Welcome To UTPedia

We would like to introduce you, the new knowledge repository product called UTPedia. The UTP Electronic and Digital Intellectual Asset. It stores digitized version of thesis, dissertation, final year project reports and past year examination questions.

Browse content of UTPedia using Year, Subject, Department and Author and Search for required document using Searching facilities included in UTPedia. UTPedia with full text are accessible for all registered users, whereas only the physical information and metadata can be retrieved by public users. UTPedia collaborating and connecting peoples with university’s intellectual works from anywhere.

Disclaimer - Universiti Teknologi PETRONAS shall not be liable for any loss or damage caused by the usage of any information obtained from this web site.Best viewed using Mozilla Firefox 3 or IE 7 with resolution 1024 x 768.

PREDICTING INTERNET TRAFFIC BURSTS USING EXTREME VALUE THEORY

YOUSSOUF DAHAB, ABDELMAHAMOUD YOUSSOUF DAHAB (2011) PREDICTING INTERNET TRAFFIC BURSTS USING EXTREME VALUE THEORY. PhD thesis, UNIVERSITI TEKNOLOGI PETRONAS.

[img]
Preview
PDF
Download (2837Kb) | Preview

Abstract

Computer networks play an important role in today’s organization and people life. These interconnected devices share a common medium and they tend to compete for it. Quality of Service (QoS) comes into play as to define what level of services users get. Accurately defining the QoS metrics is thus important. Bursts and serious deteriorations are omnipresent in Internet and considered as an important aspects of it. This thesis examines bursts and serious deteriorations in Internet traffic and applies Extreme Value Theory (EVT) to their prediction and modelling. EVT itself is a field of statistics that has been in application in fields like hydrology and finance, with only a recent introduction to the field of telecommunications. Model fitting is based on real traces from Belcore laboratory along with some simulated traces based on fractional Gaussian noise and linear fractional alpha stable motion. QoS traces from University of Napoli are also used in the prediction stage. Three methods from EVT are successfully used for the bursts prediction problem. They are Block Maxima (BM) method, Peaks Over Threshold (POT) method, and RLargest Order Statistics (RLOS) method. Bursts in internet traffic are predicted using the above three methods. A clear methodology was developed for the bursts prediction problem. New metrics for QoS are suggested based on Return Level and Return Period. Thus, robust QoS metrics can be defined. In turn, a superior QoS will be obtained that would support mission critical applications.

Item Type: Thesis (PhD)
Subject: UNSPECIFIED
Divisions: Sciences and Information Technology
Depositing User: Users 6 not found.
Date Deposited: 05 Jun 2012 08:16
Last Modified: 25 Jan 2017 09:42
URI: http://utpedia.utp.edu.my/id/eprint/2834

Actions (login required)

View Item View Item

Document Downloads

More statistics for this item...