Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, dissertation, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.



Download (6Mb) | Preview


Because of the dramatic environmental impact of sulphur oxides contained in engines emissions, sulphur content specification in fuels are becoming more and more stringent worldwide. In the petroleum refining industry, hydrodesulphurization (HDS) is the conventional process to reduce the sulphur levels of the fuels. However, HDS is cost consuming, besides requiring high temperature and high hydrogen pressure in order to eliminate the aliphatic and alicyclic sulphur compounds. Refractory sulphur compounds such as dibenzothiophene, methyl dibenzothiophene and 4,6-methyl dibenzothiophene are less reactive to this process. Due to this reason, alternative sulphur removal techniques are being explored. In the past years, due to its unique properties both as extractant and also as catalyst, ionic liquids have gained increasing interest. In this project, eight imidazolium-based-phosphate ionic liquids were successfully synthesized, namely, 1-methyl-3-methylimidazolium dimethylphosphate (MMIM[DMP]), 1-methyl-3-ethylimidazolium diethylphosphate (EMIM[DEP]), 1- methyl-3-butyllimidazolium dibuylphosphate (BMIM[DBP]), 1-ethyl-3- methylimidazolium dimethylphosphate (EMIM[DMP]), 1-ethyl-3-ethylimidazolium diethylphosphate (EEIM[DEP]), 1-butyl-3-methylimidazolium dimethylphosphate (BMIM[DMP]), 1-butyl-3-ethylimidazolium diethylphosphate (BEIM[DEP]), 1- butyl-3-butylimidazolium dibutylphosphate (BBIM[DBP]). These ionic liquids were characterized using Differential Scanning Calorimeter (DSC), CHNS Analyzer, Density and Viscosity meter and Coulometric Karl-Fisher. The ionic liquids were then screened for sulphur removal from dodecane model oil. The sulphur containing compound used in preparing the model oil, were dibenzothiophene (DBT), benzothiophene (BT), and 3-methylthiophene (3-MT). Ionic liquid 1-butyl-3-butyl imidazolium dibutylphosphate (BBIM[DBP]), 1-butyl-3-ethyl imidazolium diethylphosphate (BEIM[DEP]), and 1-ethyl-3-ethyl imidazolium diethylphosphate (EEIM[DEP]) showed the best sulphur removal with a percentage of 74%, 75% and 81% respectively, and were used for further study. A combination of catalytic oxidation and simple liquid-liquid extraction was employed for desulphurization (ECODS) utilizing molybdic catalyst, hydrogen peroxide (H2O2) and imidazoliumbased- phosphate ionic liquids, namely, 1-butyl-3-butyl imidazolium dibutylphosphate (BBIM[DBP]), 1-butyl-3-ethyl imidazolium diethylphosphate (BEIM[DEP]), and 1- ethyl-3-ethyl imidazolium diethylphosphate (EEIM[DEP]). The precatalyst of molybdic compounds was oxidized with H2O2 to form peroxomolybdic compounds, which is soluble in ionic liquid and dissolved in oil. The sulphur containing compounds in the model oil were extracted into ionic liquid phase and oxidized to their corresponding sulfones by peroxomolybdic compounds. Further studies were conducted for research parameters such as the temperature, amount of H2O2, amount of catalyst, type of sulphur species and initial concentration of sulphur on the sulphur removal from the model oil. From the experiments, the optimum conditions for ECODS process were 70oC, ratio of H2O2 to sulphur compound used was 4 ([n(H2O2)/n(S)]=4), and ratio of sulphur compounds to catalyst was 20 ([n(S)/n(Cat)]=20), giving 85.2% sulphur removal for ionic liquid BBIM[DBP]. Other desulphurization methods; extraction (EDS) and oxidation (ODS) were also compared. It was found that imidazolium base phosphate ionic liquids with longer alkyl chain displayed better sulphur removal efficiency. BBIM[DBP] was found to display the best performance in sulphur removal showing a removal of 85.2 % for ECODS process, 68.4% for EDS process and 65.8% for ODS process

Item Type: Thesis (Masters)
Divisions: Engineering > Chemical
Depositing User: Users 5 not found.
Date Deposited: 05 Jun 2012 08:20
Last Modified: 25 Jan 2017 09:42
URI: http://utpedia.utp.edu.my/id/eprint/2830

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...