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ABSTRACT 

The demand for higher and higher capacity in wireless networks, such as cellular, 

mobile and local area network etc, is driving the development of new signaling 

techniques with improved spectral and power efficiencies. At all stages of a 

transceiver, from the bandwidth efficiency of the modulation schemes through highly 

nonlinear power amplifier of the transmitters to the channel sharing between different 

users, the problems relating to power usage and spectrum are aplenty. In the coming 

future, orthogonal frequency division multiplexing (OFDM) technology promises to 

be a ready solution to achieving the high data capacity and better spectral efficiency in 

wireless communication systems by virtue of its well-known and desirable 

characteristics.  

Towards these ends, this dissertation investigates a novel OFDM system based on 

dual-tree complex wavelet transform (DTԧWT) called DTԧWT-OFDM. Traditional 

OFDM implementations use common Fourier filters for data modulation and 

demodulation via the inverse fast Fourier transform (IFFT) and the FFT operations 

respectively. Recent research has demonstrated that improved spectral efficiency can 

be obtained by using wavelet filters owing to their superior spectral containment 

properties. This has motivated the design of OFDM systems based on discrete wavelet 

transform (DWT) and also based on wavelet packet transform (WPT). As all the 

characteristics of OFDM modulated signals directly depend on the set of waveforms 

arising from using a given wavelet filter, several authors foresaw wavelet theory as 

good platform on which to build OFDM waveform bases.   

Accordingly, in this work the DTԧWT is used as a new platform to build a new 

OFDM system that can meet the stringent requirements of the future wireless 

communication systems. In the proposed system, the DTԧWT is used in place of FFT 

in the conventional OFDM system. The proposed system has all the benefits of WPM 

system over conventional OFDM system, but it also shows performance improvement 

over WPM system. Investigated under perfect synchronization assumption, it is 

shown that its PAPR is better, its PSD containment is better, its performance in the 
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presence of nonlinear power amplifier is better, and its BER performance is also 

better. These improvements are attributed to two distinct properties of the DTԧWT 

filters – the unique impulse response and shift-invariance of the filters. For the same 

length of filters in WPM and DTԧWT, the design requirements of the DTԧWT filters 

produce better impulse response and hence the better PAPR results. At the same time, 

the shift invariance property of DTԧWT causes improvement in BER performance 

over WPM system which is shift-variant. This is demonstrated with the help of 

average BER when propagation is through frequency-selective Rayleigh channels.  

Finally, it is shown that the proposed OFDM system does not suffer from higher 

computational complexity than OFDM and WPM system as fast FFT-like algorithms 

exist for computing DTԧWT. 
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ABSTRAK 

Permintaan untuk keupayaan lebih tinggi dan lebih tinggi dalam rangkaian-rangkaian 

wayarles, seperti kawasan tempatan yang selular, lincah dan tempatan dan 

sebagainya, memandu pembangunan baru memberi isyarat teknik-teknik dengan 

meningkat spektrum dan kecekapan kuasa. Pada semua peringkat seorang penghantar 

terima, daripada lebar jalur kecekapan modulasi itu merangka melalui amat amplifier 

kuasa tak linear penghantar itu untuk perkongsian saluran antara pengguna lain, 

masalah-masalah itu berkaitan untuk penggunaan tenaga dan spektrum banyak sekali. 

Dalam masa depan kedatangan, pemultipleksan pembahagian frekuensi ortogon 

(OFDM) janji-janji teknologi menjadi satu penyelesaian kesediaan untuk mencapai 

data tinggi keupayaan dan kecekapan spektrum lebih baik dalam sistem 

telekomunikasi wayarles oleh kebaikan nya ciri-ciri terkenal dan elok. 

Ke hujung ini, disertasi ini menyiasat sebuah novel sistem OFDM berdasarkan dua 

pokok gelombang kecil kompleks mengubah (DTԧWT) dipanggil DTԧWT-OFDM. 

Pelaksanaan OFDM tradisional menggunakan Fourier biasa ditapis untuk modulasi 

data dan pengenyahmodulan melalui puasa songsang jelmaan Fourier (IFFT) dan 

operasi-operasi FFT masing-masing. Penyelidikan baru-baru ini telah menunjukkan 

yang meningkat kecekapan spektrum boleh didapati dengan menggunakan gelombang 

kecil penapis disebabkan atasan mereka ciri-ciri pembendungan spektrum. Ini telah 

bermotivasi reka bentuk bagi OFDM sistem-sistem berdasarkan gelombang kecil 

diskret mengubah (DWT) dan juga berlandaskan paket gelombang kecil mengubah 

(WPT). Sebagai semua ciri-ciri OFDM mengubah isyarat-isyarat secara langsung 

bergantung set bentuk gelombang itu muncul daripada menggunakan satu turas 

gelombang kecil yang dianugerahkan, beberapa pengarang melihat teori gelombang 

kecil sebagai platform baik pada yang untuk membina bentuk gelombang OFDM 

berdasarkan. 

Maka, dalam kerja ini DTԧWT adalah digunakan seperti sebuah platform baru untuk 

membina satu sistem OFDM baru yang boleh berjumpa syarat-syarat ketat sistem 
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telekomunikasi wayarles akan datang. Dalam sistem yang dicadangkan, DTԧWT 

adalah digunakan sebagai ganti FFT dalam sistem OFDM konvensional. Sistem yang 

dicadangkan mempunyai semua faedah-faedah sistem WPM mengenai sistem OFDM 

konvensional, tetapi ia juga menunjukkan perbaikan prestasi mengenai sistem WPM. 

Disiasat di bawah penyegerakan sempurna andaian, ia ditunjukkan yang nya PAPR 

adalah lebih baik, pembendungan JPAnya adalah lebih baik, prestasinya dalam 

kehadiran amplifier kuasa tak linear adalah lebih baik, dan prestasi BERnya adalah 

juga lebih baik. Peningkatan-peningkatan ini dianggap berpunca daripada dua 

kekayaan berbeza DTԧWT turas - sambutan impuls unik dan anjakan ketakberubahan 

penapis itu. Untuk serupa panjang meresapi WPM dan DTԧWT, keperluan-keperluan 

rekabentuk penapis DTԧWT menghasilkan sambutan impuls lebih baik dan oleh itu 

keputusan-keputusan PAPR lebih baik. Pada masa yang sama, anjakan 

ketakberubahan harta bagi sebab-sebab DTԧWT pemajuan dalam prestasi BER 

mengenai sistem WPM yang adalah anjakan kelainan. Ini ditunjukkan dengan bantuan 

purata itu BER apabila pembiakan selesai frekuensi memilih Rayleigh menyalurkan. 

Akhirnya, ia ditunjukkan yang dicadangkan sistem OFDM tidak menghidapi 

kerumitan pengiraan lebih tinggi daripada OFDM dan WPM sistem kerana algoritma 

FFT-like cepat wujud untuk pengkomputeran DTԧWT. 
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CHAPTER 1 

INTRODUCTION                                                                           

1.1    Motivation 

Doubtlessly, the considerable growth in the demand of mobile devices supporting 

high data rate and high bandwidth multimedia communications has posed many 

challenges to current wireless technologies and architectures in terms of supporting 

these higher data rate transmission while conserving the limited bandwidth and power 

resources [1], [2]. Particularly, the power constraints determined by the size of the 

batteries in mobile devices and the scarcity of the finite spectrum resources are the 

most limiting among all the other transmission requirements [3]. To overcome the 

limitations in current hardware architectures and the limited utilization of the scarce 

radio spectrum, there is an urgent need for more efficient communication 

technologies. At present, the power constraints are overcome by use of the 

technologies for a better battery and more linear and efficient front-end high power 

amplifiers – that are both, unluckily, very expensive [4].  

By improving the efficiency with which the spectrum resource is utilized, by 

developing techniques allowing for better spectrum-sharing among users, and by 

widening the upper-most range of usable spectrum the bandwidth constraints can be 

greatly improved [5], [6]. A variety of solutions have been brought upon by digital 

signal processing (DSP) techniques to address power and bandwidth issues in current 

transceiver designs [2]. This work is an effort in the same direction wherein efficient 

signal-processing methods are developed that address the aforesaid issues at the 

transceiver. In this work, a novel multi-carrier technique based on efficient complex 

wavelet signal processing is investigated for more effective utilization of the spectrum 

and power in wireless transceiver than what is available. 
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A significant amount of research has been carried out applying wavelets to almost all 

aspects of digital wireless communication systems [7], [8], [9] be they data 

compression, source and channel coding, signal de-noising, channel modeling, or 

design of transceivers. The flexibility and the ability to represent the signals more 

accurately than other bases are the main property of wavelets encouraging these 

applications.  

These properties of wavelets also make them very suitable for signal processing in 

modern communication systems such as multicarrier modulation (MCM) systems and 

multiple antenna systems [7], [10]. Also, the versatility of wavelet bases makes them 

strong contenders for variety of applications in future wireless communication 

systems such as wireless channel modeling, interference mitigation, orthogonal 

frequency division multiplexing (OFDM) modulation, multiple access, ultra wideband 

communications, wireless networks and cognitive radio (CR) intelligent wireless 

communication system [7], [10]. This work build on this premise by further 

investigating the potential of deploying, in particular, complex wavelets in the design 

of an MCM system. 

In this thesis, the use of complex wavelet based OFDM technology to address power 

and bandwidth efficiency problems in modern wireless communication systems is 

investigated. Specifically, dual-tree complex wavelet transform (DTԧWT)1 is made 

use of for designing a novel OFDM system, i.e., an OFDM system based on DTԧWT 

(DTԧWT-OFDM) is proposed. 

1.2    Wavelet Based Signal Processing Architecture and Application 

The wavelet transform (WT) is a class of generalized Fourier transform (FT) with 

basis-functions localized well in both time and frequency domains. This transform 

provides a way to analyze the signals by examining the coefficients (or weights) of 

the WT. In traditional wavelet theory, WT facilitates the decomposition of the signal 

of interest into a set of basis waveforms, called wavelets (small waves) [11], [12]. As 

an extension of WT, the wavelet packet transform (WPT), has also been developed 

and used in signal processing and digital modulation schemes [7], [13]. Commonly, in 

                                                 
1 We use the complex number symbol ԧ in ԧWT to avoid confusion with the often used acronym CWT 
for the continuous wavelet transform.  



 

3 

 

the WT based processing, a signal is decomposed into a set of coefficients and the 

coefficients are then utilized based on the desired attributes of the signal. In system-

identification problems, these wavelet coefficients provide information about the time 

varying frequency content of the signal analyzed. An explicit example in wireless 

communications is the modeling of a time varying channel impulse response [7]. The 

WT has the property that it concentrates the information about the desired 

characteristics of the analyzed signal in only a few coefficients, while the remaining 

coefficients have negligible magnitudes. This makes the processing of signals in the 

wavelet domain computationally efficient. 

 

)(nx )(ˆ nx)(kr )(ˆ kr

 

                 Figure 1.1 Wavelet domain signal processing. 

Relying on the type of application, there are different ways in which the versatile 

power of WT based signal processing can be used. For example, joint photographic 

experts group committee (JPEG2000) stipulates its use in image compression, and, 

WiMAX as wavelet packet modulation (WPM) [7]. Figure 1.1 shows a functional 

diagram of the wavelet domain signal processing operation. In this figure, the discrete 

time input signal, ݔሺ݊ሻ, is decomposed into a set of coefficients, ݎሺ݇ሻ, using the 

discrete wavelet transform (DWT). The coefficients are then processed via 

thresholding and/or scaling to produce a new set of coefficients, ̂ݎሺ݇ሻ, which are 

stored or used to reconstruct, using the inverse DWT (IDWT), the signal, ݔොሺ݊ሻ, with 

the desired properties. The process of approximating the original signal, ݔሺ݊ሻ, can 

make use of the best basis- functions-selection algorithm to force the decomposition 

to obtain the desired characteristics of the signal [12]. 

Another popular approach for taking advantage of the WT is in the pre-processing and 

post-processing stages as shown in Fig. 1.2. In this approach, a signal, ݔሺ݊ሻ, is 

modified using the WT to get an intermediate signal, ݕሺ݊ሻ, prior to being input into 

the system or channel. In fact, the pre-processed signal, ݕሺ݊ሻ, may be the signal ̂ݎሺ݇ሻ 

or ݔොሺ݊ሻ, the output from the wavelet domain signal processing block shown in  
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Fig. 1.1. Both the transform domain processing and pre-processing techniques can be 

used for various applications from multiple-input and multiple-output (MIMO) 

systems to CR. In this research work, the pre-processing and post-processing is 

utilized using, respectively, IDTԧWT and DTԧWT in the OFDM system. 

 

)(nx )(ˆ nx)(ˆ ny)(ny

 

                    Figure 1.2 Wavelet domain pre-processing. 

1.3    Significance and Objective of the Thesis 

The design of efficient digital communication systems is a challenge which is affected 

by a number of factors such as the available technology, the channel characteristics, 

the type of service aimed for (e.g., data, speech, video, images, facsimile, etc.), new 

ideas in research, the acceptable cost of the system, and regulations. The driving force 

behind this challenge today for future digital communication systems is the 

requirement for higher data rates and systems capable of supporting many different 

types of services with different bit error probability and delay requirements. 

To this end, OFDM is one of the best candidates and is fast becoming the de-facto 

standard for present and future high speed communication systems. OFDM is a MCM 

technique that divides the digital data stream to be transmitted into a number of 

parallel bit streams, and utilizing these to modulate a number of subcarriers.  

In OFDM system, subchannels are obtained with an orthogonal transformation using 

inverse discrete Fourier transform (IDFT)  [14] on each block of data. The DFT/IDFT 

exhibits the desired orthogonality and can be implemented efficiently using the fast 

Fourier transform (FFT) algorithm. Orthogonal transformations are used so that at the 

receiver side, simply, the inverse transformation can be applied to demodulate the 

data without error in the absence of noise. Efficient modulation and coding methods 

can be utilized in the individual subchannels to approach the capacity of the channel. 

OFDM schemes use rectangular pulses for data modulation. Therefore, a given 

subchannel has significant spectral overlap with a large number of adjacent 

subchannels. Hence, subchannel isolation is preserved only for channels which 
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introduce virtually no distortion. But typical channels are far from ideal, and introduce 

interference that reduces system performance. 

One of the key ideas behind the OFDM realization is the use of guard interval (GI) 

that contains a cyclic prefix (CP), which is used to overcome the intersymbol 

interference (ISI) caused by the delay spread of the channel [15], [16] and make the 

OFDM system realizable using DFT/IDFT. The large number of 

subchannels/subcarriers makes the task of equalization at the receiver a simple scalar 

multiplication/division (frequency domain equalization). However, this performance 

comes at the cost of i) poor spectral concentration of the subcarriers and ii) certain 

loss of spectral efficiency. These are the characteristics of Fourier (rectangular) filters. 

An alternative approach to conventional OFDM is based on DWT that makes use of 

wavelet filters that have better time-scale localization property. This leads to highly 

structured and thus efficiently realizable transmission signal sets. Currently, wavelet 

based OFDM has gained popularity in the literature. DWT-OFDM can better combat 

narrowband interference (NBI) and is inherently more robust with respect to 

intercarrier interference (ICI) than conventional FFT filters due to very high spectral 

containment properties of the wavelet filters. As DWT-OFDM systems do not rely on 

cyclic prefix, the data rates can surpass those of FFT based OFDM systems.  

A wavelet packet (WP) is a generalization of wavelets, in that each octave frequency 

band of the wavelet spectrum is further subdivided into finer frequency bands by 

using the two scale relation repeatedly. The translates and dilates of each of these 

wavelet packets form an orthogonal basis allowing a signal to be decomposed into 

many wavelet packet components. A signal maybe represented by a selected set of 

wavelet packets without using every wavelet packet for a given level of resolution.  

Wavelet packets offer a more affluent signal analysis than wavelet decomposition of a 

signal. It allows focus on any part in time-frequency domain in a more detailed way 

than is possible with ordinary wavelet transform. The good frequency characteristics 

and greater flexibility presented by WPT make it a very useful choice for high data 

rate OFDM transceiver in fading channel conditions than DWT. However, a major 

trouble with common WPT is its lack of shift-invariance. This means that, on shift of 

the input signal, the wavelet coefficients vary substantially. The signal-information in 

the subbands may even not be stationary so that the energy distribution across the 
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subbands may change. To overcome the problem of shift dependence, one possible 

method is to simply reject the subsampling causing the shift dependence. Techniques 

that exclude or partially exclude subsampling are known as cycle-spinning, 

oversampled filter banks or undecimated wavelet transforms (UWT). However, these 

transforms are redundant [17], which is not desirable in MCM systems as it increases 

the computational complexity many-fold. 

As another option, one can use a non-redundant wavelet transform, called Dual-Tree 

Complex Wavelet Transform (DTԧWT) that achieves approximate shift invariance 

[18]. This transform gives rise to complex wavelet coefficients that can be used to 

modulate the data stream in the same way that WPM do [19]. In this thesis, we use 

this DTԧWT to design the OFDM system. 

The general objective of this work is related to the application of DTԧWT to design 

and evaluate a new OFDM system.  The specific goals of this work can be 

summarized as: 

 Establish an appropriate system model for the DTԧWT based OFDM 

transceiver scheme. 

 Carry out simulation based performance analysis of the DTԧWT based 

OFDM system and compare with conventional OFDM (FFT based OFDM 

system) and Wavelet Packet Modulation (WPM) systems (WPT based 

OFDM system) under different scenario. 

 Study peak-to-average power ratio (PAPR) performance of the transmitted 

signals of the above three systems. 

 Study, under the assumption of perfect synchronization and no high power 

amplifier (HPA) at the transmitter, the power spectral density (PSD) and the 

bit error rate (BER) performance of these ideal systems in AWGN and 

Rayleigh channels.  

 Study the impact of the presence of the HPA (both, the solid state high 

power amplifier (SSPA) and travelling wave tube amplifier (TWTA)) on 

PSD in terms of spectrum re-growth, input power back-off. 

 Study the impact of the presence of the HPA on BER and average BER in 

flat fading and frequency-selective Rayleigh channels. 

 Study the impact of approximate time-invariance of DTԧWT on BER 

performance in the presence of frequency-selective Rayleigh channel as 
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compared to time-varying WPT. 

 Find out the implementation complexity of the proposed system and 

compare it with those of the conventional OFDM and WPM systems. 

1.4    Research Methodology and Scope 

To verify the capability of the proposed system, a couple of comparisons are 

performed with the conventional OFDM and WPM systems for various metric 

parameters like PSD, PAPR, BER and average BER and computational complexity. 

Among various performance metric parameters, these parameters reflect the true 

nature of wavelet filters and their impact on the system performance.                  

The systems model includes transmitter and receiver side and Rayleigh channel in 

between are simulated in the presence of AWGN under the assumption of perfect 

synchronization. The simulations are carried out under a MATLAB® (7.6) R2008a 

environment. The blocks are implemented by MATLAB® functions using personal 

computer running Windows XP service pack 3 on Intel® Pentium® 4 2.8GHz 

processor, and 2GB of RAM. 

1.5    Contributions 

There are many ways in which wavelet theory has advanced the field of wireless 

communications. In this work, particular emphasis is placed upon the application of 

wavelets to transmission technologies. The main contributions of this work are:  

1. Design of a new MCM transceiver scheme based on DTԧWT. It is shown 

that the proposed system, while retaining all the good performance of WPM 

over conventional OFDM, can achieve better PAPR performance than both.  

2. Analysis of system performance of DTԧWT-OFDM relative to those of 

OFDM and WPM, both, in the presence and absence of nonlinear HPA. 

The PSD and the BER and average BER performance of the systems under 

both AWGN and Rayleigh channels are analyzed. It is shown that the 

proposed system has lower input power back-off, lower out-of-band 

attenuation and better BER performance in the presence of HPA. 

3. It is also shown that the complexity of the system is lower than that of the 
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conventional OFDM and WPM systems.      

1.6    Organization of the Thesis 

The following outlines the organization of this thesis and describes the contents of 

each chapter. 

Chapter 1 introduces the background and motivation of this research work with the 

comprehensive description of the central theme of this research, and how the idea of 

wavelet based signal processing is made use of. The man contributions of this work 

are also listed. 

Starting with the conventional OFDM, chapter 2 provides an introduction to OFDM 

and WPM systems. After a brief history on origin of MCM, this chapter describes the 

principles of OFDM and how it can be generated and received illustrating OFDM 

digital implementation scheme by using FFT and its counterpart, the IFFT. Moreover, 

it gives details of the cyclic prefix (CP) and explains how it helps avoid inter-symbol 

interference (ISI) in dispersive channels. It also illustrates the benefits and drawbacks 

of OFDM. Then, it introduces the basic concept of WT, multiresolution analysis 

(MRA), wavelets and scaling functions, then the representation of the DWT, WPT 

and subcoding. These are followed by the underlying structure of OFDM and WPM 

systems. Following that the OFDM system based on wavelet i.e., WOFDM is 

introduced, and finally, this chapter concludes with a review of the related research 

work. 

Chapter 3 introduces the problems and shortcomings related to use of real WT and the 

concept of DTԧWT. Some important issues related to DTԧWT such as the dual-tree 

(DT) framework, half sample delay condition, filter design and choice of the DTԧWT 

filters are also described. Then the proposed systems model with complete transmitter 

and receiver architectures is presented. The issue of PAPR is investigated and the 

impact of nonlinear HPA in the proposed system is also investigated.  

The performance of the PSD, PAPR, BER, average BER and computational 

complexity for the proposed system are quantified in chapter 4 through simulation in 

the MATLAB® computing environments using BPSK and 16 QAM with Haar (also 

known as Daubechies-1 (db1), db3, db9 and db13 and different filters in the design of 

DTԧWT. These results are shown for different number of subcarriers in AWGN and 
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Rayleigh channel and compared with those of OFDM and WPM systems. The results 

of the PSD, CCDF BER, average BER, spectrum re-growth and input power pack-off 

in the present and absent of HPA for the OFDM, WPM and DTԧWT-OFDM systems 

are also analyzed. Moreover, the computational complexity of the above systems is 

also investigated. 

Finally, chapter 5 concludes the thesis with the summary of major features of the 

research presented. The chapter also presents avenues for further and possible future 

research work in this field. 

Appendix A addresses the m-file of the MATLAB® function to perform the one 

dimension IDTԧWT. Appendix B presents the m-file of the MATLAB® function to 

perform the two dimensions IDTԧWT. Appendix C described the m-file of the 

MATLAB® function to perform the one dimension DTԧWT. Appendix D details the 

m-file of the MATLAB® function to perform the two dimensions DTԧWT. Finally, 

Appendix E show the coefficients of the DTԧWT filters 
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CHAPTER 2 

OFDM, WPM AND RELATED LITERATURE 

This chapter presents a detailed background of conventional OFDM system and the 

WPM system so the system-design of DTԧWT based OFDM system can be presented 

systematically later. It also presents the related literature that captures the work done 

in the area of OFDM, WPM and complex wavelet based OFDM systems. The chapter 

begins with an introduction to multicarrier modulation (MCM) systems in section 2.1, 

followed by a presentation of the general principles of OFDM system in section 2.2.  

The discussions of the OFDM system implementation and design are discussed in 

section 2.2.2 and 2.2.3, respectively. Benefits and drawbacks of OFDM system are 

discussed in section 2.2.4 along with a summary of various applications of OFDM in 

section 2.2.5. In section 2.2.6 continuous and discrete-time OFDM system model are 

discussed, while section 2.2.7 discusses the wavelet in MCM. An overview of wavelet 

transform and multi-resolution analysis (MRA) are discussed in 2.3.1 and 2.3.2, 

respectively. The wavelet packet (WP) and wavelet packet transform (WPT) are 

presented in section 2.3.3, followed by discussions on sub-coding in section 2.3.4. 

The underlying structure of OFDM and WPM systems are illustrated in section 2.4. 

Then, section 2.5 presents the wavelet based OFDM (WOFDM) system and section 

2.6 discussions the drawback of common discrete wavelet. This chapter is concluded 

with section 2.7 wherein a comprehensive description of the related literature of this 

research work is given.    

2.1    Introduction 

MCM schemes, such as OFDM, are used in modern communication systems due to 

their resilience to frequency selective channels. MCM systems can broadly be 

categorized into wired and wireless systems as shown in Fig. 2.1. The MCM 
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techniques can be classified by the block-transform used, such as: FFT, DWT, WPT, 

cosine-modulated filter bank (CMFB), and complex wavelet transform (ԧWT). 

Among the complex wavelet based systems, this work proposes the dual-tree complex 

wavelet transform (DTԧWT) based system. 

Besides the advantage of their resilience to frequency selective wireless channels, the 

MCM systems provide good protection against co-channel interference and impulsive 

parasitic noise and are less sensitive to sample timing offsets than single systems are. 

In addition to these advantages the channel equalization becomes simpler than by 

using adaptive equalization techniques with single carrier (SC) systems. However, 

despite their significant advantages, MCM techniques also suffer from a high PAPR 

of multicarrier signal. When passed through nonlinear, power-efficient amplifiers at 

the transmitter, high PAPR signals generate unacceptable levels of out-of-band 

(OOB) distortions leading to spectral re-growth. This forces the amplifiers to operate 

in the more linear regions of the amplifier gain with lower peak-to-peak signal level 

amounting to high input power back-off. At the same time, it requires larger 

frequency guard bands leading to poor utilization of the power and spectrum. To 

alleviate the problem of PAPR in OFDM and WPM (a generalization of OFDM based 

on WPT) systems, several techniques have been proposed, which can basically be 

divided into three categories. First, the signal distortion techniques – these techniques 

basically reduce the peak amplitudes by nonlinearly distorting the OFDM signal at or 

around the peaks.  

Examples of distortion techniques are peak cancellation, peak windowing, and 

clipping [20]. The second group is coding techniques that use a particular forward-

error correcting code set that excludes OFDM symbols with large PAPR [20]. The 

third group is based on scrambling each OFDM symbol with different scrambling 

sequences and selecting that sequence that gives the smallest PAPR [20]. PAPR 

reduction schemes based on precoding, a  digital signal processing (DSP) solution, are 

also deployed [21], [22], [23].  

Synchronization is another drawback of the MCM systems. The MCM systems are 

quite sensitive to frequency offset and phase noise resulting in inter-carrier 

interference (ICI) and inter-symbol interference (ISI). So a system designer should 

select a robust algorithm so that, at the receiver side, the errors can be easily 

corrected. At the receiver, there exist carrier frequency offset, symbol timing offset, 



 

12 

 

and sampling clock errors, which have to be estimated and compensated. Usually, the 

frequency offset and timing errors are more dominant than the sampling clock 

inaccuracy. For example in the OFDM systems, the main synchronization parameters 

to be estimated are detection of the frame, the starting time of the FFT window 

(timing synchronization), and the frequency offset due to the inaccuracies of the 

transmitter and receiver oscillators, and the Doppler shift of the mobile channel. 

These two synchronization tasks have to be performed before the OFDM receiver can 

demodulate the subcarriers. In addition, if coherent demodulation is used, the receiver 

also needs an estimate of the channel to equalize the distortion caused by the channel.  

 

 
Figure 2.1 Classification of the MCM systems. 

2.2    OFDM System 

2.2.1    Principle of OFDM 

The idea of orthogonal frequency division multiplexing (OFDM) comes from 

multicarrier modulation (MCM) transmission technique. The principle of MCM is to 

partition the input bit stream into numerous parallel bit streams and then use them to 

modulate several sub carriers as shown in Fig. 2.2. Each subcarrier is separated by 

using the guard band to prevent the subcarrier from overlapping with each other. On 

the receiver side, bandpass filters are used to separate the spectrum of individual 

subcarriers. OFDM is a special form of spectrally efficient MCM technique, which 

employs densely spaced orthogonal subcarriers and overlapping spectrums. The use 

of bandpass filters is not required in OFDM because of the orthogonal nature of the 
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subcarriers. Hence, the available bandwidth is used very efficiently without causing 

the ICI. 

 

M M

 
Figure 2.2 Block diagram of a generic MCM transmitter. 

At first in classical parallel data system, the total signal frequency band is divided into 

ܰ non-overlapping frequency subchannels. Every subchannel is modulated with a 

separate symbol, and then the ܰ subchannels are multiplexed in the frequency-

domain. It seems good to avoid spectral overlap of channels to ICI, but this kind of 

modulation, has the problem of inefficient use of the available spectrum. To solve this 

inefficiency the proposed suggestions are to use parallel data and frequency division 

multiplex (FDM), with overlapping subchannels, Fig. 2.3 (a). Using the overlapping 

MCM, the required bandwidth is greatly reduced, Fig. 2.3 (b).  

Fig. 2.3 elucidates an essential concept about OFDM, the concept of orthogonality. In 

OFDM, the orthogonality between subcarriers should fulfill these two properties as 

shown in Fig. 2.3(b) : 

• Each subcarrier should, accurately, have an integer number of cycles in the 

symbol duration, ௦ܶ. 

• The number of adjacent subcarriers should be separated by exactly 1/ ௦ܶ.  
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Figure 2.3 Comparison between conventional FDM (a) and OFDM (b). 

In a system, following the above mentioned properties, it is possible that the 

sidebands of each subcarrier overlap, yet we receive the total signal without adjacent 

carrier interference.  

It is still possible to recover the individual subcarrier despite their overlapping 

spectrum provided that the orthogonality is maintained. The orthogonality is 

accomplished by performing fast Fourier transform (FFT) on the input stream. 

Because of the grouping of multiple low data rate subcarriers, OFDM provides a 

composite high data rate with long symbol duration. Depending on the channel 

coherence time, this reduces or completely eliminates the risk of intersymbol 

interference (ISI), which is a common phenomenon in multipath channel environment 

with short symbol duration. The use of cyclic prefix (CP) in OFDM symbol can 

reduce the effect of ISI even more [20], but it also introduces a loss in signal to noise 

ratio (SNR) and reduction in data rate. 

2.2.2    OFDM System Implementation 

The principle of OFDM, basically a multicarrier modulation (MCM) technique, was 

already known in the 50’s and 60’s. But, the system implementation was delayed due 

to technological difficulties, primarily the difficulty of digital implementation of FFT/ 

inverse FFT (IFFT), which was not easy at that time. In 1965, Cooley and Tukey were 
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proposed the algorithm for FFT calculation [24] and afterward its efficient 

implementation on chip makes the OFDM into application. The digital 

implementation of OFDM system is achieved by using the mathematical operations 

called discrete Fourier transform (DFT) and its equivalent part inverse DFT (IDFT). 

These two operations are extensively used for transforming data between the time-

domain and frequency-domain. In case of OFDM, these transforms can be seen as 

mapping data onto orthogonal subcarriers. In order to perform frequency-domain data 

into time-domain data, IDFT connects the frequency-domain input data with its 

orthogonal basis functions, which are sinusoids at certain frequencies. In other words, 

this correlation is alike to mapping the input data onto the sinusoidal basis functions. 

In practice, OFDM systems employ combination of FFT and IFFT blocks which are 

mathematical equivalent version of the DFT and IDFT. 

At the transmitter side, an OFDM system handles the source symbols as though they 

are in the frequency-domain. These symbols are fed to an IFFT block which brings 

the signal into the time-domain. If the ܰ numbers of subcarriers are selected for the 

system, the basis functions for the IFFT are ܰ orthogonal sinusoids of distinct 

frequency and IFFT receive ܰ symbols at a time. Each of ܰ complex valued input 

symbols determines the amplitude and phase of the sinusoid for that subcarrier.  

Before transmission, a CP is inserted at the beginning of the OFDM symbol to avoid 

interference between consecutive symbols. The CP is a copy of the last part of the 

OFDM symbol, which is appended to the front of transmitted OFDM symbol [20], 

and it makes the transmitted signal periodic. Hence, the linear convolution performed 

by the channel looks like a cyclic convolution to the data if the CP is longer than 

channel impulse response (CIR) and the CIR does not change during one OFDM 

symbol interval. It means, the length of the CP ܶ must be chosen as longer than the 

maximum delay spread of the target multipath environment.  
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Figure 2.4 OFDM symbol with cyclic prefix (CP). 

Figure 2.4 depicts the benefits arise from CP insertion, certain position within the CP 

is chosen as the sampling starting point at the receiver, which satisfies the criteria 

߬௫ ൏   ௦ܶ  ൏   ܶ , where ߬௫ is the maximum multipath spread. Once the above 

condition is satisfied, there is no ISI since the previous symbol will only have effect 

over samples within ሾ0, ߬௫ሿ. And it is also clear from the figure that sampling 

period starting from ௦ܶ will encompass the contribution from all the multipath 

components so that all the samples experience the same channel and there is no ICI. 

The output of the IFFT is the summation combination of all ܰ sinusoids and makes up 

a single OFDM symbol. The length of the OFDM symbol is extended by the so called 

cyclic extension or a guard interval (GI) ܰ, now the OFDM symbol is ൫ܰ  ܰ൯ܶ 

where ܶ is the IFFT input symbol period. In this way, IFFT block offers a simple way 

to modulate data onto ܰ orthogonal subcarriers.  

At the receiver side, the receiver removes the CP part and performs the FFT with the 

remainder of the received samples. The FFT block accomplishes the reverse process 

on the received signal and carries it back to the frequency-domain. The block diagram 

in Fig. 2.5 depicts the exchange between frequency-domain and time-domain in an 

OFDM system.  
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Figure 2.5 Basic OFDM transmitter and receiver. 

Proper coding design is usually employed in wireless OFDM systems to achieve a 

reasonable error probability. Coding in OFDM can be implemented in the time and 

frequency domains such that both dimensions are utilized to achieve better immunity 

against frequency and time selective fading. For example, the combination of a Reed-

Solomon outer code and a rate-compatible convolutional inner code along with proper 

time/frequency interleaving constitutes a powerful concatenated coding strategy [25]. 

Other advanced coding techniques, such as turbo codes and low-density parity-check 

(LDPC) codes, also seem promising for some multicarrier applications [26], [27], 

[28]. 

2.2.3    OFDM System Design 

2.2.3.1    Considerations 

OFDM system design issues aim to reduce the data rate at the subcarriers, therefore, 

the symbol duration increases and as a result, the multipath effects are reduced 

effectively. The insertion of higher valued CP will achieve good results against 

combating multipath effects but at the same time it will increase the loss of energy. 

Thus, a tradeoff between these two parameters must be done to obtain a reasonable 

system design. 

2.2.3.2    Requirements 

OFDM system depends on the following four requirements: [29] 

• Available bandwidth: The bandwidth has a significant role in the selection of 

number of subcarriers. Large amount of bandwidth will allow obtaining a 

large number of subcarriers with reasonable CP length. 
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• Required bit rate: The system should be able to offer the data rate required for 

the specific purpose. 

•  Tolerable delay spread: An user background specific maximum tolerable 

delay spread should be known a priori in determining the CP length. Tmax. 

•  Doppler values: The effect of the Doppler shift owing to the user movement 

should be taken into account. 

2.2.3.3    Parameters 

The design parameters are resulting according to the system requirements. The design 

parameters for an OFDM system are as follows [20] 

• Number of subcarriers: it have been stated earlier that the selection of large 

number of subcarriers will help to fighting multipath effects. But, at the same 

time, this will increase the synchronization complexity at the receiver side. 

• Symbol duration and CP length: An ideal choice of ratio between the CP 

length and symbol duration should be selected, so that multipath effects are 

combated and not significant amount bandwidth is lost due to CP. 

• Subcarrier spacing: Subcarrier spacing will depend on available bandwidth 

and number of subcarriers used. But, this must be chosen at a level so that 

synchronization is achievable. 

•  Modulation type per subcarrier: The performance requirement will determine 

the selection of modulation scheme. Adaptive modulation can be used to 

support the performance requirements in changing environment. 

•  Forward error correction (FEC) coding: A suitable selection of FEC coding 

will make sure the robustness of the channel to the random errors. 

2.2.4    Benefits and Drawbacks of OFDM 

In the above section, we have shown how an OFDM system combats the ISI and 

reduces the ICI. In addition to these benefits, there are other benefits of OFDM 

system that are listed hereunder: 

• High spectral efficiency because of overlapping spectra. 

• Simple implementation by FFT. 
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• Low receiver complexity as the transmitter battle the channel effect to some 

extends. 

• Suitable for high data rate transmission. 

• High flexibility in terms of link adaptation. 

• Low complexity multiple access schemes such as orthogonal frequency 

division multiple access (OFDMA). 

• Efficient way of dealing with multipath delay spread. 

• By dividing the channel into narrowband flat fading sub-channels, OFDM is 

more resistant to frequency selective fading than single carrier (SC) system 

are. 

• In moderately slow time varying channel, it is possible to significantly 

improve the capacity by adapting the data rate per subcarrier according to the 

SNR of that particular subcarrier. 

• Using adequate channel coding and interleaving one can recover symbol lost 

due to the frequency selectivity of the channel. 

• OFDM makes single frequency networks possible, which is especially 

attractive for broadcasting applications.   

• It is possible to use maximum likelihood (ML) detection with reasonable 

complexity [30]. 

 On the other hand, the few drawbacks an OFDM system suffers from are listed as 

follows: 

• An OFDM system is highly sensitive to timing and frequency offsets [20]. 

Demodulation of an OFDM signal influenced by an offset in the frequency can 

lead to a high bit error rate. 

• An OFDM system with large number of subcarriers will have a higher peak to 

average power ratio (PAPR) compared to SC system. High PAPR of a system 

makes the implementation of digital to analog conversion (DAC) and analog 

to digital conversion (ADC) extremely difficult [29]. 

2.2.5    Applications of OFDM 

OFDM has achieved a big interest since the beginning of the 1990s [31] as many of 

the implementation difficulties have been overcome. OFDM has been used or 
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proposed for a number of wired and wireless applications. The first commercial use of 

OFDM technology was digital audio broadcasting (DAB) [29]. OFDM has also been 

utilized for the digital video broadcasting (DVB) [32]. OFDM under the acronym of 

discrete multitone (DMT) has been selected for asymmetric digital subscriber line 

(ADSL) [33]. The specification for wireless local area network (WLAN) standard 

such as IEEE2 802.11a and g, wireless fidelity (WiFi) [34], [35] and European 

telecommunications standards institute (ETSI) high performance radio local area 

network (LAN) version 2  (HIPERLAN2) [36] has employed OFDM as their physical 

layer (PHY) technologies. IEEE 806.16 worldwide interoperability for microwave 

access (WiMAX) standard for fixed/mobile broadband wireless access (BWA) IEEE 

802.20 has also accepted OFDM for PHY technologies. 

  

Table 2.1 Data rates provided by existing communication systems. 

Data Rates Systems 

1-10 Kbps Pagers 

10-100 Kbps 1G/2G cellular systems 

100-500 Kbps 2.5G cellular systems (e.g., enhanced data rate for global 

system for mobile communication (GSM) evolution (EDGE)); 

IEEE 802.15.4 (ZigBee) 

1-10 Mbps 3G cellular systems (e.g., wideband code division multiple 

access (WCDMA)); IEEE 802.11; Bluetooth; asynchronous 

digital subscriber line (ADSL); Data over Cable 

10-100 Mbps IEEE 802.11b; IEEE 802.11 a/g; IEEE 802.16 (WiMAX); very 

high data rate digital subscriber line (VDSL) 

100-500 Mbps IEEE 802.11n; IEEE 802.15.3a; HomePlug; home phone line 

networking alliance (HomePNA). 

0.5-2 Gbps IEEE 802.15.3c 

10-20 Gbps WirelessHD 

 

Table 2.1 summarizes some of existing communication systems and their supported 

data rate ranges. Table 2.2 lists systems from Table 2.1 that use OFDM for 

communications. Depending on the system requirements, 64-1024 subcarriers have 
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been used and constellation size up to 32768 for the modulation of the individual 

subcarriers. 

Table 2.2 Orthogonal frequency division multiple modulation based systems. 

System Maximum number of 

subcarriers 

Modulations 

IEEE 802.11 a/g 64 BPSK; QPSK; 16 QAM; 32 QAM; 

64 QAM 

IEEE 802.11 n 128 BPSK; QPSK; 16 QAM; 32 QAM; 

64 QAM 

IEEE 802.16 2048 BPSK; QPSK; 16 QAM; 64 QAM 

IEEE 802.15.3a 128 QPSK 

IEEE 802.15.3c 256 BPSK - 64 QAM 

HomePlug 1024 BPSK - 1024 QAM 

ADSL/VDSL 4096 BPSK - 32768 QAM 

 

2.2.6    OFDM System Model 

The system model described herein uses a simplified model with the following 

assumptions: OFDM symbol duration with cyclic prefix (CP) is ܶ ൌ   ܶ   ௦ܶ௬, 

where ௦ܶ௬ is the effective symbol duration and ܶ, the length of CP. ܶ also stands 

for guard interval. The frequency separation between adjacent subcarriers is equal to 

the inverse of the effective symbol interval ௦ܶ௬, which is the minimum frequency 

separation required to achieve orthogonality between two subcarriers. A total of ܰ 

subcarriers are used with total bandwidth of ܤ ൌ ܰ/ ௦ܶ௬ Hz. The transmitter and 

receiver are assumed perfectly synchronized and the fading is slow enough for the 

channel to be considered constant during one OFDM symbol. 

2.2.6.1    Continuous Time System Model 

The first MCM systems design did not make use of digital modulation and 

demodulation. The continuous time OFDM model illustrated in Fig. 2.6 below is 

considered for convenience, which in practice is digitally synthesized [37]. 
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Figure 2.6 Simplified continuous time baseband OFDM model. 

The RF model of the OFDM signal is expressed as 

ݐோி,ሺݔ െ ݈ܶሻ

ൌ  

ە
۔

ܴۓ ൝ߣሺݐ െ ݈ܶሻ ܽ,݁
ଶగሺା


ೞ்

ሻሺ௧ି்ሻ 
ேିଵ

ୀ

ൡ
்ି்ೢି ்ஸ௧ஸ்ା ೞ்ା்ೢ

0                                                                         ୭୲୦ୣ୰୵୧ୱୣ

              ሺ2.1ሻ 

where ݂ is the carrier frequency, ܽ, is the signal constellation point, ݈ is the index on 

subcarrier, and ߣሺݐሻ is the transmitter pulse shape defined as 

ሻݐሺߣ ൌ ቐ
1

ඥ ௦ܶ௬
݁
ଶగ௧
ೞ்

 
       െ ܶ ൏ ݐ ൏ ௦ܶ௬

otherwise                                    
                                 ሺ2.2ሻ 

Finally, the contenous sequence of the transmitted OFDM symbol can be written as 

ሻݐோி,ሺݔ ൌ    ݐோி,ሺݔ െ ݈ܶሻ  
ஶ

ୀିஶ

                                              ሺ2.3ሻ 

The baseband transmitted signal for ݈௧ OFDM symbol using the baseband carrier 

frequencies with index k, (i.e., ݂ ൌ ݇/ ௦ܶ௬) is expressed as 

ሻݐሺݔ ൌ   ܽ,ߣሺݐ െ ݈ܶሻ                                              ሺ2.4ሻ
ேିଵ

ୀ

 

When an infinite sequence of OFDM symbols is transmitted, the output of the 

transmitter is a superposition of individual OFDM symbols 

ሻݐሺݔ ൌ  ሻݐሺݔ  ൌ 
ஶ

ୀିஶ

   ܽ,ߣሺݐ െ ݈ܶሻ                                              ሺ2.5
ேିଵ

ୀ

ஶ

ୀିஶ

ሻ 

The influence of the time dispersive, multipath fading radio channel is expressed by 
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its lowpass equivalent CIR, ݄ሺݐ, ߬ሻ. Then with the assumption that the channel delay 

spread is within ൣ0, ܶ൧, the received signal ݕሺݐሻ after the CP is removed will be 

ሻݐሺݕ ൌ න ݄ሺݐ, ߬ሻݔሺݐ െ ߬ሻ݀߬  ሻݐሺݓ

்



                                   ሺ2.6ሻ 

where ݓሺݐሻ is zero mean additive white Gaussian noise (AWGN) in the channel with 

double sided power spectral density of ܰ/2. 

The OFDM receiver uses bank of filters matched to the transmitter waveforms given 

by 

ሻݐሺߚ ൌ ൜ ߣ
כ ሺܶ െ ݐ ሻ      ifݐ א ൣ0, ܶ െ ܶ൧

otherwise                                    
                                    ሺ2.7ሻ 

And the sampled output of the ݉௧ receiver filters which are matched to the effective 

part of the symbol ൣ ܶ, ܶ൧, is given by 

ܾ ൌ
1

ඥ ௦ܶ௬
න ሻ݁ݐሺݕ

ିଶగ௧
ೞ்݀ݐ

ೞ்



 

ൌ
1
௦ܶ௬

 ܽܪ න ݁
ଶగఛ

ೞ் ݁
ିଶగ௧

ೞ்݀ݐ

ೞ்



ேିଵ



 ܹ                                 ሺ2.8ሻ 

where ܪ expressed as 

ܪ ൌ න݄ሺ߬ሻ݁
ିଶగఛ

ೞ் ݀߬
்

்

                                                       ሺ2.9ሻ 

is the sampled frequency response of the channel at the ݉௧ subcarrier frequency, and 

ܹ ൌ  ሺܶݓ െ כߣሻݐ ሺݐሻ݀ݐ
்
்

 is the noise part. Since the transmitter waveforms ߣሺݐሻ’s 

are orthogonal, i.e., 
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Figure 2.7 Subcarrier spectrum of OFDM system. 

නߣሺݐሻߣכ ሺݐሻ݀ݐ
்
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ൌ  
1
௦ܶ௬
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ଶగ௧

ೞ் ݁
ିଶగ௧

ೞ்݀ݐ
்

்

ൌ ሾ݇ߜ  െ ݉ሿ                   ሺ2.10ሻ 

where ߜሾ݇ሿ is the Kronecker delta function [38], Eq. (2.8) can be simplified to  

ܾ ൌ  ܽܪ   ܹ                                                   ሺ2.11ሻ 

The rectangular transmitter pulse shapes result in a sinሺݔሻ  shaped frequency ݔ/

response for each channel as shown in Fig. 2.7 above. The sidelobes for the sinሺݔሻ  ݔ/

function decay as 1/݂ଶ which is not efficient and thus windowing is required to 

reduce the sidelobe energy. 

2.2.6.2    Discrete Time System Model 

The discrete-time system model can be obtained from its continuous-time model by 

sampling at time intervals ݐ ൌ  ݊ ௦ܶ, where ௦ܶ ൌ   ௦ܶ௬/ܰ. The normalized discrete-

time transmitted signal with CP of length ܰ ൌ   ܶ/ ௦ܶ is given as [37], [39], and [40]  

0 0 . 2 0 . 4 0 . 6 0 . 8 1 1 . 2 1 . 4 1 . 6 1 . 8 2

10 Subcarriers

f
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ሺ݊ሻݔ ൌ   
1
√ܰ

 ܽ݁
ଶగே

ேିଵ

ୀ

               ݊ ߳ൣ ܰ, ܰ െ 1൧                 ሺ2.12ሻ 

Equation (2.10) is an ܰ-point IDFT of a discrete data sequence ݔሾ݇ሿ, 0  ݇  ܰ െ 1, 

which can be efficiently implemented using IFFT algorithm. 

Since the signal bandwidth is limited to ܹ, the wide sense stationary uncorrelated 

scattering (WSSUS) channel can also be modeled as a tapped delay line with random 

taps. Here also, with the same assumption that ܰ    the total delay of the channel ,ܮ

coefficients, ݄ሺ݊, ݈ሻ, the received discrete signal, after the CP is removed, is given by 

ሺ݊ሻݕ ൌ   ݄ሺ݊, ݈ሻݔሺ݊ െ ݈ሻ  ሺ݊ሻݓ 


ୀ

             ݊ ߳ሾ0, ܰ െ 1ሿ                   ሺ2.13ሻ 

where ݓሺ݊ሻ is complex zero mean Gaussian random variable with variance N0/2. 

Then, to demodulate the symbols on different subcarriers, we perform FFT on ݕሺ݊ሻ, 

and obtain 

ܻ ൌ  ܺܪ   ܹ                                                   ሺ2.14ሻ 

where ܹ is white Gaussian noise Fourier transformed.  

If the channel coefficients ܪ are equal, that is the channel is time invariant over one 

OFDM symbol period, there will be no ICI.  

The purpose of communication being the recovery of transmitted symbols ܽ′ݏ, it can 

be seen that these can be estimated from Eq. (2.14) simply by dividing ݕ at each 

subcarrier by channel response ݄ – popularly known as a zero-forcing equalizer. A 

typical bit error rate (BER) performance of an OFDM system is given in Fig. 2.8 that 

shows the symbols are as accurately recovered as they do in BPSK system. 
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Figure 2.8 BER performance of theoretical BPSK and OFDM using BPSK in 
AWGN channel. 

2.2.7    Wavelets in Multicarrier Modulation 

The major drawback of the OFDM system is the rectangular window used, which 

creates high side lobes. Moreover, the pulse shaping function employed to modulate 

each sub-carrier broadens to infinity in the frequency-domain [41]. This leads to high 

interference and lower performance levels. The result of wave-shaping of OFDM 

signal on ISI and ICI is detailed in [42]. In [43] the optimal wavelet is designed for 

OFDM signal so as to minimize the maximum of total interference. The wavelet 

transform has a more longer basis functions and can offer a higher degree of side lobe 

suppression [13].With the promise of greater flexibility and ameliorated performance 

against channel effects, wavelet based basis functions have emerged as strong 

contender for MCM in wireless channels.  

In the conventional OFDM system, the ISI and ICI are reduced by adding a GI using 

CP to the head of the OFDM symbol. Adding CP can largely reduce the spectrum 

efficiency. Wavelet based OFDM systems do not need CP [7], thereby enhancing the 

spectrum efficiency. According to the IEEE broadband wireless standard 802.16.3 
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[44], avoiding the CP gives Wavelet OFDM an advantage of roughly 20% in 

bandwidth efficiency. Furthermore, as pilot tones are not required for the wavelet 

based OFDM system, they perform better in comparison to existing OFDM systems 

like 802.1la or HiperLAN, where four out of fifty two sub-bands are used for pilots. 

This gives WOFDM another 8% advantage over typical OFDM implementations [7].  

2.3    Wavelet Packet Modulation (WPM) 

2.3.1    Introduction 

The transform of a signal is no more than another form of representing the signal. In 

Fourier theory a signal can be represented as the sum of a possibly infinite series of 

sinusoids, which is referred to as a Fourier expansion. Fourier expansion works well 

with time-invariant signals. For a time-varying signal, a complete characterization in 

the frequency-domain should include the time aspect, resulting in the time-frequency 

analysis of a signal. In the past, several solutions have been developed which, more or 

less, are able to represent a signal in the joint time-frequency domain. They include 

the short time Fourier transform (STFT) and wavelet transform (WT) [5]. 

The WT, however, gives the time-scale representation of the signal where scale 

relates to frequency in an indirect way. There has been intensive research on wavelets. 

In particular, Mallat [45] and Meyer [46] discovered a close relationship between 

wavelet and multi resolution analysis (MRA), which leads to a simple way of 

calculating wavelet functions. Their work also established a connection between 

wavelet and digital filter-bank. Daubechies developed a systematic technique for 

generating finite duration orthogonal wavelets with finite impulse response (FIR) 

filter banks [47]. 

The major conclusions of current studies on WT point to development of several new 

applications. One of the promising applications of wavelet transforms is in the area of 

digital wireless communications where they can be used to generate waveforms that 

are suitable for transmission over wireless fading channels.  
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2.3.2    Overview of Wavelet Transform and Multiresolution Analysis 

In wavelet and wavelet packet transforms, a signal usually in time-domain is 

represented as a weighted sum of translates and dilates of a mother wavelet. The 

translations and dilations of a wavelet function provide the means for constructing 

orthonormal basis of wavelets spanning the space ܮଶሺܴሻ of square integrable 

functions. They can be grouped by their dilation or scaling constants into the disjoint 

subsets spanning the orthogonal subspaces of ܮଶሺܴሻ [12]. These subsets 

corresponding to different scales and represent the signal at different resolution levels 

give rise to MRA [12], [48]. Wavelet Transforms can be classified as continuous 

wavelet transforms (CWT) or DWT. A continuous time signal can be represented in 

the wavelet-domain as 

ሻݐሺݔ ൌ    ݀,߰,ሺݐሻ ൌ 
∞

,א

 ܽ,߶,ሺݐሻ  
∞

א

 ݀,߰,ሺݐሻ            ሺ2.15ሻ
∞

א

∞

ୀ

 

where ܼ is the set of integers. The orthonormal basis functions ߶ሺݐሻ ൌ  2
ೕ
మ߶ሺ2ݐ െ

݇ሻ are derived from the scaling function ߶ሺݐሻ, and the wavelet functions ߰,ሺݐሻ ൌ

 2
ೕ
మ߰,൫2ݐ െ ݇൯ constitute an orthonormal basis derived from the mother wavelet 

߰ሺݐሻ. In wavelet terminology, the scaling functions ߶,ሺݐሻ, for ݆, ݇ ൌ 1, 2, 3,…, span 

the subspace ܸ  ؿ   ܸାଵ  and the wavelet function ߰,ሺݐሻ, for ݆, ݇ ൌ 1, 2, 3,…, span 

the subspace   ݓ  ؿ   ܸାଵ  െ   ܸ . These subspaces constitute a MRA on ܮଶሺܴሻ. The 

time-domain input ݔሺݐሻ, is represented by the wavelet coefficients ܽ, and  ݀,, 

where ݇ and ݆ determine the time-domain  shift and scale of the mother wavelet, 

respectively, resulting in the different resolution levels and thus different subspaces. 

When the infinite sums over scale are truncated and limited to ܬ, we get: 

ሻݐሺݔ  ൌ   ݀,߰,ሺݐሻ




ୀ

                                           ሺ2.16ሻ 

The equation (2.16), describes the signal ݔሺݐሻ in terms of the bandpass filters whose 

bandwidth and center frequency are increased by the factor 2. The discretization in 

time of  ݔሺݐሻ results in ݔሺ݊ሻ, and the WT projects this signal on the wavelet subspace 

     : as followsݓ
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ሺ݊ሻݔ ൌ ܽ,߶,ሺ݊ሻ      
∞

א

 ݀,߰,ሺ݊ሻ                     ሺ2.17ሻ   
∞

א

 

The discrete wavelet coefficients ܽ,, and ݀, can be approximated in the discrete 

domain and this gives rise to the DWT as follows [49]:    

ܽ, ൌ  ݔሺ݊ሻ߶,ሺ݊ሻ                                       ሺ2.18ሻ
∞



  

݀, ൌ  ݔሺ݊ሻ߰,ሺ݊ሻ                                        ሺ2.19ሻ
∞



 

In practice, the discrete wavelet transforms are realizes as a finite impulse response 

(FIR) filter by using the convolution of the input signal with a combination of a 

lowpass and highpass filter. The lowpass filter, ݄ሺ݇ሻ, and the highpass filters, ݃ሺ݇ሻ, 

are derived from the wavelet function, ߰,ሺݐሻ, and scaling function, ߶,ሺݐሻ, as 

follows [49]: 

݄ሺ݇ሻ ൌ
1
√2

߶ۃ ൬
ݐ
2൰ , ߶ሺݐ െ ݇ሻۄ                                            ሺ2.20ሻ 

݃ሺ݇ሻ ൌ
1
√2

߰ۃ ൬
ݐ
2൰ , ߶ሺݐ െ ݇ሻۄ                                             ሺ2.21ሻ 

where ۃ .  , .  is the inner product of functions. Thus from (2.20) and (2.21), the  ۄ

filters ݄ሺ݇ሻ and ݃ሺ݇ሻ are obtained by dilating, time shifting and sampling the original 

mother wavelet. These filters are then used for designing the orthonormal basis for 

subspaces ܸ and ݓ if the following conditions are satisfied [49]: 

                     
ሻ|ଶݓሺܪ|   ݓሺܪ|  ሻ|ଶߨ  ൌ 2
ሻ|ଶݓሺܩ|   ݓሺܩ|  ሻ|ଶߨ  ൌ 2

כሻݓሺܪሻݓሺܩ  ݓሺܩ   ݓሺܪሻߨ   כሻߨ  ൌ 0 
                                 ሺ2.22ሻ 

where ܪሺݓሻ and ܩሺݓሻ are the discrete Fourier transforms of ݄ሺ݇ሻ and ݃ሺ݇ሻ, 

respectively. The decomposition of the input signal is achieved by first filtering the 

input signal by ݄ሺ݊ሻ and ݃ሺ݊ሻ and then downsampling the outputs of both filters. It 

can be mathematically expressed as    

ଵሺ݊ሻܣܿ ൌ   ݄ሺ݇ሻݔሺ2݊  ݇ሻ                                    ሺ2.23ሻ


ୀ
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ଵሺ݊ሻܦܿ ൌ   ݃ሺ݇ሻݔሺ2݊  ݇ሻ                                      ሺ2.24ሻ


ୀ

 

where ܿܣଵሺ݊ሻ are the scaling coefficients for the approximation portion,  ܿܦଵሺ݊ሻ are 

the wavelet coefficients for the detail portion, and ܮ is the length of the wavelet 

filters. Expression (2.23) and (2.24) represent the first level of the wavelet 

decomposition. The subsequence levels are obtained by further filtering the 

approximation (or detail) portions of the first level discrete wavelet transforms. For 

example, the second level coefficients are obtained by further decomposition of the 

coefficients obtained from the first level decomposition as follows: 

ଶሺ݊ሻܣܿ ൌ   ݄ሺ݇ሻܿܣଵሺ2݊  ݇ሻ                            ሺ2.25ሻ


ୀ

 

ଶሺ݊ሻܦܿ ൌ   ݃ሺ݇ሻܿܣଵሺ2݊  ݇ሻ                            ሺ2.26ሻ


ୀ

 

where ܿܣଵሺ݊ሻ and ܿܦଵሺ݊ሻ are the first level wavelet transforms, ܿܣଶሺ݊ሻ and ܿܦଶሺ݊ሻ 

are the second level wavelet transforms, and ܮ  is the length of the wavelet filters. 

This decomposition process is illustrated in Fig. 2.9. 

 

Figure 2.9 Two stage analysis filter banks or wavelet decomposition. 

Generally, the approximation coefficients for level ݉  1 are obtained from the 

previous level ݉ coefficients as follows: 

ାଵሺ݊ሻܣܿ ൌ
1
√2

 ݄ሺ݇ሻܿܣሺ2݊  ݇ሻ ൌ  
1
√2

 ݄ሺ݇ െ 2݊ሻܿܣሺ݇ሻ


    ሺ2.27ሻ 

Similarly, the coefficients for level ݉  1 are obtained from the previous level ݉ 

coefficients as follows: 
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ାଵሺ݊ሻܦܿ ൌ
1
√2

 ݃ሺ݇ሻܿܣሺ2݊  ݇ሻ ൌ  
1
√2

 ݃ሺ݇ െ 2݊ሻܿܣሺ݇ሻ


     ሺ2.28ሻ 

 

The equations (2.27) and (2.28) represent the multiresolution decompositions 

algorithm. The algorithm is the first half of the fast wavelet transform. The vector 

containing the sequence ሺ1/√2ሻ݄ሺ݇ሻ represents the lowpass filters which lets through 

low signal frequencies and hence a smoothed version of the signal, and the highpass 

filter ൫1/√2൯݃ሺ݇ሻ which lets through the high frequency corresponding to the signal 

details. In the reverse direction, the reconstruction of ܿܣ from ܿܣାଵ and ܿܦାଵ 

can be obtained from the reconstruction algorithm shown in Fig. 2.10 and is expressed 

as 

ିଵሺ݊ሻܣܿ ൌ
1
√2

 ݄ሺ݊ െ 2݇ሻܿܣሺ݇ሻ  
1
√2

 ݃ሺ݊ െ 2݇ሻܿܦሺ݇ሻ


        ሺ2.29ሻ 

This operation is also carried out recursively, leading to the IDWT. The further 

decomposition of both approximation Eq. (2.23), and the detail Eq. (2.24), lead to the 

discrete WPT (DWPT). 

 

 

Figure 2.10 Two stage synthesis filter bank or wavelet reconstruction. 

2.3.3    Wavelet Packet and Wavelet Packet Trees 

As a generalization of wavelets, wavelet packets are basis functions that localize in 

both time and frequency domains. As with wavelets, they are constructed using 

quadrature mirror filter (QMF) pairs ݄ሺ݊ሻ and ݃ሺ݊ሻ, satisfying the following 

conditions [50], [51]: 
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 ݄ሺ݊ሻ
∞

ୀ ି∞

ൌ 2                                                    ሺ2.30ሻ 

 ݄ሺ݊ሻ ݄ሺ݊ െ 2݇ሻ
∞

ୀ ି∞

ൌ  ሺ݇ሻ                        ሺ2.31ሻߜ2

݃ሺ݊ሻ ൌ   ሺെ1ሻ݄ሺܮ െ ݊ െ 1ሻ                                 ሺ2.32ሻ 

where ߜሺ. ሻ is the delta function, ݄ሺ݊ሻ and ݃ሺ݊ሻ are the low- and highpass filters, 

respectively, and ܮ is the span of the filters. The QMFs ݄ሺ݊ሻ and ݃ሺ݊ሻ are recursively 

used to define the sequence of basis functions ߶ሺݐሻ, called wavelet packets as 

follows: 

߶ଶሺݐሻ ൌ  ݄ሺ݇ሻ߶ሺ2ݐ െ ݇ሻ                                  ሺ2.33ሻ
א௭

 

߶ଶାଵሺݐሻ ൌ  ݃ሺ݇ሻ߶ሺ2ݐ െ ݇ሻ                              ሺ2.34
א௭

ሻ 

Wavelet packets have the following orthogonality properties: 

ݐሺ߶ۃ െ ݆ሻ, ߶ሺݐ െ ݇ሻۄ ൌ ሺ݆ߜ  െ ݇ሻ                         ሺ2.35ሻ 

ݐଶሺ߶ۃ െ ݆ሻ, ߶ଶାଵሺݐ െ ݇ሻۄ ൌ  0                               ሺ2.36ሻ 

The first property states that each individual wavelet packet is orthogonal to all the 

nonzero integer translates of itself. While the second property states that pairs of 

wavelet packets from the same parent are orthogonal to all translates. 

Another way to conceptualize the wavelet and wavelet packet transforms is by 

viewing them as operators. Based on ݄ሺ݊ሻ and ݃ሺ݊ሻ, and  corresponding reversed 

filters ݄ሺെ݊ሻ and ݃ሺെ݊ሻ, four operators ିܪଵ, ,ଵିܩ  are defined and can be ܩ and ܪ

used to construct a wavelet packet tree. ܪ and ܩ are the down-sampling convolution 

operators and ିܪଵ and ିܩଵ are up-sampling deconvolution operators. The four 

operators performing on the sequence of samples ݔሺ݊ሻ are defined as follows [50]: 

ሽሺ2݊ሻݔሼܪ ൌ  ݔሺ݇ሻ݄ሺ݇ െ 2݊ሻ                                       ሺ2.37ሻ
א௭

 

ሽሺ2݊ሻݔሼܩ ൌ  ݔሺ݇ሻ݃ሺ݇ െ 2݊ሻ                                       ሺ2.38ሻ
א௭
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ሽሺ݊ሻݔଵሼିܪ ൌ  ݔሺ݇ሻ݄ሺ݊ െ 2݇ሻ                                       ሺ2.39ሻ
א௭

 

ሽሺ݊ሻݔଵሼିܩ ൌ  ݔሺ݇ሻ݃ሺ݊ െ 2݇ሻ                                       ሺ2.40ሻ
א௭

 

Figure 2.11 shows the construction of these operators. ܪ and ܩ can be used to 

decompose (analyze) any discrete function, ݔሺ݊ሻ, on the space ିܮଵሺܼሻ into two 

orthogonal subspaces and are similar to the decomposition and reconstruction 

operations depicted earlier in Fig. 2.9 and Fig. 2.10. Each decomposition ሺܪ or ܩሻ 

step causes in two coefficient vectors each being half the length of the input vector, 

keeping the total length of the data unchanged. This operation can be refined by 

cascading the operators for multiple steps. In this iterative decomposition procedure, 

the size of the output coefficient vectors are reduced at each step by a factor of 2 and 

eventually these output vectors become scalars. This decomposition process, using 

 is called the discrete WPT (DWPT) and represents the wavelet analysis ,ܩ and ܪ

process. The decomposition is reversible process and the inverse DWPT (IDWPT) 

can be used to reconstruct the original input vector from the coefficients vectors. 

 

 

Figure 2.11 Analysis and synthesis filters using H,G,H-1, G-1 operators. 

The IDWPT is referred to as the synthesis process. This is in line with similar 

interpretations of the DFT and IDFT operators. The IDWPT is a sequence of 

upsampling filtering processes defined by the operators ିܪଵ and ିܩଵ. As the reverse 

operators to ܪ and ିܪ ,ܩଵ and ିܩଵ each operator takes a input vector of size ݊ and 

outputs a vectors of size 2݊ . The operation at each node that join the outputs from 

 ,ଵ, in Fig. 2.11, represents the addition of vectors of the same sizeିܩ ଵ andିܪ

producing a output vectors of size 2݊. 
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The DWPT and IDWPT operations are usually represented by a wavelet packet tree 

as shown in Fig. 2.12. In this dissertation, one of the application for the IDWPT in 

Fig. 2.12 is to generate (synthesize) the waveform going into the channel representing 

a set of QAM or PSK symbols ሼܽ, ܽଵ, … , ܽேିଵሽ. This process, referred to as WPM 

can be viewed as a synthesis operation representing the data symbols as weighted and 

shifted version of the basis functions, ߶ሾ݇ሿ, which is similar to the generation of the 

OFDM signals.  

 

 

Figure 2.12 Wavelet packet trees: (a) DWPT/analysis tree, (b) 
IDWPT/synthesis Tree. 

2.3.4    The DWT and DWPT Operations 

In the frequency-domain, the DWT and DWPT operations are equivalent to the 

decomposition of the input signal into subbands. This is also called subband coding, 

where the signal to be coded is successively split into high and low frequency 

components. In the continuous time-domain of WT and WPT, the hierarchical 

arrangement of the filters, ݄ሺݐሻ and ݃ሺݐሻ (corresponding to ݄ሺ݊ሻ and ݃ሺ݊ሻ in the 

discrete time-domain), gives rise to a series of filter banks, iteratively dividing the 

input signal into two equal parts in each step.  
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The high-pass components contain the smallest details and hence are not usually 

processed any further, as in the case of the DWT. However, the low-pass components 

still contain some details, and therefore it can be split again. The dyadic splitting 

operation can be repeated until the desired degree of resolution is obtained. The 

process of dividing the spectrum is graphically displayed in Fig. 2.13. If the high-pass 

components are also split in subsequent steps, the subband coding is equivalent to the 

decomposition using the DWPT. The advantage of the iterative and dyadic 

implementation of wavelet subband decomposition is that only two filters are needed. 

The outputs of the filters are approximation and detail components of the WT, and 

they represent the low and high band portions of the original input signal. If the 

approximation selection of the WT is used for the further decomposition, then the 

high portion of the bandwidth will be split. In this manner, the decomposition of the 

input signal can be arbitrary and the subband decomposition can be customized to 

best suit the desired goal of the system [7].    

 

 

Figure 2.13 Subband decomposition. 

The frequency decomposition of signals alone does not fully capture the essence of 

the time-frequency plane with the wavelets’ time frequency “boxes”. Figure 2.14 [52], 

shows the time-frequency box of scaling functions in WT, with a time and a 

frequency width scaled respectively for different basis functions.  
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Figure 2.14 Time frequency tiling of the WT. 

 

 

 

Figure 2.15 Time frequency tiling of the WPT. 

A wavelet packet basis divides the frequency axis in different intervals of varying 

sizes. The time-frequency boxes are obtained by translating in time the wavelet 

packets covering each frequency interval in order to cover the whole time-frequency 

plane representing the signal of interest as illustrated in Fig. 2.15 [13]. This tiling is 

determined by the deployment of the appropriate tree representing the WPT.  

2.4    Underlying Structure of the OFDM and WPM Systems 

2.4.1    Underlying Structure of OFDM System 

OFDM is an efficient MCM scheme for wireless, frequency selective communication 

channels. In the baseband equivalent OFDM transmitter with N subcarriers, N 
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modulation symbols (usually from PSK or QAM constellations) in the m-th data 

frame, ܽሾ݇ሿ where ݇ ൌ 0,1, . . .   , ܰ െ 1, are mapped over the interval ሾ0, ܶሿ onto the 

continuous time OFDM signal, ݔሺݐሻ, as follows:   

ሻݐሺݔ ൌ
1
ܰ ܽሾ݇ሿ݁ଶగబ௧

ேିଵ

ୀ

ݐ                      א ሾ0, ܶሿ            ሺ2.41ሻ 

where ݂ ൌ 1/ܶ, ݆ ൌ  √െ1, ܶ is the symbol duration, and for brevity of notation, 

indexing of the frames (m) is dropped.  

   

Nâ

1â

nb̂MM MM

 

Figure 2.16 Functional block diagram of the OFDM system. 

The discrete time version of Eq. (2.41), referred to as the OFDM frame, is formed by 

sampling x(t) at the Nyquist rate  ଵ
்
  at N time instances ݐ ൌ ݊ ்

ே
  to get: 

ሾ݊ሿݔ ൌ
1
ܰ ܽሾ݇ሿ݁ଶగ/ே

ேିଵ

ୀ

                                          ሺ2.42ሻ 

where ݊ ൌ 0,1, . . .   , ܰ െ 1. In Eq. (2.42), OFDM symbols ݔሾ݊ሿ are related to 

modulation symbols ܽሾ݇ሿ through an IDFT. When N is a power of two, the IDFT can 

be evaluated using the computationally efficient IFFT. 

Figure 2.16 shows a functional block diagram of an OFDM system in the discrete 

time-domain. On the receiver side, the FFT is used for decoupling the subcarrier 

followed by a demodulator to detect the signaling points. 

2.4.2    Underlying Structure of WPM System 

Analogous to OFDM, WPM also known as wavelet packet division multiplexing 

(WPDM) is another viable MCM technique with high bandwidth efficiency and 

flexibility in adaptive channel coding schemes [13]. WPM has been a serious 
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contender to OFDM in WiMAX proposals and has a lot of potential in cognitive radio 

(CR) systems. Unlike OFDM, which divides the communication channel into 

orthogonal subchannels of equal bandwidth, WPM uses an arbitrary time-frequency 

plane tiling to create orthogonal subchannels of different bandwidths and symbol rates 

[50].  

The WPM synthesis equation for discrete time representation of the waveform going 

into the channel or HPA is very similar to that of OFDM, where the discrete 

functions, ߶ሾ݊ሿ, replaces the ܰ finite duration complex exponentials expሺ݆2݊݇ߨ/ܰሻ 

in (2.2). The Nyquist sampled version of the transmitted signal, ݔሾ݊ሿ, is constructed as 

the sum of ܯ waveforms ߶ሾ݊ሿ individually modulated with the specially indexed 

QAM or PSK symbols as follows [13]: 

ሾ݊ሿݔ ൌ ܽ,߶ሾ݊ െ ሿܯ݅
ெିଵ

ୀ

                                      ሺ2.43ሻ 

where ܽ, is a constellation encoded i-th data symbol modulating the j-th wavelet 

packet basis function. A functional block diagram of the WPM system is shown in 

Fig. 2.17. 

 

M

Nâ

1â
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Figure 2.17 Functional block diagram of the WPM system. 

The IDWPT in Eq. (2.23) synthesizes a discrete representation of the transmitted 

signal as sum of M waveforms shifted ݊ time that embed information about the data 

symbols, ܽ,. These waveforms are built by successive iterations of H-1 and G-1 

operations as discussed before. In the WPM system, the IDWPT synthesis operation is 

represented by Fig. 2.18 (a).  
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Figure 2.18 WPM: (a) Modulation (IDWPT) and (b) Demodulation (DWPT) 
trees. 

Similar to the OFDM system, at the transmitter side an IDWPT block is used in place 

of the IFFT block, while at the receiver a DWPT block is used in the place of the FFT 

block. The IDWPT block work in a similar fashion to an IFFT; it takes QAM symbols 

at the input and outputs them as parallel time frequency “subcarriers”.  

The properties (2.35) and (2.36) of wavelet packet basis functions ߶ሾ݇ሿ, guarantee 

the orthogonality of the subcarriers irrespective of the time-frequency tiling widths 

and is the motivation behind the algorithms presented in this chapter. The DWPT at 

the receiver recovers the transmitted symbols ሺܽ,ሻ, through the analysis formula 

exploiting the orthogonality properties of the DWPT and is schematically represented 

in Fig. 2.18 (b). At the receiver side we obtain: 

ሺ݊ሻݎ ൌ ሺ݊ሻݔ  כ ݄ሺ݊ሻ  ሺ݊ሻݓ ൌ  ݄ሺ݇ሻݔሺ݊ െ ݇ሻ


  ሺ݊ሻ                     ሺ2.44ሻݓ 

where ݄ሺ݊ሻ denotes the channel impulse response and ݓሺ݊ሻ is the noise. 

ሺ݊ሻݎ ൌ  ݄ሺ݇ሻ ܽ,߶ሾ݊ െ ݇ െ ሿܯ݅
ெିଵ

ୀ

  ሺ݊ሻ                     ሺ2.45ሻݓ 

In the absence of noise and for known channel at receiver, the constellation symbols 
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ܽ, can be estimated as follows: 

ሺ݊ሻݔ ൌ  ݔۃሺ݊ሻ, ߶ሺ݊ሻۄ


߶ሺ݊ሻ                         ሺ2.46ሻ 

where ݔሺ݊ሻ ൌ  ∑ ܽ߶ሺ݊ሻ , thus 

ሺ݊ݔ െ ݇ሻ ൌ  ݔۃሺ݊ െ ݇ሻ, ߶ሺ݊ሻۄ߶ሺ݊ሻ


                      ሺ2.47ሻ 

Now the received signal is 

ሺ݊ሻݎ ൌ  ݄ሺ݇ሻݔሺ݊ െ ݇ሻ


ൌ  ݄ሺ݇ሻ


ݔۃሺ݊ െ ݇ሻ, ߶ሺ݊ሻۄ߶ሺ݊ሻ


               ሺ2.48ሻ 

,ሺ݊ሻݎۃ ߶כ ۄ  ൌ   ݄ሺ݇ሻۃ


ݔۃሺ݊ െ ݇ሻ, ߶ሺ݊ሻۄ߶ሺ݊ሻ


, ߶כ ۄ

ൌ݄ሺ݇ሻݔۃሺ݊ െ ݇ሻ, ߶ሺ݊ሻۄ


                                                             ሺ2.49ሻ 

By deconvolution ܽ  ൌ ሺ݊ݔۃ െ ݇ሻ, ߶ሺ݊ሻۄ can be obtained. 

2.5    Wavelet Based OFDM (WOFDM) 

In wavelet based OFDM (WOFDM), the IFFT and FFT blocks are simply replaced by 

an inverse discrete wavelet transform (IDWT) and discrete wavelet transform (DWT), 

respectively [53]. In Fourier based OFDM, there are ܯ independent quadrature 

amplitude modulation (QAM) or phase shift keying (PSK) subchannels via a ݇ ൌ  ܯ2

point IFFT operation (when the conjugate symmetry condition is imposed). The real 

wavelet transform (WT) converts real numbers to real numbers, and hence real 

constellation must be used in each subchannel. To keep the same data rate in wavelet 

systems, ܭ independent subchannels are multiplexed together via a ܭ point IDWT. 

Perfect spectral containment requires ideal brickwall filters, which are not physically 

realizable due to the infinite length of their impulse responses. It is desirable, 

however, to be as close as possible to brickwall filters, to have a high degree of 

spectral containment, and limit the effects of ICI. The filter bank (FB) structure 

accomplishing this MCM by DWT is shown in Fig. 2.19. 
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In OFDM employing Fourier filters, the overlap factor is equal to 1, thus the pulse 

waveforms for different symbol blocks do not overlap in time. However, for wavelet 

OFDM (WOFDM), the overlap factor is greater than 1, hence the pulse waveforms 

overlap in time. In Fourier filter banks, the prototype filter is simply a rectangular 

window. In the wavelet case, the set of ܰ bandpass pulses ߚ;  0  ݇  ܰ െ 1 and 

their time shifts by integer multiples of ܰ provide an orthonormal set of waveforms 

for transmission of the sequence of symbol blocks [53]. 

Due to higher spectral containment between subchannels, WOFDM is better able to 

overcome the effects of narrowband interference (NBI) and is inherently more robust 

with respect to ICI than traditional Fourier filters [53]. WOFDM is implemented via 

overlapped waveforms to preserve data rate. Thus the use of CP does not make sense 

in this context. Without the CP, the data rate in wavelet systems can surpass those of 

Fourier implementations, one of its key motivating factors. 

Computational complexity is another key issue. Due to the high data rates required in 

modern applications, low complexity is imperative. Both Fourier and wavelet (for 

which there is a uniform frequency decomposition) transforms have a computational 

complexity of ܱሺ݈ܰ݃ଶܰሻ, where ܰ is the rank of the transform, or the number of 

subchannels [54].  
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Figure 2.19 Wavelet based MCM structure. 

The first sidelobe of the Fourier filter has a magnitude 14 dB smaller than the main 

lobe. On the other hand, For the wavelet filter, the first sidelobe has a magnitude 45 

dB below the main lobe [53], as shown in Figs. 2.20 and 2.21, respectively. 
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Figure 2.20 Frequency response of seven spectrally contiguous subchannel 
pulse sequence for OFDM transmission. 

The great reduction in sidelobe levels is the main motivation behind the recent trend 

of using wavelet filters in OFDM systems. Wavelet filters provide better spectral 

containment than their Fourier counterparts. When orthogonality between carriers is 

lost, after the transmitted signal passes through a non-uniform channel, the amount of 

interference between carriers in wavelet systems is much lower than in Fourier 

systems, since the sidelobes contain less energy.  

The improved spectral containment reduces ICI. Reducing the ICI without the need 

for a CP is an attractive feature of WOFDM. It permits data rates to be pushed past 

those of Fourier OFDM, which relies heavily on the CP and 1-tap equalizer to 

mitigate the effects of ICI. 
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Figure 2.21 Frequency response of seven spectrally contiguous subchannel 
pulse sequence for WOFDM transmission. 

2.6    Drawback of Common Discrete Wavelet Transform 

As we mentioned before, an alternative approach to conventional OFDM is based on 

DWT, which leads to highly structured and thus efficiently realizable transmission 

signal sets. WOFDM has gained popularity in the literature recently. Due to very high 

spectral containment properties of wavelet filters, WOFDM can better combat NBI 

and is inherently more robust with respect to ICI than traditional FFT filters. Since 

there is no CP present in wavelet implementation the data rates can surpass those of 

FFT implementations.  

A wavelet packet is a generalization of wavelets in that each octave frequency band of 

the wavelet spectrum is further subdivided into finer frequency bands by using the 

two scale relation repeatedly. The translates of each of these wavelet packets form an 

orthogonal basis. We can decompose a signal into many wavelet packet components. 

A signal maybe represented by a selected set of wavelet packets without using every 

wavelet packet for a given level of resolution.  
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Wavelet packets offer a richer signal analysis than wavelet decomposition of a signal. 

It's allow to focusing on special parts in time-frequency domain in a more detailed 

way than is possible with ordinary wavelet transform. The good frequency 

characteristics and greater flexibility offered by WPT make it an attractive choice for 

high data rate OFDM transceiver in fading channel conditions than DWT. However, a 

major problem of common WPT is its lack of shift invariance. This means that on 

shift of the input signal, the wavelet coefficients vary substantially. The signal 

information may even not be stationary in the subbands so that the energy distribution 

across the subbands may change. To overcome the problem of shift dependence, one 

feasible approach is to simply omit the subsampling causing the shift dependence. 

Techniques that omit or partially omit subsampling are known as cycle spinning, 

oversampled filter banks or UWT. However, these transforms are redundant [17], 

which is not desirable in MCM. 

As an alternative, we used a non-redundant wavelet transform that achieves 

approximate shift invariance [18]. This transform yields to complex wavelet 

coefficients that modulate the data stream in the same way that WPM do [19]. In this 

thesis we used the DTԧWT to achieve this property. 

2.7    Review of Related Research 

2.7.1    MCM 

The principle of transmitting data in parallel using multiple carriers on the same 

channel dates back more than 40 years. The first systems using MCM were military 

high frequency (HF) radio links in the late 1950s and early 1960s [55].  

• One of the first systems using MCM is the Kineplex [55] in 1957 a single side 

band (SSB) HF FDM system with closely spaced tones operating at 3kbps. 

The paper describing the Kineplex system also shows its bit error rate vs. 

signal to noise ratio performance with frequency shift keying (FSK) 

modulation. 

• Another similar MCM system is the Kathryn modem in 1965 [56], which 

transmits large number of subcarriers, each BPSK modulated, in SSB mode. 
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• In 1966, Chang presented a theoretical analysis of the performance of an 

orthogonal multiplexing data transmission scheme subject to a number of 

degrading factors like sampling error, phase error and developed a simple 

formula for computing ICI and ISI [57]. 

• The following year Zimmerman et. al. in 1967 presented the Kathryn modem 

with all its capabilities including variable transmission rate, channel coding.  

The frequency multiplexing is implemented using Fourier transform based on 

analog signal processing [58]. 

2.7.2    OFDM 

OFDM is a special form of MCM with densely spaced sub-carriers and overlapping 

spectra. Its main idea was patented by Chang, from the Bell Labs, in 1966, but it was 

only after the paper by Bingham in 1990 that it got its due popularity [59].  

• The earliest prominent work on system description and the performance 

analysis of multicarrier systems is carried out in 1967 by Saltzberg [60]. The 

system described uses infinitely long symbols that are strictly band-limited 

with orthogonal subcarriers overlapping in frequency. He concluded by 

pointing out that the design trend in multicarrier systems should be towards 

reducing crosstalk between adjacent channels rather than on perfecting the 

individual channels. 

• A major paper by Weinstein and Ebert [14] in 1971 described the use of DFT 

for generating overlapping orthogonal subcarriers implemented using efficient 

signal processing and eliminating the bank of subcarrier oscillators. They also 

used raised cosine window function in time domain and guard interval (GI) 

between symbols for combating ISI and ICI. In 1985 Cimini also carried out 

analysis and simulation of DFT based OFDM system using pilot-based 

correction for combating the effects of multipath propagation and ICI on 

narrow-band digital mobile channel [16]. 

• Steendam and Moeneclaey in 1999 investigated the effect of the number of 

subcarriers and the guard time duration on the performance of OFDM systems 

operating on a frequency-selective time-selective channel [61]. 
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• In 1999 Intern Kim et. al. analyzed the combined influence of ISI and ICI on 

the performance of Reed-Solomon (RS) coded OFDM system [62]. They went 

on to observe that there is an optimum number of subcarriers that minimizes 

the decoding error probability of the RS code for each channel state. 

2.7.3    WPM 

An MCM system based on WPT is called wavelet packet modulation (WPM). 

Actually, the wavelet theory as applied to MCM systems has been well studied in 

pervious works in 1995 [63] and in 1997 [64]. However, the applications were limited 

to only the wired transmission and the waveform used was only that of a real wavelet. 

• In 1998, Heather Newlin presented a paper on the ongoing developments of 

the use of wavelets in the field of communication. He presented a variety of 

wavelet communication applications and he discussed the application of 

wavelet in modulation, receivers, and in multiple access communication 

systems (MACS) [67].  

• Michael et. al. in 1994 showed that the extra degree of freedom that is 

achieved by using overlappable filters make discrete wavelet multi tone 

(DWMT) system potentially superior to the discrete multi tone (DMT) system 

for ADSL and other applications [68]. 

• An analytical method for evaluating the performance of the DWMT and the 

DMT systems has been outlined in 1995 by Sandberg and Tzannes [53]. They 

summarized that, the DWMT system is more robust than the other multicarrier 

implementations with regard to ICI, and to narrowband channel disturbances. 

• Then in 1995, Lindsey and Jeffrey developed a useful method of wavelet 

packet basis functions for digital modulation. Through a simple example they 

showed that the WPM is a superior method for orthogonally multiplexed 

digital communication [50].  

• Again in 1997, Lindsey [64], presented a generalized multirate wavelet based 

modulation format for orthogonally multiplexed communication system 

utilizing multidimensional signaling techniques. This generalized framework 

affords an complete library of basis sets with increased flexibility in time-

frequency partitioning.  
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• Weimin et. al. in 1997 verified from simulation that, the WPM system does 

support the multirate services, and the performance of multirate services 

transmission system with wavelet packets combined with multirate filtering 

technology is more roubst than the conventional SC system in AWGN and 

single tone interference scenario. Also it’s better than the FFT based MCM 

system [69].  

• In 1997, Sablatash et. al. explained the relationship of FB trees to wavelet 

packet trees for subspaces, decimation operations, and coordinates of the 

projections of a function onto the subspaces. They proposed design and 

implementation of wavelet packet based FB trees for multiple access 

communications. Two designs for the FBs are summarized and the equations 

for the designs are provided [70].  

• Akansu and Xueming in 1998 investigated the performance of OFDM and 

DWMT techniques for single and multi tone interference. They showed that 

DWMT has a superior performance than OFDM for these interference 

environments due to its limitation of spectral overlap between his subcarriers 

[71].  

• In 2000, Wong et. al. derived an expression for the probability error for a 

WPDM scheme in the presence of both impulsive and Gaussian noise sources 

and demonstrated that the WPDM can provide greater immunity to impulsive 

noise than both a time division multiplexing (TDM) scheme and an OFDM 

scheme [72].   

• Bouwel et. al. in 2000 studied the implementation of wavelet packet in MCM, 

and the effects this implementation has on the requirements imposed in the 

design of useable wavelets. They showed that the reconstructions imposed by 

the perfect reconstruction (PR) requirement necessitate the use of the bi-

orthogonal wavelets [73]. 

•  At the 5th international OFDM-workshop in 2000 Kozek et. al. [75] presented 

a comparison of wavelet type, Gabor-type (OFDM and DMT) and also 

Wilson-type (offset-QAM/OFDM) transmultiplexer structures. Using linear 

distortion (perturbation) caused by time-invariant channels as performance 

measure they concluded that Gabor structures show optimum perturbation 

stability 
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• In 2001, Manglani and Bell extended investigation to the performance of 

wavelet modulation (WM) in several time varying channels: Rayleigh, flat, 

slow fading channels and frequency-selective, slow fading channels. They 

conclude the following: WM performance in frequency selective channels is 

depend on the presence of ISI, WM performance in An AWGN channel is best 

at all signal to noise ratios (SNRs) and the performance in flat fading channel 

is better than a frequency-selective channel [74].  

• Negash and Nikookar in 2002 proved that, comparing with the conventional 

OFDM, the Haar and Daubechies based orthonormal wavelets are capable of 

reducing the power of ISI and ICI, which were caused by the loss in 

orthogonality between the carriers as a result of the multipath wireless channel 

[3].  

• Daly et. al. in 2002 outlined a fast tree selection algorithm which achieves the 

optimum WPM tree for the case of a finite complexity transceiver. And they 

found that the optimum WPM outperforms conventional multichannel systems 

of equal complexity for ISI channels [51]. 

• In 2002, Sun and Daniel proposed a power line communication (PLC) system 

using DWMT modulation and adaptive algorithm to design a liner traversal 

equalizer for the proposed communication system. They verified that, the 

proposed system gives a significant improvement over the conventional 

OFDM approach [77]. 

• Charina and Kozek in 2002 presented analytical results, numerical estimation, 

and numerical simulation showing that, the wavelet based affine MCM 

schemes are unfit for communication through dispersive time invariant 

channels as given in digital subscriber line (DSL) and some wireless 

communication environments [82].  

• Couturier et. al. in 2003 presented DWMT as MCM using cosine modulated 

filter banks (CMFB) to create a wavelet basis. They used a Nyquist filter to 

implement this modulation and built a fast algorithm to perform it efficiently. 

They found that the WM is more resistant to parasite radio frequency (RF) 

[78].   

• Zhang et. al. in 2003 proposed Turbo Coded Wavelet based OFDM 

(TCWOFDM) and low density parity check (LDPC) coded wavelet based 
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OFDM (LDPC-CWOFDM). They compared the BER of these two systems in 

different code parameters on AWGN channel. They showed that, TCWOFDM 

performs better than LDPC-CWOFDM [80].  

• Okamoto et. al. in 2003 outlined a multimode transmission using WPM and 

OFDM, which can be applied to multiple transmission environments. Using 

the different characteristics between WPM and OFDM in fading and inference 

environments, good performance was obtained in both environments [81]. 

• In 2003, Koga et. al. introduced wavelet based OFDM (WOFDM) for PLC, 

they showed that, WOFDM is a better MCM scheme for PLC compared to 

OFDM due to its better localized orthogonal subchannels in frequency-

domain. Also, they showed its BER characteristic in AWGN and its carrier to 

noise ratio (CNR) property with an imitated transmission channel [83].  

• Similarly in 2004, Zhang et. al. presented their findings of comparison, on 

DFT-OFDM and DWT-OFDM on three different channel models and showed 

that, generally, BER performance of DWT-OFDM is better than that of DFT-

OFDM [76]. 

• Mingli and Jacek in 2004 presented a multiwavelet packet modulation 

(MWPM). Compared to OFDM, they showed that, the bandwidth efficiency of 

MWPM is increased r times with multiplicity of r. In addition, they proved 

that the effects of frequency selective wireless channel and high PAPR in 

OFDM can be mitigated in the new scheme by properly designing the MWPM 

dyadic structure [84]. 

• Mingli and Jacek again in 2004 proposed a practical implementation of 

MWPM transceiver by employing the matrix filter banks. They showed the 

effectiveness of the MWPM by evaluating the performance of MWPM in both 

AWGN and Rayleigh flat channels [85].  

• Also in 2004, Zhao et. al. outlined the comparisons of coded OFDM 

(COFDM) and uncoded OFDM system with different orthogonal bases - like 

DFT and DWT on AWGN and multipath fading channel. They showed that 

WOFDM and coded WOFDM (CWOFDM) perform much better than DFT-

OFDM and DFT-COFDM on AWGN channel respectively. But on multipath 

fading channel DFT-OFDM performs superior than WOFDM in certain SNR 

conditions, and vice versa [86]. 
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• Anwar et. al. in 2004 investigated the PAPR of wavelet based transmultiplexer 

for high speed digital communication system. Their computer simulation 

results clarified that Haar wavelet based transmultiplexer exhibit low PAPR 

values when frequency domain spreading is achieved by using Hadamard code 

[87].  

• Aicha et. al. in 2004 analyzed the PAPR of WPDM signals. Simulation results 

showed that minimum PAPR is obtained using Haar wavelet. They also 

proposed a technique based on different mapping for the different users to 

decreases the PAPR. The obtained PAPR gain was about 3dB [88].  

• In 2005, Baig et. al. give the performance comparison of conventional DFT 

with DWPT in an OFDM transceiver. They used Haar and Daubechies 

wavelets for DWPT in a multipath fading and frequency selective fading 

channel.  They showed that DWPT-OFDM outperforms DWT-OFDM, at the 

same time, DWT-OFDM outperforms DFT-OFDM [89].  

• Sakakibara et. al. in 2005 considered applying WPM to satellite 

communications. They showed that, the BER performance of WPM in fading 

channel is better than that for OFDM. They proposed the SC WPM (SC-

WPM) method that applies the principle of SC-OFDM to WPM to remedy the 

PAPR [90].  

• Antony and Petri in 2005 studied the performance of WPM for transmission 

over wireless channels. They conclude that the WPM is a viable alternative to 

OFDM and it should be considered for future communication systems [13].  

• Abad et. al. in 2005 analyzed and compared the performance obtained in 

power line networks when using OFDM and DWMT modulations. They 

showed that, due to multipath, OFDM performance is better than DWMT 

performance in PLC. Furthermore, in some cases, when the multipath effect is 

high, high speed communications cannot be established using DWMT [91].  

• In 2006, Zhao et. al. presented a new coded wavelet based MCM (WMCM) 

system by using woven convolutional codes (WCC) as channel coding 

scheme. They showed that, increasing the number of decoding iterations of 

WCC-WMCM cannot bring so much coding gain in the low regions of the 

energy per bit to noise power spectral density ratio (EbNo), but, it greatly 
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improve the performance of WCC-WMCM in the middle to high regions of 

EbNo [79].  

• In 2006, Ameen and Hadi modeled and simulated DWT-OFDM over Rayleigh 

selective fading mobile radio channel, and proposed a turbo DWT-OFDM to 

improve the BER performance of the system. They used parallel concatenated 

convolutional code (PCCC) and showed that, the proposed turbo DWT-OFDM 

system gives enhancement in BER performance over the uncoded DWT-

OFDM and the classical turbo FFT-OFDM [92].  

• In 2007, Gautier et. al. showed that the wavelet packet based MCM is more 

robust to narrow band interference (NBI) than the conventional OFDM 

modulation. Also they showed that, for multipath transmission, the use of 

complex wavelet outperforms the use of real one and outperforms the OFDM 

modulation when CP technique is not used [93].  

• In 2007, Izumi et. al. investigated the equalization technique for WOFDM 

applied to PLC. They applied adaptive sine modulated / cosine modulated FB 

equalizer for transmultiplexers (ASCET) to WOFDM and evaluated its 

performance over the multipath power line channel. They conclude that the 

performance of OFDM with guard interval (GI) can be approximately 

equivalent to that of W-OFDM with ASCET [94].  

• Maki et. al. in 2007 enhanced the WPM to improve the performance in 

multipath fading environments by using complex Haar transform (CHT) with 

exponential term. They analyzed frequency-domain equalizer (FDE) in WPM, 

and compared the calculation complexity with OFDM. They showed that the 

calculation cost of WPM increases linearly, while the BER performance was 

largely improved using FDE compared with OFDM in 10-path static fading 

environments [95].  

• Shuzheng et. al. in 2007 addressed the multiwavelet packet based OFDM. 

They showed that, the proposed MWPM gives better spectral efficiency 

compared with conventional OFDM system. Taking the effects of both ISI and 

ICI into account, they proved that the proposed MCM system is incomparably 

superior to the conventional OFDM system [96].  

• Baro and Ilow in 2007 proposed wavelet packet tree pruning (WPTP) for 

reduction of PAPR in WPM systems. In their technique, a full wavelet packet 
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tree is dynamically pruned via joining and splitting of terminal nodes to 

achieve a minimum PAPR. The complementary cumulative distribution 

function (CCDF) of the PAPR modified signal showed about a 3.5 dB 

improvement over the original WPM signal [21]. They are also proposed a 

WPTP technique with multiple nodes and multiple pass processing to reduce 

the PAPR in WPM system. The CCDF of the PAPR optimized signal showed 

about 5 dB improvement over the original WPM signal [22].  

• In 2008, Baro and Ilow again in [23], introduced a new PAPR reduction 

method in OFDM system by deploying wavelet packet pre-processing. They 

use joint inverse DWPT (IDWPT) and Inverse DFT (IDFT). The proposed 

method preserves the average transmitted energy at the same time maintains 

the integrity of the transmitted information. The CCDF of PAPR of the 

proposed scheme achieves about 5.5 dB reductions in PAPR over traditional 

OFDM system at clipping probability of 10-4. 

• Galli et. al. in 2008 compared OFDM and W-OFDM with respect to some 

specific aspects of power line channel. They conclude that, W-OFDM is better 

MCM scheme compared to OFDM because it exhibits higher transmission 

efficiency, deeper notches, robustness to narrowband interference (NBI), and 

lower circuit cost as fewer carriers than conventional or windowed OFDM 

need to be used [97].  

• Gupta et. al. in 2008 studied the BER performance of conventional DFT-

OFDM system and compared it with those of DWT-OFDM and discrete 

cosine transform (DCT) OFDM (DCT-OFDM) systems. They showed that 

Haar wavelet based scheme yields the lowest average bit error probability and 

the performance of DFT-OFDM and DWT (Haar)-OFDM with quadrature 

phase shift keying (QPSK) is better than binary PSK (BPSK) modulation 

format [98].  

• In 2008, Kumbasar and Kucur represented a way to reduce the PAPR in 

WOFDM system by searching for a better wavelet packet tree structures. 

These better wavelet tree structures were obtained by using a brute force 

search algorithm. Numerical and simulation results showed that, these 

structures produced a lower PAPR values than conventional Mallat structures 

without any degradation in BER performance for the same bandwidth 
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occupancy and does not introduce any additional complexity to the WOFDM 

system [99]. 

2.7.4    OFDM based on Complex Wavelet 

Some researchers suggested using the complex wavelet in order to overcome the 

drawbacks of the OFDM systems based on DWT and DWPT. 

• In 1998, Adhikary and Reddy showed that the complex wavelet packet (ԧWP) 

based MCM scheme yields lower average bit error probability compared to the 

DFT based scheme. And they conclude that the improved performance of the 

complex wavelet packet based scheme is because of the spectrally contained 

nature of the ԧWP bases which are under the control of the designer [100].  

• Zhang and Bi in 2001 developed a maximum-likelihood sequence estimation / 

successive interference cancellation (MLSE/SIC) detector to retrieve the 

transmitted ԧWP based OFDM (ԧWPOFDM) symbols. They showed that the 

performance of ԧWPOFDM without CP is close to or superior to that of DFT 

based OFDM (DFTOFDM) with CP, at price of a little increased 

computational complexity [101].  

• In 2003, Wang and Zhang presented a general design method for a new 

OFDM system based on orthogonal M-band complex valued filter banks 

(FBs), which have more flexible frequency response and more suitable to deal 

with complex valued signals present in wireless systems. In their simulation 

results they show that designed filter bank (FB) has better performance over 

DFT-based FB and DWMT system. In case of average power of interference 

they also show that it can be further reduced by using longer filters in the 

proposed M-band complex valued FBs [102].  

• Gautier and Lienard in 2006 proposed a new wavelet based MCM which uses 

complex wavelet. They showed that the use of complex wavelet outperforms 

the use of real one and outperforms the OFDM when the CP technique is not 

used in both time and frequency dispersive channel transmission [11].  

• Finally in 2009, Xiangbin and Guangguo developed a new MC-CDM system 

based on ԧWP and space time block codes (STBC). The performance of their 

system is better than the space time coded (STC) MC-CDMA based on 
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wavelet packet and close or superior to the traditional MC-CDMA with CP. In 

addition, their system with two transmit antennas utilizing STBC can realize 

full diversity and full transmission rate, successfully enhance system capacity 

and improve the ability against channel fading and various interference  [103]. 

From the above literature review, we can deduce that, based on the good time 

frequency localization of the wavelets, many authors suggest building an OFDM 

system based on wavelet. However, the drawback of the common DWT and DWPT is 

also recognized to be certain lack of shift invariance [18] in the transform. The 

solution of this problem lies, among others, in using ԧWT and ԧWPT [18] and [93].  

Here, it would be worthwhile to mention that no research has, as yet, suggested using 

the dual-tree complex wavelet transform (DTԧWT) – a transform that has all the 

desired properties of common wavelets with desired property of approximate shift-

invariance. Accordingly, this work proposes to explore the use of this transform and 

introduce a new OFDM system based on it. 
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CHAPTER 3 

DTԧWT AND THE OFDM SYSTEM BASED ON IT 

In the preceding chapters, a comprehensive overview of the conventional OFDM 

system, the WPM system and the related literature were presented. This chapter 

begins with a brief history of using wavelet in wireless communications and 

introduction to DTԧWT in section 3.1, followed by the description of the problems 

and shortcoming related to real WT in section 3.2 and the solution is given in section 

3.3. Section 3.4 presented a comprehensive description of the DTԧWT, followed by 

discussing the underlying structure of DTԧWT-OFDM system in section 3.5. Finally, 

sections 3.6 discuss the all analysis issues of the proposed system such as PSD, 

PAPR, BER, implementation complexity, etc. 

3.1    Introduction 

Since early 1990s, the WT and WPT have been receiving increased attention in 

modern wireless communications [50]. A number of modulation schemes based on 

wavelets have been proposed [11], [13], [50], [63], [64], [73], [93], [101] and  [104]. 

However, both WT and WPT suffer from four fundamental but intertwined 

shortcomings - oscillations, shift-variance, aliasing, and lack of directionality. The 

solution to these four problems is, among others, to use complex wavelets. In this 

thesis, we will focus particularly on the dual-tree complex wavelet transform 

(DTԧWT). The DTԧWT was introduced by Kingsbury [105], and detailed out by him 

in [106], [107], [108], [109], as two real DWTs.  It is, relatively, a recent 

enhancement to the DWT, with important additional properties. Unlike DWT, it is 

nearly shift-invariant; satisfies PR condition using short linear phase filters; has 

limited redundancy; has efficient, O(N), computation – only twice the simple DWT 
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for 1-D (2 times for ݉-D), and has good directional selectivity in two and higher 

dimensions.  

3.2    Shortcomings of Wavelet Transform 

Regardless of its efficient computational algorithm and sparse representation, the  

wavelet transform suffers from some fundamental but intertwined shortcomings 

[106]. 

3.2.1    Shift Variance  

Due to small shift of the signal, the oscillation pattern of the wavelet coefficient can 

hugely disconcert. The shift variance complicates the wavelet domain processing. 

Consequently, algorithms must be made capable of coping with the wide range of 

possible wavelet coefficient patterns caused by shifted singularities [107], [110], 

[111], [112], [113].  

3.2.2    Oscillations 

The oscillating of the wavelet coefficients (positive and negative around singularity) 

complicates the wavelet based processing by making singularity extraction and signal 

modeling very defying [114]. Besides, the singularities yield large wavelet 

coefficients is magnified due to passing of the oscillating function through zero. 

3.2.3    Lack of Directionality 

While the alternating of the Fourier in higher dimensions correspond to highly 

directional plane waves, the standard tensor product construction of multidimension 

(M-D) wavelets produces a checkerboard pattern that is simultaneously oriented along 

several directions implying certain lack of directionality [106].  

3.2.4    Aliasing  

Under the condition that the wavelet and scaling coefficients are not changed, the 

inverse DWT cancels the aliasing that occur as a results of the wide spacing of the 
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wavelet coefficient samples. Any wavelet coefficient processing such as quantization, 

filtering, and thresholding perturbs the tender balance between the forward and 

inverse transforms, guiding to artifacts in the reconstructed signal [106].     

3.3    The Solution  

Note that the Fourier transform does not suffer from these problems. Luckily, there is 

a simple solution to these four DWT shortcomings.  

The DWT is based on real valued oscillating wavelets. However, the Fourier 

transform is based on complex valued oscillating sinusoids.  

݁ఏ௧  ൌ cosሺݐߠሻ   ሻ                                              ሺ3.1ሻݐߠሺ݊݅ݏ݆ 

The real and imaginary parts form a Hilbert transform pair i.e., they are 90
◦ 

out of 

phase with each other.  

Encouraged by the Fourier representation, imagine a Complex Wavelet Transform 

(ԧWT) with a complex valued scaling function and a complex valued wavelet 

function. If  ߰ሺݐሻ is either of them, then it has similar representation as before. 

Therefore, 

߰ሺݐሻ  ൌ ߰ሺݐሻ   ݆߰ሺݐሻ                                              ሺ3.2ሻ 

where, by analogy to Eq. (3.1), ߰ሺݐሻ is real and even and ݆߰ሺݐሻ is imaginary and 

odd. Furthermore, if ߰ሺݐሻ and ߰ሺݐሻ form a Hilbert transform pair, then ߰ሺݐሻ is an 

analytic signal and supported on only one-half of the frequency axis.  

Any ԧWT based on wavelets cannot closely possess the Hilbert transform/analytic 

signal properties. This means that as such ԧWT will not perfectly overcome the above 

mentioned DWT problems. The key face up in dual-tree wavelet design is thus the 

design of its two FBs to yield a complex wavelet and scaling function that are as close 

as possible to being analytic.  

In the cost of only a moderate redundancy: 2 × redundancy in 1-D (2
d 

for d-

dimensional signals, in general). the DTԧWT comes very close to mirroring the 

attractive properties of the Fourier transform, including a nearly shift-invariant 

magnitude with a simple near linear-phase encoding of signal shifts; substantially 

reduced aliasing; a smooth, non-oscillating magnitude; and directional wavelets in 

higher dimensions [106], [114], [115]. 
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3.4    The Dual-Tree Complex Wavelet Transform (DTԧWT) 

The DTԧWT employs two real DWTs with one DWT giving the real part of the 

transform while the other giving the imaginary part. The two real wavelet transforms 

use two different sets of filters, each satisfying the perfect reconstruction (PR) 

conditions. The two sets of filters are jointly designed so that the overall transform is 

approximately analytic. Let ݄ሺ݊ሻ, ݄ଵሺ݊ሻ denote the low-pass/high-pass filter-pair for 

the upper FB and ݃ሺ݊ሻ, ଵ݃ሺ݊ሻ denote the low-pass/high-pass filter pair for the lower 

FB. ߰ሺݐሻ and ߰ሺݐሻ are the two real wavelets associated with each of the two real 

wavelet transforms. ߶ሺݐሻ and ߶ሺݐሻ are  the two real scaling functions associated 

with each of the two real wavelet transforms. These filters are used to define the 

sequence of wavelet functions and scaling functions as follows: 

߰ሺݐሻ  ൌ √2݄ଵሺ݊ሻ߶ሺ2ݐ െ ݊ሻ                                         ሺ3.3ሻ


 

߶ሺݐሻ  ൌ  √2݄ሺ݊ሻ߶ሺ2ݐ െ ݊ሻ                                        ሺ3.4ሻ


 

where ݄ଵሺ݊ሻ ൌ ሺെ1ሻ݄ሺ݀ െ ݊ሻ. The wavelet function  ߰ሺݐሻ, the scaling function 

߶ሺݐሻ  and the high-pass filter for the imaginary part ݃ଵሺ݊ሻ  are defined in similar 

way. The filters are designed so that the complex wavelet is approximately analytic in 

order to satisfy the PR conditions. Consistently, they are designed so that ߰ሺݐሻ and 

 ߰ሺݐሻ form a Hilbert transform pair [106] i.e.,  

߰ሺݐሻ  ൌ  ሻሽ                                                       ሺ3.5ሻݐሼ߰ሺܪ 

The analysis (decomposition or demodulation) and the synthesis (reconstruction or 

modulation) FBs used to implement the DTԧWT and their inverses are illustrated in 

Figs. 3.1 and 3.2, respectively for a 4-level FB.  
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Figure 3.1 Dual-tree discrete ԧWT (DTDԧWT) analysis (demodulation) FB. 

In term of simplicity, the inverse dual-tree discrete complex wavelet transform 

(IDTDԧWT) is as simple as the forward transform. To invert the transform, the real 

part and the imaginary part are inverted separately using bi-orthogonal filters ෨݄, ෨݄ଵ, 

݃, ݃ଵ designed for PR with the corresponding analysis filters ݄, ݄ଵ, ݃, ݃ଵ 

respectively. It should be noted, however, that the DTԧWT requires the design of new 

filters. Primarily, it requires a pair of filter-sets so chosen that the corresponding 

wavelets form a Hilbert transform pair. Existing filters for wavelet transforms should 

not be used to implement both trees of the DTԧWT [106]. 
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Figure 3.2 Inverse dual-tree discrete ԧWT (IDTDԧWT) synthesis 
(modulation) FB. 

3.4.1    Dual-Tree Framework 

Let the square matrices ܨ and  ܨ are the two real DWTs, then the DTԧWT can be 

represented by the rectangular matrix 

ܨ ൌ   
ܨ
ܨ
൨.                                                            ሺ3.6ሻ 

For a real signal vector x, the ݓ ൌ ݓ ,represents the real part ݔܨ  ൌ  represents ݔܨ 

the imaginary part of the DTԧWT, and ሺݓ  ݆ݓሻ represents the complex 

coefficients. From Eq. (3.6) 

ଵିܨ ൌ
1
2 ൣ
ିଵܨ  ିଵ൧.                                             ሺ3.7ሻܨ

.ଵିܨ ܨ ൌ ଵ
ଶ
ିଵܨൣ .ିଵ൧ܨ 

ܨ
ܨ
൨ ൌ ଵ

ଶ
ሾ2ܫሿ ൌ                            ሺ3.8ሻ                .ܫ

We can also write ܨ and ିܨଵalternatively in the following form 

ܨ ൌ
1
√2


ܨ
ܨ
൨,      ିܨଵ ൌ

1
√2

ିଵܨൣ  ିଵ൧                                  ሺ3.9ሻܨ
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For the two real orthonormal DWTs: ܨ௧. ܨ ൌ .௧ܨ and ܫ ܨ ൌ  In this case, the .ܫ

transpose of the ܨ is also a left inverse ܨ௧. ܨ ൌ  This means, the inverse of the .ܫ

DTԧWT can be performed using the transpose of the forward DTԧWT [116].  

The complex coefficients can be computed using the following form:  

ܨ ൌ
1
2 
ܫ ܫ݆
ܫ െ݆ܫ൨ . 

ܨ
ܨ
൨.                                                  ሺ3.10ሻ 

ିଵܨ ൌ
1
2 ൣ
ିଵܨ ିଵ൧ܨ 

ܫ ܫ
െ݆ܫ ൨ܫ݆ .                               ሺ3.11ሻ 

The matrix in (3.8) is unitary (its conjugate transpose is its inverse)  
1
√2

ܫ ܫ݆
ܫ െ݆ܫ൨ .

1
√2

 ܫ ܫ
െ݆ܫ ൨ܫ݆ ൌ  ሺ3.12ሻ                                .ܫ

The DTԧWT satisfies ܨכ. ܨ ൌ  when the two real DWTs are orthonormal ,ܫ

transforms, where ( )∗ denotes conjugate transpose. Let  

ቂݒݑቃ ൌ .ܨ   ሺ3.13ሻ                                                            ݔ

For the real input signal x, ݒ ൌ  And when the input signal x is complex, then .כݑ 

ݒ ്   .כݑ 

For a general complex N-point signal, the form in Eq. (3.10) yields 2N general 

complex coefficients. And it also yields 2N complex coefficients, but N of these 

coefficients are the complex conjugates of the other N coefficients in the case of a real 

N-point.  Therefore, for both real and complex input signals, the complex wavelet 

transform (ԧWT) is two times more expensive. 

The Parseval’s energy theorem (the energy of the input signal is equal to the energy in 

the wavelet domain) for DTԧWT, when the two real DWTs are orthonormal, is given 

by 

ቀ|݀ሺ݆, ݊ሻ|ଶ   ห݀ሺ݆, ݊ሻห
ଶቁ

,

ൌ  |ݔሺ݊ሻ|ଶ.


                      ሺ3.14ሻ 

Since there is no data flow between the two real DWTs, the DTԧWT is easy to 

implement using existing DWT software and hardware. Besides, the transform lends 

itself for parallelization leading to efficient hardware implementation. Furthermore, 

DTԧWT benefits from the existing theory and practice of real wavelet transforms 

since it is implemented using two real wavelet transforms.  

Note that, existing filters for wavelet transforms should not be used to implement both 

trees of the DTԧWT because they do not satisfy the requirement of the Hilbert 
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transform pair. This means that, the DTԧWT requires the design of new filters. 

Mainly, it requires a pair of scaling filter-sets such that their corresponding wavelet 

filter-sets form an approximate Hilbert transform pair. If the dual-tree wavelet 

transform is implemented with filters not satisfying this condition, the transform will 

not provide the full advantages of analytic wavelets [106]. 

3.4.2    Half Sample Delay Condition 

The two low pass filters should satisfy the condition that one of them is approximately 

a half-sample shift of the other [117], i.e., 

݃ ሺ݊ሻ  ൎ ݄ ሺ݊ െ 0.5ሻ ฺ ߰ሺݐሻ ൎ  ሻሽ                         ሺ3.15ሻݐሼ߰ሺܪ

This statement can be written in another from as: if ܩ ൫݁ఠ൯ ൌ ݁ି.ହఠܪ ൫݁ఠ൯,  

then  ߰ሺݐሻ ൌ  ሻሽ [118], [119], [120], [121]. The half-sample delay conditionݐሼ߰ሺܪ

can also be stated in terms of magnitude and phase function as given hereunder. 

หܩ ൫݁ఠ൯ห ൌ หܪ ൫݁ఠ൯ห                                                ሺ3.16ሻ 

൫݁ఠ൯ܩס ൌ  ൫݁ఠ൯ܪס െ  0.5߱                                          ሺ3.17ሻ 

In practical implementation of the DTԧWT, the delay condition (3.16) and (3.17) are 

only approximately satisfied and the wavelets ߰ሺݐሻ and ߰ሺݐሻ are only approximate 

Hilbert pairs. Thus, the complex wavelet ߰ሺݐሻ   ݆߰ሺݐሻ is also only approximately 

analytic. On the other hand, the FT is based on a complex valued oscillating cosine 

and sine components that form complete Hilbert transform pairs [106], [122].  

3.4.3    Filter Design for DTԧWT 

One needs to adopt a very different approach to designing filters for the DTԧWT as 

compared to the filters for real DWT. The DTԧWT filters should be so designed that 

they fulfil the following conditions:  

 Perfect reconstruction (PR) (orthogonal or biorthogonal).  

 Approximate half-sample delay property.  

 Vanishing moments/good stopband.  

 Finite support (FIR filters).  

 Linear phase filters, only the complex filter responses need be linear phase - 

this can be achieved by taking ݃ ሺ݊ሻ ൌ  ݄ ሺܰ െ 1 െ ݊ሻ.  
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One approach to dual-tree filter design is to let ݄ ሺ݊ሻ be some existing wavelet filter. 

After that, given ݄ ሺ݊ሻ, it is required to design ݃ ሺ݊ሻ that satisfy both ܩ ൫݁ఠ൯ ൎ

݁ି.ହఠܪ ൫݁ఠ൯ and the PR conditions [123]. This approach generally leads to the 

filter set ݄ ሺ݊ሻ and  ݃ ሺ݊ሻ, that are of equal (or near-equal) length and also relatively 

short. However, the DTԧWT filters are generally somewhat longer than the filters in 

real wavelet transform having similar number of vanishing moments. The reason for 

this is the additional constraints (3.16) and (3.17) that are required to be 

approximately satisfied by DTԧWT [106]. Next, we describe two methods of filter 

design for The DTԧWT. 

3.4.3.1    First Method 

The first method is linear-phase bi-orthogonal method [105] and [124]. ݄ ሺ݊ሻ and 

݃ሺ݊ሻ are selected to be a symmetric odd-length and symmetric even-length FIR 

filters, respectively, such that for ܰ odd 

݄ ሺ݊ሻ ൌ  ݄ ሺܰ െ 1 െ ݊ሻ.                                         ሺ3.18ሻ                         

݃ ሺ݊ሻ ൌ  ݃ ሺܰ െ ݊ሻ.                                              ሺ3.19ሻ 

3.4.3.2    Second Method 

The second method is the quarter-shift (q-shift) method [108]. For ܰ even, ݄ ሺ݊ሻ and 

݃ሺ݊ሻ are sets as: 

݃ ሺ݊ሻ ൌ  ݄ ሺܰ െ 1 െ ݊ሻ.                                         ሺ3.20ሻ 

3.4.4    DTԧWT Filters Choice 

If the signal x reconstructed from just one type (wavelet or scaling function) and from 

just one level of the DTԧWT (for example in Fig. 3.3, from ݕଵ௨ and ݕଵ), and it is 

free of aliasing then we defined the transform to be shift invariant at that level. 

Absence of aliasing involve that a given subband has an exclusive z-transform 

function, thus its impulse response is linear and time (shift) invariant. The simplified 

analysis and reconstruction part of this case is shown in Fig 3.4. 
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Figure 3.3 Real and imaginary parts of complex coefficients from the upper 
and lower tree respectively. 

ܯ ൌ 2 is total down up sampling factor, ܣ ൌ ݄
ሺଵሻ݄ ݄ଵ, ܤ ൌ ݃

ሺଵሻ݃  ଵ݃ .  ܥ and ܦ  

are the inverse function of ܣ and ܤ respectively. 

From the result of the multi-rate analysis that a signal ܸሺݖሻ, which is down/up-

sampled by ܯ, becomes ଵ
ெ
∑ ܸሺݓݖሻெିଵ
ୀ , where ݓ ൌ   ݁ଶగ/ெ. Using this result we 

can write the following equation from Fig. 3.4. 

ܺሺݖሻ ൌ  ܺ௨ሺݖሻ   ܺሺݖሻ ൌ  
1
ܯ  ܻሺݓݖሻ

ெିଵ

ୀ

ሾܣሺݓݖሻܥሺݖሻ   ሻሿ      ሺ3.21ሻݖሺܦሻݖݓሺܤ 

The aliasing terms in the above summation correspond to those for which ݇ ് 0, 

because only the term in ܻሺݖሻ (when ݇ ൌ 0 and ݓ ൌ 1) corresponds to a linear time 

(shift) invariant response.  
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Figure 3.4 DTԧWT decomposition and reconstruction. 

For shift invariance, the aliasing term must be negligible, so ܣሺݓݖሻܥሺݖሻ and 

 ሻ must be designed either to be very small or cancel each other whenݖሺܦሻݖݓሺܤ

݇ ് 0. Determine the ratio of the overall energy of the unwanted aliasing transfer 

functions (the term with ݇ ് 0) to the energy of the wanted transfer functions (when 

݇ ൌ 0) to quantify the shift dependence of a transform and is given by 

ܴሺݖሻ ൌ  
ሻݖሺܥሻݖݓሺܣሼߝ  ሻሽݖሺܦሻݖݓሺܤ 
ሻݖሺܥሻݖሺܣሼߝ   ሻሽݖሺܦሻݖሺܤ 

ெିଵ

ୀ

                         ሺ3.22ሻ 

where ߝሼܸሺݖሻሽ calculates the energy ∑ | ܸ|ଶ  of the impulse response of a z-transform 

function ܸሺݖሻ ൌ  ∑ ܸିݖ .  A range of filters can be designed for the DTԧWT and 

their degree of shift invariance can be investigated based on the aliasing energy ratio 

(ܴ). For any given choice of filters, ܴ can be calculated for either wavelet or scaling 

functions at each level of the transform. The work in [109] deduces that the longer 

filters provide improved shift invariance. 

Typical examples of filters used in this thesis are described in the appendix (E). 

3.5    Underlying Structure of the DTԧWT-OFDM System 

Similar to OFDM and WPM systems, a functional block diagram of DTԧWT-OFDM 

is shown in Fig. 3.5. At the transmitter, an inverse duat-tree discrete ԧWT 

(IDTDԧWT) block is used in place of the IFFT block in conventional OFDM system 

or in place of the IDWPT block in WPM system. At the receiver side, a duat-tree 

discrete ԧWT (DTDԧWT) is used in place of FFT block in conventional OFDM 

system or in place of DWPT block in WPM system.  
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Figure 3.5 Functional block diagram of OFDM based on DTԧWT system. 

Data to be transmitted is in general in the form of a serial data stream. PSK or QAM 

modulation can be implemented in the proposed system and the choice depends on 

various factors like sensitivity to errors and bit rate.  The transmitter accepts 

modulated data (in this paper we use BPSK and 16QAM). This stream is moved 

through a serial to parallel (S/P) converter, giving N lower bit rate data stream, and 

then this stream is modulated through an IDDTԧWT matrix realized by an N-band 

synthesis FB. For the proposed system, a known data interleaved among unknown 

data are used for channel estimation. Then, the signal is down sampled by 2 and 

demodulated using elements of the DTDԧWT matrix realized by an ܰ-band analysis 

FB. The signal is equalized after DTDԧWT stage. 

IDTDԧWT works in a similar fashion as IFFT or IDWPT. It takes the input PSK or 

QAM symbols and outputs them in parallel time-frequency “subcarriers”. Let ߶ሺݐሻ 

and  ߰ሺݐሻ be respectively, the complex scaling and wavelet functions and ݔ be kth 

symbol, for   ݅ ൌ 1, 2, … , ܰ. The transmitted signal, ݔሺݐሻ, of the DTԧWT-OFDM 

system can be written in the following form: 

ሻݐሺݔ ൌ  ܴ ሾݔሺݐሻሿ   ሻሿ.                                     ሺ3.23ሻݐሺݔ ሾܫ݆ 

ܴ ሾݔሺݐሻሿ ൌ   ݔଵ,ܴൣ ߶ଵ,ሺݐሻ൧


 ݔௗ,ܴൣ ߰,ሺݐሻ൧.
ே/ଶ

ୀଶ 

                   ሺ3.24ሻ 

ሻሿݐሺݔ ሾܫ ൌݔே/ଶାଵ, ܫ ൣ ߶ଵ,ሺݐሻ൧


  .ሻ൧ݐൣ ߰,ሺܫௗ,ݔ
ே

ୀே/ଶାଶ 

         ሺ3.25ሻ 

From the above equations, we can write the transmitted signal as: 
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ሻݐሺݔ ൌݔଵ,ܴൣ߶ଵ,ሺݐሻ൧


ݔௗ,ܴൣ߰,ሺݐሻ൧
ே/ଶ

ୀଶ 

 ݆ ൞ݔே
ଶାଵ,

ሻ൧ݐൣ߶ଵ,ሺܫ 


   ሻ൧ݐൣ߰,ሺܫௗ,ݔ
ே

ୀேଶାଶ


ൢ.  ሺ3.26ሻ 

In general, we can write the IDTԧWT of the signal ݔሺ݊ሻ as follows: 

ሻݐሺݔ ൌ    ݔబ, ߶బ,ሺݐሻ


  ݔௗ,߰,ሺݐሻ


                       ሺ3.27ሻ 

where ߶ሺݐሻ and ߰ሺݐሻ are complex scaling and wavelet function of DTԧWT 

respectively. The PR condition is satisfied if and only if Eqs. (3.28) and (3.29) are 

true, i.e., 

,ሻݐబ,ሺ߶ ۃ  ߶బ′,′ሺݐሻۄ ൌ ൫݆ߜ  െ ݆′൯ߜሺ݇ െ ݇ ′ሻ.                          ሺ3.28ሻ 

,ሻݐ,ሺ߰ ۃ  ߰ ′,′ሺݐሻۄ ൌ ሺ݆ߜ  െ ݆′ሻߜሺ݇ െ ݇ ′ሻ.                                ሺ3.29ሻ 

The continuous-time transmitted signal is obtained by Eq. (3.26) or Eq. (3.27). And 

the IDTԧWT of the channel impulse response ݄ሺݐሻ can be written in the following 

forms: 

݄ሺݐሻ ൌ݄ଵ,ܴൣ߶ଵ,ሺݐሻ൧


݄ௗ,ܴൣ߰,ሺݐሻ൧
ே/ଶ

ୀଶ 

 ݆ ൞݄ே
ଶାଵ,

ሻ൧ݐൣ߶ଵ,ሺܫ


  ݄ௗ,ܫൣ߰,ሺݐሻ൧ 
ே

ୀேଶାଶ


ൢ.  ሺ3.30ሻ 

In general, we can write it as follows: 

݄ሺݐሻ ൌ    ݄బ, ߶బ,ሺݐሻ


  ݄ௗ,߰,ሺݐሻ


                       ሺ3.31ሻ 

Now the received signal ݕሺݐሻ is given by: 

ሻݐሺݕ ൌ ሻݐሺݔ  כ ݄ሺݐ, ߬ሻ  ሻݐሺݓ  ൌ   න ݄ሺ߬ሻݔሺݐ െ ߬ሻ݀߬
ஶ

ିஶ

  ሻ.             ሺ3.32ሻݐሺݓ 

So far, we have been evaluating the mathematical expressions of the continuous time 

IDTԧWT. Analogous to the relationship between the Fourier series and DFT, DWT 

and discrete time WT [48] there is also a relationship between the continues and 

discrete time IDTԧWT. We can evaluate the mathematical expression of the discrete 

time IDTԧWT of the transmitted signal and the channel impulse response i.e., ݔሺ݊ሻ  
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and ݄ሺ݊ሻ as explained in the following paragraphs. 

From dual-tree framework described in (3.9), ܨ ൌ ଵ
√ଶ

ܨ
ܨ
൨ and ିܨଵ ൌ

ଵ
√ଶ
ିଵܨൣ   isܨ)  represented the two real DWTsܨ   andܨ ିଵ൧. The square matricesܨ

the upper or the real part of the DTԧWT and ܨ is the lower or the imaginary part of 

the DTԧWT). If the complex signal representing constellation points of QPSK or x-

QAM are given by ܺ ൌ ܺோ
ூܺ
൨, where ܺோ is the upper or the real part of ܺ and ூܺ is the 

lower or the imaginary part of ܺ, then the IDTԧWT of ܺ is given by 

ݔ ൌ ଵܺିܨ ൌ
1
√2

ିଵܨൣ ିଵ൧ܨ 
ܺோ
ூܺ
൨                        ሺ3.33ሻ 

ିଵݓ ൌ  
ଵ
√ଶ
ିଵݓ ିଵܺோ represents the upper or the real part of the IDTԧWT andܨ ൌ

  ଵ
√ଶ
ିଵܨ ூܺ represents the lower or the imaginary part of the IDTԧWT. The complex 

representation of the ିܨଵܺ is written as: 

 ଵܺିܨ ൌ   ൫ݓିଵ  ିଵ൯ݓ݆  ൌ  
ଵ
√ଶ
൫ܨିଵܺோ  ିଵܨ݆  ூܺ൯                                 ሺ3.34ሻ  

The received signal ݕሺ݊ሻ is given by  

ሺ݊ሻݕ ൌ ሺ݊ሻݔ  כ ݄Ԣሺ݊ሻ ൌ  ݄Ԣሺ݇ሻݔሺ݊ െ ݇ሻ


                                        ሺ3.35ሻ 

In the matrices representation the received signal can be written as follows: 

ݕ ൌ  
1
√2

൫݄ܨିଵܺோ   ିଵܨ݄݆  ூܺ൯                                                     ሺ3.36ሻ 

where the channel matrix ݄ is given by 

݄  ൌ    ൦

݄Ԣሺ݊ሻ 0 0 … 0
0 ݄Ԣሺ݊ሻ 0 … 0
ڭ ڭ ڭ ڭ ڭ
0 0 … 0 ݄Ԣሺ݊ሻ

൪                                      ሺ3.37ሻ 

The channel ݄ can be estimated from the observation of an a priori known preamble.  

Under the assumption of the perfect synchronization, the demodulation i.e., extraction 

of the constellation symbols ሺܺோ and  ூܺሻ obtained by performing DTԧWT, i.e.,  

 ݕܨ ൌ  
1
√2


ܨ
ܨ
൨ ݕ ൌ  

1
√2


ܨ
ܨ
൨ .
1
√2

൫ܨ݄ܨିଵܺோ   ିଵܨ݄ܨ݆  ூܺ൯

ൌ  
1
2 ൫ܪܺோ   ܪ݆  ூܺ൯                                                                           ሺ3.38ሻ 
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where ܪ ൌ ܪ ିଵ andܨ݄ܨ  ൌ   are both orthogonalܨ  andܨ ିଵ. Note thatܨ݄ܨ 

matrices. The channel ሺܪሻ and ሺܪሻ are complex thus can be written as: ܪ ൌ

ோܪ    ܪ ூ andܪ݆  ൌ ோܪ     ூ, respectively. By usingܪ݆ 

ோݕ ൌ  
1
2 ቀܪோܺோ െ ܪூ ூܺቁ                                                    ሺ3.39ሻ 

ூݕ ൌ  
1
2 ቀܪூܺோ  ܪோ ூܺቁ                                                    ሺ3.40ሻ 

We obtain, 

ܺோ  ൌ   2
൫ܪோ

ோݕ ்  ܪூ
ூ൯ݕ ்

൫ܪோ
ோܪ்   ܪூ

ூ൯ܪ்
                                                 ሺ3.41ሻ 

ூܺ   ൌ   2
ቀܪோ

ூݕ ் െ ܪூ
ோቁݕ ்

ቀܪோ
ோܪ்   ܪூ

ூቁܪ்
                                                 ሺ3.42ሻ 

Assuming the channel is known at the receiver side, it’s now possible to recover the 

transmitted symbols ሺܺோ and ூܺሻ from the received signal ݕ using Eq. (3.41) and Eq. 

(3.42), respectively. 

3.6    Analysis of DTԧWT-OFDM System 

The DTԧWT-OFDM system inherits all the advantages of WPM. In addition to these 

advantages of WPM systems, namely, higher suppression of sidelobes, good spectral 

containment between subchannels, better immunity to NBI, more robustness with 

respect to ICI, avoiding of the CP and pilot tone, higher data rate, lower amount of 

interference between carriers when the orthogonality between carriers is lost, and 

better bandwidth efficiency, the DTԧWT-OFDM system gives better results of 

suppression of out-of-band attenuation, better PAPR results and, hence, lesser 

sensitivity to the nonlinear HPA and lower value of power back-off. It is also seen 

that the complexity of the DTԧWT is lesser than those of FFT and WPT, which 

means that the proposed system is computationally more efficient. 

3.6.1    Power Spectrum Density  

The general expression of the PSD of a baseband transmitted signal ݔሺݐሻ ൌ
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 ∑ ܽஶ
ୀିஶ ݂൫ݐ െ ݊ ௦ܶ௬൯, where ܽ is the signal constellation and ݂ሺݐሻ is the impulse 

response of the transmitting filter, can be written as [125], [126], [127], and [128]  

௦ܲሺ݂ሻ ൌ  
ଶߪ

௦ܶ௬
 ሺ݂ሻ|ଶ                                                ሺ3.43ሻܨ|

where ܨሺ݂ሻ is the Fourier transform of ݂ሺݐሻ and ߪଶ is the variance of an information 

symbol ܽ. The PSD of the MCM signal can be described the summation of the 

spectra of the individual subcarriers. 

3.6.2    Peak-to-Average Power Ratio 

3.6.2.1    Effect of the Nonlinear HPA 

From Eq. (2.42), Eq. (2.43) and Eq. (3.27), it can be seen that the construction of the 

discrete versions of transmitted waveforms in OFDM, WPM, and DTԧWT-OFDM is 

quite similar. For any time index ݊, all waveforms are the sum of random symbols ܽ 

or ݔ. By using the central limit theorem (CLT), we conclude that all the three signals 

are Gaussian processes, and their envelopes are Rayleigh distributed, resulting in, 

sometimes, large PAPR. This, therefore, demands that the HPA operates in its linear 

region. When the input signal goes out of its linear operational region, it results in the 

generation of unwanted spectral energy, both in-band and out-of-band (OOB). The 

first phenomenon causes ISI and deteriorates the system’s BER performance, while 

the second causes an increase in the sidelobes of the PSD of the MCM signal, a 

phenomenon recognized as spectral re-growth.  

By operating the amplifier with its input power backed-off (IBO), the spectral re-

growth can be alleviated. The IBO is defined as the ratio of the maximum 

instantaneous power to the average power of the input signal. 

ௗܱܤܫ ൌ 10݈ ଵ݃   ൬
௦ܲ,

ܲ
൰                                            ሺ3.44ሻ 

where ௦ܲ, and ܲ are respectively, the power when the input voltage is equal to 

saturation voltage ሺ ܸ ൌ ௦ܸሻ and the average power of an input signal. Another term 

which is proportionally related to IBO is output power back-off (OBO). 

ௗܱܤܱ ൌ ଵ݃10݈   ൬
௦ܲ,௨௧

ܲ௨௧
൰                                            ሺ3.45ሻ 
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where ௦ܲ,௨௧ and ܲ௨௧ are respectively, the power when the output voltage is equal to 

saturation voltage ሺ ܸ௨௧ ൌ ௦ܸሻ and the average power of an output signal. 

The nonlinear behavior of HPA can be characterized by its amplitude modulation-

amplitude modulation (AM/AM) and amplitude modulation-phase modulation 

(AM/PM) responses. Fig. 3.6 shows a typical AM/AM response for an HPA, with the 

associated IBO and OBO regions labeled appropriately. 

 

Figure 3.6 A typical power amplifier response. 

A typical solid state high power amplifier (SSPA) is mostly realized with gallium 

arsenide field effect transistors (GaAs-FET’s) [129]. The Rapp’s nonlinear amplifier 

mode is usually utilized [130] where its AM/PM function ൫ߔሺܣሻ൯ is assumed to be 

sufficiently small, so that it can be neglected. Then, its AM/AM conversion function 

൫݃ሺܣሻ൯ is given as in Eq. (3.47). 

ܯܣ
ܯܲ  ሻܣሺߔ  ؆ 0                                                                     ሺ3.46ሻ 
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ܯܣ
ܯܣ  ݃ሺܣሻ ൌ  

ܣݒ

ቆ1  ቀܣܣݒ
ቁ
ଶ
ቇ

ଵ
ଶ
                                                          ሺ3.47ሻ 

where ݒ is the small signal amplification,  is a positive number (also called ‘knee 

parameter’) to control the nonlinear characteristic of the power amplifier model, and  

  is the saturation output amplitude. The resulting amplitude transfer function forܣ

different values of  is shown in Fig. 3.7.   

  

 

Figure 3.7 AM/AM characteristic of the SSPA. 

Similarly, the AM/AM and AM/PM conversions functions of a travelling-wave-tube 

amplifier (TWTA) are shown in Fig. 3.8. By using an approximation with the  

two-parameter formulas, the transfer characteristic are obtained [131] as hereunder: 

ܯܣ
ܯܣ : ݃ሺܣሻ ൌ  

ן ܣ
ሺ1  ߚܣଶሻ

                                                        ሺ3.48ሻ 

ܯܣ
ܯܲ ሻܣሺߔ : ൌ

ן ଶܣ

ሺ1  ߚܣଶሻ
                                                            ሺ3.49ሻ 
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where ן, ,ߚ ,ן   are constants to be determined in order to fit with the TWTAߚ

measured data. These four contestants can be determined from the actual TWTA tube 

measurements via a least-square fit. Typical values of these parameters, used in many 

simulations [130], are given as follows: 

 ൌן   ߚ       1 ൌ 0.25        ൌן ߚ         0.26 ൌ 0.25. 

  

 

Figure 3.8 AM/AM and AM/PM characteristic of the TWTA. 

The PAPR of the transmitted signals (2.42), (2.43) and (3.27) is defined as the 

maximum instantaneous power of the over average power [132], [133]. 

ܴܲܣܲ ൌ 
ሾ݊ሿ|ଶሽݔ|ሼݔܽ݉
ሾ݊ሿ|ଶሽݔ|ሼܧ                                              ሺ3.50ሻ 

where ܧሼ. ሽ denotes the ensemble average calculated over the duration of the OFDM 

or WPM or DTԧWT-OFDM symbol. 

Given a specified PAPR threshold, ܴܲܲܣ ൌ  , the complementary cumulativeߣ 

distribution function (CCDF) of the PAPR is given as [39]: 

ሻሽሻݐሺݔሼܴܲܣሺܲܨܦܥܥ ൌ ܲሺܴܲܲܣሼݔሺݐሻሽ  ሻߣ  ൌ 1 െ ൫1 െ ݁ିఒబ൯ே      ሺ3.51ሻ 
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There have been several attempts to determine the closed-form approximation for the 

distribution of PAPR. Some of the approximations are listed in Table 3.1. 

Table 3.1 Approximations to CCDF of PAPR. 

CCDF Remarks 

Prሾλ  ሿߣ ൎ  1 െ ൬1 െ eሺି
బ
మሻ൰

Nן

 and N  64 2.8 = ן 
[117] 

ߣሾݎܲ  ሿߣ ൎ 1 െ ቌെඨݔ݁ 
ߣߨ
3
ܰ ݁ିఒబቍ 

[119] 

ߣሾݎܲ  ሿߣ ൎ 1 െ ቌെඨݔ݁ 
݈ܰ݃ߨ
3 ܰ ݁ିఒబቍ 

[120] 

ߣሾݎܲ  ሿߣ ൎ 1 െ ݔ݁  ൬െ
2ܰ
√3

݁ିఒబ /ଶ൰ N and ߣ are large [121] 

ߣሾݎܲ  ሿߣ ൎ 1 െ ቀ1 െ ߣ൫ඥ݂ܿݎ݁ /2൯ቁ
ଶ
൫1 െ ݁ିఒబ ൯

ேିଶ
ଶ  [134] 

 

The parameter ן in [117] is empirically determined ן ൌ 2.8 and this approximation is 

quite accurate for ܰ  64. And [119] assumed that the OFDM signal is a band-

limited complex Gaussian process with statistically uncorrelated peaks. However, in 

[120] the approximation of PAPR has been derived under the presumption that the 

signal is feebly converges to the Gaussian random process. The approximation in 

[121] is suitable for circularly modulated signals with large values of ܰ. And the 

approximation in [134] is suitable for non-circular constellation. 

3.6.2.2    DTԧWT-OFDM and nonlinear HPA 

Fig. 3.9 is the functional block diagram of the proposed system with nonlinear HPA. 

The memoryless envelope model is used to described the bandpass nonlinearity 

modeling the HPA [135]. Let the input bandpass signal to the HPA and the signal at 

the output of the HPA have the form of Eq. (3.52) and Eq. (3.53) respectively. 
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Figure 3.9 Functional block diagram of OFDM based on DTԧWT system with 
HPA. 

ሻݐሺݔ ൌ ߨሾ2ݏሻܿݐሺܣ ݂ݐ   ሻሿ                                    ሺ3.52ሻݐሺߠ 

ሻݐሺݎ ൌ ݃൫ܣሺݐሻ൯ܿߨ2ൣݏ ݂ݐ  ሻݐሺߠ    Φ൫ܣሺݐሻ൯൧                            ሺ3.53ሻ 

The complex envelope of the above two signals can be written as 

ሻݐሺݔ ൌ ሻݐሺݎ  &  ሻ݁ିఏሺ௧ሻݐሺܣ  ൌ ݃൫ܣሺݐሻ൯݁ିఏሺ௧ሻ ା ൫ሺ௧ሻ൯                       ሺ3.54ሻ 

where ݃ሺܣሻ  and Φሺܣሻ are the AM/AM and AM/PM conversion respectively. The 

known distortions when amplifying a modulated signal with constant envelope are 

• Spectral spreading of the transmitted signal, which can cause adjacent channel 

interference (ACI). 

• Additional nonlinear interference in the receiver. 

• Intermodulation effects, which occur when several channels are amplified in 

the same HPA.    

• Interference between the in-phase and quadrature components due to AM/PM 

conversion. 

It is the endeavor of this work to obtain, among others, PAPR of DTԧWT 

transmission and evaluate its performance in the presence of HPA. When comparing 

the PAPR of the considered systems, DTԧWT-OFDM system achieves better results 

of PAPR than OFDM and WPM systems.   
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3.6.3    Bit Error Rate 

BER reduction is another key issue in wireless communication. To measure the noise 

robustness of DTԧWT-OFDM scheme, the relationship of the BER as a function of 

/ܧ ܰ  for different levels of noise is a useful performance tool. 

The BER performance of the considered systems in the absence of the nonlinearity 

HPA, matches the theoretical BER performance of BPSK modulation given as  

ܲ ൌ ܳ ቌඨ2
ܧ
ܰ
ቍ                                                        ሺ3.55ሻ 

This essentially confirms the model performed for the simulation and verifies 

previous results [74], [136], and [137]. 

3.6.4    Computational Complexity 

Computational complexity is an important issue. Due to the high data rates required in 

modern applications, low complexity is imperative. Both Fourier and WPT, have a 

computational complexity of ܱሺ݈ܰ݃ଶܰሻ, , where ܰ is the rank of the transform, or 

the number of subchannels [54]. While the computational complexity for DWT is 

ܱሺܰሻ. Since the DTԧWT use two DWT (upper and lower parts), the computational 

complexity for DTԧWT is ܱሺ2ܰሻ. The complexity of the DTԧWT is of less order as 

compared to the complexity of FFT and WPT. 

3.6.5    Channel Estimation and Synchronization 

Perfect channel estimation can greatly improve the performance of system in wireless 

transmission. Pilot symbol assisted modulation (PSAM) with pilot interpolation in 

time-domain or frequency-domain is one of the channel estimation methods in 

conventional OFDM system. Since more bandwidth will be possessed with more 

pilots inserted, the pilot density should be decided by jointly considering estimation 

accuracy and system complexity. However, the channel estimation in WPM system 

has received little attention. Although channel estimation is used to investigate the 

best basis in WPM system in [138], pilot interpolation algorithm is not provided 

during channel estimation. In [139], a blind identification method for channel 
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estimation in WPM system is proposed with impulse redundancy pilot inserted into 

each frame head after IDWPT process.  

However, the inherent properties of wavelet packet decomposition and reconstruction 

are not considered when designing the pilot interpolation strategy in [139]. In [140] 

the pilot arrangement is carefully designed based on wavelet packet theory for WPM 

system. This method utilizes the frequency selective properties of wireless channel to 

decide the pilot interval during pilot arrangement design, which can achieve high-

speed transmission with lower bit rates error guaranteed. In this work, a transform 

based design method is used, where the distorted channel is transformed to the 

frequency-domain by using the DFT as explained in section 3.5. 
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CHAPTER 4 

RESEARCH METHODOLOGY AND RESULTS 

This chapter describes the performance metric parameters of the proposed DTԧWT-

OFDM system, explains the research methodology to obtain them and presents the 

results obtained. The system model is proposed and simulation experiments are 

detailed out, both for the performance metric of the proposed system as well as of the 

conventional OFDM system and WPM system which are used as the benchmark for 

comparison. The results of the proposed simulation experiments are then 

systematically presented. 

This chapter is organized, accordingly, into six sections. Section 4.1 defines the 

performance metric parameters of OFDM, WPM and DTԧWT-OFDM systems. 

Within the scope of the research undertaken herein, it proposes the simulation 

experiments to be conducted for evaluating the performance of the system. Towards 

that end, it develops the system model, the assumptions made and the related 

simulation parameters. As mentioned before, the performance-metric parameters 

chosen for the purpose are the PSD, PAPR, BER and average BER and computational 

complexity. The PAPR simulation outcomes of the proposed system are presented in 

section 4.2 using different numbers of subcarriers and different types of filters. The 

DTԧWT-OFDM PAPR results are compared also with those for the conventional 

OFDM and WPM systems under different scenario.  

Section 4.3 presents the PSD simulation results for OFDM, WPM and DTԧWT-

OFDM systems using 16 QAM with 64 subcarriers with and without insertion of the 

nonlinear HPA. This section is also discussed the amount of required power back-off 

and spectral re-growth. Section 4.4 presents the BER simulation results in AWGN. It 

also includes average BER results of a 10-tap Rayleigh channel when used with the 

considered systems using both BPSK and 16 QAM with Haar wavelets (db1, db3, db9 
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and db13 in MATLAB®) to construct the wavelet packet trees and different type of 

filters to construct the DTԧWT. Also in this section the results of the BER simulation 

in AWGN channel of the considered systems using both BPSK and 16 QAM in the 

presence of nonlinear HPA (SSPA and TWTA) are presented. This is to capture the 

resulting BER degradation when HPA is present. BER in the presence of frequency-

selective wireless channels is expected to capture the impact of the shift-invariance 

property thus; section 4.5 studies this property in term of the average BER. Finally, 

section 4.6 concludes this chapter by explaining the computational complexity of the 

proposed system. 

4.1    Performance Metric Parameters and Research Methodology 

Among the performance metric parameters of the considered systems such as, PAPR, 

PSD, accuracy of channel estimation, computational complexity, data rate, and 

sensitivity to synchronization, the focus in this work will be on PAPR, PSD, BER and 

average BER, and computational complexity because, as explained in the scope of the 

work, these parameters reflect the true nature of wavelet filters and their impact on the 

system performance. Other parameters, although important, do not directly relate to 

the wavelet filters used in the design of the system, and hence, are outside the scope 

of the thesis. 

 

(a) The peak-to average power ratio: 

The PAPR study is conducted using only the low-pass equivalent system model. To 

calculate the PAPR of the transmitted signals for the considered systems, the system 

model consists of only the transmitter side of the flow chain shown in the Figs. 2.16, 

2.17 and Fig. 3.5 without the HPA. These blocks of the system model are developed 

under a MATLAB® environment. The blocks are implemented by using MATLAB® 

functions. The following is an overview of procedures to simulate the considered 

systems: 

• A binary random data vector is generated for transmission using the random 

bit generator. 

• The random data are BPSK or 16-QAM modulated. 
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• The baseband modulated data vector is reshaped into parallel column vectors 

using the serial-to-parallel (S/P) conversion. 

• The subcarrier mapping for the OFDM, WPM and DTԧWT-OFDM systems 

are accomplished by using the IFFT, IDWPT and IDTԧWT respectively. For 

the considered systems, sufficiently large, but identical, number of random 

data bits are generated and used for the system simulation and analysis. For 

example, for clipping probability of 10ିସ at least 10 symbols are generated 

and errors are averaged over 100 errors. 

• CP duration, as stipulated in WiMAX standard, is taken to be of 0.8 ߤs 

duration (16 samples at 20 MHz), and is inserted only in the conventional 

OFDM system while the WPM and DTԧWT-OFDM system are transmitted 

without any guard interval insertion. 

• Parallel-to-serial (P/S) conversion is performed to make the signals ready for 

transmission. 

• The PAPR analysis is carried out using the time-domain peak envelope and 

CCDF. The time-domain peak envelope gives a heuristic understanding of 

which waveform is likely to have more PAPR than others, while CCDF gives 

an accurate estimate of PAPR of the system under consideration. 

 

(b) The power spectrum density: 

The PSD of the transmitted signals for the considered systems is investigated 

both before and after the nonlinear HPA. For a given HPA, the amount of power 

back-off and the spectral re-growth are also studied and the performance is compared 

with each other for the considered systems. To perform the simulations for the 

transmitter side with the HPA (as shown in Fig. 3.9), an HPA (Rapp’s model for 

SSPA with  ൌ 3 and TWTA with ן ൌ 1, ߚ ൌ 0.25, ൌן 0.26 and ߚ ൌ 0.25) 

block is added to the above simulation procedures. The PSD is obtained from the low-

pass equivalent transmitted signal before and after HPA.  

 

(c) The bit error rate: 

The BER of the considered systems is calculated by comparing the transmitted and 

the received data in AWGN channel, while the average BER is calculated using the 
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Rayleigh channel (the specifications given in Table 4.1 later), both results are 

investigated in the presence of the HPA and also in its absence.  

The system model includes transmitter and the receiver side of the flow chain shown 

in the Figs. 2.16, 2.17 and Fig. 3.5 together with an AWGN block in between. The 

simulations are carried out under MATLAB® environment. The procedures to 

simulate the considered systems are as follows: 

• The OFDM signal passes through nonlinear HPA using the SSPA and TWTA 

models. 

• Two scenarios are employed. In first case, the transmitted signal is added with 

AWGN, and in the second case, it passes through a Rayleigh channel first 

before AWGN adds on to it – the case when the multipath wireless channel is 

present. A complex low-pass equivalent model for both the channel and the 

white Gaussian noise is assumed. 

• The received signal is reshaped again into a parallel column vector by 

performing the S/P conversion. 

• Multiplexing the signal using wavelet filters is achieved via both DWPT and 

DTԧWT, while the FFT is used to multiplex the signal in conventional OFDM 

system.  

• The P/S conversion is performed to reshape the signal back to serial format for 

baseband demodulation. 

• Then, the BPSK and 16-QAM symbols are ready for demodulation. 

 

 

(d) The computational complexity: 

Finally, the computational complexity of the considered systems is evaluated and also 

compared with each other. 

The simulation procedures to achieve the objective of this research are summarized in 

the flowchart shown in Fig. 4.1. 

All the simulation mentioned above are carried out using MATLAB® (7.6) R2008a 

program, a personal computer running Windows XP service pack 3 on Intel® 

Pentium® 4 2.8GHz processor, 2GB of RAM. 
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In order to achieve fair comparisons, identical simulation parameters are used. The 

simulations are carried in MATLAB® using FFT/IFFT, WPT/IWPT using wavelet 

toolbox, and DTԧWT/IDTԧWT functions [141]. These blocks are utilized in the 

simulation of the OFDM, WPM and DTԧWT-OFDM systems, respectively. The 

SSPA (Rapp’s model) and TWTA are used as the nonlinear HPA and they are utilized 

in the simulation of the PSD and BER carried out in this work. An AWGN and a 

Rayleigh channel (as described in Table 4.1) are assumed for the BER and average 

BER performance evaluation respectively. The simulation parameters are documented 

as follows:  

 

 

 

 



 

83 

 

      
Figure 4.1 Flow charts of the simulation procedures of the considered systems. 
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4.1.1    For the OFDM System 

To simulate the OFDM system, BPSK and 16-QAM modulations are used; 

subcarriers numbering 64, 128, 256, 512, and 1024 are utilized with PAPR threshold 

of 2dB; an AWGN and a 10-tap Rayleigh channel scenarios are assumed in the 

simulation of the BER; SSPA Rapp’s model with knee-parameter  ൌ 3 and TWTA 

models of ן ൌ ߚ ,1 ൌ ൌן ,0.25 0.26, and ߚ ൌ 0.25   are used to characterize 

HPA nonlinearity. As the defined CP duration is 0.8 ߤs, the 10-tap Rayleigh channel 

is selected to be of maximum duration 0.26 µs. The real and imaginary parts of each 

10-tap is independent Gaussian random variable with zero mean and 0.5 variance.  

Table 4.1 shows the main properties of the 10-tap Rayleigh channel models, which 

were used for simulation. This channel model was described in [142] and [143]. 

Table 4.1 Main channel properties of the 10-tap model. 

Tap Index Delay (ns) Power (dB) 

1 0 -0.39 

2 10 -20.6 

3 20 -26.8 

4 50 -24.2 

5 90 -15.3 

6 95 -20.5 

7 100 -28.0 

8 180 -18.8 

9 205 -21.6 

10 260 -19.9 

 

4.1.2    For the WPM System 

In addition to the simulation parameters of OFDM system mentioned in the above 

section, the wavelet packets using Haar wavelets (db1), db3, db9 and db13 are 

selected and maximum tree depth of 7 (i.e., D = 7) is used for the tree nodes of WPT. 
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Different Daubechies wavelets are used as they are claimed to provide best BER 

performance for the WPM systems [144]. 

4.1.3    For the DTԧWT-OFDM System 

Also, in addition to the simulation parameters of OFDM system mentioned in the 

above section of OFDM simulation parameters, the construction of the DTԧWT is 

made using different filters like, LeGall 5,3 tap filters (LEG), Antonini 9,7 tap filters 

(ANTO), Near Symmetric 5,7 tap filters (n-SYM-a), and Near Symmetric 13,19 tap 

filters (n-SYM-b) in the first stage of the FB. Moreover, Quarter-Sample-Shift 

Orthogonal 10,10 tap filters (q-SH-06) with only 6,6 non-zero taps, Quarter-Sample-

Shift Orthogonal 10,10 tap filters (q-SH-a) with 10,10 non-zero taps, Quarter-Sample-

Shift Orthogonal 14,14 tap filters (q-SH-b), Quarter-Sample-Shift Orthogonal 16,16 

tap filters (q-SH-c), and Quarter-Sample-Shift Orthogonal 18,18 tap filters (q-SH-d) 

were utilized in the succeeding stages of the FB. 

4.2    Peak-to-Average Power Ratio 

In this section, the performance of the PAPR of the considered systems is quantified 

through the simulation. The PAPR results are obtained using the peak time-domain 

envelops and the CCDF. As explained in section 3.6.2, the PAPR performance can be 

illustrated by plotting the peak time-domain envelop or the CCDF of the PAPR. The 

system model contains only the transmitter section of the considered systems without 

the HPA as shown in Fig. 2.16, Fig. 2.17, and Fig. 3.5.  The simulation parameters 

used in the evaluation of the performance of PAPR based on the CCDF are 

documented in Table 4.2. 

It should be mentioned that the PAPR performance analysis results, shown in this 

work, are obtained without using any PAPR reduction technique.  

The PAPR value of the proposed system is investigated and compared with the 

OFDM and WPM systems in terms of time-domain peak envelope and CCDF.  
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Table 4.2 Simulation parameters. 

Modulation  BPSK  and 16‐QAM 

Channel  AWGN and a 10‐tap Rayleigh 

Number of Subcarriers ሺܰሻ   64, 128, 256, 512, and 1024 

Wavelet Packet Bases ሺ߶ሾݐሿሻ   Haar (db1), db3, db9 and db13 

PAPR Threshold  2 dB 

First stage FB of DTԧWT  Near Symmetric Filters 

Succeeding stages FB of DTԧWT  Quarter Sample Shift Orthogonal Filters 

SSPA Model  Rapp’s model,   ൌ 3 and ܣ ൌ 1 

TWTA Model  Aן ൌ 1, βA ൌ ൌן ,0.25 0.26, β ൌ 0.25 

 

4.2.1    Peak Envelope 

In order to analyze PAPR, we present the time-domain peak envelope waveforms. To 

do so, we generate the transmitted waveforms using 16 QAM modulation with 64 

subcarriers. WPM systems employ, as mentioned before, db13 based wavelet packet 

bases, and n-SYM-b and q-SH-b filters for DTԧWT based OFDM system. Fig. 4.2 

shows, in the time-domain, the envelope of the proposed system over a span of time. 

For the purpose of comparison, we also plot the envelope of the OFDM and WPM 

waveforms corresponding to the same information symbol pattern. 

The transmitted envelopes for the conventional OFDM and WPM systems illustrate 

approximately similar behavior, where the peak is about 2.25, while the transmitted 

envelope for the proposed system demonstrates better behavior than the other two 

systems, where the peak is only about 1.25. This indicates that the proposed system is 

likely to give better result for PAPR than the other two systems in terms of the range 

of variations of PAPR [145], [146], [147].  
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Figure 4.2 Envelope of the OFDM, WPM and DTԧWT-OFDM systems. 

To limit PAPR, one popular method is to clip [148] the waveform above a threshold. 

If we set the threshold (also called clipping level) at |Amplitude|  ൌ 1.0 in Fig. 4.2, 

we can see that the number of peaks above this threshold is higher for both OFDM 

and WPM transmitted signals than for DTԧWT-OFDM transmitted signal. Therefore, 

for same clipping level, DTԧWT-OFDM system is less sensitive to nonlinear HPA 

than OFDM and WPM systems.  

   In order to illustrate the superior peak and average values of the envelope for WT 

modulated subcarriers, Figs. 4.3 and 4.4 show the envelope of 16 subcarriers using FT 

and WT, respectively. The summation of these subcarriers shows a peak of 16 using 

FT and 3.2 when using WT.  

This result shows good performance of WT modulated subcarrier in terms of peak and 

average values for the envelope. This results leads to better results of PAPR for WT 

over FT modulated subcarrier as would be demonstrated now. 
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Figure 4.3 Envelope of the 16 subcarriers using FT. 

 

Figure 4.4 Envelope of the 16 subcarriers using WT. 
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4.2.2    CCDF 

Now, to quantify the PAPR values of the considered systems, the CCDF as mentioned 

in section 3.6.2 is obtained for each system.  

4.2.2.1    Typical Comparison 

The CCDF of the transmitted signals for the considered systems is quantified in this 

section using same simulation parameters of the above section and the results are 

shown in Fig. 4.5. The first curve (solid red line) represents the CCDF of the proposed 

system while the other two curves (dashed blue line and dotted black line) represent 

the conventional OFDM and WPM systems respectively.  The proposed system has a 

PAPR approximately 7.3 dB for 0.01% of CCDF and WPM and OFDM has a PAPR 

approximately 8.4 dB and 10.7 dB respectively at 0.01% of CCDF. The figure shows 

that the DTԧWT-OFDM system achieves 3.4 dB improvements over the OFDM and 

1.1 dB improvements over the WPM systems at 0.01% of CCDF. 

 

 

Figure 4.5 CCDF for the OFDM, WPM and DTԧWT-OFDM systems. 
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4.2.2.2    Study of use of different filters in DTԧWT 

Next, the above experiment is repeated with different sets of filters. These filters are 

used to construct the DTԧWT and WPT in the DTԧWT-OFDM and WPM systems, 

respectively.  DTԧWT-OFDM1 represents the proposed system when using n-SYM-b 

in the first stage of the FB with q-SH-d in the succeeding stages. DTԧWT-OFDM2 

represents the proposed system when using n-SYM-b with q-SH-c filters. DTԧWT-

OFDM3 represents the proposed system when using ANTO with q-SH-b filters. 

DTԧWT-OFDM4 represents the proposed system when using ANTO with q-SH-a 

filters. DTԧWT-OFDM5 represents the proposed system when using n-SYM-a with 

q-SH-06 filters. DTԧWT-OFDM6 represents the proposed system when using LEG 

with q-SH-06 filters.  These results are shown in Fig. 4.6. While the results for the 

WPM system for different Daubechies wavelets are shown in Fig. 4.7. WPM1, 

WPM2, WPM3 and WPM4 represent the WPM system when using db13, db9, db3 

and db1 respectively.  

 

 

Figure 4.6 Effect of using different set of filters in design of the DTԧWT-
OFDM. 
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The results in Fig. 4.6 show that the proposed system using n-SYM-b with q-SH-d  

filters has a PAPR of 7.3 dB at 0.01% of CCDF and has a PAPR of 7.4 dB when 

using n-SYM-b with q-SH-c filters, approximately same. The 0.01% PAPR of the 

proposed system is 7.7 dB when ANTO with q-SH-b filters are used, 8.1 dB when 

using ANTO with q-SH-a filters, and 8.4 when n-SYM-a with q-SH-06 filters and 

LEG with q-SH-06 filters; these results prove that increasing the filter length give 

better result of PAPR. As discussed in section 2.6, the problem of the lack of shift 

invariance related to the DWT and DWPT has been solved by utilizing the DTԧWT 

[109]. The DTԧWT can design using a range of filters. The work in [109] investigate 

the degree of shift invariance for the filters used to construct the DTԧWT and prove 

that the longer filters provide improved shift invariance.  

The results in Fig. 4.6 confirm the results in [109]. In term of complexity, the longer 

filters are more complex but not same complexity order as the longer filters for 

DWPT as it will be discussed in see section 4.5. 

From the results in Fig. 4.7 we can deduce that the higher order of Daubechies 

wavelets give better CCDF results. However, for the higher order of Daubechies 

wavelets the complexity of system will be very high compare to complexity of OFDM 

and DTԧWT-OFDM [20], [149]. 
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Figure 4.7 Effect of using different set of filters in design of the WPM system. 

4.2.2.3    Study on use of different number of subcarriers 

Next, the above experiments are repeated for the considered systems using different 

numbers of subcarriers ܰ (64, 128, 256, 512, and 1024). n-SYM-b with q-SH-d are 

used in the proposed system and db13 is used in the WPM system. The results are 

shown in Figs. 4.8, 4.9, and 4.10 for the conventional OFDM, WPM, and the 

DTԧWT-OFDM systems, respectively. 
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Figure 4.8 CCDF results for the OFDM using different subcarriers (N). 
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Figure 4.9 CCDF results for the WPM using different subcarriers (N). 

 

It is quite clear from Fig. 4.8, Fig. 4.9 and Fig. 4.10 that the PAPR increases with the 

number of the subcarriers as do the other two systems. But, as the figures indicate, the 

DTԧWT system gives better PAPR results than the other systems. It achieves 3.4 dB 

improvement over the conventional OFDM system and 1.1 dB improvement over the 

WPM system at 10ିସ of the CCDF. 
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Figure 4.10 CCDF results for the DTԧWT-OFDM using different subcarriers 
(N). 

4.3    Power Spectrum Density 

Now we present the results of PSD with and without the nonlinear HPA. 

4.3.1    Power Spectrum Density without the HPA 

To demonstrate the similarities and dissimilarities between the OFDM, WPM and 

DTԧWT-OFDM systems, as it mentioned in section 3.6.1 their PSD characteristics 

are shown in Fig. 4.11, when signaling with 16-ary QAM using 64 subcarriers. The 

db13 wavelet packet bases were used to construct the wavelet packet trees in WPM 

system. For the DTԧWT-OFDM, n-SYM-b and q-SH-d were used to construct the 

real and the imaginary part of DTԧWT respectively. 

The PSD characteristics of the considered systems are presented in Fig. 4.11. The sold 

blue, dotted black and dashed red curves represent the conventional OFDM, WPM 

and the DTԧWT-OFDM systems, respectively.  
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For the OFDM system the simulation results show that the spectral re-growth begins 

below 25 dB, 33 dB and 38 dB from the main signal level of 0 dB for conventional 

OFDM, WPM and DTԧWT-OFDM systems, respectively. We can deduce that the 

proposed system is relatively showing better spectrum characteristics in terms of more 

low out of band attenuation (more suppression of out of band attenuation), than the 

conventional OFDM and the WPM systems [150], [151]. 

 

 

Figure 4.11 PSD for the OFDM, WPM and DTԧWT-OFDM systems. 
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4.3.2.1    Spectrum Re-growth 

Because the transmitter’s power amplifier gain is generally adjusted to provide a fixed 

average power, high peak can cause the power amplifier to move toward saturation. 

This causes inter-modulation distortion which generates spectral re-growth. Spectral 

re-growth is the generation of new range of frequencies that develops on each side of 

the carrier (similar to sidebands) and extends into the adjacent frequency bands. 

Consequently, spectral re-growth interferes with communication in the adjacent 

bands. Reducing the PAPR leads to reducing the spectral re-growth. 

4.3.2.2    Input Power Back-off 

As defined in section 3.6.2.1, the time-domain waveforms of the considered systems 

are passed through the Rapp’s nonlinear amplifier model (Eqs. (3.46) and (3.47)) with 

 ) ൌ 3 and ܣ ൌ 1) and TWTA (Eq. (3.48) and Eq. (3.49)) with (ן ൌ ߚ ,1 ൌ 0.25, 

ఃൌן ఃߚ ,0.26 ൌ 0.25). The PSD results are shown respectively in Fig. 4.12 and Fig. 

4.13.  

As the nonlinearities of the HPA cause the spectrum re-growth, we evaluate the 

influence of the nonlinear HPA on the PSD. We generate the transmitted waveforms 

using 16 QAM modulation with 64 subcarriers. WPM systems employ, as mentioned 

before, db13 based wavelet packet bases, and n-SYM-b and q-SH-b filters for 

DTԧWT based OFDM system. The simulation results in Fig. 4.12 show that spectral 

re-growth begins below 26 dB, 35 dB and 39 dB from the main signal level of 0 dB 

for conventional OFDM, WPM, and DTԧWT-OFDM systems, respectively. In Fig 

4.13, the spectral re-growth begins below 28 dB, 37 dB and 41 dB from the main 

signal level of 0 dB for conventional OFDM, WPM, and DTԧWT-OFDM systems, 

respectively. These figures show the PSD of the considered systems in the linear case 

and at the output of the nonlinear HPA with back-off value of 6 dB. Hence, the 

required power back-off can be compared. From the simulation results we can deduce 

that the proposed system required lesser amount of the IBO comparing with WPM 

and OFDM systems when the considered systems are adjust to produce spectral re-

growth of the PSD as close to each other as possible.  
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From the study, it can be seen that the SSPA has a smaller out of band distortion and 

hence less spectral re-growth than the TWTA. This is true for all the three cases. 

 

 
Figure 4.12 PSD for the OFDM, WPM and DTԧWT-OFDM systems in 
presence of nonlinear SSPA. 
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Figure 4.13 PSD for the OFDM, WPM and DTԧWT-OFDM systems in 
presence of nonlinear TWTA. 

To further compare the SSPA and the TWTA effects in the PSD of the considered 

systems transmitted signals, Fig. 4.12 and Fig. 4.13 are combined together in Fig. 4.14 

where OFDM1, WPM1 and the DTԧWT-OFDM1 represent the consider systems in 

the present of SSPA and OFDM2, WPM2 and the DTԧWT-OFDM2 represent the 

consider systems in the present of TWTA. 
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Figure 4.14 PSD for the OFDM, WPM and DTԧWT-OFDM systems in 
presence of nonlinear SSPA and TWTA. 

The results in Fig. 4.15 and Fig. 4.16 show the PSD of the considered systems in the 

linear case and at the output of the nonlinear SSPA and TWTA respectively. It has to 

be emphasized that the different back-off values are used so as to adjust the 

considered systems to achieve nearly same spectral performance as possible. 
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Figure 4.15 PSD of the considered systems. OFDM (IBO = 10.9 dB), WPM 
(IBO = 6.8 dB), DTԧWT-OFDM (IBO = 5.5 dB). 

The conventional OFDM system required 10.9 dB of IBO and the WPM system 

required 6.8 dB of IBO, where the proposed system required only 5.5 dB of IBO. 

From these results we conclude that the proposed system required lesser amount of 

IBO comparing by the conventional OFDM and WPM systems, at the same time the 

proposed system produced lesser amount of spectral re-growth comparing to the other 

two systems. From the results we saw that the TWTA produced more spectral re-

growth than the SSPA. This is true for all the three cases.   
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Figure 4.16 PSD of the considered systems. OFDM (IBO = 10.9 dB), WPM 
(IBO = 6.8 dB), DTԧWT-OFDM (IBO = 5.5 dB). 

4.4    Bit Error Rate  

Now we present the results of BER with and without the HPA. 

4.4.1    Bit Error Rate without the HPA 
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spectral density ratio (Eb/No) performance is a useful performance tool.  
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SYM-b with q-SH-d filters are used to construct FB of DTԧWT and db13 wavelet 

packet bases are used to construct the wavelet packet trees.  

 

 
Figure 4.17 BER performance of DTԧW-OFDM using BPSK and 16-QAM in 
AWGN channel. 

In Fig 4.17, the first four curves represent theoretical BPSK and the conventional 

OFDM, WPM, and DTԧWT-OFDM systems using BPSK modulation. While the 

others four curves are representing the theoretical 16-QAM and the conventional 

OFDM, WPM, and DTԧWT-OFDM systems using 16-QAM modulation. 

This figure indicates that the BER performance of the considered system nearly 

matches the theoretical BPSK and 16-QAM modulation BER performance in an 

AWGN channel.  

4.4.1.2    BER in Rayleigh Flat Fading Channel 

The above experiment is repeated again using a 10-tap Rayleigh channel while the 

other parameters are kept as above. This result is shown in Fig. 4.18.  
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This figure indicates that the average BER performance of the considered system 

nearly matches the theoretical BPSK and 16-QAM modulation BER performance in 

the Rayleigh channel. 

 

 
Figure 4.18 BER performance of DTԧW-OFDM using BPSK and 16-QAM in 
a 10-tap Rayleigh channel. 

4.4.1.3    Study of BER with different wavelet filters 
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using n-SYM-a with q-SH-06 filters. DTԧWT-OFDM6 represents the proposed 

system when using LEG with q-SH-06 filters.  

 

  
Figure 4.19 BER performance of DTԧW-OFDM using BPSK and 16-QAM in 
AWGN channel for different type of filters. 

In Fig. 4.19, the systems that are labeled from 7 to 12 represent the proposed system 

when signaling with 16 QAM, DTԧWT-OFDM7 represents the proposed system 

when using n-SYM-b with q-SH-d filters. DTԧWT-OFDM8 represents the proposed 

system when using n-SYM-b with q-SH-c filters. DTԧWT-OFDM9 represents the 

proposed system when using ANTO with q-SH-b filters. DTԧWT-OFDM10 

represents the proposed system when using ANTO with q-SH-a filters. DTԧWT-

OFDM11 represents the proposed system when using n-SYM-a with q-SH-06 filters. 

DTԧWT-OFDM12 represents the proposed system when using LEG with q-SH-06 

filters. 

In Fig. 4.20 WPM1, WPM2, WPM3 and WPM4 represent the WPM system when 

using db13, db9, db3 and db1 respectively. 
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Figure 4.20 BER performance of WPM using BPSK in AWGN channel for 
different type of filters. 

The results in Fig. 4.19 and Fig. 4.20 show that the BER performance is getting better 

and better with increasing the length of filters for both systems. That’s because with 

increasing the filter length the spectral containment is higher, therefore, ICI reduction 

is much greater. However, this leads to increasing the system computational 

complexity especially for the WPM system. Hence a tradeoff should be made between 

BER performance and filter length. But, in the case of the proposed system, the 

computational complexity, in general, is very low as compared to that of the WPM 

system [146], [151], [152], [153] as will be shown in section 4.6. 

4.4.2    Bit Error Rate with HPA 
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models. The AM/AM and AM/PM characteristic of these amplifiers were given in 

chapter 3 in Eqs. (3.46), (3.47), (3.48) and Eq. (3.49). 

Figure 4.21 shows the BER curve for the considered systems. They are compared to 

the BER curve of the theoretical BPSK and 16-QAM modulation without distortion. 

To evaluate the effect of the nonlinear HPA on the BER of the considered systems, 

Rapp’s model ( ൌ 3 and ܣ ൌ 1) for AM/PM Eq. (3.46) and AM/AM Eq. (3.47) 

conversions has been adopted with 64 subcarriers and BPSK and 16-QAM 

modulation in AWGN channel. And figure 4.22 shows the case when the TWTA 

model has been adopted (AM/AM Eq. (3.48) and AM/PM Eq. (3.49)). 

In Fig 4.21 when signaling with BPSK and 16-QAM along with 64 subcarriers in 

AWGN channel. n-SYM-b with q-SH-d filters are used to construct FB of DTԧWT 

and db13 wavelet packet bases are used to construct the wavelet packet trees. 

OFDM1, WPM1, and DTԧWT-OFDM1 are respectively conventional OFDM, WPM, 

and DTԧWT-OFDM system using BPSK modulation while OFDM2, WPM2, and 

DTԧWT-OFDM2 are the considered system when using 16-QAM modulation. This 

figure shows that the DTԧWT-OFDM system is less sensitive to the nonlinear HPA 

than OFDM and WPM systems. 
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Figure 4.21 BER performance of DTԧWT-OFDM using BPSK and 16-QAM 
in the presence of SSPA. 

Moreover, the effect of the nonlinear HPA on the BER of the considered systems is 

examined again using the TWTA model (ן ൌ ߚ ,1 ൌ ൌן ,0.25 ߚ ,0.26 ൌ 0.25) 

for AM/AM Eq. (3.42) and AM/PM Eq. (3.43) conversions with other simulation 

parameters as same as for the above experiment. Fig. 4.22 shows the BER curve of 

the considered systems using BPSK and 16-QAM along with the BER curve of the 

theoretical BPSK and 16-QAM modulation. Again, OFDM1, WPM1, DTԧWT-

OFDM1, OFDM2, WPM2, and DTԧWT-OFDM2 are defined same as above. Also 

these results confirm that the proposed system is less sensitive to the nonlinear HPA 

than OFDM and WPM systems. 
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Figure 4.22 BER performance of DTԧWT-OFDM using BPSK and 16-QAM 
in the presence of TWTA. 

From the study above on BER performance, it can be seen that without using HPA the 

BER results of the considered systems are similar and close to the theoretical case. 

However, when using the HPA the degradation of BER happens. Also it’s clear that 

the SSPA has a smaller in band distortion and hence less BER performance 

degradation than the TWTA. 

The results in Fig. 4.23 show the BER performance of the considered systems when 

different IBO values are used so as to adjust the considered systems to achieve nearly 

same spectral performance as possible. The conventional OFDM, the WPM and the 

DTԧWT-OFDM systems are required 10.9 dB, 6.8 dB and 5.5 dB respectively. From 

this results we see that the proposed system produced better BER results with lesser 

amount of IBO than the WPM and conventional OFDM systems. At the same time the 

WPM system outperform the conventional OFDM system in term of better BER 

results with lesser IBO value. 
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Figure 4.23 BER performances of the OFDM, WPM and DTԧWT-OFDM 
systems using 10.9 dB, 6.8 dB and 5.5 dB of IBO respectively. 

4.5    Study of the Shift Invariance Property 

This study is motivated by the fact that OFDM systems based on wavelets ought to 

suffer from lack of shift-invariance property while that based on DTԧWT should not. 

Among various performance metrics, BER in the presence of frequency-selective 

wireless channels is expected to capture the impact of this property. In frequency 

selective channels, copies of the signal arrive at the receiver at different times. If each 

copy produces wavelet coefficients differing both in magnitude and their number, 

their sum would vary for each transmission. Averaged over several symbols, the BER 

value so obtained will be different and more than the case where each copy produces 

same coefficients maybe with different phase. Accordingly, it is suggested to study 

the average BER of WPM system and DTԧWT based OFDM system in the presence 

of 2-path frequency-selective wireless channel where the second path has varying 

amount of delay relative to first path. 

 

0 2 4 6 8 10 12 14
10

-5

10-4

10
-3

10-2

10
-1

10
0

Eb/No (dB)

B
E

R

 

 Theory BPSK
DTCWT-OFDM1
WPM1
OFDM1
Theory 16QAM
DTCWT-OFDM2
WPM2
OFDM2



 

111 

 

 
Figure 4.24 BER performance of the DTԧWT-OFDM using BPSK in 
frequency selective channel. 

The advantages of the shift-invariance property can be seen from the results of the 

average BER performance of the proposed system under different filters length. The 

average BER performances are shown in this experiment when signaling with BPSK 

and 16-QAM along with 64 subcarriers and different tap delay variation; less than and 

greater than 13 tap delay (2 and 26 tap delay). Fig. 4.24 shows the BER curves for the 

considered systems in the frequency selective channel using BPSK with 2 and 26 tap 

delays, DTԧWT-OFDM using n-SYM-b with q-SH-d filters and 13th Daubechies 

wavelets is used in the WPM system. DTԧWT-OFDM1 and WPM1 represent the 

DTԧWT based OFDM and WPM systems respectively, in the present of the 2-tap 

delay. DTԧWT-OFDM2 and WPM2 represent the DTԧWT based OFDM and WPM 

systems respectively in the present of the 26-tap delay. The considered systems are 

using BPSK modulation.  

 

0 5 10 15 20 25 30 35
10-5

10-4

10-3

10-2

10-1

100

Eb/No (dB)

A
ve

ra
ge

 B
E

R

 

 
Theory BPSK
DTCWT-OFDM1
WPM1
DTCWT-OFDM2
WPM2



 

112 

 

 
Figure 4.25 BER performance of the DTԧWT-OFDM using 16-QAM in 
frequency selective channel. 

This experiment is repeating again using 16-QAM and the results are shown in Fig. 

4.25. Again DTԧWT-OFDM1 and WPM1 represent the DTԧWT based OFDM and 

WPM systems respectively, in the presence of the 2-tap delay. DTԧWT-OFDM2 and 

WPM2 represent the DTԧWT based OFDM and WPM systems respectively, in the 

presence of the 26-tap delay.    

The above results are compared to the BER curves of the theoretical BPSK and 16-

QAM in Fig 4.24 and Fig. 4.25 respectively. From the results in Fig. 4.24 and Fig. 

4.25 when using 2 tap delay, the BER performance of the DTԧWT-OFDM system is 

close to the theoretical BPSK and 16-QAM respectively. Because when we used tap 

delay less than filter length the system will be shift-invariance. However, when using 

26-tap delay, the DTԧWT-OFDM system is no longer shift-invariance systems and 

this implies the degradation to the BER performance.  
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Figure 4.26 BER performance of the DTԧWT-OFDM using BPSK with 
different values of the tap delay. 

Finally, the above experiment is repeated again using n-SYM-b with q-SH-d filters 

with different values of tap delay (2, 5, 7, 10, 13, 17, 20, 23 and 26) and the results are 

shown in Fig. 4.26 when signaling with BPSK and in Fig. 4.27 when signaling with 

16-QAM.  In these figures, DTԧWT-OFDM label from 1-9 represent the proposed 

system when using 2, 5, 7, 10, 13, 17, 20, 23 and 26 tap delay, respectively. Form 

these results we can deduced that, when using tap delay less than or equal to the 

length of filter i.e., 2, 5, 7, 10 and 13 the BER performance of the system is close to 

theoretical BPSK. However, when using tap delay longer than the filter length i.e., 17, 

20, 23 and 26 the BER performance is degrade.  
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Figure 4.27 BER performance of the DTԧWT-OFDM using 16-QAM with 
different values of the tap delay. 

4.6    Complexity Analysis 

Computational complexity is an important design issue for multicarrier systems. Due 

to the high data rates required in modern applications, low complexity is imperative. 

From the computational burden point of view, this section reports the implementation 

complexity of the FFT, DWT, WPT, and DTԧWT. In fact, the structure of a DTԧWT 

based OFDM system is very similar to that of FFT and WPT based OFDM system.  

As the complexity measure, the total number of complex multiplication is considered. 

For the DFT based multicarrier system, efficient implementation can be developed 

using FFT, i.e., the FFT is an algorithm that takes advantage of special form of the 

matrix to reduces the ܰଶ computational complexity that required by DFT to ݈ܰ݃ଶܰ, 

where ܰ is the rank of the transform, or the number of subcarriers. i.e., the complexity 

of FFT is given by 

ிி்ܥ ൌ ܱሺ݈ܰ݃ଶܰሻ                                                                 ሺ4.1ሻ 
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where ܱሺܰሻ denotes linear complexity. A rough estimate of the WPT gives a 

complexity of order ܱሺ݈ܰ݃ଶܰሻ thus of similar order to what is required for FFT. 

Hence, the complexity of WPT is 

ௐ்ܥ ൌ ܱሺ݈ܰ݃ଶܰሻ                                                                  ሺ4.2ሻ 

While the computational complexity for DWT is given by 

ௐ்ܥ ൌ ܱሺܰሻ                                                                  ሺ4.3ሻ 

Since the DTԧWT use two DWT (upper and lower parts), the computational 

complexity for DTԧWT is given by  

்ԧௐ்ܥ ൌ ܱሺ2ܰሻ                                                                  ሺ4.4ሻ 

In general, the computational complexity of the WPT is on the same order of that 

required by the FFT. The complexity of the DTԧWT is in less order comparing by the 

complexity of FFT and WPT, which is means that, the proposed system is more 

efficient time wise.  

We note that the complexity of the considered systems increases according to the 

number of subcarriers ܰ. 

Therefore, it can be conclude that the proposed system is computationally more 

efficient comparing with the conventional OFDM and WPM systems. 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

The main focus of this dissertation has been to design a novel OFDM system based on 

dual-tree complex wavelet transform (DTԧWT). The contributions of this dissertation 

are summarized in section 5.1, and possible future work based on the results from this 

research is suggested in section 5.2. 

5.1    Dissertation Summary and Contributions 

This work has used the dual-tree complex wavelet transform (DTԧWT) to design a 

new OFDM system. The feasibility of the proposed OFDM system is theoretically 

examined and then different performance-metrics have been investigated to prove the 

usefulness of the proposed system. Specifically, the following performance-metrics 

are studied. First, the PAPR of the proposed system is studied. It was demonstrated 

via the peak envelop and the CCDF of the transmitted signal that the proposed system 

gives better PAPR results than the conventional OFDM and WPM systems. The 

PAPR of the proposed system increases with the number of the subcarriers as do the 

other two systems. The PAPR results also show that the best PAPR results are 

obtained by using longer filters in both the WPM and DTԧWT-OFDM systems. 

Next, the PSD results were obtained and it is shown that the proposed system has 

better spectrum characteristics in terms of lower out-of-band (OOB) attenuation (more 

suppression of OOB attenuation), than the conventional OFDM and the WPM 

systems. In the presence of the nonlinear HPA, the proposed system requires lesser 

amount of input power back-off (IBO) as compared to those needed in the 

conventional OFDM and WPM systems, while, at the same time, the proposed system 

produces lesser amount of spectral re-growth compared to the other two systems. 

Next, the BER performance in AWGN was investigated followed by average BER 
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performance in 10-tap Rayleigh channels as well. The simulation results of the BER 

and the average BER of the considered systems indicate that the performance of the 

considered system nearly matches the theoretical BER performance of both BPSK 

and 16-QAM modulation in the absence of the nonlinear HPA. This is particularly 

true when longer filters are used in the design of the WPM and DTԧWT-OFDM 

systems. However, in the presence of the nonlinear HPA, the results show that the 

proposed system performs better than the OFDM and WPM systems. 

Further, a study was conducted to investigate the usefulness of the shift-invariance 

property of the DTԧWT. Since WPT is not shift-invariant, it was proposed to use a 2-

path frequency-selective wireless channel through which the transmitted signal and its 

copy reach the receiver. WPT based WPM was expected to produce different WPT 

coefficients and hence the average BER was expected higher than that of DTԧWT 

based system where magnitude of DTԧWT coefficients do not change for different 

delay spreads. The DTԧWT based OFDM system indeed has better average BER 

performance than WPM system. Table 5.1 gives the comparison of DTԧWT-OFDM, 

WPM and the conventional OFDM systems. 

Finally, it was shown that the proposed system is computationally more efficient 

compared to the conventional OFDM and WPM systems as far as number of 

operations are involved. However, the disadvantages of the proposed system can be 

seen in the frequency-selective channel specially when using tap delay longer than the 

filters length. In this case the proposed system is no longer shift-invariance and this 

implies the degradation to the BER performance.  

To overcome this problem, the one possible way is to use filter length less than or 

equal to the tap delay of the frequency-selective channel. This implies increasing the 

computational complexity of the proposed system. Since the computational 

complexity of the proposed system is increase with increasing the length of filters, 

thus; for high values of the tap delay the computational complexity of the proposed 

system will increase accordingly.  
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Table 5.1 Comparison of DTԧWT-OFDM, WPM and the conventional 
OFDM systems. 

     System 

Case 

DTԧWT-OFDM WPM OFDM 

Peak envelope Low High High 

PAPR Low High Very high 

Side lobes suppression Very high  High  Low 

Out of band attenuation Very high  High Less 

Spectrum re-growth Low Very low High 

Required amount of 
IBO 

Low Average High 

BER as comparing to 
theoretical 

Confirm Confirm Confirm 

BER (in HPA) Better Bad Very bad 

Computational 
Complexity 

Low High High 

 

Over all, the performance results of the DTԧWT based OFDM over the conventional 

OFDM and WPM systems lead us to conclude that the proposed system is a viable 

alternative to conventional OFDM and WPM systems and it should be considered in 

future wireless communication systems. 

5.2    Future Work 

There are many possibilities of the future work in this area. Some of these suggestions 

for future works are listed as follows: 

 The study of the proposed system can be extended to develop an end-to-end 

air interface design for the proposed system. 

 The synchronization techniques, both the timing and frequency 

synchronization in the proposed system based on DTԧWT could also be an 

area that should be addressed. 

 Channel estimation technique in the proposed system based on DTԧWT needs 

to be more thoroughly investigated. 
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 The effects of the multiple transmit and receive antennas on the DTԧWT-

OFDM can also be explored. 

 The PAPR reduction techniques can also be tested in this system in order to 

give still better PAPR reduction results.  

 

Clearly, there are many possibilities for the future work in proposed system, and the 

OFDM based on wavelet open many research possibilities for the further improving 

OFDM system performance.  
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APPENDIX A 

MATLAB Function to Perform IDTԧWT (1-D): 
 

 
function Z = dtwaveifm(Yl,Yh,biort,qshift,gain_mask); 
  
% Function to perform an n-level dual-tree complex wavelet (DTCWT) 
% 1-D reconstruction. 
% 
% Z = dtwaveifm(Yl,Yh,biort,qshift,gain_mask); 
%     
%     Yl -> The real lowpass subband from the final level 
%     Yh -> A cell array containing the complex highpass subband for 
each level. 
% 
%     biort ->  'antonini'   => Antonini 9,7 tap filters. 
%               'legall'     => LeGall 5,3 tap filters. 
%               'near_sym_a' => Near-Symmetric 5,7 tap filters. 
%               'near_sym_b' => Near-Symmetric 13,19 tap filters. 
% 
%     qshift -> 'qshift_06' => Quarter Sample Shift Orthogonal (Q-
Shift) 10,10 tap filters,  
%                              (only 6,6 non-zero taps). 
%               'qshift_a' =>  Q-shift 10,10 tap filters, 
%                              (with 10,10 non-zero taps, unlike 
qshift_06). 
%               'qshift_b' => Q-Shift 14,14 tap filters. 
%               'qshift_c' => Q-Shift 16,16 tap filters. 
%               'qshift_d' => Q-Shift 18,18 tap filters. 
% 
%     gain_mask -> Gain to be applied to each subband.  
%                  gain_mask(l) is gain for wavelet subband at level 
l. 
%                  If gain_mask(l) == 0, no computation is performed 
for band (l). 
%                  Default gain_mask = ones(1,length(Yh)). 
% 
%     Z -> Reconstructed real signal vector (or matrix). 
% 
%  
% For example:  Z = dtwaveifm(Yl,Yh,'near_sym_b','qshift_b'); 
% performs a reconstruction from Yl,Yh using the 13,19-tap filters  
% for level 1 and the Q-shift 14-tap filters for levels >= 2. 
% 
 
a = length(Yh); % No of levels. 
if nargin < 5, gain_mask = ones(1,a); end  % Default gain_mask. 
  
if isstr(biort) & isstr(qshift)     %Check if the inputs are strings 
   biort_exist = exist([biort '.mat']); 
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   qshift_exist = exist([qshift '.mat']); 
   if biort_exist == 2 & qshift_exist == 2;             %Check to see 
if the inputs exist as .mat files 
      load (biort); 
      load (qshift); 
   else 
      error('Please enter the correct names of the Biorthogonal or Q-
Shift Filters, see help DTWAVEIFM for details.'); 
   end 
else 
   error('Please enter the names of the Biorthogonal or Q-Shift 
Filters as shown in help DTWAVEIFM.'); 
end 
  
level = a;  % No of levels = no of rows in L. 
  
Lo = Yl; 
while level >= 2;  % Reconstruct levels 2 and above in reverse order. 
   Hi = c2q1d(Yh{level}*gain_mask(level)); 
   Lo = colifilt(Lo, g0b, g0a) + colifilt(Hi, g1b, g1a); 
    
   if size(Lo,1) ~= 2*size(Yh{level-1},1)  % If Lo is not the same 
length as the next Yh => t1 was extended. 
      Lo = Lo(2:size(Lo,1)-1,:);        % Therefore we have to clip 
Lo so it is the same height as the next Yh. 
   end 
   if any(size(Lo) ~= size(Yh{level-1}).*[2 1]), 
      error('Yh sizes are not valid for DTWAVEIFM'); 
   end 
    
   level = level - 1; 
end 
  
if level == 1;  % Reconstruct level 1. 
   Hi = c2q1d(Yh{level}*gain_mask(level)); 
   Z = colfilter(Lo,g0o) + colfilter(Hi,g1o); 
end 
  
return 
  
  
%====================================================================
====================== 
%               **********      INTERNAL FUNCTION    ********** 
%====================================================================
====================== 
  
function z = c2q1d(x) 
  
% An internal function to convert a 1D Complex vector back to a real 
array,  
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% which is twice the height of x. 
[a b] = size(x); 
z = zeros(a*2,b); 
skip = 1:2:(a*2); 
z(skip,:) = real(x); 
z(skip+1,:) = imag(x); 
  
return 
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APPENDIX B 

MATLAB Function to Perform IDTԧWT (2-D): 
 
 
function Z = dtwaveifm2(Yl,Yh,biort,qshift,gain_mask); 
  
% Function to perform an n-level dual-tree complex wavelet (DTCWT) 
% 2-D reconstruction. 
% 
% Z = dtwaveifm2(Yl,Yh,biort,qshift,gain_mask); 
%     
%     Yl -> The real lowpass image from the final level 
%     Yh -> A cell array containing the 6 complex highpass subimages 
for each level. 
% 
%     biort ->  'antonini'   => Antonini 9,7 tap filters. 
%               'legall'     => LeGall 5,3 tap filters. 
%               'near_sym_a' => Near-Symmetric 5,7 tap filters. 
%               'near_sym_b' => Near-Symmetric 13,19 tap filters. 
% 
%     qshift -> 'qshift_06' => Quarter Sample Shift Orthogonal (Q-
Shift) 10,10 tap filters,  
%                              (only 6,6 non-zero taps). 
%               'qshift_a' =>  Q-shift 10,10 tap filters, 
%                              (with 10,10 non-zero taps, unlike 
qshift_06). 
%               'qshift_b' => Q-Shift 14,14 tap filters. 
%               'qshift_c' => Q-Shift 16,16 tap filters. 
%               'qshift_d' => Q-Shift 18,18 tap filters. 
% 
%     gain_mask -> Gain to be applied to each subband.  
%                  gain_mask(d,l) is gain for subband with direction 
d at level l. 
%                  If gain_mask(d,l) == 0, no computation is 
performed for band (d,l). 
%                  Default gain_mask = ones(6,length(Yh)). 
% 
%     Z -> Reconstructed real image matrix 
% 
%  
% For example:  Z = dtwaveifm2(Yl,Yh,'near_sym_b','qshift_b'); 
% performs a 3-level reconstruction from Yl,Yh using the 13,19-tap 
filters  
% for level 1 and the Q-shift 14-tap filters for levels >= 2. 
% 
 
a = length(Yh); % No of levels. 
if nargin < 5, gain_mask = ones(6,a); end  % Default gain_mask. 
  
if isstr(biort) & isstr(qshift)     %Check if the inputs are strings 
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   biort_exist = exist([biort '.mat']); 
   qshift_exist = exist([qshift '.mat']); 
   if biort_exist == 2 & qshift_exist == 2;     %Check to see if the 
inputs exist as .mat files 
      load (biort); 
      load (qshift); 
   else 
      error('Please enter the correct names of the Biorthogonal or Q-
Shift Filters, see help DTWAVEIFM2 for details.'); 
   end 
else 
   error('Please enter the names of the Biorthogonal or Q-Shift 
Filters as shown in help DTWAVEIFM2.'); 
end 
  
current_level = a; 
Z = Yl; 
  
while current_level >= 2; ;  %this ensures that for level -1 we never 
do the following 
   lh = c2q(Yh{current_level}(:,:,[1 6]),gain_mask([1 
6],current_level)); 
   hl = c2q(Yh{current_level}(:,:,[3 4]),gain_mask([3 
4],current_level)); 
   hh = c2q(Yh{current_level}(:,:,[2 5]),gain_mask([2 
5],current_level)); 
    
   % Do even Qshift filters on columns. 
   y1 = colifilt(Z,g0b,g0a) + colifilt(lh,g1b,g1a); 
   y2 = colifilt(hl,g0b,g0a) + colifilt(hh,g1b,g1a); 
   % Do even Qshift filters on rows. 
   Z = (colifilt(y1.',g0b,g0a) + colifilt(y2.',g1b,g1a)).';  
    
   % Check size of Z and crop as required 
   [row_size col_size] = size(Z); 
   S = 2*size(Yh{current_level-1}); 
   if row_size ~= S(1)      %check to see if this result needs to be 
cropped for the rows 
      Z = Z(2:row_size-1,:); 
   end  
   if col_size ~= S(2)      %check to see if this result needs to be 
cropped for the cols 
      Z = Z(:,2:col_size-1); 
   end  
   if any(size(Z) ~= S(1:2)), 
      error('Sizes of subbands are not valid for DTWAVEIFM2'); 
   end 
    
   current_level = current_level - 1; 
end 
  
if current_level == 1; 
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   lh = c2q(Yh{current_level}(:,:,[1 6]),gain_mask([1 
6],current_level)); 
   hl = c2q(Yh{current_level}(:,:,[3 4]),gain_mask([3 
4],current_level)); 
   hh = c2q(Yh{current_level}(:,:,[2 5]),gain_mask([2 
5],current_level)); 
  
   % Do odd top-level filters on columns. 
   y1 = colfilter(Z,g0o) + colfilter(lh,g1o); 
   y2 = colfilter(hl,g0o) + colfilter(hh,g1o); 
   % Do odd top-level filters on rows. 
   Z = (colfilter(y1.',g0o) + colfilter(y2.',g1o)).'; 
    
end 
  
return 
  
%====================================================================
====================== 
%                       **********      INTERNAL FUNCTION    
********** 
%====================================================================
====================== 
  
function x = c2q(w,gain) 
  
% function z = c2q(w,gain) 
% Scale by gain and convert from complex w(:,:,1:2) to real quad-
numbers in z. 
% 
% Arrange pixels from the real and imag parts of the 2 subbands 
% into 4 separate subimages . 
%  A----B     Re   Im of w(:,:,1) 
%  |    | 
%  |    | 
%  C----D     Re   Im of w(:,:,2) 
  
sw = size(w); 
x = zeros(2*sw(1:2)); 
  
if any(w(:)) & any(gain) 
   sc = sqrt(0.5) * gain; 
   P = w(:,:,1)*sc(1) + w(:,:,2)*sc(2); 
   Q = w(:,:,1)*sc(1) - w(:,:,2)*sc(2); 
    
   t1 = 1:2:size(x,1); 
   t2 = 1:2:size(x,2); 
    
   % Recover each of the 4 corners of the quads. 
   x(t1,t2)     = real(P);  % a = (A+C)*sc;  



 

138 

 

   x(t1,t2+1)   = imag(P);  % b = (B+D)*sc; 
   x(t1+1,t2)   = imag(Q);  % c = (B-D)*sc; 
   x(t1+1,t2+1) = -real(Q); % d = (C-A)*sc; 
end 
  
return 
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APPENDIX C 

MATLAB Function to Perform DTԧWT (1-D): 
 
 
function [Yl,Yh,Yscale] = dtwavexfm(X,nlevels,biort,qshift); 
  
% Function to perform a n-level DTCWT decomposition on a 1-D column 
vector X 
% (or on the columns of a matrix X). 
% 
% [Yl,Yh,Yscale] = dtwavexfm(X,nlevels,biort,qshift); 
% 
%     X -> real 1-D signal column vector (or matrix of vectors) 
% 
%     nlevels -> No. of levels of wavelet decomposition 
% 
%     biort ->  'antonini'   => Antonini 9,7 tap filters. 
%               'legall'     => LeGall 5,3 tap filters. 
%               'near_sym_a' => Near-Symmetric 5,7 tap filters. 
%               'near_sym_b' => Near-Symmetric 13,19 tap filters. 
% 
%     qshift -> 'qshift_06' => Quarter Sample Shift Orthogonal (Q-
Shift) 10,10 tap filters,  
%                              (only 6,6 non-zero taps). 
%               'qshift_a' =>  Q-shift 10,10 tap filters, 
%                              (with 10,10 non-zero taps, unlike 
qshift_06). 
%               'qshift_b' => Q-Shift 14,14 tap filters. 
%               'qshift_c' => Q-Shift 16,16 tap filters. 
%               'qshift_d' => Q-Shift 18,18 tap filters. 
%                
% 
%     Yl     -> The real lowpass subband from the final level. 
%     Yh     -> A cell array containing the complex highpass subband 
for each level. 
%     Yscale -> This is an OPTIONAL output argument, that is a cell 
array containing  
%               the real lowpass coefficients at every scale. 
% 
%  
% Example: [Yl,Yh] = dtwavexfm(X,5,'near_sym_b','qshift_b'); 
% performs a 5-level transform on the real image X using the 13,19-
tap filters  
% for level 1 and the Q-shift 14-tap filters for levels >= 2. 
% 
 
if isstr(biort) & isstr(qshift)     %Check if the inputs are strings 
   biort_exist = exist([biort '.mat']); 
   qshift_exist = exist([qshift '.mat']); 
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   if biort_exist == 2 & qshift_exist == 2;  %Check to see if the 
filters exist as .mat files 
      load (biort); 
      load (qshift); 
   else 
      error('Please enter the correct names of the Biorthogonal or Q-
Shift Filters, see help DTWAVEXFM for details.'); 
   end 
else 
   error('Please enter the names of the Biorthogonal or Q-Shift 
Filters as shown in help DTWAVEXFM.'); 
end 
  
L = size(X); 
  
if any(rem(L(1),2)),     % ensure that X is an even length, thus 
enabling it to be extended if needs be. 
   error('Size of X must be a multiple of 2'); 
end 
  
if nlevels == 0, return; end 
  
%initialise 
Yh=cell(nlevels,1); 
if nargout == 3 
   Yscale=cell(nlevels,1);   % This is only required if the user 
specifies a third output component. 
end 
  
j = sqrt(-1); 
  
% Level 1. 
Hi = colfilter(X, h1o);    
Lo = colfilter(X, h0o); 
t = 1:2:size(Hi,1); 
Yh{1} = Hi(t,:) + j*Hi(t+1,:); % Convert Hi to complex form. 
if nargout == 3 
   Yscale{1} = Lo; 
end 
  
if nlevels >= 2;  % Levels 2 and above. 
   for level = 2:nlevels;   
      if rem(size(Lo,1),4), % Check to see if height of Lo is 
divisable by 4, if not extend. 
         Lo = [Lo(1,:); Lo; Lo(end,:)]; 
      end      
      Hi = coldfilt(Lo,h1b,h1a); 
      Lo = coldfilt(Lo,h0b,h0a);  
       t = 1:2:size(Hi,1); 
    Yh{level} = Hi(t,:) + j*Hi(t+1,:); % Convert Hi to complex form. 
    if nargout == 3 
        Yscale{level} = Lo; 
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    end 
   end    
end 
  
Yl = Lo; 
  
return 
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APPENDIX D 

MATLAB Function to Perform DTԧWT (2-D): 
 
 
function [Yl,Yh,Yscale] = dtwavexfm2(X,nlevels,biort,qshift); 
  
% Function to perform a n-level DTCWT-2D decomposition on a 2D matrix 
X 
% 
% [Yl,Yh,Yscale] = dtwavexfm2(X,nlevels,biort,qshift); 
% 
%     X -> 2D real matrix/Image 
% 
%     nlevels -> No. of levels of wavelet decomposition 
% 
%     biort ->  'antonini'   => Antonini 9,7 tap filters. 
%               'legall'     => LeGall 5,3 tap filters. 
%               'near_sym_a' => Near-Symmetric 5,7 tap filters. 
%               'near_sym_b' => Near-Symmetric 13,19 tap filters. 
% 
%     qshift -> 'qshift_06' => Quarter Sample Shift Orthogonal (Q-
Shift) 10,10 tap filters,  
%                              (only 6,6 non-zero taps). 
%               'qshift_a' =>  Q-shift 10,10 tap filters, 
%                              (with 10,10 non-zero taps, unlike 
qshift_06). 
%               'qshift_b' => Q-Shift 14,14 tap filters. 
%               'qshift_c' => Q-Shift 16,16 tap filters. 
%               'qshift_d' => Q-Shift 18,18 tap filters. 
%                
% 
%     Yl     -> The real lowpass image from the final level 
%     Yh     -> A cell array containing the 6 complex highpass 
subimages for each level. 
%     Yscale -> This is an OPTIONAL output argument, that is a cell 
array containing  
%               real lowpass coefficients for every scale. 
% 
%  
% Example: [Yl,Yh] = dtwavexfm2(X,3,'near_sym_b','qshift_b'); 
% performs a 3-level transform on the real image X using the 13,19-
tap filters  
% for level 1 and the Q-shift 14-tap filters for levels >= 2. 
% 
 
  
if isstr(biort) & isstr(qshift)     %Check if the inputs are strings 
   biort_exist = exist([biort '.mat']); 
   qshift_exist = exist([qshift '.mat']); 
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   if biort_exist == 2 & qshift_exist == 2;             %Check to see 
if the inputs exist as .mat files 
      load (biort); 
      load (qshift); 
   else 
      error('Please enter the correct names of the Biorthogonal or Q-
Shift Filters, see help DTWAVEXFM2 for details.'); 
   end 
else 
   error('Please enter the names of the Biorthogonal or Q-Shift 
Filters as shown in help DTWAVEXFM2.'); 
end  
  
orginal_size = size(X); 
  
if ndims(X) >= 3; 
   error(sprintf('The entered image is %dx%dx%d, please enter each 
image slice 
separately.',orginal_size(1),orginal_size(2),orginal_size(3))); 
end 
  
% The next few lines of code check to see if the image is odd in 
size, if so an extra ... 
% row/column will be added to the bottom/right of the image 
initial_row_extend = 0;  %initialise 
initial_col_extend = 0; 
if any(rem(orginal_size(1),2)), %if sx(1) is not divisable by 2 then 
we need to extend X by adding a row at the bottom 
   X = [X; X(end,:)];           %Any further extension will be done 
in due course. 
   initial_row_extend = 1; 
end 
if any(rem(orginal_size(2),2)),     %if sx(2) is not divisable by 2 
then we need to extend X by adding a col to the left 
   X = [X X(:,end)];          %Any further extension will be done in 
due course. 
   initial_col_extend = 1; 
end 
extended_size = size(X); 
  
if nlevels == 0, return; end 
  
%initialise 
Yh=cell(nlevels,1); 
if nargout == 3 
   Yscale=cell(nlevels,1);   %this is only required if the user 
specifies a third output component. 
end 
  
S = []; 
sx = size(X); 
if nlevels >= 1, 
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   % Do odd top-level filters on cols. 
   Lo = colfilter(X,h0o).'; 
   Hi = colfilter(X,h1o).'; 
    
   % Do odd top-level filters on rows. 
   LoLo = colfilter(Lo,h0o).';          % LoLo 
   Yh{1} = zeros([size(LoLo)/2  6]); 
   Yh{1}(:,:,[1 6]) = q2c(colfilter(Hi,h0o).');         % Horizontal 
pair 
   Yh{1}(:,:,[3 4]) = q2c(colfilter(Lo,h1o).');         % Vertical 
pair 
   Yh{1}(:,:,[2 5]) = q2c(colfilter(Hi,h1o).');       % Diagonal pair 
   S = [ size(LoLo) ;S]; 
   if nargout == 3 
      Yscale{1} = LoLo; 
   end 
end 
  
if nlevels >= 2; 
   for level = 2:nlevels; 
      [row_size col_size] = size(LoLo); 
      if any(rem(row_size,4)),      % Extend by 2 rows if no. of rows 
of LoLo are divisable by 4; 
         LoLo = [LoLo(1,:); LoLo; LoLo(end,:)]; 
      end  
      if any(rem(col_size,4)),      % Extend by 2 cols if no. of cols 
of LoLo are divisable by 4; 
         LoLo = [LoLo(:,1)  LoLo  LoLo(:,end)]; 
      end  
       
      % Do even Qshift filters on rows. 
      Lo = coldfilt(LoLo,h0b,h0a).'; 
      Hi = coldfilt(LoLo,h1b,h1a).'; 
       
      % Do even Qshift filters on columns. 
      LoLo = coldfilt(Lo,h0b,h0a).';    %LoLo 
      Yh{level} = zeros([size(LoLo)/2  6]); 
      Yh{level}(:,:,[1 6]) = q2c(coldfilt(Hi,h0b,h0a).');   % 
Horizontal 
      Yh{level}(:,:,[3 4]) = q2c(coldfilt(Lo,h1b,h1a).');   % 
Vertical 
      Yh{level}(:,:,[2 5]) = q2c(coldfilt(Hi,h1b,h1a).');   % 
Diagonal    
      S = [ size(LoLo) ;S]; 
      if nargout == 3 
         Yscale{level} = LoLo; 
      end 
   end 
end 
  
Yl = LoLo; 
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if initial_row_extend == 1 & initial_col_extend == 1; 
   warning(sprintf(' \r\r The image entered is now a %dx%d NOT a 
%dx%d \r The bottom row and rightmost column have been duplicated, 
prior to decomposition. \r\r ',... 
      
extended_size(1),extended_size(2),orginal_size(1),orginal_size(2))); 
end 
  
if initial_row_extend == 1 ; 
   warning(sprintf(' \r\r The image entered is now a %dx%d NOT a 
%dx%d \r Row number %d has been duplicated, and added to the bottom 
of the image, prior to decomposition. \r\r',... 
      
extended_size(1),extended_size(2),orginal_size(1),orginal_size(2),org
inal_size(1))); 
end 
  
if initial_col_extend == 1; 
   warning(sprintf(' \r\r The image entered is now a %dx%d NOT a 
%dx%d \r Col number %d has been duplicated, and added to the right of 
the image, prior to decomposition. \r\r',... 
      
extended_size(1),extended_size(2),orginal_size(1),orginal_size(2),org
inal_size(2))); 
end 
return 
  
%====================================================================
====================== 
%                       **********      INTERNAL FUNCTION    
********** 
%====================================================================
====================== 
  
function z = q2c(y) 
  
% function z = q2c(y) 
% Convert from quads in y to complex numbers in z. 
  
sy = size(y); 
t1 = 1:2:sy(1); t2 = 1:2:sy(2); 
j2 = sqrt([0.5 -0.5]); 
  
% Arrange pixels from the corners of the quads into 
% 2 subimages of alternate real and imag pixels. 
%  a----b 
%  |    | 
%  |    | 
%  c----d 
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% Combine (a,b) and (d,c) to form two complex subimages.  
p = y(t1,t2)*j2(1) + y(t1,t2+1)*j2(2);     % p = (a + jb) / sqrt(2) 
q = y(t1+1,t2+1)*j2(1) - y(t1+1,t2)*j2(2); % q = (d - jc) / sqrt(2) 
  
% Form the 2 subbands in z. 
z = cat(3,p-q,p+q); 
  
return 
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APPENDIX E 

Coefficients of the DTԧWT Filters: 
 
 
Antonini 9,7 tap filters. 'antonini' 

 ܐ ܐ  

-0.04563588155712514 0.026748757410810106 0.026748757410810106 0.04563588155712514 

-0.02877176311424934 0.01686411844287467 -0.01686411844287467 -0.02877176311424934 

0.295635881557128 -0.07822326652899052 -0.07822326652899052 -0.295635881557128 

0.5575435262285023 -0.2668641184428729 0.2668641184428729 0.5575435262285023 

0.29563588155712334 0.6029490182363593 0.6029490182363593 -0.29563588155712334 

-0.02877176311425308 -0.2668641184428769 0.2668641184428769 -0.02877176311425308 

-0.04563588155712608 -0.0782232665289884 -0.0782232665289884 0.04563588155712608 

 0.016864118442875293 -0.016864118442875293  

 0.026748757410809648 0.026748757410809648  

 

 

LeGall 5,3 tap filters. 'legall' 

 ܐ ܐ  

0.25 -0.125 -0.125 -0.25 

0.5 -0.25 0.25 0.5 

0.25 0.75 0.75 -0.25 

 -0.25 0.25  

 -0.125 -0.125  
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Near-Symmetric 5,7 tap filters. 'near_sym_a'   

 ܐ ܐ  

-0.010714285714285713 -0.05 -0.05 0.010714285714285713 

-0.05357142857142857 -0.25 0.25 -0.05357142857142857 

0.26071428571428573 0.6 0.6 -0.26071428571428573 

0.6071428571428571 -0.25 0.25 0.6071428571428571 

0.26071428571428573 -0.05 -0.05 -0.26071428571428573 

-0.05357142857142857   -0.05357142857142857 

-0.010714285714285713   0.010714285714285713 

   

 

Near-Symmetric 13,19 tap filters. 'near_sym_b'   

 ܐ ܐ  

7.062639508928571E-5 -0.0017578125 -0.0017578125 -7.062639508928571E-5 

0.0 -0.0 0.0 0.0 

-0.0013419015066964285 0.022265625 0.022265625 0.0013419015066964285 

-0.0018833705357142855 0.046875 -0.046875 -0.0018833705357142855 

0.007156808035714285 -0.0482421875 -0.0482421875 -0.007156808035714285 

0.023856026785714284 -0.296875 0.296875 0.023856026785714284 

-0.05564313616071428 0.55546875 0.55546875 0.05564313616071428 

-0.05168805803571428 -0.296875 0.296875 -0.05168805803571428 

0.29975760323660716 -0.0482421875 -0.0482421875 -0.29975760323660716 

0.5594308035714286 0.046875 -0.046875 0.5594308035714286 

0.29975760323660716 0.022265625 0.022265625 -0.29975760323660716 

-0.05168805803571428 -0.0 0.0 -0.05168805803571428 

-0.05564313616071428 -0.0017578125 -0.0017578125 0.05564313616071428 

0.023856026785714284   0.023856026785714284 

0.007156808035714285   -0.007156808035714285 

-0.0018833705357142855   -0.0018833705357142855 

-0.0013419015066964285   0.0013419015066964285 
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0.0   0.0 

7.062639508928571E-5   -7.062639508928571E-5 

   

 

Quarter Sample Shift Orthogonal (Q-Shift) 10,10 tap filters, (only 6,6 non-zero taps). 

'qshift_06' 

 ܐ ܐ  

0.0 -0.03516383657149474 0.03516383657149474 0.0 

0.0 0.0 0.0 -0.0 

-0.11430183714424873 0.08832942445107285 -0.08832942445107285 0.11430183714424873 

0.0 0.23389032060723564 0.23389032060723564 -0.0 

0.5875182977235605 -0.7602723690661257 0.7602723690661257 0.5875182977235605 

0.7602723690661257 0.5875182977235605 0.5875182977235605 -0.7602723690661257 

0.23389032060723564 -0.0 0.0 0.23389032060723564 

-0.08832942445107285 -0.11430183714424873 -0.11430183714424873 0.08832942445107285 

0.0 -0.0 0.0 0.0 

0.03516383657149474 0.0 0.0 0.03516383657149474 

 

 

Q-shift 10,10 tap filters,  (with 10,10 non-zero taps, unlike qshift_06). 'qshift_a' 

 ܐ ܐ  

-0.006181881892116438 -0.051130405283831656 0.051130405283831656 -0.006181881892116438 

-0.0016896812725281543 -0.013975370246888838 -0.013975370246888838 0.0016896812725281543 

-0.1002312195074762 0.10983605166597087 -0.10983605166597087 -0.1002312195074762 

8.736226952170968E-4 0.26383956105893763 0.26383956105893763 -8.736226952170968E-4 

0.5636557101270515 -0.7666284677930372 0.7666284677930372 0.5636557101270515 

0.7666284677930372 0.5636557101270515 0.5636557101270515 -0.7666284677930372 

0.26383956105893763 -8.736226952170968E-4 8.736226952170968E-4 0.26383956105893763 

-0.10983605166597087 -0.1002312195074762 -0.1002312195074762 0.10983605166597087 
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-0.013975370246888838 0.0016896812725281543 -0.0016896812725281543 -0.013975370246888838 

0.051130405283831656 -0.006181881892116438 -0.006181881892116438 -0.051130405283831656 

 

 

Q-Shift 14,14 tap filters. 'qshift_b' 

 ܐ ܐ  

-0.004556895628475491 -0.003253142763653182 0.003253142763653182 -0.004556895628475491 

-0.005439475937274115 -0.00388321199915849 -0.00388321199915849 0.005439475937274115 

0.01702522388155399 -0.03466034684485349 0.03466034684485349 0.01702522388155399 

0.023825384794920298 -0.03887280126882779 -0.03887280126882779 -0.023825384794920298 

-0.1067118046866654 0.11720388769911527 -0.11720388769911527 -0.1067118046866654 

0.011866092033797 0.27529538466888204 0.27529538466888204 -0.011866092033797 

0.5688104207121227 -0.7561456438925225 0.7561456438925225 0.5688104207121227 

0.7561456438925225 0.5688104207121227 0.5688104207121227 -0.7561456438925225 

0.27529538466888204 -0.011866092033797 0.011866092033797 0.27529538466888204 

-0.11720388769911527 -0.1067118046866654 -0.1067118046866654 0.11720388769911527 

-0.03887280126882779 -0.023825384794920298 0.023825384794920298 -0.03887280126882779 

0.03466034684485349 0.01702522388155399 0.01702522388155399 -0.03466034684485349 

-0.00388321199915849 0.005439475937274115 -0.005439475937274115 -0.00388321199915849 

0.003253142763653182 -0.004556895628475491 -0.004556895628475491 -0.003253142763653182 

 

 

Q-Shift 16,16 tap filters. 'qshift_c' 

 ܐ ܐ  

0.002430349945148675 0.0047616119384559135 0.0047616119384559135 0.002430349945148675 

-2.276522058977718E-4 -4.4602278926228516E-4 -4.460227892622816E-4 2.276522058977718E-4 

-0.0072026778782583465 7.144197327965012E-5 -7.144197327965012E-5 -0.0072026778782583465 

0.018498682724156248 0.034914612306842195 0.034914612306842195 -0.018498682724156248 

0.02228926326692271 0.03727389579989796 -0.03727389579989796 0.02228926326692271 
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-0.11255888425752203 -0.11591145742744076 -0.11591145742744076 0.11255888425752203 

0.01463740596447335 -0.2763686431330317 0.2763686431330317 0.01463740596447335 

0.567134484100133 0.7563937651990367 0.7563937651990367 -0.567134484100133 

0.7563937651990367 -0.567134484100133 0.567134484100133 0.7563937651990367 

0.2763686431330317 0.01463740596447335 0.01463740596447335 -0.2763686431330317 

-0.11591145742744076 0.11255888425752203 -0.11255888425752203 -0.11591145742744076 

-0.03727389579989796 0.02228926326692271 0.02228926326692271 0.03727389579989796 

0.034914612306842195 -0.018498682724156248 0.018498682724156248 0.034914612306842195 

-7.144197327965012E-5 -0.0072026778782583465 0.0072026778782583465 7.144197327965012E-5 

-4.4602278926228516E-4 2.276522058977718E-4 -2.276522058977718E-4 -4.4602278926228516E-4 

-0.0047616119384559135 0.002430349945148675 0.002430349945148675 0.0047616119384559135 

 

 

Q-Shift 18,18 tap filters. 'qshift_d' 

 ܐ ܐ  

0.002411869456666278 0.002284127440270531 -0.002284127440270531 0.002411869456666278 

0.0012775586538069982 0.0012098941630734423 0.0012098941630734423 0.0012775586538069982 

-0.0025761743066007948 0.011834794515430786 -0.011834794515430786 0.0025761743066007948 

-0.006628794612430063 0.0012834569993443994 0.0012834569993443994 0.006628794612430063 

0.03152637712208465 -0.044365221606616996 0.044365221606616996 0.03152637712208465 

0.018156493945546453 -0.05327610880304726 -0.05327610880304726 -0.018156493945546453 

-0.12018854471079482 0.1133058863621428 -0.1133058863621428 -0.12018854471079482 

0.024550152433666563 0.2809028632221865 0.2809028632221865 -0.024550152433666563 

0.5658080673964587 -0.7528160380878561 0.7528160380878561 0.5658080673964587 

0.7528160380878561 0.5658080673964587 0.5658080673964587 -0.7528160380878561 

0.2809028632221865 -0.024550152433666563 0.024550152433666563 0.2809028632221865 

-0.1133058863621428 -0.12018854471079482 -0.12018854471079482 0.1133058863621428 

-0.05327610880304726 -0.018156493945546453 0.018156493945546453 -0.05327610880304726 

0.044365221606616996 0.03152637712208465 0.03152637712208465 -0.044365221606616996 

0.0012834569993443994 0.006628794612430063 -0.006628794612430063 0.0012834569993443994 



 

152 

 

-0.011834794515430786 -0.0025761743066007948 -0.0025761743066007948 0.011834794515430786 

0.0012098941630734423 -0.0012775586538069982 0.0012775586538069982 0.0012098941630734423 

-0.002284127440270531 0.002284127440270531 -0.002284127440270531 0.002284127440270531 

 

 

 

 


