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CHAPTER 1 

INTRODUCTION 

 
 
1.1    Background  

 
As a mechanical system, crane system is designed for repeat motions such as hoisting, 

transporting which includes longitudinal, transverse motion, and lowering heavy 

payload, as well as combination of each motion. The ability to transport the heavy 

payload in repetitive way leads to their wide spread use in ports, factories, 

construction sites and other places. Moreover, the increase in productivity and the 

capability of transporting heavy payload which are impossible, difficult or dangerous 

to humans are other motives for enhancing the use of crane syste                                                                                                                             

ms. In its specific application, there are different types of crane such as overhead 

crane, gantry crane, tower crane and various special purpose cranes.  

Gantry crane system, a non-slewing-luffing crane system is most widely used in 

several work places. The schematic of the gantry crane system is shown in Figure 1.1. 

In practice, the trolley is equipped with wheels and houses drive mechanism for 

trolley and hoist. The trolley will underslung on the top if the top beam of crane 

framework is single member, while rides on top when the top beam is made of more 

than one member. During crane operations, the trolley traverses along the top beam of 

the crane framework. The hoist houses cable drum, drive transmission and hoist 

motor. The function of cable drum is to wind up or unwind the cable, raises or lowers                     

the payload attached to the hook. The trolley and hoist work simultaneously to 

perform the task of gantry crane. In general, the task performed by a gantry crane is to 

pick the payload, raise it, move it to target position and lower it down on the crane 

framework.                
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In the perspective of a structural system, this gantry crane system has crane 

supporting structure called crane framework. Some crane frameworks are equipped 

with wheels which allow the crane framework to travel on a parallel pair of rails and 

the others are fixed to the ground. The structure that spans between the two 

supporting columns is called top beam of crane framework. It is usually designed with                                                                       

single rolled section, a large welded wide flange steel girder, truss or a pair of box 

girders.  

The structural parts of gantry crane system are manufactured from different types 

of material and designed in various form. If the structural parts of gantry crane system 

are designed to remain stiff for crane operations, the crane is considered as rigid 

gantry crane. Currently in many places, almost all the used gantry cranes are rigid 

with strict deflection requirements as reported by N. Zrnić et al. [2], so that their 

flexibility is neglected in many control system applications. However, the lifting 

capacities are heavier and the sizes of crane have increased continuously due to the 

increase of productivity and capacity. Such a condition makes the rigid gantry cranes 

are heavy and massive. 
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Figure 1.1: Gantry crane system [1] 
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The heavier lifting capacities and the greater size of gantry crane, the vibrational 

motion become more significant during crane operations and it must be considered. 

This condition is getting serious when the increase of stiffness has not kept pace with 

the increase of structural mass as mentioned in [3]. The increase in mass and smaller 

increase in stiffness creates longer natural periods and larger magnitudes swing angle 

as further discussed in the next chapters. 

In view of loading condition, there is a number of loading cases that gantry crane 

system experience either the crane framework or gantry crane itself during crane 

operations. Dead load of individual members of framework and stationary gantry 

crane components are static loads. Earthquake is dynamic load from environment, 

together with wind gust or snow fall if it is located on a yard. With respect to the 

gantry crane, traversing or hoisting the payload at any place under the crane 

framework is significant dynamic load which exists at any point on the crane 

framework. This dynamic load moves at any position along the span of the top beam 

of crane framework. It makes the magnitude and position of the load vary in both time 

and space.  

The other types of dynamic load are unevenness on the surface of the flange of the 

top beam and imperfect wheel alignment. They may cause the gantry crane traversing 

along the top beam to vibrate and to excite the crane framework. In the point of view 

of trolley motion, starting and stopping the trolley changes the velocity of the gantry 

crane and generates acceleration and deceleration effect. The changes in trolley 

velocity cause the crane framework are to experience significant inertial forces, the 

payload attached to the hook to swing freely and the increase of condition tension of 

hoist cable as further discussed in the next chapters. As demonstrated in [4], the 

swinging motion of payload is an important cause of the dynamic forces on the crane 

framework.   

1.2    Problem Statement  

Moving load as a total weight of trolley, lift system and lifted load according to 

Bhimani [3] which is accompanied by swing effects, moves along the top beam 

causing dynamic effects on the gantry crane and crane framework.  
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It can produce larger responses than those produced by the same load if it were 

stationary on the top beam. The fact that the motion of gantry crane is taking place at 

higher speed due to the increase of productivity leads to the possibility of payload to 

swing erratically. Because of low damping in the system dynamics, gantry crane 

system can vibrate with large amplitudes which may vanish for many seconds or 

minutes.  

If the gantry crane is taken as a moving subsystem, then this moving subsystem 

will induce the crane framework motion and conversely. They will create 

bidirectional dynamic interaction as mentioned in [5], [6] and constitute nonlinear 

coupling terms between the gantry crane and crane framework. The motion of gantry 

crane system will be affected. These dynamic characteristics cannot be described by 

classical model of pendulum system with moving pivot point. In classical model of a 

pendulum system, the support structure of pendulum system is assumed to be rigid, so 

that the pendulum swings in a static pivot point. Regarding to the crane framework 

construction, the actual motion a pendulum-like swinging motion will be different. In 

order to lift heavy payloads, crane frameworks usually have very strong structures and 

big dimension, they are still large flexible mechanical structures and weakly damped 

according to Rahman et al. [7].  

Under heavy payload, the crane framework construction will deform under the 

total weight of gantry crane. The elastic deformation of all elements of gantry crane 

system cannot be neglected anymore, particularly for bigger and longer crane 

framework as shown by References [2], [3], [8]. The pivot point of the swinging 

payload will not remain static because of deformed construction. The hoist cable that 

suspends the payload will undergo deformation as well. It reflects that the actual 

condition of gantry crane motion differs from the pendulum system theory. It is also 

known that the presence of elastic deformability will induce the unwanted vibration 

when it is subjected to dynamic loads. It causes issues related with safety of gantry 

crane system, operators and surrounding environment. 

Mostly the crane frameworks are complex structures. Numerical method is the 

best approach to approximate the solutions, while further advances in computational 
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technology allow the finite element to handle structural response induced by moving 

load.  

Commercial software such as ANSYS and other software packages can handle 

most cases like dynamic analysis under moving load, but they are not usually set up 

easily as mentioned in [9]. They need extended subroutine to run such a case. This is 

going to be more complicated for coupled dynamic system like interaction between 

crane system and its framework.  

Besides the modeling, simulation and dynamic analysis of cranes system, in 

perspective of vibration control, active vibration control has not been widely 

investigated in the area of flexible crane system. Mostly, it is implemented with rigid 

body assumption either in simulation or real time experiment. Most published work 

with the consideration of the aforementioned condition is quite rare. There seems to 

be a limited number of works dealing with this class of problem. For those reasons, 

this thesis is addressed. 

1.3    Objective  

The goal of this research is to increase the understanding of dynamic behaviors of 

flexible gantry crane system during normal crane operation. This will further pave the 

ground of the possibilities in providing dynamic model for control purposes by 

introducing the structural flexibility of gantry crane into industrial implementation. 

This thesis is focused on deriving physics-based model to simulate the dynamic 

behavior of gantry crane during traverse motion. Because of the model-based nature 

of the study, the dynamic model of flexible gantry crane must be derived first to 

underlie numerical solution and to develop active controllers. Based on that, the 

objectives of this research fall into the three main categories: 

1. To propose the dynamical model of three dimensional gantry crane system by 

introducing the flexibility of crane framework and hoist cable into the model.  

2. To develop computational technique to solve the first objective, and conduct the 

parametric studies to investigate its dynamic behavior numerically.  

3. To design active vibration controller by applying the dynamical model as a plant 

in control algorithm with purpose of transferring the payload into a target 
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position as fast as possible, while minimizing the swing angles of payload 

during the crane maneuver. 

For these objectives, computer codes have been developed using Matlab® 

language and some subroutines codes in ANSYS are generated. 

1.4 Scope and Thesis Contribution 

For simplicity, several simplifications in dynamic model are made as further 

described in the next chapters. For verification purposes, the dynamic responses 

obtained in this study are partially compared with the results obtained by ANSYS, 

state-space, ODE 45 and the well-known 3-DoF model of pendulum (rigid model of 

gantry crane system).  

The contribution of this work is an effort to extend the application of moving load 

concept on gantry crane system by including the modeling of dynamics of gantry 

crane on flexible crane framework.  Parts of this thesis are the development of some 

previous researches in [5]-[6], [9]-[12], additions to the present work are as follows:   

1. Update dynamic model of three dimensional flexible gantry cranes by 

introducing the flexibility of crane framework and hoist cable onto the dynamic 

of gantry crane system. Combination between finite element method in 

conjunction with moving finite element method and the Lagrange’s equations 

are proposed in order to analyze bidirectional coupling between the dynamics of 

gantry crane and crane framework. The analysis is in time domain together with 

Fast Fourier Transformation (FFT) to estimate the frequency content. Updated 

dynamic model covers 3D swinging motion of payload, inertial terms and 

kinematic nonlinearities of gantry crane on the flexible crane framework.  

2. Provide numerical solver to predict dynamic responses of the gantry crane 

system. The tools apply two numerical integration methods, namely, Newmark-

 and fourth-order Runge-Kutta technique simultaneously.             

3. The application of control methods to suppress the vibration caused by the 

coupling between gantry crane system and crane framework in the presence of 

structural flexibility in plant dynamic model. 
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1.5   Thesis Organization 

The chapters of this thesis have been arranged in order to cover the objectives 

explained above. The summaries of each chapter are as follows. 

Chapter 1 presents an introduction to the gantry crane system to be studied within 

this thesis. Statements of problem are presented in addition to objective to be met; 

also contribution of this study is mentioned.  

Chapter 2 contains literature review and background theory. Literature review 

provides state of the art in researches related with the title of this thesis. Background 

theory includes the basic of finite element method, the moving finite element for 

space frame and its application to moving load case. The utilization of numerical 

integration methods and control methods are described in the last subsection.  

Next, deriving of the equations of motion of flexible gantry crane system is 

presented in Chapter 3. This dynamic model covers three cases of loading on flexible 

gantry crane system, namely: swinging motion of payload (case I), moving load (case 

II) and moving trolley carrying a swinging payload (case III). Numerical approach to 

solve the system equations are formulated step by step.   

Chapter 4 deals with the evaluation of the work contained in Chapter 3. This 

chapter simulates the dynamics of crane framework and gantry crane under case I, the 

dynamics of skeletal structures under case II and finally, dynamics of crane 

framework and gantry crane under case III. The parametric studies are conducted to 

investigate the dynamic responses of gantry crane system. 

The work contained in Chapter 3 and Chapter 4 is then used as basis to design 

active vibration control methods and presented in Chapter 5. Control methods are 

Zero Vibration Derivative-Derivative (ZVDD), Proportional Integral Derivative (PID) 

and Fuzzy Logic Controller (FLC). The performances of each controller are 

demonstrated in controlling the gantry crane. 

Finally, conclusions concerning the overall work are presented in Chapter 6 and 

areas of future work on this research are recommended.  
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CHAPTER 2 

LITERATURE REVIEW AND THEORY 

 

2.1 Introduction 

The current state of the art is assessed by reviewing the available literatures and the 

findings are discussed within this chapter. This subsection includes research on 

dynamics of crane system carrying moving load, structural systems carrying moving 

load and control of flexible structural systems. The selected theory related with this 

thesis covers the modeling of space frame structure traversed by a point force and 

mass by presenting the concept of equivalent nodal forces. The concept of moving 

finite element are described in order to consider the inertial effects and kinematic 

nonlinearities of the moving load on the overall matrices property of space frame. 

Numerical integration methods is used to solve the dynamic model related with the 

title of this thesis are presented as well. Finally, the methods of active vibration 

controllers are discussed, respectively in the last subsection.  

2.2  Literature Review 

2.2.1  Researches on Crane System 

Literatures dealing with the dynamics of crane system are relatively scarce. Some of 

the researchers focus on the modeling, simulation and analysis, while the others deal 

with the control strategies and techniques for vibration suppression. In most studies 

dealing with the dynamics of the crane, the dynamic load is modeled as moving force 

or moving mass model. Researches on the dynamic of crane system carrying moving 

loads that have been reported are summarized in Table 2.1. 
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Table 2.1: Reports on the Dynamic of Crane Systems Carrying Moving Load 

No. 
Crane 

Type 
Dynamic Load 

Type Analysis Method Remarks Ref. 

1. 
 

Container 
crane 

 
Interaction 
between trolley 
and supporting 
structure caused 
by a moving 
mass, including 
influence of 
moving mass 
inertia, influence 
of Coriolis and 
centripetal force 
and deceleration 
of moving mass. 

Container crane was 
represented as single 
girder using 1-D 
beam element. This 
girder is supported 
by two linearized 
springs with 
additional lumped 
mass for each 
spring. Differential 
equations of motion 
were obtained from 
Lagrange’s approach 
by using Assumed 
Modes Method 
(AMM). The 
differential 
equations were 
solved numerically 
by using the fifth-
order Runge-Kutta. 

Deflections, bending 
moments, Dynamic 
Amplification Factor 
(DAF), and 
acceleration of 
moving mass in 
vertical direction 
were investigated. 
They concluded that 
DAF of deflection 
was 1.137 with 
respect of static 
deflection, lower 
than recommended 
value by design 
standard codes. 

 
 
[2] 

2. 
 
Slewing 

crane 

Electrical 
motor as 
driving force 
 

Payload was 
modeled as spherical 
pendulum. The 
nonlinear nature of 
the swinging motion 
for large angles and 
the nonlinearity of 
the power 
transmission were 
considered. The 
structure’s elasticity 
and damping, the 
friction in the main 
bearing, and the air 
resistance were also 
taken into account. 
Lagrange equations 
were used to derive 
the equations of 
motion. The 
equations were 
solved numerically 
using the Runge-
Kutta method.  

The mathematical 
model was checked 
by means of 
measurement on the 
physical model. The 
results were much 
closer in time and 
frequency domain. 

[4] 
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Table 2.1: Continued 

3. Overhead 
crane 

A simply 
supported 
uniform Euler-
Bernoulli beam 
carrying a crane 
(carriage and 
payload). The 
payload which 
was assumed to 
be suspended 
from the carriage 
on a massless 
rigid rod and 
restricted to 
motion in plane. 

 

The differential 
equations of 
motion were 
derived using 
Hamilton’s 
principle and 
operational 
calculus was 
used to 
determine the 
vibration of 
beam which 
was in turn, 
used to obtain 
the dynamics of 
suspended 
payload. 

The position of the 
maximum deflection 
tends to drift to the 
right or the left of the 
beam centre depending 
on whether the 
operating speed is 
above or below this 
threshold. The 
magnitude of the 
maximum deflection 
tends to decrease with 
increasing drift from 
symmetry. The 
threshold speed and the 
location of the 
maximum beam 
deflection for a given 
carriage speed are 
observed to be 
functions of the beam 
vibration frequency.  

[5] 

4. 
 

Overhead 
crane 

Extension of 
work in [5] 
where beam 
carrying a crane 
that was allowed 
to travel in a 
direction 
perpendicular to 
its span. The 
point mass 
payload is 
attached to the 
carriage via a 
massless beam 
and was allowed 
both in-plane and 
out-of-plane 
motion 

The Rayleigh-
Ritz solution 
technique was 
used to obtain 
the equations of 
motion of the 
system which 
were solved 
with a modified 
Newmark 
method. 

The pendulum length 
results showed that the 
dominant frequencies 
in the swing responses 
decreased with 
increasing pendulum 
length. The amplitude 
of swing angle 
increased with 
increasing payload 
mass. Minimal changes 
were observed in the 
swing angle 
frequencies for 
corresponding changes 
in payload mass. 

[6] 
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Table 2.1: Continued 

5. 

 
 

 
Moored 

crane-ship 

 
 
 
Sea waves and 
mooring forces 

The boom was 
modeled based on 
finite element 
method, while the 
payload was 
modeled as a planar 
pendulum of point 
mass. The dynamic 
responses were 
investigated in time 
domain based on a 
Newmark method 
and an iterative 
method. 

 
 

Large vibrations 
observed for the 
crane-ship with 
flexible boom. 
Crane-ship with 
flexible boom had a 
longer period of 
motion than that with 
the rigid boom.  
 
 

[8] 

6. Gantry 
crane 

 Four time-variant 
moving point 

forces 

The equivalent 
nodal forces for 1-D 
beam element. The 
problem was solved 
by standard finite 
element packages. 

The technique of the 
equivalent nodal 
forces to represent 
the moving forces 
provided sensible, 
realistic results and 
generally applicable 
for other finite 
element packages. 

[9] 

7. Gantry  
crane 

The moving 
trolley and the 
swinging object, 
where the swing 
was assumed 
only in the plane 
with respect to 
the stationary 
framework. The 
hoisted object 
behaved as 
simple pendulum 
system and the 
centrifugal force 
was neglected. 
The motion of 
trolley was 
prescribed.  

Concept of the 
equivalent moving 
mass for 3-D beam 
element. The 
problem was solved 
by means of the 
finite element and 
direct integration 
method, Newmark-
 . 

 

The axial and 
horizontal vibration 
responses of the 
static framework 
were as significant as 
the conventional 
vertical response. 
With small angles 
and planar swing, the 
influence of the 
swinging angle of the 
hoisted object on the 
vertical and axial 
dynamic responses of 
the structure was 
negligible, except the 
horizontal responses 
of the structure. He 
found out that it was 
very sensitive to the 
swinging angle of the 
hoisted object. 

[10] 
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Table 2.1: Continued 

8. 
 
Tower 
crane 

Slewing flexible 
jib structure when 
simultaneously 
traversed by a 
moving mass - 
carriage hoisting 
payload 
pendulum. 
 

The jib structure was 
modeled as clamped-
free Euler–Bernoulli 
beam attached to a 
rotating rigid hub or 
mast. Two tie bars of 
tower crane were 
modeled by two linear 
springs in the ‘‘in-
plane” and ‘‘out-of-
plane”. The payload 
was modeled as a 
sphere pendulum 
attached to via massless 
inextensible cable the 
carriage moving on the 
rotating beam. Non-
linear coupled equations 
of the beam and the 
payload pendulum were 
derived by means of the 
Hamilton principle. 

By using Ritz 
discretization 
method, the 
solutions for the in- 
and out-of-plane 
motions of the 
rotating beam were 
proposed. Some 
remarks were made 
on the equations of 
motion. 
 

[11] 

9. Gantry 
crane 

Moving trolley 
and the hoisted 
object 

Concept of moving 
finite element method 
for 2-D beam element. 
The dynamic response 
was solved using the 
Newmark-   method. 

The maximum axial 
displacements of the 
framework increased 
with the increase of 
the amplitude of the 
swinging angle of 
the hoisted object, 
except for vertical 
responses. The 
maximum axial and 
vertical dynamic 
responses of the 
framework was 
closely related to the 
cable length, where 
the largest maximum 
axial or vertical 
displacement would 
appear when the 
swinging frequency 
of the hoisted object 
associated with a 
certain cable length, 
was close to the 
natural frequency of 
framework in the 
axial and vertical 
direction. 

[12] 
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Table 2.1: Continued 

10. Gantry 
crane 

Four time-
variant moving 
equivalent 
lumped masses 

A combined finite 
element method 
and analytical 
technique for 2-D 
beam element. The 
dynamic response 
was evaluated by 
using mode 
superposition 
technique. 

Extended work of 
[12], where The 
method had been 
validated with 
experimental results. 
 

[13] 

11.  Gantry 
crane 

Technique in 
work [12] was 
utilized as 
moving load to 
the stationary 
framework. 

 

Finite element 
method by means 
of conventional 
modal analysis for 
a scale laboratory 
model, and by 
using the scaling 
technique. 

The scaling technique 
can provide sensible 
and realistic dynamic 
similarity between the 
full-size structure and 
a scale model. 

[14] 

12. Tower 
crane 

Comments on 
work [10] 

Comments on work 
[10] 

Correction for model 
of two tie bars 
proposed by [10] and 
suggested to consider 
the influence of tower 
stiffness and applied 
non-classical 
boundary condition.  

[15] 

13. 
Bridge 
bucket 

unloader 

 
Moving mass 
 

Finite element 
method 

A method for 
analyzing the dynamic 
response of a 
structural system with 
variable mass, 
damping and stiffness. 
The results were then 
verified with SAP 
software.   

[16] 
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Table 2.1: Continued 

14. Tower 
crane 

Acceleration and 
deceleration of 
hoisted payload. 
 
 

 
The members of 
tower and boom 
structures were 
modeled as space 
truss or frame 
elements. Modal 
properties and 
dynamic responses, 
respectively, were 
computed by the 
Newmark method 
and subspace 
iteration method 
with QL algorithm. 

Jib angles changed 
both the inertia and 
stiffness distribution 
of the whole 
structure, while the 
added bracings 
contribute mainly to 
the global stiffness 
of the system. Some 
modes were 
insensitive to the 
change of jib angle. 
Acceleration and 
deceleration of 
hoisted payload 
were significant on 
dynamic response of 
structure.  

[17] 

15. Tower 
crane 

Pendulum motion 
of payload, either 
pure planar or 
pure spherical 
motion. 

The tower crane was 
modeled by finite 
element method, 
while the pendulum 
motion was 
represented as rigid-
body kinetics. 
Lagrange’s approach 
is used to derive the 
coupled dynamics 
equations based on a 
simple perturbation 
scheme and the 
assumption of small 
pendulum angle. 

The dynamic 
responses of the 
tower crane were 
dominated by both 
the first few natural 
frequencies of crane 
structures and the 
pendulum motion of 
the payload. The 
DAF generally 
increase with the 
increase of the 
initial pendulum 
angle and the 
changes were just 
slightly nonlinear 
for the planar 
pendulum motion. 

 
 
 
[18] 

16. 

Rail-
guided 

cart with 
hoisted 
payload 

Electrical motor 
as driving force 
 

The linearly moving 
chart, driven by a 
travel mechanism 
was modeled as a 
discrete six DoF. 
The hoist drive was 
modeled as one DoF 
system. EoM of the 
cart elements were 
derived using 
Lagrange dynamics 
and solved by 
fourth-order Runge-
Kutta. 

The proposed model 
was verified with 
classical linearized 
2 DoF model of 
pendulum with 
moving pivot. 

[19] 
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Table 2.1: Continued 

17. Overhead 
crane 

Hoisting 
motion 

Girder of an 
overhead crane 
was modeled 
using 1D beam 
element and 
derived by 
Lagrange 
equations of the 
second order. 
They included 
the dynamic 
model of hoist 
mechanism into 
dynamic model 
of an overhead 
crane under 
lifting condition. 

Investigation of the 
dynamics of an overhead 
crane lifting process in a 
vertical plane. They 
showed that non-
stationary operating 
regimes introduced 
variable loads. 

[20] 

18. 
 
Slewing 

crane 

 
Extended 
work of [3] 

 
Extended work of 
[3] 

The horizontal inertial 
forces in the radial 
direction are of no less 
importance than the 
forces in the tangential 
direction. Based on that, a 
new coefficient of radial 
horizontal inertial force 
was introduced and a 
diagram for the rapid 
determination of this 
coefficient was 
calculated. 

[21] 

19. Boom 
crane 

Flexible soil 
foundation 
of the boom 
crane. 
 

The dynamic 
models were 
derived using 
second order 
Lagrange 
equations and 
solved 
numerically. 

The amplitudes of 
vibration of the whole 
crane during the rotation 
of the boom decrease 
with an increase in its 
rotational speed. Another 
finding was the proper 
selection of kinematic 
parameters, particularly 
the rotation, allows 
deflection to be 
minimized and the 
precision of positioning 
increased. The greater 
the rotational speed of 
the boom, the greater 
was the deflection of the 
wire rope.  

[22] 
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Table 2.1: Continued 

20. Mobile 
crane 

Hydraulic 
motion as 
driving force 

Flexible boom of a 
mobile crane was 
modeled by the 
finite element 
method and modal 
variables were used 
as the elastic 
variables by 
utilizing modal 
transformation.  

The boom motion 
time affected the 
crane dynamics. 
For low speed, the 
effect of flexibility 
was very small. 
When the speed 
was increased, the 
effect of flexibility 
was dominant.   

[23] 

21. Over 
head crane 

Uprising 
dynamics  of 
an overhead 
crane carrying 
two trolleys 

The main beam was 
modeled as flexible 
box beam, the 
trolley as a sphere 
mass, the uprising 
object as a rigid 
body and the wire 
rope as a flexible 
body. 

Simulations results 
obtained from 
ADAMS from a 
specific example 
show good 
agreements with 
physical conditions 
 

[24] 

22. Truck 
crane 

Kinematic 
forcing such 
as: change of 
the telescopic 
boom length, 
rotation of the 
boom and the 
change of wire 
rope length.  

The flexibility of the 
support system was 
modeled by elastic 
suspension and the 
load was considered 
as a particle. The 
equations of motion 
were solved by 
fourth-order Runge-
Kutta. 

The influence of the 
flexibility of the 
support system on 
the load motion. 

[25] 

 
23. 

Hydraulic 
mobile 
crane 

Response of 
the structure 
and the state 
parameters of 
drive system 
with kinematic 
forcing such as 
desired rotary 
speeds. 

Concept of flexible 
multi-body and 
finite element 
method. 

The simulation 
results showed that, 
in addition to the 
accelerations and 
decelerations of 
crane movements, 
the rotary speed 
had also significant 
influence on crane 
dynamic responses.   

[26] 

24. 
Lattice 
mobile 
crane 

Hoist speed, 
acceleration, 
and 
deceleration. 

Hoisting rope 
system was modeled 
by nonlinear finite 
element, while the 
boom was modeled 
by Timoshenko 
beam element. 

The proposed 
method was very 
convenient for 
simulation of the 
crane hoisting 
motion and control 
system. 

[27] 
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Table 2.1 informs that three kinds of dynamic sources in the dynamic of crane 

systems carrying moving load. First source of dynamic load comes from moving 

subsystem of crane system itself as discussed in [2], [5], [6], [9]-[12] and other papers 

as stated in Table 2.1. The second source is driving force from power transmission as 

shown by Jerman et al. [4]. Ren et al. [8] uses the third source which comes from 

ocean waves and mooring forces. In addition to aforementioned references, 

experimental modal to find natural frequency of mobile gantry crane was conducted 

in [28], while forced vibration due to wind and earthquakes on container crane was 

studied by Wu et al. [29].  

Further, among those references, Ref. [10] and [18] have investigated the 

dynamic responses of a 3D crane structure and closely relate to this thesis. Compared 

to Wu [10], dynamics of payload was not introduced, restricted to planar swing and 

without considering detailed two-sided interaction between gantry crane on the 

flexible crane framework. Besides that, Ju et al. [18] only studied the swinging 

motion of payload in tower crane with stationary trolley. They introduced small 

perturbation in solving payload dynamics for small angle of swing, rigid hoist cable 

and the motion of payload was restricted to pure planar and pure spherical motion. 

They also concerned only in dynamic responses of crane framework.   

2.2.2  Research on Structural Systems Carrying Moving Load 

Researches on elastic structures subjected to moving loads are abundant. A plenty of 

important citations related to moving load are shown in Table 2.2. 

Table 2.2: Moving loads literature review 

No. 
Skeletal 
Structure 
Type 

Moving 
Load 
Type 

Method Remarks Ref. 

1. Beam Moving 
mass Analytical 

A solution for a single-span beam 
carrying a moving mass was derived 
by approximating the total time 
derivative of the mass displacement 
with partial derivative and by using 
as a first approximation; the solution 
without the effect of the mass was 
fully assessed. 

[30] 
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Table 2.2: Continued 

2. Beam Moving 
mass Analytical 

A simply supported elastic single-span 
beam under random loads moving with 
variable speeds. The approach was based 
on the Euler-Bernoulli’s beam theory. 
The results showed that the acceleration 
tends to induce larger deflections, while 
the deceleration smaller ones. The effect 
of a variable speed was significant for the 
deflection of the beam. 

[31

3. Beam Moving 
vehicles Analytical 

The simulations showed that the 
influence of centripetal and Coriolis 
forces, together with vehicle’s mass 
rotatory inertia of a simply supported 
light bridge under a moving vehicle of 
constant magnitude and velocity was 
significant and had to be considered in 
dynamic analysis.   

[32] 

4. Beam Moving 
mass Analytical 

The onset of separation between the 
moving mass and by using the integro-
differential equation of motion and modal 
analysis method. Numerical tests 
revealed that the separation could occur 
easily and had significant effect on the 
dynamic responses of the beam especially 
at high velocity of the moving mass. 

[33], 
[34] 

5. Beam Moving 
mass Analytical 

The possibility of the mass separating 
from the beam by monitoring the contact 
forces between the mass and the beam 
during the motion. The equation of motion 
of Euler beam acted upon by a 
concentrated mass moving at a constant 
speed was formulated by using the 
Lagrange approach and the assumed mode 
method. It was found that separation of 
the mass from the beam might occur for a 
relatively slow speed and small mass 
when the beam was clamped at both ends. 

[35

6. Beam Moving 
mass Analytical 

The equation of motion for a Timoshenko 
beam acted upon by a concentrated mass 
moving at a various prescribed constant 
speed was formulated by using the 
Lagrange approach and AMM. It was 
found that separation of the mass from the 
beam might occur for high axial speeds of 
the mass and such a separation can be 
suppressed by a Winkler foundation of 
large stiffness. 

[36
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Table 2.2: Continued 

7. Beam Moving 
mass Analytical 

Under an accelerating mass, It 
was found that separation of the 
mass from the beam might occur 
for a Timoshenko beam when the 
travelling speed of the mass was 
large due to large initial travelling 
speed or large prescribed 
acceleration. 

[37] 

8. Beam Moving 
mass Analytical 

It was confirmed that the 
deflection under the moving load 
computed using the “moving-
force formulation” was not 
always an upper bound solution 
for the corresponding “moving 
force moving mass” formulation 
for both the Euler beams and 
Timoshenko beams. 

[38] 

9. Beam Moving 
mass Analytical 

Timoshenko beam traversed by 
uniform partially distributed 
moving masses was investigated. 
Equations of motion were solved 
by using a finite difference based 
algorithm. It was observed that by 
increasing the length of the load 
distribution, a decrease in the 
maximum dynamic deflection of 
the beam was obtained which was 
essentially the result of a decrease 
in time during which the total 
load acted on the beam. 

[39] 

10 Beam Moving 
mass Analytical 

The multi-span continuous beam 
traversed by a moving mass at a 
constant velocity was investigated 
using Euler-Bernoulli beam 
theory. Eigen function expansion 
accompanied by the direct 
integration method was used for 
the solution. When the velocity 
parameter exceeded about 0.5, all 
the spans of continuous beams 
seem to change its behavior and 
their local peaks showed an 
increasing tendency with the 
velocity. In the calculated range 
of velocity parameter, the inertia 
of moving mass does not 
significantly affect DAF when the 
value of the mass ratio was less 
than 0.1.  

[40] 
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Table 2.2: Continued 

11. Beam Moving 
mass 

Finite 
Difference 
Method and 
perturbation 
technique 

Investigation of the longitudinal and 
transverse motions of a finite elastic 
beam traversed by a moving mass was 
studied. The results showed that the 
effect of the friction force between mass 
and the beam on the longitudinal motion 
was to be significant.   

[41

12. Beam Moving 
force 

Combined 
analytical 
and 
numerical 
method 

The determination of unique amplitude-
velocity dependence functions for simply 
supported (SS) and clamped-clamped 
(CC) for Euler-Bernoulli beams. There 
existed a unique function describing the 
dependence of the maximum response of 
an arbitrary beam with given boundary 
conditions on the velocity of the 
traveling force. 

[42

13. Beam Moving 
mass 

Combined 
analytical 
and 
numerical 
method 

The influence of various parameters such 
as forward force, retard force, friction 
and convective acceleration of the 
interface between the moving mass and 
the simply supported Euler-Bernoulli 
beam was investigated. The applied 
forward force amplifies the speed of the 
mass and the displacement of the beam. 
The ability to bring the mass to a halt at 
a desired point on the beam was 
accomplished by applying a constant 
reverse force to the mass and/or 
increasing the friction between the mass 
and the beam after the mass had 
achieved specified condition.    

[43

14. Beam Moving 
mass 

Finite 
element 
method 

Continuum discretization for finite 
element models analyzing a moving load 
on an elastic beam was investigated. The 
results indicated that the model accuracy 
could be maintained at an acceptable 
level provided that, in general, the 
number of elements used in discretized 
the support structure continuum is at 
least two to eight times greater than the 
number used in static analysis. 

[44
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Table 2.2: Continued 

15. 
String 
& 
Beam 

Moving 
mass 
and 
moving 
force 

Finite 
Element 
method 

The space-time finite element 
method was proposed for the 
discrete element of the string and 
the Bernoulli-Euler beam. The 
perfect coincidence with the semi-
analytical solutions proved the 
efficiency of the space-time 
approach. The solution method can 
easily be implemented in the 
classical finite element code. 

[45] 

16. Planar 
structure 

Moving 
force 

force-
based 
finite 
element 

The use of force-based finite 
elements to analyze moving force 
in planar structures was developed. 
They proposed new numerical 
integration approach called Gauss-
Lobatto integration. Accurate 
results for the moment and shear 
demand history at specified 
locations in a structure. 

[46] 

17. Beam Moving 
mass 

Classical 
modal 
analysis 

A new correction procedure for 
dynamic analysis of Euler-
Bernoulli beam under moving loads 
was proposed. The Solutions were 
obtained by using classical modal 
analysis. Numerically, the proposed 
corrected solution improved the 
stress response resolution. 
However, it required the knowledge 
of the frequency content of the 
forcing function in order to 
guarantee the robustness their 
method.    

[47] 

18. Beam Moving 
force Analytical 

The non-linear dynamics of an 
Euler-Bernoulli beam under 
moving loads was studied. The 
results showed that the load inertia 
of moving load could only be 
neglected under conditions: when 
the load velocity was higher than 
that which leaded to the resonance 
in the beam and when the moving 
mass was very small compared to 
the mass of the beam. When non-
linearity came into play, beam 
deflection and the resonance 
velocity of the moving load 
increased.  

[48] 
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Table 2.2: Continued 

19. Beam Moving 
force Analytical 

The dynamic response of multi-span 
shape memory alloy (SMA) beams 
subjected to a moving force was 
presented. The important results were 
concluded: unlike the isotropic 
viscously damped beam, SMA beam 
was significantly nonlinear, its behavior 
changed with respect to the moving 
load and higher values of the moving 
load caused more damping effect and 
less Young’s modulus of the SMA. 

[49] 

20. Beam Moving 
mass 

Combined 
analytical 
and 
numerical 
method 

The dynamic behavior of a flexible 
cantilever beam carrying a moving 
mass-spring was investigated. The 
equations of motion were derived by 
Hamilton’s principle, solved 
numerically using the Galerkin method 
and automatic ODE solver. The 
numerical results were compared with a 
closed-form analytical solution obtained 
using a perturbation method. The 
numerical solutions showed that when 
the motion was predominantly bi-
periodic, the results matched well. They 
also identified regions of strong non-
linear coupling between the beam and 
the moving mass.   

[50] 

21. Beam Moving 
mass Analytical 

A clamped-free flexible beam rotating 
in a horizontal plane and carrying a 
moving mass by the Euler-Bernoulli 
beam theory was modeled. The 
equations of motion were derived by 
Hamilton’s principle. The numerical 
bisection method was used to solve for 
the vibration frequencies. The modal 
frequencies as functions of beam 
angular velocity and mass position for 
different values of moving mass. When 
angular velocity of beam was zero, 
modal frequencies decreased or remain 
approximately constant with increase in 
values of moving mass. Increasing of 
angular velocity of beam, the modal 
frequency decreased with increase in 
values of moving mass.  

[51] 
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  Table 2.2: Continued 

22. Beam Moving 
mass Analytical 

Extended work of [51], where the 
equations were solved numerically 
using the fourth-order Runge-Kutta 
method. The peak deflections 
increased with increase in mass and 
decrease with increase in mass 
travelling time. A decrease in the 
mass travelling time caused an 
increase in the steady state vibration 
amplitude under all conditions. 

[52] 

23. Beam Moving 
mass Analytical 

A simple and practical approximate 
technique for determining the time 
response of beam with internal hinges 
and different boundary condition was 
formulated. The theories and the 
results were based on the Bernoulli-
Euler beam and the governing 
equations were derived by using 
Lagrange’s equation. The results were 
then compared with a general-purpose 
nonlinear dynamic finite element 
program. 

[53] 

24. Beam Moving 
mass Analytical 

The development of identification 
method of moving loads on bridges 
was conducted under Euler-Bernoulli 
beam. To evaluate the proposed 
identification methods, a series of 
experiments had been conducted.  

[54] 

25. Bar Moving 
force Analytical 

New method for the stationary 
response of an infinite bar posed on a 
Winkler foundation under constant 
moving loads was proposed. The bar 
was discretized by the Galerkin 
method and solved using the semi-
analytical and the finite element 
method. Comparing with numerical 
solutions with analytical ones showed 
that the proposed method was valid 
for all values of load speed.    

[55] 

26. Beam 
Moving 
harmonic 
load 

Analytical 

Similar with work [55], Numerical 
approach to the stationary solution of 
infinite Euler-Bernoulli beams posed 
on Winkler foundations under moving 
harmonic loads was proposed.  

[56] 
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Table 2.2 shows the development of concept of moving load during the years 

from 1996 until 2008. Mostly, researchers use analytical method to solve moving load 

problem and confined to Euler-Bernoulli or Timoshenko type beam structure. The 

methods to calculate the dynamic responses still expand dynamically, not only for 

finding the dynamic response, but also the methods for identification system purposes 

as shown in Ref. [54].  Mostly, beam structures are analyzed with under condition that 

beam is in stationary position, but Ref. [50]-[52] also investigate the dynamics of 

beam which has angular velocity (large deformation) under moving load.    

2.2.3  Researches on Control of Flexible Crane System  

Recently, much attention has been placed on the modeling of dynamics and control of 

flexible structures. A number of published papers deal with the applications of control 

theory in flexible structures without moving load. Selected references can be referred 

in [57]-[61]. However, it is still rare on application of flexible crane system. 

Generally, control of crane system is implemented with rigid body assumption, either 

in simulation or real time as demonstrated in [62]-[69]. Papers relate to the case of 

flexible structures with a moving load and crane system is shown in Table 2.3. 

 Table 2.3: Control of flexible crane system literature review 

No. System type Controller Remarks Ref. 

1. 

Cantilever 
beam under 
a moving 
mass 

Adaptive 
fuzzy control 

 The dynamic response model of the system 
type was solved by the Duhamel integration 
and iterative procedure by the step-by step 
method. The experimental showed that 
smart material could suppress actively the 
time-varying flexible structure vibration. 

[70] 

2. 
Gantry crane 
with flexible 
cable 

Proportional, 
Derivative 
and coupling 
amplification 
(PDC) 

Theory and experiment for position control 
of the system type was conducted, where 
Galerkin approach was used to incorporate 
spatially varying tension and damping. The 
governing partial differential equations 
horizontally-translating gantry, flexible 
cable and payload were derived using 
Lagrange method. Experimental results 
showed accurate position regulation and 
good cable vibration damping with PDC 
controller.  

[71] 
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Table 2.3: Continued 

3. 

A crane 
mounted on 
a tower-like 
flexible 
structure. 

H  

 Governing equations were derived using 
Lagrange’s equation including Rayleigh 
dissipation function. They applied H  
controller to suppress the vibration of tower 
and the sway of the load in addition to 
control the positions of crane. The control 
experiment showed that the controller was 
effective for the control of the tower crane.   

[72] 

     4. 

An Euler-
Bernoulli 
beam with 
an attached 
mass rolling 
on an 
initially 
curved beam 

Linear 
Quadratic 
Regulator 
(LQR) 

A simple closed-loop feedback control 
combined with the coupled non-linear 
equations of motion was derived by 
Newtonian mechanics. The approximate 
solution of the beam-mass system could be 
obtained by employing Galerkin method. 
Results of their study showed that the 
vibrations of the system can be suppressed 
significantly even if a simplified control 
model was applied.  

[73] 

5. 

Nonlinear 
beam under 
moving 
force 

Time delay 
feedback 

Time delay feedback controller to control 
the bifurcation in nonlinear beam under 
moving force was applied. The bifurcation 
equation of the nonlinear dynamic system 
was obtained using the perturbation method. 
The result indicated that time delay 
feedback controller might work well to 
eliminate the bifurcation. 

[74] 

6. 

Moving 
elastic beam 
fixed on a 
moving chart 
carrying a 
moving mass 

Open-loop   
response 

The open-loop response of moving elastic 
beam fixed on a moving chart carrying a 
moving mass in tracking the pre-designed 
path of the moving mass was carried out. 
The coupled dynamic equations were 
obtained from Hamilton’s principle and 
solved by unconstrained modal analysis. 
The simulated results showed that their 
proposed method can be applied to analyze 
the dynamic behavior and to design the 
model-based controller to suppress the 
vibration of the elastic beam.  

[75] 

7. 

Flexible 
beam 
mounted on 
an elastic 
base. 

Independent 
modal space 

control 
(IMSC) 

The beam was analyzed using a finite 
element approach, where the system 
equations were expressed as state-space 
equations. IMSC was applied for modal 
decoupling of the system and design of a 
vibration controller. They demonstrated that 
the control strategy was effective for 
vibration suppression of the beam system 
under any of types of disturbances.  

[76] 
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Table 2.3: Continued 

8. 

Container 
cranes with 
flexible 
cable 

A control 
law based 
upon the 
Lyapunov’s 
second 
method. 

The container crane with flexible cable was 
modeled as hybrid PDE-ODE system. The 
dynamics of the moving system was derived 
as a cable with tension caused by payload 
using Hamilton’s principle. They revealed 
that a time-varying control force and a 
suitable passive damping at the actuator can 
successfully suppress the transverse 
vibrations.   

[77] 

9. Cable-driven 
crane Input shaping 

Input shaping could counteract the 
influences of vertical acceleration on cable-
driven crane. 

[78] 

10. 

Quay-side 
container 
crane with 
flexible hoist 
cable 

Delayed 
feedback 

It was demonstrated that using new 
frequency approximation can improve the 
performance of a delayed feedback 
controller. 

[79] 

 

2.3 Application of Finite Element Method in Moving Load for Space Frame 

Structure 

A “moving load” refers to a load that varies in time and space, whereas the 

conventional static load varies only in space, while a stationary oscillatory load varies 

only in time. In general, moving load can be classified into three categories; the 

moving force, moving mass and moving oscillator model. In this, the trolley 

construction for cranes is rigid and moving oscillator model can be ignored as 

mentioned in [2]. 

Finite element method has been employed in deriving the equations of motion for 

moving load model on skeletal structures [9]-[13], [45]-[47]. That is because the 

method provides very broad capabilities and versatility in the modeling process and is 

chosen in this thesis to simulate the dynamic behavior of gantry crane system. The 

concept of moving load is derived based on those references, where the concept is 

developed for space frame.    
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2.3.1  Equivalent Nodal Forces for Space Frame Structure 

Moving force neglects the inertia forces of a moving mass and does not consider 

dynamic interaction between moving mass and structure. An element of space frame 

element which traversed by a point force is shown in Figure 2.1.  

The governing equation of motion can be obtained through the application of the 

finite element method for MDoF structural system, geometrically and materially 

linear dynamic is represented as follows [91]. 

           )t(FqKqCqM        (1) 

where      KCM ,, are representing global mass, damping and stiffness matrices of the 

beam,  q  is the nodal displacement vector and its time derivative and )(tF is the 

external force vector.   
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Figure 2.1: Equivalent nodal forces of the s-th space frame element 

The concentrated load traveling across the beam is handled by modifying the 

external load )t(F in Equation (1) into the equivalent nodal forces  121kf ks   as 

shown by in Figure 2.1, where  121ksk   are the numberings for the twelve 

degrees of freedom of the s-th space frame element on which the moving load applied 

and given as follows [10].    
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             
                        T
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s
T

k

tftftftftftftftftftftftf

tfPNqKqCqM

12111098765431

k



 

 (2.2)                                                                                                                   (2)                                                                                           

Term P is the magnitude of the applied concentrated load and  121kNk   is the 

transposition of the shape functions.  

Since this structure is space frame, then the shape functions of space frame 

element are    121110987654321k NNNNNNNNNNNNN  . 

The shape functions and their derivatives are shown in Table 2.4. 

Table 2.4: The shape functions and their derivatives of space frame element [91] 

k  N  'N  ''N  

1. 1  


1
  0  

2. 32 231    
x

266   2
126

x

  

3. 32 231    
x

266   2
126

x

  

4. 1  
x

1
  0  

5.   x
322   2341    

x

 64  

6.   x
322   2341    

x

 64  

7.   
x

1  0  

8. 32 23    


266    2
126

x

  

9. 32 23   
x

266   2
126

x

  

10.   
x

1  0  

11.   x
32   232    

x

 62  

12.   x
32   232    

x

 62  

 



29 
 

The parameter   in the table is derived as follows [9].  

 
X

Sx


     (3) 

where X is the length of the s-th beam element and Sx is local position of the moving 

force from the left end of the sth beam element, at time t , as it can be seen from 

Figure 2.1. In addition, the position, velocity and acceleration of the point mass within 

the structure at any time is assumed to be,  

 00
2

000 ;;
2
1 axtaVxtatVxx                                                         (4) 

where: 0x is the initial position of moving load 

     x is the global position of moving load and its time derivatives 

     0V is the initial velocity of moving load 

     0a is the initial acceleration of moving load 

The local position of the concentrated force P can be converted into the global 

position of as the function of x , i.e., 

    
X

X

X

S stxx






1
                                                                          (5) 

where the numbering for space frame element on which the concentrated force P 

applies at time t  is determined as follows.    

   1









X

txofpartIntegers


                                                             (6) 

Details about the equivalent nodal forces can be referred in [9] and [44]. Because 

the inertial effects of the moving load are not considered, overall matrices property of 

Equation (1) is time-independent.  

2.3.2 Moving Finite Element for Space Frame  Structure 

Inertial effects of moving load can be accounted by extending moving point force 

model into moving point mass, which is assumed that it is always remain in contact 

with structure as depicted in Figure 2.2.  
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This model affects the magnitude and distributions of the external force. It also 

changes the conventional constant overall mass, damping and stiffness matrices for 

the entire system due to the time dependent of the magnitude and location of the 

moving mass. That is the concept of moving finite element developed by Wu [12] to 

take into account the inertial effects of the moving load for portal frame. The concept 

of moving finite element is then developed for space frame structure as depicted in 

Figure 2.2. 

 

s 

X  

V  

Sx  

x  

55 ss d,f  

66 ss d,f  

22 ss d,f  

33 ss d,f  

11 ss d,f  

44 ss d,f  

m  

y  

z  1212 ss d,f  

1111 ss d,f  88 ss d,f  

99 ss d,f  

77 ss d,f  
1010 ss d,f  

 

Figure 2.2: Moving point mass at the s-th space frame element [9] 

The axial  x , vertical  y  and lateral  z  displacement of space frame element at 

position x , can be obtained as follows. 

71 s7s1 dNdNu                                                                                                 (7a) 
  

1282 s12s86s6s2 dNdNdNdNv                                                                 (7b) 

1293 s11s95s5s3 dNdNdNdNw                                                                  (7c) 

where  121 id is are the displacements for the nodes of the space frame element 

at which the moving mass locates. Thus, the Equation (7) can be rewritten as follows.  

      
usuk k

dNt,xu                                                                                                              (8a) 

      
vsvk k

dNt,xv                                                                                                              (8b) 

           
wswk k

dNt,xw                                                                                                             (8c) 
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Terms  7,1kuN uk  ,   12,8,6,2kvN vk   and   11,9,5,3kwN wk  are 

shape functions associated with translation degree of freedoms in three directions 

axial  x , vertical  y  and lateral  z  and terms 
usk

d , 
vsk

d , 
wsk

d are displacements 

in three directions. Terms       t,xw,t,xv,t,xu  depend on position x  and time t .  

Derivatives of  t,xu  with respect to time t  and position x  are: 
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Derivatives of  t,xv  with respect to time t  and position x  are:       
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Derivatives of  t,xw  with respect to time t  and position x  are:            
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Due to the point mass, m is moving along a vibrating path, then Coriolis 

acceleration will occur as shown in Equations (9). An example, Equation (9b) is 

applied to the general element displacement in Equation (8b) yields: 
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This is also applicable for in Equation (8a) and Equation (8c), where the terms 

 'kN and  ''
kN , indicate the partial derivative of shape functions with respect to x . By 

substituting Equation (4) into Equations (9), an expression for the acceleration of the 

point mass,       t,xw,t,xv,t,xu   can be obtained. 
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Equations (11) represent the acceleration of the point mass in terms of the shape 

functions, nodal displacements and the velocity and acceleration of the point mass. 

The equations of the motion for a point mass traversing an elastic beam structure can 

be obtained by substituting Equations (11) into Equation (1) by replacing the point 

force into the point mass yields: 

 

        
         
                  mgNqNNxmNNtxxmK

qNNtxxmC

qNNmM

T
k

'
k

T
k

''
k

T
k

'
k

T
k

k
T

k













2

2                              (12) 

If the point mass is constrained to move at a constant velocity xV  , the equation of 

motion can be written in Equation (13). 
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The system matrices in Equation (13) are time variant, with the entries being 

directly dependent upon the position of the point mass along the beam. The coupling 

terms in Equation (13),    k
T

k NNm ,    'k
T

k NNmV2 ,    ''k
T

k NNmV 2  and 

  mgN T
k are inertial, Coriolis, centrifugal force and gravitational load of moving 

mass, respectively, which is time dependent and move within the structural matrices 

as the point mass travels from one element to another. The moving finite element of 

space frame can be rewritten as mass, damping and stiffness matrices in the following 

equations.  
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2.4 Numerical Integration Methods   

2.4.1 Newmark-    

Newmark’s method [80] has been applied to the dynamic analysis of many practical 

engineering structures. In its application, it has been modified and improved by many 

other researchers. The method is based on the assumption that the acceleration varies 

linearly between two instants of time. The derivation can be illustrated by using the 

Taylor’s series provides a rigorous approach to obtain the following two additional 

equations. 
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Newmark truncated these equations and expressed them in the following form. 
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If the acceleration is assumed to be linear within the time step, the following equation 

can be written: 
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The substitution of Equation (19) into Equation (18) produces Newmark’s equations 

in standard form. 
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Normally, model of large real structures contain a large number of periods which 

are smaller than the integration time step. Unconditionally stable of all time steps for 

numerical integration method is essential. By specifying different integration 

parameters, a number of different direct numerical integration methods are possible to 

be used. In this thesis, Newmark integration method is used with the integration 

parameters  =0.25 and  =0.5, which lead to constant-average acceleration 

approximation.  

2.4.2 Fourth-Order Runge-Kutta  

Estimating the value of the solution 1ny at a time interval t  by using derivative 

information at a single point ny  is the method of Runge-Kutta, as long as the value 

of ny is defined. This method is repeated over the entire range of 

interest  Nn ,...3,2,1,0  to estimate the solution. One of the most popular Runge-

Kutta methods is the fourth-order method, which requires four function evaluations 

per time step [81]. 

 
6

22 43211
kkkktyy nn

                                                          (21) 

Terms ik are estimates of the first derivatives of y  at four locations in the 

integration time interval. Because all ik depend on previous calculated values, this 

method is explicit. The fourth-order Runge-Kutta has the same accuracy as a fourth-

order Taylor series, makes it widely accepted method in numerical integration of non-

linear differential equation. Many practitioners use the fourth-order Runge-Kutta as 

the default integration method. In this thesis, fourth-order Runge-Kutta method is 

utilized.  
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2.5 Control Methods 

All cranes use cables to support the payload. Because the traverse motion of trolley 

during transport operations, the payload has the tendency to swing naturally due to 

traverse motion of trolley. The swinging motion reduces the speed, accuracy and 

safety requirements of crane operations. It lowers the speed of crane operations 

because the payload swing must be avoided before the payload can be safely lowered 

into specified position. The swings make it difficult to perform alignment, fine 

position, or other accuracy driven task. Swing effect also causes safety problems to 

the crane framework. That’s why control methods are needed to suppress the effects 

and it will be discussed in the following subsection.  

2.5.1 Zero-Vibration-Derivative-Derivative (ZVDD) 

Input shaping is an easy and effective way to reduce payload swing in cranes and has 

been implemented on several large cranes [78], [82]-[84]. It is a feed-forward control 

technique by convolving the desired command with a sequence of impulses known as 

input shapers. Figure 2.3 shows how the input shaping works.  

 
 
 
 
 
 
 

 
Figure 2.3: Input shaping process [84] 

The goal of input shaping design is to determine the amplitudes and the impulse 

time locations such that the shaped command make the total response become zero 

vibration.  

There are a number of schemes to design input shapers. In this thesis, Zero 

Vibration-Derivative-Derivative (ZVDD) input shapers are selected to be one of the 

control method in this study. ZVDD consist of four impulses.  
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The amplitude of the impulse and the time location of ZVDD shaper are as 

follows:    
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    where:   
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The derivation of Equation (22) and (23) can be referred to [84]. 

2.5.2 Fuzzy Logic Controller (FLC)  

 
The field of fuzzy system and control has seen great progress, motivated by practical 

success in controlling industrial processes. The fuzzy controller uses a form of 

quantification of imprecise information (input fuzzy sets) to generate by an inference 

scheme, which is based on a knowledge base of control force to be applied to the 

system. 

The benefit of this quantification is that fuzzy sets can be represented by a unique 

linguistic expression, such as small, medium, or large. The linguistic representation of 

a fuzzy set is known as a term, and a collection of such terms defines a term-set, or a 

linguistic control strategy. The logical controller is comprised of four primary 

components as shown in Figure 2.4. 
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Figure 2.4: Block diagram of Fuzzy logic controller [85] 

 Fuzzification Interface, FI 

Fuzzification is defined as mapping of measured input domain into fuzzy values in 

certain domain. This process consists of taking input variables and calculating its 

fuzzy values based on respective membership function. Input variables must belong to 

universe of discourse of membership function which generates membership degree 

between 0 and 1.  

 
 
 
 
 

 
 

 
 
 
 

Figure 2.5: Trapezoidal membership function [86] 
 

Input variable of fuzzy control in Figure 2.4 is the error between output y and set-

point r. If this error is denoted by x and belongs to the universe of discourse X, then a 

fuzzy set A in X is defined as a set of ordered pairs. 

      Xxx,xA A                                                                                                      (24) 

Term  xA is called the membership function of X in A. The membership 

function maps each element of X to a membership degree between 0 and 1. 

Membership function has several forms, such as triangular, trapezoidal, gaussian, 

sigmoidal and etc.  
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Triangular and trapezoidal membership functions are general used in fuzzy 

control due to their simple function. Basically, triangular membership function is 

specific form of trapezoidal. Trapezoidal membership function is defined by four 

parameters  d,c,b,a  as shown in Figure 2.5, where degree of membership function is 

calculated as follows.  
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If the input variable for fuzzy inference system is more than one, ex. x and y, then 

fuzzy set operations are needed. Fuzzy set operations use logical connective operators 

such as AND (conjunction), OR (disjunction) or NOT (complement). Logical 

operations are described as below: 

1. T-norm operation ‘ ’ 

 T-norm operation ‘ ’ is defined as intersection operation of two sets as follows. 

 )y(μ)x(μ))y(μ),x(μ(Tμ BABABA                                                   (26) 

 T-norm must satisfy the following requirements: 
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where  .1,0y,x   

2. T-conorm’ ’ 

 T-conorm operation ‘ ’ is defined as union operation of two sets as follows. 

)y(μ)x(μ))y(μ),x(μ(Tμ BABABA                                                    (28) 

 T-conorm must satisfy the following requirements: 
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10

                                                           (29) 
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where  .1,0y,x   

3. The complement operator is represented by  

                    y1yor,x1x BBAA                                                    (30) 

 Fuzzy Inference Engine, FIE and Knowledge Base, KB 

After degree of membership for input and output variables is determined, if-then rules 

are generated to connect between input and output variables. In this stage, decision 

making is conducted based on fuzzified input variables based on knowledge bases. 

These knowledge bases are generated through intuitions which are extracted from 

knowledge of control designer to achieve specified performance of controller.    

Fuzzy f-then rules, denoted by R are groups of if-then rules which are presented 

as follows.  

 )M()2()1( R,...,R,RR                              (31) 

with  

 
   

 







qqii

ppii

Gisy,,GisyTHEN

FisxandandFisxIF:R
                                                                      (32) 

In Equation (32),  Tn1 x,,xx  is input vector and  Tn1 y,,yy   is output 

vector in fuzzy system. Terms 
iF  and 

jG  are fuzzy sets symbol in iU  and jV , 

where np1  , mq1   and  = 1, 2,…, m. Based on equation above,  R  can be 

decomposed in q rules: 

   )(
q

)(
1 R,...,RR                                                                (33) 

 where 
   

 
 

jj

ppiij

GisyTHEN

FisxandandFisxIF:R
                                                        (34) 

with j = 1, 2,…,q. 

Interpreting an if-then rule involves distinct parts. Firstly, evaluating the “IF” part 

or called antecedent which involves fuzzifying the input and applying any necessary 

fuzzy operators.  
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Secondly, applying that result to the “THEN” part or called consequent. This 

process is called implication. Example: say A and B are fuzzy sets in universe of 

discourse, X and Y, then fuzzy implication AB or “IF A then B”, defined as fuzzy 

sets in XY with degree of membership.                                

 )y,x()x()y,x( BABA                                                                        (35) 

Fuzzy inference is the process of formulating the mapping from given input to an 

output using fuzzy logic. The mapping then provides a basis, from which decisions 

can be made or patterns discerned. The process of fuzzy inference involves 

membership function, fuzzy logic operator, and if-then rules. In general, one rule by 

itself does not do much good. Two or more rules are needed to achieve control 

performance. The output of each rule is a fuzzy set. The output fuzzy sets for each 

rule are then aggregated into a single output fuzzy set.  

Fuzzy inference engine uses fuzzy rules to map fuzzy set in U into fuzzy set in V 

based on fuzzy operators. In FIE, “IF” part of )(
iR  is taken as Cartesian product 

of 
p1 F,...,F , while )(

jR  is taken as implication of 
jp1 GF...F  . Example: A is 

fuzzy set in U, and then every )(
jR  from equation above will determine a fuzzy set 

)(
jRA   in Vj based on following supstar composition. 

   
    

 )y()x(...)x()x(sup

y,xxsup)y(

jGpF1FAUx

jGF...FAUxjRA

jP1

jP1
)(

j












                        (36) 

 where jj Vy  . Final fuzzy set   )M(
j

)1(
jjj R,...RRRA   in jV   is determined by FIE 

which is obtained through combining Equation (36) for M,...,2,1   m,,2,1   by 

using T-conorm .   

)y(...)y()y( jRAjRAjRA N
j

1
jj                            (37) 

Based on equations above, FIE is to map fuzzy set A in U into fuzzy set RA  in 

V by following relationship. 

      TmRmA1RARA y,...,yy
1                                        (38) 
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Since the decisions are based on the testing of all of the rules in a FIE, the rules must 

be combined in some manner in order to make decision.  

Aggregation is the process by which the fuzzy sets that represents the outputs of 

each rules are combined into a single fuzzy set. The input of the aggregation process 

is the list of truncated output functions returned by the implication process for each 

rule. The output of the aggregation process is one fuzzy set for each output variable. 

The general operators for aggregation are max (maximum) and sum (simply the sum 

of each rule’s output set). Finally the resulting set is defuzzified or resolved to a single 

number as described in the following description. 

 Defuzzification Interface, DFI 

The input for the defuzzification process is a fuzzy set (the aggregate output fuzzy set) 

and the output is a single number. As much as fuzziness helps the rule evaluation 

during the inference system, the final desired output for each variable is generally a 

single number. However, the aggregate of a fuzzy set encompasses a range of output 

values, and so must be defuzzified in order to resolve a single output value from the 

set. Defuzzification based on centroid calculation is employed in this thesis due to its 

popularity. The calculation is presented as follows.   
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                                                                              (39) 

where  


jy  is point in jV when )y( jG j
  achieves maximum value. Value of 

)y( jRA )(
j


  in above equation is equation obtained from Equation (37), where j = 1, 

2,…,m.  

Based on inference process, there are several inference systems of fuzzy logic in 

its application. In this thesis, Mamdani is chosen as fuzzy inference system. That is 

because this fuzzy inference system is intuitive compared then other types of 

inference system [86].  Overall, this inference system is shown in Figure 2.6. 
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Figure 2.6: Mamdani fuzzy inference system [86] 

2.5.3 Proportional Integral Derivative (PID)  

PID controllers are a simple feed-back control technique that is very common in 

industrial control application. PID controller consists of three separate parameters, 

namely Proportional (P), Integral (I) and Derivative (D). Those gains are designed to 

track the process variable into the desired value (set-point) by giving corrective action 

in order to match between the process variable with the desired variable.  

 

dt
de

 edt

r y  e 

K i 

K d 

K p + + 
+ 
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_ Plant 
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Figure 2.7: Block diagram of PID controller [87] 

Based on the block diagram shown in Figure 2.7, output of PID controllers is as 

follows: 

    
dt

)t(deKdt)t(eK)t(eKtu dip                 (40) 

where u(t) is control action. Error e  between the output y and set-point r  will be 

manipulated by gains of proportional  pK , integral  iK  and derivative  dK .   
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The controlled process variable can become unstable and high overshoot can 

occur, when the gains of proportional, integral and derivative are not optimally set. 

Since PID controllers are linear, their performance in nonlinear system may or may 

not be optimal. PID controller performance may be enhanced effectively by 

combining it with other controller methods to be adaptive and robust. In some 

applications, dK is turned off, and it is known as PI controller. Vice versa, if the iK is 

turned off, and then it is known as PD controller. 

2.6 Summary 

Researches relate with dynamic of crane system carrying a moving load are present in 

Table 2.1. This table contains the type of crane systems which studied by many 

researchers. Dynamic response of respective crane system is generally obtained 

numerically either analytical or numerical method. The corresponding references in 

conjunction with the title of this thesis are [5]-[6] and [9]-[12]. 

The literature review is extensive for vibration of structural system due to moving 

load The methods to calculate the dynamic responses still expand dynamically, as 

seen in Table 2.2. This table covers only selected papers to represent the progress 

research of moving load. 

Active control for flexible structure can be found in Table 2.3. It is shown that the 

application of control system is still rare on flexible crane system. The accessed 

literatures inform that references in [72], [77] and [79] have implemented control 

method in flexible crane system. 

Selected background materials for supporting theory are presented which cover 

the concept of equivalent nodal forces and moving finite element for space frame, 

theory of utilized numerical integration and control methods.   
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CHAPTER 3 

METHODOLOGY 

 

3.1  Gantry Crane System Description 

Gantry crane system can be divided into two subsystems, namely gantry crane and 

stationary crane framework. Gantry crane incorporates interaction among trolley, wire 

rope as hoist cable and payload which is manipulated by trolley and hoist mechanism. 

The payload is grabbed using hook system, which is then hoisted from trolley by 

means of cable. For simplicity of the characteristics of the physical gantry crane, 

several assumptions are put forward to the proposed dynamical model. Mass of trolley 

and payload are modeled as lumped mass which is connected by elastic hoist cable. 

Payload and its cable behave as pendulum model as depicted in Figure 3.1. The 

payload has two swing angles with respect to the inference frame:   is denoted as 

angle between the Tx -axis and TT yx -plane, while notation  is the angle between the 

cable to TT yx -plane. The payload swings either small or large swing angles. Friction 

between trolley and the top beam of crane framework, hoist cable and drum in hoist 

system and dynamics of trolley and hoist drive mechanism are not considered. 

Some gantry cranes are equipped with wheels and may run along a parallel pair of 

rails, as shown in Figure 1.1, while the others are not. According to Wu [10], even it 

is equipped with wheels; the vibration effect of the entire crane framework can be 

negligible because of low and constant speed. This assumption makes the supports of 

crane framework can be fixed to the ground, as shown in Figure 3.1. It is noted that 

the figure above is a simplified model of gantry crane system which is depicted in 

Figure 1.1. Structural members of crane framework have constant cross-sections, 

materially and geometrically linear so it is only applicable for small deformation.  
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Because the crane framework is categorized as space frame, the used structural 

element for crane framework is 3D beam element. 

 

Z  

Y  

X  

BL  

FH  
pc  

  

Tm  

Pm  

    

xf  

k  

 

Figure 3.1: Model of flexible gantry crane system 

3.2 Dynamic Analysis Scheme 

The dynamic analysis stage is illustrated in the scheme shown in Figure 3.2. The 

derivation of dynamic model for a flexible gantry crane system is the first step in 

model-based research. To obtain the equations of motion, gantry crane system is 

described in Section 3.1 and discussed further in Chapter IV including the proposed 

numerical solver. To investigate the behavior of the flexible gantry crane system, the 

simulations are performed in three stages, namely static, modal and transient analysis.  

Modal analysis is the stage to calculate the natural frequencies and corresponding 

modes of vibration for the crane framework. Transient analysis is conducted under 

three different cases, namely swinging payload with stationary trolley, stationary 

payload with moving trolley and moving trolley with swinging payload.  
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The results are time histories of framework and payload swinging as functions of 

limited set parameters for quite simple but representative for the dynamics of the 

gantry crane. Time history of gantry crane response are verified with the rigid model 

of gantry crane, while the time history of crane framework response is measured at 

the central point Pc  of the top beam  and as comparison, static analysis is used.  The 

detail flowchart of dynamic analysis is given in Appendix A. 

 

Static Analysis 

Transient Analysis 
 

Modal Analysis 

Stationary Payload with 
Moving Trolley 
(Moving Load) 

 

Moving Trolley with 
Swinging Payload 

 

Swinging Payload with 
Stationary Trolley 

 

Equations of Motion 
of Flexible Gantry 

Crane System 

Time History Post Processing: 
- Response of Gantry Crane 
- Response of Crane Framework at the Central Point Pc  of the Top Beam 

  

Figure 3.2: Dynamic analysis stage 

3.3 Control System Methods 

The control system strategy is illustrated in the scheme shown in Figure 3.3. Control 

methods are utilized to suppress dynamical effect of gantry crane motion and the 

effect of structural flexibility. Because of model-based control, plant model in 
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controller design and simulations are taken from equations of motion of flexible 

gantry crane system (see Chapter IV for detail).  

   Zero-Vibration-Derivative-Derivative (ZVDD) is employed as open-loop 

control system, while PID and FLC are applied as controller for closed-loop control 

system. Performance of the three controllers are evaluated in capability of transferring 

the payload and suppressing the swing response of the payload simultaneously, with 

the flexibility of crane framework and hoist cable are taken into account into the plant 

model. Control simulations are conducted to show the effect of structural flexibility 

on controller performance compared to rigid model assumption.  

 

Open-Loop 
Control System 

 

Closed-Loop 
Control System 
 

 ZVDD 
 

 FLC 
 

 PID 
 

Equations of Motion 
of Flexible Gantry 

Crane System 

Controller Performances: 
- Swing Angle 
- Trolley Position 
- Trolley Velocity 

  

Figure 3.3: Control system strategy  
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CHAPTER 4 

SYSTEM MODELING 

 

4.1  Introduction 

The goal of this chapter is to derive the equations of motion of gantry crane. Finite 

element method is utilized to model the framework and is applied in Section 4.2. 

Dynamics of flexible gantry crane is derived using Lagrange’s equations in 

conjunction with moving finite element method, and applied in Section 4.3. Both 

equations of motion of gantry crane and framework are then combined to form 

integrated finite element formulation. Some cases are discussed based on the derived 

equations and described in Section 4.4. To solve the integrated equations, the 

numerical approach is presented in Section 4.5. Finally, summary for this chapter is 

written in Section 4.6. 

4.2  Dynamics of Crane Framework 

The crane framework model is established by the finite element method, where the 

structural information of the framework can be expressed through the direct stiffness 

method. By using the direct stiffness method, the model can be established just by 

introducing the global mass, damping and stiffness matrices of the crane framework. 

When the framework is modeled using finite element method, then the equations of 

motion will take the form, in geometrically and materially linear dynamic is the same 

with Equation (1) and rewritten as follows [9]:  

                 ,)(tFtqKtqCtqM ststststststst                                          (41)                              
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where      ststst KCM ,, are mass, damping and stiffness matrices of the crane 

framework, respectively. Terms         tqtqtq ststst ,,  are the acceleration, velocity 

and displacement vectors for the whole framework, respectively.  
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Figure 4.1: Traverse motion of flexible gantry crane model with elastic 

deformation of crane framework  

 
Term )t(Fst is the external force of gantry crane on the crane framework through 

the contact point between the trolley and crane framework.  

These external forces vector traverse to the every node along the top beam of 

crane framework, make its position is time-variant as shown in Figure 4.1. The 

external forces can be tackled by modification of  )t(Fst in Equation (41) as per 

Equation (2) and can be rewritten [44]: 

                  0fNtqKtqCtqM T
kstststststst                                          (42)   

where kN are the shape functions of space frame element as written in Table 2.4   and 

0f is external forces acting on the top beam of crane framework.  

By assuming that the gantry crane is always in contact with the top beam, there 

will be transmitted force to the crane framework from gantry crane through the cable 

and vice versa.  
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To calculate the external forces which cover the inertial force of    gantry crane 

and swing effect of payload at the contact point between trolley and crane framework, 

Lagrange’s equations will be employed and derived in the following section. 

4.3  Dynamics of Flexible Gantry Crane  

The equations of motion of flexible gantry crane as moving lumped mass with swing 

effect from payload on flexible crane framework can be derived by Lagrange’s 

equations, with the following form: 
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d

TTTT,TTTT

i                                 (43)                                 

where the first three terms of   ,,x,w,v,uq ,TTTT  are defined as the generalized 

coordinates to describe the elastic deformation in the three directions in terms of 

equivalent nodal displacements and the rest is trolley and payload motion. General 

velocity of the system is  .,,,x,w,v,uq TTTT    The Lagrangian L  is defined 

as ,PKL  where K  is kinetics energy and P  is potential energy of system. 

Generalized force is denoted as if , where they are yx ff , and zf  applied input force 

for the x, y and z motions respectively. 

The position vector of trolley Tr  and payload pr  as shown in Figure 4.1 can be 

expressed as follows. 

       kt,xwHjt,xvit,xu)t(xr TFTTTT                                              (44a) 

          
    ksint,xwH

jcoscost,xvicossint,xu)t(xr

PTF

PTPTTP







           (44b)                              

where i, j and k are unit vectors along the-x-, y-, and z-axis, respectively. For 

convenience, elastic displacements in Equations (44) can be expressed in term: 

           t,xwt,xww,t,xvt,xvv,t,xut,xuu
TTT xxTTxxTTxxTT      (44c)  
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where term Tx is position of moving trolley carrying a swinging payload in time 

dependent manner and so are terms TTT w,v,u . Referring to Equations (44), the 

flexibility of crane framework  TTT w,v,u and hoist cable    is introduced in the 

position vector of trolley and payload. The velocity vector of trolley and payload can 

be obtained by deriving Tr  and Pr respective to time as follows. 

       kwjviuxr TTTTT                                                                    (45a)     
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                                                                                                                                 (45b)                                                                                                

The flexibility of hoist cable is modeled as one linear spring with stretched 

length  . This is sufficient approach since the cable is assumed to be in tension 

during normal crane operation [79]. The linear spring force of hoist cable is as 

follows.  

   pk kkF                                                                                             (45c)   

It is noted that notation k  is cable stiffness, while p is unstreched hoist cable.    

Notation Tx and its derivative indicate trolley position and velocity, while  and its 

derivative indicate hoist cable displacement and velocity. The total kinetics energy of 

the system K in terms of generalized coordinates and velocities is 
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where TK  and PK  are the kinetics energy of the trolley and payload, respectively. The 

total potential energy of the system P  is  
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where TP , PP  and KP are the potential energy of the trolley, the potential energy of the 

payload and cable, respectively. Notations ,mT Pm and g  are the mass of the trolley, 

payload and the acceleration of gravity, respectively. Using the Lagrangian operator, 

the following equation is derived as Equation (47a). 
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Due to terms  TTT w,v,u are displacements of crane framework at position Tx  

and time t , then   
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First, the equation of motion associates with the generalized coordinate Tuq  is 

derived as follows. 
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                  (48a) 

Then, the equation of motion associates with the generalized coordinate Tvq   is 

determined to be of the following form. 
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        (48b)     

Next, the equation of motion associates with the generalized coordinate Twq   can 

be derived and yields Equation (48c). 
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Then, the equation of motion associates with the generalized coordinate Txq   can 

be derived as 
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Then, the equation of motion associates with the generalized coordinate q  : 
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Next, the equation of motion associates with the generalized coordinate q  can be 

derived as follows.  
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Finally, the equation of motion associates with the generalized coordinate q  can 

be derived as follows. 
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                  (48g)                       

Equations (48a)-(48c) represent external forces vector which cover inertial forces 

from flexible gantry crane and swing effect of payload to the crane framework at the 

contact point between trolley and crane framework. It can be written in form: 
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where xf0 , yf0 and zf0 are the corresponding external force components in the x, y 

and z direction. The magnitude of these external forces is given by Equations (48a) - 

(48c) and rewritten as 

  




































 






 





 






 





 





PP

PP

PP

PP

Pp

TT
'

TT
''

TT
'

TTpTx

cossinsinsin

coscossincos

sinsinsincos

cossincoscos

m

xxuxuxuummf





























2

21

112

11

2

2

2

2
0

                  (50a)      

  

 gmm

coscossincos

cossincoscos

sincossinsin

coscoscossin

m

xvxvxvvmmf

pT

PP

PP

PP

PP

Pp

T
'

TT
''

TT
'

TTpTy






































 






 





 






 





 

































2

21

112

11

2

2

2

2
0

   (50b)                                                                                                    

  


























 





 





PP

PP
Pp

T
'

TT
''

TT
'

TTpTz

sincos

sincos
m

xwxwxwwmmf

















2

11

2

2

2
0

                                    (50c)                                                                                                       

As per Equations (41) and (42), external force vector can be written in the following 

form: 
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where   121k,Nk   is shape functions of 3D frame element as per Table 2.4, 

and   71,kuN uk  ,   12862 ,,,kN vk   and   11953 ,,,kwN wk  are shape 

functions associated with translation degree of freedoms in three directions, axial 

 X , vertical  Y  and lateral  Z  which is compatible with Equation (8). 

By combining and manipulating Equations (42) and (51), and referring to 

Equations (14)-(16), integrated finite element formulation will be generated as 

follows.  
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where 443322443322443322 K,K,K,C,C,C,M,M,M  are given by 
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The term Tx  in Equation (52) is the acceleration of trolley which appears as the 

forcing term in payload dynamics, if input force for gantry crane is set up to be zero. 

It can be observed that at 0t , there is no effect of moving trolley carrying a 

swinging payload to the crane framework, except the weight of trolley and payload 

mass  gmm PT  itself as a static force to the crane framework.  

Inertial, Coriolis, centrifugal force and gravitational force effects of moving mass 

to the framework are presented by Equation (52), where notations  TTT w,v,u  and 

its derivative indicate the nodal displacements, velocities and acceleration, 

respectively according to the position vector of trolley and payload as per Equation 

(44c). Vice versa, notation r  and its derivative indicate vectors of displacements, 

velocities and accelerations for the rest of the degrees of freedom of the crane 

framework. 

 



60 
 

 Equations (48d)-(48g) are dynamics of gantry crane coupled with dynamics of 

crane framework and call for some remarks. 

1. The term, xf is input force or driving force for the trolley motion while  PT mm   

is mass total from trolley and payload. This term is an equivalent lumped mass 

which will be effect in the crane framework. Compared than equivalent mass 

proposed by [10], this term is different. Equivalent mass is denoted 

as  2cosPT mm  . This discrepancy occurs because [10] neglected the 

centrifugal force of the swinging payload. By considering the centrifugal force, it 

leads to the condition that the magnitude of total mass is not time-dependent, but 

position of the mass total is still time-variant as reported in [5], [6] and [11].  

2. Equations (48d)-(48g) and (52) are equations of motion which represent the 

coupling between the dynamics of crane framework and gantry crane. Equation 

(48d) presents dynamics of trolley motion with the input force, while Equations 

(48e)-(48f) are dynamics of payload.  Equation (48g) is dynamics of hoist cable, 

where appears only when there is flexibility in hoist cable. 

3. Trolley acceleration,  Tx  appears as forcing term to the dynamics of gantry crane 

as shown in Equations (48e)-(48g) if the trolley motion is prescribed. 

4. There are contributions of axial, lateral and vertical acceleration of crane 

framework on the dynamics of gantry crane. These contributions provide flexible 

moving support for the trolley carrying a swinging payload. 

5. There are effects of Coriolis and centrifugal forces in Equation (52) due to 

 PT mm  moves on deformed crane framework.  

6. Equations (48d)-(48g) and (52) have led to a system of equations which dynamics 

of gantry crane are dependent on the dynamics of crane framework and 

conversely. There is a bidirectional coupling between crane framework and gantry 

crane, where flexible support of the gantry crane motion offered by vibration of 

crane framework. This result is also found by [5] and [6].   

7. Equation (52) indicates that the overall mass, damping and stiffness matrices of 

the crane framework are time-variant, where the mass, damping and stiffness 

matrices of the moving finite element of space frame are given in Equations (14)-

(16).  
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Structural damping matrices in the left side of Equation (52) is assumed 

proportional to the combination of total mass  M  and stiffness  K  matrices of 

gantry crane system. Under this assumption, The Rayleigh damping theory is 

therefore used. The damping matrices can be written as [91]: 

     KbMaCst                                                                                                             (53)                                                             

If the damping ratios m  and n associated with two specific frequencies m , n , 

the same damping ratio is applied for both control frequencies, 1 and 2 ; i.e., 

21  . Rayleigh damping factors, a  and b  can be calculated using the solution 

of Equation (54), while total damping matrix  C  is calculated based on Equation (52). 
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Finally, finite element model of crane framework is shown in Figure 4.2 below. 
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Figure 4.2: Finite element model of the crane framework                                                                                        
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4.4  Some Cases on the Equations of Motion  

The integrated finite element formulation in Equations (48d)-(48g) and (52) contain 

the motion of trolley ( Tx and its derivatives), the motion of payload (  ,  and their 

derivatives), the motion of hoist cable (  and its derivative) and the motion of flexible 

crane framework. Those equations reflect three loading cases on gantry crane system 

as depicted in Figure 4.3 below.  

 Dynamic analysis of flexible gantry crane system 
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Figure 4.3: Three loading cases on flexible gantry crane system 

                                                                                                                                                                                                                                                             
For each case, the equations of motion can be written:

    
 

Case I 

Trolley locates at the central point Pc of the top beam of crane framework, while the 

payload swings freely with initial condition.  Equations of motion of the system will 

be under swinging motion of payload as case I. 
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                                                                                                                                                           (55d)                                                                                                                             

 Under the assumptions that the crane framework and hoist cable are to be rigid, 

vibration of the crane framework and hoist cable vanish in the Equations (55a)-(55d).  

Equations of motion of the system can be reduced into classical pendulum system 

with fixed support or called rigid model for case I.                        
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                                                                   (56b)   

 
Case II 

If there is no swinging motion of payload, equations of motion of the system in 

Equation (52) will be moving load case as case II. Equations (57a) and (57b) indicate 

that the trolley and payload is taken as moving mass, its inertial effect is considered. 

Vice versa, if inertia effect is negligible, then it will be taken as moving force where 

00 xf and the only external force which subjected to crane framework is vertical 

force  gmmf PTy 0 . 

          

     

   
   














































































































































































































0

0

000
000
000
0000

000
000
000
0000

000
000
000
0000

44

33

22

44

33

22

44

33

22

gmmN
xmmN

w
v
u

K
K

K
K

w
v
u

C
C

C
C

w
v
u

M
M

M
M

pT
T

vk

TpT
T

uk

T

T

T

r

st

T

T

T

r

st

T

T

T

r

st



















                                                                                                                                 
(57a)
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(57b)
 

     

Case III  

This is the case where the flexible gantry crane moves on flexible crane framework 

based on Equations (48d)-(48g) and (52). Similar with case I, under the assumptions 

that the crane framework and hoist cable are to be rigid, vibration of the crane 

framework vanishes in those equations.  Equations of motion of the system can be 

reduced greatly and the results are the same with Newton’s motion law for classical 

pendulum system with moving support or called in this thesis as rigid model for case 

III.  
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4.5  Numerical Approach  

The computational scheme for solving Equations (48d)-(48g) and (52) is based on 

Newmark- and fourth-order Runge-Kutta method simultaneously. The crane 

framework responses are calculated by Newmark-  method of direct integration. The 

two parameters are selected as =0.25 and  =0.5, which implies a constant average 

acceleration with unconditional numerical stability. Gantry crane responses are 

calculated by fourth-order Runge-Kutta method. For each integration step, Newmark-

  and fourth-order Runge-Kutta method are combined to obtain the responses of 

crane framework and crane system. 

The computational procedures with a time interval of t  that performs the direct 

numerical integration can be summarized as follows.    

1. Set initial condition for velocity and acceleration. 

    00  tqq and     00  tqq                                                    (60) 

2. The initial external force vector     00  tFF  is calculated using the terms on 

the right side of Equation (52) by using initial conditions (   ,, ,   ,, and   ,,  

) of payload.   

3. The initial acceleration vector is then calculated as:    

            000
1

0 qKqCFMq ststst                                                 (61) 

4. Evaluation of constants from 0a to 7a  .The parameters ia  are shown in Table 4.1. 
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Table 4.1: Newmark’s parameters 
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5. For each time step: 

- Generate the overall mass matrix  M and overall stiffness matrix  K  of the 

system by using Equation (52). 

- Calculation of the first and second natural frequencies ( 1 and 2 ) of the 

overall crane framework. The overall damping matrix  C  is calculated using 

Equations (52) and (53). 

- Equations (48d)-(48g) are solved to obtain  ,, ,   ,, and   ,,  using 

fourth-order Runge-Kutta and external force vector   ttF  is then updated. 

The force vector   ttF  denotes the external loads of the system at 

time tt  . 

- Equation of motion of the system is represented as below. 

             tttttt FqK                                                                                 (62)                                                                                                                       

The effective stiffness matrix  K and the effective load vector F  are defined as 

follows. 

              ttttt CaMaKK 10                                                                      (63) 

                tttttttt qaqaqaMFF  320                                          (64) 

 
where      ttt K,C,M  are, respectively, the stiffness, mass and damping matrix of 

the system evaluated at time t.  

- The displacement, velocity and acceleration responses are computed with 

satisfying Equations (65) – (67).  
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            tttttt FKq 


  1                                                                                 (65) 

                   ttttttt qaqaqqaq  320                                                        (66) 

                 tttttt qaqaqq    76                                                                     (67)  

4.6 Summary 

Equations of motion of flexible gantry crane system are derived using Lagrange’s 

equations in conjunction with moving finite element and finite element method. The 

equations of motion represent the coupling between the dynamics of crane framework 

and gantry crane, namely dynamics of trolley motion with the input force, dynamics 

of payload, dynamics of hoist cable and dynamics of crane framework. 

The system equations describe that gantry crane behaves as an elastic pendulum 

with moving flexible support which undergoes accelerations in three directions due to 

the vibration of crane framework. These accelerations are provided by the flexibility 

of crane framework and affected by the flexibility of hoist cable. The derived system 

equations are coupled differential equations with nonlinear exciting forces. Some 

cases are stated in Section 4.4, where the equations of motion reflect three loading 

cases on gantry crane system, namely swinging motion of payload as case I, moving 

load as case II and moving trolley carrying a swinging payload as case III. By 

assuming the crane framework and hoist cable are rigid, the generated governing 

equations correctly simplified to nonlinear equations, which exactly fulfill Newton’s 

of motion for classical pendulum system either with fixed support or moving support. 

The equations of motion for dynamics of gantry crane system with flexibility in 

crane framework and hoist cable are then solved numerically by two kinds of 

numerical integration method simultaneously, namely Newmark- and fourth-order 

Runge-Kutta method simultaneously. These methods are utilized to obtain the 

dynamic responses of crane framework and gantry crane, either small or large swing 

angles of payload. 



68 
 

CHAPTER 5 

DYNAMIC RESPONSES AND ANALYSIS 

 

5.1  Introduction 

Dynamic analysis of gantry crane system covers three types of loading condition. 

Firstly, it is induced by swinging payload with stationary trolley as case I. The 

analysis is then extended to moving trolley with stationary payload (moving load) 

traverse on skeletal structures as case II, and finally under moving trolley with 

swinging payload as case III. The cross-sections of crane framework are uniform, 

isotropic and homogeneous material properties. The gravitational acceleration is 

g 9.81 m/s2 and time interval is t = 0.005 s. The issue of total number of elements 

and nodes will not be treated as a parameter that will be varied in the simulations. 

5.2  Free Vibration of Gantry Crane Framework 

Free vibration analysis is firstly conducted. The model and the dimensions for crane 

framework are taken from [89] and file data is put in Appendix B. The first three 

mode shapes of crane framework, which is the most pertinent of crane framework 

corresponding to the crane framework to vibrate in axial  X , vertical  Y and 

lateral  Z  are shown in Figure 5.1.  

It can be observed that the first mode shape with natural frequency 

Hz 6.56f 1 is dominated by axial deformation of crane framework. The second is 

dominated by lateral deformation of the top beam of crane framework with natural 

frequency Hz  6.65f 2 . Vertical deformation of the top beam of crane framework is 

found in the third mode shape with natural frequency Hz  6.78f 3 .  
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For verification of natural frequencies generated by present computer code, 

ANSYS is used as comparison and presented in Table 5.1 and also verified with 

analytical method in free vibration of the simply supported beam (see Appendix C).  It 

is seen that the first five natural frequencies obtained in ANSYS and present code are 

almost identical and reliable for the next dynamic analysis of gantry crane system.  

 
 

(a)  

 

 
(b)  

               

                             
(c)  

 
Figure 5.1:  Corresponding mode shapes of crane framework, (a) 1st mode 

shape, 6.56 Hz (b) 2nd mode shape, 6.65Hz (c) 3rd mode shape, 6.78Hz 

Table 5.1: Verification of natural frequency and mode shape 

Natural frequency 
(Hz) 

Mode number 
1st 2nd 3rd 

ANSYS  6.55 6.64 6.77 
Present code  6.56 6.65 6.78 
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5.3  Simple Case of a Coupled Dynamic System 

Before proceeding into dynamic analysis of gantry crane system, the developed 

computer program must be verified first by solving a simple coupled dynamic model. 

The model and its equations of motion are taken from [88], who studied the dynamic 

sub-structuring technique to a simple nonlinear system consist of pendulum attached 

to a mass-spring-damper (MSD). The configuration of the system is depicted in 

Figure 5.2. The parameters of the system are shown in Table 5.2.  

 

MSD  

K  C  

MSD  

m  

y  M  

 

Figure 5.2: Pendulum attached to a MSD system 

Table 5.2: Pendulum Attached to a MSD parameters  

Parameters 
Mass of MSD, M   kg4  
Damping of MSD, C   s/kg20  
Stiffness of MSD, K  
Pendulum mass, MSDm  

 m/N5000  
kg.90  

Pendulum length, MSD   m.50  

Initial swing angle, 00   ,,o  
Initial vertical displacement, ooo y,y,y   

 005 ,,o  
0010 3 ,,mm  

 

5.3.1  Pendulum Attached to a MSD under the Action of Pendulum Motion  

Under the action of pendulum motion, the equations of motion are solved by 

developed Newmark- -Runge-Kutta and state space approach for linear model and 

Newmark- -Runge-Kutta and ODE-45 for nonlinear model. The displacements of 

linear model are shown in Figures 5.3 and 5.4, and very good agreement between the 

solutions offered by both methods.    
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Figure 5.3: Vertical displacement responses (a) Time window for 60 s 
(b) Time window for 3 s 
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Figure 5.4: Angular displacement responses (a) Time window for 60 s 

(b) Time window for 3 s 
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Figure 5.5: FFT analyses for linear model (a) Vertical response  

(b) Angular response 
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Figure 5.6: Vertical displacement responses with nonlinear model 

(a) Time window for 60 s (b) Time window for 3 s 
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Figure 5.7: Angular displacement responses with nonlinear model 

 (a) Time window for 60 s (b) Time window for 3 s 
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Figure 5.8: FFT analysis for nonlinear model 
(a) Vertical response (b) Angular response 
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Furthermore, both displacements from nonlinear model are also in good 

agreement as shown in Figures 5.6 and 5.7. Frequency contents of vertical response in 

Figures 5.5 and 5.8 are estimated using FFT analysis. There are two peak points at the 

FFT result in Figure 5.5, namely 0.705 Hz and 5.804 Hz. The first peak frequency, 

0.705 Hz is the natural frequency of the pendulum given 

by  Hz.gf
MSD

p 70502
1 


. The second peak frequency, 5.804 Hz given by 

  Hz.mM
Kf MSD 80452

1   corresponds to the natural frequency of MSD 

system. Interesting features are found in Figure 5.8, where it shows the appearance of 

second harmonic of the natural frequency of the pendulum due to nonlinear model of 

the coupled MSD system with the pendulum motion. This phenomenon is also found 

by Ju et al. [18].   

5.3.2  Pendulum Attached to a MSD under the Action of Driving Force  

Similar with Subsection 5.3.1, the system is excited by sinusoidal input force shown 

in Figure 5.9. This simulation is conducted with parameters listed in Tables 5.2, 

except initial vertical displacement is 00 y . It is noted that the nonlinear model is 

used in this sub-section. The displacements are shown in Figures 5.10-5.11, and good 

agreement between the two numerical methods is found. It is proved that the 

developed computer programs are reliable and can tackle coupled dynamic model 

such as MSD-pendulum system. It can be used for further study in solving coupled 

dynamic system in this thesis.  
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Figure 5.9: Driving force for pendulum attached to a MSD system 
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Figure 5.10: Vertical displacement responses  
(a) Time window for 40 s (b) Time window for 6 s 
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Figure 5.11: Angular displacement responses  

(a) Time window for 40 s (b) Time window for 6 s 

5.4  Gantry Crane System under Swinging Payload with Stationary Trolley 

(Case I) 

In this subsection, dynamic response of gantry crane system subjected to swinging 

motion of payload is studied. The payload experiences planar and space swinging 

motion simultaneously as shown in Figure 5.12. As a benchmark, rigid model of 

(a) 

(b) 

(a) 

(b) 
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gantry crane is used. Rigid model means that the members of crane framework and 

hoist cable are rigid and equivalent with classical pendulum with static pivot point.  

The equations of motion of rigid model are based on Equations (46a)-(46b). It is 

noted that that there is no damping either in dynamics of crane framework or payload, 

unless particularly stated. This is expected to avoid the effect of structural damping in 

dynamics of payload and make it as a direct comparison with the pendulum model. 

5.4.1 Swinging Payload with Stationary Trolley under Three Kinds of 

Flexibility 

In this subsection, swinging payload with stationary trolley on flexible gantry crane 

system is investigated using Equations (45a)-(45d). The parameters for gantry cranes 

are shown in Table 5.3, while the properties of crane framework are shown in Table 

5.4.  Crane framework is discretized into 58 elements and 82 nodes as shown in 

Figure 5.12. 

 

Z  

Y  

X  

BL  

FH  pc  

  

Tm  

Pm  

    

k  

 

Figure 5.12: Finite element model of flexible gantry crane system under case I 
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Table 5.3: Gantry crane parameters  

Parameters 
Trolley mass, Tm   50 kg 
Payload mass, pm   1200 kg 

Cable length, P  
Cable stiffness, k  

 1 m 
m/N. 51052   

Initial swing angle, 00   ,,o   005 ,,o  
Initial swing angle, ooo ,,    
Initial hoist cable displacement, ooo ,,    

 005 ,,o  
00,,static  

 

Table 5.4: Crane framework properties  

Properties 

 Top beam Support 
(Right and Left) Top beam 

Material  Steel 
Young’s modulus, E  2.10e11  kg/m2 

Density,   7860 kg/m3 

Cross-section area, A  3.45e-02 m2 1.516e-02 m2 
Inertia, xxI  
             yyI           

3.139e-03 m4 

2.7e-03  m4 
8.741e-04 m4 

1.76e-05 m4 

Span of framework,  BL  12 m 
Height of framework, FH  10.6 m 

 

The dynamic responses of payload swing angles with the rigid and flexible gantry 

crane for time duration 20 s are illustrated in Figures 5.13 – 5.14. Flexible gantry 

crane covers flexibility in hoist cable, members of crane framework and hoist cable-

crane framework. The rigid and flexible model deviation are   and 

 where rigidflexible  , rigidflexible  , respectively. By observing Figures 

5.13 – 5.14, it can be seen that all the flexible models have longer periods or lower 

frequencies than the rigid model. The deviation between the rigid assumption and the 

flexible model results is clearly observed.  
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Figure 5.13: Time history of   and   (—) flexible model; (- - -) rigid model;  
(-.-.-)   (a) Flexible hoist cable (b) Flexible crane framework 

(c) Flexible hoist cable-crane framework 
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Figure 5.14: Time history of   and   (—) flexible model; (- - -) rigid model;  
(-.-.-)   (a) Flexible hoist cable (b) Flexible crane framework 

(c) Flexible hoist cable -crane framework 

 
Table 5.5: FFT results for three kinds of flexibility 

       Flexibility 
Dominant frequency of  

rigid model (Hz) 
Dominant frequency of 

flexible model (Hz) 
        

Cable hoist 0.4985 0.4985 0.49 0.49 
Crane framework 0.4985 0.4985 0.495 0.495 
Hoist cable -crane framework 0.4985 0.4985 0.485 0.485 

 

(a) 

(b) 

(c) 

(a) 

(b) 

(c) 
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The FFT results as shown in Table 5.5 reveal that swing angles frequency with 

flexible model is lower than that of the rigid model. This is expected since the rigid 

model of crane is stiffer than the flexible crane, that is why the stiffer model vibrates 

at a higher frequency. It is noted that the natural frequency for both swing angles of 

rigid model are consistent with the frequency obtained from Equations (46a) and 

(46b).  

The finding results in Figures 5.13-4.14 and Table 5.5 show that the gantry crane 

system with flexible hoist cable-crane framework produces greater amplitudes in 

frequency ,  which is confirmed by the time histories of  , . It has the lowest 

swing angles frequency compared to the gantry crane system with flexible hoist cable 

or crane framework only with respect to rigid model. It will be used for further 

investigation hereafter.   

The dynamic responses of crane framework with flexible hoist cable-crane 

framework and hoist cable for time window 20 s are presented in Figure 5.15. Static 

displacements, denoted by dashed line (----) show that the value of static 

displacements in axial  X and lateral  Z are very small compared to vertical  Y  

displacement. That is because the crane framework is imposed by static load 

 PT mm  at the central point pc  of the top beam of crane framework in vertical 

direction and the crane framework is weaker at that direction.  

This result is also found in tower crane as reported by Ju et al. [18]. When the 

crane framework is subjected to swinging motion of payload at the central point pc  of 

the top beam, the dynamic displacements in axial  X and lateral  Z are significantly 

affected. The maximum amplitude of dynamic displacements over their corresponding 

static displacements becomes very large.  
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Figure 5.15: Crane framework and hoist cable response (—) corresponding 
dynamic displacements; (- - -) corresponding static displacements (a) axial (b) 

vertical (c) lateral (d) hoist cable 

It is noted that all the responses are normalized displacements of crane framework 

and hoist cable to the span length of top beam and cable length of payload. By using 

FFT analysis, the frequency content of crane framework response can be estimated 

and depicted in Figure 5.16. 

There are four peak points at the power density spectrum of vertical response, 

which are located, respectively at 0.49 Hz, 0.99 Hz, 2.29 Hz and 6.78 Hz. Those four 

frequencies can be explained as follows. The first peak frequency, 0.49 Hz is the 

natural frequency of the payload given by  Hz.gf
P

p 4902
1 


. The second 

peak point, 0.99 Hz is appearance of second harmonic of the natural frequency of the 

payload. This phenomenon is also reported by Ju et al. [18]. The third peak point, 
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2.29 Hz is given by   Hz.mm
kf

PT
cable 2922

1   corresponds to the natural 

frequency of hoist cable. The last frequency is the third natural frequency of crane 

framework as shown by Figure 5.1(c). By knowing the frequency content of crane 

framework response, it can be found out that the dynamic response of crane 

framework is dominated by the third mode shape which is vertical deformation of the 

top beam of crane framework. 
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Figure 5.16: FFT analyses of vertical displacement of crane framework under 
case I 

 
Further, Figures 5.13c and 5.14c show a beating phenomenon either in the time 

histories of   or  . The beating phenomenon that appears in   and  plots 

because of the superimposed plot of the rigid and flexible response, which can be 

explained by sampling the time history of   during s86 , approximately 43 cycles as 

shown by Figure 5.17. The figure depicts that flexible  and rigid produces a phase 

shift after a half cycle as shown in Figure 5.18a. This phase shift accumulates over the 

cycles and maximum into approximately cycle 20 or st 4535  as presented by 

Figure 5.18b. 
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Figure 5.17: Payload swing response of   for time window 86 s           
 (—) flexible model, (….) rigid model 

In the subsequent cycles, the accumulated phase shift decreases until approaching 

cycle 42 or st 8680   as shown in Figure 5.18c. This behavior will repeat until 

prescribed time duration and so do the time history of . The phase shift must be 

caused by contribution of flexibility of the crane framework and hoist cable as shown 

in Equations (45a) - (45c). From those equations, it may be seen that   couples to 

Tu and Tv ,   couples with TT v,u  , Tw  while flexibility of hoist cable in term of  are 

existed in both swing angles.  

The flexibility of crane framework in terms TT v,u  , Tw  provides acceleration in 

three directions to the pivot point of payload. This condition creates bidirectional 

dynamic interaction between dynamics of crane framework and pendulum-like 

swinging motion of payload if large swing angles are allowed as also found out by 

[6]. 
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Figure 5.18: Rigid and flexible model responses of   
(a) Time window st 40   (b) st 4535  (c) st 8680    

 

Phase portrait of flexible  and rigid  for one cycle is presented. After one cycle 

has been completed, the free end of flexible  noted by A’ in phase portrait of Figure 

5.19 does not return to its original location, which is contrary with free end of rigid , 

noted by B’. From those figures, it can be seen that the flexibilities significantly 

affects the swinging motion of payload. The effects in terms of TTT w,v,u  and 

  ,, create difference in amplitude, frequency and phase between rigid and flexible 

model along the periodicity of  and . It may be observed also that magnitude of 

swing angle for crane with flexible model is smaller than the rigid one, which is 

similar with work in Reference [8].  

-6 -4 -2 0 2 4 6
-20

-15

-10

-5

0

5

10

15

20

 (deg)


 (d

eg
/s

)

 

 

Flexible model
Rigid model

A'

A,B,B'

 

Figure 5.19: Phase portrait of rigid and flexible model of  for one cycle  
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5.4.2  Effect of Structural Damping  

For the present subsection, the simulation is conducted with parameters listed Table 

5.3 and 5.4. The damping ratios are taken to be 

00300010000021 .,.,. and 0050. . The time histories of swing angles  and , 

including with their corresponding  and  are demonstrated in Figures 5.20 and 

5.21. It is observed that the frequencies of payload swing angles are lower for the 

flexible gantry crane system compared to the rigid model. These differences will 

decrease with the increase of structural damping as shown by  and  . Compared 

to significant change in frequency, minimal change in amplitudes is observed in both 

payload swing angles. It may be explained by considering Figure 5.22 that the 

structural damping has the effect of reducing the axial, vertical and lateral 

displacements of crane framework. The increase in structural dynamic displacements 

offers lower flexibility in the pivot point of payload.  

The increase in structural dynamic displacements offers higher flexibility in the 

pivot point of payload. That is because the vibration of crane framework is 

contributed into the dynamics of payload at the contact point between trolley and the 

top beam of crane framework as it can be seen from Equations (45a)-(45c). Figure 

5.22 shows the elastic displacements of the central point pc of the top beam and hoist 

cable under structural damping variation, respectively.  

It can be seen from those figures that the structural damping significantly 

influences the dynamic responses of crane framework, especially for vertical  Y  

responses. At the beginning of time duration, the vibration amplitude is higher, and 

then they vibrate as sinusoidal curve with a spatial decay about its corresponding 

static displacement until the end of process. Due to structural damping, the vibration 

converges slower and slower as time goes on. However, it will take long time to 

converge into its static displacement due to weakly damped [7]. Further, structural 

damping has no discernable effect for the hoist cable response as shown by Figure 

5.19d.   
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Figure 5.20: Time history of   and  under case I: (—) flexible model; (- - -) rigid 
model; (-.-.-)   (a) 000021 .  (b) 001021 .    

(c) 005021 .  
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Figure 5.21: Time history of   and  under case I: (—) flexible model; (- - -) rigid 
model; (-.-.-)   (a)  000021 .  (b) 001021 .    

(c) 005021 .  
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Figure 5.22: Damping effect on crane framework and hoist cable responses 
(a) axial (b) lateral (c) vertical (d) hoist cable displacements 

5.4.3 Effect of Initial Payload Swing Angle 

In this subsection, initial swing angle 0 is varied while  50 is fixed to see its 

effect on the dynamics of payload and crane framework. It is found in Figures 5.23-

5.24 that the increase of initial payload swing angle significantly affects the swing 

amplitude and frequency of payload. The increase of initial swing angle 0 causes the 

amplitudes of   increase, as confirmed by time histories of  . However, change in 

amplitude is dominant compared to change in frequency for both swing angles. 
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Figure 5.23: Time history of   and  under case I: (—) flexible model; (- - -) rigid 
model; (-.-.-)   (a)  20  (b)  60   (c)  120  
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Figure 5.24: Time history of   and  under case I: (—) flexible model; (- - -) rigid 

model; (-.-.-)  (a)  20  (b)  60   (c)  120  

Figure 5.24 also depicts that the responses of flexible  noted by solid line (—) 

have discernable difference with rigid  which is noted by dashed line (- - -). It can be 

found out that the contribution of flexibility in crane framework and hoist cable into 

the dynamics of payload only changes the frequency of  by fixing the value 

of  50 . It should be noted that the variation of 0 while setting value of 0  to the 

fixed value generates the same trend as 0 is varied. It is quite representative to only 

display the effect of 0 variation in this thesis.   
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Figure 5.25: Maximum dynamic responses of crane framework under initial payload 

swing angle variation for case I 
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The maximum axial  X , vertical  Y and lateral  Z  displacements of the central 

point pc of the top beam of crane framework and hoist cable under 0 variation are 

depicted in Figure 5.25. It is observed that all the displacements increase with the 

increase of 0 . This is to be expected since the larger swing angles magnitude, the 

larger exciting forces in the right side of Equation (45d). The increases are slightly 

nonlinear for vertical, lateral and hoist cable displacements, but slightly linear for 

axial displacement. 

5.4.4 Effect of Payload Mass Variation for Case I  

Except the payload mass, this simulation is conducted with parameters listed in 

Tables 5.3 and 5.4. By means of Equations (46a)-(46b), mass of payload has no effect 

on dynamics of payload. The condition will be different if the flexibility of crane 

framework and the hoist cable are introduced in Equations (45a)-(45c).  
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Figure 5.26: Time history of   and  under case I: (—) flexible model; (- - -) rigid 

model; (-.-.-)  (a) kgmP 700  (b) kgmP 900  (c) kgmP 1200  

 
The increase of payload mass has discernable effect on the payload swings, where 

the frequencies and amplitudes of the payload swing increase by the increasing of 

payload mass for both swing angles for time duration 20 s as shown in Figures 5.26-

5.27. This is a reasonable result, since the displacements of crane framework and 

cable hoist depends on the magnitude of payload mass. The higher the payload mass, 

the higher the exciting force in the right side of Equation (45d), which in turn 

increasing the displacements.  
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The larger vibration amplitudes of crane framework offer higher flexibility to 

pivot point of the swinging payload. This is also confirmed by FFT results for   and 

  in Table 5.6, where the frequency associated with the larger masses is getting 

lower than the rigid model.   
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Figure 5.27: Time history of   and  under case I: (—) flexible model; (- - -) rigid 
model; (-.-.-)  (a) kgmP 700  (b) kgmP 900  (c) kgmP 1200   

Table 5.6: FFT results under payload mass variation 

       Payload mass 
       Pm  (kg) 

Dominant frequency of  
rigid model (Hz) 

Dominant frequency of 
flexible model (Hz) 

        
700 0.4985 0.4985 0.495 0.495 
900 0.4985 0.4985 0.49 0.49 

1200 0.4985 0.4985 0.485 0.485 
 

The maximum axial  X , vertical  Y and lateral  Z  displacements of the central 

point pc of the top beam and cable hoist are depicted in Figure 5.28. It is seen that, all 

the displacements increase with the increase of Pm . The increases are slightly linear 

for axial, vertical, lateral and hoist cable displacements. 

(a) 

(b) 

(c) 
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Figure 5.28: Maximum dynamic responses of crane framework under payload mass 
variation for case I 

5.4.5 Effect of Cable Length Variation for Case I 

Further, the cable length is varied in order to see its effect on the payload swing 

angles, hoist cable and crane framework. Except the cable length, other parameters 

are identical with Table 5.3 and 5.4.  
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Figure 5.29: Time history of   and  under case I: (—) flexible model; (- - -) rigid 
model; (-.-.-)  (a)  mP 1  (b) mP 3   (c) mP 6  
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Figure 5.30: Time history of   and  under case I: (—) flexible model; (- - -) rigid 

model; (-.-.-)   (a)  mP 1  (b) mP 3   (c) mP 6   

Figures 5.29 - 5.30 depict that the amplitudes and frequencies of  and  are 

dependent on the cable length of payload. The time history results of  and   

show that the amplitudes and frequencies in the payload swing responses decrease 

with increasing length of payload cable. The corresponding dominant frequency 

contents of   and   to the cable length is displayed in Table 5.7 and confirm the 

results shown in Figures 5.29-5.30.  

Table 5.7: FFT results under cable length variation 

       Cable length 
       P  (m) 

Dominant frequency of  
rigid model (Hz) 

Dominant frequency of  
Flexible model (Hz) 

        
1 0.4985 0.4985 0.485 0.485 
3 0.287 0.287 0.285 0.285 
6 0.2035 0.2035 0.202 0.202 

 

The trend of the maximum axial  X , vertical  Y and lateral  Z  displacements of 

the central point pc of the top beam and hoist cable under cable length variation is 

different with payload mass variation as depicted in Figure 5.31. It may be seen that 

all the displacements decrease with the increase of P . It can be explained by 

observing Figures 5.29 - 5.30, where the longer cable length will contributes smaller 

amplitudes of payload swing angles to the dynamics of crane framework.  

(a) 

(b) 

(c) 
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This contribution, which in turn producing smaller exciting forces for the crane 

framework as it can be seen in the right side of Equation (55d). The result is also 

found by the author in Reference [12].  
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Figure 5.31: Maximum dynamic responses of crane framework under cable length 

variation for case I 

5.4.6 Effect of Hoist Cable Stiffness for Case I 

To find out the effect of cable stiffness on the responses of payload swings, crane 

framework and the hoist cable, the value of cable stiffness is varied, while other 

parameters are listed in Tables 5.3 and 5.4. Here, the cable stiffness is axial cable 

stiffness due to the cable is assumed to be in tension as explained in Section 4.4. 

Under the use of same material and hoist cable length, axial cable stiffness depends 

on cross-section area only. However, direct value of axial cable stiffness k  is varied 

in this thesis. Another range of cable stiffness value may be selected, but the main 

purpose is to show the trend of dynamic response of payload and crane framework 

under cable stiffness variation.  

Three cable stiffness values are only selected to be depicted in Figures 5.32-5.33, 

namely: m/N.k 4
1 1052  , m/N.k 5

2 1052   and m/N.k 6
3 1052  . From 

those figures, the increase of cable stiffness tends to decrease the amplitude and 

frequency of   and . The trend is confirmed with time histories of  ,   and FFT 

analysis in Table 5.8. It is strongly presumed that if the cable stiffness is getting 
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larger, the responses of both swing angles  andwill approach the responses of 

flexible gantry crane system with flexible in crane framework only. 
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Figure 5.32: Time history of   and  under case I: (—) flexible model; (- - -) 

rigid model; (-.-.-)  (a) 1k  (b) 2k  (c) 3k  
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Figure 5.33: Time history of   and  under case I: (—) flexible model; (- - -) rigid 
model; (-.-.-)  (a) 1k  (b) 2k  (c) 3k   

Table 5.8: FFT results under cable stiffness variation 

       Cable stiffness 
       k  (N/m) 

Dominant frequency of  
rigid model (Hz) 

Dominant frequency of 
flexible model (Hz) 

        
41052 .  0.4985 0.4985 0.445 0.445 
51052 .  0.4985 0.4985 0.485 0.485 
61052 .  0.4985 0.4985 0.495 0.495 

(a) 

(b) 

(c) 

(a) 

(b) 

(c) 
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The cable stiffness significantly affects the responses of crane framework and 

cable hoist as shown by Figure 5.34. The more rigid hoist cable, the smaller 

displacements of crane framework and hoist cable will be. This trend can be explained 

by considering the right side of Equation (45d) where the dynamics of hoist cable, 

  ,,  influences the external force, the axial  X  force component xf0 , the lateral 

 Y  force component yf0  and  Z  force component zf0 . Since the lower cable 

stiffness produces the higher dynamic displacement of hoist cable, which in turn 

increasing the magnitude of exciting forces. This is the reason for the trend shown by 

Figure 5.34. This effect is contributed into the dynamics of payload, due to dynamics 

of gantry crane and crane framework is coupled system. This is also the reason for the 

trend shown by Figures 5.32-5.33. 
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Figure 5.34: Maximum dynamic responses of crane framework under cable stiffness 
variation for case I 

 

5.4.7 Effect of Crane Framework flexibility for Case I 

Crane framework flexibility can be determined by cross-sectional area, material 

properties and geometric of crane framework i.e., height of crane framework/span of 

the top beam, BF LH . Here, cross-sectional dimensions of crane framework’s 

members are varied to investigate their effects on dynamics of payload and crane 

framework. Except for member’s cross-sectional properties, other parameters are 

identical with Table 5.3 and 5.4.   
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The time histories of swing angles responses showed in Figures 5.35-5.36 use 

three cross-sections, namely cross-section 1, cross-section 2 and cross-section 3. As 

reference, cross-section 2 is taken from Table 5.4 meaning that all the properties of 

cross-section 2 are referred to Table 5.4. If the dimensions of cross-section 2 are 

reduced into 0.5 times or 50 % from original dimensions, then it is named as cross-

section 1. Dimensions of cross-section 3 are increment about 3 time or 300 % from 

original dimensions of cross-section 2. It is clear that the increment or decrement of 

cross-sectional dimensions will change the cross-sectional properties, such as cross-

sectional area  A , inertia  zzyyxx I,I,I  of respective cross-section, respectively. 
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Figure 5.35: Time history of   and  under case I: (—) flexible model; (- - -) rigid 
model; (-.-.-)   (a) cross-section1 (b) cross-section 2 (c) cross-section 3 
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Figure 5.36: Time history of   and  under case I: (—) flexible model; (- - -) rigid 
model; (-.-.-)   (a) cross-section 1 (b) cross-section 2 (c) cross-section 3 
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By changing the cross-sectional dimension of crane framework, it is evident that 

the amplitudes and frequencies of   and  are significantly affected as confirmed by 

time histories of  and   and Table 5.9. The lowest cross-sectional properties 

among the three cross-sections exhibit more differences with the rigid model. 

Simulations strongly presume that the larger cross-sectional properties, the smaller 

differences,  and   between flexible and rigid model. However, it certainly calls 

further study in structural optimization due to the size and geometric of overall crane 

framework must be considered with respect to load capacity of gantry crane.  

This is to be expected since the increase of cross-sectional dimension of beam 

will reduce the flexibility of overall crane framework. It will be stiffness modulator in 

gantry crane dynamics. The results show that the flexibility of crane framework 

affects the dynamic responses of gantry crane.  

Table 5.9: FFT results under crane framework flexibility 

       Cross-section 
Dominant frequency of  

rigid model (Hz) 
Dominant frequency of 

flexible model (Hz) 
        

1 0.4985 0.4985 0.485 0.485 
2 0.4985 0.4985 0.49 0.49 
3 0.4985 0.4985 0.495 0.495 
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Figure 5.37: Maximum dynamic responses of crane framework under framework 
flexibility for case I 
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Similar with cable stiffness, the cross-sectional properties of structural’s members 

of crane framework have significant effect on the responses of crane framework as 

shown by Figure 5.37. The increase of cross-sectional properties make the maximum 

dynamic displacements of crane framework will decrease. This trend is also followed 

by maximum dynamic displacement of the hoist cable. It is a reasonable result since 

the more rigid the crane framework, the more rigid the support of the hoist cable to 

vibrate due to swinging motion of payload.      

 

5.5  Crane Framework under Moving Trolley with Stationary Payload (Case II) 

In this subsection, structural dynamic analysis of the crane framework induced by 

moving load, either moving force or moving mass is studied. Besides that, beam and 

portal frame are studied as well. It is noted that the effects of payload swing, namely 

  and   are not considered as per Equations (47). Verification is conducted by 

generating some extended subroutine in ANSYS in order to get confidence about the 

correctness of developed computer programs for the moving load case.  

5.5.1 Beam Structure 

Undamped beam structure in Figure 5.38 comprises 21 nodes and 20 elements, with 

the length of each beam element being 0.05 m with cross-section hbA   = 0.015 m 

  0.015 m. The beam is excited to a load m = 10 kg moving from the left end to the 

right end of the beam with a constant speed V = 0.75 m/s.  
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Figure 5.38: Simply supported beam induced by a moving mass and moving force 

The time histories for vertical  Y  displacements of the central point Pc of the 

beam in node 11 under the moving load when inertial effects are considered and when 

inertial effects are ignored are shown in Figure 5.39.  
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The fluctuating features between moving mass and moving force are similar. The 

results obtained from present code under Matlab® agree well with the results obtained 

from ANSYS as shown in Figure 5.39.      
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Figure 5.39: Displacements of node 11 of the beam due to moving load 

5.5.2 Portal Frame 

A portal frame is studied in this subsection. It is composed of 20 beam elements: 10 

elements for the top beam, the left side-beam have 2 members with 10 identical 

elements and so do the right-side beam as depicted in Figure 5.40. The dimensions of 

and material properties of the portal frame are identical with Table 5.4.  
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Figure 5.40 Portal frame induced by a moving mass and moving force  
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Figure 5.41 Axial displacements of the central point pc  the top beam 
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Figure 5.42 Vertical displacements of the central point pc of the top beam 
 

The portal is subjected to a load moving from the left end to the right end of the 

top beam with constant velocity V = 0.75 m/s, kgm 60  without structural 

damping 021  . The axial and vertical displacement of the central point pc of 

the top beam can be seen in Figures 5.41 and 5.42. Agreement in fluctuating features 

of the associated curve among moving mass, moving force obtained from present 

code under Matlab® and ANSYS are found.  

5.5.3 Crane Framework  

A three crane framework is shown in Figure 5.43. The dimensions and material 

properties of the crane framework are identical with Table 5.4. 
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Figure 5.43: Crane framework induced by a moving mass and moving force 
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(c) 

Figure 5.44: Dynamic displacements of crane framework (a) axial (b) vertical   
(c) lateral 

Moving loads move with constant velocity V = 1 m/s, mass m = 1200 kg on the 

top beam of undamped crane framework. The axial  X , vertical  Y , lateral  Z  

displacements are shown in Figure 5.44. The figures show that the value of static 

displacements in axial  X and lateral  Z are very small compared to vertical  Y  

displacement. The deformation of crane framework is dominant in vertical direction, 

since it is weaker at that direction. It is also seen that besides the vertical responses, 

moving loads have significant effect in axial and lateral responses compared than their 

corresponding static responses. From the simulations, dynamic responses among 

moving force, moving mass and ANSYS agree well.   

5.5.3.1 Effect of Moving Load Magnitude on Crane Framework 

Mass is moved from the left hand side of the top beam using trajectory profile in 

Figure 5.45, but stops in the middle of the top beam. The mass is accelerated at a rate 

1 m/s2 to a maximum velocity of 1 m/s. The mass coasted at this velocity for 5 s. 

After 6 s from the beginning maneuver, the trolley is decelerated at a rate 1 m/s2 for 1 

s. In the end, the trolley has moved 6 m in 7 s and rest in 40 s. 

The axial, vertical and lateral displacements of the central point pc  of the top 

beam due to moving mass magnitude variation, 1m = 600 kg, 2m = 900 kg and 
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3m =1200 kg under structural damping 11   = 0.005 are shown in Figures 5.46-

5.50. 
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Figure 5.45 Moving mass trajectories 

It can be seen that the vibration amplitudes increase by the increase of moving 

mass magnitudes, where there is no change in vibration frequency at all moving load 

magnitude range as shown in Figure 5.48 and 5.52. It is also interesting to note that all 

the dynamic responses damp to their corresponding static displacements due to effect 

of structural damping. 
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Figure 5.46 Axial displacements of the central point pc  of the top beam under 
moving mass magnitude variation for case II 

When axial displacements in Figure 5.46 at time 0-7 s is zoomed as shown by 

Figure 5.47 it is clearly seen that the vibration amplitudes in the acceleration phase 

( a = 1 m/s during t  = 0-1 s) or deceleration phase ( a = 1 m/s during t  = 6-7 s) are 

clearly visible than the corresponding ones in the constant speed phase ( a = 0. during 

t  = 1-6 s). This dynamic phenomenon is also found by Wu [10] in portal frame. 
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Figure 5.47: Zoom of figure 5.46 during time 0-7 s 

This is expected since during those phases, external forces as forcing term is 

generated in axial direction due to inertial force of moving mass motion, while in 

constant velocity phase is zero. The inertial force in axial direction is proportional to 

moving mass magnitude as it can be observed from Equations (47).  
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Figure 5.48: FFT analysis of axial displacement of crane framework under 
moving mass magnitude variation for case II 

 
Time histories for the vertical displacement of the central point pc of the top 

beam are shown in Figure 5.49. It is interesting to note that the dynamic responses 

converge to a displacement which is greater than the corresponding static 

displacement. The difference between the static and the final dynamic displacement 

increase by increasing moving mass magnitude.  
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Figure 5.49: Vertical displacements of the central point pc  of the top beam under 
moving mass magnitude variation for case II 
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Figure 5.50: Lateral displacements of the central point pc  of the top beam under 

moving mass magnitude variation for case II 
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Figure 5.51: Zoom of figure 5.50 during time 0-7 s 
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Further, the lateral responses, measured at the central point pc of the top beam 

exhibit the clear beating behavior as illustrated in Figures 5.50-5.51, where they decay 

due to structural damping. 
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Figure 5.52: FFT analysis of analysis lateral displacement of crane 
framework under moving mass magnitude variation for case II 

5.5.3.2 Effect of Moving Load Velocity on Crane Framework 

To study the effect of moving mass speed to both axial and vertical displacements, the 

velocity  tV1 ,  tV2  and  tV3  are applied to moving mass as given in Figure 5.53 

but still stops in the middle of the top beam.  
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Figure 5.53: Variation of moving mass velocity histories 
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The velocity histories are defined in Table 5.10, m = 900 kg and 11   = 0.005. 

It is noted that other forms of velocities history could have been chosen, but here an 

arbitrary profiles were chosen to primarily illustrate the effect of moving load velocity 

on the dynamic response of crane framework. 

Table 5.10: Velocity history of moving mass 

Velocity 
History 

Time phase (s) 

Stationary Acceleration Constant 
velocity Deceleration Stationary 

 tV1  0 0-1 1-8 8-9 9-40 
 tV2  0 0-1 1-6 6-7 7-40 
 tV3  0 0-1 1-4 4-5 5-40 

 

Axial  X , vertical  Y and lateral  Z displacements of crane framework under 

velocity variation are given in Figures 5.54, 5.57 and 5.59. Zoom of axial 

displacements in Figure 5.54 as shown in Figure 5.55 depict that the increase of 

moving mass speed will increase vibration amplitudes. The change of vibration 

frequency in axial displacements is evident at all velocity histories as shown in Figure 

5.56 and 5.58. For the larger velocity history, moving mass propagates along the top 

beam faster than the others. It reveals that the velocity of moving load has significant 

effect on vibration frequency and maximum displacement of axial displacement. This 

trend is similar for lateral responses as shown by Figure 5.57.  
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Figure 5.54: Axial displacements of the central point pc  of the top beam under 

moving mass velocity variation for case II 
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Figure 5.55: Zoom of figure 5.54 during time 0-10 s 
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Figure 5.56: FFT analysis of axial displacement of crane framework under 
moving mass velocity variation for case II 
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Figure 5.57: Lateral displacements of the central point pc  of the top beam under 
moving mass velocity variation for case II 
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Figure 5.58: FFT analysis of analysis lateral displacement of crane 
framework under moving mass velocity variation for case II 

Effects of acceleration and deceleration phase induce slighter vertical 

displacements for all the velocity histories as shown by Figure 5.59. 
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Figure 5.59: Vertical displacements of the central point pc  of the top beam under 
moving mass velocity variation for case II 
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5.6 Gantry Crane System under Moving Trolley with Swinging Payload        

(Case III) 

The dimensions of the framework of the crane in this sub-section are exactly the same 

as those in the Table 5.4. A moving trolley Tm  carrying a swinging payload Pm  

moves from the left end to the right end with trolley driving force  tF  on the top 

beam of the stationary crane framework. Basically, case III is combination between 

case I and case II, where the swinging motion of payload is moving along the top 

beam of flexible crane framework due to trolley motion.  The developed computer 

codes are then combination from both cases.  

As a benchmark, similar with case I, the implemented code are verified by 

comparing analysis results with those obtained using the well-known classical 

pendulum with moving pivot or called as rigid model of crane system as shown in 

Figure 5.60. The equations of motion of rigid model are presented by Equations 

(49a)-(49b). 
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Figure 5.60: Simple pendulum system with moving pivot 

To investigate the influence of moving trolley carrying a swinging payload on 

flexible crane framework and vice versa, the parametric studies are conducted. Time 

histories are presented as functions of a limited set of parameters for quite simple but 

representative for gantry crane system.  

 



111 
 

5.6.1 Open-Loop Responses 

The finite element model of flexible gantry crane system under case III is shown in 

Figure 5.61. 
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Figure 5.61: Finite element model of flexible gantry crane under case III 

In this subsection, as a test for the dynamic model in Equations (48d)-(48g) and (52), 

open-loop responses are performed under two types of driving force xf , namely bang-

bang input force and harmonic input force. It is noted that that other forms of driving 

force could have been chosen, but here an arbitrary form is chosen to primarily 

attempt to model the real driving force situation for the actual crane system. 

5.6.1.1 Responses under Bang-bang Input Force 

The simulation is performed where bang-bang input force is applied to move the 

trolley of gantry crane. Magnitude of bang-bang input force is varied in order such 

that the trolley reaches 3m, 6m and 12 m from the left end of the top beam of crane 

framework as depicted in Figure 5.62.  

It can be observed in Figure 5.63, and confirmed by Figure 5.67 that accelerations 

and decelerations phases can be clearly seen in swing angle  , due to the profile of 

bang-bang input force. Swing amplitudes in the periods of accelerations and 

decelerations are greater than in the constant-speed phases.  
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When the trolley accelerates, payload swings behind the trolley. Vice versa, the 

payload swings ahead of trolley when trolley decelerates. The swing angles are 

identical when the trolley speed is constant or the trolley stops.  
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Figure 5.62: Bang-bang input forces and trolley positions 

 

The payload will continue swing although the force is taken after 13s. This is due 

to the dynamics of payload is without damping as it can be seen from Equations 

(49a)-(49b). This characteristic does not appear in swing angle , as it is noticed from 

Figure 5.64. 
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Figure 5.63: Time history of   and   under bang-bang input force: (—) flexible 

model; (- - -) rigid model; (-.-.-)  (a) 3m (b) 6m (c) 12m 
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Figure 5.64: Time history of   and   under bang-bang input force: (—) flexible 

model; (- - -) rigid model; (-.-.-)   (a) 3m (b) 6m (c) 12m 
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Figure 5.65: Flexible model responses of    under bang-bang input force  
(a) Time window for 40 s (b) Time window for 13 s  
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That is because the horizontal  X inertia force induced by moving trolley 

carrying a swinging payload significantly affects the payload swing in planar motion 

than that in space motion due to input force is applied in the horizontal direction. 

Further, amplitudes and frequencies of  are about 2 times when trolley moves to 12 

m (final position) than 3m and 4m. There is no discernable effect in  observed in 

Figures 5.63 and 5.64, respectively. 

From Figure 5.66(b), it can be found that the vertical displacements at the central 

point pc of the top beam of crane framework damps to zero when the trolley stops at 

the right side of beam for position 12m and to corresponding static displacements for 

position 3m and 6m. It is interesting to note that the dynamic response converges to a 

displacement which is greater than the corresponding static response in Figure 

5.66(b), Figure 5.66(c) and Figure 5.67, respectively. The difference between the 

static and the final dynamic response increase by decreasing the position of trolley. 

The definition for Dynamic Amplification Factor (DAF) in this study is the ratio 

between the absolute maximum dynamic displacement to the absolute maximum 

static displacement [44]. DAF for axial displacements are 1.21 when trolley moves to 

3 m, while 1.12 for 6 m. DAF for vertical displacements are almost the same for all 

trolley position, it is about 1.37, while lateral displacements have very large DAF 

because the crane framework is more rigid when it is loaded with static load 

compared to loaded with moving trolley with swinging payload. 

 

 

 

 

 

 

 

 

 

(a) 

 

0 5 10 15 20 25 30 35 40
-4

-3

-2

-1

0

1

2

3
x 10

-6

A
xi

al
 (u

T/L
B
)

Time(s)

12 m

6 m

3 m



115 
 

0 5 10 15 20 25 30 35 40

0

10

20
x 10

-5

V
er

tic
al

 (v
T/L

B)

Time(s)  

(b) 

0 5 10 15 20 25 30 35 40
-1.5

-1

-0.5

0

0.5

1

1.5
x 10-5

La
te

ra
l (

w T/L
B)

Time(s)

 

 

 
(c) 

Figure 5.66: Dynamic responses of crane framework under  
bang-bang input force: (—) 3m; (- - -) 6m; (….) 12m (    ) corresponding static 

displacements (a) axial (b) vertical (c) lateral displacements 
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Figure 5.67: Dynamic responses of hoist cable under  
Bang-bang input force (—) dynamic   (- - -) static (a) 3m (b) 6m (c) 12m 

5.6.1.2 Responses under Harmonic Input Force 

The effect of different harmonic input force frequencies on the responses of 

payload swings and crane framework is investigated. The parameters are identical 

with Table 5.3 and 5.4. The harmonic input force frequencies are n. 10 , n. 950  

and n. 51 as presented in Figure 5.68.  
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Figure 5.68: Harmonic input forces 
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Term n corresponds to natural frequency of payload with hoist cable length, 

P =1m. The dynamic responses of payload swings and difference with rigid model 

are shown in Figures 5.69-5.70. The results show that  and  depend on the 

harmonic frequency. As the harmonic frequency approaches the natural frequency of 

payload, the amplitudes of swing angles increase erratically. It is seen also that swing 

angle,   is larger than .   
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Figure 5.69: Time history of   and   under harmonic input force: (—) flexible 

model; (- - -) rigid model; (-.-.-)  (a) n. 10  (b) n. 950  (c) n. 51  
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Figure 5.70: Time history of   and   under harmonic input force: (—) flexible 

model; (- - -) rigid model; (-.-.-)  (a) n. 10  (b) n. 950  (c) n. 51  
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Figure 5.71: Dynamic responses of crane framework under harmonic force input 
(ooo) n. 10 ; (—) n. 950 ; (- - -) n. 51  (a) axial (b) vertical (c) lateral 

displacements 
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The amplitudes of swing angles increase almost 10 times below and 5 times 

above the harmonic frequency. Elastic displacements of the central point Pc  of the 

top beam under variation of harmonic force input are shown in Figure 5.71. It is 

observed that when the harmonic frequency of input force approaches the natural 

frequency of payload, DAF for axial displacement is about 32.614; while for vertical 

displacement is about 4.54. Similar with bang-bang input force, lateral displacement 

produces very large DAF. 

5.6.2  Effect of Structural Flexibility for Case III 

All the parameters for the gantry crane and crane framework in this subsection are 

identical with Table 5.3 and 5.4, unless particularly stated. The gantry crane is 

traversed by prescribed trolley trajectory as shown in Figure 5.72.  
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Figure 5.72: Trolley trajectory for case III 

5.6.2.1 Effect of Hoist Cable Stiffness  

Figures 5.73-5.74 show that the frequencies of  and  increase with the decrease of 

the hoist cable stiffness with respect to their rigid model. The amplitudes of 

flexible increase with the increase of hoist cable stiffness approaching rigid , while 

minimal changes are found in amplitude of flexible . Compared to case I, minimal 

changes in frequency and greater changes in amplitude of   and   are observed. 
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That is because the contributions of trolley velocity and acceleration, TT x,x  in the 

payload dynamics in Equations (48d)-(48g).  
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Figure 5.73: Time history of   and  under case III: (—) flexible model;                
(- - -) rigid model; (-.-.-)  1k  (b) 2k  (c) 3k  
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Figure 5.74: Time history of   and  under case III: (—) flexible model;   
(- - -) rigid model; (-.-.-)  1k  (b) 2k  (c) 3k  

 
One interesting characteristic can be seen that the values of   and   are bigger 

than   and  for the lowest hoist cable stiffness, m
N.k 4

1 1052   for both swing 

angles. That is because the contribution of flexibility of hoist cable makes the time 

history of flexible  and flexible with frequency Hz.360 produces the different phase 

about s.t 71  compared than their corresponding rigid model with 

frequency Hz.49850 .  
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Figure 5.75: Maximum dynamic responses of crane framework under cable stiffness 
variation for case III 

As the stiffness of hoist cable increases, this difference phase will decrease and 

the value of  become negative due to the magnitude of flexiblerigid  , while the 

value of  become positive due to the magnitude of flexiblerigid  . However, the 

swing frequency of flexible model is still lower than the rigid model.       

The maximum axial  X , vertical  Y and lateral  Z  displacements of the central 

point pc of the top beam of crane framework and hoist cable under variation of cable 

stiffness are shown in Figure 5.75. The trend is similar with case I, where the higher 

cable stiffness, the lower dynamic displacement of crane framework and hoist cable 

will be. 

5.6.2.2 Effect of Crane Framework Flexibility for Case III 

Dynamic behavior of gantry crane and crane framework for this case is almost similar 

with case I. The increase of cross-section dimensions of crane framework will make 

the time history of   and  are getting close into the rigid model as depicted by 

Figures 5.76 and 5.77. Unlike case I, the contributions of trolley velocity and 

acceleration TT x,x   are significantly demonstrated by the lowest cross-sectional 
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properties among the others. The trend for all the maximum displacements of crane 

framework and hoist cable is similar with case I as depicted in Figures 5.78. 

0 2 4 6 8 10 12
-50

0

50

Time(s)

 
(d

eg
)

0 2 4 6 8 10 12
-50

0

50

Time(s)

 
(d

eg
)

0 2 4 6 8 10 12
-50

0

50

Time(s)

 
(d

eg
)

0 2 4 6 8 10 12
-50

0

50

Time(s)


(

de
g)

0 2 4 6 8 10 12
-20

0
20

Time(s)


(

de
g)

0 2 4 6 8 10 12
-20

0

20

Time(s)

 

 


(

de
g)

Figure 5.76: Time history of   and  under case III: (—) flexible model; (- - -) 
rigid model; (-.-.-)   (a) cross-section 1 (b) cross-section 2 (c) cross-section 3 
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Figure 5.77: Time history of   and  under case III: (—) flexible model; (- - -) 
rigid model; (-.-.-)   (a) cross-section 1 (b) cross-section 2 (c) cross-section 3 
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Figure 5.78: Maximum dynamic responses of crane framework under crane 
framework flexibility variation for case III 

5.6.3  Gantry Crane Parametric Studies 

5.6.3.1 Effect of Cable Length Variation for case III 

Similar with case I under cable length variation, a definite change in amplitudes and 

frequencies are clearly observed. This to be expected since the swing frequency is 

inversely proportional the square root of the hoist cable length of payload. Figures 

5.79 and 5.80 shows that the shortest hoist cable length produces larger swing 

amplitude and frequency of payload responses compared than the others.  
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Figure 5.79: Time history of  and  under case III: (—) flexible model;     
(- - -) rigid model; (-.-.-)    (a) m1  (b) m3  (c) m6  
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Figure 5.80: Time history of  and  under case III: (—) flexible model;     

(- - -) rigid model; (-.-.-)    (a) m1  (b) m3  (c) m6  
 

The maximum axial  X , vertical  Y and lateral  Z  displacements of the central point 

pc of the top beam are shown in Figure 5.81. The maximum displacements decrease 

with the increase of payload cable length. Similar with case I, the shorter cable 

produces the higher displacement than the others. This is a reasonable result because 

the shorter cable produces larger the swing angles. The larger swing angles, the larger 

the external force in the axial  X force component xf0 , the lateral  Y  force component 

yf0  and  Z  force component zf0 applied on the crane framework as it can be seen in 

the right side of Equation (52). This result is also found by Wu [12] in portal frame. 
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Figure 5.81: Maximum dynamic responses of crane framework under cable length 
variation for case III 
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5.6.3.2 Effect of Payload Mass Variation for case III 

Similar with case I in Section 5.4.4, the combined trolley and payload mass 

 PT mm   contributes to the dynamics of gantry crane system. Figures 5.82 and 5.83 

clearly show the sensitivity of gantry crane system with respect to the payload mass 

variation. The increase of payload mass has discernable effect on the amplitude and 

frequency of payload swing angles, where the amplitude and frequency increase with 

the increase of payload mass.  
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Figure 5.82: Time history of   and  under case III: (—) flexible model; (- - -) rigid 
model; (-.-.-)  (a) kgmP 700  (b) kgmP 900  (c) kgmP 1200  
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Figure 5.83: Time history of   and   for case III: (—) flexible model; (- - -) rigid 
model; (-.-.-)   (a) kgmP 700  (b) kgmP 900  (c) kgmP 1200  

 

(a) 

(b) 

(c) 

(a) 

(b) 

(c) 



126 
 

Unlike case I, It is found that the frequency has minimum changes in   and  . It 

must be the contributions of trolley dynamics TT x,x   in Equations (48d)-(48g). 

Similar result has also been reported by Oguamanam et al. [6]. 

Figure 5.84 shows that heavier payload mass produces larger maximum axial  X , 

vertical  Y and lateral  Z displacements of the central point pc of the top beam. 

Similar with case I, The increases are slightly linear for axial, vertical, lateral and 

hoist cable displacements. 
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Figure 5.84: Maximum dynamic responses of crane framework under payload mass 

variation for case III 

5.7  Summary 

FFT analysis reveals that there are four peak points of frequency of crane 

framework response. The first peak point is the natural frequency of the payload, 

while the second peak point is appearance of second harmonic of the natural 

frequency of the payload. The third peak point corresponds to the natural frequency of 

hoist cable and the last is the third natural frequency of crane framework. By knowing 

the frequency content of crane framework response, it can be found out that the 

dynamic response of crane framework is dominated by the third mode shape which is 

vertical deformation of the top beam of crane framework.  

Numerical simulation results show that the vibration amplitudes, frequencies and 

phase of the gantry crane system are affected by the flexibility of crane framework 
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and hoist cable. All the flexible models of gantry crane system have longer periods or 

lower frequencies compared to the rigid model. The gantry crane system with flexible 

hoist cable-crane framework produces greater amplitudes in swing angles , ,  ,   

and FFT analysis confirms that it has the lowest swing angles frequency compared to 

the gantry crane system with flexible hoist cable or crane framework only with 

respect to rigid model.  

The parametric studies describe that the variation of parameters of gantry crane 

system such as structural damping, initial payload swing angle, payload mass, cable 

length, hoist cable stiffness and crane framework flexibility affect the state variables 

of gantry crane system, such as  ,,  for dynamics of gantry crane and dynamic 

responses of crane framework. For dynamics of gantry crane, it is found that the 

swing angles amplitudes increase with the increase of initial swing angles of payload 

and payload mass, the decrease of cable length, cable stiffness and cross-sectional 

dimensions of crane framework. Minimum changes in amplitudes are observed in the 

variation of structural damping. The decrease of swing angles frequency is found in 

increasing of structural damping, cable length, hoist cable stiffness and decreasing of 

payload mass. Minimum changes in frequency are found in increasing of initial swing 

angles of payload and crane framework flexibility.  

Under the increase of structural damping, dynamic displacements of crane 

framework in the axial  X , vertical  Y  and lateral  Z  direction and hoist cable 

decay and converge into their corresponding static displacements. The trend of 

maximum dynamic displacements of the crane framework, measured at the central 

point Pc  of the top beam of crane framework is slightly linear for axial and nonlinear 

for lateral and vertical under the increase of initial swing angles of payload. Under the 

increase of the payload mass, the trends are slightly linear for all the displacements. 

The trends decrease for all the displacements under the increase of the cable stiffness 

and crane framework flexibility. 

If the crane framework is induced by moving loads without the effect of payload 

swings as case II, some dynamic characteristics can be found. Finding results show 

that DAF for vertical displacement is about 1.25, 22.3 for axial and very large DAF 

for lateral displacement for constant velocity, V 1 m/s. 
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The vibration amplitudes increase by the increase of moving mass magnitudes, 

where there is no change in vibration frequency at all moving load magnitude range. 

It is also interesting to note that all the dynamic responses, measured at the central 

point pc of the top beam converge into certain displacements which are greater than 

the corresponding static displacement due to effect of structural damping. The 

difference between the static and the final dynamic displacement increase by 

increasing moving mass magnitude. The increase of moving mass speed will increase 

the vibration amplitude and frequency of all displacements at all velocity histories. 

Compared to axial and lateral, vertical displacement is slightly induced. These results 

are also reported by Wu [6].  

Particularly for case III, input force as a driving force for trolley motion is 

performed in order to test the dynamic model. Under bang-bang input force, the 

accelerations and decelerations phases can be clearly seen in swing angle  compared 

to swing angle . That is because the horizontal  X inertia force induced by moving 

trolley carrying a swinging payload significantly affects the payload swing in planar 

motion than that in space motion due to input force is applied in the horizontal 

direction. Further, amplitudes and frequencies of  are about 2 times when trolley 

moves to 12 m (final position) than 3m and 4m. There is no discernable effect 

in  observed. DAF for axial displacements are 1.21 when trolley moves to 3 m, 

while 1.12 for 6 m. DAF for vertical displacements are almost the same for all trolley 

position, it is about 1.37, while lateral displacements have very large DAF because the 

crane framework is more rigid when it is loaded with static load compared to loaded 

with moving trolley with swinging payload. 

When harmonic input force are subjected to gantry crane system, the amplitudes 

of swing angles increase erratically when the harmonic frequency of input force 

approaches the natural frequency of payload. The amplitudes of swing angles increase 

almost 10 times below and 5 times above the harmonic frequency. It is observed that 

when the harmonic frequency of input force approaches the natural frequency of 

payload, DAF for axial displacement is about 32.614; while for vertical displacement 

is about 4.54. Similar with bang-bang input force, lateral displacement produces very 

large DAF. 
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The stiffness of hoist cable variation for case III reveal that the frequencies of  

and  increase with the decrease of the hoist cable stiffness with respect to their rigid 

model. The amplitudes of flexible  increase with the increase of hoist cable stiffness 

approaching rigid , while minimal changes are found in amplitude of flexible . 

Compared than case I, minimum changes in frequency and greater changes in 

amplitude of   and   are observed. That is because the contributions of trolley 

velocity and acceleration, TT x,x  in the payload dynamics in Equations (48d)-(48g).  

 
The increase of cross-section dimensions of crane framework will make the time 

history of   and  are getting close into the rigid model. Unlike case I, the 

contributions of trolley velocity and acceleration TT x,x   are dominant for the lowest 

cross-sectional properties among the others. Similar with case I under cable length 

variation, a definite change in amplitudes and frequencies are clearly observed. It is 

shown that the shortest hoist cable length produces larger swing amplitude and 

frequency of payload responses compared than the others.  

It is clearly shown that the sensitivity of gantry crane system with respect to the 

payload mass variation. The increase of payload mass has discernable effect on the 

amplitude and frequency of payload swing angles, where the amplitude and frequency 

increase with the increase of payload mass. Unlike case I, It is found that the 

frequency has minimum changes in   and  . It must be the contributions of trolley 

dynamics TT x,x   . 

Similar with case I, The increase of payload mass make the increases of 

maximum axial  X , vertical  Y and lateral  Z displacements of the central point pc of 

the top beam. The trends are slightly linear for axial, vertical, lateral and hoist cable 

displacements for payload mass. Under the increase of hoist cable stiffness, cross-

sectional dimensions of crane framework and hoist cable length, the trends decrease 

for all the maximum displacements. 

All the simulation results show that gantry crane and framework is a coupled 

dynamic system, where bidirectional dynamic interaction is contributed by the 

flexibility of the crane framework and hoist cable.  
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CHAPTER 6 

CONTROLLER DESIGN AND SIMULATIONS 

 

 
6.1  Introduction 

This chapter is application of work in Chapter 4 and 5 in control system. Control 

methods as described in Section 2.5 are utilized in this chapter to suppress its dynamic 

effect. Controller design and simulations are model-based control where dynamic 

model in Equations (48d)-(48g) and (52) are taken as plant model. By setting 

up   0 t , the dynamic model and controller are applicable for planar swing only. 

Control simulations begin by employing ZVDD as open-loop control strategy, while 

PID and FLC are applied as controller for closed-loop control strategy. These three 

controllers are used to evaluate each performance to transfer the payload and suppress 

the swing response of the payload simultaneously, with the flexibility of crane 

framework and hoist cable are taken into account into the plant model. Control 

simulations are conducted to show the effect of structural flexibility on controller 

performance compared to rigid model assumption.  

6.2  Controller Design 

Those three controllers are chosen as benchmark due to fact that the PID controller 

represents a well-known model-based controller; ZVDD is input shaper which is well-

known as open loop control strategy and fuzzy logic as intelligent control.  It is noted 

that, outputs of flexible gantry crane system as controlled system are trolley position, 

Tx  and velocity Tx , swing angle   and swing velocity .  



131 
 

Elasticity effect of crane framework is measured at the central point Pc  of the top 

beam as shown in Figure 6.57. This measurement point is mounted in that position 

due to that point produces maximum displacement of crane framework as shown in 

the previous chapter. All the parameters for crane framework and crane system are 

identical with Table 5.3 and 5.4, except for the payload mass, kgmP 200 .The 

objective of the controller design are to transfer the gantry crane as fast as possible 

with minimum swing angle of payload. The gantry crane position is transferred for 

travel distance of 12m, from the left end to the right end of the top beam of crane 

frame work. All controllers are designed for a motion such that the trolley has 

maximum acceleration and deceleration of 21 sm . It is noted that the disturbance in 

every block diagram of controllers is the initial condition of payload swing angle. 

6.2.1 Feed-Forward Control 

Block diagram of ZVDD shaper is shown in Figure 6.1. The amplitudes and time 

locations of ZVDD shaper are determined by using Equations (2.31)-(2.32) in Chapter 

2.  The ZVDD shaper will be convoluted with the command signal of the system to 

generate shaped input for the system.  

Tx  

  
  

Tx  

 

Command 
Signal Flexible Gantry 

Crane System 

Disturbance 

u  ZVDD  
  Input Shaper Shaped 

Command 
  

Figure 6.1: ZVDD shaper  

This process is illustrated in Figure 6.2. ZVDD shaper’s amplitude and time 

location are as shown in Table 6.1 for cable length ml 1 , where the linear natural 

frequency of payload is  Hz1.1147m
mgf

T
P

p 




  12

1


. However, any 

arbitrary unshaped input force can be used to simulate the performance of the control 

design. 
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            Table 6.1: ZVDD parameters 

Parameters 1 2 3 4 

Amplitude 0.1250 0.3750 0.3750 0.1250 

Time Location 0 0.5791 1.1582 1.7373 
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Figure 6.2: Convolution of ZVDD shaper 

6.2.2 Feed-Back Control 

6.2.2.1 Fuzzy Logic Controller (FLC) 

The terms 21 G,G and 3G  are gains for two inputs and one output of the fuzzy logic 

controller used with the normalized universe of discourse for the fuzzy membership 

functions. Scaling factors 21 G,G are chosen to convert the two inputs within the 

universe of discourse and to activate the rule base effectively, whereas 3G  is selected 

such that it activates the system to generate the desired output. 

(a) 

(b) 

(c) 
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Figure 6.3: PD-type Fuzzy logic control structure 

Initially all these gains are chosen based on trial and error, where the values are 

 30007090 ..G  . In this thesis, the trapezoidal and triangular membership 

functions are chosen for the inputs and the output. To construct a rule base, inputs of 

system, namely the trolley position error and trolley position error derivative, also 

output for system namely force are partitioned into five fuzzy sets overlapping each 

other for position control as displayed in Figure 6.4.  

- Trolley position error 

The error of trolley position is defined as the difference between the desired 

position of trolley and the actual position of the trolley which can be written as 

follows. 

      txtrte TxT
                              (68) 

where r is desired position of trolley and Tx is actual position of trolley at time t .  

Positive values of error indicate that actual position of trolley is lower than 

desired position. Conversely, negative values of error indicate that actual position of 

the trolley is higher than the desired position. Such error variables are mapped into 

fuzzy sets using trapezoidal and triangular membership functions become five fuzzy 

sets namely, Negative Big (NB), Negative Small (NS), Zero (Z), Positive Small (PS) 

and Positive Big (PB) as depicted in Figure 6.4a.  
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- Trolley position error derivative 

Fuzzy sets for trolley position error derivative are mapped into five sets also as 

shown in Figure 6.4b. Derivative error of trolley velocity is defined as a derivative of 

 tex with respective to time which can be written as follows. 

    
dt

ted
te T

T
x

x                              (69) 

- Trolley force output 

Fuzzy sets for trolley force  tu
Tx  consist of five sets as well as shown in Figure 6.4c.  

Similar with position controller, membership functions for anti-sway controller 

covers swing angle error, swing angle error derivative and input force which are 

depicted in Figure 6.5. 
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Figure 6.4: Membership functions for position controller 
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Figure 6.5: Membership functions for anti-sway controller 

(b)  e  (b) e  (c) u  

- Fuzzy Inference Engine 

After membership functions of the input and the output variables are determined, 

fuzzy control rules are developed to connect between input and output variables. In 

this stage, decision making is conducted based on value of inputs which have been 

fuzzified.  The rule base of FLC is generated according to engineering judgment and 

experience.  

For convenience, these fuzzy rules are displayed in the decision matrices as 

shown in Table 6.2 and Table 6.3. 

Table 6.2: Fuzzy rules for position control 

 
Txe  

NB NS Z PS PB 
 
 

Txe  

NB NB NB NB NB NB 
NS NB NS NS PS PB 
Z NB NS Z PS PB 

PS NB NS PS PS PB 
PB NB NB PB PB PB 

     

(a) 

(b) 

(c) 

Error 
Error rate 
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                      Table 6.3: Fuzzy rules for anti-swing control 

e  

NB NS Z PS PB 

  Z NB NS Z PS PB 
 

These fuzzy rules are interpreted easily, for example: if 
Txe  is NS and 

Txe is Z, 

then for this case, fuzzy rules become: 

If 
Txe  is Negative Small and 

Txe  is Zero, then 
Txu is Negative Small 

In similar way, the other rules contained in Table 6.3 and Table 6.4 can be interpreted.  

Based on the value of 
Txe  and 

Txe in Table 6.3 above, in every time there will 

be more than one fuzzy rule fired. It is solved by fuzzy set operation as described in 

Section 2.5.2. As sample, the fuzzy inference system for position control is displayed 

in Figure 6.6, which is simulated by using fuzzy logic toolbox in Matlab®. 

 

 

Figure 6.6: Fuzzy inference system simulations 

Swing angle 
angle 

Swing angle 
          rate 
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The fuzzy rules are extracted based on underdamped system. Intuitively, the 

trolley of the crane moves to positive direction and the payload sway on clockwise 

direction. The force should be applied to negative direction in order to compensate the 

swing.  

 

Figure 6.7: Three dimension of fuzzy control action 

Meanwhile, if the trolley moves to negative and the payload sway to anti 

clockwise direction; the forced should be imposed to positive direction to suppress the 

swing motion. In the case there is no swing, no force should be applied.  

 

Figure 6.8: Fuzzy control actions with constant 
Txe  

Three dimension graphic of control action is depicted in Figure 6.7. From the 

figure, it is seen that controller output is function of error  
Txe  and error derivative 

 
Txe value. The mapping of the function is nonlinear.    
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As comparison, Figure 6.8 shows control action variation with respect to error 

 
Txe  value, where error derivative  

Txe value is kept constant. From the figure, it 

can be observed that for small error  
Txe  value, the minimum control action will be 

received. Vice versa, for large error  
Txe  value, the maximum control action will be 

gained.   

6.2.2.1 PID Based Controller 

The structure of PID control is shown in Figure 6.9.  It consists of two separate 

controller, position and anti-swing controller. The output of each controller will be 

combined, and sent into the plant, as noted byu .  Each of this controllers use the 

same PK , iK and dK of PID, where these gains are obtained by trial and error. Finally, 

optimal gains of PID controller are displayed in Table 6.4.  Scaling factors 321 G,G,G  

for each controller are chosen in such a way that it activates the system to generate the 

desired output. The values of these scaling factors are  2005080 ...G  . 
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Figure 6.9: PID controller 
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       Table 6.4: PID parameters 

Controllers 
Gain 

Kp Ki Kd 

PID controller 
(Position control) 320 0.25 0.05 

PID controller 
(Anti-swing) 

 

6.3  Simulation Results 

The graphical results of the trolley position  Tx , swing angles   of payload, trolley 

velocity  Tx   and control force  u for ZVDD are shown in Figure 6.10, Figure 6.11 

for PID, and Figure 6.12 for FLC. Simulation results reveal that all controllers are 

able to control the gantry crane system with rigid model assumption. 
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Figure 6.10: Simulation results with ZVDD; Swing angle (b) trolley position    
(c) trolley velocity 
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Figure 6.11: Simulation results with FLC 
(a) Swing angle (b) trolley position (c) trolley velocity (d) control force 
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Figure 6.12: Simulation results with PID controller 
Swing angle (b) trolley position (c) trolley velocity (d) control force 
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In fact, if the flexibility of crane framework and hoist cable is introduced, there 

are clear overshoots in swing angle, trolley velocity and control force as depicted by 

all controllers. All the controllers show the degradation of their performances in 

controlling the flexible gantry crane compared to rigid gantry crane.  

A summary of the performance of the controllers by observing Figure 6.13 is 

given in Table 6.4. It can be seen that there is no overshoot in the trolley position for 

the three controllers. PID has the highest payload swing and its swing angle 

magnitude, while ZVDD has the larger steady state error compared to the others. The 

control simulations reveal that FLC has better performance in controlling the flexible 

gantry crane. It is strongly presumed that the larger construction of gantry crane, the 

worse performance of controllers with respect to the rigid model.  

Table 6.4: Performance comparison 

Comparison ZVDD FLC PID 

Swing angle magnitude Lowest Lower Highest 

Payload swing Lowest Lower Highest 

Trolley position overshoot No 

overshoot 

No 

overshoot 

No 

overshoot 

Steady state error of swing 

angle (deg) 

50.  050.  10.  
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Figure 6.13: Swing angle responses comparison 
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Figure 6.14: Trolley position responses comparison 
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Figure 6.15: Trolley velocity responses comparison 
 

6.4  Summary  

The problem of transporting a suspended load with considering the flexibility of crane 

framework and hoist cable has been addressed and solved by three types of 

controllers. The simulations show that the swing angle and trolley position of flexible 

and rigid model of gantry crane can be controlled simultaneously. The performance 

and the stability are also good, especially for PID and FLC. However, it is only 

applicable for rigid model.  The simulation results confirm that the flexibility of crane 

framework and hoist cable hardly affect the controller performance. ZVDD, FLC, PID 

controllers have rough fluctuations in controlling the payload swing and trolley 

velocity. However, there is no overshoots in controlling the trolley position for the 

three controllers. Compared to FLC and PID, ZVDD has larger steady state error, it is 

about 10. . 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

 

7.1  Conclusions 

Dynamical model of flexible gantry crane system can be modeled as a system 

consisting of the elastic spherical pendulum payload which moves along the top beam 

of flexible crane framework by means of finite element method in conjunction with 

moving finite element method and Lagrange’s equation. The derived equations of 

motion show that the gantry crane behaves as an elastic spherical pendulum with 

moving flexible pivot point. The moving pivot point undergoes acceleration in three 

directions which provided by the flexibility of crane framework and affected by the 

flexibility of hoist cable.    

The derived equations of motion generate three loading cases on gantry crane 

system, namely swinging payload with stationary trolley as case I, moving trolley 

with stationary payload (moving load) as case II and moving trolley with swinging 

payload as case III. As verification, if the crane framework and hoist cable are rigid, 

the derived equations of motion correctly simplified to nonlinear equations, which 

exactly fulfill Newton’s of motion for classical pendulum system either with fixed 

pivot point or moving pivot point. 

The proposed computational technique, namely combinational Newmark- and 

fourth-order Runge-Kutta method can solve the equations of motion and predict the 

dynamic characteristic of flexible gantry crane system. The simulation results show 

that the dynamic responses of crane framework and gantry crane are bidirectional 

interaction, where the state variables of gantry crane such as swing angles, hoist cable 

and trolley motion affect the dynamics of crane framework and conversely.   
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Under case I, it is proved that the gantry crane system with flexible hoist cable-

crane framework produces greater amplitudes in swing angles , ,  ,   and FFT 

analysis confirms that it has the lowest swing angles frequency compared to the 

gantry crane system with flexible hoist cable or crane framework only with respect to 

rigid model. Moreover, all the flexible models of gantry crane system have longer 

periods or lower frequencies in the time histories of swing angles of payload with 

respect to the rigid model for all parametric studies either in case I or case III.  

It is clearly seen that the trend of the maximum axial  X , vertical  Y and 

lateral  Z  displacements of the central point pc of the framework increase with the 

increase of payload mass.  The increases are slightly linear for axial, vertical, lateral 

and hoist cable displacements either case I or case III. Under the increase of hoist 

cable stiffness, cross-sectional dimensions of crane framework and hoist cable length, 

the trends decrease for all the maximum displacements for both cases. 

Moreover, the control simulations confirm that the flexibility of crane framework 

and hoist cable significantly affect the controller performances. ZVDD, FLC, PID 

controller have rough fluctuations in controlling the flexible gantry crane with respect 

to their performances in controlling the rigid model of gantry crane. However, there is 

no overshoots in controlling the trolley position for the three controllers. Compared to 

FLC and PID, ZVDD has larger steady state error, it is about 10. . 

7.2  Recommendations  

This thesis has proven that the combinational direct integration technique can solve   

the generated equations of motion in order to predict and control the dynamic 

behavior of flexible gantry crane system. However, further study is required to 

include the actual hosting mechanism of the crane which is multi-cable, the trolley 

and payload as distributed mass. Future areas that can be studied are optimization of 

structural design, modern fatigue life, reliability design and other purposes. The 

experimental validation is recommended.  

 


