TABLE OF CONTENTS

STATUS OF THESIS	i
APPROVAL PAGE	ii
TITLE PAGE	iii
DECLARATION	iv
ACKNOWLEDGEMENTS	v
ABSTRACT	vi
ABSTRAK	viii
COPYRIGHT	х
TABLE OF CONTENTS	xi
LIST OF TABLES	XV
LIST OF FIGURES	xvi
LIST OF ABBREVIATIONS	XX
LIST OF SYMBOLS	xxii

Chapter

1.	INT	RODUCTION	
	1.1	Background	1
	1.2	Scope of Studies	5
	1.3	Issues and Questions	5
		1.3.1 Issues	5
		1.3.2 Questions	6
	1.4	Research Objectives	7
		1.4.1 General Objective	7
		1.4.2 Specific Objectives	7
	1.5	Research Outcomes and Contributions	8
	1.6	Thesis Organization	9
	1.7	Chapter Conclusions 1	10
2.	REV	VIEW OF LITERATURE	
	2.1	Introduction 1	11
	2.2	Data Packet Optimization in Underwater Wireless	
		Communications	12
		2.2.1 Data Packet Length With Maximum Throughput	
		Efficiency 1	12
		2.2.2 Optimal Packet Size and S&W Protocol Efficiency 1	14
		2.2.3 Generic Cross-layer Optimization Framework 1	17

	2.3	Data Packet Optimization in Terrestrial Wireless	
		Communications	20
		2.3.1 Adaptive Frame Length Control Approach	20
		2.3.2 Energy Efficiency Based Packet Size Optimization	27
		2.3.3 Packet Size Optimization for Goodput Enhancement	33
	2.4	Optimization in UWC against Optimization in TWC	37
	2.5	Chapter Conclusions	39
3.	OPT	'IMIZATION MODEL	
	3.1	Introduction	41
	3.2	Background	42
		3.2.1 Data Packet Size and Throughput Efficiency	44
		3.2.2 Data Packet Size and Bit Error Rate	48
		3.2.3 Data Packet Size and Energy Efficiency with Energy	
		Per Useful Bit	53
	3.3	Proposed Model	57
		3.3.1 Model Requirements	57
		3.3.2 Database Structure	59
		3.3.3 Optimal Packet Size Algorithm	60
	3.4	Chapter Conclusion	61
4.	SIM	ULATIONS	
	4.1	Introduction	63
	4.2	The Simulation	64
		4.2.1 General Scenario	64
		4.2.2 Simulation Setup	65
	4.3	Result and Discussions	68
		4.3.1 Data Packet Size and Bit Error Rate	69
		4.3.2 Data Packet Size and Throughput Efficiency	75
		4.3.3 Data Packet Size and Energy Per Useful Bit	79
		4.3.4 Optimal Packet Size Search Algorithm	84
	4.4	Chapter Conclusions	89
5.	SIM	ULATION RESULTS ANALYSIS	
	5.1	Introduction	91
	5.2	Results Analysis	93
		5.2.1 Optimal Data Packet Size Based on BER against	
		Proposed Algorithm	93
		5.2.2 Optimal Data Packet Size Qualified by Throughput	
		Efficiency against Proposed Algorithm	100
		5.2.3 Optimal Data Packet Size Based on BER and	
		Throughput Efficiency against Proposed Algorithm	106
	5.3	Chapter Conclusions	115

6	CASE STUDY
υ.	CASE STUDI

	6.1	Introduction	117
	6.2	Underwater Sensor Network Architecture	119
		6.2.1 Basic Underwater Sensor Network Architecture	119
		6.2.2 Underwater Sensor Network Architecture for Water	
		Column Monitoring	120
	6.3	Data Transmission and Data Acquisition	124
	6.4	Scheduling Algorithm and Sample Time Slot Calculation	130
		6.4.1 Scheduling Algorithm	130
		6.4.2 Sample Time Slot Calculation	132
	6.5	Battery Power Capacity Estimation	134
	6.6	Chapter Conclusions	142
7.	CON	NCLUSIONS AND FURTHER RESEARCH	
	7.1	Conclusions	143
	7.2	Further RESEARCH	145
RE	FERE	ENCES	147
LIS	T OF	PUBLICATIONS	154
AP	PENI	DICES	
1	4 58	imple data set collected for BERs and optimum packet size with	155
1		header length of 40 bits	155
1	3 2(7 0	Algorithm Main Code	158
1		putmal packet size vs BERs under different header length \dots	103
1	ןט כ ייי	forest bedden length (<i>h</i> in hits) under different BERS and	160
1	םו. די די	a Table 5.1 format (on page 04) modified from Appendix D	109
נ ו		ie Table 5.1 format (of page 94) mounted from Appendix D	170
I	- 50 11	and a different PEPs for various header length. Three out of eight	
	u	te are shown in this appendix	171
	30 2 Ev	It table entries for Table 5.2 on page 05 showing the entirel	1/1
,	J Pt	in table entries for Table 5.2 on page 95 showing the optimal	
	ра (F	()	174
1	U U U U	η)	1/4
1	.1 I't po	in table entries for Table 5.5 on page 90 showing the optimal ocket size $(N_{\rm eff})$ based on BERs and its energy efficiency $(F_{\rm eff})$ as	
	pa	supervisite (Nopt) based on DERS and its energy efficiency (E_{η}) as	
	CO fm	(1220) and optimize the proposed algorithm. The table entries are based on the	
	110	on the proposed algorithm. The table entries are based on the	175
	ra	nge-rute (IR) product of 1x10 mops	1/3

Ι	Full table entries showing the optimal packet size (N_{opt}) based on	
	different BERs and its energy efficiency (E_{η}) as compared to	
	energy efficiency (E_{2Q}) and optimal packet size (N_{2Q}) from the	
	proposed algorithm. The table entries are based on the <i>range-rate</i>	
	(lR) product of 5×10^5 mbps	177
J	Full table entries showing the optimal packet size (N_{opt}) based on	
	different BERs and its energy efficiency (E_{η}) as compared to	
	energy efficiency (E_{20}) and optimal packet size (N_{20}) from the	
	proposed algorithm. The table entries arebasedon the <i>range-rate</i>	
	(lR) product of 9×10^5 mbps	179
Κ	Sample data sets for optimal packet size against <i>lR</i> products under	
	different BERs for various header length	181
L	Full table entries for Table 5.5 (on page 101) showing the optimal	
	packet size against different IR products under different p for a	
	header length of 80 bits	184
Μ	Full table entries for Table 5.6 (on page 102) showing the optimal	
	packet size (N_{opt}) based on different IR products and its energy	
	efficiency (E_{IR}) as compared to energy efficiency (E_{2Q}) and	
	optimal packet size (N_{2Q}) from the proposed algorithm. The table	
	entries are based on the header length of 80 bits	185
Ν	Full table entries showing the optimal packet size (N_{opt}) based on	
	different IR products and its energy efficiency (E_{IR}) as compared	
	to energy efficiency (E_{2Q}) and optimal packet size (N_{2Q}) from the	
	proposed algorithm. The table entries are based on the header	
	length of 30 bits	186
0	Full table entries showing the optimal packet size (N_{opt}) based on	
	different lR products and its energy efficiency (E_{lR}) as compared	
	to energy efficiency (E_{2Q}) and optimal packet size (N_{2Q}) from the	
	proposed algorithm. The table entries are based on the header	
	length of 100 bits	187
Р	Full table entries based on the format of Table 5.7 (on page 107)	
	showing the optimal packet size (N_{2M}) qualified by BERs and	
	Throughput Efficiency (related to lR product) metrics and the	
	related energy efficiency (E_{2M}) as compared to energy efficiency	
	(E_{2Q}) and optimal packet size (N_{2Q}) from the proposed algorithm	188

LIST OF TABLES

Table 2.1:	Data packet size optimization in UWC and in TWC	38
Table 3.1:	BER and the packet size (<i>n</i>)	52
Table 4.1:	Partial data obtained from k_{opt} simulation for header of 40 bits	71
Table 4.2:	A simplified data set	75
Table 5.1:	Optimal data packet size against BERs under different header	
	length	94
Table 5.2:	Optimal packet size against BERs and related energy efficiency	
	(E_η)	95
Table 5.3:	Comparison of N_{opt} and E_{η} based on BER only against N_{2Q} and	
	E_{2Q} based on the proposed algorithm in the context of energy	
	efficiency with <i>IR</i> product of 1x10 ⁵ m-bps	96
Table 5.4:	Optimal packet size against lR product under different p for a	
	header length of 80 bits	101
Table 5.5	Comparison of N_{opt} and E_{lR} (based on lR product) against N_{2Q} and	
	E_{2Q} (based on proposed algorithm) in the context of energy	
	efficiency for a header length of 80 bits	102
Table 5.6:	Optimal packet size qualified by BER and IR product and its	
	energy efficiency compared to energy efficiency from proposed	
	algorithm	107
Table 6 1	A coustic modern power consumption	124
1 auto 0.1		134

LIST OF FIGURES

Figure 1.1:	Typical topology of an underwater wireless sensor network	2	
Figure 1.2:	Conceptual outcome of the research work	8	
Figure 2.1:	Packet sizes that optimize throughput efficiency	14	
Figure 2.2:	Optimal packet size <i>Nd,opt</i> as a function of range-rate product	17	
Figure 2.3:	Optimum packet size for deep water and shallow water	19	
Figure 2.4:	Performance of the adaptive algorithm	26	
Figure 2.5:	System Markov chain with 4 states	26	
Figure 2.6:	Data link layer packet format	27	
Figure 2.7:	The notion of energy channel	29	
Figure 2.8:	Energy efficiency as function of payload length	31	
Figure 2.9:	IEEE 802.15.4 data frame format	33	
Figure 2.10:	The search algorithm	37	
Figure 3.1:	Stop-and-wait ARQ protocol	43	

Figure 3.2:	Data link layer general packet format	45
Figure 3.3:	Packet size against BER for <i>h</i> of 40	49
Figure 3.4:	Plot of throughput against packet size with various BER	50
Figure 3.5:	Optimal packet size as function of C_0 without error control	56
Figure 3.6:	Energy efficiency as function of packet size	57
Figure 3.7:	Conceptual database structure	59

Figure 4.1:	General scenario showing a cluster of nodes set up for the simulation	65
Figure 4.2:	Ns2 MIRACLE layered framework	66
Figure 4.3	Simplified sequence diagram for packet transmission (Tx) and reception (Rx) in the Miracle PHY and MAC framework	68
Figure 4.4:	Packet size against BER in linear scale	72
Figure 4.5:	Packet size against BER in log scale	73
Figure 4.6:	Packet size against BERs with different header length (h)	74
Figure 4.7:	Packet size against range-rate (lR) with different BER (p)	77
Figure 4.8:	Throughput efficiency against N_{opt} under different p and lR products	78
Figure 4.9:	Energy per useful bit against packet size	80
Figure 4.10:	Energy efficiency against packet size under different BERs	82
Figure 4.11:	Optimal packet size against header length with different BERs	84
Figure 4.12:	Samples of algorithm output	88
Figure 5.1:	Packet size against BERs with header length from 30 bits to 100 bits	93
Figure 5.2:	Enhanced graphs for energy efficiency against packet size under different BERs for a header length of 80 bits	95
Figure 5.3:	Comparison of N_{opt} and E_{η} against N_{2Q} and E_{2Q} based on full table entries in Appendix H for packet header size of 30 bits	97
Figure 5.4:	Comparison of N_{opt} and E_{η} against N_{2Q} and E_{2Q} based on full table entries in Appendix I for packet header size of 60 bits	98
Figure 5.5:	Comparison of N_{opt} and E_{η} against N_{2Q} and E_{2Q} based on full table entries in Appendix J for packet header size of 100 bits	99
Figure 5.6:	Enhanced plot of optimal data packet size against IR products under different P_e granularities for a packet header length of 80 bits	101

Figure 5.7:	Comparison of N_{opt} and E_{lR} against N_{2Q} and E_{2Q} based on full table entries in Appendix M for header length of 80 bits with p of 10^{-4}	103
Figure 5.8:	Comparison of N_{opt} and E_{lR} against N_{2Q} and E_{2Q} based on full table entries in Appendix N for header length of 30 bits with p of 10^{-4}	104
Figure 5.9:	Comparison of N_{opt} and E_{lR} against N_{2Q} and E_{2Q} based on full table entries in Appendix O for header length of 100 bits with p of 10^{-4}	105
Figure 5.10:	Comparison of optimal packet size and energy efficiency between 2M and 2Q approaches based on the data tabulated in Appendix P with header length of 30 bits and lR product of 1×10^5 m-bps	109
Figure 5.11:	Comparison of optimal packet size and energy efficiency between 2M and 2Q approaches based on the data tabulated in Appendix P with header length of 60 bits and lR product of $1x10^5$ m-bps	110
Figure 5.12:	Comparison of optimal packet size and energy efficiency between 2M and 2Q approaches based on the data tabulated in Appendix P with header length of 100 bits and lR product of $1x10^5$ m-bps	111
Figure 5.13:	Comparison of optimal packet size and energy efficiency between 2M and 2Q approaches based on the data tabulated in Appendix P with header length of 30 bits and lR product of $9x10^5$ m-bps	112
Figure 5.14:	Comparison of optimal packet size and energy efficiency between 2M and 2Q approach based on the data in Appendix P with header length of 60 bits and the lR -product $9x10^5$ m-bps	113
Figure 5.15:	Comparison of optimal packet size and energy efficiency between 2M and 2Q approach based on the data in Appendix P with header length of 100 bits and <i>lR</i> product of $9x10^5$ m-bps	115

Figure 6.1	Basic UWSN architecture for underwater environment monitoring	119
Figure 6.2	UWSN architecture for underwater pollution monitoring	121
Figure 6.3	Address byte format	123
Figure 6.4	Generic timing diagram of TDMA scheduling	125
Figure 6.5	TDMA scheduling for multi-tier single column UWSN	128
Figure 6.6	TDMA scheduling for UWSN with multiple tiers and columns	129

LIST OF ABBREVIATIONS

ACK	Acknowledgement indicating data packet received correctly
AMC	Adaptive modulation and coding
ARQ	Automatic request protocol
AS	Aggregation service
BER	Bit error rate
BPSK	Binary phase shift keying
CBR	Constant bit rate
CGI	Common gateway interface
CSMA-CA	Carrier sense multiple access-collision avoidance
DI	Source signal directivity index
DPLC	Dynamic packet length control
EKF	Extended Kalman filter
EPUB	Energy per useful bit
FDMA	Frequency division multiple access
FEC	Forward error correction
FS	Fragmentation service
HARQ	Hybrid ARQ
ICTG	Inter-column time guard
IFTG	Inter-frame time guard
LR-WPAN	Low-rate wireless personal area network
MAC	Media access control
MMAC	Miracle media access control
MPHY	Miracle physical
MSDU	Medium access control service data unit
NACK	Negative ACK (indicate data packet received has error)
ODPS	Optimal data packet size
PER	Packet error rate
PHY	Physical layer

PPR	Packet reception rate
RTS	Request to send
S&W	Stop-and-Wait protocol
SIR	Signal-to-Interference ratio
SL	Source signal level
SNR	Signal-to-Noise ratio
SRP	Selective repeat protocol
TcL	Tool command language
TDMA	Time division multiple access
TG	Time guard
TL	Transmission loss
TWC	Terrestrial wireless communications
UG	Underground
UW	Underwater
UWA	Underwater acoustic
UWAC	Underwater acoustic communications
UWAN	Underwater acoustic network
UWC	Underwater wireless communications
WSN	Wireless sensor network

LIST OF SYMBOLS

- α packet header length in bits
- au packet trailer length in bits
- λ packets per second
- η energy efficiency
- η_{opt} optimal energy efficiency
- σ fading component
- ε transmission efficiency
- B_n total payload bits sent by a node
- *c* nominal speed of sound in water (1500 m/s)
- *d* distance between source and sink node in meter
- D_w water depth in meter
- E_b energy required to transmit and receive one bit of information
- *Ec* communication energy consumption
- E_{dec} energy consumed for decoding a packet
- *E*_{flow} end-to-end energy consumption
- E_s start-up energy consumption
- E_{th} energy throughput
- g group of packets sent by source node
- *h* header length
- *H* MAC layer header overhead
- l_H fixed protocol overhead
- *lR* range-rate product (unit = meter-bps)
- *L_{min}* minimum frame size
- *L_{max}* maximum frame size
- *M* packets transmitted in a group
- N packet size in bits i.e. $N = N_{oh} + N_l$
- N_E number of error bits
- N_l packet payload length in bits (note: N_l is interchangeable with l)

- N_{oh} packet overhead bits i.e. $N_{oh} = \alpha + \tau$ (note: N_{oh} is interchangeable with h)
- N_{be} total number of packets in error
- N_b total number of packets sent
- N_{opt} optimal data packet size (note: interchangeable with k_{opt} and l_{opt})
- *p* bit error rate (note: may be stated as *b* or ρ in certain circumstances)
- P_b bit error probability
- *p_e* packet error rate (note: may be interchangeable with *p* in certain cases)

PERe2e end-to-end packet error rate

- *P*_o output transmit power
- *P_{te/re}* power consumed in transmitter/receiver electronics
- *R* data rate in bps
- *R_{phy}* PHY layer bit rate
- *r* reliability i.e. successful packet reception rate (equivalent to 1 PER)
- *t* error correcting capability in a forward error correction scheme
- t_b time interval of one back-off period
- *T* transmission efficiency
- *T_{flow}* end-to-end latency
- $T_{tst/rst}$ transmitter/receiver start-up time
- T_w total waiting time in stop-and-wait protocol
- *w* sliding window size