STATUS OF THESIS

Title of thesis

QUANTITATIVE SCHLIEREN MEASUREMENT OF 3 DIMENSIONAL TEMPERATURE, CONCENTRATION AND VELOCITY FIELDS IN A GAS FLOW

I _____ EMISHAW DANDENA IFFA

hereby allow my thesis to be placed at the Information Resource Centre (IRC) of Universiti Teknologi PETRONAS (UTP) with the following conditions:

- 1. The thesis becomes the property of UTP
- 2. The IRC of UTP may make copies of the thesis for academic purposes only.
- 3. This thesis is classified as

 $\sqrt{}$ Non-confidential

If this thesis is confidential, please state the reason:

The contents of the thesis will remain confidential for _____ years.

Remarks on disclosure:

Endorsed by

Signature of Author

Permanent address

H.NO.1333, Kebele13/14

Addis Ababa, Ethiopia

Date : _____

Signature of Supervisor

Name of Supervisor

Assoc. Prof. Dr. A. Rashid

A. Aziz

Date : _____

UNIVERSITI TEKNOLOGI PETRONAS

QUANTITATIVE SCHLIEREN MEASUREMENT OF 3 DIMENSIONAL

TEMPERATURE, CONCENTRATION AND VELOCITY FIELDS IN A GAS

FLOW

by

EMISHAW DANDENA IFFA

The undersigned certify that they have read, and recommend to the Postgraduate Studies Programme for acceptance of this thesis for the fulfillment of the requirements for the degree stated.

QUANTITATIVE SCHLIEREN MEASUREMENT OF 3 DIMENSIONAL TEMPERATURE, CONCENTRATION AND VELOCITY FIELDS IN A GAS FLOW

by

EMISHAW DANDENA IFFA

A Thesis

Submitted to the Postgraduate Studies Programme as a Requirement for the Degree of

DOCTOR OF PHILOSOPHY MECHANICAL ENGINEERING DEPARTMENT UNIVERSITI TEKNOLOGI PETRONAS BANDAR SERI ISKANDAR,

PERAK

May, 2011

DECLARATION OF THESIS

Title of thesis

I, ____

QUANTITATIVE SCHLIEREN MEASUREMENT OF 3 DIMENSIONAL TEMPERATURE, CONCENTRATION AND VELOCITY FIELDS IN A GAS FLOW

EMISHAW DANDENA IFFA

hereby declare that this thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at Universiti Teknologi PETRONAS or other institutions.

Witnessed by

Signature of Author

Permanent address H.NO.1333 Kebele13/14 Kolfe Keranio sub-City Addis Ababa, Ethiopia

Date:_____

Signature of Supervisor

Name of Supervisor Assoc. Prof. Dr. A. Rashid Aziz

Date:_____

ACKNOWLEDGEMENTS

I am eternally grateful for all the wonderful things God has given me and showed me during this study. He was my strength and hope during the difficult times.

I owe my deepest gratitude to my supervisor, AP. Dr. A. Rashid A. Aziz, whose encouragement, guidance and support from the initial to the final level of this research work. I am also very much thankful for his crucial comments and guidance in shaping and improving this dissertation.

I am heartily thankful to My Co- Supervisor, Dr. Aamir Saeed Malik, for making his support available throughout this research work.

I would like to thank Prof. Morgan R. Heikal of University of Brighton for his guidance at several stages of this project and during developing this dissertation.

It is my pleasure to thank members of Postgraduate Office and Department of Mechanical Engineering for their support by offering me Graduate Assistantship and providing laboratory facilities.

I am indebted to all of my colleagues in Center for Automotive Research (CAR) for their extended support while conducting experiments.

I extend my sincere thanks to Yohaness Tamirat, Ftwi Yohannes, Salahdin El-Sakin, Firmansyah, Benyam Seyoum, Mui' Nuddin Bin Moharun, Noraz Al-Khari Bin Noran, Dr. Umesh Deshanavar, Kahirul Anwar Ahmed, Janni Alang Ahmed and Zailan Alang Ahmed for their support and kind assistance.

Finally, special thanks are due to my family for all of the extended hours I spent for developing this project and writing the thesis instead of being with them, and to my parents, brother and sister for their encouragement and support.

ABSTRACT

Background Oriented Schlieren (BOS) estimates the flow behaviour that exists between the camera and background from the shift in the background image features due to the change in the transfer channel function. The current optical flow techniques used to find the deflection vectors of the change in background images rely on two main assumptions: global constant value of intensity and continuity of local motion. The global intensity invariance assumption hardly works for BOS technique when imaging a self luminous flow. In this thesis, an optical flow equation which takes the change in intensity into account and an estimation motion model that considers both translational and rotational deflections were developed. The results showed that for a transparent gas jet all the tested optical flow algorithms worked well. However the proposed model gave better results for BOS images taken through natural gas flames and smoke from a fog generator. The developed deflection vector estimation algorithm and optical tomography served as a tool to extract the index of refraction of the gaseous fields. The Gladstone-Dale relationship was used to show the direct correlation between the index of refraction and density of the flow. Three different types of axi-symmetric flows were used as gas sample media. These were a CNG injected fuel jet, an open methane flame and a hot air jet. Based on the measured index of refraction the species mole fractions of CNG injected jet and methane flame were measured. In addition, the three dimensional temperature fields of the methane flame and the hot air were also measured and displayed. The other main contribution of this research was the use of Background Oriented Schlieren (BOS) technique for the measurement of the velocity field of a variable density round jet. The density field was further exploited to extract the axial and radial velocity vectors for six different jet-exit temperature values with the aid of the continuity and energy equations. Results of the measured temperature and velocity vector fields were compared with thermocouples and hot wire anemometry readings respectively and showed good agreements.

ABSTRAK

Latar Belakang Berorientasikan Schlieren (Background Oriented Schlieren, BOS) menganggarkan kelakuan aliran yang muncul di antara kamera dan latar belakang dari pegalihan dalam ciri-ciri gambar latar belakang akibat perubahan fungsi saluran pemindahan. Teknik-teknik arus optik yang digunakan sekarang untuk mencari pembiasan vektor dari perubahan imej latar belakang bergantung pada dua andaian utama: pemalar nilai keamatan menyeluruh dan gerakan berterusan setempat. Dalam tesis ini, persamaan aliran optik yang mengambil kira perubahan keamatan dan anggaran gerakan model mempertimbangkan kedua-dua pelenturan penjelmaan dan putaran dibangunkan. Model yang dicadangkan memberikan hasil yang lebih baik untuk gambar-gambar BOS yang diambil melalui nyalaan gas asli dan asap dari generator kabut. Vektor pelenturan algoritma anggaran yang dibangunkan dan tomografi optik berperanan sebagai alat untuk mengekstrak indeks bias bidang gas. Hubungan Gladstone-Dale digunakan untuk menunjukkan hubungan langsung antara indeks biasan dan kepadatan aliran. Tiga jenis arus axi-simetri telah digunakan sebagai media sampel gas. Gas-gas tersebat adalah jet suntikan bahan bakar CNG, bukaan nyalaan metana dan jet udara panas. Berdasarkan kiraan indeks biasan, pecahan mol dari jet suntikan CNG dan nyalaan metana dihitung. Tambahan pula, medan suhu 3-dimensi dari nyalaan metana dan udara panas juga dihitung dan dipaparkan. Sumbangan utama yang lainnya dari kajian ini adalah penggunaan Latar Belakang Berorientasikan Schlieren (BOS) teknik untuk menghitung medan kelajuan jet pada pelbagai pembolehubah kepadatan. Medan kepadatan selanjutnya dimanfaatkan untuk mengekstrak vektor kelajuan paksi dan jejari untuk enam nilai suhu jet-keluar berbeza dengan bantuan daripada persamaan kesinambungan dan persamaan tenaga. Hasil keputusan dari perhitungan suhu dilandingkan dengan termokopel manakala vektor kelajuan dibandingkan dengan bacaan kawat panas anemometry dan masing-masing menunjukkan persamaan yang baik.

COPYRIGHT

In compliance with the terms of the Copyright Act 1987 and the IP Policy of the university, the copyright of this thesis has been reassigned by the author to the legal entity of the university,

Institute of Technology PETRONAS Sdn Bhd.

Due acknowledgement shall always be made of the use of any material contained in, or derived from, this thesis.

© Emishaw Dandena Iffa, May 2011 Institute of Technology PETRONAS Sdn Bhd All rights reserved.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	V
ABSTRACT	vi
COPYRIGHT	х
LIST OF TABLES	XV
LIST OF FIGURES	xvii
LIST OF PLATES	xxii
NOMENCLATURE	xxiii

Chapter

1. INTRODUCTION	1
1.1 Overview of the Schlieren Technique	1
1.2 Problem Statement	4
1.3 Research Objective	5
1.4 Scope of the Research	6
1.5 Research Methodology	7
1.6 Thesis Outline	7
2. LITERATURE REVIEW	11
2.1 Introduction	11
2.2 Geometric Flow Parameters Measurement	11
2.3 Thermodynamic Flow Parameter Diagnostic Tools	13
2.3.1 Molecular Based Techniques	13
2.3.1.1 Rayleigh Scattering	15
2.3.1.2 Raman Scattering	16
2.3.1.3.Laser Induced Fluorescence (LIF)	17
2.3.2. Particle Based Techniques	18
2.3.2.1 Planar Doppler Velocimetry (PDV)	18

2.3.2.2 Particle Image Velocimetry (PIV)18
2.3.2.3 Laser Doppler Annemometry (LDA)
2.3.2.4 Phase Doppler Interferometry (PDI)20
2.4 Quantitative Schlieren
2.4.1 Color Schlieren20
2.4.2 Laser Schlieren
2.4.3 Background Oriented Schlieren (BOS)23
2.5 Summary28
3. THEORY AND MATHEMATICAL MODELLING
3.1 Introduction
3.2 Theoretical Background
3.3 Light Beam Deflection Vector Estimation
3.3.1 Estimating Motion Error! Bookmark not defined
3.3.2 Incorporating Intensity Variance Error! Bookmark not defined
3.3.3 Modifying Optical Flow Equation Error! Bookmark not
defined
3.3.4 Algorithm Design Error! Bookmark not defined
3.4 Computed Tomography Error! Bookmark not defined
3.4 Computed Tomography Error! Bookmark not defined3.5 Thermodynamic Data Extraction Error! Bookmark not defined
 3.4 Computed Tomography Error! Bookmark not defined 3.5 Thermodynamic Data Extraction Error! Bookmark not defined 3.5.1 Temperature and Concentration Field of a Non-reacting Flow
 3.4 Computed Tomography Error! Bookmark not defined 3.5 Thermodynamic Data Extraction Error! Bookmark not defined 3.5.1 Temperature and Concentration Field of a Non-reacting Flow Error! Bookmark not defined
 3.4 Computed Tomography Error! Bookmark not defined 3.5 Thermodynamic Data Extraction Error! Bookmark not defined 3.5.1 Temperature and Concentration Field of a Non-reacting Flow Error! Bookmark not defined 3.5.2 Temperature and Concentration Field of a Reacting Flow Error!
 3.4 Computed Tomography Error! Bookmark not defined 3.5 Thermodynamic Data Extraction Error! Bookmark not defined 3.5.1 Temperature and Concentration Field of a Non-reacting Flow Error! Bookmark not defined 3.5.2 Temperature and Concentration Field of a Reacting Flow Error! Bookmark not defined
 3.4 Computed Tomography Error! Bookmark not defined 3.5 Thermodynamic Data Extraction Error! Bookmark not defined 3.5.1 Temperature and Concentration Field of a Non-reacting Flow Error! Bookmark not defined 3.5.2 Temperature and Concentration Field of a Reacting Flow Error! Bookmark not defined 3.5.3 Velocity Field Measurement Error! Bookmark not defined
 3.4 Computed Tomography Error! Bookmark not defined 3.5 Thermodynamic Data Extraction Error! Bookmark not defined 3.5.1 Temperature and Concentration Field of a Non-reacting Flow Error! Bookmark not defined 3.5.2 Temperature and Concentration Field of a Reacting Flow Error! Bookmark not defined 3.5.3 Velocity Field Measurement Error! Bookmark not defined 3.5.4 Turbulence Statistics Error! Bookmark not defined
 3.4 Computed Tomography Error! Bookmark not defined 3.5 Thermodynamic Data Extraction Error! Bookmark not defined 3.5.1 Temperature and Concentration Field of a Non-reacting Flow Error! Bookmark not defined 3.5.2 Temperature and Concentration Field of a Reacting Flow Error! Bookmark not defined 3.5.3 Velocity Field Measurement Error! Bookmark not defined 3.5.4 Turbulence Statistics Error! Bookmark not defined 3.6 Summary
 3.4 Computed Tomography Error! Bookmark not defined 3.5 Thermodynamic Data Extraction Error! Bookmark not defined 3.5.1 Temperature and Concentration Field of a Non-reacting Flow Error! Bookmark not defined 3.5.2 Temperature and Concentration Field of a Reacting Flow Error! Bookmark not defined 3.5.3 Velocity Field Measurement Error! Bookmark not defined 3.5.4 Turbulence Statistics Error! Bookmark not defined 3.6 Summary
3.4 Computed Tomography Error! Bookmark not defined 3.5 Thermodynamic Data Extraction Error! Bookmark not defined 3.5.1 Temperature and Concentration Field of a Non-reacting Flow Error! Bookmark not defined 3.5.2 Temperature and Concentration Field of a Reacting Flow Error! Bookmark not defined 3.5.3 Velocity Field Measurement Error! Bookmark not defined 3.5.4 Turbulence Statistics Error! Bookmark not defined 3.6 Summary Error! Bookmark not defined 4. EXPERIMENTAL METHODS
3.4 Computed Tomography
 3.4 Computed TomographyError! Bookmark not defined 3.5 Thermodynamic Data ExtractionError! Bookmark not defined 3.5.1 Temperature and Concentration Field of a Non-reacting Flow Error! Bookmark not defined 3.5.2 Temperature and Concentration Field of a Reacting Flow Error! Bookmark not defined 3.5.3 Velocity Field MeasurementError! Bookmark not defined 3.5.4 Turbulence StatisticsError! Bookmark not defined 3.6 SummaryError! Bookmark not defined 4. EXPERIMENTAL METHODS
3.4 Computed TomographyError! Bookmark not defined 3.5 Thermodynamic Data ExtractionError! Bookmark not defined 3.5.1 Temperature and Concentration Field of a Non-reacting Flow Error! Bookmark not defined 3.5.2 Temperature and Concentration Field of a Reacting FlowError! Bookmark not defined 3.5.3 Velocity Field MeasurementError! Bookmark not defined 3.5.4 Turbulence StatisticsError! Bookmark not defined 3.6 SummaryError! Bookmark not defined 4. EXPERIMENTAL METHODS
3.4 Computed Tomography

4.3.4 Experimental Error Analysis Error!
Bookmark not defined.
4.3.5 Experimental Verification of the Developed Model70
4.4 Fluid Flow/ Injection Set-up71
4.4.1 CNG DI Set-up72
4.4.2 Methane Flame Set-up73
4.4.3 Hot Air Flow Set-up73
4.5 The Thermocouple and Hot Wire Anemometer Measurements
4.6 Experimental Planning Error! Bookmark not defined.
4.7 Summary Error! Bookmark not defined.
5. RESULTS AND DISCUSSIONS
5.1 Introduction Error! Bookmark not defined.
5.2 Deflection Vector Estimation Error! Bookmark not defined.
5.3 CNG Concentration Measurement Error! Bookmark not defined.
5.4 Methane Flame Temperature and Concentration Measurement Error!
Bookmark not defined.
5.5 Hot Round Jet Velocity Vector and Temperature Fields Measurement 97
5.6 Comparing Results with Other
AlgorithmsError! Bookmark not defined.
5.7 Summary114
6. CONCLUSIONS AND RECOMMENDATIONS
6.1 Conclusions115
6.2 Suggestions for Future Works117
REFERENCES118
PUBLICATIONS128
APPENDIX

LIST OF TABLES

Table 2.1: overview of optical diagnostic tools
Table 2.2: Researchers' and their role towards today's BOS
Table 4.1: Framing rate Vs image resolution
Table 4.2: Shutter speed Vs framing rate64
Table 4.3: Change in intensity of a background
image under different flow conditions70
Table 4.4: Fuel injection parameters
Table 4.5: Optical measurements setup
Table 4.6: The relative distances between BOS apparatuses and the flow75
Table 5.1: Percentage RMS error of optical flow algorithms
Table 5.2: Comparison of the various variants of the proposed method
Table 5.3: SSIM criteria for flame images
Table 5.4: Chemical Species with their respective mole fractions
Table 5.5: COV of different velocity parameters

LIST OF FIGURES

Figure 1.1: Leonardo Da Vinci's water jet visualization sketch	1
Figure 1.2: Hooke's Schlieren setup	2
Figure 1.3: Toepler's Schlieren apparatus	3
Figure 1.4: Conventional Schlieren setup	4
Figure 1.5: Flow diagram of the research methodology	9
Figure 2.1: Rayleigh scattering Setup	.15
Figure 2.2: Raman scattering setup	.16
Figure 2.3: PIV setup	.19
Figure 2. 4: LDA/ PDI setup	.19
Figure 2.5: Rainbow Schlieren filter	.22
Figure 3.1: BOS setup	.30
Figure 3.2: Discrete wavelet transform image decomposition	.31
Figure 3.3: principle of light refraction	.32
Figure 3.4: Wave fronts of a light beam	.32
Figure 3.5: Approximate coefficients decomposition	.40
Figure 3.6: The five levels of BOS image down-sampling	.41
Figure 3.7: Comparison of the developed algorithm complexity	.44
Figure 3.8 Algorithm of the optical flow estimation	.45
Figure 3.9: Flow of filtered back projection reconstruction	.46
Figure 3.10: Flow of direct Fourier transform algorithm	.47
Figure. 3.11: The light rays deflection in plane <i>t</i> and <i>s</i>	47
Figure 3.12: The velocity and the normal vector of an elemental area	.54
Figure 3.13(a): Model for Axi-symmetric jet's frontal view	.55
Figure 3.13(b): Cross sectional area of a jet along	
a plane perpendicular to the jet axis	.55
Figure 4.1: Light beam deflection in BOS Setup	.60
Figure 4.2: Direct visualization of a candle plume at different fps	.61

Figure 4.3 direct visualization of a candle plume	
with different shutter speed at 60fps	63
Figure 4.4: Different backgrounds of BOS	
(a) wavelet noise (b) lined background (c) random noise	64
Figure 4.5: Simplified BOS setup	66
Figure 4.6: Effects of distances between camera,	
background and flow media in BOS sensitivity	67
Figure 4.7: Percentage error propagation against	
uncertainty of the deflection vector	69
Figure 4.8: Validation algorithm	71
Figure 4.9: BOS experimental setup	73
Figure. 4.10: Experimental Procedure	77
Figure 5.1: Background displacement vectors due to the natural gas flame	80
Figure 5.2: The deflection vectors of different flows	80
Figure 5.3: Effects of the proposed method parameters	82
Figure 5.4: Angular deflection vectors along radial axis at maximum	
tip penetration and 12 bar injection pressure	85
Figure 5.5: Change in index of refraction at different planes perpendicular to	
the jet axis at maximum tip penetration and 12 bar injection pressure	86
Figure 5.6: CNG concentrations at different planes perpendicular to the jet	
axis at maximum tip penetration and 12 bar injection pressure	88
Figure 5.7: Normalized density distribution near nozzle along the jet axis	
at maximum tip penetration	88
Figure 5.8: CNG concentrations in a plane parallel to the jet axis	
at 18bars injection pressure	89
Figure 5.9: CNG concentrations in a plane parallel to the jet axis	
at 14bars injection pressure	89
Figure 5.10: Direct Flame Visualization	90
Figure 5.11: (a) - The gas flow Schlieren image before ignition	
(b) the flame Schlieren image after ignition	91
Figure 5.12: The BOS image taken without and through gas flame media	92
Figure 5.13: Displacement vector field	93
Figure. 5.14. (a) - (c): Mole fraction of CO ₂ in 30ms interval	94

Figure 5.15-(a): Plane used to show temperature distribution.
(b)- (d) Temperature distribution96
Figure 5.16: Mean temperature values at (a) Z=3D (b) Z=5D96
Figure 5.17: Mean temperature and Standard deviation between BOS and
thermocouple readings at 3D and 5D planes perpendicular
to the flame axis97
Figure 5.18: Centerline density distribution of different exit temperatures
and their respective trend lines
Figure 5.19: Center line velocity decay at different jet exit temperatures
Figure 5.20: The axial velocity distribution of the jet at 473K99
Figure 5.21: The axial velocity profile of a heated jet100
Figure 5.22: The Tangential velocity profile of a heated jet100
Figure 5.23: The vorticity vector of the injected air at 473K101
Figure 5.24: Velocity variance $\overline{v_{\perp i}v}_{\perp j}/U_o$ (a) axial, (b) tangential velocity
Figure 5.25: Power Spectral density of the axial velocity at T=473K103
Figure 5.26: (a) axial and (b) tangential velocity measurements using BOS
and hot wire anemometry at 323K exit temperature104
Figure 5.27: percentage coefficient of variation between BOS and Hot wire
Anemometry readings of velocity decay at 302K and 323K106
Figure 5.28: Temperature field measurement at 523K
(a) at y=0and Z=3D (b) y=0 and Z=5D107
Figure 5.29: COV between BOS and thermocouple readings
at 523K jet exit temperature108
Figure 5.30: Temperature field measurement at 473K
(a) at y=0and Z=3D (b) y=0 and Z=5D109
Figure 5.31: COV between BOS and thermocouple readings
at 473 [°] K jet exit temperature110
Figure 5.32: Temperature field measurement at 473^{0} K (a) at y=0and Z=3D
(b) y=0 and Z=5D111
Figure 5.33: COV between BOS and thermocouple readings
at 423 [°] K jet exit temperature112

Figure 5.35:	Standard deviation between thermocuple reading and BOS
	measurement using several optical flow algorithms113
Figure 5.34:	Percentage COVbetween hotwire annemometry and BOS measurement
	using several optical flow algorithms113

NOMENCLATURE

Variable	Description	Units
a, b, c, d	Affine constants of rotation, dilation and shear	(-)
<i>e</i> , <i>f</i>	Affine units of translation	(-)
f_i	The oscillatory strength	(-)
l	The level of the wavelet transform	(-)
т	Molecular weight	(-)
m_	The mass of an electron	(kg)
e N	Index of refraction	(-)
R	Position vector	(m)
t t	Instantaneous time where image is recorded	(sec)
l L	The shift and rescaling parameters of wavelet	(-)
и , з	transform	(-)
<i>x</i> , <i>y</i> , <i>z</i>	Cartesian coordinates	(-)
A. B	Constants incorporated to account intensity	(-)
, -	variation	
		(-)
C_1 and C_2	Standard deviations of images	(nm-sec)
E(S)	Fourier transform of deflection vector	(m ³ /kg)
G	Gladstone-Dale constant	(db)
$G_{\scriptscriptstyle v_{\perp k} v_{\perp k}}$	Power Spectral density	(-)
Ι	Image intensity 2D Fourier transform of index of refraction	(-)
$\overline{N}(k,l)$	Gradient of index of refraction	(-)
N'	Domain of natural numbers	(-)
L^2	Optical path length	(m)
L N	Number of pixels	(-)
Р	Pressure	(kg/m^2)
\overline{R}	Universal gas constant	(J/(mol.K))

R	The radon transform matrix	(-)
S	Wave front arc length	(m)
T_o and T	Ambient and measured temperatures	(K)
U_i	Mean velocity	(m/sec)
V_{i}	Fluctuation component of velocity	(m/sec)
X_{i}	Species mole fraction	(-)
Z_{bm}	Distance between background and flow media	(m)
Zml	Distance between flow media and lens	(m)
Z_{bl}	The distance between background and lens	(m)
Z_f	The focal length of the camera	(m)

ho	Gas density	(kg/m^3)
θ	Angle of refraction	(rads)
\mathcal{E}_x , $\mathcal{E}y$	Light beam deflection angles	(rads)
α	Affine rotational coefficient	(-)
μ, ν	Translation terms along x and y axis	(m)
Ψ	Wavelet function	(-)
v and v_i	Frequency and resonance frequency	(Hz)
3	Imaginary deflection vector on the background	(m)
∂y_b	The deflection recorded is the server	(m)
<i>dy</i> _i	The deflection recorded in the camera	(-)
μ_x and μ_y	Mean intensity images	(-)
σ_x, σ_y	Constants added to avoid zero denominators	(-)

Abbreviations

BOS	Background Oriented Schlieren
CNG	Compressed natural gas
COV	Coefficient of variation
HWA	Hot wire annemometry
OF	Optical flow
OPL	Optical path length