoporous 

Tin Phosphate Anodes  

As discussed in the previous section 5.5 above, the capacity fading observed for both 

mesoporous and non-mesoporous SnP2O7 anodes were attributed to the detrimental 

effects of Sn aggregates growth during charge-discharge cycling which caused 

considerable volume changes in the anode that resulted in fragmentation and 

disintegration of the anode material. The morphologies of the cycled SnP2O7 anodes 

were analyzed in order to substantiate this claim cited in literatures [25], [26], [62], 

that volume change effects resulting in morphological degradation causes the anode to 

lose its reversibility and capacity upon further cycling. Ex-situ analysis on the cycled 

anodes were carried out using FESEM on pristine SnP2O7, SnP2O7 anode after one 

cycle and SnP2O7 anode after 10 cycles. Figure 5.7 shows FESEM micrographs 

magnified at 10,000 times obtained for mesoporous MP400 anodes and Figure 5.8 

shows the micrographs for non-mesoporous TP500 anodes.  

Both anode material, MP400 and TP500 consist of a mixture of the active anode 

material and teflonized acetylene black as the conductive binder. The surface 

morphology of the pristine, uncycled MP400 and TP500 anodes are shown in the 

FESEM micrographs in Figures 5.7 (a) and 5.8 (a), respectively. Pristine MP400 

anode displayed an image of interconnected particles in a porous network whereas 

TP500 displayed compact, rough surface features. 

After both MP400 and TP500 cells were subjected to one cycle of discharging and 

charging, the cell was disassembled and the anode was taken out and dried before 

placing under FESEM examination. Ex-situ analysis on MP400 anode surface 

revealed segregation of particle aggregates with some string-like morphology 

scattered over the surface as shown in the FESEM image in Figure 5.7 (b). The 

segregation of aggregates were held further apart in the TP500 anode after one cycle, 

as observed in the FESEM image in Figure 5.8 (b). The string-like morphology 

observed for both anodes are ascribed to the crystals of the dried residual electrolyte. 

The segregation effects for both MP400 and TP 500 are attributed to the formation of 
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the irreversible lithium phosphates matrices and the after effects of Li+ extraction 

upon charging to 2.0 V. The voids and isolation of aggregates are wider for that 

observed for TP500 anode compared to MP400 anode. This is not desirable since it 

signifies connectivity loss between particles which is likely to be one of the causes of 

decreased capacity of the SnP2O7 anode upon cycling.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: FESEM images of MP400 anode (a) before cycling, (b) after 1 cycle     
and (c) after 10 cycles. 
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Figure 5.8: FESEM images of TP500 anode (a) before cycling, (b) after 1 cycle       
and (c) after 10 cycles. 
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Significant changes were observed on the surface of both anodes cycled up to 10 

cycles. The FESEM images revealed micro-cracks for both MP400 and TP500 anodes 

after 10 cycles, as displayed in Figures 5.7 (c) and 5.8 (c), respectively. The fractures 

displayed by the cycled TP500 anode was more pronounced and larger by several 

micrometers thick than that observed for MP400. The fracture propagates in all 

directions, indicating that the whole expansion and contraction process occurs in three 

dimensions (x, y and z). The process where Li+ is inserted into the anode host material 

causes the bulk structure to expand and upon removal of Li+, subsequent contraction 

follows. During cycling, electrochemically active Sn particles aggregate to form 

sequentially larger agglomerates which cause the bulk structure to become 

disproportioned. The repeated cycling process eventually led to cracking and 

pulverization of the anode material. This morphology degradation causes active Sn 

particles to become detached electrically and ionically thus resulting inrapid capacity 

fading. Observation on FESEM images of MP400 powder in section 4.6 from Chapter 

Four showed that MP400 comprises of nanoparticles of around 30 nm. The cracking 

and pulverization effects are less extensive in the case of MP400 anode because the 

nanometer sized cavities within the anode material could absorb some extent of 

volume changes during cycling.  

The ex-situ FESEM analysis on the cycled anodes supports the earlier assumption 

that the capacity fading upon cycling is due to Sn particles agglomeration that induced 

undesirable mechanical degradation to the SnP2O7 anode. The morphology 

degradation for MP400 was less extensive when compared to TP500 which explained 

the higher retention of reversible capacity obtained MP400 as shown in Table 5.2. 

The mesoporous structure of SnP2O7 plays an important role as buffer structures to 

alleviate large volume changes.  
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5.7 Effects of Voltage Cutoff on Charge-Discharge Performance of 

Mesoporous Tin Phosphate Anode 

The previous section 5.5 covers the electrochemical behavior of all the fabricated 

mesoporous and non-mesoporous SnP2O7 anode cycled between 0.0 V to 2.0 V. The 

chosen potential interval is quite large but it provides a good starting point for further 

experimentation to investigate the effect of different upper voltage cutoff on the 

charge-discharge performance. It was reported that the reversibility of tin oxide based 

materials is strongly related to the operating voltage range [25], [26], [62]. For a more 

focused study, the mesoporous SnP2O7 sample MP400 was singled out for charging 

and discharging tests within different potential range. Three electrochemical cells 

with MP400 as anode were cycled separately at a constant current of 0.5 mA in three 

different potential ranges; between 0-1.2 V, 0-1.6 V and 0-2.0 V. Voltage profiles of 

the three cells for 10 cycles are shown in Figure 5.9.  

 The initial discharge capacities obtained for the different MP400 cells when 

discharged from open circuit voltage (OCV) to 0 V showed different values, as 

observed from Figures 5.9 (a)-(c). The first cell which was discharged from an OCV 

of 2.97 V to 0 V, delivers an initial capacity of 1418 mAh/, as shown in Figure 5.9 

(a). The second cell which was discharged from an OCV of 2.88 V to 0 V exhibited a 

discharge capacity of 1360 mAh/g as observed from Figure 5.9 (b). Figure 5.9 (c) 

shows the third cell which was discharged from an OCV of 3.10 V delivers a 

discharge capacity of 1650 mAh/g. This third cell was the same cell studied in the 

above Section 5.5. Although all three cells consists of the same MP400 material and 

were all discharged to 0 V initially, they each have different OCV values and 

therefore delivered different initial discharge capacity values. The different OCV 

values are due to ohmic polarization arising from contact between cell casing and 

anode material and also from the connection between the cell to the battery cycler 

equipment. The difference in initial specific discharge capacity (per gram of active 

MP400 material) obtained for all three cells was also caused by some minor 

difference in active material weight used in fabricating the electrodes. As only a small 

amount of SnP2O7 powder  (~ 20 mg) was used to fabricate the anode, it is difficult to 
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fabricate all the anodes with identical active material weight due to the human factor. 

The anodes fabricated here have active material weight which varies around 20-22 

mg. 

This investigation concentrates on the effect of the upper voltage cutoff value on 

the reversible charge capacity of the MP400 anodes. Subsequent Li+ extraction 

reaction of the first cell up to 1.2 V returned a reversible charge capacity 580 mAh/g, 

as observed from Figure 5.9 (a). The second cell when charged to 1.6 V exhibited a 

reversible capacity of 480 mAh/g as observed from Figure 5.9 (b). Upon charging to 

2.0 V, the third cell showed a reversible charge capacity of 590 mAh/g indicated in 

Figure 5.9 (c). Although the reversible capacity of the third cell is near to that 

obtained for the first cell charged to 1.2 V, the loss experienced by the third cell is 

greater. Irreversible capacity losses here refer to the difference between Li+ insertion 

capacity during discharging with the Li+ extraction capacity during charging. The first 

cell experienced irreversible losses of about 848 mAh/g (59.4%) whereas the third 

showed losses about 1060 mAh/g (64.2%). The second cell charged to 1.6 V 

experienced first cycle losses of about 880 mAh/g (64.7%). The causes that contribute 

to the first cycle losses have been discussed extensively in the above sections 5.2, 5.3 

and 5.5. 

For clarity of presentation in this discussion, the corresponding discharge 

capacities computed from the voltage profile shown in Figure 5.9 is plotted versus 

cycle number, as shown in Figure 5.10. The capacities of the first cycle were not 

plotted here because it contains a large part in irreversible capacities associated with 

the initial irreversible formation of the passive film and lithium phosphate matrix that 

is irrelevant in investigating the effect of upper voltage cutoff value on the 

reversibility of the mesoporous SnP2O7 anode. 
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Figure 5.9: Voltage profile for MP400 cycled between (a) 0-1.2 V, (b) 
0-1.6 V and (c) 0-2.0 V. 
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As observed from this Figure 5.10, there is noticeable difference in the decrease 

of discharge capacities with increasing cycle number, for the three cells that were 

cycled within potential range. A capacity retention index, R10/2 shall be used herein to 

help quantify the cycling stability of the cells cycled within different potential range. 

R10/2 is defined as the ratio of discharge capacity from the tenth cycle to the capacity 

of second cycle, as depicted below; 

 �-)-"��. T���#���# �#$�
, T	V �⁄ �   XY0Z[ \;\]Y ^_`\[abcY \aLa\_Z; 
dY\e0^ \;\]Y ^_`\[abcY \aLa\_Z;  (5.6) 

Cells that cycled efficiently should therefore have R10/2 equals to one. When MP400 

was cycled within 0-1.2 V, the R10/2 obtained was 0.54 whereas for that cycled within 

0-1.6 V has a R10/2 of 0.45. The MP400 cycled between 0 to 2.0 V has a R10/2 of 0.41, 

which is the lowest of all three cells cycled. Despite exhibiting relatively high 

reversible discharge capacity upon the second cycle, this cell displayed rapid capacity 

fading upon reaching the 10th cycle. These results indicate that the mesoporous 

SnP2O7 anode is quite sensitive to potential limits of cycling, with too wide a voltage 

Figure 5.10: Discharge capacity vs. cycle number of MP400 anode     
cycled between 0-1.2V, 0-1.6 V and 0–2.0 V. R10/2 denotes                           

the capacity retention index. 
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region leading to more rapid capacity fading. When the cells are cycled for complete 

removal of Li+ at higher upper voltage cutoff, they displayed unstable cycle behavior. 

The unstable cycle behavior is ascribed to the aggregation of tin clusters which 

deteriorates the discharge characteristics as the cycle number increases. Differential 

plots are sensitive detectors for changes in the voltage profiles from cycle to cycle and 

the constancy of the plots is indicative of good reversibility of the anode material in 

repetitive charge and discharge operations. In order to analyse the cell’s performance 

and the influence of upper voltage cutoff on aggregation of Sn particles during 

cycling, differential capacity plots of the cells cycled within the different potential 

range were constructed based on the second and tenth charge-discharge cycle data, as 

shown in Figure 5.11. 

Differential capacity plot for the second cycle for MP400 cycled within 0-1.2 V 

showed a broad discharge peak around 0.15 V indicative of the existence of Li-Sn 

alloy phases but when the anode reaches the tenth cycle, the peak has a jagged 

feature, as observed from Figures 5.11 (a) and (a’). The smoother peak in the second 

discharge cycle indicates the Sn particles are finely dispersed in the Li3PO4 and LiPO3 

matrices whereas the rougher peak profile upon the tenth cycle indicates the Sn 

particles has formed aggregates. The formation of aggregates implies a fade in 

capacity. The differential capacity plot at the tenth cycle for the cell cycled within 0-

2.0 V as shown in Figure 5.11(c’) displayed more pronounced disordered peak profile 

when compared to the differential capacity plot at the tenth cycle for cell cycled 

within 0-1.2 V and 0-1.6 V, as depicted in Figures 5.11 (a’) and (b’), respectively. 

These peaks indicate rapid aggregation of metallic Sn clusters. The higher voltage 

cutoff of 2.0 V certainly accelerated this process.  Disordered peak profile was 

observed for the cell cycled within 0-1.6 V, although they were not developed as 

chaotic as that noticed for the cell cycled within     0-2.0 V. It appears that the peaks 

are the sharpest when the upper voltage cutoff is higher. The capacity fade of MP400 

is the most rapid when cycled between 0 V to 2.0 V. The strong peaks in differential 

plots are undesirable since they indicate phase changes. These changes are caused by 

the aggregation of tin atoms into larger and larger clusters with cycle number. As 
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regions of tin clusters grow larger, bulk Li-Sn alloy phases will begin to form and the 

coexistence regions between them will be observed as strong peaks in the differential 

capacity [25], [26], [62]. Coexistence of bulk Li-Sn alloy phases within the same 

particles creates a phase boundary between adjacent phases which have different 

crystal structures and Li:Sn ratios [25], [26], [62]. As a result, regions within a 

particle become detached (electrically and ionically) and become inactive as a lithium 

alloy material [25], [26], [62]. The fragmentation of the alloy based anode materials is 

believed to be the source of poor reversibility.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: Differential capacity plots of MP400 cycled within specified voltage 
range; (a) 2nd cycle (0-1.2V), (a’) 10th cycle (0-1.2V); (b) 2nd cycle (0-1.6V),            

(b’) 10th cycle (0-1.6V) and; (c) 2nd cycle (0-2.0V) and (c’) 10th cycle (0-2.0V).                  
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The cycling performance of the mesoporous SnP2O7 is sensitive to the choice of 

voltage limit. Good cycling behavior with stable differential capacity plots was 

obtained if the voltage was cutoff at 1.2 V. When the voltage cutoff was raised to 1.6 

V or 2.0 V, additional peaks appeared in the differential capacity plots. The more 

abrupt changes in the differential capacity plots are the results of increased 

aggregation of tin. The aggregation would cause fragmentation and crack propagation 

in the material leading to eventual capacity losses. It was reported for tin oxide based 

anodes that at potential cutoff higher than 1.5 V have caused reformation of unalloyed 

Sn and the destruction of the Li2O matrix which results in the loss of protection 

against volume changes in the charge and discharge [25]. The reformation of Sn 

particles creates problems because Sn is ductile and has a low melting point, 

suggesting good atomic mobility at room temperature [25]. By contrast, the Li-Sn 

alloy phases all have higher melting point than Sn and are more brittle [25]. Thus, 

charging to the limit of metallic tin (> 1.2 V) may aid the Sn aggregation process. 

Once the aggregates grew too large, two coexisting phase regions are observed, along 

with volume mismatch resulting in capacity fade [25]. These are the factors that 

contribute to the rapid decrease in cyclability and poor capacity retention of MP400 

anodes cycled between 0 to 2.0 V.   
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5.8 Cycling Profile of Mesoporous Tin Phosphate Anode 

As discussed in section 5.7, capacity fading was least significant when MP400 was 

cycled within the potential limit of 0 - 1.2 V. Galvanostatic cycling test was extended 

up to 50 cycles for MP400 in order to obtain an overview on the charge-discharge 

performance of mesoporous SnP2O7 anodes upon prolonged cycles. Dependence of 

Coulombic efficiency on cycle number was also analyzed in this section. The cycling 

profile of the MP400 as represented by the charge-discharge capacity and Coulombic 

efficiency versus cycle graph is shown in Figure 5.12. For clarity of presentation only 

the first ten cycles plus every fifth cycle onwards till the 50th cycle were shown in this 

figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12: Charge-discharge capacity and Coulombic efficiency versus cycle 
number for MP400 cycled within 0-1.2 V. 
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Coulombic efficiency is the ratio of charge capacity over discharge capacity of the 

same cycle. The initial discharge capacity obtained for this MP400 sample was          

1418 mAh/g which decreases to 580 mAh/g upon charging to 1.2 V. The 

corresponding Coulombic efficiency of this first cycle was about 41 %. Large losses 

in the first cycle are attributed to passive film formation and reduction of SnP2O7 to 

form irreversible lithium phosphate matrices (Li3PO4 and LiPO3) and metallic Sn. The 

discharge capacity obtained from the second cycle at 780 mAh/g was observed to 

decrease at a significant rate until it reaches the 7th cycle with a discharge capacity of 

461 mAh/g. From the 8th cycle onwards, the rate of capacity fading has become 

slower and stabilizes after the 35th cycle. Rate of capacity fading upon cycling is 

related to tin aggregation effects as discussed earlier. However, after a certain number 

of cycles, the growth of tin aggregates into clusters appears to reach a saturated size. 

It has been proposed that the clusters grow until cluster-cluster separation reaches a 

distance over which motion of tin atoms can no longer be supported [62]. When this 

stage is reached, the capacity fading rate becomes much slower. Referring to Figure 

5.12, this mesoporous SnP2O7 anode retained a Li+ storage capacity of 134 mAh/g 

upon reaching the 50th cycle. The charge capacity obtained at the 50th cycle was 130 

mAh/g, which is very close to the discharge capacity value. In contrast to the gradual 

decrease of capacity with increasing cycle, the Coulombic efficiency improves from 

the second cycle onwards at 70% right up to the 50th cycle at 97%. The efficiencies 

become near constant after the 20th cycle. This shows that the mesoporous SnP2O7 

anode exhibited excellent reversibility from the 20th cycle onwards however, at the 

expense of reduced capacities values.  

The lower discharge capacity at prolonged cycles is also related to the decreased 

amount of active Li+ for the Li-Sn alloying reaction. Apart from the initial lost of Li+ 

that was consumed to form the irreversible SEI passive film and lithium phosphate 

matrices (Li3PO4 and LiPO3), Li+ was also continuously  lost during formation of new 

SEI films when the old films crack due to volume change resulting from the growth of 

tin clusters during cycling. Upon charging process, it was noticed not all of the 

inserted Li+ can be efficiently extracted out and this further reduces the capacity 
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during cycling. A prolonged duration is consumed for galvanostatic cycling at higher 

cycles and this eventually led to the depletion of Li+ supply from the electrolyte for 

the reversible electrochemical Li-Sn alloying and de-alloying reaction. All these 

factors discussed above when combined will lead to the eventual failure of this anode 

upon prolonged cycling conditions  

5.9 Summary 

Cyclic voltammetry measurements were carried out on mesoporous and non-

mesoporous SnP2O7 samples to detect irreversible and reversible reactions. Upon 

reaction with Li, there were irreversible and reversible reactions identified in cyclic 

voltammograms. The irreversible reactions were ascribed to the formation of the SEI 

passive film and the reduction of SnP2O7 to produce irreversible lithium phosphate 

(Li3PO4 and LiPO3) phases whereas the reversible reaction is ascribed to the alloying 

and dealloying of Li-Sn. The galvanostatic experiments clearly demonstrate that the 

electrochemical performance of SnP2O7 anodes is influenced by their morphological 

features. The mesoporous SnP2O7 (MP400) displayed the best electrochemical 

performance when compared to other mesoporous and non-mesoporous anode cycled 

within 0 - 2.0 V as it retained comparatively higher discharge capacity of 295 mAh/g 

upon reaching the 10th cycle. Capacity fading upon cycling was attributed to effects of 

Sn particles aggregation to form larger clusters that caused volume changes which 

eventually led to the disintegration of the anode material. This effect was observed to 

be less extensive in mesoporous SnP2O7 anodes. The cycling performance of the 

mesoporous SnP2O7 is sensitive to the choice of voltage limit. When the cells are 

cycled for complete removal of Li at higher upper voltage cutoff, they displayed 

unstable cycling behavior. When MP400 was cycled within 0 - 1.2 V, it retained a 

discharge capacity of 134 mAh/g upon reaching the 50th cycle. 
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CHAPTER 6 

STRUCTURAL INFLUENCE OF MESOPOROUS TIN PHOSPHATE ON ITS 

ELECTROCHEMICAL PROPERTIES 

6.1     Overview 

 

In Chapter 5, based on the galvanostatic cycling performance of the mesoporous and 

non-mesoporous SnP2O7 anodes, it can be deduced that the structural features the 

SnP2O7 anode has a distinctive influence on its charge-discharge cycling performance. 

The mesoporous SnP2O7 anodes performed averagely better than the non-mesoporous 

SnP2O7 anodes yielding higher reversible capacity upon prolonged cycles. This 

chapter correlates the electrochemical properties discussed in Chapter 5 with the 

structural features of the synthesized SnP2O7 as discussed in Chapter 4. The 

crystallographic and porosity features of both mesoporous and non-mesoporous 

SnP2O7 anodes are related to their corresponding electrochemical performance results 

to determine the influence of the structural feature. Results obtained for amorphous, 

mesoporous SnP2O7 anode (MP200, MP300, MP400 and MP4004) are compared with 

that obtained for the non-mesoporous SnP2O7 anodes (semi-crystalline MP500 and the 

crystalline TP500) to highlight the advantages of the mesoporous SnP2O7 anode. 
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6.2 Crystallographic Features and the Electrochemical Properties of the Tin 

Phosphate Anodes 

Based on the XRD patterns obtained in Chapter 4 (section 4.4), the SDS synthesized 

SnP2O7 powders that were calcined at 200, 300 and 400°C displayed mesostructure 

characteristics based on the presence of a single low angle reflections of (100) around 

2θ = 1.6°. These mesostructured SnP2O7 powders (MP200, MP300, MP400 and 

MP4004) are largely amorphous as no obvious peaks were observed in the wide angle 

diffraction patterns (2θ = 10-80°). Prolonged calcination duration resulted in reduced 

ordering along with a slight contraction in the mesostructure as observed in the XRD 

patterns for SDS synthesized SnP2O7 calcined at 400°C for 2 hours and for 4 hours 

(MP400 and MP4004). When this powder was fired at 500°C, the mesoporous 

structure collapsed due to complete decomposition of the SDS surfactant. The powder 

calcined at 500°C (MP500) did not display any obvious mesoporous characteristics 

instead it exhibited a mixed crystalline and amorphous phase based on its wide angle 

XRD pattern as shown in Figure 4.4. The non-SDS synthesized SnP2O7 on the other 

hand, produced non-mesoporous powders. The non-mesoporous SnP2O7 powders 

showed increased degree of crystallinity when calcination temperature was increased. 

The powder calcined at 500°C (TP500) has the highest degree of crystallinity in this 

batch.  

The electrochemical reaction of SnP2O7 with Li first involves the irreversible 

reduction of SnP2O7 to form lithium phosphate phases and metallic tin. The tin 

particles further react with Li based on the reversible reaction of LixSn alloying and 

dealloying reaction.  

 4��� �  :#>��E �  4�
  �   :# �  ��@>�C �  ��>�@       (5.1) 
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Based on analysis from Chapter 5 (sections 5.2 and 5.3), the two irreversible 

SnP2O7 reactions expressed in Equations 5.2 and 5.3 were observed to occur for the 

mesoporous SnP2O7 anodes (MP200, MP300, MP400 and MP4004) and the semi-

crystalline SnP2O7 anode (MP500). In the initial reaction of these anodes with Li, the 

SnP2O7 is partially reduced to form the unstable Sn0.5PO3 phase as shown in Equation 

5.2. Further reaction with Li causes the unstable Sn0.5PO3 phase to be reduced to Sn 

particles and lithium phosphate phase, as expressed in Equation 5.3. Although 

MP200, MP300, MP400, MP4004 and MP500 anodes have different microstructures, 

they all exhibited similar electrochemical reactions with Li. The common structural 

feature that they all shareis the presence of the amorphous phase.  Amorphous 

materials are generally characterized by their random orientation of atoms or 

molecules [44]. The complex order of the amorphous phase in mesoporous SnP2O7 

anodes  was assumed to provide more than one energetically active sites for reaction 

with Li to occur during the electrochemical reaction within the specified potential 

limit of 0 - 2.0 V. The residual amorphous structure of the MP500 anode may be 

responsible in providing the extra energetic environment for the reduction of SnP2O7. 

Based on results obtained from Chapter 5 (sections 5.2 and 5.3) for TP500, the 

reduction of non-mesoporous SnP2O7 occurred as expressed in Equation 5.1. The 

difference in voltammetric response of the TP500 when compared to that of the 

MP200, MP300, MP400, MP4004 and MP500 anodes as observed from Figures 5.3 

and 5.4, is believed to be due to their different crystallographic features. Crystalline 

materials as opposed to amorphous material have fixed geometric arrangements of 

atoms or molecules [44]. The crystalline TP500 has only one energetic site for 

reaction with Li whereas the other SnP2O7 anodes in comparison have two active 

sites. The cyclic voltammogram profile for the crystalline TP500 is similar with that 

obtained by Behm and Irvine [36] in their work on crystalline SnP2O7 synthesized via 

a solid state reaction. 
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6.3 Mesoporous Morphology and the Electrochemical Properties of the Tin 

Phosphate Anodes 

The mesoporous SnP2O7 powders produced in this study consist of spherical particles 

in an array that contains periodic nanopores as indicated by morphological analysis by 

means of physisorption technique and FESEM in Chapter 4 (sections 4.5 and 4.6). 

Galvanostatic charge discharge tests in Chapter 5 (section 5.5) revealed the potential 

of mesoporous SnP2O7 as a superior Li+ storage host material due to its higher 

discharge capacity when compared to the non-mesoporous SnP2O7 and the 

commercial graphite anode used in Li-ion batteries. 

Based on the initial charge and discharge capacities shown in Table 5.1, the 

mesoporous SnP2O7 anodes delivered relatively higher capacities when compared to 

the non-mesoporous anode, MP500 and TP500.  For the MP300, MP400 and MP4004 

anodes, the equivalent moles of Li+ (x) to form the LixSn alloy are higher than the 

theoretical stoichiometry of Li4.4Sn proposed by Courtney and Dahn [25]. The initial 

discharge capacities of these mesoporous SnP2O7 anodes were higher than the 

theoretical capacity of SnP2O7 at 993 mAh/g. The non-mesoporous anodes, MP500 

and TP500 however delivered lower initial discharge capacities than the theoretical 

capacity value. The mesoporous anodes in this study even delivered higher initial 

discharge capacity than the crystalline, cubic SnP2O7 anode produced by Behm and 

Irvine [36] via a solid state reaction method at 936 mAh/g.  Mesoporous SnP2O7 have 

larger surface areas than the non-mesoporous SnP2O7 and the larger surface areas 

provide increased Li reaction sites which explain the enormous discharge capacity 

delivered by these anodes.  

The capacities for the mesoporous and non-mesoporous SnP2O7 and graphite 

anode tabulated in Tables 5.2 and 5.3 for 10 cycles showed that MP400 has the best 

cycling performance. Upon the 10th cycle, MP400 retained a discharge capacity of 

197 mAh/g whereas TP500 only retained that of 88 mAh/g and graphite retained 

about 113 mAh/g in discharge capacity. The pore sizes determined for MP200, 

MP300, MP400 and MP4004 based on the BJH method reported in Chapter 4 (section 
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4.5) are 10.6, 13.5, 15.8 and 17.9 nm, respectively. Relating this pore size data with 

the cycling behaviour of the mesoporous SnP2O7 anodes observed in Figure 5.6 and 

the tabulated data in Tables 5.2 and 5.3, revealed that discharge capacity retention 

tends to increase with increasing pore size, except for the case of sample MP4004. 

Despite having the smallest average pore size and the largest surface area as shown in 

Table 4.1 and 4.2, MP200 showed the worst capacity retention upon the 10th cycle. It 

can be deduced that the smaller pores of the synthesized mesoporous SnP2O7 have 

thicker pore wall dimensions and this provides a pathway that enable easier Sn 

particle migration to form aggregates thus resulting in connectivity losses and 

significant capacity fading during cycling.  For sample MP4004, XRD results from 

Chapter Four (section 4.4), suggests that this SnP2O7 mesostructure experienced a 

slight contraction in the mesostructure when fired at 400°C for a prolonged duration 

of 4 hours.  The disrupted order in the interconnectivity of the porous network for 

MP4004 may have affected the ability of this anode to retained higher reversible 

capacity during cycling. This indicates that the design of the mesostructure attained 

during the synthesis of the mesoporous SnP2O7 is critical in determining improved 

electrochemical performance of the SnP2O7 anode during charge-discharge cycling. 

It was reported that the reversibility of tin-based anode materials is related to the 

grain size of the starting material [19]-[21]. In tin-based anode materials with very 

fine particle size, even large changes of dimensions of the crystal structure due to 

repeated insertion or removal of Li+ will not necessary cause cracks and pulverization, 

as absolute changes in particle dimensions are still small [19]-[21]. The diffusion path 

length for Li+ insertion and charge-transfer resistance of the anode material is 

decreased in nanoparticles [19]-[21]. The faster diffusion of Li+ delivers higher value 

of reversible capacity. Observations made based on FESEM images in Chapter Four 

(section 4.6) showed that the synthesized mesoporous SnP2O7 anode composed of 

loose clusters of nanoparticles with an average size of around 30 nm whereas non-

mesopoorus SnP2O7 consists of larger particle size of 0.2 µm. In line with this, the 

nanoparticles that make-up the mesoporous SnP2O7 anode are thought to also play a 
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role in preserving better capacity and reversibility when compared to the rapid 

capacity fading of larger sized particles of non-mesoporous SnP2O7 anode. 

Capacity fading for both mesoporous and non-mesoporous SnP2O7 anodes are 

associated with aggregation of Sn particles to form larger clusters that causes volume 

change which eventually led to the disintegration of the anode material. This effect 

was observed to be less extensive in mesoporous SnP2O7 anodes as evidence by the 

galvanostatic charge-discharge results and the ex-situ FESEM analysis on the cycled 

anodes in Chapter 5 (sections 5.5 and 5.6). The ability of mesostructured SnP2O7 

anode to store high amount of Li+ and retain higher reversible capacity is attributed to 

its complex mesostructured network which was believed to be able to facilitate 

diffusion of Li+ and maintain high dispersion of Sn particle in the anode. Sn particles 

are dispersed far apart in the matrix of mesoporous anode therefore the migration of 

Sn particles to form aggregates was made slower. Another interesting property shown 

by the mesoporous SnP2O7 anode material is its ability to accommodate the volume 

change effects. The lamellar and porous structure can undergo reversible swelling 

during the repeated insertion and extraction of Li+ process. This reduces the extent of 

anode material fragmentation by minimizing mechanical strain effects thus improving 

the reversibility of this anode material. It was reported that the mesoporous 

framework was able to dissipate the mechanical stress induced by the volume changes 

during the LixSn alloying and de-alloying reactions thorough reversible pore 

expansion and contraction mechanism [42], [51], [67]. During the discharging 

process, Li+ are electrochemically inserted into the mesopores and this cause the 

structure to be slightly expanded and upon charging, the extraction of Li+ resulted in 

the contraction of the mesoporous anode structure [42], [51], [67]. It is likely that the 

mesopores act as a mechanical buffer and effectively prevent the electrical 

disconnection between active materials induced by the volume expansion during 

electrochemical reactions. This mechanism reduces the extent of volume change 

effects that cause disintegration of the anode material upon prolonged charge 

discharge cycling.  
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Despite the added advantages, there is one major drawback observed for the 

mesoporous SnP2O7 anodes which is the colossal losses in irreversible capacity when 

compared to non-mesoporous SnP2O7 anodes. The high surface area of the 

mesoporous SnP2O7 results in extensive formation of the SEI passive film and this 

contributes to large initial irreversible capacity losses. During extended charge-

discharge cycling, the strain from volume changes become significant enough to crack 

the old SEI films and this causes new SEI filming to take place. This in turn causes 

excessive losses in irreversible capacity during cycling. 

The non-mesoporous anodes, MP500 and TP500 displayed large losses in 

reversible capacity upon cycling. This may be associated with its crystalline structure 

as this ordered structure may present a path where Sn atoms can easily migrate and 

gather in one plane thus facilitating formation of larger tin aggregates. These large tin 

clusters will in turn result in massive volume change effects that lead to formation of 

electrically disconnected parts thus leading to rapid capacity fading upon cycling.  

 

6.4 Summary 

The amorphous, mesoporous SnP2O7 and the semi-crystalline SnP2O7 anodes have 

two energetic environments for reactions with Li whereas the crystalline SnP2O7 has 

only one energetic site. The structural feature of SnP2O7 anode material has a strong 

influence on its electrochemical performance. The success of mesoporous anode in 

comparison with the non-mesoporous anode is that the lamellar, mesostructure of the 

starting anode material manages to minimize migration of Sn particles to form 

aggregates while it still allows transport of Li+ and electrons, thereby retaining higher 

capacity. The mesopores are able to accommodate volume changes during the Li+ 

insertion and extraction process and this result in less extensive mechanical 

degradation on the SnP2O7 anode structure upon prolonged cycles when compared to 

the non-porous SnP2O7 anode. Based on this study, it was observed that the 

mesoporous SnP2O7 anode with the smallest pore size and the largest surface area 
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does not necessarily delivers the best charge-discharge cycling behaviour. It is critical 

to achieve a specific mesostructure during the synthesis to produce a mesoporous 

SnP2O7 anode that not only delivers higher discharge capacity but also manages to 

retain high capacity upon prolonged cycling.  In this study it was discovered the 

MP400 anode with an average pore size distribution of 15.8 nm delivered the highest 

discharge capacity of 197 mAh/g upon the 10th cycle. 
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CHAPTER 7 

CONCLUSION 

7.1 Review of Study 

This thesis reports the electrochemical behavior of a lamellar, mesoporous tin (IV) 

phosphate (SnP2O7) as anode material for Li-ion battery.  The mesoporous SnP2O7 

was synthesized via surfactant templating method where sodium dodecyl sulfate 

(SDS) was applied as the surfactant. Amorphous, mesoporous structure was 

successfully obtained when the powders were calcined at 200, 300 and 400°C 

however when fired up to 500°C, the mesoporous structure collapses as indicated by 

XRD analysis. For reference purpose, another batch of tin phosphate was synthesized 

without the SDS surfactant. This yielded non-mesoporous SnP2O7 powders which 

presented crystalline structure with increasing calcination temperature. Isotherms of 

Type IV were obtained from nitrogen sorption measurement, which further confirms 

the mesoporous characteristics of SDS synthesized SnP2O7 powders calcined at 200, 

300 and 400°C. The mean pore size of the mesoporous SnP2O7 calcined at 200 

(MP200), 300 (MP300) and 400°C (MP400) for 2 hours and that calcined at 400°C 

(MP4004) for 4 hours was 10.6, 13.5, 15.8 and 17.9 nm, respectively, as calculated 

based on the Barrett-Joyner-Halenda (BJH) model. The mean pore size increases with 

increasing calcine temperature. Data and discussions on the structural and 

morphological properties of mesoporous SnP2O7 analyzed by means of TG-DTA, 

XRD, nitrogen sorption and FESEM are extensively covered in Chapter Four. 
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The core study of this research is presented in Chapter Five which investigates the 

electrochemical behavior of mesoporous SnP2O7. It was proposed that initial reaction 

of SnP2O7 with Li causes the SnP2O7 to be reduced to form the irreversible LiPO3 and 

Li3PO4 phases and metallic Sn. The Sn atoms dispersed in the LiPO3 and Li3PO4 

matrices are hosts for further reversible alloying and de-alloying reaction of Li-Sn. 

Cyclic voltammetry measurements carried out on all the mesoporous SnP2O7 samples 

exhibited similar voltammetric responses. Three irreversible reactions were identified 

during the initial potential scan which were attributed to formation of the solid 

electrolyte interface (SEI) passive film on the anode surface and the reduction of 

SnP2O7 to produce irreversible lithium phosphate (Li3PO4 and LiPO3) phases. The 

non-mesoporous, crystalline SnP2O7 only showed two irreversible reactions 

attributing to the formation of the SEI and lithium phosphate phases. This implies that 

the amorphous, mesoporous SnP2O7 structure may have more energetically active site 

for lithium ions reaction. Both mesoporous and non-mesoporous SnP2O7 showed 

similar reversible redox reactions potential at around 0.18 V and 0.52 which are 

assigned to the reversible alloying and de-alloying of LixSn (where x ≤ 4.4). FTIR 

analysis carried out on discharged and charged MP400 anode showed dissociation of 

>��EC
 during the insertion of Li+ into the SnP2O7 host and formation of irreversible 

lithium phosphate phases.   

Galvanostatic cycling tests carried out on all the mesoporous SnP2O7 samples 

along with the non-mesoporus SnP2O7 showed that MP400 has the best performance. 

The cycling performance of the mesoporous SnP2O7 is sensitive to the choice of 

voltage limit. When the cells are cycled for complete removal of Li at higher upper 

voltage cutoff, they displayed unstable cycle behavior. Good cycling behavior with 

stable differential capacity plots was obtained if the voltage was cutoff at 1.2 V; when 

the potential cutoff was raised to 1.6 or 2.0 V, cycling performance deteriorates and 

additional peaks appeared in the differential capacity plots. The abrupt changes in the 

differential capacity plots are the results of increased aggregation of Sn particles. The 

aggregation would cause fragmentation and crack propagation in the material leading 

to eventual capacity losses. Galvanostatic cycling of MP400 within 0 - 1.2 V up to the 
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10th cycle returned a reversible discharge capacity of 422 mAh/g whereas that cycled 

within 0 - 1.6 V and 0 -2.0 V delivered reversible discharge capacity of 311 mAh/g 

and 295 mAh/g, respectively. When the MP400 anode was further cycled up to the 

50th cycle within 0 - 1.2 V, it retained a discharge capacity of 134 mAh/g. Apart from 

the detrimental effects of Sn particles aggregation, capacity fading at prolonged cycles 

was also attributed to the decreased amount of active Li+ for the Li-Sn alloying 

reaction. Li+ are lost during the formation of the SEI film and lithium phosphate 

matrixes and also during the insertion process where some Li+ remains trapped in the 

mesoporous anode structure. 

Overall, the good reversibility observed for the mesoporous SnP2O7 anode is 

related to the porous network, the operating voltage range, particle size and inactive 

matrix. The ability of mesostructured tin phosphate anode to store much higher 

amount of Li+ when compared to non-mesoporous SnP2O7 was attributed to its 

complex mesostructured network that provided larger surface area for reactions with 

Li. The mesoporous network proved to be more effective in preventing large scale 

aggregation and is able to accommodate large volume changes during the Li insertion 

and extraction process, thus retaining higher reversible discharge capacity. A lower 

cutoff in the upper voltage is able to retard the aggregation of Sn particles. The 

application of nanoparticles and the lithium phosphate matrices can further minimize 

the growth of Sn aggregates thereby reducing  the saturated size of Sn clusters that 

could lead to severe cracking and crumbling of the SnP2O7 anode.  
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7.2  Suggestions for Future Studies 

Research on mesoporous tin phosphate as alternative anode material for Li-ion battery 

is still in its early days. There are a few aspects that should be explored to fully 

understand the electrochemical reaction mechanism of SnP2O7 based anode. Some of 

these are suggested below; 

• The SnP2O7 anode materials have only been galvanostatically cycled in half 

cell configuration, against metallic Li as counter electrodes. Further studies are 

needed on the whole cell where the mesoporous SnP2O7 is cycled against a 

lithium transition metal oxide, cathode material. 

• Several question marks remain in determining the exact electrochemical 

reaction mechanism of the mesoporous SnP2O7 anode material.  Several other 

sophisticated techniques such as the Mossbauer spectroscopy, nuclear 

magnetic resonance (NMR) and small-angle x-ray scattering (SAXS) could be 

used in combination with electrochemical measurements to ascertain the 

mechanism of Li insertion and extraction.  

• The scope of this thesis has been to investigate the electrochemical properties 

of the mesoporous SnP2O7 anode but the surface chemistries remain 

unexplored. It is crucial to understand the active surface reaction with 

electrolyte species in order to reduce irreversible capacities upon cycling. 

Detailed FTIR studies combined with electrochemical impedance 

spectroscopy (EIS) would be of great importance in understanding the surface 

reactions and the irreversible reactions occurring in these systems. 
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