STATUS OF THESIS

Title of thesis	SIMULATION MODELS FOR SINGLE AND TWO-STAGE CHARGING OF STRATIFIED THERMAL ENERGY STORAGE

JOKO WALUYO

hereby allow my thesis to be placed at the Information Resource Center (IRC) of Universiti Teknologi PETRONAS (UTP) with the following conditions:

- 1. The thesis becomes the property of UTP.
- 2. The IRC of UTP may make copies of the thesis for academic purposes only.
- 3. This thesis is classified as:

Ι

If this thesis is confidential, please state the reason:

The contents of the thesis will remain confidential for _____ years.

Remarks on disclosure:

Endorsed by

Signature of Author

Permanent address: <u>Mranggen Kidul RT 06/RW 27,</u> <u>Sinduadi, Mlati, Sleman,</u> Yogyakarta, Indonesia-55284. Signature of Supervisor

Name of Supervisor Assoc. Prof. Ir. Dr. M Amin A Majid

Date : _____

Date : _____

UNIVERSITI TEKNOLOGI PETRONAS

SIMULATION MODELS FOR SINGLE AND TWO-STAGE CHARGING OF STRATIFIED THERMAL ENERGY STORAGE

by

JOKO WALUYO

The undersigned certify that they have read, and recommend to the Postgraduate Studies Programme for acceptance this thesis for the fulfillment of the requirements for the degree stated.

Signature:	
Main Supervisor:	Assoc. Prof. Ir. Dr. M Amin A Majid
Signature:	
Co-Supervisor:	Assoc. Prof. Ir. Dr. Shaharin Anwar B Sulaiman
Signature:	
Head of Department:	Assoc. Prof. Dr. Ahmad Majdi Abdul Rani
Date:	

SIMULATION MODELS FOR SINGLE AND TWO-STAGE CHARGING OF STRATIFIED THERMAL ENERGY STORAGE

by

JOKO WALUYO

A Thesis

Submitted to the Postgraduate Studies Programme

as a Requirement for Degree of

DOCTOR OF PHILOSOPHY

MECHANICAL ENGINEERING DEPARTMENT

UNIVERSITI TEKNOLOGI PETRONAS

BANDAR SRI ISKANDAR

PERAK

APRIL 2011

DECLARATION OF THESIS

Title of thesis

Ι

SIMULATION MODELS FOR SINGLE AND TWO-STAGE CHARGING OF STRATIFIED THERMAL ENERGY STORAGE

JOKO WALUYO

hereby declare that the thesis is based on my original work except for quotations and citations which have been duly acknowledged. I also declare that it has not been previously or concurrently submitted for any other degree at UTP or other institutions.

Witnessed by

Signature of Author

Signature of Supervisor

Permanent address: <u>Mranggen Kidul RT 06/RW 2</u>7, <u>Sinduadi, Mlati, Sleman,</u> Yogyakarta, Indonesia-55284. Name of Supervisor Assoc. Prof. Ir. Dr. M Amin A Majid

Date : _____

Date : _____

ACKNOWLEDGEMENTS

First, I would like to thank ALLAH SWT the Almighty, for without His Consent, it would be impossible to achieve what had been done in this work.

My greatest thank go to my dissertation advisor Associate Professor Ir. Dr. M Amin A Majid for his ideas, valuable advices, patient guidance and grateful supports during this dissertation. Much gratitude also goes to my co-supervisor Associate Professor Ir. Dr. Shaharin Anwar for his encouragements. Much appreciation goes to my advisory committee for their dissertation review.

I would like to gratefully acknowledge the financial assistance given to me in form Graduate Assistantship scholarship awarded by the Universiti Teknologi PETRONAS. I would also like to express my appreciation to colleagues, lectures and professors from the Mechanical Engineering Department, Universiti Teknologi PETRONAS. Thanks to Dr. Khairul Fuad and AP. Dr. Patthi Hussain, as coordinators of Graduate Assistantship in this department. Thanks are extended for the members of Post Graduate Studies Office for their invaluable helps and cooperation.

My dissertation is dedicated to my father Bapanda Dermoga Barita Raja Muhammad Syukur, to whom I gave my sincere respect for his continuously spirit, support and guidance during my study. My thanks also go to my friends at Bandar Universiti community; I have truly enjoyed our relationships and activities.

Very special thanks are due to my parents for providing me excellent upbringing, educations and guidance, which helped me reaching at this point in my life. Heartfelt thanks go to my wife Dr. Nurrohmat Widjajanti, my children Fawwaz Daniswara and Shabrina Tias Warastri, and all of my family members for their loves, unconditional supports, patience and understandings that always encouraged me to finish my study.

In the end, my gratitude also goes to numerous of people whom I may not name all, for their joyful supports, contributions and helpfulness.

ABSTRACT

The current practice of charging thermal energy storage (TES) tank is by using electric chillers. One of the main reasons is that the temperature limitation of the absorption chillers which might lead to freezing the refrigerant. This was the reason the absorption chillers at co-generated district cooling plants are not being utilized to charge the TES tank. This research focuses on the development of models incorporating absorption chiller to complement electric chiller to charge a stratified TES tank of a co-generated district cooling plant. The models were developed using two approaches, namely temperature distribution analysis approach and heat transfer approach. For the case of temperature distribution analysis, a function was selected to represent its profile. Functional relationship of the temperature distribution was used to formulate thermocline thickness, thermocline limit points, temperature transition point and limit capacity criteria. Using temperature distribution function, simulation model was then developed based on an open charging system. For the heat transfer approach, the models were developed as a close system by integrating the TES tank and chiller equipments. For the TES tank, one-dimensional flow conductiveconvection analysis was used, while the chillers utilized energy balance analysis. For both approaches two types of models, namely single stage and two-stage models were developed. The single stage model is limited to using electric chiller to charge the TES tank. While the two-stage models incorporate both the absorption and electric chillers with the absorption and the electric chillers function in sequence to charge the TES tank. Validation was performed on the single stage charging for both approaches. Results show similarities of temperature distribution values of R^2 greater than 0.98 and parameters deviation lower than 6%. From statistical test acceptance analysis for the single stage model, t-computed has highest value of 0.035, which is lower than critical value of 2.145 from the *t*-distribution table. This indicates that both models were statistically acceptable. Comparisons of the single and two-stage models between the two approaches were also performed using simulation case studies.

Results imply that the models are capable of predicting charging characteristic, with deviations lower than 4% for the charging durations and below 2% for the cumulative cooling capacity. Findings from simulations of the two-stage models indicate that the absorption chillers could be used to charge the TES in combination with electric chillers.

ABSTRAK

Amalan semasa untuk mengisi tangki penyimpan tenaga thermal (TES) adalah dengan menggunakan chiller elektrik. Salah satu alasan utama kerana sekatan suhu chiller yang menyebabkan pembekuan refrigeran. Ini menjadi alasan chiller penyerapan di distrik pendingin tidak dimanfaatkan untuk mengisi tangki TES. Penyelidikan ini berfokus pada pembangunan model dengan chiller penyerapan untuk melengkapkan chiller elektrik untuk mengisi tangki TES stratifikasi di distrik pendingin. Model dikembangkan dengan dua jenis pendekatan, iaitu analisis pengedaran suhu dan pengedaran panas. Untuk analisis pengedaran suhu, fungsi yang dipilih untuk mewakili profil hubungan fungsional pengedaran suhu digunakan untuk merumuskan ketebalan termoklin, titik batas termoklin, titik peralihan suhu dan kriteria batas kapasiti. Menggunakan fungsi pengedaran suhu, model simulasi kemudian dikembangkan berdasarkan sistem pengisian terbuka. Untuk pendekatan pengedaran panas, model dikembangkan sebagai sistem tertutup, dengan mengintegrasikan tangki TES dan peralatan chiller. Untuk tangki TES, digunakan aliran satu-dimensi konduktif-konveksi analisis, sedangkan untuk chiller digunakan analisis tenaga keseimbangan. Untuk kedua-dua pendekatan dibangunkan dua jenis model, iaitu untuk tahap tunggal dan dua tahap. Model tahap tunggal terhad menggunakan chiller elektrik untuk mengisi tangki TES. Sementara model dua tahap menggabungkan baik chiller penyerapan dan elektrik, dengan pengisisian chiller penyerapan dan elektrik secara berturutan. Validasi dilakukan ke atas model tahap tunggal untuk kedua-dua pendekatan tersebut. Keputusan kajian menunjukkan kesamaan nilai pengedaran suhu, R^2 lebih besar dari 0,98 dan deviasi parameter lebih rendah daripada 6%. Dari analisa statistik penerimaan, t-dikira mempunyai nilai tertinggi 0.035, yang lebih rendah dari nilai kritikal 2,145 dari t-tabel. Hal ini menunjukkan bahawa kedua-dua model secara statistik boleh diterima. Perbandingan kedua-dua model tahap tunggal dan dua tahap antara dua pendekatan juga dilakukan pada berbagai kes simulasi. Keputusan menunjukkan bahawa model mampu memprediksi karakter pengisian dengan penyimpangan yang lebih rendah daripada 4% untuk jangka masa pengisian dan di bawah 2% untuk kapasiti pendinginan kumulatif. Penemuan dari simulasi ke dua model dua tahap menunjukkan bahawa chiller penyerapan boleh digunakan untuk mengisi tangki TES digabungkan dengan chiller elektrik.

In compliance with the terms of the Copyright Act 1987 and the IP Policy of the university, the copyright of this thesis has been reassigned by the author to the legal entity of the university,

Institute of Technology PETRONAS Sdn Bhd.

Due acknowledgement shall always be made of the use of any material contained in, or derived from, this thesis.

© Joko Waluyo, 2011 Institute of Technology PETRONAS Sdn Bhd All rights reserved.

TABLE OF CONTENTS

STATUS OF THESIS	i		
APPROVAL PAGEi			
TITLE PAGE ii			
DECLARATION OF THESIS	iv		
ACKNOWLEDGEMENT	v		
ABSTRACT	vi		
ABSTRAK	viii		
COPYRIGHT PAGE	х		
TABLE OF CONTENTS	xi		
LIST OF TABLES	xiv		
LIST OF FIGURES	XV		
NOMENCLATURE	xvii		
Chapter 1 – INTRODUCTION	1		
1.1 Background	1		
1.2 Problem Statement	3		
1.3 Objective of Study	3		
1.4 Scope of Study	3		
1.5 Organization of Thesis	4		
Chapter 2 – LITERATURE REVIEW	6		
2.1 Thermal Energy Storage Systems in Cogeneration Plant	6		
2.2 Stratified Thermal Energy Storage Tank	7		
2.3 Water Temperature Distribution in the Stratified TES Tank	9		
2.3.1 Researches in Temperature Distribution of Stratified TES Tank	10		
2.3.2 Parameters Derived from Temperature Distribution	11		
2.3.3 Degradation of Stratification of Temperature Distribution	13		
2.4 Charging Cycle in Stratified TES Tank	15		
2.4.1 Empty and Full Capacities	17		
2.4.2 Inlet and Outlet Charging Temperature	17		
2.4.3 Stratified TES Tank Operation	18		
2.5 Model of Stratified TES Tank	19		
2.5.1 One-Dimensional Model	19		
2.5.2 Finite Difference Solution	21		
2.6 Chillers	24		
2.6.1 Vapor Compression Chillers	24		
2.6.2 Absorption Chillers	25		
2.6.3 Model of Chillers	28		
2.7 Non Linear Regression Fitting	31		
2.7.1 Non Linear Regression Fitting Steps	31		
2.7.2 Curve Fitting Software Package	32		
2.8 Summary of the Literature Reviews	32		

Chapter	3 – METHODOLOGY	35
3.1	Charging of Stratified TES Tank Models	35
3.2	Historical Data of Operating TES Tank	37
3.3	Single and Two-Stage Charging	40
	3.3.1 Single Stage Charging	40
	3.3.2 Two-Stage Charging	41
3.4	Open Charging System	42
	3.4.1 Temperature Distribution	42
	3.4.1.1 Parameters of Temperature Distribution Profile	43
	3.4.1.2 Selection of Temperature Distribution Function	44
	3.4.2 Formulation of Charging Parameters	45
	3.4.2.1 Limits Points	45
	3.4.2.2 Thermocline Thickness	45
	3.4.2.3 Limit Capacity Criteria	46
	3.4.3 Single Stage Charging Model Type (I)	49
	3.4.3.1 Developing Single Stage Charging Model Type (I)	50
	3.4.3.2 Verification of Single Stage Charging Model Type (I)	53
	3.4.3.3 Simulation of Single Stage Charging Model Type (I)	54
	3.4.3.4 Validation of Single Stage Charging Model Type (I)	57
	3.4.4 Two-Stage Charging Model Type (I)	58
	3.4.4.1 Enhancement of Two-Stage Charging Model Type (I)	58
	3.4.4.2 Simulation of Two-Stage Charging Model Type (I)	61
3.5	Close Charging System	62
	3.5.1 Single Stage Charging Model Type (II)	62
	3.5.1.1 Physical Model of Stratified TES	63
	3.5.1.2 Model of Chillers	67
	3.5.1.3 Developing Single Stage Charging Model Type (II)	72
	3.5.1.4 Selection of Effective Diffusivity	72
	3.5.2 Verification of Single Stage Charging Model Type (II)	72
	3.5.2.1 Chillers Parameters	73
	3.5.2.2 Evaluation in Verification	73
	3.5.3 Simulation of Single Stage Charging Model Type (II)	73
	3.5.4 Two Stage-Charging Model Type (II)	76
	3.5.4.1 Enhancement of Two-Stage Charging Model Type (II)	76
	3.5.4.2 Simulation of Two-Stage Charging Model Type (II)	78
3.6	Comparison of Charging Models	80
	3.6.1 Comparison of Single Stage Charging Models	80
	3.6.2 Comparison of Two-Stage of Charging Models	80
Chapter	4 – RESULTS AND DISCUSSION	81
4.1	Open Charging System	81
	4.1.1 Temperature Distribution	81
	4.1.1.1 Selection of Temperature Distribution Function	82
	4.1.1.2 Characteristic of Sigmoid Dose Response Function	86
	4.1.2 Formulation of Charging Parameters	89
	4.1.2.1 Limit Points and Thermocline Thickness	89
	4.1.2.2 Limit Capacity Criteria	91
	4.1.2.3 Temperature Transition Point	92
	4.1.2.4 Implementation of SDR Function	93

	4.1.3 Single Stage Charging Model Type (I)	95
	4.1.3.1 Verification of Single Stage Charging Model Type (I)	96
	4.1.3.2 Simulation of Single Stage Charging Model Type (I)	99
	4.1.3.3 Validation of Charging Duration in Single Stage	
	Charging Model Type (I)	104
	4.1.4 Two-Stage Charging Model Type (I)	108
	4.1.4.1 Simulation of Charging Flow Rate Variation	108
	4.1.4.2 Simulation of Limit Temperature Variation	111
4.2	Close Charging System	114
	4.2.1 Single Stage Charging Model Type (II)	115
	4.2.1.1 Verification of Single Stage Charging Model Type (II)	115
	4.2.1.2 Simulation of Single Stage Charging Model Type (II)	124
	4.2.2 Two-Stage Charging Model Type (II)	132
	4.2.2.1 Simulation of Chillers Parameters Variation	132
	4.2.2.2 Simulation of Limit Temperature Variation	137
4.3	Comparison of Charging Models Type (I) and (II)	141
	4.3.1 Comparison of Single Stage Charging Models	142
	4.3.2 Comparison of Two-Stage Charging Models	144
	4.3.3 Evaluation of Open and Close Charging System	147
4.4	Summary	149
Chapter	5 – CONCLUSIONS	152
5.1	Conclusions	152
5.2	Contributions	154
5.2	Recommendations for Future Works	155
REFERI	ENCES	156
PUBLIC	CATIONS	166
APPENI	DICES	168

LIST OF TABLES

Table 3.1	TES tank configuration parameters	. 57
Table 3.2	Chiller parameters value of simulation cases A1, B1 and D1	. 57
Table 3.3	Chiller parameters value of simulation cases E1, F1 and G1	. 61
Table 3.4	Chiller parameters value of simulation cases H1, J1 and K1	. 61
Table 3.5	Values of UA parameter in the chillers	. 73
Table 3.6	Chiller parameters value of simulation cases A2, B2 and D2	. 74
Table 3.7	Chiller parameters value of simulation cases E2, F2 and G2	. 79
Table 3.8	Chiller parameters value simulation cases H2, J2 and K2	. 79
Table 4.1	Selection of temperature distribution function	. 83
Table 4.2	Parameters of SDR fitting on data set IA	. 85
Table 4.3	Summary results of SDR fitting	. 85
Table 4.4	R^2 verification of charging model type (I)	. 97
Table 4.5	Initial temperature parameters of simulation charging model type (I)	.100
Table 4.6	Parameter values of simulation cases A1, B1 and D1	.104
Table 4.7	Validation result on data set IB	.106
Table 4.8	Validation result on data set IC	.107
Table 4.9	Parameter values of simulation cases E1, F1 and G1	.111
Table 4.10	Parameter values of simulation cases H1, J1 and J1	.114
Table 4.11	R^2 verification of charging model type (II)	.119
Table 4.12	Summary of R^2 in verification charging model type (II)	.123
Table 4.13	Summary of parameters deviation in verification charging model	
	type (II)	.123
Table 4.14	Summary of t computed values in verification charging model type (II)	.123
Table 4.15	Parameters values of simulation cases A2, B2 and D2	.128
Table 4.16	Parameters values of simulation cases E2, F2 and G2	.136
Table 4.17	Parameters values of simulation cases H2, J2 and K2	.141
Table 4.18	Deviation parameters values of single stage charging models	.144
Table 4.19	Deviation parameters values of two-stage models	
	with flow rate variation	.145
Table 4.20	Deviation parameters values of two-stage models	
	with limit temperature variation	.147
Table 4.21	Evaluation summary of open and close charging system	.148

LIST OF FIGURES

Figure 2.1	Schematic flow diagram of charging and discharging stratified TES	8
Figure 2.2	A typical temperature profile in stratified TES tank	10
Figure 2.3	Inlet and outlet stratified TES tank temperature during charging	17
Figure 2.4	Schematic cycle diagram of vapor compression chiller	25
Figure 2.5	Schematic cycle diagram of absorption chiller	26
Figure 3.1	Methodology	37
Figure 3.2	Schematic flow diagram of charging TES tank system	38
Figure 3.3	Schematic diagram of single stage charging	40
Figure 3.4	Schematic diagram of two-stage charging	41
Figure 3.5	Temperature profile in stratified TES tank	43
Figure 3.6	Empty-full capacity based on water level limit criteria	47
Figure 3.7	Empty-full capacity based on temperature limit criteria	48
Figure 3.8	Temperature transition point	49
Figure 3.9	Schematic flow of open charging system	50
Figure 3.10	Steps in single stage charging model type (I) simulation	56
Figure 3.11	Simulation steps in two-stage charging model type (I)	60
Figure 3.12	Schematic flow of close charging system	63
Figure 3.13	Physical model of stratified TES tank	64
Figure 3.14	Solution steps in integrating of TES tank and chiller models	71
Figure 3.15	Simulation steps in two-stage charging model type (II)	77
Figure 4.1	Temperature distributions of data set IA	82
Figure 4.2	SDR fitting of temperature distribution data set IA	84
Figure 4.3	Variation of average cool water temperature (T_c) in SDR function	86
Figure 4.4	Variation of average warm water temperature (T_h) in SDR function .	87
Figure 4.5	Variation of midpoint of thermocline (<i>C</i>) in SDR function	88
Figure 4.6	Variation of slope gradient (S) in SDR function	89
Figure 4.7	C_E in variation of <i>S</i> and Θ	94
Figure 4.8	Cut-off water temperatures in variation Θ	94
Figure 4.9	Temperature distribution of charging model type (I) on data set IA	96
Figure 4.10	Comparison of SDR parameters T_c and T_h in verification of	
C	charging model type (I)	98
Figure 4.11	Comparison of SDR parameters C and S in verification of	
C	charging model type (I)	98
Figure 4.12	Percentage deviations of SDR parameters in verification of	
C	charging model type (I)	98
Figure 4.13	<i>t</i> computed values in verification of charging model type (I)	99
Figure 4.14	Temperature distribution of simulation case A1 in single stage	
2	charging model type (I) with flow rate 524 m ³ /hr	101
Figure 4.15	Temperature distribution of simulation case B1 in single stage	
-	charging model type (I) with flow rate 393 m ³ /hr	101

Figure 4.16	Temperature distribution of simulation case D1 in single stage	
	charging model type (I) with flow rate 262 m ³ /hr.	.102
Figure 4.17	Cumulative cooling capacity of simulation cases A1, B1 and D1	
-	in single stage charging model type (I)	.105
Figure 4.18	Temperature distribution of model validation data set IB	
-	for single stage charging model type (I)	.105
Figure 4.19	Temperature distribution of model validation data set IC	
C	for single stage charging model type (I)	.105
Figure 4.20	Temperature distribution of simulation case E1 in two-stage charging	
e	model type (I) with flow rate 504-524 m ³ /hr and limit temp. (T_r) = 9°C	.109
Figure 4.21	Temperature distribution of simulation case F1 in two-stage charging	
C	model type (I) with flow rate 504-393 m ³ /hr and limit temp. (T_r) = 9°C	.109
Figure 4.22	Temperature distribution of simulation case G1 in two-stage charging	
e	model type (I) with flow rate 504-262 m ³ /hr and limit temp. $(T_r) = 9^{\circ}C_{r}$.	.110
Figure 4.23	Cumulative cooling capacity of simulation cases E1, F1 and G1	
U	of two-stage charging model type (I) in flow rate variation	.110
Figure 4.24	Temperature distribution of simulation case H1 of two-stage charging	
	model type (I) with flow rate 504-393 m ³ /hr and limit temp. $(Tr)=7^{\circ}C_{\dots}$.112
Figure 4.25	Temperature distribution of simulation case J1 of two-stage charging	
	model type (I) with flow rate 504-393 m ³ /hr and limit temp. $(Tr)=9^{\circ}C_{-}$.112
Figure 4.26	Temperature distribution of simulation case K1 of two-stage charging	
	model type (I) with flow rate 504-393 m ³ /hr and limit temp (Tr)= 11° C	113
Figure 4 27	Cumulative cooling capacity of simulation cases H1 J1 and K1 of	
1.1801.0	two-stage charging model type (I) in limit temperature variation	113
Figure 4 28	R^2 in variation effective diffusivity	116
Figure 4 29	SDR fitting on data set IB	117
Figure 4 30	SDR fitting from charging model type (II) on data set IB	118
Figure 4 31	Comparison of SDR parameters T_c and T_b in verification of charging	
119410 1.51	model type (II)	120
Figure 4 32	Comparison of SDR parameters C and S in verification of charging	. 120
1.1801.0.101	model type (II)	120
Figure 4 33	Percentage deviations of SDR parameters in verification of charging	. 120
1 1941 c 1.55	model type (II)	121
Figure 4 34	t computed values in verification of charging model type (II)	121
Figure 4 35	Temperature distribution of simulation case A2 in single stage	. 122
1 1941 c 1.50	charging model type (I) with flow rate $524 \text{ m}^3/\text{hr}$	125
Figure 4 36	Temperature distribution of simulation case B2 in single stage	. 120
1 igui¢ 1.50	charging model type (I) with flow rate $393 \text{ m}^3/\text{hr}$	125
Figure 4 37	Temperature distribution of simulation case D2 in single stage	. 120
1 igui e 1.57	charging model type (I) with flow rate 262 m ³ /hr	126
Figure 4 38	Cumulative cooling capacity of simulation cases A2 B2 and D2 of	.120
1 iguie 1.50	single stage charging model type (II)	127
Figure 4 39	Inlet charging temperature of simulation cases A2 B2 and D2 in single	. 1 4 /
1 IGuil 7.59	stage charging model type (II)	129
Figure 4 40	Outlet charging temperature of simulation cases $\Delta 2$ R2 and D2 in	2)
1 15010 7.70	single stage charging model type (II)	130
Figure $\Delta \Delta 1$	Mixing temperatures of simulation cases $\Delta 2$ R2 and D2 in single stage	. 1 90
1 15010 7.71	charging model type (II)	130
		. 150

Figure 4.42	Chillers cooling capacity of simulation cases A2, B2 and D2 of	
-	single stage charging model type (II)	. 131
Figure 4.43	Chillers partial working load of simulation cases A2, B2 and D2 of	
C	single stage charging model type (II)	. 131
Figure 4.44	Temperature distribution of first stage charging simulation cases E2,	
C	F2 and G2 in two-stage charging model type (II) with flow rate	
	504 m ³ /hr and limit temp. $(Tr)=9^{\circ}C$. 133
Figure 4.45	Temperature distribution of second stage charging simulation case E2	
U	in two-stage charging model type (II) with flow rate 524 m ³ /hr	. 134
Figure 4.46	Temperature distribution of second stage charging simulation case F2	
U	in two-stage charging model type (II) with flow rate 393 m ³ /hr	. 134
Figure 4.47	Temperature distribution of second stage charging simulation case G2	
8	in two-stage charging model type (II) with flow rate 262 m ³ /hr	. 135
Figure 4.48	Cumulative cooling capacity of simulation cases E2. F2 and G2	
	in two-stage charging model type (II) with chillers variation	135
Figure 4.49	Temperature distribution of first stage charging simulation case H2 in	
	two-stage charging model type (II) with flow rate 504 m^3/hr and limit	
	temperature 7°C	138
Figure 4 50	Temperature distribution of first stage charging simulation case J2 in	
1.801.0	two-stage charging model type (II) with flow rate $504 \text{ m}^3/\text{hr}$ and limit	
	temperature 9°C	138
Figure 4 51	Temperature distribution of first stage charging simulation case K2 in	
1.8010 1.01	two-stage charging model type (II) with flow rate $504 \text{ m}^3/\text{hr}$ and limit	
	temperature 11°C	138
Figure 4.52	Temperature distribution of second stage charging simulation case H2	
8	in two-stage charging model type (II) with flow rate 504 m ^{3} /hr and	
	limit temperature 7° C	. 138
Figure 4.53	Temperature distribution of second stage charging simulation case J2	
0	in two-stage charging model type (II) with flow rate 393 m^3/hr and	
	limit temperature 9°C	. 140
Figure 4.54	Temperature distribution of second stage charging simulation case K2	
U	in two-stage charging model type (II) with flow rate 393 m ³ /hr and	
	limit temperature 11°C	. 140
Figure 4.55	Cumulative cooling capacity of simulation cases H2, J2 and K2 of two-	
U	stage charging model type (II) in limit temperature variation	. 141
Figure 4.56	Comparison of additional cool water temperature of single stage	
U	charging model type (I) and (II).	. 143
Figure 4.57	Mixing temperatures of two-stage charging model type (II) with	-
C	flow rate variation	. 145
Figure 4.58	Mixing temperatures of two-stage charging model type (II) with	
C -	limit temperature variation	. 146

NOMENCLATURE

A	cross sectional area of the tank (m^2)
AMIX	stability of conduction equation, AMIX = $\alpha \varepsilon_{eff} (\Delta t / \Delta x^2) \le 0.5$
В	bottom limit point of thermocline
C	position of midpoint of thermocline
C_E	cool water depth at empty capacity (m)
C_F	cool water depth at full capacity (m)
C_{FR}	cool water depth at temperature transition point (m)
C_{FT}	cool water depth at full capacity of the first stage charging (m)
C_p	specific heat (J/kg.°C)
\hat{D}	diameter of tank (m)
f	number of degree of freedom
FLOW	stability of convection equation, FLOW = $v.\Delta t/\Delta x \le 1$
H	effective water depth of the tank (m)
k	thermal conductivity (W/m.°C)
L	segmental element of tank
ln	log natural number
M_n	mass of water at each slab of the tank (kg)
\dot{m}_{C}	mass flow rate (kg/sec)
N	amount of slabs number in TES tank
n	number of temperature data, number of slab
N_L	lower nozzle elevation (m)
N_T	upper nozzle elevation (m)
Р	tank perimeter (m)
PL	partial load of charging
Qabs	heat inputted to absorber of absorption chiller (kW)
Q_C	design cooling capacity the chillers (kW)
$Q_{C,des}$	design cooling capacity the chillers (kW)
Qcond	heat rejected from condenser (kW)
Q_{cum}	cumulative cooling capacity (kWh)
Qev	heat inputted to evaporator (kW)
Qgen	heat supplied to generator (kW)
S	slope gradient of thermocline profile
Т	water temperature (°C)
t	time (minutes)
T_{Θ}	cut-off temperature (°C)
T_a	ambient temperature (°C)
T_c	average cool water temperature (°C)
t_{CF}	charging duration for full capacity (minutes)
t_{CFR}	charging duration to achieve transition temperature (minutes)
t_{CFT}	charging duration for full capacity at first stage charging (minutes)

T_{ev}	evaporator temperature (°C)
T_h	average of warm water temperature (°C)
T_{inC}	inlet chilled water temperature (°C)
$T_{inC,des}$	designed inlet chiller temperature (°C)
T _{inTES}	inlet charging temperature (°C)
T_{LC}	temperature at water volume which is influenced by mixing (°C)
T_{mix}	mixing temperature (°C)
T_n	water temperature at each slab (°C).
T_{outC}	outlet chilled water temperature (°C)
$T_{outC,des}$	designed oulet chiller temperature (°C)
T_{outTES}	outlet charging temperature (°C)
T_r	limit temperature (°C)
T_r	reference temperature (°C)
T_x^t	instantaneous temperature at elevation x and time interval t (°C)
U	upper limit point of thermocline
UA	overall heat transfer coefficient times area (kW/°C)
v	vertical velocity in the tank (m/sec)
V_{LC}	water volume influenced by mixing (m ³)
$\dot{V_C}$	charging flow rate (m ³ /hr)
\dot{V}_{C1}	charging flow rate of the first stage charging(m ³ /hr)
\dot{V}_{C2}	charging flow rate of the second stage charging (m ³ /hr)
W_{TC}	thickness of thermocline
x	tank elevation, elevation of mid point of the slab (m)
Х	dimensionless elevation of the tank, $X = x.N/H$
	•

Greek Symbols

dimensionless cut-off ratio
thermal diffusivity (m ² /sec)
significance level
effective diffusivity factor
density (kg/m ³)
increasing of cool water depth during charging (m), $\Delta C = \dot{V}_C / A$
time interval
temperature losses at outlet connection of the tank (°C)
temperature losses at inlet connection of the tank (°C)
segmental element of the tank (m)

Statistics Symbols

Ha	alternative hypothesis	, H _a :	$y_i^1 - y_i^2 \neq 0$
Ho	null hypothesis	, H _o :	$y_i^1 - y_i^2 = 0$

t comp	ratio of the temp. data value difference and standard deviation.
t critical	table <i>t</i> distribution refer to $t_{(f,\beta/2)}$
$\sigma_{\!_1},\sigma_{\!_2}$	standard deviation of temp. distribution observed data and model
\overline{y}^1 , \overline{y}^2	mean value of temperature distribution observed data and model
y_i^1 , y_i^2	values of temperature distribution of the observed data and model

Simulation Cases and Designated Data

A1, B1, D1	: simulation cases of single stage charging in model type (I)
A2, B2, D2	: simulation cases of single stage charging model type (II)
E1, F1, G1	: simulation cases of two-stage charging model type (I) with flow rate variation
E2, F2 G2	: simulation cases of two-stage charging model type (II) with flow rate variation
H1, J1, K1	: simulation cases of two-stage charging in model type (I) with limit temperature variation
H2, J2, K2	: simulation cases of two-stage charging in model type (II) with limit temperature variation
IA, IB, IC IIA, IIB, IIC	 data sets of temperature distribution at flow rate 393 m³/hr data sets of temperature distribution at flow rate 524 m³/hr