
ix

In compliance with the terms of the Copyright Act 1987 and the IP Policy of the

university, the copyright of this thesis has been reassigned by the author to the legal

entity of the university,

Institute of Technology PETRONAS Sdn Bhd.

Due acknowledgement shall always be made of the use of any material contained

in, or derived from, this thesis.

© Oyas Wahyunggoro, 2011

Institute of Technology PETRONAS Sdn Bhd

All rights reserved.

x

TABLE OF CONTENTS

STATUS OF THESIS .. i

APPROVAL PAGE .. ii

TITLE PAGE ... iii

DECLARATION OF THESIS .. iv

ACKNOWLEDGEMENT .. v

ABSTRACT ... vi

ABSTRAK .. vii

COPYRIGHT PAGE ... ix

TABLE OF CONTENTS .. x

LIST OF FIGURES ... xiv

LIST OF TABLES .. xxii

LIST OF ABBREVIATIONS ... xxv

NOMENCLATURES ... xxvii

CHAPTER 1 INTRODUCTION .. 1
1.1 Background ... 1

1.2 Issues on Optimization Using GA ... 2
1.3 Motivations .. 3
1.4 Objective and Contribution of Research ... 4

1.5 Thesis Outline ... 4

CHAPTER 2 LITERATURE REVIEW ... 6
2.1 Introduction ... 6
2.2 Servomotor .. 6
2.3 System Identification ... 7

2.4 Speed and Position Controller ... 7
2.5 Fuzzy Logic Controllers .. 8

2.6 Hybrid-Fuzzy Controllers ... 8
2.7 Overview of Genetic Algorithms (GA) ... 10
2.8 Some Related Work on GA Applications ... 14
2.9 The Proposed Methods .. 15

xi

2.10 DC Servomotor and Power Amplifier ... 15
2.10.1 Power Amplifier ... 16
2.10.2 Transfer Function Model of a DC Motor .. 17
2.10.3 Input-Output Modelling of a DC Servomotor 20

2.11 Overview on Control Theory .. 21
2.11.1 Feed Forward and Feedback Control .. 22
2.11.2 PID Controller ... 24
2.11.3 Integral Windup .. 25
2.11.4 Fuzzy Logic Controller ... 26

2.12 Evolutionary Algorithms ... 30
2.12.1 Genetic Algorithms ... 31
2.12.2 Parallel Genetic Algorithm ... 35

2.12.3 Hierarchical Genetic Algorithms .. 36
2.13 Controller Performance ... 37
2.14 Summary ... 39

CHAPTER 3 SIMULATION AND HARDWARE EXPERIMENT.......................... 40
3.1 Introduction ... 40

3.2 Hardware Implementation ... 41
3.3 Input-Output Modelling of A DC Servomotor .. 48

3.3.1 Designing An Experiment .. 49

3.3.2 Collecting Input-Output Data ... 52
3.3.3 Selecting and Defining A Model Structure ... 52

3.3.4 Computing The Best Model .. 53
3.3.5 Selection of The Best Model .. 53

3.4 Simulation and Experiment Design of Speed and Position Control 53
3.4.1 Simulation and Experiment Design of Position Controller 57
3.4.2 Simulation and Experiment Design of Conventional Speed

Controllers .. 60
3.4.3 Simulation and Experiment Design of Fuzzy Logic Controller

(FLC) .. 61
3.4.4 Simulation and Experiment Design of Hybrid-Fuzzy Controller 64

3.5 Design of Genetic Algorithm .. 67
3.5.1 Simulation of GA .. 71

3.5.2 The Structure of Semi-Parallel Operation Genetic Algorithm

(SPOGA) ... 73

3.5.3 Simulation of SPOGA .. 75
3.6 Design and Application of SPOGA to Optimize Hybrid-Fuzzy

Controller .. 77
3.6.1 Design and Application of SPOGA to Optimize FLBPI 77
3.6.2 Design and Application of SPOGA to Optimize FLBPID 83

3.6.3 Design and Application of SPOGA to Optimize FLIC 88
3.6.3.1 Optimizing Membership Function and Rules 88
3.6.3.2 Optimizing I/O Scales and Integral Constant 92

3.7 Performance Comparisons and Evaluations .. 96
3.8 Summary ... 107

CHAPTER 4 SIMULATION RESULTS AND DISCUSSIONS 109
4.1 Introduction ... 109

xii

4.2 Input-Output Modeling of A DC Servomotor ... 110
4.3 Simulation of Conventional and Fuzzy Controllers 111

4.3.1 Description on Types of Simulations .. 112
4.3.2 Performance Comparisons of Conventional and Fuzzy

Controllers .. 113
4.3.3 Simulation Results Summary of Conventional and Fuzzy

Controllers .. 117
4.4 Simulation of Hybrid-Fuzzy Controllers ... 118

4.4.1 Performance Comparisons of Hybrid-Fuzzy Controllers 119

4.4.2 Simulation Results Summary of Hybrid-Fuzzy Controllers 123
4.5 Performance Comparisons of Conventional, Fuzzy, and Hybrid-Fuzzy

Controllers ... 124

4.5.1 Results on Performance Comparisons of Conventional, Fuzzy,

and Hybrid-Fuzzy Controllers .. 124
4.5.2 Simulation Results Summary of Conventional, Fuzzy, and

Hybrid-Fuzzy Controllers ... 137
4.6 Simulation results of GA and SPOGA .. 138

4.7 Process Results of SPOGA in Optimizing Controllers 141
4.7.1 FLBPI .. 141
4.7.2 FLBPID ... 142

4.7.3 FLIC .. 143
4.7.3.1 Optimizing Membership Function and Rules 143
4.7.3.2 Optimizing I/O Scales and Integral Constant 145

4.8 Simulation of SPOGA Optimized Controllers .. 146

4.8.1 Results and Discussions on SPOGA Optimized Controllers 146
4.8.2 Simulation Results Summary of SPOGA-Hybrid-Fuzzy

Controllers .. 151

4.9 Performance Comparisons of SPOGA to non-SPOGA Controllers 152
4.9.1 Comparison of SPOGA Optimized and Non-SPOGA Optimized

Controllers .. 152
4.9.2 Simulation Results Summary of SPOGA Optimized and non-

SPOGA Optimized Hybrid-Fuzzy Controllers 160
4.10 Summary ... 160

CHAPTER 5 REAL-TIME IMPLEMENTATION RESULTS AND

DISCUSSIONS ... 162

5.1 Introduction ... 162
5.2 Experiment on Sampling Period and FIR ... 163
5.3 Experiments of Conventional and Fuzzy Logic Controllers 164

5.3.1 Results for Conventional and Fuzzy Logic Controllers in Real-

time Implementation ... 165

5.3.2 Experiment Results Summary of Conventional and Fuzzy

Controllers .. 170
5.4 Experiment of Hybrid-Fuzzy Controllers ... 171

5.4.1 Results of Hybrid-Fuzzy Controller in Real-time

Implementation ... 171

5.4.2 Experiment Results Summary of Hybrid-Fuzzy Controllers 177
5.5 Experiment of SPOGA Optimized Controllers ... 177

xiii

5.5.1 Results of SPOGA Optimized Controllers in Real-time

Implementation ... 178
5.5.2 Experiment Results Summary of SPOGA Optimized Hybrid-

Fuzzy Controllers .. 183

5.6 Performance Comparisons of SPOGA to non-SPOGA Controllers 184
5.6.1 Results of Performance Comparisons of SPOGA to non-SPOGA

Controllers in Real-time Implementation ... 184
5.6.2 Experiment Results Summary of SPOGA optimized and non-

SPOGA optimized Hybrid-Fuzzy Controllers 192

5.7 Performance Comparisons of Conventional, Fuzzy, and SPOGA

Optimized Hybrid-Fuzzy Controllers .. 193
5.7.1 Results on Performance Comparisons of Conventional, Fuzzy,

and SPOGA Optimized Hybrid-Fuzzy Controllers 193
5.7.2 Experiment Results Summary of Coventional, Fuzzy, and

SPOGA Optimized Hybrid-Fuzzy Controllers 207
5.8 Summary ... 207

CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS 209

6.1 Conclusions ... 209
6.2 Directions for Future Work ... 211

REFERENCES ... 212

APPENDICES

A. Publications

B. Performances of GA and SPOGA

C. Chromosomes in SPOGA Process

D. Speed Control Responses

xiv

LIST OF FIGURES

Fig. 2.1 Structure of optimal fuzzy control system [32] ... 9

Fig. 2.2 Fuzzy-tuned PID controller scheme [33] ... 10

Fig. 2.3 A hierarchical membership chromosome [43] ... 14

Fig. 2.4: Electrical circuit and free body diagram of the rotor of DC motor

[52] ... 17

Fig. 2.5 Simplified description of a control system [54] ... 22

Fig. 2.6 Block diagram of feed forward control system [54] 22

Fig. 2.7 Block diagram of feedback control system [54] .. 22

Fig. 2.8 Saturation feedback as an anti integral windup [58] 26

Fig. 2.9 Membership function for 'high" where the horizontal axis

represents the speed of the car and the vertical axis represents the

membership value for "high" [59].. 27

Fig. 2.10 Membership function for "less", where the horizontal axis

represents the force applied to the accelerator and the vertical axis

represents the membership value for "less" [59].. 27

Fig. 2.11 Basic configuration of fuzzy systems with fuzzifier and defuzzifier

[59] ... 29

Fig. 2.12 Process flowchart of Genetic Algorithm .. 32

Fig. 2.13 Example of one-point (in the middle) of crossover [80] 34

Fig. 2.14 Example of bit mutation on the fourth bit [80] .. 34

Fig. 2.15 An example of HGA structure with 8-bit control genes and 8-bit

parameter genes .. 37

Fig. 2.16 Second-order underdamped response specifications [54] 38

Fig. 3.1 Structure of feedback controller [28] ... 41

Fig. 3.2 Block diagram of hardware design .. 44

xv

Fig. 3.3 Power amplifier circuit diagram .. 45

Fig. 3.4 Differential amplifier circuit diagram .. 45

Fig. 3.5 USB-1208FS functional block diagram [87] ... 46

Fig. 3.6 Signal conditioner flowchart for DAC ... 47

Fig. 3.7 Input-output of signal conditioner.. 48

Fig. 3.8 Process of input-output modeling .. 49

Fig. 3.9 Input sequence 1 for input-output modelling ... 50

Fig. 3.10 Input sequence 2 for input-output modelling ... 50

Fig. 3.11 Input sequence 3 for input-output modelling ... 51

Fig. 3.12 Input sequence 4 for input-output modelling ... 51

Fig. 3.13 Input sequence 5 for input-output modelling ... 52

Fig. 3.14 Block diagram of simulation experiment in SIMULINK platform 54

Fig. 3.15 Block diagram of hardware experiment in SIMULINK platform 54

Fig. 3.16 Pattern of variations of speed set-point .. 55

Fig. 3.17 Flowchart of conditioner of actual speed set-point 56

Fig. 3.18 Fuzzy input membership functions for position controller: (a) error;

(b) change of error .. 59

Fig. 3.19 Fuzzy output membership function for position controller 59

Fig. 3.20 Fuzzy input membership functions for speed controller: (a) error;

(b) change of error .. 62

Fig. 3.21 Fuzzy output rate membership function for speed controller 62

Fig. 3.22 Block diagram of fuzzy-logic-based self-tuning PI for the speed

controller [45] .. 64

Fig. 3.23 Fuzzy sets and their corresponding membership functions: (a)

Input, (b) Output [45] ... 65

Fig. 3.24 Structure of FLIC ... 66

Fig. 3.25 Fuzzy output membership functions in FLIC .. 66

Fig. 3.26 Population initialization using random generation 68

xvi

Fig. 3.27 Flowchart of SUS Roulette Wheel selection.. 69

Fig. 3.28 Flowchart of one-point crossover process ... 70

Fig. 3.29 Flowchart of mutation process ... 71

Fig. 3.30 Chromosome structure of SPOGA, typically six bit per sub-

chromosome ... 74

Fig. 3.31 Process flowchart of SPOGA ... 75

Fig. 3.32 Initial population for SPOGA using twisted ring counters 76

Fig. 3.33 Flowchart of fitness evaluation for SPOGA .. 80

Fig. 3.34 Set-point signal for the speed test run in fitness evaluation 80

Fig. 3.35 Flowchart of chromosome decoding for FLBPI of SPOGA process 81

Fig. 3.36 Flowchart of crossover process for FLBPI of SPOGA process 82

Fig. 3.37 Flowchart of mutation process for FLBPI of SPOGA process 82

Fig. 3.38 Solution chromosome as a result of SPOGA process 83

Fig. 3.39 Flowchart of chromosome decoding for FLBPID of SPOGA

process .. 86

Fig. 3.40 Flowchart of crossover process for FLBPID of SPOGA process 87

Fig. 3.41 Flowchart of mutation process for FLBPID of SPOGA process 87

Fig. 3.42 Flowchart of chromosome decoding of SPOGA process for

membership functions in FLIC .. 90

Fig. 3.43 Fuzzy membership functions related to chromosome 91

Fig. 3.44 Flowchart of crossover process in SPOGA process for membership

functions in FLIC ... 91

Fig. 3.45 Flowchart of mutation process in SPOGA process for membership

functions in FLIC ... 92

Fig. 3.46 Flowchart of chromosome decoding in SPOGA process for I/O/

scales and integral constant .. 94

Fig. 3.47 Flowchart of crossover process in SPOGA process for I/O/ scales

and integral constant .. 95

Fig. 3.48 Flowchart of mutation process in SPOGA process for I/O/ scales

and integral constant .. 96

xvii

Fig. 3.49 Set-point of speed in the experiment of type 1a... 98

Fig. 3.50 Set-point of position in the experiment of type 1a. 98

Fig. 3.51 Set-point of speed in the experiment of type 1b. 100

Fig. 3.52 Set-point of position in the experiment of type 1b..................................... 100

Fig. 3.53 Set-point of speed in the experiment of type 2 and 4b............................... 101

Fig. 3.54 Set-point of position in the experiment of type 2....................................... 101

Fig. 3.55 Set-point of speed in the experiment of type 3a... 103

Fig. 3.56 Set-point of position in the experiment of type 3a and 3b 103

Fig. 3.57 Set-point of speed in the experiment of type 3b .. 104

Fig. 3.58 Set-point of speed in the experiment of type 4a... 106

Fig. 3.59 Set-point of position in the experiment of type 4b..................................... 106

Fig. 4.1 Graphical verification of input-output modelling of a DC

servomotor ... 111

Fig. 4.2 Speed control of DC servomotor using FLBPID vs. PI for

simulation 1a .. 126

Fig. 4.3 Absolute error of speed control of DC servomotor using FLBPID

vs. PI for simulation 1a .. 126

Fig. 4.4 Position control of DC servomotor using FLBPI vs. FLC for

simulation 1a .. 127

Fig. 4.5 Absolute error of position control of DC servomotor using FLBPI

vs. FLC for simulation 1a .. 127

Fig. 4.6 Position control of DC servomotor using FLBPID vs. PID for

simulation 1b .. 128

Fig. 4.7 Absolute error of position control of DC servomotor using FLBPID

vs. PID for simulation 1b ... 128

Fig. 4.8 Speed control of DC servomotor using FLIC vs. PI for simulation 2 129

Fig. 4.9 Absolute error of speed control of DC servomotor using FLIC vs.

PI for simulation 2.. 129

Fig. 4.10 Position control of DC servomotor using FLIC vs. PID for

simulation 2 .. 130

xviii

Fig. 4.11 Absolute error of position control of DC servomotor using FLIC

vs. PID for simulation 2 ... 130

Fig. 4.12 Speed control of DC servomotor using FLBPID vs. PI for

simulation 3a .. 131

Fig. 4.13 Absolute error of speed control of DC servomotor using FLBPID

vs. PI for simulation 3a .. 131

Fig. 4.14 Position control of DC servomotor using FLBPID vs. PID for

simulation 3a .. 132

Fig. 4.15 Absolute error of position control of DC servomotor using FLBPID

vs. PID for simulation 3a ... 132

Fig. 4.16 Speed control of DC servomotor using FLBPID vs. PID for

simulation 3b .. 133

Fig. 4.17 Absolute error of speed control of DC servomotor using FLBPID

vs. PID for simulation 3b ... 133

Fig. 4.18 Position control of DC servomotor using FLBPI vs. PI for

simulation 3b .. 134

Fig. 4.19 Absolute error of position control of DC servomotor using FLBPI

vs. PI for simulation 3b .. 134

Fig. 4.20 Speed control of DC servomotor using FLBPID vs. PID for

simulation 4a .. 135

Fig. 4.21 Absolute error of speed control of DC servomotor using FLBPID

vs. PID for simulation 4a ... 135

Fig. 4.22 Speed control of DC servomotor using FLIC vs. PI for simulation

4b .. 136

Fig. 4.23 Absolute error of speed control of DC servomotor using FLIC vs.

PI for simulation 4b.. 136

Fig. 4.24 Position control of DC servomotor using FLIC vs. PI for simulation

4b .. 137

Fig. 4.25 Absolute error of position control of DC servomotor using FLIC

vs. PI for simulation 4b .. 137

Fig. 4.26 Input membership functions of SPOGA-optimized FLIC: (a) Error

membership function, (b) Change of error membership functions 144

Fig. 4.27 Output membership functions SPOGA-optimized FLIC 144

xix

Fig. 4.28 Step response of speed control of DC servomotor using SPOGA-

FLBPI vs. FLBPI for simulation 1a (see Fig. D.1) 154

Fig. 4.29 Absolute error of speed control of DC servomotor using SPOGA-

FLBPI vs. FLBPI for simulation 1a ... 154

Fig. 4.30 Step response of speed control of DC servomotor using SPOGA-

FLBPI vs. FLBPI for simulation 2 (see Fig. D.2) 155

Fig. 4.31 Absolute error of speed control of DC servomotor using SPOGA-

FLBPI vs. FLBPI for simulation 2 ... 155

Fig. 4.32 Step response of speed control of DC servomotor using SPOGA-

FLBPI vs. FLBPI for simulation 3a (see Fig. D.3) 156

Fig. 4.33 Absolute error of speed control of DC servomotor using SPOGA-

FLBPI vs. FLBPI for simulation 3a ... 156

Fig. 4.34 Step response of speed control of DC servomotor using SPOGA-

FLBPI vs. FLBPI for simulation 3b (see Fig. D.4) 157

Fig. 4.35 Absolute error of speed control of DC servomotor using SPOGA-

FLBPI vs. FLBPI for simulation 3b ... 157

Fig. 4.36 Speed control of DC servomotor using SPOGA-FLBPI vs. FLBPI

for simulation 4a .. 158

Fig. 4.37 Absolute error of speed control of DC servomotor using SPOGA-

FLBPI vs. FLBPI for simulation 4a ... 158

Fig. 4.38 Step response of speed control of DC servomotor using SPOGA-

FLBPI vs. FLBPI for simulation 4b (see Fig. D.5) 159

Fig. 4.39 Absolute error of speed control of DC servomotor using SPOGA-

FLBPI vs. FLBPI for simulation 4b ... 159

Fig. 4.40 Position control of DC servomotor using SPOGA-FLBPI vs. FLPI

for simulation 4b .. 160

Fig. 5.1 Step response of speed control of DC servomotor using SPOGA-

FLBPI vs. FLBPI for experiment 1a (see Fig. D.6) 186

Fig. 5.2 Absolute error of speed control of DC servomotor using SPOGA-

FLBPI vs. FLBPI for experiment 1a .. 186

Fig. 5.3 Step response of speed control of DC servomotor using SPOGA-

FLIC vs. FIC for experiment 2 (see Fig. D.7).. 187

Fig. 5.4 Absolute error of speed control of DC servomotor using SPOGA-

FLIC vs. FLIC for experiment 2 .. 187

xx

Fig. 5.5 Step response of speed control of DC servomotor using SPOGA-

FLBPI vs. FLBPI for experiment 3a (see Fig. D.8) 188

Fig. 5.6 Absolute error of speed control of DC servomotor using SPOGA-

FLBPI vs. FLBPI for experiment 3a .. 188

Fig. 5.7 Step response of speed control of DC servomotor using SPOGA-

FLBPID vs. FLBPID for experiment 3b (see Fig. D.9) 189

Fig. 5.8 Absolute error of speed control of DC servomotor using SPOGA-

FLBPID vs. FLBPID for experiment 3b .. 189

Fig. 5.9 Speed control of DC servomotor using SPOGA-FLBPID vs.

FLBPID for experiment 4a .. 190

Fig. 5.10 Absolute error of speed control of DC servomotor using SPOGA-

FLBPID vs. FLBPID for experiment 4a .. 190

Fig. 5.11 Step response of speed control of DC servomotor using SPOGA-

FLBPI vs. FLBPI for experiment 4b (see Fig. D.10) 191

Fig. 5.12 Absolute error of speed control of DC servomotor using SPOGA-

FLBPI vs. FLBPI for experiment 4b .. 191

Fig. 5.13 Position control of DC servomotor using SPOGA-FLBPI vs. FLPI

for experiment 4b ... 192

Fig. 5.14 Step response of speed control of DC servomotor using SPOGA-

FLBPI vs. PI for experiment 1a (see Fig. D.11) .. 195

Fig. 5.15 Absolute error of speed control of DC servomotor using SPOGA-

FLBPI vs. PI for experiment 1a ... 195

Fig. 5.16 Position control of DC servomotor using SPOGA-FLBPID vs. PID

for experiment 1a ... 196

Fig. 5.17 Absolute error of position control of DC servomotor using

SPOGA-FLBPID vs. PID for experiment 1a ... 196

Fig. 5.18 Position control of DC servomotor using SPOGA-FLBPID vs. PID

for experiment 1b ... 197

Fig. 5.19 Absolute error of position control of DC servomotor using

SPOGA-FLBPID vs. PID for experiment 1b ... 197

Fig. 5.20 Step response of speed control of DC servomotor using SPOGA-

FLBPID vs. PID for experiment 2 (see Fig. D.12) 198

Fig. 5.21 Absolute error of speed control of DC servomotor using SPOGA-

FLBPID vs. PID for experiment 2 ... 198

xxi

Fig. 5.22 Position control of DC servomotor using SPOGA-FLBPID vs. PID

for experiment 2 ... 199

Fig. 5.23 Absolute error of position control of DC servomotor using

SPOGA-FLBPID vs. PID for experiment 2 ... 199

Fig. 5.24 Step response of speed control of DC servomotor using SPOGA-

FLBPI vs. PID for experiment 3a (see Fig. D.13) 200

Fig. 5.25 Absolute error of speed control of DC servomotor using SPOGA-

FLBPI vs. PID for experiment 3a .. 200

Fig. 5.26 Position control of DC servomotor using SPOGA-FLBPI vs. PID

for experiment 3a ... 201

Fig. 5.27 Absolute error of position control of DC servomotor using

SPOGA-FLBPI vs. PID for experiment 3a .. 201

Fig. 5.28 Step response of speed control of DC servomotor using SPOGA-

FLBPI vs. PID for experiment 3b (see Fig. D.14) 202

Fig. 5.29 Absolute error of speed control of DC servomotor using SPOGA-

FLBPID vs. PI for experiment 3b .. 202

Fig. 5.30 Position control of DC servomotor using SPOGA-FLBPI vs. PID

for experiment 3b ... 203

Fig. 5.31 Absolute error of position control of DC servomotor using

SPOGA-FLBPI vs. PID for experiment 3b .. 203

Fig. 5.32 Speed control of DC servomotor using SPOGA-FLBPID vs. PID

for experiment 4a ... 204

Fig. 5.33 Absolute error of speed control of DC servomotor using SPOGA-

FLBPID vs. PID for experiment 4a ... 204

Fig. 5.34 Step response of speed control of DC servomotor using SPOGA-

FLBPI vs. PID for experiment 4b (see Fig. D.15) 205

Fig. 5.35 Absolute error of speed control of DC servomotor using SPOGA-

FLBPI vs. PID for experiment 4b .. 205

Fig. 5.36 Position control of DC servomotor using SPOGA-FLBPID vs. PID

for simulation 4b .. 206

Fig. 5.37 Absolute error of position control of DC servomotor using

SPOGA-FLBPID vs. PID for simulation 4b .. 206

xxii

LIST OF TABLES

Table 2.1 Example of DC motor parameters ... 19

Table 3.1 Values of KPv .. 58

Table 3.2 Rules of FLC for position controller .. 60

Table 3.3 Rules of FLC for speed controller .. 63

Table 3.4 Fuzzy rules base for KP and KI in FLBPI [45] ... 65

Table 3.5 Parameters of GA ... 71

Table 3.6 Initial population of SPOGA for 10 bit length, 30 population size 77

Table 3.7 Initial population in FLBPI .. 79

Table 3.8 Initial population in FLBPID ... 85

Table 3.9 Initial population for membership functions of FLIC 89

Table 3.10 Initial population for I/O scales and integral constant 93

Table 4.1 The best model of each type of input sequence ... 110

Table 4.2 Types of simulation .. 113

Table 4.3 Simulation results of conventional and fuzzy logic controllers

based on second order underdamped response analysis 114

Table 4.4 Simulation results of conventional and fuzzy logic controllers

based on error analysis ... 114

Table 4.5 Simulation results of conventional and fuzzy logic controllers

based on fitness value analysis... 115

Table 4.6 Simulation results of hybrid-fuzzy controllers based on second

order underdamped response analysis.. 120

Table 4.7 Simulation results of hybrid-fuzzy controllers based on error

analysis ... 120

Table 4.8 Simulation results of hybrid-fuzzy controllers based on fitness

value analysis ... 121

xxiii

Table 4.9 Performance comparisons of conventional, fuzzy, and hybrid-fuzzy

controllers... 125

Table 4.10 Performance of GA and SPOGA with minimum specification 139

Table 4.11 Results of GA simulation for minimum criteria .. 139

Table 4.12 Results of SPOGA simulation for minimum criteria 139

Table 4.13 Results of GA simulation for good criteria .. 140

Table 4.14 Results of SPOGA simulation for good criteria... 140

Table 4.15 Maximum fit chromosome for FLBPI parameters 142

Table 4.16 Maximum fit chromosome for FLBPID parameters 143

Table 4.17 Maximum fit chromosome for FLC parameters in FLIC 143

Table 4.18 Rules of SPOGA-optimized FLIC ... 145

Table 4.19 Maximum fit chromosome for I/O scales and integral constant in

FLIC ... 146

Table 4.20 Simulation results of SPOGA optimized hybrid-fuzzy controllers

based on second order underdamped response analysis 147

Table 4.21 Simulation results of SPOGA optimized hybrid-fuzzy controllers

based on error analysis ... 147

Table 4.22 Simulation results of SPOGA optimized hybrid-fuzzy controllers

based on fitness value analysis... 148

Table 4.23 Performance improvement comparison of SPOGA optimized and

non-SPOGA hybrid-fuzzy controllers for simulation experiment 153

Table 5. 1 Experiment result of sampling period .. 163

Table 5.2 Comparison between 25-point FIR and 30-point FIR 164

Table 5.3 Types of experiment... 165

Table 5.4 Experiment results of conventional and fuzzy logic controllers

based on second order underdamped response analysis 166

Table 5.5 Experiment results of conventional and fuzzy logic controllers

based on error analysis ... 166

Table 5.6 Experiment results of conventional and fuzzy logic controllers

based on fitness value analysis... 167

xxiv

Table 5.7 Experiment results of hybrid-fuzzy controllers based on second

order underdamped response analysis.. 172

Table 5.8 Experiment results of hybrid-fuzzy controllers based on error

analysis ... 173

Table 5.9 Experiment results of hybrid-fuzzy controllers based on fitness

value analysis ... 174

Table 5.10 Experiment results of SPOGA optimized hybrid-fuzzy controllers

based on second order underdamped response analysis 178

Table 5.11 Experiment results of SPOGA optimized hybrid-fuzzy controllers

based on error analysis ... 179

Table 5.12 Experiment results of SPOGA optimized hybrid-fuzzy controllers

based on fitness value analysis... 180

Table 5.13 Performance improvement comparison of SPOGA optimized and

non-SPOGA hybrid-fuzzy controllers for hardware experiment 185

Table 5.14 Performance comparisons of conventional, fuzzy, and SPOGA

optimized hybrid-fuzzy controllers for hardware experiment 194

xxv

LIST OF ABBREVIATIONS

ADC Analog to Digital Converter

AC Alternating Current

AGA Adaptive Genetic Algorithm

AI Artificial Intelligence

ANN Artificial Neural Network

AQM Active Queue Management

BSFC Binary String Fitness Characterisation

cGA compact Genetic Algorithm

CPS Comparative Partner Selection

D Derivative

DAC Digital to Analog Converter

DAQ Data Acquisition

DC Direct Current

DD Data-Driven

EA Evolutionary Algorithm

ECM Evolutionary Computation Methods

FIR Finite Impulse Response

FLBPI Fuzzy Logic

FLBPI Fuzzy Logic Based self tuning PI

FLBPID Fuzzy Logic Based self tuning PID

FLC Fuzzy Logic Controller

FLGA Fuzzy Logic guided Genetic Algorithm

FLIC Fuzzy Logic parallel Integral Controller

FPI Fuzzy Proportional Integral

FRBS Fuzzy Rule Base System

FS Fuzzy System

FSPID Fuzzy-Scheduled PID

GA Genetic Algorithm

GP Genetic Programming

HGA Hierarchical Genetic Algorithm

HGU Hydroelectric Generating Unit

I Integral

IGBT Insulated Gate Bipolar Transistor

KVL Kirchoff Voltage Law

MA Moving Average

MIE Minimum Inference Engine

MRDE Matrix Riccati Differential Equation

P Proportional

PC Personal Computer

PFP Power Factor Precompensators

PGA Parallel Genetic Algorithm

PI Proportional-Integral

xxvi

PID Proportional-Integral-Derivative

PIE Product Inference Engine

PLC Programmable Logic Controller

PWM Pulse Width Modulation

RS Regulatory Sequence

RWM Roulette Wheel Mechanism

SG Structural Gene

sGA standard GA

SPOGA Semi-Parallel Operation Genetic Algorithm

SPOGA-FLBPI SPOGA optimized Fuzzy Logic Based self tuning PI

SPOGA-FLBPID SPOGA optimized Fuzzy Logic Based self tuning PID

SPOGA-FLIC SPOGA optimized Fuzzy Logic parallel Integral Controller

SSPR Stochastic Sampling with Partial Replacement

SSR Stochastic Sampling with Replacement

SUMP Shift and Uniform based Multi-Point

SUS Stochastic Universal Sampling

TS Takagi-Sugeno

TS-PID Takagi-Sugeno-Proportional Integral Derivative

USB Universal Serial Bus

xxvii

NOMENCLATURES

A Ampere

%Os Percent of overshoot

%Os2 Percent of second overshoot

%Sp Percent of steady state error for position

%Us percent of undershoot

AP Input element for position

ASSP Actual speed set point

Av Input element for speed

b Damping ratio

bl Damping ratio of load

bl Bit length

D Change of error input of FLC

Dt Delay time in process model

e Controller input (error)

E Error input of FLC

fitp Total fitness function for position control

fitv Total fitness function for speed control

fitv,g
Total fitness function of SPOGA-optimized hybrid controller for

speed control in the experiment x

fitv,h
Total fitness function of non-SPOGA-optimized hybrid controller

for speed control in the experiment x

fitx Total fitness function for speed and position control in experiment x

fos Fitness funxtion based on % overshoot

fp Fitness function for position based on ITAEp

fsp Fitness function based on %Sp

fts Fitness function based on settling time

fvp Fitness function for the first 8-second starting speed

h Output of fuzzy controller in FLBPI/FLBPID

H(w,x,y) Fuzzy rule string

HP Feedback element for position

Hv Feedback element for speed

i_FIT Fitness value for identification process

Ia Armature current

IAE Integral of Absolute value of Error

if Field current

Ipvx Improvement value for speed control in the experiment x

ITAE Integral of Time Absolute value of Error

J Moment of inertia

Jl Moment of inertia of load

Ka Feedback constant of saturation feedback

Kce Input scale for fuzzy change of error input

xxviii

KD Derivative constant

KDm Maximum value of KD

Ke Input scale for fuzzy error input

KI Integral constant

KIm Maximum value of KI

KP Proportional constant

KPt Output element for position

KP-u Ultimate value of KP

KPm Maximum value of KP

KPp Proportional constant of position controller

KPv Variable position constant

Ku Output scale for fuzzy output

Kv Output element for speed

L Electric inductance

m Controller output

M Output of controller to be fed to the signal conditioner

mo Initial condition of controller

Mp Output of variable proportional controller

N Number of points

n Number of poles

NB Negative big

Nc Population size

Ng Number of generation

ni Iteration number

NM Negative medium

NS Negative small

P Process model

PB Positive big

pc Crossover rate

PE Position error

pm Mutation probability/rate

PM Positive medium

pm0 Initial mutation probability/rate

PMV Output of position controller

PPV Position process value

PR Position reference

PS Positive small

PSP Position set point

PV Process value

R Electric resistance

rpm Revolutions per minute

SE Input to the speed controller

SEC Output of speed comparator

SP Set point

SPV Speed process value

T Rotor torque

Tl Load torque

tp Peak time

tr Rise time

xxix

Ts Sampling period

ts Settling time

Tu Ultimate period of oscillation

Uc Possible complex-valued poles

U Output of FLC

V Source voltage

W Watt

wl The height of lth fuzzy membership functions

X Input

Y Output

Ym Real (measured) output of identification process

Z Zero in process model

zc Control genes

ZE Zero

zp Parameter genes

θ Position

Φ Flux magnetic

𝑦 Estimated output of identification process

𝑦 Mean value of real output in identification process

CHAPTER 1

INTRODUCTION

1.1 Background

Servomotors are used in a variety of applications in industrial electronics and robotics

that includes precision positioning as well as speed control. Sometimes, the robot

searches an optimum or approximate optimum non-collision path from start state to

goal state according to a performance objective [1]. They use feedback controller to

control the speed or the position or both. A robot used as manipulator has an end

effector mounted on the last link. This end effector can be anything from a welding

device to a mechanical hand used to manipulate the environment.

Consider a robot-manipulator system with its controller. The objective of the

controller would be to move the robot arm via an effective control of the drive with

DC servomotor [2]. The control system to implement can be classified into the

following three stages [2] :

i. develop the circuit and the corresponding software for control of servomotors,

ii. develop a control system of the pneumodrive, and

iii. arrange a control system of the robot - manipulator.

Control theory is an interdisciplinary branch of engineering and mathematics, that

deals with the behavior of dynamical systems. The desired output of a system is called

the reference. When one or more output variables of a system need to follow a certain

reference over time, a controller manipulates the inputs to the system to obtain the

desired effect on the output of the system.

The basic continuous feedback control is PID controller. PID controllers have

good performance but are not adaptive enough. This is appealing when the load is

2

changed, where the original controller generally cannot maintain the desired

performance and thus should be re-designed for the new system conditions [3].

The pioneering work dealing with expert knowledge that can be well applied to

the control of systems with uncertained, nonlinear dynamics is credited to Zadeh [4]

who proposed fuzzy control theory to overcome the weakness of conventional

controllers, and investigated by which owns good robustness [5]. Experimentally, the

response of a fuzzy logic controller is slower than a PID controller. It has been

reported in a number of papers that hybrid of PID or PI, with fuzzy logic in control

system can overcome the set-back of fuzzy logic controller, see [6-9].

Fuzzy systems are capable of handling complex, non-linear and sometimes

mathematically intangible dynamic systems using simple solutions. Fuzzy logic uses

human-like but systematic properties of converting linguistic control rules based on

expert knowledge into automatic control strategies. It requires time, experience and

skills of the designer for the tedious fuzzy tuning exercise [10] because it lacks a

learning mechanism [11]. It is expected that any algorithm can overcome some of the

problems.

The most significant advantage of using evolutionary search lies in the gain of

flexibility and adaptability to the task at hand and the global search characteristics.

Among various evolutionary computation methods (ECM) is genetic algorithms (GA)

which employ a random, yet directed search for locating global optimal solution [12].

GA is effective in acquiring the optimal or near-optimal for solving optimization

problems [13]. The typical task of a GA in a control engineering application is finding

the best values for a predefined set of free parameters which defining either a process

model or a control law [14].

1.2 Issues on Optimization Using GA

Besides the advantages as explained in Sec 1.1, in contrast, GAs also have some

problems as follows:

3

1. There are possibilities that the premature convergence and local maxima occur.

2. During the evolution of solutions using genetic programming (GP) there is

generally an increase in average tree size or population size without a

corresponding increase in fitness. This phenomenon is commonly referred to as

bloat [15].

3. It is well known that the searching speed of the conventional genetic algorithms

is not desirable [16].

1.3 Motivations

Based on the recent work on GA as reported in [12-16], the need to the issues of local

maxima, premature convergence and bloat has been recognized.

There are some solutions to the premature convergence and local maxima

problems. Adjusting to the proper mutation rate is basically able to solve the problem.

In a recent work, Lau et. al. [13] consider the fuzzy logic guided genetic algorithm

(FLGA) with shift and uniform based multi-point (SUMP) crossover and swap

mutation in GA to fight against premature convergence, based on the knowledge that

the probability of crossover and mutation are adaptable. Adaptive probability of

crossover and mutation also prevent a local optima in solution [12],[17]. Selecting

parents using binary string fitness characterisation (BSFC) and comparative partner

selection (CPS) can also prevent the premature convergence problem [18].

There are some solutions to the bloat problem, one of them is by using spatial

population structure in combination with local elitist replacement. However, this

method is quite complex and is effective only for parallel genetic algorithms [15].

Motivated by this noticeable inadequacy, this research attempts to find answers to

the problem of local maxima, premature convergence and bloat that make the

searching speed slow. The recent work on GA shows some advances that have been

made, but these remain the requirement to improve the searching speed. The task of

solving such a searching speed problem using the method based on the GA

application and its implementation in optimizing the performance of a controller for a

DC servomotor is challenging and significant.

4

1.4 Objective and Contribution of Research

The objective of the research is improving the controller's performance (minimize the

overshoot, settling time, IAE/ITAE and making the steady state error zero) for a DC

servomotor application. A hybrid-fuzzy is selected as a controller which is optimized

using GA in off-line mode. The GA is improved to reduce the searching speed

problem.

In this research, the GA is applied to optimize the parameters of the hybrid-fuzzy

for DC servomotor control using Simulink/MATLAB platform. Control application

using this platform requires the simplicity in the programming. Optimizing the

parameters of hybrid-fuzzy controller requires that some parameters to be optimized

in parallel. The approach to solve the searching speed problem that would lead to the

contribution of the research are as follows:

 Modify the conventional population initialization which use random process to

the population initialization using patterned structure.

 Modify the conventional genetic operations to the new genetic operations which

are appropriate for the problem to be solved

 Modify the conventional solution searching to the method based on elitism

process [19]

The main contributions of this research are that, this thesis presents a new genetic

algorithm in which improve the performance of the hybrid controllers with the

reduction of the number of test runs (iterative number) and the duration time of the

optimization process, and with the more consistent in the genetic process. The hybrid

controller is also developed to improve the controller's performance.

1.5 Thesis Outline

The thesis consists of six chapters: introduction, literature review, simulation and real-

time implementation on a test rig, discussion on the simulation results, discussion on

the experiment results, and conclusions and the suggested future work.

5

Chapter 1 presents the background of the research, highlights the problem to be

solved in the research, the motivations for the research, the research objective and

approach, and the basis for the contributions of this research.

Chapter 2 presents the previous work related to the research topic, overview of the

proposed methods based on the previous work, and discusses the basic theory used in

the simulation and experiment work.

Chapter 3 discusses the simulation and experiment procedures from s-modelling

of a DC servomotor, the hardware design, the GA design, etc. to the performance

comparisons of the proposed method to the conventional methods.

Chapter 4 discusses the results of simulation for seven predefined conditions for

evaluations of the controller's performances from the conventional to SPOGA-

optimized hybrid-fuzzy controllers.

Chapter 5 discusses the results of hardware experiment for the seven predefined

conditions for controllers from the conventional to SPOGA-optimized hybrid-fuzzy

controllers.

Finally, Chapter 6 gives the conclusion for both the simulation and hardware

experiment and suggests future research directions relevan to the controller for a

servomotor.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

This chapter provides an overview of the work related to the research topic, the basis

of the proposed method for use in the controller's performance optimization, and the

foundation for the controller's performance criterion used in the

simulation/experiment.

The basic theory starts with DC servomotor and power amplifier. The modelling

of a DC servomotor based on the specification and the method of getting the s-transfer

function using MATLAB command are presented. The basic control theory discussed

is the feedforward and feedback control, PID controller, and fuzzy logic controller.

The basic theory on genetic algorithm, parallel genetic algorithm, and hierarchical

genetic algorithm are also presented. Finally, the controller performance criterion

used for comparisons and evaluations are presented.

2.2 Servomotor

Servomotors are used in a variety of applications in industrial electronics and robotics

that includes precision positioning as well as speed control. There are some types of

motor : induction AC, synchronous AC, stepper DC, brushless DC, and brushed DC.

The speed of electrical motor can be sensorless but an estimation of parameters is

required, as in their work in 2007 Karanayil et. al. [20] presented a new method of

online estimation for the stator and rotor resistances of the induction motor for speed

sensorless indirect vector controlled drives, using artificial neural networks.

7

2.3 System Identification

System identification is about building models from data. A data set is characterized

by several pieces of information: the input and output signals, the sampling interval,

the variable names and units, etc. Similarly, the estimated models contain information

of different kinds, estimated parameters [21], their covariance matrices, and model

structure and so on. The modelling process can be done using MATLAB command

[22]. A gray-box modeling is useful to preserve the physical meaning of the model

parameters and to naturally impose physical constraints to the model [23].

In 2005, Pereira et al. [24] proposed a system identification and PID tuning using

GA sequentially. The identification is for first order plant cascaded by PID system.

The result is better than PID control system optimized using Ziegler-Nichols.

Practically, the dynamic model of an embedded mechanical structure can change

over time due to many factors such as structural deformation and sensor/actuator

degradation [25].

2.4 Speed and Position Controller

There are two types of controller based on the control signal: analog controller,

and digital controller. In digital controllers, efforts to reduce computational time is

desirable and applicable when controllers have large number of states, when

computational time becomes an issue [26].

The basic controller that is commonly used is PID controller. Yamamoto et al. in

2009, [27] proposed a new design scheme of PID controllers based on data-driven

(DD) for nonlinear systems. In this method, a suitable set of PID parameters is

automatically generated based on input/output data pairs of the controlled object

stored in the database. The performance result is better as compared to fixed PID

controller.

Position is a time integral of speed. Therefore, a certain position can be reached

with a certain speed for a certain time duration. In 2007, Lacevic et al. [28] reported

8

an experiment of speed and position control in cascade mode where speed control

loop is in the position control loop.

2.5 Fuzzy Logic Controllers

The basic idea of fuzzy logic control was suggested in notes published in 1968. After

the basic idea of fuzzy logic control became well-understood, the use of fuzzy logic

control is being pursued in many application areas especially in Japan. In most of

current applications, the medium for fuzzy implementation in control is software.

That is why fuzzy logic chips especially computers are more cheap and effective in

implementation [4].

In his responses to the many misconceptions about fuzzy logic, Zadeh [29] gives

the following explanation. Fuzzy logic is not fuzzy, but basically it is about a precise

logic of imprecision and approximate reasoning. Hence, fuzzy logic is much more

than a logical system and has many facets. The principal facets are: logical, fuzzy-set-

theoretic, epistemic and relational. Most of the practical applications of fuzzy logic

are associated with its relational facet.

The first type of fuzzy rule base system (FRBS) that deals with real inputs and

outputs was proposed by Mamdani in 1974 [30], who was able to augment Zadeh's

initial formulation in a way that allows it to apply a fuzzy system (FS) to a control

problem [31].

2.6 Hybrid-Fuzzy Controllers

A combination of PID controller and fuzzy logic controller is called a hybrid-fuzzy

controller. The purpose of hybrid-fuzzy controller is to overcome the problem of

standalone PID controller and fuzzy logic controller.

In 1993, Zhen-Yu Zhao et al. [5] developed a fuzzy gain scheduling scheme of

PID controllers for process control. Fuzzy rules and reasoning are utilized online to

determine the controller parameters based on the error signal and its first difference.

9

Simulation results demonstrate that better control performance can be achieved in

comparison with Ziegler-Nichols controllers and Kitamori's PID controllers.

Wang et al. in 2008, [32] proposed an optimal fuzzy control in HGU system

which the membership functions and rules are optimized by GA and the real plant is

identified using dynamic neural networks. Simulation results show that the advanced

knowledge acquisition technique makes control parameters and rules of fuzzy

controller arrive to optimization and its control performance is superior to

conventional controller. The output of fuzzy controller is proportional based and

paralleled with integrator to make the steady state error zero. The structure of optimal

fuzzy controller is shown in Fig. 2.1.

Fig. 2.1 Structure of optimal fuzzy control system [32]

In more recent work in 2010, Solihin et al. [33] proposed a PID controller which

the parameters are tuned using fuzzy logic in the application of automatic gantry

crane. First, the PID gains were obtained from root locus as a guideline for fuzzy

output of the proposed fuzzy-tuned PID controllers. The fuzzy has error and error rate

as inputs and the tuned gain as the output with Mamdani fuzzy inference system.

There are seven singleton fuzzy membership functions for output and five Gaussian

fuzzy membership functions for input. The scheme of fuzzy-tuned PID controller is

shown in Fig. 2.2 where the range of α is [1.00,2.00] and obtained experimentally.

The proposed controller has satisfactory performance

10

Fig. 2.2 Fuzzy-tuned PID controller scheme [33]

2.7 Overview of Genetic Algorithms (GA)

An AI field of major importance is comprised by the so-called soft-computing

techniques that include genetic algorithms (GA), fuzzy logic (FL), artificial neural

networks (ANN) and combination among them. The combination of soft-computing

techniques for resolving scientific problems has produced results that could not have

been extracted with traditional methods [34]. GAs are more robust than other local

search algorithms because the population provides the advantage of maintaining

diversity [35].

In their paper in 1996, Man et al. [36] introduces GA as a complete entity, in

which knowledge of this emerging technology can be integrated together to form the

framework of a design tool for industrial engineers.

In quite a recent paper in 2009, Balasubramaniam et al. [37] proposed a novel

approach to find the solution of the matrix riccati differential equation (MRDE) for

nonlinear singular systems using genetic programming (GP). The technique of GP is

based on the evolution of the large number of candidate solutions through genetic

operations such as reproduction, crossover and mutation. The GP approach to the

problem is qualitatively better in terms of accuracy as compared to traditional Runge

Kutta (RK) method.

11

One of the problem in GP is premature convergence that has been highlighted by

Day et al. [18] who presented a binary string fitness characterization (BSFC) which

gives both population measures and a pairwise mating strategy, and comparative

partner selection (CPS), with aim of evolving a population that promotes effective

solutions by reducing population-wide weakness. Actually, the CPS operation makes

the process requires extra time (typically around 15%).

Fitness prediction is a technique used to replace fitness evaluations in

evolutionary algorithms with a lightweight approximation that adapts with the

solution population [38]. It is possible to identify the fundamental difficulties faced in

many fitness prediction applications as :

i. Model training effort: Often significant computational effort is required to

train the desired fitness model

ii. Level of approximation: It is often unclear what level of approximation is

accurate enough to achieve desired results. High-quality approximations

provide greater accuracy, but require more computation. Low-quality

approximations are less accurate, but require less computation.

iii. Loss of accuracy: Similarly, even high-quality approximations are bound to

have some loss accuracy due to either the model structure itself or the data

available to tune it. In the worst case, this effect can hide or even change the

global optimum in which case, exact fitness calculations are still needed to

find the optimal solution.

In 2004, Xiu et al. [39] did an optimization design of Takagi-Sugeno-proportional

integral derivative (TS-PID) fuzzy controllers based on GA. TS-PID controllers are a

class of Takagi-Sugeno (TS) fuzzy controllers whose rule consequences employ PID

expressions. The essential character of a typical TS-PID fuzzy controller is

investigated to be a nonlinear PID controller. Based on GA, an optimal design method

of TS-PID fuzzy controllers is discussed in detail by means of the analytical model.

The simulations results of a marine control system show that a TS-PID fuzzy

controller designed via GA's has a good performance.

The selection of a fitness function will influence the performance of GA. From

any former studies, it can achieve a good effect to use

12

𝐽 𝐼𝑇𝐴𝐸 = 𝑡 𝑒(𝑡) 𝑑𝑡 = 𝑚𝑖𝑛
∞

0
 as object function in optimizing a control system.

Since a GA is to search for the maximum of solutions, the 𝐼𝑇𝐴𝐸 is changed by a

fitness function as follows [39]:

𝑓 𝑖 =
𝐼𝑇𝐴𝐸𝑚𝑎𝑥 − 𝐼𝑇𝐴𝐸(𝑖)

 𝐼𝑇𝐴𝐸𝑚𝑎𝑥 − 𝐼𝑇𝐴𝐸(𝑖) 𝑖

(2 - 1)

In 2008, Yang et al. [17] proposed a new improvement of GA, i.e. adaptive

genetic algorithm (AGA). The probability of crossover and mutation is adapted

according to the generation. When the generation is increased, the probability of

mutation is decreased. The probability of crossover compensates the probability of

mutation. When the crossover operation effect is feeble, the probability of mutation is

increased. The superiority of AGA is: speed up the convergence, and restrain the

premature.

In their work in 2007, Zhang et al. [12] proposed adaptive probability of crossover

and mutation in GA using fuzzy logic. This is not only improved the convergence rate

of the GA, but also prevents a local optima in solution. The result is better than using

fixed probability of crossover and mutation.

In 2009, Lau et al. [13] proposed a shift and uniform based multi-point (SUMP)

crossover and swap mutation in GA which are adjusted using fuzzy logic, called

Fuzzy logic guided genetic algorithm (FLGA). In this method, the probability of

crossover and mutation are adjusted by fuzzy logic after ten consecutive generations.

FLGA with SUMP can fight against premature convergence but requires longer

running time than standard GA since that the operations involved in fuzzy logic

involve additional computation effort.

In a quite recent paper in 2009, Duzinkiewics et al. [19] presented a genetic

hybrid applied to a predictive controller for optimized dissolved-oxygen tracking at

lower control level. The used initialization scheme is hybrid. A fixed number of initial

solutions are obtained using a priori knowledge about the aeration system. The

remaining solutions are initialized randomly. Elitism process is done before the next

13

generation to maintain the diversity of the population while the best solutions found

so far are preserved and used in the search process.

There is a method of parallel genetic algorithms in which a parallel client server

single population is configured in order to reach a global solution in the least possible

iteration. The fitness value assessment is done on different parallel processors; as

genetic operators affect all the population in this method the model is called a global

genetic algorithm. This method was applied to optimize the performance of the first

three Dejong function [40].

In 2003, Fatta et. al. [41] did an experiment of parallel GA using two basic ones:

the simple global model and the coarse grained model, to design a fuzzy proportional

integral (FPI) controller for active queue management (AQM) on Internet routers. The

parallel GA is valid enough as a tool for optimal tuning of the fuzzy controller

parameters.

In his paper in 1996, Lis [42] proposed a parallel genetic algorithm with dynamic

mutation probability. If 𝑝𝑚0 is initial mutation probability and 𝑛𝑖 is iteration number,

then the mutation probability (𝑝𝑚) is [42]

𝑝
𝑚

≈ 𝑝
𝑚0

1

𝑛𝑖

(2 - 2)

There is no need for choosing any initial mutation probability and decreasing

mutation probability convergence rate.

An application of hierarchical genetic algorithms (HGA) to optimize the

membership functions of fuzzy logic controller (FLC) is shown in Fig. 2.3.

There were seven membership functions of FLC as an initial. The control genes

(zc) which the values are {0, 1} controlled the existence of membership functions. If zc

= 0 then the corresponding membership function would be deleted. Otherwise, it

would remain exist. The parameter genes (zp) which had real values controlled the

boundaries of membership function [43]. This method will results in that the

crossover points of a membership function have not the value equal to 0.5.

14

Fig. 2.3 A hierarchical membership chromosome [43]

2.8 Some Related Work on GA Applications

Genetic algorithms can be applied on the optimization of hybrid-fuzzy controllers in

either simulation experiments or hardware experiments.

In 2006, Bousserhane et al. [44] did an optimal fuzzy gain scheduling of PI

controller to the speed control of induction motor. The parameters of PI controller is

scheduled by FLC where the parameters of FLC is first optimized by genetic

algorithm. The performance result is better as compared to FLC which is optimized

by human operator.

Applying GA on a memory-constrained hardware (e.g. microcontroller, PLC, etc)

needs a compact GA (cGA) which proposed by Mininno et al. [14] in 2008. A cGA

iteratively processes the PV with updating mechanisms that mimic the typical

selection and recombination operations performed in a standard GA (sGA) until a

stopping criterion is met. A cGA is almost equivalent to a sGA with binary

tournament selection and uniform crossover on a number of test problems, and also

suggested some mechanisms to alter the selection pressure in the cGA.

15

2.9 The Proposed Methods

Based on the previous work on the electrical motor, the system identification, the

control technique, fuzzy logic controller, hybrid-fuzzy controller, and the controller

parameters optimization using genetic algorithm, the following steps (i to viii) are

identified in this work as guidelines for the controller development:

i. DC motor is used as a plant because it is easy to control the speed and the

starting torque is good.

ii. The DC servomotor is identified to get the s-transfer function for off-line mode

control using MATLAB command as in [22].

iii. Cascaded speed and position control is used where the speed control loop is in

the position control loop as in [32]

iv. The conventional, fuzzy, and hybrid-fuzzy controllers are compared and the best

one is selected to be optimized using GA.

v. There are three hybrid-fuzzy controllers: (1) Fuzzy-logic based self-tuning PI

controller (FLBPI) as in [45], (2) Fuzzy-logic based self-tuning PID controller

(FLBPID) as in [45] with additional D component, and (3) Fuzzy logic parallel

integral controller (FLIC) as in [32].

vi. The new GA-based optimization algorithm, namely Semi-parallel operation GA

(SPOGA) is proposed. The method is based on HGA as in [43] but the string

structure is for parallel optimization of parameters.

vii. The structure of twisted ring counter is used as a population initialization as a

replacement of random generation.

viii. The solution process is done by searching the chromosome with the best fitness

value among the all chromosomes in all generations, this method is based on

elitism process as in [19].

2.10 DC Servomotor and Power Amplifier

An electric motor which has control system components is called a servomotor.

Basically, any motor can be used in a servo system [46]. There are some types of

motor : induction AC, synchronous AC, stepper DC, permanent magnet DC, serial

field DC, shunt field DC, compound field DC, brushless DC, and brushed DC.

16

Stepper motor are widely used in applications which need high precision speed

and position, but if there are mechanical changes such as load torque disturbances and

inertia variations, can lead to a loss of synchronism for high stepping rates [47].

According to the field type of DC motor, there is also a permanent magnet stepper

motors which can spontaneously reverse their direction of rotation when controlled in

full step, open-loop mode [48]. In the closed loop mode, they cannot spontaneously

reverse their direction.

DC motors have better starting torque than AC motors although they are more

expensive than AC motors [46]. There are several method in controlling the DC

servomotor, one of them is armature-controlled DC servomotors which are widely

used in the motion control area in the process control industry [49].

2.10.1 Power Amplifier

Controller signals usually have the range of [0.00,10.00] volts with the current output

is limited in the order of milliampere. Consequently, a controller needs a power

amplifier to drive a DC motor. One of the power amplifier which can drive a motor is

chopper type where the process needs DC-AC and AC-DC converters.

Power factor precompensators (PFP) are an important class of switched ac-dc

converters. The main drawback is that they require very high switching frequency

(typically in few hundred kHz) leading to high converter losses. Pulse width

modulation (PWM) control techniques are more interesting which can be

implemented using lower switching frequency (typically 10 kHz) [50].

PWM are widely used in power electronic system and control systems. The

reasons for the wide applicability of PWM are as follows:

i. the control variable has only two or three values such that the realization of

PWM control is simple and

ii. the PWM can process large signals with high efficiency and low sensitivity of

noise [51].

17

2.10.2 Transfer Function Model of a DC Motor

A DC motor has two main components: electrical component and mechanical

component. The electrical circuit of the armature and the free body diagram of the

rotor are shown in Fig. 2.4.

Fig. 2.4: Electrical circuit and free body diagram of the rotor of DC motor [52]

The flux magnetic ∅ in the field coil is a constant 𝑘1 by the assumption that the

field current 𝑖𝑓 is constant [53]. If 𝑇 is the rotor torque, 𝑘2 is torque constant, and 𝑖𝑎 is

armature current then

𝑇 𝑡 = 𝑘2𝑖𝑎(𝑡) (2 - 3)

If 𝐿 is electric inductance, 𝑅 is electric resistance, 𝑉 is source voltage, 𝐾 is

electromotive force constant, and 𝜃 is rotor position, then using KVL principle for the

armature circuit,

𝑉 𝑡 = 𝐿
𝜕𝑖𝑎
𝜕𝑡

+ 𝑅. 𝑖𝑎 𝑡 + 𝐾
𝜕𝜃

𝜕𝑡
 (2 - 4)

If 𝐽 is moment of inertia of the rotor, 𝐽𝑙 is moment inertia of load, 𝑏 is damping ratio

of the mechanical system, 𝑏𝑙 is damping ratio of load and 𝑇𝑙 is load torque, then using

Newton II principle for mechanical system,

𝑇 𝑡 = 𝑇𝑙 𝑡 + 𝐽
𝜕𝜃(𝑡)

𝜕𝑡
+ 𝑏𝜃(𝑡) (2 - 5)

𝑇𝑙 𝑡 = 𝐽𝑙
𝜕𝜃(𝑡)

𝜕𝑡
+ 𝑏𝑙𝜃(𝑡) (2 - 6)

18

Substituting Eq (2 - 6) to Eq (2 - 5) the result is:

𝑇 𝑡 = 𝐽 + 𝐽𝑙
𝜕𝜃(𝑡)

𝜕𝑡
+ 𝑏 + 𝑏𝑙 𝜃(𝑡) (2 - 7)

Converting Eq. (2 - 3), (2 - 4), and (2 - 7) to the s-domain results :

𝑇 𝑠 = 𝑘2𝐼𝑎(𝑠) (2 - 8)

𝑉 𝑠 = 𝑠𝐿𝐼𝑎 𝑠 + 𝑅𝐼𝑎 𝑠 + 𝑠𝐾𝜃(𝑠) (2 - 9)

𝑇 𝑠 = 𝑠 𝐽 + 𝐽𝑙 𝜃 𝑠 + 𝑏 + 𝑏𝑙 𝜃(𝑠) (2 - 10)

𝐼𝑎(𝑠) can be found using Eq (2 - 9)

𝐼𝑎 𝑠 =
𝑉 𝑠 − 𝑠𝐾𝜃(𝑠)

𝐿𝑠 + 𝑅
 (2 - 11)

Practically, 𝑘2 = 𝐾 [53]. If 𝑠𝜃(𝑠) : speed, 𝐽𝑒 = 𝐽 + 𝐽𝑙 , 𝑏𝑒 = 𝑏 + 𝑏𝑙 , then substituting

Eq (2 - 8), (2 - 10), and (2 - 11) gives the result :

𝑠𝜃(𝑠)

𝑉(𝑠)
=

𝐾

𝐽𝑒𝐿𝑠2 + 𝐽𝑒𝑅 + 𝑏𝑒𝐿 𝑠 + 𝑏𝑒𝑅 + 𝐾2
 (2 - 12)

When 𝐽𝑙 = 𝐽 and 𝑏𝑙 = 𝑏 , Eq (2 - 12) becomes

𝑠𝜃(𝑠)

𝑉(𝑠)
=

𝐾
2

𝐽𝐿𝑠2 + 𝐽𝑅 + 𝑏𝐿 𝑠 + 𝑏𝑅 + 2𝐾2
 (2 - 13)

When no load, Eq (2 - 12) becomes

𝑠𝜃(𝑠)

𝑉(𝑠)
=

𝐾

𝐽𝐿𝑠2 + 𝐽𝑅 + 𝑏𝐿 𝑠 + 𝑏𝑅 + 𝐾2
 (2 - 14)

Dividing Eq (2 - 12) to Eq (2 - 14) by s to produce the transfer function of the

position,

19

𝜃(𝑠)

𝑉(𝑠)
=

𝐾

𝐽𝑒𝐿𝑠3 + 𝐽𝑒𝑅 + 𝑏𝑒𝐿 𝑠2 + 𝑏𝑒𝑅 + 𝐾2 𝑠
 (2 - 15)

𝜃(𝑠)

𝑉(𝑠)
=

𝐾
2

𝐽𝐿𝑠3 + 𝐽𝑅 + 𝑏𝐿 𝑠2 + 𝑏𝑅 + 2𝐾2 𝑠
 (2 - 16)

𝜃(𝑠)

𝑉(𝑠)
=

𝐾

𝐽𝐿𝑠3 + 𝐽𝑅 + 𝑏𝐿 𝑠2 + 𝑏𝑅 + 𝐾2 𝑠
 (2 - 17)

An example of DC motor parameters are shown as discussed in [52] as in

Table 2.1.

Table 2.1 Example of DC motor parameters

Parameter Symbol Unit Magnitude
 Moment of inertia 𝐽 kg.m

2
 0.01

 Damping constant 𝑏 kg.m
2
/sec 0.1

 Constant 𝐾 - 0.01

 Resistance 𝑅 ohm 1.00

 Inductance 𝐿 henry 0.50

 Source voltage (input) 𝑉 volt Variable

 Rotor position (output) 𝜃 rad Variable

In Table 2.1, the rotor and shaft are assumed to be rigid. Thus, the transfer functions

of the speed and position are given by:

𝑠𝜃(𝑠)

𝑉(𝑠)
=

20

𝑠2 + 102𝑠 + 200.2
 (speed in rad/s) (2 - 18)

𝜃(𝑠)

𝑉(𝑠)
=

20

𝑠3 + 102𝑠2 + 200.2𝑠

(position in rad/s) (2 - 19)

When the plant is loaded with the same mechanical system, then

𝑠𝜃(𝑠)

𝑉(𝑠)
=

10

𝑠2 + 102𝑠 + 200.1
 (speed in rad/s) (2 - 20)

𝜃(𝑠)

𝑉(𝑠)
=

10

𝑠3 + 102𝑠2 + 200.1𝑠

(position in rad/s) (2 - 21)

20

In the simulation experiment, the loaded DC motor can be approximated by

multiplying the plant with 0.5.

2.10.3 Input-Output Modelling of a DC Servomotor

Servomotor controllers need optimization to give a good performance as desired.

Sometimes, it requires more time and has big risk in optimization process. To

overcome the problem, a real plant (DC motor) is identified to get a transfer function

and build a virtual controller. The virtual controller is optimized, and then the

optimized parameters are applied to the real controller in the real control system.

The system identification problem is to estimate a model of a system based on the

observed input-output data [22]. The typical identification process consists of stages

where the model structure is iteratively selected, compute the best model in the

structure, and evaluate this model's properties [22]. This cycle can be itemized, as

follows [22]:

i. Design an experiment and collect input-output data from the process to be

identified

ii. Examine the data. Refine the data by removing trends and outliers, and select

useful portions of the original data. Apply filters to the data to enhance

important frequency ranges

iii. Select and define a model structure (a set of candidate system descriptions),

within which a model is to be found

iv. Compute the best model in the model structure according to the input-output

data and a given criterion for goodness of fit.

v. Examine the properties of the model obtained. If the model is good enough,

then stop; otherwise go back to step iii to try another model structure. Attemp

other estimation methods (step iv), or work further on the input-output data

(steps i and ii).

21

If Ts is sampling period, then the data for identification is obtained from the

MATLAB command below:

data=iddata(workspace_output,workspace_input,Ts);

Using MATLAB command, the general command to get the process model is as

follows:

model=pem(data, 'PnDtZUc');

where,

P : (required) for process model

n : 0,1,2 or 3 (required) for the number of poles

Dt : (optional) to include a time-delay term

Z : (optional) to include a process zero (numerator term)

Uc : (optional) to indicate possible complex-valued (underdamped) poles

To select the best process model, the fitness function has to be obtained. If 𝑖_𝐹𝐼𝑇

is the fitness function for identification process, 𝑌𝑚 is the real (measured) output, 𝑌 is

the estimated output, and 𝑌 is the mean value of real output, then the fitness function

can be obtained from the formula as shown in Eq (2 - 22), [22]

𝑖_𝐹𝐼𝑇 =
1 − 𝑁𝑂𝑅𝑀 𝑌𝑚 − 𝑌

𝑁𝑂𝑅𝑀 𝑌𝑚 − 𝑌
 ∗ 100 (2 - 22)

2.11 Overview on Control Theory

Control systems are an integral part of modern society. It consists of subsystems and

processes (or plants) assembled for the purpose of controlling the outputs of the

processes. In its simplest form, a control system provides an output or response for a

given input or stimulus, as shown in Fig. 2.5 [54].

22

Fig. 2.5 Simplified description of a control system [54]

2.11.1 Feed Forward and Feedback Control

A generic open-loop system or feed forward control system is shown in Fig. 2.6. It

starts with a subsystem called an input transducer; which converts the form of the

input to that used by the controller. The controller drives a process or plant. The input

is sometimes called the reference or set-point, while the output can be called the

controlled variable or process value. Other signals, such as disturbances, are shown

added to the controller and process outputs via summing junctions, which yield the

algebraic sum of their input signals using associated signs. These systems are simply

commanded by the input but do not correct for disturbances [54].

Fig. 2.6 Block diagram of feed forward control system [54]

The disadvantages of feed forward control systems, namely sensitivity to

disturbances and inability to correct for these disturbances, may be overcome in

closed-loop systems or feedback control systems. The generic architecture of a

feedback control system is shown in Fig. 2.7 [54].

Fig. 2.7 Block diagram of feedback control system [54]

23

The input transducer converts the form of the input to the form used by controller.

An output transducer or sensor measures the output response and converts it into the

form used by the controller [54].

The first summing junction algebraically adds the signal from the input to signal

from the output, which arrives via the feedback path, the return path from the output

to the summing junction. In Fig. 2.7, the output signal is subtracted from the input

signal. The result is generally called the actuating signal. However, in systems where

both the input and output transducers have unity gain, the actuating signal's value is

equal to the actual difference between the input and output. Under this condition, the

actuating signal is called the error [54].

The feedback system compensates for disturbances by measuring the output

response, feeding that measurement back through a feedback path, and comparing that

response to the input at the summing junction. If there is any difference between the

two responses, the system drives the plant, via the actuating signal, to make a

correction. If there is no difference, the system does not drive the plant, since the

plant's response is already the desired response [54].

Feedback systems, then, have the obvious advantage of greater accuracy than feed

forward systems. They are less sensitive to noise, disturbances, and changes in the

environment. Transient response and steady-state error can be controlled more

conveniently and with greater flexibility in closed-loop systems, often by a simple

adjustment of gain (amplification) in the loop and sometimes by redesigning the

controller. On the other hand, feedback systems are more complex and expensive than

feed forward systems [54].

In many modern systems, the controller (or compensator) is a digital computer.

The advantage of using computer is that many loops can be controlled or

compensated by the same computer through time sharing. Furthermore, any

adjustments of the compensator parameters required to yield a desired response can be

made by changes in software rather than hardware. The computer can also perform

supervisory functions, such as scheduling many required applications [54].

24

2.11.2 PID Controller

PID controller is a combination of three basic characteristics of system, that is,

proportional (P), integral (I), and derivative (D). There are two types of system

combination: parallel and cascaded. If 𝑚 is output, 𝑒 is input, 𝑚0 is initial condition

or offset, 𝐾𝑃 is proportional constant, 𝐾𝐼 is integral constant and 𝐾𝐷 is derivative

constant, then in parallel combination, the general form of PID controller is

formulated as [55]

𝑚(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼 𝑒 𝑡 𝑑𝑡 + 𝐾𝐷
𝑑𝑒 𝑡

𝑑𝑡
+ 𝑚0(𝑡) (2 - 23)

in 𝑡-domain, and

𝑀(𝑠) = 𝐾𝑃𝐸(𝑠) +
𝐾𝐼
𝑠
𝐸(𝑠) + 𝐾𝐷𝑠𝐸(𝑠) + 𝑀0(𝑠) (2 - 24)

in 𝑠-domain

In more general form, Eq. (2 - 23) can be written as,

𝑚(𝑡) = 𝑚𝑃(𝑡) + 𝑚𝐼(𝑡) + 𝑚𝐷(𝑡) + 𝑚0(𝑡) (2 - 25)

If 𝑇𝑠 is sampling period, then Eq. (2 - 25) can be written in discrete form as follows

[56] :

𝑚(𝑘𝑇𝑠) = 𝑚𝑃(𝑘𝑇𝑠) + 𝑚𝐼(𝑘𝑇𝑠) + 𝑚𝐷(𝑘𝑇𝑠) + 𝑚0(𝑘𝑇𝑠) (2 - 26)

The proportional part, 𝑚𝑃 𝑘𝑇𝑠 , of Eq. (2 - 26) is [56]

𝑚𝑃 𝑘𝑇𝑠 = 𝐾𝑃𝑒 𝑘𝑇𝑠 (2 - 27)

The integral part, 𝑚𝐼 𝑘𝑇𝑠 , of Eq. (2 - 26) is approximated as

𝑚𝐼 𝑘𝑇𝑠 = 𝐾𝐼𝑇𝑠 𝑒 𝑘𝑇𝑠

𝑘

+ 𝑚𝐼(0) (2 - 28)

25

The derivative part, 𝑚𝐷 𝑘𝑇𝑠 , of Eq. (2 - 26) is approximated as

𝑚𝐷 𝑘𝑇𝑠 =
𝐾𝐷
𝑇𝑠

 𝑒 𝑘𝑇𝑠 − 𝑒 𝑘𝑇𝑠 − 𝑇𝑠 (2 - 29)

The parameters of PID controller (𝐾𝑃, 𝐾𝐼 and 𝐾𝐷) can be set using ultimate cycle

method (Ziegler-Nichols). If 𝐾𝑃−𝑢 is ultimate value of 𝐾𝑃, i.e. the value of 𝐾𝑃 where

the output response is constant oscillation and 𝑇𝑢 is the ultimate period of oscillation,

then there are three combination of PID controller [57]:

a. P controller

𝐾𝑃 = 0.5𝐾𝑃−𝑢 (2 - 30)

b. PI controller

𝐾𝑃 = 0.45𝐾𝑃−𝑢

𝐾𝐼 =
1.2

𝑇𝑢

(2 - 31)

c. PID controller

𝐾𝑃 = 0.6𝐾𝑃−𝑢

𝐾𝐼 =
2

𝑇𝑢

𝐾𝐷 =
𝑇𝑢
8

(2 - 32)

2.11.3 Integral Windup

When the error or actuating signal has the same sign for a long time, the integral part

output of PID controller will increase larger and larger. This symptom is called

integral windup. The integral windup can inflict overshoot [56].

26

One of the methods to overcome the problem caused by integral windup is

saturation feedback [58]. The output of the integral part in Eq. (2 - 23), Eq. (2 - 24)

and Eq. (2 - 28) will increase as the time increase but the manipulated variable is

limited by hardware, e.g. data acquisition (DAQ). The difference between

manipulated variable and controller output is added to the error or actuating signal

through the feedback constant, Ka. The block diagram of saturation feedback is

shown in Fig. 2.8.

Fig. 2.8 Saturation feedback as an anti integral windup [58]

2.11.4 Fuzzy Logic Controller

According to the Oxford English Dictionary, the word "fuzzy" is defined as "blurred,

indistinct; imprecisely defined; confused, vague". Fuzzy systems are knowledge-

based or rule-based systems. The heart of a fuzzy system is a knowledge base

consisting of the so-called fuzzy IF-THEN rules. A fuzzy IF-THEN rule is an IF-

THEN statement in which some words are characterized by continuous membership

functions [59]. For example, if 𝑋 is the speed of a car, 𝑌 is force application to the

accelerator, then the following is a fuzzy IF-THEN rule [59]:

IF 𝑋 is high, THEN 𝑌 is less (2 - 33)

where the words "high" and "less" are characterized by the membership functions

shown in Fig. 2.9 and Fig. 2.10 respectively. A fuzzy system is constructed from a

collection of fuzzy IF-THEN rules [59].

The core of a membership function for some fuzzy set A is defined as the region

of the universe that is characterized by complete and full membership in the set A.

That is, the core comprises those elements 𝑥 of the universe such that 𝜇A 𝑥 = 1 [60].

27

The support of a membership function for some fuzzy set A is defined as that

region of the universe that is characterized by nonzero membership in the set A. That

is, the support comprises those elements x of the universe such that 𝜇A 𝑥 > 0 [60].

Fig. 2.9 Membership function for 'high" where the horizontal axis represents the

speed of the car and the vertical axis represents the membership value for "high" [59]

Fig. 2.10 Membership function for "less", where the horizontal axis represents the

force applied to the accelerator and the vertical axis represents the membership value

for "less" [59]

The boundaries of a membership function for some fuzzy set A are defined as that

region of the universe containing elements that have a nonzero membership but not

complete membership. That is, the boundaries comprise those elements 𝑥 of the

universe such that 0 < 𝜇A 𝑥 < 1. These elements of the universe are those with

some degree of fuzziness, or only partial membership in the fuzzy set A [60].

A convex fuzzy set is described by a membership function whose membership

values are strictly monotonically increasing, or whose membership values are

monotonically decreasing, or whose membership values are strictly monotonically

28

increasing then strictly monotonically decreasing with increasing values for elements

in the universe. Said another way, if, for any elements 𝑥, 𝑦, and 𝑧 in a fuzzy set A, the

relation 𝑥 < 𝑦 < 𝑧 implies that

𝜇A 𝑦 ≥ min 𝜇A 𝑥 ,𝜇A 𝑧 (2 - 34)

then A is said to be a convex fuzzy set [60].

A special property of two convex fuzzy sets, say A and B , is that the intersection

of these two convex fuzzy sets is also a convex fuzzy set. That is, for A and B, which

are both convex, A ∩ B is also convex [60].

The crossover points of a membership function are defined as the elements in the

universe for which a particular fuzzy set A has values equal to 0.5, i.e., for which

𝜇A 𝑥 = 0.5 [60].

The height of fuzzy set A is the maximum value of the membership functions, i.e.,

hgt A = max 𝜇A (𝑥) . If the hgt A < 1, the fuzzy set is said to be subnormal [60].

The first step in building fuzzy system is to gather fuzzy IF-THEN rules based on

human experiences or skills. The next step is combining the rules to the unique

system [59].

There are three types of fuzzy system commonly used: Pure fuzzy systems,

Takagi-Sugeno-Kang (TSK) fuzzy systems, and Fuzzy systems with fuzzifier and

defuzzifier [59]. Basic configuration of fuzzy systems with fuzzifier and defuzzifier is

shown in Fig. 2.11.

The fuzzifier is defined as a mapping from a real valued point 𝑥∗ ∈ 𝑈 ⊂ 𝑅𝑛 to a

fuzzy set 𝐴′ in 𝑈 [59]. There are three criteria in designing fuzzifier [59]:

i. The fuzzifier should consider the fact that the input is at the crisp point

ii. If the input to fuzzy system is corrupted by noise, then the fuzzifier should

help to supress the noise

iii. The fuzzifier should help to simplify the computations involved in the fuzzy

inference engine.

29

Fig. 2.11 Basic configuration of fuzzy systems with fuzzifier and defuzzifier [59]

There are three types of fuzzifier [59]: Singletion fuzzifier, Gaussian fuzzifier,

and Triangle fuzzifier. Singleton fuzzifier can fulfill the three criteria above. It maps a

real valued point 𝑥∗ ∈ 𝑈 into a fuzzy singleton 𝐴′ in 𝑈, which has the membership

value 1 at 𝑥∗ and zero at all other point in 𝑈 [59]:

𝜇𝐴′ 𝑥 =
1 𝑖𝑓 𝑥 = 𝑥∗

0 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒
 (2 - 35)

In fuzzy inference engine, the fuzzy logic base is used to combine IF-THEN rules

in the fuzzy rules base to the mapping from a fuzzy set 𝐴′ in 𝑈 into a fuzzy set 𝐵′ in 𝑉

[59]. There several types of fuzzy inference engine [59]:

i. Product inference engine

ii. Minimum inference engine

iii. Lukasiewicz inference engine

iv. Zadeh inference engine

v. Dienes-Rescher inference engine

On the simplicity reason, product inference engine (PIE) and minimum inference

engine (MIE) are commonly used as a fuzzy inference engine. For 𝑀 rules and 𝑛

membership functions, the PIE is formulated as [59]

𝜇𝐵𝑙 𝑦 =
𝑀

max
𝑙 = 1

 sup
𝑥 ∈ 𝑈

 𝜇𝐴𝑙(𝑥) 𝜇
𝐴𝑖
𝑙 𝑥𝑖 𝜇𝐵𝑙(𝑦)

𝑛

𝑖=1

 (2 - 36)

30

and the MIE is formulated as [59]

𝜇𝐵𝑙 𝑦 =
𝑀

max
𝑙 = 1

 sup
𝑥 ∈ 𝑈

min 𝜇𝐴𝑙 𝑥 ,𝜇𝐴1
𝑙 𝑥1 ,… , 𝜇𝐴𝑛𝑙 𝑥𝑛 , 𝜇𝐵𝑙(𝑦) (2 - 37)

Defuzzifier is defined as a mapping from a fuzzy set 𝐵′ in 𝑉 ⊂ 𝑅 (output of the

fuzzy inference engine) to a crisp value 𝑦∗ ∈ 𝑉 [59]. There are three criteria in

designing defuzzifiers [59]:

i. Plausibility: the point 𝑦∗ represents 𝐵′ from an intuitive point of view

ii. Computational simplicity: particularly important for real time application

iii. Continuity: small change of 𝐵′ should not make large change of 𝑦∗.

There are three types of defuzzifier [59]: center of gravity defuzzifier, center

average defuzzifier, and maximum defuzzifier. Center average defuzzifier can fulfil

all of the three criteria. If wl is the height of 𝑙𝑡 fuzzy membership function then for 𝑀

fuzzy membership functions it can be formulated as [59]

𝑦∗ =
 𝑦 𝑙𝑤𝑙
𝑀
𝑙=1

 𝑤𝑙
𝑀
𝑙=1

 (2 - 38)

Eq. (2 - 38) shows that the crisp value of fuzzy output is the sum of core of 𝑙𝑡 -

fuzzy membership function multiplied by the height of 𝑙𝑡 -fuzzy membership

function over the sum of the height of 𝑙𝑡 -fuzzy membership function.

2.12 Evolutionary Algorithms

Conventional search techniques, such as hill-climbing, are often incapable of

optimizing non-linear multimodal functions. In such cases, a random search method

might be required. However, undirected search techniques are extremely inefficient

for large domain [61]. To overcome the problem, an artificial intelligence (AI) is

introduced.

31

AI is the intelligence of machines and the branch of computer science that aims to

create it. One of the subfield of AI is evolutionary computation that involves

combinatorial optimization problems.

In AI, an evolutionary algorithm (EA) is a subset of evolutionary computation. An

EA uses some mechanisms inspired by biological evolution, i.e. : reproduction,

mutation, recombination, and selection. Candidate solutions to the optimization

problem play the role of individuals in a population, and the fitness function

determines the environment within which the solutions "live".

The popular type of EA is neural network, simulated annealing, ant colony

algorithm and genetic algorithm (GA) as discussed in [62-77]. One seeks the solution

of a problem in the form of strings of numbers (traditionally binary, although the best

representations are usually those that reflect something about the problem being

solved), by applying operators such as recombination and mutation. This type of EA

is often used in optimization problems [78].

2.12.1 Genetic Algorithms

A GA is a directed random search technique, invented by Holland in 1975 as

mentioned by Pham et al. [61], which can find the global optimal solution in complex

multi-dimensional search spaces. A GA is modelled on natural evolution in that the

operators it employs are inspired by the natural evolution process. These operators,

known as genetic operators, manipulate individuals in a population over several

generations to improve their fitness gradually. Individuals in a population are likened

to chromosomes and usually represented as strings of binary numbers [61].

A simple GA is composed of three main components: initialization; evaluation;

and genetic operators. There are three genetic operators: selection, crossover, and

mutation [79].

The process of GA is shown in Fig. 2.12. After initialization of population with

certain bit size and population size, then the fitness evaluations for each population

are performed to select fit populations to be crossed (in crossover operation) and then

chrome://zotero/wiki/Intelligence
chrome://zotero/wiki/Computer_science
chrome://zotero/wiki/Artificial_intelligence
chrome://zotero/wiki/Subset
chrome://zotero/wiki/Evolutionary_computation
chrome://zotero/wiki/Biological_evolution
chrome://zotero/wiki/Reproduction
chrome://zotero/wiki/Mutation
chrome://zotero/wiki/Genetic_recombination
chrome://zotero/wiki/Natural_selection
chrome://zotero/wiki/Candidate_solution
chrome://zotero/wiki/Fitness_function
chrome://zotero/wiki/Optimization_%28mathematics%29

32

to be mutated (mutation operation). Next, the fitness evaluations for each population

are done every time after mutation operation to find the best fitness for first

generation. Following this, crossover and mutation are conducted for the next

generations until getting the certain generation set by user. The solution is the best fit

of all generations.

Fig. 2.12 Process flowchart of Genetic Algorithm

To generate good offspring, a good parent selection mechanism is necessary. This

is a process used for determining the number of trials for one particular individual

used in reproduction. The chance of selecting one chromosome as a parent should be

directly proportional to the number of offspring produced [80].

There are three measures of performance of the selection algorithms [80]:

33

i. Bias: the absolute difference between individuals in actual and expected

probability for selection. The best value is zero or zero bias, when an

individual's probability equals its expected number of trials

ii. Spread: a range in the possible number of trials that an individual may

achieve. The minimum spread is the smallest spread that theoretically permits

zero bias.

iii. Efficiency: the overall time complexity of the algorithms.

The selection algorithm should thus be achieving a zero bias while is maintaining

a minimum spread and not contributing to an increased time complexity of GA [80].

Many selection techniques employ roulette wheel mechanism (RWM). The basic

roulette wheel selection method is a stochastic sampling with replacement (SSR). The

segment size and selection probability remain the same throughout the selection

phase. SSR tends to give zero bias but potentially inclines to a spread that is unlimited

[80].

Stochastic sampling with partial replacement (SSPR) extends upon SSR by

resizing a chromosome's segment if it is selected. Each time a chromosome is

selected, the size of its segment is reduced by a certain factor. If the segment size

becomes negative, then it is set to zero. This provides a reduction of spread but

contributing to an increased time complexity [80].

Stochastic universal sampling (SUS) is another single-phase sampling algorithm

with minimum spread, zero bias, and the time complexity. SUS uses an 𝑁𝑠 equally

spaced pointer, where 𝑁𝑠 is the number of selection required. The population is

shuffled randomly and a single random number in the range 0,
𝐹𝑠𝑢𝑚

𝑁𝑠
 is generated,

𝑝𝑡𝑟, where 𝐹𝑠𝑢𝑚 is the sum of individual's fitness functions. The 𝑁𝑠 individuals are

then chosen by generating the 𝑁𝑠 pointers spaced by 1, 𝑝𝑡𝑟,𝑝𝑡𝑟 +

1,… , 𝑝𝑡𝑟 + 𝑁𝑠 + 1 , and selecting those individuals whose fitness span the positions

of the pointers. In addition, as individuals are selected entirely on their position in the

population, SUS has zero bias [80].

34

Crossover mechanism is shown in Fig. 2.13. A crossover point is randomly set.

The portions of the two chromosomes beyond this cut-off point to the right are to be

exchanged to form the offspring. An operation rate (pc) with a typical value between

0.6 and 1.0 is normally used as the probability of crossover [80].

Fig. 2.13 Example of one-point (in the middle) of crossover [80]

Although the one-point crossover method was inspired by biological processes, it

has one major drawback in that certain combinations of schema cannot be combined

in some situations [81].

The mutation mechanism is shown in Fig. 2.14. This applied to each offspring

individually after the crossover exercise. It alters each bit randomly with a small

probability (pm) with a typical value of less then 0.1 [80]. Mutation operation is used

for avoiding the premature convergence in optimization process [82].

Fig. 2.14 Example of bit mutation on the fourth bit [80]

The choices of pm and pc as the control parameters can be a complex nonlinear

optimization problem to solve. Furthermore, their setting are critically dependent

upon the nature of the objective function. This selection issue still remains open to

suggestion although some guidelines have been introduced by Grefenstette in 1986

and Dejong and Spears in 1990 [80]:

- For large population size (100)

 crossover rate: 0.6

 mutation rate: 0.001

35

- For small population size (30)

 crossover rate: 0.9

 mutation rate: 0.01

2.12.2 Parallel Genetic Algorithm

Brief mention should be made of the GA properties that will be important to this

work. One can see that the GA already possesses an intrinsic parallelism architecture,

in a nutshell, and hence less effort is required to construct a parallel computational

framework. This provide the opportunity for the GA be fully exploited in its parallel

structure to gain the required speed for practical use [80].

There are some GA-based parallel methods to enhance the computational speed.

The methods of parallelization can be classified as: embarrassingly parallel algorithm

[83], global parallel algorithm, migration parallel algorithm, and diffusion parallel

algorithm. These categories reflect the different ways in which parallelism can be

exploited in the GA as well as the nature of the population structure and

recombination mechanisms used. A useful review on these techniques has been given

by Man et al. [80].

For example, in embarrassingly parallel algorithm, the same evolutionary

algorithm is run under different initial conditions in a parallel way. In this technique,

once all the different configurations have been executed, the configuration showing

the best behaviour is chosen [83].

Global parallel algorithm on the other hand treats the entire population as a single

breeding mechanism. This can be implemented on the shared memory multiprocessor

or distributed memory computer. In this case on a shared memory multiprocessor,

chromosomes are stored in the shared memory. Each processor accesses the particular

assigned chromosome and return the fitness functions without any conflicts. It should

be noted that there is some synchronization needed between generation to generation.

There is a need for the computational load among the processors to be balanced using

a dynamic scheduling algorithm, e.g. guided self-schedule [80].

36

Another parallel processing mechanism for computing the GA is the migration

parallel algorithm. The migration GA (coarse grained parallel GA) divides the

population into a number of sub-populations, each of which is treated as a separate

breeding unit under the control of conventional GA. The proliferation of good genetic

material throughout the whole population is encouraged, and therefore the individual

migration between sub-populations occurs from time to time [80].

Apart from the global and migration techniques, diffusion parallel algorithm (fine

grained parallel GA) considers the population as a single continuous structure. Here,

each individual is assigned to a geographic location on the population surface and

usually placed in a 2-D grid, for the reason that the topology of the processing

element in many massively parallel computers that are constructed in this form [80].

As noted in [80], the individuals are allowed to breed with individuals contained

in a small local neighbourhood. Usually, this neighbourhood is chosen from the

immediate adjacent individuals on the population surface and is motivated by the

practical communication restrictions of parallel computers.

2.12.3 Hierarchical Genetic Algorithms

The following discussion on hierarchical genetic algorithm (HGA) is referred to the

review given by Man et al. in [80]. On the biological inspiration, the genes can be

classified into two different types: regulatory sequences (RSs) and structural genes

(SGs). The SGs are coded for polypeptides or RNAs, while the RSs serve as the

leaders that denote the beginning and ending of SGs, or participate in turning on or off

the transcription on SGs, or function as initiation points for replication or

recombination [80].

As has been mentioned in [80], one of the most surprising discoveries in the

founding of molecular biology was that active and inactive genes exist in the SGs.

Here, the active genes are separated into non-contiguous pieces along the parental

DNA. Accordingly, the pieces that code mRNA are referred to as exons (active genes)

and the non-coding pieces are referred as introns (inactive genes). During a

transcription, there is a process of splicing.

37

On the algorithm application, to indicate the activation of the control gene, an

integer "1" is assigned for each control gene that is being ignited where "0" is for

turning off. When "1" is signalled, the associated parameter genes due to that

particular active control gene are activated in the lower level structure. It should be

noticed that the inactive genes always exist within the chromosome even when "0"

appears. This hierarchical architecture implies that the chromosome contains more

information that of the conventional GA structure. Hence, it is called hierarchical

genetic algorithm (HGA) [80]. An example of HGA structure with 8-bit control genes

and 8-bit parameter genes is shown in Fig. 2.15.

Fig. 2.15 An example of HGA structure with 8-bit control genes and 8-bit parameter

genes

2.13 Controller Performance

There are some performance indexes usually used as a controller performance which

are able to be classified as two groups: second order underdamped response and error

analysis

The performance index in second order underdamped response are specified as

follows [54]:

i. Rise time, tr. The time required for the waveform to go from 0.1 of the final

value to 0.9 of the final value.

ii. Peak time, tp. The time required to reach the first, or maximum, peak.

iii. Percent overshoot, %OS. The amount that the waveform overshoots the steady

state, or final value at the peak time, expressed as a percentage of the steady

state value.

iv. Settling time, ts. The time required for the transient's damped oscillations to

reach and stay within + 2 % of the steady-state value, or + 5 % of the steady-

state value [55].

38

The second-order underdamped response specification is shown in Fig. 2.16.

Notice that all definitions are also valid for systems of order higher than 2, although

analytical expressions for these parameters cannot be found unless the response of the

higher-order system can be approximated as a second-order system [54].

There are several kinds of error analysis as a performance index, and the two of

them are as follows:

1. Integral of absolute value of error (𝐼𝐴𝐸) is defined as [84]:

𝐼𝐴𝐸 = 𝑆𝑃 𝑡 − 𝑃𝑉(𝑡) 𝑑𝑡

𝑡

0

 (2 - 39)

where 𝑆𝑃 is set-point and 𝑃𝑉 is process value.

𝐼𝐴𝐸 is appropriate for measuring the performance when the transient process is more

important or when the input is variable.

Fig. 2.16 Second-order underdamped response specifications [54]

39

2. Integral of time absolute value of error (𝐼𝐴𝐸) is defined as [84]:

𝐼𝑇𝐴𝐸 = 𝑡 𝑆𝑃 𝑡 − 𝑃𝑉(𝑡) 𝑑𝑡

𝑡

0

 (2 - 40)

where 𝑆𝑃 is set-point, 𝑃𝑉 is process value, and 𝑡 is time (duration).

𝐼𝑇𝐴𝐸 is appropriate for measuring the performance when the steady process is

important besides the transient process and when the input is constant.

2.14 Summary

The overview of some related previous work and the basic theory of electrical motor,

system identification, control, fuzzy, and genetic algorithm has been presented in this

chapter. The proposed method on the optimization algorithm has been introduced.

The optimization algorithm proposed in this chapter offers some promising ways

for achieving the best controller for a DC servomotor.

In the following chapter, detailed discussion on the model development, the

controller's design and the optimization algorithm development, and the verification

of the controllers and the optimization algorithm via simulation to determine the

correctness of the model, the controllers and the optimization algorithm will be

presented.

CHAPTER 3

SIMULATION AND HARDWARE EXPERIMENT

3.1 Introduction

This chapter presents the methodology devised for the experiments setup. It starts

with the modelling of a DC motor from a known source with known specifications.

The associated controllers were then designed and applied to the model using

MATLAB/SIMULINK. There were six speed controllers: (1) proportional-integral

(PI), (2) proportional-integral-derivative (PID), (3) fuzzy logic controller (FLC), (4)

fuzzy logic-based self-tuning PI (FLBPI), (5) fuzzy logic-based self-tuning PID

(FLBPID), (6) and fuzzy logic parallel integral controller (FLIC). There were three

position controllers: (1) fixed proportional controller, (2) FLC, and (3) variable

proportional controller. The performance of the controllers were compared and the

controllers in which the performance are better than PI and PID controllers would be

selected to be optimized using GA.

It would be time consuming and risky if the GA process is applied to the real

hardware. Therefore, from the hardware servomotor system, a gray box s-modeling of

the system was first build. The controllers were then applied to the transfer function

model for evaluation. Once the controller's performances are understood, then a real-

time implementation on an experiment rig that constitutes the servo speed and

position controller system consisting of the servomotor and load, measuring and

controlling devices would be conducted.

The next step is designing GA to optimize the speed controllers. Before

optimizing the controllers, the GA simulation is conducted to get the ideal

specifications. In the GA simulation, it is designed to get the maximum value of the

function. Based on the simulation result, a new method of GA is proposed, i.e. the

41

semi-parallel operation GA (SPOGA) with the change of the operation process. The

initial population and solution processes are also changed.

The SPOGA is then applied to the transfer function and hardware experimental

rig. The performance of SPOGA optimized controllers are compared to non-SPOGA

optimized controllers and conventional controllers.

3.2 Hardware Implementation

The experiment on DC servomotor for the speed and position was conducted using

SIMULINK where the block diagram is shown in Fig. 3.1. The speed control loop is

in the position control loop [28]. Basically, the position control loop is executed until

reaching the position set-point while the speed is limited to the speed set-point.

Practically, position control is better to be sensorless because it will reduce cost and

size and increase the reliability of the overall system [85].

Fig. 3.1 Structure of feedback controller [28]

The input, feedback, and output elements for position and speed are implemented

in the SIMULINK diagram with specifications as follows:

42

AP=1

Av=0.002

Kv=9.5455

Hv=0.002

HP=0.005

Kpt=0.005

These specifications have been based on realistic assumptions.

Position control was done based on the position set-point and integration of speed

sensor as a process value. The position controller was designed to control the radian

position where the maximum position is less then 2π or 6.28 rad. In the experiment,

the range of position is [0.00, 6.00] rad. Based on the experiment on the hardware

device, the range of speed is [150.00, 426.47] rpm when no load and in the full load

condition (1 Nm), the range of speed is [150.00, 278.29] rpm. Hopefully, the position

will reach the maximum position set-point with the minimum of speed set-point

within 90 sec. Based on the gear specification in the RS Component web, there are

three reduction gears with ratio 12/70 each. Therefore, the overall gear ratio is 0.005

and as depicted in Fig. 3.1, HP would be assigned the value 0.005, and similarity for

Kpt.

The input range of position controller is [0.00, 6.00]. The range of position set-

point is [0.00, 6.00] rad. Therefore, the value of AP is unity. The input range of speed

controller is [0.00, 10.00]. The speed sensor has 0.002 volts/rpm. The range of speed

set-point in the experiment is [0.00, 400.00] rpm. Therefore, the value of AV is 0.002

and it needs conditioning of input constant. The value of HV is the same as AV to

compare the values of set-point and process value that yields an actuating signal.

The hardware implementation for the block diagram is as follows:

Plant/DC motor: 175 W, 1500 rpm, 240 V, 1.1 A

Load : Dynamometer load controller

Input elements:

Tacho-generator with 500 rpm/volt

ADC: 1 channel [0, 10] volts

Filtering : FIR with 30 points

43

Output elements:

DAC: 2 channels [0, 4] volts

Differential amp: HA-17741

Power amp: Chopper/Inverter and IGBT

Controller elements:

Computer with Intel Pentium Dual Core T2080 processor, Windows XP SP3,

MATLAB/SIMULINK software.

The DAQ USB-1208FS has 250 samples per second and it depends on a PC that

is used. Using computer and software as specified above, it has 1000 samples per

second. In other words, the sampling rate is 1 ms.

It is to note that at this point, from the experiment the appropriate sampling period

for the control algorithms with regards to the time constant of the plant in the open

loop condition is 10 ms. The more detail discussion on the experiment will be

presented in Chapter 5.

The experimental rig constituting the servo speed and position controller system

consists of the servomotor and load, measuring and controlling devices. The servo

system contains a DC motor driven by an IGBT chopper inverter. The measuring

device is the speed sensor (tacho-generator), ADC and a digital filter i.e., finite

impulse response (FIR), while the controlling devices are DAC, differential amplifier,

and the IGBT inverter circuit. The measuring devices provide status of the output

responses of the speed and position where the information about the speed and

position is fed through signal conditioning circuit and anti-aliasing filter for analysis

and calculation of the control signal. The speed and position requirements

proportional to the manipulated variable of the controller’s output are fed to a

computer.

The block diagram of hardware design is shown in Fig. 3.2 where the power

amplifier and differential amplifier are presented more detail in Fig. 3.3 and Fig. 3.4.

The output range of controller is [0.00, 20.00] volts. This follows the input range

of Chopper/Inverter Control Unit in the power amplifier circuit diagram (Fig. 3.3)

44

where the input range is [-10.00, +10.00] volts. This range is fed by the output of

differential amplifier in Fig. 3.4 which has a formula [86]:

VOUT =
R2

R1
 V2 − V1

(3 - 1)

Fig. 3.2 Block diagram of hardware design

The gain of differential amplifier is chosen to be 5 (five) regarding to the output

range of DAC which is about 2 volts. The values of V1 and V2 are fed from a DAC

which has two channels 12 bit each. The block diagram of USB-1208FS DAQ is

shown in Fig. 3.5. The output of ADC or input of DAC are connected to the computer

using full speed USB 2.0 compliant interface which is also compatible with USB 1.1.

Signal conditioner software is needed in communication between computer and

DAC. Refer to the Fig. 3.6 and Fig. 3.7, if in is the output of computer as a controller

to the signal conditioner, and v1 and v2 are the output of signal conditioner to DAC,

then the flowchart is shown in Fig. 3.6.

45

Fig. 3.3 Power amplifier circuit diagram

Fig. 3.4 Differential amplifier circuit diagram

46

Fig. 3.5 USB-1208FS functional block diagram [87]

As seen in Fig. 3.6, with the range of in is [0.00, 10.00], the range of v1 will be

[4.00, 0.00] and v2 will be zero. With the range of in is [10.00, 20.00], the range of v2

will be [0.00, 4.00] and v1 will be zero as shown in Fig. 3.7.

The output of speed sensor has the range of [0.00, 0.85] volts and can directly

connected to the ADC which is within the range input of ADC, [0.00, 10.00] volts.

The output of ADC is digital 0.85 and filtered using 30-point FIR for noise reduction.

It is a digital software filter based on moving average (MA) filter. If 𝑁 is the number

of points, 𝑋𝑖 is input at 𝑖𝑡 point, then the output at 𝑖𝑡 point, 𝑌𝑖 , is given by

𝑌𝑖 =
 𝑋𝑖−𝑘
𝑁−1
𝑘=0

𝑁
 (3 - 2)

Experimentally, the value of 𝑁 is 30. This was done by searching the minimum

value of N in the multiples of 5 in which the maximum deviation of noise is less than

the maximum steady state error, i.e. 2 % [54]. The experiment result will be presented

in Chapter 5.

47

There are two output transducers: speed output transducer, and position

transducer. There are two speed transducers sequentially:

i. Zero tolerance regarding to noise: when the magnitude is less than or equal to

0.05 volts, then it is assumed to be zero

ii. Converter volt to rpm: regarding to the speed sensor, the magnitude in volt is

converted to speed by multiplying with 500.

Fig. 3.6 Signal conditioner flowchart for DAC

The position transducer converts the rpm to rad/sec by multipying with 0.1048 and

then multipying with 0.005 as a gear ratio. The final value is then integrated to

convert the speed to position.

48

Fig. 3.7 Input-output of signal conditioner

3.3 Input-Output Modelling of A DC Servomotor

In the optimization process of a servomotor, it requires time and has big risk. To

investigate this issue, a real plant, constituting of a DC motor and its controller is

modeled and simulated to allow detail analysis of its control system. The flowchart of

input-output modeling process is shown in Fig. 3.8.

49

Fig. 3.8 Process of input-output modeling

3.3.1 Designing An Experiment

The DC motor used in experiment is rated 175 W, 1,500 rpm, 240 V, 1.1 A. The DC

motor is coupled with a dynamometer. These components are combined as a gray box

to be identified as a transfer function in s-domain.

Open loop characteristic of the gray box is tested using SIMULINK which is

applied to the plant through DAQ, 30-point-FIR filter, chopper/inverter control unit,

and IGBT. The input voltage is varied randomly in the range of [0.00, 20.00] volts for

100 seconds with about 32 sequences. There are five patterns of input signal shown in

50

Fig. 3.9 to Fig. 3.13. These patterns are generated randomly using

SIMULINK/MATLAB command.

Fig. 3.9 Input sequence 1 for input-output modelling

Fig. 3.10 Input sequence 2 for input-output modelling

51

Fig. 3.11 Input sequence 3 for input-output modelling

Fig. 3.12 Input sequence 4 for input-output modelling

52

Fig. 3.13 Input sequence 5 for input-output modelling

3.3.2 Collecting Input-Output Data

The DC motor is run for 100 sec with variations of input voltage in Fig. 3.9 to

Fig. 3.13. The sampling time is 0.01 sec. The result (output voltage) and the input are

then saved in the workspace. The data for input-output modeling is obtained from the

MATLAB command below:

data=iddata(workspace_input,workspace_output,0.01);

3.3.3 Selecting and Defining A Model Structure

There are six process models to be compared and selected the best one: process model

using 1
st
 order transfer function without zero, process model using 1

st
 order transfer

function with zero, process model using 2
nd

 order transfer function without zero,

process model using 2
nd

 order transfer function with zero, process model using 3
rd

53

order transfer function without zero, and process model using 3
rd

 order transfer

function with zero.

If P is the process model, n is the number of poles (1,2 or 3), D is to include a

time-delay term (optional), Z is to include a process zero (optional) and U is to

indicate possible complex-valued (underdamped) poles (optional), then using

MATLAB command, the general command to get the process model is as follows:

model=pem(data, 'PnDtZUc');

3.3.4 Computing The Best Model

To select the best model, both the real time system and the six type input-output

model systems are fed with the same input pattern and the output are compared. An

input-output model system type with the best fitness (i.e. the largest fitness value) is

selected and the fitness value is obtained from Eq (2 - 22).

3.3.5 Selection of The Best Model

To select the best model, the previous steps are repeated 10 times for each type of

input sequence, and the result are ten s-models with the best fitness. The best model is

selected from the best s-model among the ten best s-models. These steps are then

repeated for five different types of input sequence. The best model is selected among

the five best s-models.

3.4 Simulation and Experiment Design of Speed and Position Control

The speed and position control was build based on the structure of feedback controller

in Fig. 2.7. The block diagram of simulation experiment in SIMULINK is shown in

Fig. 3.14, and for hardware experiment is shown in Fig. 3.15

54

Fig. 3.14 Block diagram of simulation experiment in SIMULINK platform

Fig. 3.15 Block diagram of hardware experiment in SIMULINK platform

The SSP selector is used for selecting the two types of input: constant input

according to the value given by user, and variations of input with the range of

55

[0.00, 400.00] rpm for the experiment with variations of speed set-point. The pattern

of speed set-point for variations of input is shown in Fig. 3.16

Fig. 3.16 Pattern of variations of speed set-point

The speed-pos element is used for : conditioning the actual speed set-point in the

speed controller based on input speed set-point and position manipulated variable,

speed comparator, i.e. comparison between speed set-point and speed process value,

and conditioning the input constant of controller.

In the first function of speed-pos element, if ASSP is actual speed set-point, ISSP

is input speed set-point (set by user) and PMV is position manipulated variable, then

the flowchart is shown in Fig. 3.17.

In the second function of speed-pos element, if 𝐴𝑆𝑆𝑃 is actual speed set-point and

𝑆𝑃𝑉 is speed process value, then the output of speed comparator, 𝑆𝐸𝐶 , is formulated in

Eq. (3 - 3)

𝑆𝐸𝐶 = 𝐴𝑆𝑆𝑃 − 𝑆𝑃𝑉 (3 - 3)

In the third function of speed-pos element, if 𝐴𝑆𝑆𝑃 is actual set-point and 𝑆𝐸𝐶 is

output of speed comparator, then the input to the speed controller, 𝑆𝐸 , is formulated

in Eq. (3 - 4)

𝑆𝐸 =
10 ∗ 𝑆𝐸𝐶
𝐴𝑆𝑆𝑃

 (3 - 4)

56

Fig. 3.17 Flowchart of conditioner of actual speed set-point

Position comparator is used for comparison between position set-point and

position process value. If 𝑃𝑆𝑃 is position set-point and 𝑃𝑃𝑉 is position process value,

then the output of position comparator, 𝑃𝐸 , is formulated in Eq. (3 - 5)

𝑃𝐸 = 𝑃𝑆𝑃 − 𝑃𝑃𝑉 (3 - 5)

The output transducer contains filtering (FIR) and controller conditioning. The

USB-1208FS was used as an ADC and DAC. In the simulation experiment, the Mv

conditioner has the value of unity. In the hardware experiment, the Mv conditioner is

used as a conditioner to the DAC as shown in Fig. 3.6 and Fig. 3.7.

The position controller is used for controlling the position in one direction only.

Therefore, the appropriate controller is proportional based. There were three kinds of

position controller in the experiment:

i. Fixed proportional controller

ii. Variable proportional controller

iii. Fuzzy logic controller

The speed controller is used for controlling the speed in one direction only. There

were nine kinds of speed controller in the experiment:

57

i. PI controller

ii. PID controller

iii. FLC (Fuzzy Logic Controller)

iv. FLBPI (Fuzzy Logic Based self tuning PI) controller

v. FLBPI-GA (Fuzzy Logic Based self tuning PI that optimized by GA/SPOGA)

controller

vi. FLBPID (Fuzzy Logic Based self tuning PID) controller

vii. FLBPID-GA (Fuzzy Logic Based self tuning PID that optimized by

GA/SPOGA) controller

viii. FLIC (Fuzzy Logic parallel Integral Controller)

ix. FLIC-GA (Fuzzy Logic parallel Integral Controller that optimized by

GA/SPOGA).

3.4.1 Simulation and Experiment Design of Position Controller

The three kinds of position controller were implemented based on the type of speed

controller. The fixed proportional position controller was conducted with

conventional speed controllers. The variable proportional position controller in which

the idea is based on [27] was done with hybrid-fuzzy speed controllers. The fuzzy

logic position controller was conducted with a fuzzy logic speed controller.

Similarly, the parameter of fixed proportional position controller (proportional

constant, 𝐾𝑃𝑝), was optimized via experiment method. It was conducted after

optimizing each type of the conventional speed controllers.

The parameter of variable proportional controller (proportional constant, 𝐾𝑃𝑝) was

optimized using experiment method. It was conducted after optimizing each type of

the hybrid-fuzzy speed controllers. If 𝑀𝑝 is the output of variable proportional

controller, 𝐾𝑃𝑝 is proportional constant of position controller, then the output of

position controller, 𝑃𝑀𝑉 , can be formulated as follows:

𝑃𝑀𝑉 = 𝐾𝑃𝑝 ∗ 𝑀𝑝 (3 - 6)

58

If 𝑃𝐸 is position error, and 𝐾𝑃𝑣 is variable proportional constant, then 𝑀𝑝 can be

formulated as

𝑀𝑝 = 𝐾𝑃𝑣 ∗ 𝑃𝐸 (3 - 7)

If PR is position reference, then the values of KPv are shown in Table 3.1.

Table 3.1 Values of KPv

PR KPV
[0.5 , 1.0) 0.08

[1.0 , 1.5) 0.25

[1.5 , 2.5] 0.50

(2.5 , 3.5] 1.00

(3.5 , 6.0] 1.10

In FLC, as a fuzzifier is the singleton mode (Eq. (2 - 35)) with two inputs,

namely, error and change of error, seven triangular membership functions each, and

one output with four triangular membership functions. For the choice based on

suitability and practicality, as an inference engine is the Mamdani product

(Eq. (2 - 36)) and as a defuzzifier is the center average (eq. (2 - 38)) . The input

membership functions and output membership functions are shown in Fig. 3.18 and

Fig. 3.19 respectively.

If E, D, and U are error input, change of error input, and output of FLC for

position controller, then the rule table formulated is shown in Table 3.2.

59

Fig. 3.18 Fuzzy input membership functions for position controller: (a) error; (b)

change of error

Fig. 3.19 Fuzzy output membership function for position controller

60

Table 3.2 Rules of FLC for position controller

E

D

NB NM NS ZE PS PM PB

NB ZE ZE ZE ZE ZE ZE ZE

NM ZE ZE ZE ZE ZE ZE ZE

NS ZE ZE ZE ZE ZE ZE ZE

ZE ZE ZE ZE ZE PS PS PS

PS PS PS PS PS PM PM PM

PM PS PM PM PM PB PB PB

PB PS PM PB PB PB PB PB

NB: Negative Big; NM: Negative Medium; NS: Negative Small; ZE: Zero

PS: Positive Small; PM: Positive Medium; PB: Positive Big

3.4.2 Simulation and Experiment Design of Conventional Speed Controllers

There were two kinds of conventional speed controller in the experiment:

i. PI controller

ii. PID controller

In PI controller experiment, the parallel combination of PI controller was used

which has the basic formulation in time domain as in Eq. (2 - 23), without the

derivative part. In discrete form with sampling period of 0.01 sec, Eq. (2 - 26), to

Eq. (2 - 28) are modified to be as follows:

𝑚(0.01𝑘) = 𝑚𝑃(0.01𝑘) + 𝑚𝐼(0.01𝑘) (3 - 8)

𝑚𝑃 0.01𝑘 = 𝐾𝑃𝑒 0.01𝑘 (3 - 9)

𝑚𝐼 0.01𝑘 = 0.01𝐾𝐼 𝑒 0.01𝑘

𝑘

+ 𝑚𝐼(0)
(3 - 10)

61

In the experiment on PID controller, the parallel combination PID controller was

used which has the basic formulation in time domain as in Eq. (2 - 23). In discrete

form with sampling period of 0.01 sec, Eq. (2 - 26) to Eq. (2 - 29) are modified to

be as follows:

𝑚 0.01𝑘 = 𝑚𝑃 0.01𝑘 + 𝑚𝐼 0.01𝑘 + 𝑚𝐷(0.01𝑘) (3 - 11)

𝑚𝑃 0.01𝑘 = 𝐾𝑃𝑒 0.01𝑘 (3 - 12)

𝑚𝐼 0.01𝑘 = 0.01𝐾𝐼 𝑒 0.01𝑘

𝑘

 + 𝑚𝐼(0)
(3 - 13)

𝑚𝐷 0.01𝑘 =
𝐾𝐷

0.01
 𝑒 0.01𝑘 − 𝑒 0.01𝑘 − 0.01

(3 - 14)

In SIMULINK platform, there is a facility to use continuous programming and the

software can automatically does the conversion from discrete or digital form.

The parameters of PI controller was optimized using Ziegler-Nichols (ultimate

cycle) method using Eq. (2 - 31), and the parameters of PID controller was

optimized using Eq. (2 - 32).

Both PI and PID experiments were provided with anti integral windup using

saturation feedback as in Fig. 2.8. Experimentally, the value of Ka is
100

𝐾𝐼
.

3.4.3 Simulation and Experiment Design of Fuzzy Logic Controller (FLC)

In the experiment of speed controller using FLC, as the fuzzifier is a singleton mode,

Eq. (2 - 35), with two inputs, namely, error and change of error, seven triangular

membership functions each, and one output rate with seven triangular membership

functions. As an inference engine is the Mamdani product, Eq. (2 - 36), and as a

defuzzifier is the center average, Eq. (2 - 38). The input and output membership

functions are shown in Fig. 3.20 and Fig. 3.21 respectively.

62

Fig. 3.20 Fuzzy input membership functions for speed controller: (a) error; (b)

change of error

Fig. 3.21 Fuzzy output rate membership function for speed controller

If E, D, and U are error input, change of error input, and output rate of FLC for

speed controller, then the rule table in Table 3.3 can be coded into the fuzzy rule

string 𝐻(𝑤 ,𝑥 ,𝑦) which is formulated in the form of integer matrix [43],

63

𝐻(𝑤 ,𝑥 ,𝑦) =

1,1

. . . 1,𝑗

.

.

.

.
.

.

.

.

.

𝑖 ,1 . . . 𝑖 ,𝑗

 (3 - 15)

where 𝑖 ,𝑗 ∈ 1,𝑦 and ∀𝑖 ≤ 𝑤, 𝑗 ≤ 𝑥 and the 𝑖 − 𝑗 element implies the following rule

[43]:

Ri,j : If E is Ei and D is Dj then U is Uk

In the experiment, E1=D1=U1=NB, E2=D2=U2=NM, E3=D3=U3=NS, E4=D4=U4=ZE,

E5=D5=U5=PS, E6=D6=U6=PM, E7=D7=U7=PB, i = 4, j = 2, k = 4, w = x = y = 7.

If M is the output of controller to be fed to the signal conditioner, then it can be

formulated as

𝑀 𝑘 = 𝑇𝑠 𝑈 𝑘

𝑘

 + 𝑀(0) (3 - 16)

Table 3.3 Rules of FLC for speed controller

E

D

NB

(D1)

NM

(D2)

NS

(D3)

ZE

(D4)

PS

(D5)

PM

(D6)

PB

(D7)

NB (D1) NB NM NM NM NM NM NM

NM (D2) NM NM NM NM NM NM NM

NS (D3) NS NS NS NS NS NS NS

ZE (D4) Z Z Z Z PS PM PB

PS (D5) Z PS PM PB PB PB PB

PM (D6) Z PS PM PB PB PB PB

PB (D7) Z PS PM PB PB PB PB

The output of controller was provided with anti integral windup using saturation

feedback as in Fig. 2.8. Experimentally, the value of Ka is
100

𝐾𝐼
.

64

3.4.4 Simulation and Experiment Design of Hybrid-Fuzzy Controller

There were three kinds of hybrid controller in the experiment: FLBPI, FLBPID, and

FLIC. FLBPID uses the basis of FLBPI with additional of fixed value of 𝐾𝐷 . The

block diagram of fuzzy-logic-based self tuning PI for speed controller is shown in

Fig. 3.22. In this figure, pv(k) is the process value of speed, r(k) is the reference value

or set-point of speed, h is the output of fuzzy controller, and m(k) is the output of

controller.

Fig. 3.22 Block diagram of fuzzy-logic-based self-tuning PI for the speed controller

[45]

The fuzzy sets and their corresponding membership functions for input error, e(k)

and change of error, d(k) and output (h) are shown in Fig. 3.23. The rules for FLBPI

and FLBPID (𝐾𝑃 and 𝐾𝐼) are shown in Table 3.4. The value of 𝐾𝐷 is constant based

on Ziegler-Nichols method in PID tuning.

If 𝐾𝑃𝑚 is the maximum value of 𝐾𝑃 (experiment), 𝐾𝐼𝑚 is the maximum value of

𝐾𝐼 (experiment), and 𝐾𝐷𝑚 is the maximum value of 𝐾𝐷 (Ziegler-Nichols), then the

values of 𝐾𝑃, 𝐾𝐼, and 𝐾𝐷 for hybrid controllers are obtained from Eq. (3 - 17) for

FLBPI and Eq. (3 - 18) for FLBPID.

𝐾𝑃 = .𝐾𝑃𝑚 ; 𝐾𝐼 = 2 .𝐾𝐼𝑚 (3 - 17)

𝐾𝑃 = .𝐾𝑃𝑚 ; 𝐾𝐼 = 2 .𝐾𝐼𝑚 ; 𝐾𝐷 = 𝐾𝐷𝑚 (3 - 18)

65

Fig. 3.23 Fuzzy sets and their corresponding membership functions: (a) Input, (b)

Output [45]

The FLIC experiment was based on the FLC experiment for speed and the output

is paralleled with integral controller which was optimized using experiment method.

The structure of FLIC is shown in Fig. 3.24.

Table 3.4 Fuzzy rules base for KP and KI in FLBPI [45]

E

D

N ZE P

N S B S

ZE S B S

P S B S

N: Negative; ZE: Zero; P: Positive; S: Small; B: Big

In the experiment of FLIC, the structure of input and output membership

functions are the same as in FLC. The input membership functions is shown in

Fig. 3.20 and output membership functions is shown in Fig. 3.25.

66

Fig. 3.24 Structure of FLIC

Fig. 3.25 Fuzzy output membership functions in FLIC

The output of FLC part is clamped to the range of [0.00, 10.00]. If E, D, and U are

error input, change of error input, and output of FLC in FLIC, then the rule table in

Table 3.3 can be coded into the fuzzy rule string 𝐻(𝑤 ,𝑥 ,𝑦) which is formulated in the

form of integer matrix as shown in Eq. (3 - 15) [43].

If 𝑀 is the output of controller to be fed to the signal conditioner, 𝑒 is error signal,

𝐾𝐼 is integral constant, 𝑇𝑠 is sampling rate, and 𝑈 is fuzzy output, then the

manipulated variable can be formulated as

𝑀 𝑘 = 𝐾𝐼𝑇𝑠 𝑒 𝑘

𝑘

 + 𝑈 𝑘 + 𝑀(0) (3 - 19)

The output of integral controller was provided with anti integral windup using

saturation feedback as in Fig. 2.8. Experimentally, the value of Ka is
100

𝐾𝐼
.

67

3.5 Design of Genetic Algorithm

The process of GA is shown in Fig. 2.12. The first step of GA process is initialization

as shown in Fig. 3.26. The maximum population size, i.e. the maximum number of

chromosome is 2
bitlength

. If the number of chromosome is set to be more than the

maximum population size, then it will be clamped to the maximum population size.

The random number with the range [0.00, 1.00] is generated for each bit each

chromosome. If the number is more than or equal to 0.5 then the bit value is 1.

Otherwise, the bit value is 0.

After having initialized the population, the next step is selection process using

SUS Roulette wheel as shown in Fig. 3.27. This selection is used for selecting the

good fitness to be a new population. In the figure, Nf is the total fitness value. Start

from the first position to be occupied, given a random value, z, in the range of [0, Nf]

to the first position. Start from the first chromosome, if the fitness value of the first

chromosome is larger or the same as z, then the first position will be occupied by the

first chromosome. Otherwise, the fitness value of the first chromosome will be

combined with the second chromosome and so on until the combined fitness value is

larger or equal to z. The first position will then be occupied by the last combination

chromosome where the fitness value is larger or equal to z. The procedures are

repeated for the second, the third and until the last position of population is attained.

After the selection process, the next step is running the GA operations: crossover

and mutation. The flowchart of crossover process is shown in Fig. 3.28. First of all,

the two chromosomes are selected and coupled randomly. Then a random value with

the range of [0.00, 1.00] is given to the couple of chromosomes. If the random value

is smaller or equal to the crossover rate then the crossover operation as in Fig. 2.13

will occur. Otherwise, no crossover operations. The crossover point is selected

randomly. This process is repeated until all of the chromosomes in the population are

coupled.

68

Fig. 3.26 Population initialization using random generation

69

Fig. 3.27 Flowchart of SUS Roulette Wheel selection

The flowchart of mutation process is shown in Fig. 3.29. This process starts with

generating a random number in the range of [0.00, 1.00] to each chromosome. If the

number is smaller or equal to the mutation rate, then the mutation operation as in

Fig. 2.14 will occur. Otherwise, no mutation operation.

70

Fig. 3.28 Flowchart of one-point crossover process

The parameters of GA is shown in Table 3.5. The bit length is determined based

on the problem to be solved. The crossover rate and mutation rate is determined based

on the population size as explained in 2.6.1. Based on literature review, the minimum

number of generation is 2 [80] and the maximum is unlimited. In this experiment, the

number of generation is set to be 20 [88].

71

Fig. 3.29 Flowchart of mutation process

Table 3.5 Parameters of GA

NO. SYMBOL NAME OF PARAMETER
1 bl Bit length

2 Nc Population size

3 Ng Number of generation

4 pc Crossover rate

5 pm Mutation rate

The population size is determined based on the bit length and accuracy of the

result of the GA process. To understand the population trends, a simulation is needed.

3.5.1 Simulation of GA

Simulation of GA was done to determine the ideal population size according to the bit

length with the number of generation is 20.

72

The simulation is done for conventional GA to get the maximum value of the

function as in Eq. (3 - 20) and (3 - 21).

𝑓 = max 𝑓1 𝑥 + 𝑓2 𝑥 + 𝑓3 𝑥 + 𝑓4 𝑥 (3 - 20)

where

𝑓1 𝑥 = −𝑥2 + 2𝑥

𝑓2 𝑥 = −𝑥2 + 4𝑥

𝑓3 𝑥 = −𝑥2 + 6𝑥

𝑓4 𝑥 = −𝑥2 + 8𝑥

(3 - 21)

The process of GA is as in Fig. 2.12 with the max generation of 20. The

initialization process is as in Fig. 3.26 with 40 bit length. This value was chosen based

on the function in Eq. (3 - 21) that there were four functions where each function had

the range of [0.00, 10.00] with the resolution of 0.01. If 𝑏𝑙 is the bit length, 𝑚𝑑 is the

maximum value of the decimal number, and 𝑟 is the resolution, then the bit length for

each function is obtained from the formula

𝑏𝑙 = log2
𝑚𝑑

𝑟
 (3 - 22)

From the specifications, using Eq. (3 - 22) gives the following result: 10 bit per

function or the total is 40 bit.

The minimum population size is statistically 30, then was increased to 40, 50, and

so on until fulfilling a criteria. When the population size is less then 100, the

crossover rate is 0.9 and to avoid the premature convergence, the mutation rate is set

to 0.01 [80] and 0.1 [88]. When the population size is 100, the crossover rate is 0.6

and to avoid the premature convergence, the mutation rate is set to be 0.01 [80]

The performance index for this experiment is as follows.

The result of GA to solve the Eq. (3 - 20) is compared to the result of manual

calculation. In the manual calculation, each function in Eq. (3 - 21) is derived and

73

then find the x such that the value of the derived function is zero. The result value of x

is {1, 4, 9, 16}. Using these values to solve Eq. (3 - 20) yields 30. The % error is 100

times the deviation between the GA result and the manual result over the manual

result.

There are two criteria for this experiment: minimum criteria and good criteria.

The minimum criteria is as follows:

If the % error is less than or equal to 5 then the GA result is called true. Otherwise,

the GA result is called false. The experiment was repeated 100 times and then the

accuracy was calculated by counting the false result within the 100 experiments. The

accuracy is 100 % if there are no false. The ideal population size for this criteria is the

minimum population size in the resolution of 10 with 100 % accuracy and less then

2 % average error. The good criteria is as follows:

If the % error is less than or equal to 2 then the GA result is called true. Otherwise,

the GA result is called false. The experiment was repeated 100 times and then the

accuracy was calculated by counting the false result within the 100 experiments. The

accuracy is 100 % if there are no false. The ideal population size for this criteria is the

minimum population size in the resolution of 10 with 100 % accuracy and less than

2 % average error.

3.5.2 The Structure of Semi-Parallel Operation Genetic Algorithm (SPOGA)

Applying one-point crossover operation as in the biological inspiration in the

conventional GA for solving the function in Eq. (3 - 20) and Eq. (3 - 21) will raise

some problems. Applying parallel genetic algorithms will be more complicated. HGA

is appropriate for optimizing membership functions of FLC with the consequence that

the crossover point will be more or less than 0.5. It is expected that any new type of

GA would solve the problems.

A new GA-based optimization algorithm is proposed in the thesis. The underlying

specific mechanism of applying this algorithm in control problem has not been

reported. The thrust of the idea for proposing this algorithm in this thesis comes from

the conventional GA in particular the intrinsic parallelism architecture of the GA and

74

the subpartition of chromosomes in HGA, with the chromosome separated into some

sub-chromosome according with the problem to be solved as shown in Fig. 3.30.

Fig. 3.30 Chromosome structure of SPOGA, typically six bit per sub-chromosome

The selection operation is conventional, but the crossover and mutation operation

is parallel process between each sub-chromosome. Noticably, the structure is different

from parallel genetic algorithms and therefore it is called semi-parallel operation

genetic algorithm (SPOGA).

The operation of SPOGA is the same as operation in the HGA. In the HGA, the

selection process is done as in the conventional GA, but for crossover and mutation,

the control genes and the parameter genes are done separately [43]. In the SPOGA,

the crossover and mutation operation is done separately between each sub-

chromosome.

It is expected that SPOGA can reduce the population size with still using one-

point crossover operation and when it is applied to optimize the membership functions

of FLC, the crossover point will still remain 0.5. The process flowchart of SPOGA is

shown in Fig. 3.31.

Based on the Fig. 3.31, there are three boxes with dotted line indicating the new

proposed methods. Twisted ring counter principle is applied as an initial population

instead of using random number principle. SPOGA operator is the specific difference

between SPOGA and conventional GA. The solution process is done by searching the

chromosome with the best fitness value among the all chromosomes in all

generations, this method is based on elitism process as in [19].

75

Fig. 3.31 Process flowchart of SPOGA

3.5.3 Simulation of SPOGA

Simulation of SPOGA was done to determine the ideal population size according to

the bit length with the number of generation is 20. The simulation was done to get the

maximum value of the function as in Eq. (3 - 20) and (3 - 21).

The process of SPOGA is as in Fig. 3.31 with the max generation of 20. The

initialization process is shown in Fig. 3.32 with 40 bit length. This value was chosen

based on as in Section 3.6.1.

76

Fig. 3.32 shows the process of population initialization using bl-bit mod-2bl Nc-

step ring counter. For example, if bl=10 Nc=30, then the initial population is shown in

Table 3.6.

The minimum population size is statistically 30, then was increased to 40, 50,

until fulfilling the criteria. When the population size is less then 100, the crossover

rate is 0.9 and to avoid the premature convergence, the mutation rate is set to 0.01

[80] and 0.1 [88]. When the population size is 100, the crossover rate is 0.6 and to

avoid the premature convergence, the mutation rate is set to 0.01 [80]. The

performance index was done as in Section 3.6.1.

Fig. 3.32 Initial population for SPOGA using twisted ring counters

77

Table 3.6 Initial population of SPOGA for 10 bit length, 30 population size

No. Chromosome
1 0 0 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0 0 0 1 1

3 0 0 0 0 0 0 0 1 1 1

4 0 0 0 0 0 0 1 1 1 1

5 0 0 0 0 0 1 1 1 1 1

6 0 0 0 0 1 1 1 1 1 1

7 0 0 0 1 1 1 1 1 1 1

8 0 0 1 1 1 1 1 1 1 1

9 0 1 1 1 1 1 1 1 1 1

10 1 1 1 1 1 1 1 1 1 1

11 1 1 1 1 1 1 1 1 1 0

12 1 1 1 1 1 1 1 1 0 0

13 1 1 1 1 1 1 1 0 0 0

14 1 1 1 1 1 1 0 0 0 0

15 1 1 1 1 1 0 0 0 0 0

16 1 1 1 1 0 0 0 0 0 0

17 1 1 1 0 0 0 0 0 0 0

18 1 1 0 0 0 0 0 0 0 0

19 1 0 0 0 0 0 0 0 0 0

20 0 0 0 0 0 0 0 0 0 0

21 0 0 0 0 0 0 0 0 0 1

22 0 0 0 0 0 0 0 0 1 1

23 0 0 0 0 0 0 0 1 1 1

24 0 0 0 0 0 0 1 1 1 1

25 0 0 0 0 0 1 1 1 1 1

26 0 0 0 0 1 1 1 1 1 1

27 0 0 0 1 1 1 1 1 1 1

28 0 0 1 1 1 1 1 1 1 1

29 0 1 1 1 1 1 1 1 1 1

30 1 1 1 1 1 1 1 1 1 1

3.6 Design and Application of SPOGA to Optimize Hybrid-Fuzzy Controller

There were three kinds of hybrid-fuzzy controller to be optimized by SPOGA: FLBPI,

FLBPID, and FLIC.

3.6.1 Design and Application of SPOGA to Optimize FLBPI

There are two parameters to be optimized in FLBPI: KPm and KIm. The membership

functions and rules of fuzzy logic part is unnecessary to be optimized since the

number of membership functions is small and the rules are simple. Experimentally,

the input scales of fuzzy logic part have no effect to be optimized and the output scale

has to be 1. Therefore, the I/O scales were set to be 1.

78

Experimentally, the range of KPm is [0.00, 23.50] and the range of KIm is

[0.00, 130.00]. Using Eq. (3 - 22) with resolution of 0.01, the bit length of sub-

chromosome for KPm is 12 and for KIm is 14. The bit length of chromosome is 26.

Based on the simulation result in Section 3.6.3 that will be presented in Chapter 4, the

population size is about 4/3 times the bit length of chromosome, or 35. The number of

generation is 20.

The initial population of each sub-chromosome is shown in Fig. 3.32. In the

figure, bl is 12 for KPm and 14 for KIm. The nc is 35 for both and fulfil the requirement

that nc≥n. The result is 12-bit mod-24 35- step ring counter for KPm and 14-bit mod-

28 35- step ring counter for KIm. as shown in Table 3.7.

SUS Roulette wheel was used for the selection operation where the flowchart is

shown in Fig. 3.27. The selection work based on the fitness evaluation where the

flowchart is shown in Fig. 3.33. Note that the fitness evaluation process used for

SPOGA is the same is the GA process. Before selection process, each chromosome in

the population is decoded. The result of decoding is then fed to the FLBPI system to

get the values of KPm and KIm. The FLBPI system is then run to control the speed of s-

modelled DC motor to test the performance of speed controller with regards to the

chromosome.

The set-point signal for the speed test run is shown in Fig. 3.34. There are 4 areas

in the test. The area 1 is in the set-point of 150 rpm unloaded, the area 2 is in the set-

point of 400 rpm unloaded, the area 3 is in the set-point of 250 rpm unloaded, and

area 4 is in the set-point of 250 rpm loaded.

As in Fig. 3.33, there are two possibilities of condition when doing the test run:

error and success. If the condition is 'error', then the ITAE value is 10
30

. Else if the

condition is 'success', then the ITAE is the sum of ITAE in area 1, ITAE in area 2,

ITAE in area 3, and ITAE in area 4.

79

Table 3.7 Initial population in FLBPI

No. Sub-Chrom KPm Sub-Chrom KIm
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 1 1 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 0 0 0 0 0

1 1 1 1 1 1 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1 1 1

0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 1 1 1 1 0 0 0

1 1 1 1 1 1 1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1 1 0 0 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0

1 1 1 1 1 1 1 0 0 0 0 0 0 0

1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0

25

26

27

28

29

30

31

32

33

34

35

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1

1 1 1 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1 1 1

There were three additional criteria in calculating the fitness value: maximum

overshoot of all areas, maximum settling time of all areas, and maximum steady state

error of all areas. The maximum overshoot criteria is set to be 10 %. The maximum

settling time criteria is set to be 2 seconds. The maximum steady state criteria is set to

be 2 %. If all of the criteria are fulfilled, then the fitness value is
103

𝐼𝑇𝐴𝐸
, otherwise, the

fitness value is
0.8

𝐼𝑇𝐴𝐸
.

80

Fig. 3.33 Flowchart of fitness evaluation for SPOGA

Fig. 3.34 Set-point signal for the speed test run in fitness evaluation

81

The flowchart of chromosome decoding for FLBPI is shown in Fig. 3.35. The bit

length of chromosome is 26. The bit 14 to 25 or the chromosome{1} to

chromosome{12} are 12 bit for KPm , and the bit 0 to 13 or the chromosome{13} to

chromosome{26} are 14 bit for KIm. The value of KPm is the conversion from 12 bit

biner number to real number in the range of [0.00, 23.50]. The value of KIm is the

conversion from 14 bit biner number to real number in the range of [0.00, 130.00].

Fig. 3.35 Flowchart of chromosome decoding for FLBPI of SPOGA process

The crossover operation is basically the same as in Fig. 3.28 but the process is

done separately for each sub-chromosome as shown in Fig. 3.36. The result is two

new sub-chromosomes for KPm (12 bit) and KIm (14 bit) to the further process, i.e.

mutation as shown in Fig. 3.37. As in crossover operation, the mutation operation is

basically the same as in Fig. 3.29 but the process is done separately for each sub-

chromosome. The result is two new sub-chromosomes for KPm (12 bit) and KIm

82

(14 bit) and then combined in one chromosome 26 bit to the further process, i.e. new

fitness evaluation as in Fig. 3.33. The operation process is repeated until 20

generations. Finally, the solution process is done by searching the chromosome with

the best fitness value among the all chromosomes in all generations as shown in

Fig. 3.38.

Fig. 3.36 Flowchart of crossover process for FLBPI of SPOGA process

Fig. 3.37 Flowchart of mutation process for FLBPI of SPOGA process

83

Fig. 3.38 Solution chromosome as a result of SPOGA process

3.6.2 Design and Application of SPOGA to Optimize FLBPID

There are three parameters to be optimized in FLBPID: KPm, KDm, and KIm. The

membership functions and rules of fuzzy logic part is unnecessary to be optimized for

the number of membership functions is small and the rules is simple. Experimentally,

the input scales of fuzzy logic part have no effect to be optimized and the output scale

has to be 1. Therefore, the I/O scales were set to be 1.

Experimentally, the range of KPm is [0.00, 23.50] and the range of KIm is

[0.00, 110.00]. The range of KDm is determined based on the result of PID tuning

84

using Ziegler-Nichols method as in Eq. (2 - 32). This was conducted since the

derivative component of PID controller is very sensitive to any disturbances [89]. The

range of KDm was set not too far from the result of Ziegler Nichols, that is [0.00, 0.20].

The result of Ziegler Nichols method in tuning PID would be presented in Chapter 4.

Using Eq. (3 - 22) with resolution of 0.01, the bit length of sub-chromosome for KPm

is 12, KDm is 5, and for KIm is 14. The bit length of chromosome is 31. Based on the

simulation result in Section 3.6.3 that will be presented in Chapter 4, the population

size is about 4/3 times the bit length of chromosome, or 42. The number of generation

is 20.

The initial population of each sub-chromosome is shown in Fig. 3.32. In the

figure, the bl is 12 for KPm, 5 for KDm , and 14 for KIm. The nc is 42 for both and fulfil

the requirement that nc≥n. The result is 12-bit mod-24 42- step ring counter for KPm,

5-bit mod 10 42- step ring counter for KDm, and 14-bit mod-28 42- step ring counter

for KIm., as shown in Table 3.8.

SUS Roulette wheel was used for selection operation where the flowchart is

shown in Fig. 3.27. The selection work based on the fitness evaluation where the

flowchart is shown in Fig. 3.33. Before the selection process, each chromosome in the

population is decoded. The result of decoding is then fed to the FLBPID system to get

the values of KPm, KDm , and KIm. The FLBPID system is then run to control the speed

of s-modelled DC motor to test the performance of speed controller with regards to

the chromosome. The set-point signal for the speed test run is shown in Fig. 3.32.

The flowchart of chromosome decoding for FLBPID is shown in Fig. 3.39. The

bit length of chromosome is 31. The bit 19 to 30 or the chromosome{1} to

chromosome{12} are 12 bit for KPm , the bit 14 to 18 or the chromosome{13} to

chromosome{17} are 5 bit for KDm, and the bit 0 to 13 or chromosome{18} to

chromosome{31} are 5 bit for KIm. The value of KPm is the conversion from 12 bit

biner number to real number in the range [0.00, 23.50]. The value of KIm is the

conversion from 14 bit biner number to real number in the range [0.00, 130.00]. The

value of KDm is the conversion from 5 bit biner number to real number in the range

[0.00, 0.20].

85

Table 3.8 Initial population in FLBPID

No. Sub-Chrom KPm Sub-Chrom KDm Sub-Chrom KIm
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 1 1 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 0 0 0 0 0

1 1 1 1 1 1 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 1

0 0 0 1 1

0 0 1 1 1

0 1 1 1 1

1 1 1 1 1

1 1 1 1 0

1 1 1 0 0

1 1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 1 1

0 0 1 1 1

0 1 1 1 1

1 1 1 1 1

1 1 1 1 0

1 1 1 0 0

1 1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 1 1

0 0 1 1 1

0 1 1 1 1

1 1 1 1 1

1 1 1 1 0

1 1 1 0 0

1 1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1 1 1

0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 1 1 1 1 0 0 0

1 1 1 1 1 1 1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 1 1 0 0 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0 0 0

1 1 1 1 1 1 1 0 0 0 0 0 0 0

1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1

31

32

33

34

35

36

37

38

39

40

41

42

0 0 0 0 0 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 1 1 0 0 0

1 1 1 1 1 1 1 1 0 0 0 0

1 1 1 1 1 1 1 0 0 0 0 0

1 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 1

0 0 0 1 1

0 0 1 1 1

0 1 1 1 1

1 1 1 1 1

1 1 1 1 0

1 1 1 0 0

1 1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1 1 1

0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

86

Fig. 3.39 Flowchart of chromosome decoding for FLBPID of SPOGA process

The crossover operation is basically the same as in Fig. 3.28 but the process is

done separately for each sub-chromosome as shown in Fig. 3.40. The result is three

new sub-chromosomes for KPm (12 bit), KDm (5 bit), and KIm (14 bit) to the further

process, i.e. mutation as shown in Fig. 3.41. As in crossover operation, the mutation

operation is basically the same as in Fig. 3.29 but the process is done separately for

each sub-chromosome. The result is three new sub-chromosomes for KPm (12 bit),

KDm (5 bit), and KIm (14 bit) and then combined in one chromosome 31 bit to the

further process, i.e. new fitness evaluation as in Fig. 3.33. The operation process is

repeated until 20 generations. Finally, the solution process is done by searching the

chromosome with the best fitness value among the all chromosomes in all generations

as shown in Fig. 3.38

87

Fig. 3.40 Flowchart of crossover process for FLBPID of SPOGA process

Fig. 3.41 Flowchart of mutation process for FLBPID of SPOGA process

88

3.6.3 Design and Application of SPOGA to Optimize FLIC

Regarding to the structure of FLIC as shown in Fig. 3.24, there are two steps in

optimizing FLIC using SPOGA: optimizing the membership functions and rules of

FLC part, and optimizing I/O scales of FLC part and integral constant of integral

controller part.

3.6.3.1 Optimizing Membership Function and Rules

There are three parameters to be optimized in membership functions: the error

membership functions, E, the change of error membership functions, D, and the

output membership functions, U. In this process, the I/O constant of FLC part is set to

be 1 and the integral constant of integral controller part is set to be 0.

Initially, there are seven triangular membership functions for input and output of

FLC as shown in Fig. 3.20 and Fig. 3.21. Consequently, there are three sub-

chromosomes with 7 bit each, for E, D, and U. The bit length of chromosome is 21.

Based on the simulation result in Section 3.6.3 that will be presented in Chapter 4, the

population size is about 4/3 times the bit length of chromosome, or 30, since

statistically, the minimum population size is 30. The number of generation is 20. The

initial population of each sub-chromosome is shown in Fig. 3.32. The result is 7-bit

mod-14 30- step ring counter for E, D, and U, as shown in Table 3.9.

For consistency, SUS Roulette wheel was used for the selection operation where

the flowchart is shown in Fig. 3.27. The selection work based on the fitness

evaluation where the flowchart is shown in Fig. 3.33. The maximum overshoot

criteria was set to 100 %, while the maximum settling time criteria is set to be 10

seconds, and the maximum steady state error criteria is set to be 100 %. Before the

selection process, each chromosome in the population is decoded. The result of the

decoding is then fed to the FLIC system to get the E, D, and U. The FLIC system is

then run to control the speed of s-modelled DC motor to test the performance of speed

controller with regards to the chromosome. The set-point signal for the speed test run

is shown in Fig. 3.34.

89

Table 3.9 Initial population for membership functions of FLIC

No. Sub-Chrom E Sub-Chrom D Sub-Chrom U
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

0 0 0 0 0 0 1

0 0 0 0 0 1 1

0 0 0 0 1 1 1

0 0 0 1 1 1 1

0 0 1 1 1 1 1

0 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 0

1 1 1 1 1 0 0

1 1 1 1 0 0 0

1 1 1 0 0 0 0

1 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 1 1

0 0 0 0 1 1 1

0 0 0 1 1 1 1

0 0 1 1 1 1 1

0 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 0

1 1 1 1 1 0 0

1 1 1 1 0 0 0

1 1 1 0 0 0 0

1 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 1 1

0 0 0 0 0 0 1

0 0 0 0 0 1 1

0 0 0 0 1 1 1

0 0 0 1 1 1 1

0 0 1 1 1 1 1

0 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 0

1 1 1 1 1 0 0

1 1 1 1 0 0 0

1 1 1 0 0 0 0

1 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 1 1

0 0 0 0 1 1 1

0 0 0 1 1 1 1

0 0 1 1 1 1 1

0 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 0

1 1 1 1 1 0 0

1 1 1 1 0 0 0

1 1 1 0 0 0 0

1 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 1 1

0 0 0 0 0 0 1

0 0 0 0 0 1 1

0 0 0 0 1 1 1

0 0 0 1 1 1 1

0 0 1 1 1 1 1

0 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 0

1 1 1 1 1 0 0

1 1 1 1 0 0 0

1 1 1 0 0 0 0

1 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 1 1

0 0 0 0 1 1 1

0 0 0 1 1 1 1

0 0 1 1 1 1 1

0 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 0

1 1 1 1 1 0 0

1 1 1 1 0 0 0

1 1 1 0 0 0 0

1 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 1 1

The flowchart of chromosome decoding for FLIC is as shown in Fig. 3.42. The bit

length of chromosome is 21. The bit 14 to 20 or the chromosome{1} to

chromosome{7} are 7 bit for E, the bit 7 to 13 or the chromosome{8} to

chromosome{14} are 7 bit for D, and the bit 0 to 6 or chromosome{15} to

chromosome{21} are 7 bit for U. The related membership functions are shown in

Fig. 3.43 where µi is i
th

-fuzzy membership function, αia, αib, and αic are i
th

-fuzzy

boundaries.

Note that when the membership function is deleted, then the existing neighbour

membership functions will change their boundary of fuzzy membership functions

such that the crossover point is still 0.5.

The crossover operation is basically the same as in Fig. 3.28 but the process is

done separately for each sub-chromosomes as shown in Fig. 3.44. The result is three

new sub-chromosomes for E (7 bit), D (7 bit), and U (7 bit) to the further process, i.e.

90

mutation as shown in Fig. 3.45. As in crossover operation, the mutation operation is

basically the same as in Fig. 3.29 but the process is done separately for each sub-

chromosome. The result is three new sub-chromosomes for E (7 bit), D (7 bit), and U

(7 bit) and then combined in one 21-bit size chromosome to the further process, i.e.

new fitness evaluation as in Fig. 3.33. The operation process is repeated until 20

generations. Finally, the solution process is done by searching the chromosome with

the best fitness value among the all chromosomes in all generations as shown in

Fig. 3.38.

Fig. 3.42 Flowchart of chromosome decoding of SPOGA process for membership

functions in FLIC

91

Fig. 3.43 Fuzzy membership functions related to chromosome

There are only one operation in the rules optimization, i.e. mutation operation

with the mutation rate of 0.01. The rules to be optimized is as in Eq. (3 - 15) using

delta shift operation which alters each element in the fuzzy rule chromosome as

follows [80]:

𝑖 ,𝑗 = 𝑖+∆𝑖 ,𝑗+∆𝑗 (3 - 23)

where ∆𝑖, ∆𝑗 have equal chance to be +1 or -1 with a probability of 0.01 [80].

Fig. 3.44 Flowchart of crossover process in SPOGA process for membership

functions in FLIC

92

Fig. 3.45 Flowchart of mutation process in SPOGA process for membership

functions in FLIC

3.6.3.2 Optimizing I/O Scales and Integral Constant

There are three parameters to be optimized: the input scale for fuzzy error input, Ke,

the output scale for fuzzy output, Ku, and the integral constant, KI. This is done with

the optimized membership functions and rules. Experimentally, the input scale for

fuzzy change of error input, Kce, have no effect to be optimized, thus, it is set to be 1.

Experimentally, the range of Ke is [0.00, 1.50], the range of Ku is [0.00, 0.50]. The

range of Ki is [0.00, 1.00]. Using Eq. (3 - 22) with resolution of 0.01, the bit length

of sub-chromosome for Ke is 8, Ku is 6, and for KI is 7. The bit length of chromosome

is 21. Based on the simulation result in Section 3.6.3 that will be presented in

Chapter 4, the population size is about 4/3 times the bit length of chromosome, but

statistically, the minimum population size is 30. The number of generation is 20.

93

The initial population of each sub-chromosome is shown in Fig. 3.32. In the

figure, the bl is 8 for Ke, 6 for Ku , and 7 for KI. The nc is 30 for all and fulfil the

requirement that nc≥n. The result is 8-bit mod-16 30- step ring counter for Ke, 6-bit

mod 12 30- step ring counter for Ku, and 7-bit mod-14 30- step ring counter for KI., as

shown in Table 3.10.

Table 3.10 Initial population for I/O scales and integral constant

No. Sub-Chrom Ke Sub-Chrom Ku Sub-Chrom KI
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 1

0 0 0 0 0 1 1 1

0 0 0 0 1 1 1 1

0 0 0 1 1 1 1 1

0 0 1 1 1 1 1 1

0 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 0

1 1 1 1 1 1 0 0

1 1 1 1 1 0 0 0

1 1 1 1 0 0 0 0

1 1 1 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 1

0 0 0 0 0 1 1 1

0 0 0 0 1 1 1 1

0 0 0 1 1 1 1 1

0 0 1 1 1 1 1 1

0 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 0

1 1 1 1 1 1 0 0

1 1 1 1 1 0 0 0

1 1 1 1 0 0 0 0

1 1 1 0 0 0 0 0

1 1 0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 1

0 0 0 1 1 1

0 0 1 1 1 1

0 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 0

1 1 1 1 0 0

1 1 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 1

0 0 0 1 1 1

0 0 1 1 1 1

0 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 0

1 1 1 1 0 0

1 1 1 0 0 0

1 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 1 1

0 0 0 1 1 1

0 0 1 1 1 1

0 1 1 1 1 1

1 1 1 1 1 1

0 0 0 0 0 0 1

0 0 0 0 0 1 1

0 0 0 0 1 1 1

0 0 0 1 1 1 1

0 0 1 1 1 1 1

0 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 0

1 1 1 1 1 0 0

1 1 1 1 0 0 0

1 1 1 0 0 0 0

1 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 1 1

0 0 0 0 1 1 1

0 0 0 1 1 1 1

0 0 1 1 1 1 1

0 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 0

1 1 1 1 1 0 0

1 1 1 1 0 0 0

1 1 1 0 0 0 0

1 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1

0 0 0 0 0 1 1

As with the other cases, SUS Roulette wheel was used for selection operation

where the flowchart is shown in Fig. 3.27. The selection work based on the fitness

evaluation where the flowchart is shown in Fig. 3.33. The maximum overshoot

criteria is set to be 25 %. The maximum settling time criteria is set to be 4 seconds.

The maximum steady state error criteria is set to be 2 %. Before selection process,

each chromosome in the population is decoded. The result of decoding is then fed to

the FLIC system to get the values of Ke, Ku , and KI. The FLIC system is then run to

control the speed of s-modelled DC motor to test the performance of speed controller

94

with regards to to the chromosome. The set-point signal for the speed test run is

shown in Fig. 3.34.

The flowchart of chromosome decoding for FLIC is shown in Fig. 3.46. The bit

length of chromosome is 21. The bit 13 to 20 or the chromosome{1} to

chromosome{8} are 8 bit for Ke , the bit 7 to 12 or the chromosome{9} to

chromosome{14} are 6 bit for Ku, and the bit 0 to 6 or chromosome{15} to

chromosome{21} are 7 bit for KI. The value of Ke is the conversion from 8 bit biner

number to real number in the range [0.00, 1.50]. The value of Ku is the conversion

from 6 bit biner number to real number in the range [0.00, 0.50]. The value of KI is

the conversion from 7 bit binary number to real number in the range [0.00, 1.00].

Fig. 3.46 Flowchart of chromosome decoding in SPOGA process for I/O/ scales and

integral constant

95

The crossover operation is basically the same as in Fig. 3.28 but the process is

done separately for each sub-chromosome as shown in Fig. 3.47. The result is three

new sub-chromosomes for Ke (8 bit), Ku (6 bit), and KI (7 bit) to the further process,

i.e. mutation as shown in Fig. 3.28. As in crossover operation, the mutation operation

is basically the same as in Fig. 3.29 but the process is done separately for each sub-

chromosome. The result is three new sub-chromosomes for Ke (8 bit), Ku (6 bit), and

KI (7 bit) and then combined in one chromosome 21 bit for the further process, i.e.

new fitness evaluation as in Fig. 3.33. The operation process is repeated until 20

generations. Finally, the solution process is done by searching the chromosome with

the best fitness value among the all chromosomes in all generations as shown in

Fig. 3.38.

Fig. 3.47 Flowchart of crossover process in SPOGA process for I/O/ scales and

integral constant

96

Fig. 3.48 Flowchart of mutation process in SPOGA process for I/O/ scales and

integral constant

3.7 Performance Comparisons and Evaluations

There are two types of experiment to compare the nine types of controller as

explained in Section 3.5. The types of experiment are simulation and hardware

experiments and are divided into four conditions as follows:

1. Extreme conditions:

a. Experiment of speed and position controller with the set-point of 150 rpm, 6

rad, unloaded

b. Experiment of speed and position controller with the set-point of 400 rpm, 0.5

rad, unloaded

97

2. Moderate conditions:

Experiment of speed and position controller with the set-point of 275 rpm, 3.5

rad, unloaded

3. Variable load conditions:

a. Experiment of speed and position controller with the set-point of 250 rpm, 5

rad, unloaded, full-loaded after 15 sec

b. Experiment of speed and position controller with the set-point of 250 rpm, 5

rad, full-loaded, unloaded after 15 sec

4. Variable set-point:

a. Experiment of speed controller with the variable set-point of speed in the

range of [0.00, 400.00] rpm, unloaded

b. Experiment of speed and position controller with the set-point of 275 rpm, 2

rad, 5 rad after 45 sec, unloaded

The set-points in the experiment of speed and position controllers with the set-

point of 150 rpm, 6 rad, unloaded (type 1a) are shown in Fig. 3.49 and Fig. 3.50. The

performance items used as a performance index for Fig. 3.49 are:

i. % overshoot (%𝑂𝑠)

ii. Settling time (𝑡𝑠)

iii. 𝐼𝑇𝐴𝐸 for the first 8 sec only since the open loop time constant of plant is 0.5 sec.

Based on the Eq. (2 - 40), the formula is as follows:

𝐼𝑇𝐴𝐸𝑣𝑝 = 𝑡 𝑆𝑃 𝑡 − 𝑃𝑉(𝑡) 𝑑𝑡

8

0

 (3 - 24)

The performance items used as a performance index for Fig. 3.50 are:

i. % steady state error for position (%𝑆𝑝)

ii. 𝐼𝑇𝐴𝐸 for overall 90 seconds. Based on the Eq. (2 - 40), the formula is as

follows:

𝐼𝑇𝐴𝐸𝑝 = 𝑡 𝑆𝑃 𝑡 − 𝑃𝑉(𝑡) 𝑑𝑡

90

0

 (3 - 25)

98

Fig. 3.49 Set-point of speed in the experiment of type 1a.

Fig. 3.50 Set-point of position in the experiment of type 1a.

As implied in Eq. (3 - 24) and Eq. (3 - 25), the best is the minimum value.

Making a comparison is better to use a number which is easy to understand and

assigned it as the best is the maximum value. Consequently, Eq. (3 - 24)and

Eq. (3 - 25) can be changed to fitness functions based on Eq. (2 - 1). In the

experiment of type 1a, 𝑓𝑣𝑝 is the fitness function for the first 8-second starting speed

based on 𝐼𝑇𝐴𝐸𝑣𝑝 , 𝑓𝑝 is the fitness function for position based on 𝐼𝑇𝐴𝐸𝑝 , for N types

of controller, are formulated as

𝑓𝑣𝑝 𝑖 =
 𝐼𝑇𝐴𝐸𝑣𝑝 ,𝑚𝑎𝑥 − 𝐼𝑇𝐴𝐸𝑣𝑝(𝑖)

 𝐼𝑇𝐴𝐸𝑣𝑝 ,𝑚𝑎𝑥 − 𝐼𝑇𝐴𝐸𝑣𝑝(𝑖) 𝑁
𝑖=1

 (3 - 26)

99

𝑓𝑝 𝑖 =
 𝐼𝑇𝐴𝐸𝑝 ,𝑚𝑎𝑥 − 𝐼𝑇𝐴𝐸𝑝(𝑖)

 𝐼𝑇𝐴𝐸𝑝 ,𝑚𝑎𝑥 − 𝐼𝑇𝐴𝐸𝑝(𝑖) 𝑁
𝑖=1

(3 - 27)

Based on Eq. (3 - 26) and Eq. (3 - 27) from Eq. (3 - 24) and Eq. (3 - 25), if

𝑓𝑜𝑠 is the fitness function based on % overshoot, 𝑓𝑡𝑠 is the fitness function based on

settling time, and 𝑓𝑠𝑝 is the steady state error for position control, then for 𝑁 types of

controller, the fitness functions can be formulated as follows:

𝑓𝑜𝑠 𝑖 =
 %𝑂𝑠,𝑚𝑎𝑥 − %𝑂𝑠(𝑖)

 %𝑂𝑠,𝑚𝑎𝑥 − %𝑂𝑠(𝑖) 𝑁
𝑖=1

 (3 - 28)

𝑓𝑡𝑠 𝑖 =
 𝑡𝑠,𝑚𝑎𝑥 − 𝑡𝑠(𝑖)

 𝑡𝑠,𝑚𝑎𝑥 − 𝑡𝑠(𝑖) 𝑁
𝑖=1

 (3 - 29)

𝑓𝑠𝑝 𝑖 =
 𝑆𝑝 ,𝑚𝑎𝑥 − 𝑆𝑝(𝑖)

 𝑆𝑝 ,𝑚𝑎𝑥 − 𝑆𝑝(𝑖) 𝑁
𝑖=1

 (3 - 30)

If 𝑓𝑖𝑡𝑣 is the total function fitness for speed control, 𝑓𝑖𝑡𝑝 is the total fitness

function for position control, and 𝑓𝑖𝑡1𝑎 is the total fitness function for speed and

position control in the experiment 1a, then these fitness functions can be formulated

as follows:

𝑓𝑖𝑡𝑣 =
𝑓𝑣𝑝 + 𝑓𝑜𝑠 + 𝑓𝑡𝑠

3
 (3 - 31)

𝑓𝑖𝑡𝑝 =
𝑓𝑝 + 𝑓𝑠𝑝

2
 (3 - 32)

𝑓𝑖𝑡1𝑎 =
2𝑓𝑖𝑡𝑣 + 𝑓𝑖𝑡𝑝

3
 (3 - 33)

It is noted that Eq. (3 - 33) is built based on the fact that the SPOGA is not used

for optimizing the position controller. Therefore, the speed fitness is more important

than the position fitness.

100

The set-points in the experiment of speed and position controller with set-point of

400 rpm, 0.5 rad, unloaded (type 1b) are shown in Fig. 3.51 and Fig. 3.52. The are no

performance items used as a performance index for Fig. 3.51. The performance items

used as a performance index for Fig. 3.52 are:

i. % steady state error (%𝑆𝑝)

ii. 𝐼𝑇𝐴𝐸 for overall 90 seconds with the formula as in Eq. (3 - 25).

Fig. 3.51 Set-point of speed in the experiment of type 1b.

Fig. 3.52 Set-point of position in the experiment of type 1b.

The fitness function for position based on 𝐼𝑇𝐴𝐸𝑝 is formulated as in Eq. (3 - 27).

The total fitness function for position control is formulated as in Eq. (3 - 32). If 𝑓𝑖𝑡1𝑏

is the total fitness function for speed and position control in the experiment 1b, then it

can be formulated as follows:

101

𝑓𝑖𝑡1𝑏 = 𝑓𝑖𝑡𝑝 (3 - 34)

The set-points in the experiment of speed and position controller with set-point of

275 rpm, 3.5 rad, unloaded (type 2) are shown in Fig. 3.53 and Fig. 3.54. The

performance items used as a performance index for Fig. 3.53 are:

i. % overshoot (%𝑂𝑠)

ii. Settling time (𝑡𝑠)

iii. 𝐼𝑇𝐴𝐸 for the first 8 sec with the formula as in Eq. (3 - 24).

Fig. 3.53 Set-point of speed in the experiment of type 2 and 4b

Fig. 3.54 Set-point of position in the experiment of type 2

102

The performance items used as a performance index for Fig. 3.54 are:

i. % steady state error for position (𝑆𝑝)

ii. 𝐼𝑇𝐴𝐸 for overall 90 seconds with the formula as in Eq. (3 - 25).

The fitness function for the first 8-second starting speed based on 𝐼𝑇𝐴𝐸𝑣𝑝 (𝑓𝑣𝑝)

and for position based on 𝐼𝑇𝐴𝐸𝑝 (𝑓𝑝) are formulated as in Eq. (3 - 26) and

Eq. (3 - 27) respectively. The fitness function based on %𝑂𝑠 (𝑓𝑜𝑠), based on 𝑡𝑠 (𝑓𝑡𝑠),

and based on %𝑆𝑝 (𝑓𝑠𝑝) are formulated as in Eq. (3 - 28), Eq. (3 - 29), and

Eq. (3 - 30) respectively.

The total fitness function for speed control (𝑓𝑖𝑡𝑣) and the total fitness function for

position control (𝑓𝑖𝑡𝑝) are formulated as in Eq. (3 - 31) and Eq. (3 - 32)

respectively. If 𝑓𝑖𝑡2 is the total fitness function for speed and position control in the

experiment 2, then it can be formulated as follows:

𝑓𝑖𝑡2 =
2𝑓𝑖𝑡𝑣 + 𝑓𝑖𝑡𝑝

3
 (3 - 35)

The set-points in the experiment of speed and position controller with set-point of

250 rpm, 5 rad, unloaded, full-loaded after 15 sec (type 3a) are shown in Fig. 3.55 and

Fig. 3.56. The performance items used as a performance index for Fig. 3.55 are:

i. % overshoot (%𝑂𝑠)

ii. Settling time (𝑡𝑠)

iii. % undershoot (%𝑈𝑠)

iv. 𝐼𝑇𝐴𝐸 for the first 8 sec with the formula as in Eq. (3 - 24).

v. 𝐼𝑇𝐴𝐸 for the 9-sec start loading speed (from 15 to 24 sec) with the formula as

follows:

𝐼𝑇𝐴𝐸𝑣𝑝𝑙 = 𝑡 𝑆𝑃 𝑡 − 𝑃𝑉(𝑡) 𝑑𝑡

24

15

 (3 - 36)

103

The performance items used as a performance index for Fig. 3.56 are:

i. % steady state error for position (𝑆𝑝)

ii. 𝐼𝑇𝐴𝐸 for overall 90 seconds with the formula as in Eq. (3 - 25).

The fitness function for the first 8-second starting speed based on 𝐼𝑇𝐴𝐸𝑣𝑝 (𝑓𝑣𝑝)

and for position based on 𝐼𝑇𝐴𝐸𝑝 (𝑓𝑝) are formulated as in Eq. (3 - 26) and

Eq. (3 - 27) respectively. The fitness function for the 9-sec start loading speed (from

14 to 23 sec) based on 𝐼𝑇𝐴𝐸𝑣𝑝𝑙 for 𝑁 types of controller is formulated as follows:

𝑓𝑣𝑝𝑙 𝑖 =
 𝐼𝑇𝐴𝐸𝑣𝑝𝑙 ,𝑚𝑎𝑥 − 𝐼𝑇𝐴𝐸𝑣𝑝𝑙 (𝑖)

 𝐼𝑇𝐴𝐸𝑣𝑝𝑙 ,𝑚𝑎𝑥 − 𝐼𝑇𝐴𝐸𝑣𝑝𝑙 (𝑖)
𝑁
𝑖=1

 (3 - 37)

Fig. 3.55 Set-point of speed in the experiment of type 3a

Fig. 3.56 Set-point of position in the experiment of type 3a and 3b

104

The total fitness function for speed control (𝑓𝑖𝑡𝑣3) is formulated as follows:

𝑓𝑖𝑡𝑣3 =
𝑓𝑣𝑝 + 𝑓𝑜𝑠 + 𝑓𝑢𝑠 + 𝑓𝑣𝑝𝑙 + 𝑓𝑡𝑠

5
 (3 - 38)

and the total fitness function for position control (𝑓𝑖𝑡𝑝) is formulated as in

Eq. (3 - 32). If 𝑓𝑖𝑡3𝑎 is the total fitness function for speed and position control in the

experiment 3a, then it can be formulated as follows:

𝑓𝑖𝑡3𝑎 =
2𝑓𝑖𝑡𝑣3 + 𝑓𝑖𝑡𝑝

3
 (3 - 39)

The set-points in the experiment of speed and position controller with set-point of

250 rpm, 5 rad, full-loaded, unloaded after 15 sec (type 3b) are shown in Fig. 3.57 and

Fig. 3.56. The performance items used as a performance index for Fig. 3.57 are:

i. % overshoot (%𝑂𝑠)

ii. Settling time (𝑡𝑠)

iii. % overshoot when start unloading (%𝑂𝑠2)

iv. 𝐼𝑇𝐴𝐸 for the first 8 sec with the formula as in Eq. (3 - 24).

v. 𝐼𝑇𝐴𝐸 for the 9-sec start unloading speed (from 15 to 24 sec) with the formula as

in Eq. (3 - 36).

The performance items used as a performance index for Fig. 3.56 are:

i. % steady state error for position (𝑆𝑝)

ii. 𝐼𝑇𝐴𝐸 for overall 90 seconds with the formula as in Eq. (3 - 25).

Fig. 3.57 Set-point of speed in the experiment of type 3b

105

The fitness function for the first 8-second starting speed based on 𝐼𝑇𝐴𝐸𝑣𝑝 (𝑓𝑣𝑝)

and for position based on 𝐼𝑇𝐴𝐸𝑝 (𝑓𝑝) are formulated as in Eq. (3 - 26) and

Eq. (3 - 27) respectively. The fitness function for the 9-sec start loading speed (from

14 to 23 sec) based on 𝐼𝑇𝐴𝐸𝑣𝑝𝑙 is formulated as in Eq. (3 - 37).

The total fitness function for speed control (𝑓𝑖𝑡𝑣3) and the total fitness function

for position control (𝑓𝑖𝑡𝑝) is formulated as in Eq. (3 - 38) and Eq. (3 - 32)

respectively. If 𝑓𝑖𝑡3𝑏 is the total fitness function for speed and position control in the

experiment 3b, then it can be formulated as follows:

𝑓3𝑏 =
2𝑓𝑖𝑡𝑣3 + 𝑓𝑖𝑡𝑝

3
 (3 - 40)

The set-points in the experiment of speed and position controller with variations

of speed, unloaded (type 4a) is shown in Fig. 3.58. The performance items used as a

performance index is 𝐼𝐴𝐸 with the formula as follows:

𝐼𝐴𝐸𝑣 = 𝑆𝑃 𝑡 − 𝑃𝑉(𝑡) 𝑑𝑡

90

0

 (3 - 41)

The fitness function for speed (𝑓𝑣) is formulated as follows:

𝑓𝑣(𝑖) =
 𝐼𝐴𝐸𝑣,𝑚𝑎𝑥 − 𝐼𝐴𝐸𝑣(𝑖)

 𝐼𝐴𝐸𝑣,𝑚𝑎𝑥 − 𝐼𝐴𝐸𝑣(𝑖) 9
𝑖=1

 (3 - 42)

and the overall fitness function for the experiment of type 4a is as follows:

𝑓𝑖𝑡4𝑎 = 𝑓𝑣 (3 - 43)

The set-points in the experiment of speed and position controller with set-point of

275 rpm, 2 rad, 5 rad after 45 sec, unloaded (type 4b) are shown in Fig. 3.53 and

Fig. 3.59. The performance items used as a performance index for Fig. 3.53 are:

i. % overshoot (%𝑂𝑠)

ii. Settling time (𝑡𝑠)

iii. 𝐼𝑇𝐴𝐸 for the first 8 sec with the formula as in Eq. (3 - 24).

106

Fig. 3.58 Set-point of speed in the experiment of type 4a

Fig. 3.59 Set-point of position in the experiment of type 4b

The performance items used as a performance index for Fig. 3.59 are:

i. % steady state error for position (𝑆𝑝)

ii. 𝐼𝑇𝐴𝐸 for overall 90 seconds with the formula as in Eq. (3 - 25).

The fitness function for the first 8-second starting speed based on 𝐼𝑇𝐴𝐸𝑣𝑝 (𝑓𝑣𝑝)

and for position based on 𝐼𝑇𝐴𝐸𝑝 (𝑓𝑝) are formulated as in Eq. (3 - 26) and

Eq. (3 - 27) respectively. The fitness function based on %𝑂𝑠 (𝑓𝑜𝑠), based on 𝑡𝑠 (𝑓𝑡𝑠),

and based on %𝑆𝑝 (𝑓𝑠𝑝) are formulated as in Eq. (3 - 28), Eq. (3 - 29), and

Eq. (3 - 30) respectively.

107

The total fitness function for speed control (𝑓𝑖𝑡𝑣) and the total fitness function for

position control (𝑓𝑖𝑡𝑝) are formulated as in Eq. (3 - 31) and Eq. (3 - 32)

respectively. If 𝑓𝑖𝑡4𝑏 is the total fitness function for speed and position control in the

experiment 4b, then it can be formulated as follows:

𝑓𝑖𝑡4𝑏 =
2𝑓𝑖𝑡𝑣 + 𝑓𝑖𝑡𝑝

3
 (3 - 44)

The overall fitness function for all experiments can be formulated as:

𝑓𝑖𝑡 = 𝑓𝑖𝑡1𝑎 + 𝑓𝑖𝑡1𝑏 + 𝑓𝑖𝑡2 + 𝑓𝑖𝑡3𝑎 + 𝑓𝑖𝑡3𝑏 + 𝑓𝑖𝑡4𝑎 + 𝑓𝑖𝑡4𝑏 (3 - 45)

The maximum value of fit is the best performance.

If 𝑓𝑖𝑡𝑣𝑥 ,𝑔 is the total fitness function of SPOGA-optimized hybrid controller for

speed control in the experiment 𝑥 and 𝑓𝑖𝑡𝑣𝑥 , is the total fitness function of non-

SPOGA-optimized hybrid controller for speed control in the experiment 𝑥 where

𝑥 = 1𝑎, 1𝑏, 2,3𝑎, 3𝑏, 4𝑎, 4𝑏 , then the improvement value for speed control in the

experiment 𝑥, 𝐼𝑝𝑣𝑥 , is formulated as follows:

𝐼𝑝𝑣𝑥 = 𝑓𝑖𝑡𝑣𝑥 ,𝑔 − 𝑓𝑖𝑡𝑣𝑥 , (3 - 46)

The overall improvement value for speed for all experiments can be formulated

as:

𝐼𝑝𝑣 = 𝐼𝑝𝑣1𝑎 + 𝐼𝑝𝑣1𝑏 + 𝐼𝑝𝑣2 + 𝐼𝑝𝑣3𝑎 + 𝐼𝑝𝑣3𝑏 + 𝐼𝑝𝑣4𝑎 + 𝐼𝑝𝑣4𝑏 (3 - 47)

3.8 Summary

The detailed methodology of experiments has been presented in this chapter. There

were two types of experiments: simulation and hardware experiments. The simulation

experiments were conducted to predict the characteristic and the performance of

controllers applied to the DC servomotor. Running the GA/SPOGA in the

optimization process is much better on the simulation experiment mode than on the

108

hardware experiment mode. Identification of DC servomotor was conducted to run on

the simulation mode by obtaining the transfer function in s-domain.

The results of simulation experiment, gray box s-modeling of hardware,

GA/SPOGA simulation, and SPOGA optimization will be presented in Chapter 4. The

results of hardware experiment and experiment of hardware specification will be

presented in Chapter 5. The performance comparisons will be presented in Chapter 4

for simulation results and Chapter 5 for hardware experiment results.

CHAPTER 4

SIMULATION RESULTS AND DISCUSSIONS

4.1 Introduction

The design of controllers and algorithms which are then verified via simulations and

real-time implementations have been presented in Chapter 3. The results of

experiments on s-modelling, GA and SPOGA, and the simulations of speed and

position control will be presented in this chapter, and the real-time implementation

will be presented in Chapter 5.

Performing simulations of speed and position controllers need a transfer function

that is to be obtained from s-modelling of a servomotor system. The simulation results

of conventional and fuzzy logic controllers are then obtained, followed by the

simulation results of hybrid-fuzzy controllers. The best conventional and fuzzy logic

controllers are compared graphically with the best hybrid-fuzzy controllers.

Simulation of GA and SPOGA are done to compare the performance and

efficiency. Either one is then selected based on the performance and efficiency, and

then applied to optimize the hybrid-fuzzy controllers using the specifications based on

the result of simulation.

The optimized controllers are evaluated via simulation and the performance

indices were recorded. Note that at this point, the controllers are optimized using GA

or SPOGA and their performances are going to be evaluated. The notation of

GA/SPOGA is being used here to indicate the exercise conducted. The performance

of GA/SPOGA optimized controllers are then compared graphically with

non-GA/SPOGA optimized controllers to the improvement value of the GA/SPOGA

over the non-GA/SPOGA optimized controllers. One of the GA/SPOGA optimized

110

hybrid-fuzzy controllers is selected as the best controller based on the improvement

values attained.

4.2 Input-Output Modeling of A DC Servomotor

The process of s-modeling is shown in Fig. 3.8. There are five types of input

sequences, namely Type 1, Type 2, Type 3, Type 4, and Type 5. The result of the best

model of each type of input sequence is shown in Table 4.1.

Table 4.1 The best model of each type of input sequence

NO. INPUT SEQUENCE BEST MODEL FIT

1 Type 1
456.3713𝑒−0.1682𝑠

𝑠3 + 9.504𝑠2 + 80.7𝑠 + 204.5
 86.59

2 Type 2
9.7174𝑒−0.2077𝑠

𝑠 + 4.4293
 79.47

3 Type 3
151.9520𝑒−0.1503𝑠

𝑠2 + 18.8651𝑠 + 67.8296
 80.47

4 Type 4
465.5417𝑒−0.0302𝑠

𝑠3 + 8.981𝑠2 + 85.05𝑠 + 214.2
 78.99

5 Type 5
210.9704

𝑠3 + 6.639𝑠2 + 49.64𝑠 + 94.91
 85.64

Based on Table 4.1, the best model is indicated by the largest value of FIT which

is obtained from Eq. (2 - 22), as follows:

𝐺 𝑠 =
456.3713𝑒−0.1682𝑠

𝑠3 + 9.504𝑠2 + 80.7𝑠 + 204.5

(4 - 1)

The graphical comparison of actual (real time) and estimation (model) based on

eq. (4 - 1) is shown in Fig. 4.1. Based on this figure, the average deviation between

actual and estimation is 0.78 % for IN1, 2.00 % for IN2, and 4.03 % for overall.

These values are good enough as a verification result. Eq (4 - 1) is then used as the

plant transfer function in all of the simulation experiments.

111

Fig. 4.1 Graphical verification of input-output modelling of a DC servomotor

4.3 Simulation of Conventional and Fuzzy Controllers

There are three types of controllers in this simulation: PI controller, PID controller,

and fuzzy logic controller (FLC). The simulation is done as a basis of controllers in

GA application (especially for FLC) and in measuring the performance improvement

of GA optimized controllers (especially for PI and PID).

Based on Eq. (2 - 31) and Eq. (2 - 32), the experiment of ultimate cycle in

tuning PI and PID gives the result as follows:

KP-u = 23.5, Tu = 10 sec

Using Eq. (2 - 31), the parameters of PI after fine-tuning are as shown below:

KP = 10.58, KI = 14.7

Using Eq. (2 - 32), the parameters of PID after fine-tuning are as follow:

KP = 14.1, KD = 0.1, KI = 24.4

Experimentally, the proportional constant for position controller (KPp) is 0.61.

The membership functions of FLC in the simulation of speed controller

experiment are shown in Fig. 3.20 and Fig. 3.21, the rules are shown in Table 3.3, and

the output is integrated using Eq. (3 - 16).

The membership functions of FLC in the simulation of position controller

experiment are shown in Fig. 3.18 and Fig. 3.19, the rules are shown in Table 3.2, and

112

the output is directly applied to the next stage. The output is multiplied by an

adjustable constant (KPp) and experimentally, the value is 0.35.

4.3.1 Description on Types of Simulations

There are seven types of simulation experiment as explained in Section 3.7 which

are classified into four condition, i.e.:

i. Extreme condition, namely Simulation 1a and 1b

ii. Moderate condition, namely Simulation 2

iii. Variable load condition, namely Simulation 3a and 3b

iv. Variable set point condition, namely Simulation 4a and 4b

The types of simulation are summarized in Table 4.2.

The number of simulation types are larger than that in Table 4.2, however most

would fall into the listed conditions, hence the simulation and analysis are limited

only to these condition.

For the different controllers that will be applied in the system, their performance

will be taken for analysis and comparison based on the condition as specified in

Table 4.2.

113

Table 4.2 Types of simulation

Type Simulation Condition Specifications

1a Extreme a

Set point of speed (rpm) 150.00

Set point of position (rad) 6.00

Loaded No

1b Extreme b

Set point of speed (rpm) 400.00

Set point of position (rad) 0.50

Loaded No

2 Moderate

Set point of speed (rpm) 275.00

Set point of position (rad) 3.50

Loaded No

3a Variable load a

Set point of speed (rpm) 250.00

Set point of position (rad) 5.00

Loaded After 15 sec

3b Variable load b

Set point of speed (rpm) 250.00

Set point of position (rad) 5.00

Loaded Up to 15 sec

4a Variable set point a

Set point of speed (rpm) variable [0.00, 400.00]

Set point of position (rad) -

Loaded No

4b Variable set point b

Set point of speed (rpm) 275.00

Set point of position (rad) 2 (up to 45 sec), 5 (after 45 sec)

Loaded No

4.3.2 Performance Comparisons of Conventional and Fuzzy Controllers

The comparison on the effectiveness of implementing conventional and fuzzy

logic controllers for simulation experiment based on the second order underdamped

response analysis is presented in Table 4.3, the comparison based on error analysis is

presented in Table 4.4, and the comparison based on fitness value analysis is

presented in Table 4.5.

It is shown in Table 4.3, Table 4.4, and Table 4.5 in the simulation 1a that the best

overshoot and settling time for speed control is PI controller, but the best fitness value

for the first 8-second starting speed based on ITAEvp (fvp) is PID controller. The total

fitness value for speed control (fitv) is obtained based on the overshoot, settling time,

and ITAEvp and the best is found to be the PI controller.

In the position control, the best SSEP is PI controller, but the best fitness value

based on ITAEp (fp) is FLC. The total fitness value for position control (fitp) is

obtained based on the SSEP and ITAEp , and the best is the PI controller.

114

Table 4.3 Simulation results of conventional and fuzzy logic controllers based on

second order underdamped response analysis

Type PERFORMANCE ITEM
Controller

PI PID FLC

1a

Overshoot (%OS, %) 0.00 18.07 24.53

Settling time (ts, sec) 4.10 4.85 9.91

SSEP (%Sp, %) 0.13 0.19 0.32

1b SSEP (%Sp, %) 24.50 13.46 138.67

2

Overshoot (%OS, %) 0.00 18.06 13.22

Settling time (ts, sec) 4.10 4.85 5.93

SSEP (%Sp, %) 0.35 0.04 0.10

3a

Overshoot (%OS, %) 0.00 18.07 15.45

Settling time (ts, sec) 4.10 4.85 7.69

Undershoot (%US, %) 39.60 39.96 41.69

SSEP (%Sp, %) 0.55 0.04 0.02

3b

Overshoot (%OS, %) 0.00 0.00 2.23

Settling time (ts, sec) 5.31 3.52 4.26

Overshoot 2 (%OS2, %) 66.32 66.76 62.66

SSEP (%Sp, %) 0.02 0.08 0.00

4b

Overshoot (%OS, %) 0.00 18.06 13.22

Settling time (ts, sec) 4.10 4.85 5.93

SSEP (%Sp, %) 0.02 0.08 0.04

SSEP: Steady State Error of Position

Table 4.4 Simulation results of conventional and fuzzy logic controllers based on

error analysis

Type PERFORMANCE ITEM
Controller

PI PID FLC

1a
ITAEvp 1.14E+02 1.09E+02 2.44E+02

ITAEp 6.04E+03 5.97E+03 5.66E+03

1b ITAEp 4.96E+02 2.73E+02 2.80E+03

2
ITAEvp 2.10E+02 2.00E+02 4.51E+02

ITAEp 4.26E+02 3.77E+02 4.40E+02

3a

ITAEvp 1.91E+02 1.81E+02 3.80E+02

ITAEvl 2.06E+03 1.26E+03 2.06E+03

ITAEp 1.43E+03 1.30E+03 1.42E+03

3b

ITAEvp 4.15E+02 1.72E+02 5.19E+02

ITAEvl 2.09E+03 1.88E+03 5.23E+03

ITAEp 1.32E+03 1.29E+03 1.36E+03

4a IAEv 9.44E+02 8.31E+02 2.62E+03

4b
ITAEvp 2.10E+02 2.00E+02 4.51E+02

ITAEp 1.84E+03 1.81E+03 1.96E+03

ITAEvp : Integral of time absolute value of error for the first 8 sec; ITAEp : ITAE for position, ITAEvl :
ITAE for the 9-sec start loading speed; IAEv : integral of absolute value of error for overall 90 sec.

The best total fitness value for speed and position control in the simulation 1a (f1a)

is PI controller. Therefore, PI is the best conventional controller in simulation 1a

which is shown to be better than FLC.

115

Table 4.5 Simulation results of conventional and fuzzy logic controllers based on

fitness value analysis

Type PERFORMANCE ITEM
Controller

PI PID FLC

1a

fvp 0.49 0.51 0.00

fp 0.00 0.15 0.85

fitv 0.61 0.39 0.00

fitp 0.29 0.28 0.43

fit1a 0.50 0.36 0.14

1b

fp 0.48 0.52 0.00

fitp 0.48 0.52 0.00

fit1b 0.48 0.52 0.00

2

fvp 0.49 0.51 0.00

fp 0.18 0.82 0.00

fitv 0.63 0.29 0.07

fitp 0.09 0.69 0.22

fit2 0.45 0.43 0.12

3a

fvp 0.49 0.51 0.00

fvpl 0.00 0.10 0.00

fp 0.00 0.97 0.03

fitv 0.48 0.49 0.03

fitp 0.00 0.73 0.27

fit3a 0.32 0.57 0.11

3b

fvp 0.23 0.77 0.00

fvpl 0.00 0.00 0.00

fp 0.41 0.59 0.00

fitv 0.18 0.47 0.09

fitp 0.42 0.30 0.28

fit3b 0.26 0.41 0.16

4a

fv 0.48 0.52 0.00

fitv 0.48 0.52 0.00

fit4a 0.48 0.52 0.00

4b

fvp 0.49 0.51 0.00

fp 0.44 0.56 0.00

fitv 0.63 0.29 0.07

fitp 0.52 0.28 0.20

fit4b 0.60 0.29 0.11

fvp : Fitness value for the first 8-sec starting speed based on ITAEvp; fp : Fitness value for position based
on ITAEp; fvpl : Fitness value for the 9-sec start loading speed (from 14 to 23 sec) based on ITAEvpl; fv:

Fitness value for overall 90 sec of speed based on IAEv; fitv : Total fitness value for speed control; fitp :
Total fitness value for position control; fitx : Total fitness value for speed and position control in the

experiment of Type x

The simulation 1b presents the position performance since it is in the extreme

condition with maximum speed and minimum position. The best fitness value based

on ITAEp (fp) is PID. The best total fitness value for position control (fitp) is obtained

based on the SSEP and ITAEp , and the best is the PID controller.

The best total fitness value for speed and position control in the simulation 1b (f1b)

is PID controller. Therefore, PID is the best conventional controller in the simulation

1b which is observed to be better than FLC.

116

The best overshoot and settling time in the simulation 2 for speed control is PI

controller, but the best fitness value for the first 8-second starting speed based on

ITAEvp (fvp) is PID controller. The total fitness value for speed control (fitv) is obtained

based on the overshoot, settling time, and ITAEvp and the best one is the PI controller.

In the position control, the best SSEP and the best fitness value based on ITAEp

(fp) is PID controller. The total fitness value for position control (fitp) is obtained

based on the SSEP and ITAEp , and the best one is PID controller.

The best total fitness value for speed and position control in the simulation 2 (f2)

is PI controller. Therefore, PI is the best conventional controller in the simulation 2

which is better than FLC in term of position control. In term of speed control, PI is the

best for simulation 2.

The best overshoot and settling time in the simulation 3a for speed control is PI

controller, but the best fitness value for the first 8-second starting speed based on

ITAEvp (fvp) is PID controller. The total fitness value for speed control (fitv) is obtained

based on the overshoot, settling time, undershoot, ITAEvpl and ITAEvp and the best is

the PID controller. When start loading, the best undershoot is the PI controller.

In the position control, the best SSEP and the best fitness value based on ITAEp

(fp) is PID controller. The total fitness value for position control (fitp) is obtained

based on the SSEP and ITAEp , and the best is the PID controller.

The best total fitness value for speed and position control in the simulation 3a (f3a)

is PID controller. Therefore, PID is the best conventional controller in the simulation

3a which is better than FLC.

In the simulation 3b, the best overshoot and settling time, and the best fitness

value for the first 8-second starting speed based on ITAEvp (fvp) for speed control is

PID controller. The total fitness value for speed control (fitv) is obtained based on the

overshoot, settling time, overshoot 2, ITAEvpl and ITAEvp and the best is the PID

controller. All of the overshoot 2 when start unloading are more than 50%.

Consequently, the fitness value for 9-sec start unloading speed based on ITAEvpl (fvpl)

are zero.

117

In the position control, the best SSEP is FLC but the best fitness value based on

ITAEp (fp) is PI controller. The total fitness value for position control (fitp) is obtained

based on the SSEP and ITAEp , and the best is the PI controller.

The best total fitness value for speed and position control in the simulation 3b (f3b)

is PID controller. Therefore, PID is the best conventional controller in the simulation

3b which is shown to be better than FLC.

The simulation 4a presents the speed performance without overshoot and settling

time since it is in the variations of speed set point. The best fitness value based on

IAEv (fv) is PID controller. The best total fitness value for speed control (fitv) is

obtained based on the IAEv only, and the best is the PID controller.

The best total fitness value for speed and position control in the simulation 4a (f4a)

is PID controller. Therefore, PID is the best conventional controller in the simulation

4a which is better than FLC.

The best overshoot and settling time in the simulation 4b for speed control is PI

controller, but the best fitness value for the first 8-second starting speed based on

ITAEvp (fvp) is PID controller. The total fitness value for speed control (fitv) is obtained

based on the overshoot, settling time, and ITAEvp and the best is the PI controller.

In the position control, the best SSEP and the best fitness value based on ITAEp

(fp) is PI controller. The total fitness value for position control (fitp) is obtained based

on the SSEP and ITAEp , and the best is the PI controller.

The best total fitness value for speed and position control in the simulation 4b (f4b)

is PI controller. Therefore, PI is the best conventional controller in the simulation 4b

which is better than FLC.

4.3.3 Simulation Results Summary of Conventional and Fuzzy Controllers

The speed and position control simulation of the conventional and fuzzy logic

controller have been presented. PI controller is the best speed controller as compared

to PID controller and FLC for the simulation of Type 1a, 2, and 4b. PID controller is

118

the best speed controller as compared to PI controller and FLC for the simulation of

Type 3a, 3b, and 4a. Using Eq.(3 - 45), the best overall speed controller is PID as

compared to PI and fuzzy logic. In the application of speed control, FLC is not as

good as the conventional controllers.

In both speed and position control, PI is the best controller as compared to PID

controller and FLC for the simulation of Type 1a, 2 and 4b. PID controller is the best

controller as compared to PI controller and FLC for the simulation of Type 1b, 3a, 3b,

and 4a. Using Eq. (3 - 45), the best overall speed and position controller is PI as

compared to PID and fuzzy logic. In the application of speed and position control,

FLC is not as good as conventional controller because in the standalone condition, the

output of FLC has to be in integration mode to make the zero steady state error. This

makes the time response slow and tends to be unstable.

4.4 Simulation of Hybrid-Fuzzy Controllers

There are three types of controllers in the simulation: FLBPI controller, FLBPID

controller, and FLIC. The simulation was conducted as an improvement of PID and

FLC based on the results that the performance of standard FLC is not as good as PID

or PI controller.

The membership functions of FLBPI and FLBPID in the simulation of speed

controller experiment are shown in Fig. 3.23, the rules are shown in Table 3.4, and the

output is connected to PI for FLBPI and PID for FLBPID using Eq.(3 - 17) for

FLBPI and Eq.(3 - 18) for FLBPID. Experimentally, the parameters of FLBPI and

FLBPID are as follow:

KPm = 6 and KIm = 79 for FLBPI

KPm = 10.4, KDm = 0.1, and KIm = 66 for FLBPID

The KDm in FLBPID is taken from the result of PID tuning using Ziegler-Nichols

(ultimate cycle).

The membership functions of FLIC in the simulation of speed controller

experiment are shown in Fig. 3.20 and Fig. 3.25, the rules are shown in Table 3.3, and

119

the output is paralleled with integral controller. Experimentally, the parameters of

FLIC are as follow:

Ke = 1.03, Kce = 1, Ku = 0.25, KI = 1.

The variable proportional controller is used as a position controller for hybrid

speed controller where the value of KPv is as in Table 3.1. The values of KPp are

experimentally as follow:

KPp = 0.98 for FLBPI and FLBPID controllers, and KPp = 0.75 for FLIC.

There are seven types of simulation as explained in Section 3.7 which are

summarized in Table 4.2.

4.4.1 Performance Comparisons of Hybrid-Fuzzy Controllers

The comparison on the effectiveness of implementing hybrid-fuzzy controllers for

simulation experiment based on the second order underdamped response analysis is

presented in Table 4.6, the comparison based on error analysis is presented in

Table 4.7, and the comparison based on fitness value analysis is presented in

Table 4.8.

It is shown in Table 4.6, Table 4.7, and Table 4.8 in the simulation 1a that the best

overshoot, settling time and fitness value for the first 8-second starting speed based on

ITAEvp (fvp) is FLBPID controller for speed control. The total fitness value for speed

control (fitv) is obtained based on the overshoot, settling time, and ITAEvp and the best

is the FLBPID controller.

In the position control, the best SSEP is FLBPID controller, but the best fitness

value based on ITAEp (fp) is FLIC. The total fitness value for position control (fitp) is

obtained based on the SSEP and ITAEp , and the best is the FLBPI controller.

The best total fitness value for speed and position control in the simulation 1a (f1a)

is FLBPID controller. Therefore, FLBPID is the best hybrid controller in the

simulation 1a (extreme condition).

120

Table 4.6 Simulation results of hybrid-fuzzy controllers based on second order

underdamped response analysis

Type PERFORMANCE ITEM
Controller

FLBPI FLBPID FLIC

1a

Overshoot (%OS, %) 20.21 3.74 22.07

Settling time (ts, sec) 2.37 1.81 2.23

SSEP (%Sp, %) 0.08 0.08 0.11

1b SSEP (%Sp) 0.47 0.53 0.00

2

Overshoot (%OS, %) 8.99 3.55 2.27

Settling time (ts, sec) 2.57 1.74 1.44

SSEP (%Sp, %) 0.04 0.04 0.03

3a

Overshoot (%OS, %) 8.48 3.41 4.78

Settling time (ts, sec) 2.52 1.73 1.62

Undershoot (%US, %) 40.00 40.00 39.99

SSEP (%Sp, %) 0.05 0.01 0.01

3b

Overshoot (%OS, %) 1.54 0.06 0.00

Settling time (ts, sec) 1.45 2.23 3.09

Overshoot 2 (%OS2, %) 66.67 66.67 66.67

SSEP (%Sp, %) 0.07 0.07 0.06

4b

Overshoot (%OS, %) 8.99 3.55 2.27

Settling time (ts, sec) 2.57 1.74 1.44

SSEP (%Sp, %) 0.07 0.07 0.06

SSEP: Steady State Error of Position

Table 4.7 Simulation results of hybrid-fuzzy controllers based on error analysis

Type PERFORMANCE ITEM
Controller

FLBPI FLBPID FLIC

1a
ITAEvp 4.96E+01 3.63E+01 4.79E+01

ITAEp 5.93E+03 5.97E+03 5.93E+03

1b ITAEp 4.42E+00 4.36E+00 4.88E+00

2
ITAEvp 9.03E+01 8.01E+01 6.97E+01

ITAEp 3.77E+02 3.80E+02 3.78E+02

3a

ITAEvp 7.74E+01 7.05E+01 6.28E+01

ITAEvl 1.03E+03 1.11E+03 1.50E+03

ITAEp 1.30E+03 1.30E+03 1.31E+03

3b

ITAEvp 8.56E+01 1.29E+02 1.73E+02

ITAEvl 1.47E+03 1.38E+03 2.25E+03

ITAEp 1.27E+03 1.28E+03 1.29E+03

4a IAEv 7.13E+02 6.62E+02 9.17E+02

4b
ITAEvp 9.03E+01 8.01E+01 6.97E+01

ITAEp 1.80E+03 1.81E+03 1.82E+03

ITAEvp : Integral of time absolute value of error for the first 8 sec; ITAEp : ITAE for position, ITAEvl :
ITAE for the 9-sec start loading speed; IAEv : Integral of absolute value of error for overall 90 sec.

The simulation 1b presents the position performance since it is in the extreme

condition with maximum speed and minimum position. The best SSEP is FLBPI but

the best fitness value based on ITAEp (fp) is FLIC. The best total fitness value for

position control (fitp) is obtained based on the SSEP and ITAEp , and the best is the

FLIC.

121

Table 4.8 Simulation results of hybrid-fuzzy controllers based on fitness value

analysis

Type PERFORMANCE ITEM
Controller

FLBPI FLBPID FLIC

1a

fvp 0.00 0.89 0.11

fp 0.47 0.00 0.53

fitv 0.03 0.87 0.10

fitp 0.48 0.25 0.27

fit1a 0.18 0.66 0.16

1b

fp 0.00 0.06 0.27

fitp 0.24 0.26 0.49

fit1b 0.24 0.26 0.49

2

fvp 0.00 0.33 0.67

fp 0.63 0.00 0.37

fitv 0.00 0.40 0.60

fitp 0.32 0.03 0.65

fit2 0.11 0.28 0.62

3a

fvp 0.00 0.32 0.68

fvpl 0.55 0.45 0.00

fp 0.62 0.38 0.00

fitv 0.14 0.45 0.41

fitp 0.31 0.46 0.23

fit3a 0.19 0.46 0.35

3b

fvp 0.67 0.33 0.00

fvpl 0.00 0.00 0.00

fp 0.70 0.30 0.00

fitv 0.45 0.42 0.13

fitp 0.35 0.25 0.40

fit3b 0.42 0.37 0.22

4a

fv 0.45 0.56 0.00

fitv 0.45 0.56 0.00

fit4a 0.45 0.56 0.00

4b

fvp 0.00 0.33 0.67

fp 0.67 0.33 0.00

fitv 0.00 0.40 0.60

fitp 0.33 0.26 0.41

fit4b 0.11 0.35 0.53

fvp : Fitness value for the first 8-sec starting speed based on ITAEvp; fp : Fitness value for position based
on ITAEp; fvpl : Fitness value for the 9-sec start loading speed (from 14 to 23 sec) based on ITAEvpl; fv:

Fitness value for overall 90 sec of speed based on IAEv; fitv : Total fitness value for speed control; fitp :
Total fitness value for position control; fitx : Total fitness value for speed and position control in the

experiment of Type x

The best total fitness value for speed and position control in the simulation 1b (f1b)

is FLIC. Therefore, FLIC is the best hybrid controller in the simulation 1b (extreme

condition).

The best overshoot in the simulation 2 for speed control is FLBPID but the best

settling time and the best fitness value for the first 8-second starting speed based on

ITAEvp (fvp) is FLIC. The total fitness value for speed control (fitv) is obtained based

on the overshoot, settling time, and ITAEvp and the best is the FLIC.

122

In the position control, the best SSEP is FLIC but the best fitness value based on

ITAEp (fp) is FLBPI controller. The total fitness value for position control (fitp) is

obtained based on the SSEP and ITAEp , and the best is the FLIC.

The best total fitness value for speed and position control in the simulation 2 (f2)

is FLIC. Therefore, FLIC is the best hybrid controller in the simulation 2 (moderate

condition).

The best overshoot and settling time in the simulation 3a for speed control is

FLBPID controller, but the best fitness value for the first 8-second starting speed

based on ITAEvp (fvp) is FLIC. The total fitness value for speed control (fitv) is

obtained based on the overshoot, settling time, undershoot, ITAEvpl and ITAEvp and the

best is PID controller. When start loading, the best undershoot is FLBPID controller.

In the position control, the best SSEP and the best fitness value based on ITAEp

(fp) is FLBPI controller. The total fitness value for position control (fitp) is obtained

based on the SSEP and ITAEp , and the best is the FLBPID controller.

The best total fitness value for speed and position control in the simulation 3a (f3a)

is FLBPID controller. Therefore, FLPID is the best hybrid controller in the simulation

3a (variable load condition).

The best overshoot in the simulation 3b for speed control is FLIC but the settling

time and the fitness value for the first 8-second starting speed based on ITAEvp (fvp) is

FLBPI controller. The total fitness value for speed control (fitv) is obtained based on

the overshoot, settling time, overshoot 2, ITAEvpl and ITAEvp and the best is FLBPI

controller. All of the overshoot 2 when start unloading are more than 50%.

Consequently, the fitness value for 9-sec start unloading speed based on ITAEvpl (fvpl)

are zero.

In the position control, the best SSEP is FLIC but the best fitness value based on

ITAEp (fp) is FLBPI controller. The total fitness value for position control (fitp) is

obtained based on the SSEP and ITAEp , and the best is the FLIC.

123

The best total fitness value for speed and position control in the simulation 3b (f3b)

is FLBPI controller. Therefore, FLBPI is the best hybrid controller in the simulation

3b (variable load condition).

The simulation 4a presents the speed performance without overshoot and settling

time since it is in the variations of speed set point. The best fitness value based on

IAEv (fv) is FLBPID controller. The best total fitness value for speed control (fitv) is

obtained based on the IAEv only, and the best is the FLBPID controller.

The best total fitness value for speed and position control in the simulation 4a (f4a)

is FLBPID controller. Therefore, FLBPID is the best hybrid controller in the

simulation 4a (variable set point).

In the simulation 4b, the best overshoot, settling time, and fitness value for the

first 8-second starting speed based on ITAEvp (fvp) for speed control is FLIC. The total

fitness value for speed control (fitv) is obtained based on the overshoot, settling time,

and ITAEvp and the best is the FLIC.

In the position control, the best SSEP and the best fitness value based on ITAEp

(fp) is FLIC. The total fitness value for position control (fitp) is obtained based on the

SSEP and ITAEp , and the best is the FLIC.

The best total fitness value for speed and position control in the simulation 4b (f4b)

is FLIC. Therefore, FLIC is the best hybrid controller in the simulation 4b (variable

set point).

4.4.2 Simulation Results Summary of Hybrid-Fuzzy Controllers

The speed and position control simulation of hybrid-fuzzy controller has been

presented. FLBPI controller is the best speed controller as compared to FLBPID

controller and FLIC for simulation of Type 3b. FLBPID controller is the best speed

controller as compared to FLBPI controller and FLIC for simulation of Type 1a, 3a,

and 4a. FLIC is the best speed controller as compared to FLBPI controller and

FLBPID controller for simulation of Type 2 and 4b. Using Eq.(3 - 45), the best

overall speed controller is FLBPID as compared to FLBPI and FLIC.

124

In both speed and position control, FLBPI is the best controller as compared to

FLBPID controller and FLIC for simulation of Type 3b. FLBPID controller is the best

controller as compared to FLBPI controller and FLIC for simulation of Type 1a, 1b,

3a, and 4a. FLIC is the best controller as compared to FLBPI controller and FLBPID

controller for simulation of Type 2 and 4b. Using Eq. (3 - 45), the best overall speed

and position controller is FLBPID as compared to FLBPI and FLIC.

4.5 Performance Comparisons of Conventional, Fuzzy, and Hybrid-Fuzzy

Controllers

This section presents the performance comparisons of conventional (PI and PID

controllers), FLC, and hybrid-fuzzy controllers based on the fitness values where the

performance items are based on Table 4.3 to Table 4.8.

There are seven types of simulation as explained in Section 3.7 which are

summarized in Table 4.2.

4.5.1 Results on Performance Comparisons of Conventional, Fuzzy, and

Hybrid-Fuzzy Controllers

The graphs of input-output characteristic of speed error, position error, speed, and

position between the best conventional and fuzzy controllers and the best hybrid

controllers are presented in the section for each simulation type.

The comparison on the effectiveness of implementing conventional, fuzzy, and

hybrid controllers based on the performance metrics for simulation experiment is

presented in Table 4.9 where the performance items are based on Table 4.5 and

Table 4.8.

It is shown in the Table 4.9 that the best speed controller for simulation 1a is PI

for conventional controller and FLBPID for hybrid-fuzzy controller, and the best

position controller is FLC for conventional controller and FLBPI for hybrid-fuzzy

controller. For speed and position control, PI is the best conventional controller and

125

FLBPID is the best hybrid controller. Comparison on the best conventional to the best

hybrid are shown in the table that hybrid-fuzzy controllers are better then

conventional controllers in the simulation 1a. The graphical comparisons are shown in

the Fig. 4.2 to Fig. 4.5.

Table 4.9 Performance comparisons of conventional, fuzzy, and hybrid-fuzzy

controllers

Type CONTROLLERS
Fitness

fitv fitp fitx

1a

PI 0.25 0.09 0.19

PID 0.14 0.11 0.13

FLC 0.00 0.26 0.09

FLBPI 0.17 0.20 0.18

FLBPID 0.28 0.17 0.24

FLIC 0.16 0.18 0.17

1b

PI - 0.17 0.17

PID - 0.19 0.19

FLC - 0.00 0.00

FLBPI - 0.21 0.21

FLBPID - 0.21 0.21

FLIC - 0.21 0.21

2

PI 0.19 0.03 0.13

PID 0.08 0.22 0.13

FLC 0.03 0.08 0.04

FLBPI 0.20 0.22 0.21

FLBPID 0.25 0.22 0.24

FLIC 0.26 0.23 0.25

3a

PI 0.15 0.00 0.10

PID 0.13 0.22 0.16

FLC 0.01 0.10 0.04

FLBPI 0.23 0.22 0.23

FLBPID 0.26 0.23 0.25

FLIC 0.22 0.22 0.22

3b

PI 0.07 0.24 0.13

PID 0.15 0.10 0.13

FLC 0.02 0.23 0.09

FLBPI 0.17 0.15 0.16

FLBPID 0.18 0.14 0.17

FLIC 0.16 0.14 0.15

4a

PI 0.19 - 0.19

PID 0.20 - 0.20

FLC 0.00 - 0.00

FLBPI 0.21 - 0.21

FLBPID 0.22 - 0.22

FLIC 0.19 - 0.19

4b

PI 0.20 0.30 0.23

PID 0.08 0.10 0.09

FLC 0.03 0.15 0.07

FLBPI 0.20 0.15 0.18

FLBPID 0.25 0.14 0.21

FLIC 0.26 0.15 0.23

126

Fig. 4.2 Speed control of DC servomotor using FLBPID vs. PI for simulation 1a

Fig. 4.3 Absolute error of speed control of DC servomotor using FLBPID vs. PI for

simulation 1a

It is shown in Fig. 4.2 and Fig. 4.3 that FLBPID has the faster settling time than

PI eventhough there is a very small overshoot. Consequently, the absolute error of

FLBPID is smaller than PI.

It is shown in Fig. 4.4 and Fig. 4.5 that FLBPI has the faster rise time although the

settling time is similar to the FLC. This makes the absolute error of FLBPI smaller

than FLC.

127

Fig. 4.4 Position control of DC servomotor using FLBPI vs. FLC for simulation 1a

Fig. 4.5 Absolute error of position control of DC servomotor using FLBPI vs. FLC

for simulation 1a

The best position controller for simulation 1b is PID for conventional controller

and FLBPID for hybrid-fuzzy controller. As a speed and position controller, PID is

the best conventional controller and FLBPID is the best hybrid-fuzzy controller.

Comparison on the best conventional to the best hybrid are shown in the table that

hybrid-fuzzy controllers are better then conventional controllers in the simulation 1b.

The graphical comparisons are shown in the Fig. 4.6 and Fig. 4.7.

128

Fig. 4.6 Position control of DC servomotor using FLBPID vs. PID for simulation 1b

Fig. 4.7 Absolute error of position control of DC servomotor using FLBPID vs. PID

for simulation 1b

It is shown in Fig. 4.6 and Fig. 4.7 that FLBPID can reach the setpoint while PID

has steady state error. This makes the absolute error of PID larger than FLBPID.

The best speed controller in the simulation 2 is PI for conventional controller and

FLIC for hybrid-fuzzy controller, and the best position controller is PID for

conventional controller and FLIC for hybrid-fuzzy controller. As a speed and position

controller, PI is the best conventional controller and FLIC is the best hybrid-fuzzy

controller. Comparison on the best conventional to the best hybrid are shown in the

table that hybrid-fuzzy controllers are better then conventional controllers in the

simulation 2. The graphical comparisons are shown in the Fig. 4.8 to Fig. 4.11.

129

Fig. 4.8 Speed control of DC servomotor using FLIC vs. PI for simulation 2

Fig. 4.9 Absolute error of speed control of DC servomotor using FLIC vs. PI for

simulation 2

It is shown in Fig. 4.8 and Fig. 4.9 that FLIC has the faster settling time than PI

eventhough there is a very small overshoot. Consequently, the absolute error of FLIC

is smaller than PI.

It is shown in Fig. 4.10 and Fig. 4.11 that FLIC has the faster settling time than PI.

This makes the absolute error of FLIC smaller than PI.

The best speed controller in the simulation 3a is PI for conventional controller and

FLBPID for hybrid-fuzzy controller, and the best position controller is PID for

conventional controller and FLBPID for hybrid-fuzzy controller. As a speed and

position controller, PID is the best conventional controller and FLBPID is the best

130

hybrid-fuzzy controller. Comparison on the best conventional to the best hybrid are

shown in the table that hybrid-fuzzy controllers are better then conventional

controllers in the simulation 3a. The graphical comparisons are shown in the

Fig. 4.12 to Fig. 4.15.

Fig. 4.10 Position control of DC servomotor using FLIC vs. PID for simulation 2

Fig. 4.11 Absolute error of position control of DC servomotor using FLIC vs. PID for

simulation 2

Based on Fig. 4.12 and Fig. 4.13, FLBPID has the faster settling time than PI

either unloaded or loaded eventhough there is a very small of overshoot.

Consequently, the absolute error of FLBPID is smaller than PI.

131

Fig. 4.12 Speed control of DC servomotor using FLBPID vs. PI for simulation 3a

Fig. 4.13 Absolute error of speed control of DC servomotor using FLBPID vs. PI for

simulation 3a

Based on Fig. 4.14 and Fig. 4.15, FLBPID has the faster settling time than PID.

This makes the absolute error of FLBPID is smaller than PID.

The best speed controller in the simulation 3b is PID for conventional controller

and FLBPID for hybrid-fuzzy controller, and the best position controller is PI for

conventional controller and FLBPID for hybrid-fuzzy controller. As a speed and

position controller, PID is the best conventional controller and FLBPID is the best

hybrid-fuzzy controller. Comparison on the best conventional to the best hybrid are

shown in the table that hybrid-fuzzy controllers are better then conventional

132

controllers in the simulation 3b. The graphical comparisons are shown in the

Fig. 4.16 to Fig. 4.19.

Fig. 4.14 Position control of DC servomotor using FLBPID vs. PID for simulation 3a

Fig. 4.15 Absolute error of position control of DC servomotor using FLBPID vs. PID

for simulation 3a

Based on Fig. 4.16 and Fig. 4.17, FLBPID has the faster settling time than PI

eventhough the overshoot 2 of both FBPID and PID are more than 50%..

Consequently, the absolute error of FLBPID is smaller than PI.

Based on Fig. 4.18 and Fig. 4.19, FLBPID has the faster settling time than PID.

This makes the absolute error of FLBPID is smaller than PID.

133

Fig. 4.16 Speed control of DC servomotor using FLBPID vs. PID for simulation 3b

Fig. 4.17 Absolute error of speed control of DC servomotor using FLBPID vs. PID

for simulation 3b

The best speed controller in the simulation 4a is PID for conventional controller

and FLBPID for hybrid-fuzzy controller. As a speed and position controller, PID is

the best conventional controller and FLBPID is the best hybrid-fuzzy controller.

Comparison on the best conventional to the best hybrid are shown in the table that

hybrid controllers are better than conventional controllers in the simulation 4a. The

graphical comparisons are shown in the Fig. 4.20 and Fig. 4.21.

Based on Fig. 4.20 and Fig. 4.21, PID has more oscillation than FLBPID. This

makes the absolute error of PID is larger than FLBPID.

134

The best speed controller in the simulation 4b is PI for conventional controller and

FLIC for hybrid-fuzzy controller, and the best position controller is PI for

conventional controller and FLIC for hybrid-fuzzy controller. As a speed and position

controller, PI is the best conventional controller and FLIC is the best hybrid

controller. Comparison on the best conventional to the best hybrid are shown in the

table that conventional controllers are better than hybrid-fuzzy controllers in the

simulation 4b since the position controller of PI is much better then FLIC. The

graphical comparisons are shown in the Fig. 4.22 to Fig. 4.25.

Fig. 4.18 Position control of DC servomotor using FLBPI vs. PI for simulation 3b

Fig. 4.19 Absolute error of position control of DC servomotor using FLBPI vs. PI for

simulation 3b

135

Fig. 4.20 Speed control of DC servomotor using FLBPID vs. PID for simulation 4a

Fig. 4.21 Absolute error of speed control of DC servomotor using FLBPID vs. PID

for simulation 4a

Based on in Fig. 4.22 and Fig. 4.23, FLIC has the faster settling time than PI

eventhough there is a very small of overshoot. Consequently, the absolute error of

FLIC is smaller than PI.

Based on Fig. 4.24 and Fig. 4.25, FLIC has steady state error. This makes the

absolute error of FLIC larger than PI.

136

Fig. 4.22 Speed control of DC servomotor using FLIC vs. PI for simulation 4b

Fig. 4.23 Absolute error of speed control of DC servomotor using FLIC vs. PI for

simulation 4b

137

Fig. 4.24 Position control of DC servomotor using FLIC vs. PI for simulation 4b

Fig. 4.25 Absolute error of position control of DC servomotor using FLIC vs. PI for

simulation 4b

4.5.2 Simulation Results Summary of Conventional, Fuzzy, and Hybrid-Fuzzy

Controllers

The speed and position control simulation of hybrid-fuzzy controller compared to

conventional and fuzzy controller has been presented. FLBPID controller is the best

speed controller as compared to FLBPI controller, FLIC, conventional controllers and

fuzzy controller for the simulation of Type 1a, 1b, 3a, 3b, and 4a. FLIC is the best

speed controller as compared to FLBPI controller, FLBPID controller, conventional

138

controllers and fuzzy controller for the simulation of Type 2 and 4b. Using

Eq.(3 - 45), the best overall speed controller is FLBPID.

In both speed and position control, FLBPID controller is the best controller as

compared to FLBPI controller, FLIC, conventional controllers and fuzzy controller

for the simulation of Type 1a, 1b, 3a, 3b, and 4a. FLIC is the best controller as

compared to FLBPI controller, FLBPID controller, conventional controllers and fuzzy

controller for the simulation of Type 2. PI controller is the best controller as compared

to hybrid-fuzzy controllers, PID controller, and fuzzy controller for the simulation of

Type 4b. Using Eq.(3 - 45), the best overall speed and position controller is

FLBPID.

It is concluded that hybrid-fuzzy controllers have the better performance than

conventional and fuzzy controllers. Therefore, the genetic algorithm will be applied to

optimize the parameters of hybrid-fuzzy controllers.

4.6 Simulation results of GA and SPOGA

The simulation was done using the method as in Section 3.6.1. There are three results

for both GA and SPOGA: the result with minimum specifications, the result with the

specifications in which fulfill the minimum criteria, and the result with the

specifications in which fulfill the good criteria.

The minimum specifications for both GA and SPOGA are as follow:

Bit length : 40

Population size : 30

Number of generation : 20

Probability of crossover : 0.9

Probability of mutation : 0.01 and 0.1

The result is shown in Table 4.10.

To fulfil the minimum criteria, the number of generation is maintained to be 20

but the population size is continuously increased by 10 until fulfil the requirements.

The result for GA is shown in Table 4.11 and for SPOGA is shown in Table 4.12.

139

Table 4.10 Performance of GA and SPOGA with minimum specification

NO. ITEMS
pm = 0.01 pm = 0.1

GA SPOGA GA SPOGA
1 Average error (%) 2.99 2.42 2.62 2.44

2 Accuracy (%) 82.00 96.00 95.00 98.00

The complete results of simulation are shown in Appendix B.

Table 4.11 Results of GA simulation for minimum criteria

NO.
POPULATION

SIZE

pm = 0.01 pm = 0.1
AVERAGE

ERROR (%)

ACCURACY

(%)

AVERAGE

ERROR (%)

ACCURACY

(%)

1 30 2.99 82.00 2.62 95.00

2 40 2.39 94.00 2.54 99.00

3 50 2.00 97.00 2.45 99.00

4 60 1.72 98.00 2.16 100.00

5 70 1.49 99.00 2.05 100.00

6 80 1.45 100.00 2.03 100.00

7 90 - - 1.80 100.00

Table 4.12 Results of SPOGA simulation for minimum criteria

NO.
POPULATION

SIZE

pm = 0.01 pm = 0.1
AVERAGE

ERROR (%)

ACCURACY

(%)

AVERAGE

ERROR (%)

ACCURACY

(%)

1 30 2.42 96.00 2.44 98.00

2 40 1.63 100.00 2.19 100.00

3 50 - - 1.61 100.00

To fulfil good criteria, the number of generation is increased until it fulfils the

requirements using the population size in which fulfils the minimum criteria. The

result of good criteria for GA is shown in Table 4.13 and for SPOGA is shown in

Table 4.14.

It is shown in Table 4.10 that in the minimum specification, SPOGA has the better

performance than GA in which the average error is smaller and the accuracy is larger.

To fulfil the minimum criteria, GA needs 80 population size for pm=0.01 and 90

population size for pm=0.1 in 20 generations as shown in Table 4.11. This means that

GA needs (80x21) or 1,680 test runs for pm=0.01 and (90x21) or 1,890 test runs for

pm=0.1 to get the fitness values for minimum criteria. Meanwhile, SPOGA needs 40

population size for pm=0.01 and 50 population size for pm=0.1 in 20 generations as

shown in Table 4.12. This means that SPOGA needs (40x21) or 840 test runs for

pm=0.01 and (50x21) or 1,050 test runs for pm=0.1 to get the fitness values for

140

minimum criteria. Therefore, SPOGA can make the reduction of (1,680-840) or 840

test runs for pm=0.01 and (1,890-1,050) or 840 test runs for pm=0.1 for minimum

criteria. In other words, SPOGA can reduce 50 % test runs for pm=0.01 and 44.44 %

test runs for pm=0.1 for minimum criteria.

Table 4.13 Results of GA simulation for good criteria

NO. GENERATION

pm = 0.01 (population=80) pm = 0.1 (population=90)
AVERAGE

ERROR (%)

ACCURACY

(%)

AVERAGE

ERROR (%)

ACCURACY

(%)

1 30 0.92 92.00 1.29 82.00

2 40 0.70 95.00 0.92 94.00

3 50 0.66 93.00 0.92 99.00

4 100 0.52 97.00 0.39 99.00

5 110 0.40 100.00 - -

6 160 - - 0.20 100.00

Table 4.14 Results of SPOGA simulation for good criteria

NO. GENERATION

pm = 0.01 (population=40) pm = 0.1 (population=50)
AVERAGE

ERROR (%)

ACCURACY

(%)

AVERAGE

ERROR (%)

ACCURACY

(%)

1 30 1.59 76.00 1.29 82.00

2 40 1.43 80.00 0.92 94.00

3 50 1.14 85.00 0.92 99.00

4 100 1.11 94.00 0.39 99.00

5 200 0.62 100.00 - -

6 210 - - 0.17 100.00

It is shown in Table 4.13 that to fulfil the good criteria, GA needs 110 generations

with 80 populations for pm=0.01 and 160 generations with 90 populations for pm=0.1.

This means that GA needs (80x111) or 8,880 test runs for pm=0.01 and (90x161) or

14,490 test runs for pm=0.1 to get the fitness values for good criteria.

Based on Table 4.14, to fulfil the good criteria, SPOGA needs 200 generations

with 40 populations for pm=0.01 and 210 generations with 50 populations for pm=0.1.

This means that SPOGA needs (40x201) or 8,040 test runs for pm=0.01 and (50x211)

or 10,550 test runs to get the fitness values for good criteria. To say it in another way,

SPOGA can reduce 9.46 % test runs for pm=0.01, and 27.19 % test runs for pm=0.1 for

good criteria.

The SPOGA is then applied to optimize the hybrid-fuzzy controllers using

minimum criteria. Regarding the simulation with minimum criteria and based on the

141

fact that GAs work based on natural evolutions or random processes, it is noted that

the population size is better to be set at about 4/3 x bit length.

4.7 Process Results of SPOGA in Optimizing Controllers

There are three hybrid controllers to be optimized by SPOGA: FLBPI, FLBPID, and

FLIC. The performance of three controllers are to be compared for seven types of

experiments.

4.7.1 FLBPI

The SPOGA optimizes the KPm in the range of [0.00, 23.50] and KIm in the range of

[0.00, 130.00] with 12 bit length and 14 bit length respectively using the method as

discussed in Section 3.6.1. The probability of crossover and mutation are set to be 0.9

and 0.01 respectively.

In the process of SPOGA, there are three conditions of generation: maximum

duplicate chromosomes generation, maximum homogeneous chromosomes

generation, and maximum fit chromosome generation. The maximum duplicate

chromosomes happened in the second generation as in Table C.1. The maximum

homogeneous chromosomes happened in the 16
th

 generation as in Table C.3. The

maximum fit chromosome generation happened in the 17
th

 generation as in Table C.7.

The maximum fit is the 16
th

 chromosome in the 17
th

 generation as in Table 4.15.

The maximum duplicate chromosomes are not solution chromosomes since there

is a possibility a local maxima condition. The generation was still going on with the

probability of mutation 0.01 until the maximum generation, i.e. 20. After 20
th

generation, the maximum fit chromosome was searched and found in the 17
th

generation as a 16
th

 chromosome as in Table 4.15 in the generation as in Table C.7.

Table 4.15 is a solution chromosome where by using Fig. 3.35 gives the parameters of

FLBPI as follows:

142

KPm = 9.5492, KIm = 73.1295, and experimentally, the KPp for position controller

is 0.97.

Table 4.15 Maximum fit chromosome for FLBPI parameters

0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0

4.7.2 FLBPID

The SPOGA optimizes the KPm in the range of [0.00, 23.50], KDm in the range of

[0.00, 0.20] and KIm in the range of [0.00, 110.00] with 12 bit length, 5 bit length, and

14 bit length respectively using the method as in Section 3.6.2. The probability of

crossover and mutation are set to be 0.9 and 0.01 respectively.

In the process of SPOGA, there are three conditions of generation: maximum

duplicate chromosomes generation, maximum homogeneous chromosomes

generation, and maximum fit chromosome generation. The maximum duplicate

chromosomes happened in the second generation as in Table C.2. The maximum

homogeneous chromosomes happened in the 19
th

 generation as in Table C.4. The

maximum fit chromosome generation happened in the 17
th

 generation as in

Table C.8. The maximum fit is the 15
th

 chromosome in the 17
th

 generation as in

Table 4.16.

The maximum duplicate chromosomes are not solution chromosomes since there

is a possibility of a local maxima condition. The generation was still going on with the

probability of mutation 0.01 until getting the maximum generation, i.e. 20. After 20
th

generation, the maximum fit chromosome was searched and it was found in the 17
th

generation as a 15
th

 chromosome as in Table 4.16 in the generation as in Table C.8.

Table 4.16 is a solution chromosome where by using Fig. 3.35 gives the parameters of

FLBPID as follow:

KPm = 11.7529, KDm = 0.2, and KIm = 106.5757, and experimentally, the KPp for

position controller is 0.99.

143

Table 4.16 Maximum fit chromosome for FLBPID parameters

1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1

4.7.3 FLIC

There are two steps in optimizing FLIC and these are outlined as follow:

i. Optimizing the membership functions and rules of FLC part

ii. Optimizing the I/O scales of FLC part and constant of integral controller part

4.7.3.1 Optimizing Membership Function and Rules

The SPOGA optimizes the error membership functions, change of error membership

functions and output membership functions which are initially 7 membership

functions each with 7 bit length each using the method as in Section 3.6.3.1. The

probability of crossover and mutation are set to be 0.9 and 0.01 respectively.

In the process of SPOGA, there are two conditions of generation: maximum

homogeneous chromosomes generation and maximum fit chromosome generation.

The maximum homogeneous chromosomes occured in the 10
th

 generation as in

Table C.5 since the average fit is the largest among the 20-generation. The maximum

fit chromosome generation occured in the 11
th

 generation as in Table C.9. The

maximum fit is the 26
th

 chromosome in the 11
th

 generation as in Table 4.17.

Table 4.17 Maximum fit chromosome for FLC parameters in FLIC

1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1

The maximum duplicate chromosomes are not solution chromosomes since there

is a possibility of a local maxima condition. The generation was still going on with the

probability of mutation 0.01 until the maximum generation, i.e. 20. The maximum fit

chromosome was searched and it was found in the 11
th

 generation as a 26
th

chromosome as in Table 4.17 in the generation as in Table C.9. Table 4.17 is a

solution chromosome only for FLC part of FLIC in which the results are as in

Fig. 4.26, Fig. 4.27 and Table 4.18. This is not a final solution since the process is still

144

continued for optimization of FLC I/O scales and integral constant of integral

controller.

Fig. 4.26 Input membership functions of SPOGA-optimized FLIC: (a) Error

membership function, (b) Change of error membership functions

Fig. 4.27 Output membership functions SPOGA-optimized FLIC

145

Table 4.18 Rules of SPOGA-optimized FLIC

E,

Error

D, Change of Error

D1 D2 D3 D4 D5 D6

E1 U1 U2 U2 U2 U2 U2

E2 U2 U2 U2 U2 U2 U2

E3 U3 U3 U3 U4 U4 U4

E4 U3 U4 U4 U4 U4 U4

E5 U3 U4 U4 U4 U4 U4

4.7.3.2 Optimizing I/O Scales and Integral Constant

The SPOGA optimizes the Ke in the range of [0.00, 1.50], Ku in the range of

[0.00, 0.50], and KI in the range of [0.00, 1.00] with 8 bit length, 6 bit length, and 7 bit

length respectively using the method as described in Section 3.6.3.2. The probability

of crossover and mutation are set to be 0.90 and 0.01 respectively.

In the process of SPOGA, there are two conditions of generation: maximum

average fit generation and maximum fit chromosome generation. The maximum

homogeneous chromosomes occured in the 3
rd

 generation as in Table C.6 since the

average fit is the largest among the 20-generation. The maximum fit chromosome

generation occured in the 10
th

 generation as in Table C.10. The maximum fit is the

26
th

 chromosome in the 10
th

 generation as in Table 4.19.

The maximum homogenous chromosomes are not solution chromosomes since

there is a possibility of a local maxima condition. The generation keeps going with the

probability of mutation 0.01 until the maximum generation, i.e. 20. The maximum fit

chromosome was searched and it was found in the 10
th

 generation as a 26
th

chromosome as in Table 4.19 in the generation as in Table C.10. Table 4.19 is a

solution chromosome only for I/O scales of FLC and integral constant of integral

controller of FLIC after the membership functions and rules are optimized.

146

Using Fig. 3.35 the I/O scales of FLC and integral constant of integral controllers

are as follow:

Ke = 1.50, Ku = 0.00; KI = 0.54, and experimentally, the KPp for position controller is

0.69.

This means that the result is an integral controller only. As shown in Table C.5 and

Table C.6, comparing with Table C.1 and Table C.2, the homogenous chromosomes

in FLIC are not as good as in FLBPI and FLBPID. It is predicted that the result of

SPOGA-optimized FLIC will not be as good as the result of SPOGA-optimized

FLBPI and FLBPID.

Table 4.19 Maximum fit chromosome for I/O scales and integral constant in FLIC

1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0

4.8 Simulation of SPOGA Optimized Controllers

There are three types of controllers in the simulation: SPOGA-FLBPI controller,

SPOGA-FLPID controller, and SPOGA-FLIC. This simulation was done with the

controllers having their parameters optimized using SPOGA.

There are seven types of simulation as explained in Section 3.7 which are

summarized in Table 4.2.

4.8.1 Results and Discussions on SPOGA Optimized Controllers

The comparison on the effectiveness of implementing SPOGA optimized hybrid-

fuzzy controllers for simulation experiment based on the second order underdamped

response analysis is presented in Table 4.20, the comparison based on error analysis is

presented in Table 4.21, and the comparison based on fitness value analysis is

presented in Table 4.22.

It is shown in Table 4.20, Table 4.21, and Table 4.22 that the best overshoot,

settling time and fitness value for the first 8-second starting speed based on ITAEvp

(fvp) is SPOGA-FLBPI controller for speed control in the simulation 1a. The total

147

fitness value for speed control (fitv) is obtained based on the overshoot, settling time,

and ITAEvp and the best is the SPOGA-FLBPI controller.

Table 4.20 Simulation results of SPOGA optimized hybrid-fuzzy controllers based on

second order underdamped response analysis

Type PERFORMANCE ITEM

Controllers

SPOGA-

FLBPI

SPOGA-

FLBPID

SPOGA-

FLIC

1a

Overshoot (%OS, %) 1.88 3.41 27.31

Settling time (ts, sec) 0.80 1.80 4.31

SSEP (%Sp, %) 0.08 0.08 0.12

1b SSEP (%Sp) 0.08 0.08 0.04

2

Overshoot (%OS, %) 6.07 8.26 6.03

Settling time (ts, sec) 1.88 2.35 3.31

SSEP (%Sp, %) 0.06 0.06 0.00

3a

Overshoot (%OS, %) 5.64 8.16 8.32

Settling time (ts, sec) 1.87 2.34 3.14

Undershoot (%US, %) 40.00 40.00 40.00

SSEP (%Sp, %) 0.05 0.07 0.34

3b

Overshoot (%OS, %) 0.67 1.30 0.28

Settling time (ts, sec) 1.70 1.39 3.18

Overshoot 2 (%OS2, %) 66.67 66.67 66.67

SSEP (%Sp, %) 0.07 0.07 0.06

4b

Overshoot (%OS, %) 6.07 8.26 6.03

Settling time (ts, sec) 1.88 2.35 3.31

SSEP (%Sp, %) 0.07 0.07 0.06

SSEP: Steady State Error of Position

Table 4.21 Simulation results of SPOGA optimized hybrid-fuzzy controllers based on

error analysis

Type PERFORMANCE ITEM

Controller

SPOGA-

FLBPI

SPOGA-

FLBPID

SPOGA-

FLIC

1a
ITAEvp 2.20E+01 2.25E+01 1.36E+02

ITAEp 5.94E+03 5.93E+03 5.99E+03

1b ITAEp 4.45E+00 4.46E+00 4.82E+00

2
ITAEvp 7.76E+01 7.01E+01 2.30E+02

ITAEp 3.78E+02 3.74E+02 3.90E+02

3a

ITAEvp 6.60E+01 6.29E+01 2.00E+02

ITAEvl 9.77E+02 8.55E+02 1.94E+03

ITAEp 1.30E+03 1.29E+03 1.40E+03

3b

ITAEvp 9.61E+01 7.49E+01 3.32E+02

ITAEvl 1.25E+03 1.20E+03 2.46E+03

ITAEp 1.28E+03 1.27E+03 1.33E+03

4a IAEv 6.59E+02 6.14E+02 1.30E+03

4b
ITAEvp 7.76E+01 7.01E+01 2.30E+02

ITAEp 1.80E+03 1.78E+03 1.89E+03

ITAEvp : Integral of time absolute value of error for the first 8 sec; ITAEp : ITAE for position, ITAEvl :
ITAE for the 9-sec start loading speed; IAEv : Integral of absolute value of error for overall 90 sec.

148

Table 4.22 Simulation results of SPOGA optimized hybrid-fuzzy controllers based on

fitness value analysis

Type PERFORMANCE ITEM

Controller

SPOGA-

FLBPI

SPOGA-

FLBPID

SPOGA-

FLIC

1a

fvp 0.50 0.50 0.00

fp 0.46 0.54 0.00

fitv 0.53 0.47 0.00

fitp 0.49 0.51 0.00

fit1a 0.52 0.48 0.00

1b

fp 0.51 0.49 0.00

fitp 0.28 0.25 0.48

fit1b 0.28 0.25 0.48

2

fvp 0.49 0.51 0.00

fp 0.43 0.57 0.00

fitv 0.53 0.30 0.17

fitp 0.25 0.29 0.46

fit2 0.43 0.30 0.27

3a

fvp 0.49 0.51 0.00

fvpl 0.47 0.53 0.00

fp 0.48 0.52 0.00

fitv 0.63 0.37 0.00

fitp 0.50 0.50 0.00

fit3a 0.59 0.41 0.00

3b

fvp 0.48 0.52 0.00

fvpl 0.00 0.00 0.00

fp 0.48 0.52 0.00

fitv 0.33 0.27 0.15

fitp 0.36 0.26 0.39

fit3b 0.34 0.26 0.23

4a

fv 0.48 0.52 0.00

fitv 0.48 0.52 0.00

fit4a 0.48 0.52 0.00

4b

fvp 0.49 0.51 0.00

fp 0.45 0.55 0.00

fitv 0.53 0.30 0.17

fitp 0.32 0.27 0.41

fit4b 0.46 0.29 0.25

fvp : Fitness value for the first 8-sec starting speed based on ITAEvp; fp : Fitness value for position based
on ITAEp; fvpl : Fitness value for the 9-sec start loading speed (from 14 to 23 sec) based on ITAEvpl; fv:

Fitness value for overall 90 sec of speed based on IAEv; fitv : Total fitness value for speed control; fitp :
Total fitness value for position control; fitx : Total fitness value for speed and position control in the

experiment of Type x

In the position control, the best SSEP is SPOGA-FLBPI controller, but the best

fitness value based on ITAEp (fp) is SPOGA-FLBPID. The total fitness value for

position control (fitp) is obtained based on the SSEP and ITAEp , and the best is the

SPOGA-FLBPID controller.

149

The best total fitness value for speed and position control in the simulation 1a (f1a)

is SPOGA-FLBPI controller. Therefore, SPOGA-FLBPI is the best hybrid-fuzzy

controller in the simulation 1a (extreme condition).

The simulation 1b presents the position performance since it is in the extreme

condition with maximum speed and minimum position. The best SSEP and fitness

value based on ITAEp (fp) is SPOGA-FLBPI. The best total fitness value for position

control (fitp) is obtained based on the SSEP and ITAEp , and the best is the SPOGA-

FLBPI.

The best total fitness value for speed and position control in the simulation 1b (f1b)

is SPOGA-FLBPI. Therefore, SPOGA-FLBPI is the best hybrid-fuzzy controller in

the simulation 1b (extreme condition).

The best overshoot and settling time for speed control in the simulation 2 is

SPOGA-FLBPI but the best fitness value for the first 8-second starting speed based

on ITAEvp (fvp) is SPOGA-FLBPID. The total fitness value for speed control (fitv) is

obtained based on the overshoot, settling time, and ITAEvp and the best is the SPOGA-

FLBPI.

In the position control, the best SSEP is SPOGA-FLIC but the best fitness value

based on ITAEp (fp) is SPOGA-FLBPID controller. The total fitness value for position

control (fitp) is obtained based on the SSEP and ITAEp , and the best is the SPOGA-

FLBPID.

The best total fitness value for speed and position control in the simulation 2 (f2)

is SPOGA-FLBPI. Therefore, SPOGA-FLBPI is the best hybrid-fuzzy controller in

the simulation 2 (moderate condition).

The best overshoot and settling time for speed control in the simulation 3a is

SPOGA-FLBPI controller, but the best fitness value for the first 8-second starting

speed based on ITAEvp (fvp) is SPOGA-FLBPID. The total fitness value for speed

control (fitv) is obtained based on the overshoot, settling time, undershoot, ITAEvpl and

ITAEvp and the best is the SPOGA-FLBPI controller. When start loading, the

undershoot is the same for all controllers.

150

In the position control, the best SSEP is SPOGA-FLBPI controller and the best

fitness value based on ITAEp (fp) is SPOGA-FLBPID controller. The total fitness

value for position control (fitp) is obtained based on the SSEP and ITAEp , and the best

is the SPOGA-FLBPID controller.

The best total fitness value for speed and position control in the simulation 3a (f3a)

is SPOGA-FLBPI controller. Therefore, SPOGA-FLBPI is the best hybrid-fuzzy

controller in the simulation 3a (variable load condition)

The best overshoot for speed control in the simulation 3b is SPOGA-FLBPI but

the settling time and the fitness value for the first 8-second starting speed based on

ITAEvp (fvp) is SPOGA-FLBPID controller. The total fitness value for speed control

(fitv) is obtained based on the overshoot, settling time, overshoot 2, ITAEvpl and

ITAEvp and the best is SPOGA-FLBPI controller. All of the overshoot 2 when start

unloading are more than 50%. Consequently, the fitness value for 9-sec start

unloading speed based on ITAEvpl (fvpl) are zero.

In the position control, the best SSEP is SPOGA-FLIC but the best fitness value

based on ITAEp (fp) is SPOGA-FLBPID controller. The total fitness value for position

control (fitp) is obtained based on the SSEP and ITAEp , and the best is the SPOGA-

FLIC.

The best total fitness value for speed and position control in the simulation 3b (f3b)

is SPOGA-FLBPI controller. Therefore, SPOGA-FLBPI is the best hybrid-fuzzy

controller in the simulation 3b (variable load condition)

The simulation 4a presents the speed performance without overshoot and settling

time since it is in the variations of speed set point. The best fitness value based on

IAEv (fv) is SPOGA-FLBPID controller. The best total fitness value for speed control

(fitv) is obtained based on the IAEv only, and the best is the SPOGA-FLBPID

controller.

The best total fitness value for speed and position control in the simulation 4a (f4a)

is SPOGA-FLBPID controller. Therefore, SPOGA-FLBPID is the best hybrid

controller in the simulation 4a (variable set point condition).

151

The best overshoot for speed control in the simulation 4b is SPOGA-FLIC. The

best settling time is SPOGA-FLBPI controller, and the best fitness value for the first

8-second starting speed based on ITAEvp (fvp) is SPOGA-FLBPID controller. The total

fitness value for speed control (fitv) is obtained based on the overshoot, settling time,

and ITAEvp and the best is the SPOGA-FLBPI controller.

In the position control, the best SSEP is SPOGA-FLIC but the best fitness value

based on ITAEp (fp) is SPOGA-FLBPID. The total fitness value for position control

(fitp) is obtained based on the SSEP and ITAEp , and the best is the SPOGA-FLBPI.

The best total fitness value for speed and position control in the simulation 4b (f4b)

is SPOGA-FLBPI. Therefore, SPOGA-FLBPI is the best hybrid controller in the

simulation 4b (variable set point condition).

4.8.2 Simulation Results Summary of SPOGA-Hybrid-Fuzzy Controllers

The speed and position control simulation of SPOGA optimized hybrid-fuzzy

controller has been presented. SPOGA-FLBPI controller is the best speed controller

as compared to SPOGA-FLBPID controller and SPOGA-FLIC for simulation of Type

1a, 2, 3a, 3b, and 4b. SPOGA-FLBPID controller is the best speed controller as

compared to SPOGA-FLBPI controller and SPOGA-FLIC for simulation of Type 4a.

Using Eq. (3 - 45), the best overall speed controller is SPOGA-FLBPI as compared

to SPOGA-FLBPID and SPOGA-FLIC.

In both speed and position control, SPOGA-FLBPI controller is the best speed

controller as compared to SPOGA-FLBPID controller and SPOGA-FLIC for

simulation of Type 1a, 2, 3a, 3b, and 4b. SPOGA-FLBPID controller is the best speed

controller as compared to SPOGA-FLBPI controller and SPOGA-FLIC for simulation

of Type 4a. SPOGA-FLIC is the best controller as compared to SPOGA-FLBPI

controller and SPOGA-FLBPID controller for simulation of Type 1b. Using

Eq. (3 - 45), the best overall speed and position controller is SPOGA-FLBPI as

compared to SPOGA-FLBPID and SPOGA-FLIC.

152

4.9 Performance Comparisons of SPOGA to non-SPOGA Controllers

This section presents the performance improvements of non-SPOGA hybrid-fuzzy

controllers and SPOGA optimized hybrid-fuzzy controllers based on the fitness values

where the performance items are based on Table 4.6 to Table 4.8 and Table 4.20 to

Table 4.22.

There are seven types of simulation as explained in Section 3.7 which are

summarized in Table 4.2.

The graphs of input-output characteristic of speed error, position error, speed, and

position between the best improvement of SPOGA optimized hybrid controllers and

the corresponding hybrid controllers are presented in the section for each simulation

type.

4.9.1 Comparison of SPOGA Optimized and Non-SPOGA Optimized

Controllers

The comparison on the improvement of SPOGA optimized and non-SPOGA hybrid

controllers based on the performance metrics for simulation experiment is presented

in Table 4.23 where the performance items are based on Table 4.8 and Table 4.22.

It is shown in Table 4.23 that SPOGA-FLBPI makes the best fit improvement in

the simulation 1a for speed control. This means that SPOGA-FLBPI makes the best fit

improvement in the simulation 1a. The best position controller is SPOGA-FLBPID

but it is not optimized by SPOGA. The improvement of SPOGA-FLIC is less than

zero, this means that the SPOGA-FLIC cannot make improvement in the simulation

1a. The graphical comparisons of SPOGA-FLBPI to FLBPI are shown in Fig. 4.28

and Fig. 4.29.

It is shown in Fig. 4.28 and Fig. 4.29 that SPOGA-FLBPI has no overshoot and

the settling time is faster than FLBPI. This makes the absolute error of SPOGA-

FLBPI is smaller than FLBPI.

153

In the simulation 1b, SPOGA-FLIC has the best fit for position control but the

SPOGA is not optimize the position controller. This means that SPOGA-FLIC does

not make improvement in the simulation 1b.

Table 4.23 Performance improvement comparison of SPOGA optimized and non-

SPOGA hybrid-fuzzy controllers for simulation experiment

Type
PERFORMANCE

ITEMS

Controller

FLBPI
SPOGA-

FLBPI
FLBPID

SPOGA-

FLBPID
FLIC

SPOGA-

FLIC

1a

fitv 0.14 0.27 0.22 0.24 0.13 0.00

fitp 0.24 0.21 0.17 0.22 0.17 0.00

fit 0.17 0.25 0.21 0.23 0.15 0.00

Ipv1a 0.13 0.01 -0.13

1b

fitv - - - - - -

fitp 0.15 0.13 0.16 0.11 0.15 0.31

fit 0.15 0.13 0.16 0.11 0.15 0.31

Ipv1b - - -

2

fitv 0.10 0.19 0.24 0.13 0.28 0.05

fitp 0.18 0.11 0.16 0.12 0.22 0.20

fit 0.12 0.16 0.22 0.13 0.26 0.10

Ipv2 0.09 -0.11 -0.23

3a

fitv 0.13 0.22 0.27 0.16 0.22 0.00

fitp 0.20 0.20 0.21 0.20 0.20 0.00

fit 0.15 0.21 0.25 0.17 0.22 0.00

Ipv3a 0.10 -0.11 -0.22

3b

fitv 0.11 0.12 0.12 0.12 0.10 0.06

fitp 0.14 0.13 0.12 0.13 0.11 0.04

fit 0.12 0.13 0.12 0.12 0.11 0.05

Ipv3b 0.01 -0.00 -0.04

4a

fitv 0.20 0.22 0.22 0.23 0.13 0.00

fitp - - - - - -

fit 0.20 0.22 0.22 0.23 0.13 0.00

Ipv4a 0.02 0.02 -0.13

4b

fitv 0.10 0.19 0.24 0.13 0.28 0.05

fitp 0.15 0.15 0.16 0.12 0.20 0.22

fit 0.12 0.18 0.21 0.13 0.26 0.11

Ipv4b 0.09 -0.11 -0.23

SPOGA-FLBPI makes the best fit improvement in the simulation 2. The

improvement of SPOGA-FLBPID and SPOGA-FLIC are less than zero, this means

that both SPOGA-FLBPID and SPOGA-FLIC cannot make improvement in the

simulation 2. The graphical comparisons of SPOGA-FLBPI to FLBPI are shown in

Fig. 4.30 and Fig. 4.31.

154

Fig. 4.28 Step response of speed control of DC servomotor using SPOGA-FLBPI vs.

FLBPI for simulation 1a (see Fig. D.1)

Fig. 4.29 Absolute error of speed control of DC servomotor using SPOGA-FLBPI vs.

FLBPI for simulation 1a

It shown in the Fig. 4.30 and Fig. 4.31 that SPOGA-FLBPI has smaller overshoot

than FLBPI. This makes the absolute error of SPOGA-FLBPI smaller than FLBPI.

SPOGA-FLBPI makes the best fit improvement in the simulation 3a. The

improvement of SPOGA-FLBPID and SPOGA-FLIC are less than zero, this means

that both SPOGA-FLBPID and SPOGA-FLIC cannot make improvement in the

simulation 3a. The graphical comparisons of SPOGA-FLBPI to FLBPI are shown in

Fig. 4.32 and Fig. 4.33.

155

Fig. 4.30 Step response of speed control of DC servomotor using SPOGA-FLBPI vs.

FLBPI for simulation 2 (see Fig. D.2)

Fig. 4.31 Absolute error of speed control of DC servomotor using SPOGA-FLBPI vs.

FLBPI for simulation 2

It shown in the Fig. 4.32 and Fig. 4.33 that SPOGA-FLBPI has smaller overshoot

than FLBPI. This makes the absolute error of SPOGA-FLBPI smaller than FLBPI.

SPOGA-FLBPI makes the best fit improv`ement in the simulation 3b. The

improvement of SPOGA-FLBPID and SPOGA-FLIC are less than zero, this means

that SPOGA-FLBPID and SPOGA-FLIC cannot make improvement in the simulation

3b. The graphical comparisons of SPOGA-FLBPI to FLBPI are shown in Fig. 4.34

and Fig. 4.35.

156

Fig. 4.32 Step response of speed control of DC servomotor using SPOGA-FLBPI vs.

FLBPI for simulation 3a (see Fig. D.3)

Fig. 4.33 Absolute error of speed control of DC servomotor using SPOGA-FLBPI vs.

FLBPI for simulation 3a

It shown in the Fig. 4.34 and Fig. 4.35 that SPOGA-FLBPI has smaller overshoot

than FLBPI. On the breaking process SPOGA-FLBPI stops faster than FLBPI. This

makes the absolute error of SPOGA-FLBPI smaller than FLBPI eventhough on the

start unloading both SPOGA-FLBPI and FLBPI have overshoot more than 50 %.

SPOGA-FLBPI makes the best fit improvement in the simulation 4a. The

improvement of SPOGA-FLIC is less than zero, this means that SPOGA-FLIC is

157

cannot make improvement in the simulation 4a. The graphical comparisons of

SPOGA-FLBPI to FLBPI are shown in Fig. 4.36 and Fig. 4.37.

Fig. 4.34 Step response of speed control of DC servomotor using SPOGA-FLBPI vs.

FLBPI for simulation 3b (see Fig. D.4)

Fig. 4.35 Absolute error of speed control of DC servomotor using SPOGA-FLBPI vs.

FLBPI for simulation 3b

It shown in the Fig. 4.36 and Fig. 4.37 that SPOGA-FLBPI has smaller overshoot

than FLBPI. This makes the absolute error of SPOGA-FLBPI smaller than FLBPI.

SPOGA-FLBPI makes the best fit improvement in the simulation 4b. The

improvement of SPOGA-FLBPID and SPOGA-FLIC are less than zero, this means

that both SPOGA-FLBPID and SPOGA-FLIC cannot any improvement in the

158

simulation 4b. The graphical comparisons of SPOGA-FLBPI to FLBPI are shown in

Fig. 4.38 to Fig. 4.40.

Fig. 4.36 Speed control of DC servomotor using SPOGA-FLBPI vs. FLBPI for

simulation 4a

Fig. 4.37 Absolute error of speed control of DC servomotor using SPOGA-FLBPI vs.

FLBPI for simulation 4a

It shown in the Fig. 4.38 and Fig. 4.39 that SPOGA-FLBPI has smaller overshoot

than FLBPI. This makes the absolute error of SPOGA-FLBPI smaller than FLBPI.

It is shown in Fig. 4.40 that SPOGA-FLBPI is similar to FLBPI. This means that

SPOGA-FLBPI does not make any improvement in position control, but the SPOGA

is for optimizing the speed controller only.

159

Fig. 4.38 Step response of speed control of DC servomotor using SPOGA-FLBPI vs.

FLBPI for simulation 4b (see Fig. D.5)

Fig. 4.39 Absolute error of speed control of DC servomotor using SPOGA-FLBPI vs.

FLBPI for simulation 4b

160

Fig. 4.40 Position control of DC servomotor using SPOGA-FLBPI vs. FLPI for

simulation 4b

4.9.2 Simulation Results Summary of SPOGA Optimized and non-SPOGA

Optimized Hybrid-Fuzzy Controllers

The improvement tests of SPOGA optimized hybrid-fuzzy to non-SPOGA optimized

hybrid-fuzzy controllers have been presented. It was shown that the SPOGA-FLBPI

can make fit improvement in all of the simulation types. SPOGA-FLBPID can make

improvement in the simulation of Type 1a, and 4a, and cannot make improvement in

the simulation of Type 2, 3a, 3b and 4b. SPOGA-FLIC cannot make improvement in

all of the simulation types.

The simulation results show that the best total improvement of speed control is

SPOGA-FLBPI based on Eq. (3 - 47). This means that the SPOGA can optimize the

parameters of FLBPI successfully.

4.10 Summary

This Chapter has presented the simulation of speed and position controllers using

conventional controllers (PI and PID controllers), FLC, and hybrid-fuzzy controllers

(FLBPI, FLBPID, and FLIC) based on the result of s-modeling the DC servomotor.

161

The simulation results show that hybrid controllers have the better performance

than conventional controllers and FLC alone has not been as good performance as

conventional and hybrid controllers. Therefore, the GA/SPOGA is applied to optimize

the hybrid-fuzzy controllers to make a significant improvement to the conventional

controllers.

The simulation results of GA and SPOGA show that to fulfil the minimum

criteria, SPOGA can reduce 50% test runs for pm=0.01 and 44.44 % test runs for

pm=0.1. To fulfil the good criteria, SPOGA can reduce 9.46 % test runs for pm=0.01

and 27.19 % test runs for pm=0.1. Therefore, SPOGA is selected to optimize the

hybrid-fuzzy controllers using minimum criteria.

Simulation results of SPOGA optimized hybrid-fuzzy controllers show that

SPOGA can optimize the parameters of FLBPI successfully, and the comparison to

the conventional controllers will be presented in Chapter 5..

CHAPTER 5

REAL-TIME IMPLEMENTATION RESULTS AND DISCUSSIONS

5.1 Introduction

The simulation design of controllers and algorithms have been presented in Chapter 3.

The results of s-modelling, GA and SPOGA experiments, and simulations of speed

and position control have been presented in Chapter 4. The results of real-time

implementation on hardware experimental rig will be presented in this chapter.

The simulation results show that hybrid-fuzzy controllers have the better

performance than conventional controllers and FLC has not as good performance as

conventional and hybrid-fuzzy controllers. The simulation results of SPOGA

optimized hybrid-fuzzy controllers show that SPOGA can optimize the parameters of

FLBPI successfully, and the comparison to the conventional controllers will be

presented in this chapter.

Experiment of sampling period and FIR is conducted to find the appropriate

sampling period and the number of points in FIR based on the computer system and

the open loop characteristic of the plant. The experiment determines whether the

computer based controller can be applied to the hardware or not and determines the

appropriate number of points in FIR.

Based on the experiment of sampling period and FIR, the hardware experiment is

continued to the experiment of conventional, fuzzy, and hybrid PID-fuzzy controllers

using the parameters as in the Chapter 4. The performance evaluations are used as in

the Chapter 4 with the 5 % criteria for settling time and steady state error. The

experiment results are then compared with the simulation results to test the result of s-

modeling of the DC servomotor.

163

The parameters of SPOGA optimized hybrid-fuzzy controllers in the Chapter 4

are applied to the hardware experiment rig and the results are compared with the

simulation results. The performance of SPOGA optimized hybrid-fuzzy controllers

are then compared graphically with non-SPOGA optimized hybrid-fuzzy controllers

to get the improvement value. Finally, the SPOGA optimized hybrid-fuzzy controllers

are compared graphically with the conventional and fuzzy controller to determine

how much the SPOGA optimized hybrid-fuzzy controllers can improve the

performance of a controller.

5.2 Experiment on Sampling Period and FIR

The hardware design was explained in Section 3.2 of Chapter 3. This section shows

the experiment result of determining the sampling period and the appropriate number

of points of FIR.

Experiment of sampling period is conducted to get the minimum sampling period

that the computer system can handle the hardware and to calibrate between the

SIMULINK time and the real time. The experiment result is shown in Table 5. 1.

Table 5. 1 Experiment result of sampling period

SAMPLING

PERIOD

(sec)

SIMULINK

TIME

(sec)

REAL TIME

(sec)

PLANT TIME

CONSTANT

(sec)

REMARKS

0.100 100.00 100.89

0.50

Too long

0.010 100.00 101.60
Fulfil the

requirement

0.001 100.000 -
Error/Stop

responding

Based on Table 5. 1, the sampling period of 0.01 sec can fulfil the requirement

regarding to the open loop time constant of DC servomotor which is 0.5 sec, where

the maximum sampling period is
0.5

10
= 0.05 sec. Using this sampling period, the

difference between real time and SIMULINK time is 1.6 sec, or the real time is

delayed 1.6 sec.

164

Experiment of FIR is conducted to get the appropriate number of points (N) of

FIR in which the output has the maximum deviation with respect to noise less than 2

% and the time constant of the process value is not too long. Comparison between 25-

point FIR and 30-point FIR gives the result as in Table 5.2

Table 5.2 Comparison between 25-point FIR and 30-point FIR

Item 25-point FIR 30-point FIR
 Maximum deviation 2.20 1.87

 Time constant of process value 0.62 0.66

Based on Table 5.2, the 30-point FIR has the maximum deviation less than 2 %.

Increasing the number of point of FIR will make the time constant of process value

longer.

5.3 Experiments of Conventional and Fuzzy Logic Controllers

There are three types of controllers in this hardware experiment: (1) PI controller, (2)

PID controller, and (3) Fuzzy logic controller. The experiment was done as a

comparison with the simulation results for the same controllers.

The parameters of PI and PID controller and the related position controller are the

same as in the simulaton experiment of PI and PID controller as described in Section

4.3. The membership functions and rules of FLC for both speed and position

controller and the position constant are the same as in the simulation experiment of

FLC as described in Section 4.3.

The seven types of hardware experiment similar to as explained in Section 3.7 are

going to be conducted. These are classified into four conditions, i.e.:

i. Extreme condition, namely Experiment 1a and 1b

ii. Moderate condition, namely Experiment 2

iii. Variable load condition, namely Experiment 3a and 3b

iv. Variable set point condition, namely Experiment 4a and 4b

The types of experiment are summarized in Table 5.3.

165

For convenience, Table 4.2 is adopted here and is presented as Table 5.3 that

suumarize the type of experiments to be conducted.

Table 5.3 Types of experiment

Type Experiment Condition Specifications

1a Extreme a

Set point of speed (rpm) 150.00

Set point of position (rad) 6.00

Loaded No

1b Extreme b

Set point of speed (rpm) 400.00

Set point of position (rad) 0.50

Loaded No

2 Moderate

Set point of speed (rpm) 275.00

Set point of position (rad) 3.50

Loaded No

3a Variable load a

Set point of speed (rpm) 250.00

Set point of position (rad) 5.00

Loaded After 15 sec

3b Variable load b

Set point of speed (rpm) 250.00

Set point of position (rad) 5.00

Loaded Up to 15 sec

4a Variable set point a

Set point of speed (rpm) variable [0.00, 400.00]

Set point of position (rad) -

Loaded No

4b Variable set point b

Set point of speed (rpm) 275.00

Set point of position (rad) 2 (up to 45 sec), 5 (after 45 sec)

Loaded No

5.3.1 Results for Conventional and Fuzzy Logic Controllers in Real-time

Implementation

The comparison on the effectiveness of implementing conventional and fuzzy logic

controllers for hardware experiment based on the second order underdamped response

analysis is presented in Table 5.4, the comparison based on error analysis is presented

in Table 5.5, and the comparison based on fitness value analysis is presented in

Table 5.6.

It is shown in Table 5.4, Table 5.5, and Table 5.6 that the best overshoot and

settling time in the experiment 1a for speed control is PI controller, but the best fitness

value for the first 8-second starting speed based on ITAEvp (fvp) is PID controller. The

total fitness value for speed control (fitv) is obtained based on the overshoot, settling

time, and ITAEvp and the best is the PI controller.

166

In the position control, the best SSEP is PI controller, but the best fitness value

based on ITAEp (fp) is PID controller. The total fitness value for position control (fitp)

is obtained based on the SSEP and ITAEp , and the best is the PID controller.

Table 5.4 Experiment results of conventional and fuzzy logic controllers based on

second order underdamped response analysis

Type PERFORMANCE ITEM
Controller

PI PID FLC

1a

Overshoot (%OS, %) 0.50 23.04 18.84

Settling time (ts, sec) 3.53 3.82 9.91

SSEP (%Sp, %) 0.17 0.20 0.42

1b SSEP (%Sp) 23.05 13.15 144.59

2

Overshoot (%OS, %) 1.44 2.20 14.57

Settling time (ts, sec) 4.06 2.70 6.02

SSEP (%Sp, %) 0.09 0.08 0.90

3a

Overshoot (%OS, %) 0.84 4.42 12.85

Settling time (ts, sec) 4.03 6.96 7.70

Undershoot (%US, %) 35.04 33.42 41.83

SSEP (%Sp, %) 0.46 0.03 0.72

3b

Overshoot (%OS, %) 0.00 1.74 4.12

Settling time (ts, sec) 5.42 3.47 6.14

Overshoot 2 (%OS2, %) 46.66 51.63 63.59

SSEP (%Sp, %) 0.00 0.03 0.59

4b

Overshoot (%OS, %) 0.00 2.49 11.57

Settling time (ts, sec) 3.52 2.40 5.33

SSEP (%Sp, %) 0.07 0.09 0.15

SSEP: Steady State Error of Position

Table 5.5 Experiment results of conventional and fuzzy logic controllers based on

error analysis

Type PERFORMANCE ITEM
Controller

PI PID FLC

1a
ITAEvp 1.22E+02 1.03E+02 2.21E+02

ITAEp 6.02E+03 5.96E+03 6.05E+03

1b ITAEp 4.67E+02 2.67E+02 2.91E+03

2
ITAEvp 2.27E+02 1.22E+02 4.55E+02

ITAEp 3.92E+02 3.79E+02 5.31E+02

3a

ITAEvp 2.38E+02 1.45E+02 3.69E+02

ITAEvl 2.04E+03 1.60E+03 2.42E+03

ITAEp 1.41E+03 1.34E+03 1.55E+03

3b

ITAEvp 1.51E+03 1.63E+03 2.18E+03

ITAEvl 2.17E+03 1.55E+03 4.24E+03

ITAEp 1.32E+03 1.30E+03 1.47E+03

4a IAEv 1.14E+03 8.86E+02 2.30E+03

4b
ITAEvp 2.52E+02 1.27E+02 4.42E+02

ITAEp 1.84E+03 1.81E+03 1.93E+03

ITAEvp : Integral of time absolute value of error for the first 8 sec; ITAEp : ITAE for position, ITAEvl :
ITAE for the 9-sec start loading speed; IAEv : integral of absolute value of error for overall 90 sec.

167

The best total fitness value for speed and position control in the experiment 1a

(f1a) is PI controller. Therefore, PI is the best conventional controller in the

experiment 1a which is better than FLC.

Comparing with the simulation results, the performance is not exactly the same

but the best controller with the best total fitness value for speed and position control is

the same.

Table 5.6 Experiment results of conventional and fuzzy logic controllers based on

fitness value analysis

Type PERFORMANCE ITEM
Controller

PI PID FLC

1a

fvp 0.46 0.54 0.00

fp 0.27 0.73 0.00

fitv 0.60 0.34 0.05

fitp 0.40 0.60 0.00

fit1a 0.54 0.43 0.03

1b

fp 0.48 0.52 0.00

fitp 0.48 0.52 0.00

fit1b 0.48 0.52 0.00

2

fvp 0.41 0.59 0.00

fp 0.48 0.52 0.00

fitv 0.43 0.57 0.00

fitp 0.49 0.51 0.00

fit2 0.45 0.55 0.00

3a

fvp 0.37 0.63 0.00

fvpl 0.32 0.68 0.00

fp 0.39 0.61 0.00

fitv 0.37 0.63 0.00

fitp 0.32 0.68 0.00

fit3a 0.39 0.61 0.00

3b

fvp 0.31 0.69 0.00

fvpl 0.43 0.00 0.00

fp 0.46 0.54 0.00

fitv 0.40 0.46 0.00

fitp 0.49 0.51 0.00

fit3b 0.43 0.48 0.00

4a

fv 0.45 0.55 0.00

fitv 0.45 0.55 0.00

fit4a 0.45 0.55 0.00

4b

fvp 0.38 0.62 0.00

fp 0.43 0.57 0.00

fitv 0.44 0.56 0.00

fitp 0.51 0.49 0.00

fit4b 0.46 0.54 0.00

fvp : Fitness value for the first 8-sec starting speed based on ITAEvp; fp : Fitness value for position based
on ITAEp; fvpl : Fitness value for the 9-sec start loading speed (from 14 to 23 sec) based on ITAEvpl; fv:

Fitness value for overall 90 sec of speed based on IAEv; fitv : Total fitness value for speed control; fitp :
Total fitness value for position control; fitx : Total fitness value for speed and position control in the

experiment of Type x

168

The experiment 1b presents the position performance since it is in the extreme

condition with maximum speed and minimum position. The best SSEP and the best

fitness value based on ITAEp (fp) is PID controller. The best total fitness value for

position control (fitp) is obtained based on the SSEP and ITAEp , and the best is the

PID controller.

The best total fitness value for speed and position control in the experiment 1b

(f1b) is PID controller. Therefore, PID is the best conventional controller in the

experiment 1b which is better than FLC, as in the simulation experiment.

The best overshoot in the experiment 2 for speed control is PI controller, but the

best fitness value for the first 8-second starting speed based on ITAEvp (fvp) and the

best settling time is PID controller. The total fitness value for speed control (fitv) is

obtained based on the overshoot, settling time, and ITAEvp and the best is the PID

controller.

In the position control, the best SSEP and the best fitness value based on ITAEp

(fp) is PID controller. The total fitness value for position control (fitp) is obtained

based on the SSEP and ITAEp , and the best is the PID controller.

The best total fitness value for speed and position control in the experiment 2 (f2)

is PID controller. Therefore, PID is the best conventional controller in the experiment

2 which is better than FLC.

Comparing with the simulation results, the performance is not exactly the same

but the best controller with the best total fitness value for speed and position control is

the same.

The best overshoot and settling time in the experiment 3a for speed control is PI

controller, but the best fitness value for the first 8-second starting speed based on

ITAEvp (fvp) is PID controller. The total fitness value for speed control (fitv) is obtained

based on the overshoot, settling time, undershoot, ITAEvpl and ITAEvp and the best is

PI controller. When start loading, the best undershoot is PID controller.

169

In the position control, the best SSEP and the best fitness value based on ITAEp

(fp) is PID controller. The total fitness value for position control (fitp) is obtained

based on the SSEP and ITAEp , and the best is the PID controller.

The best total fitness value for speed and position control in the experiment 3a

(f3a) is PID controller. Therefore, PID is the best conventional controller in the

experiment 3a which is better than FLC.

Comparing with the simulation results, the performance is not exactly the same

but the best controller with the best total fitness value for speed and position control is

the same.

The best overshoot and overshoot 2 (when start unloading) in the experiment 3b

is PI controller but the best settling time and the best fitness value for the first 8-

second starting speed based on ITAEvp (fvp) for speed control is PID controller. The

total fitness value for speed control (fitv) is obtained based on the overshoot, settling

time, overshoot 2, ITAEvpl and ITAEvp and the best is the PID controller.

In the position control, the best SSEP is PI controller but the best fitness value

based on ITAEp (fp) is PID controller. The total fitness value for position control (fitp)

is obtained based on the SSEP and ITAEp , and the best is the PID controller.

The best total fitness value for speed and position control in the experiment 3b

(f3b) is PID controller. Therefore, PID is the best conventional controller in the

experiment 3b which is better than FLC.

Comparing with the simulation results, the performance is not exactly the same

but the best controller with the best total fitness value for speed and position control is

the same.

The experiment 4a presents the speed performance without overshoot and settling

time since it is in the variations of speed set point. The best fitness value based on

IAEv (fv) is PID controller. The best total fitness value for speed control (fitv) is

obtained based on the IAEv only, and the best is the PID controller.

170

The best total fitness value for speed and position control in the experiment 4a

(f4a) is PID controller. Therefore, PID is the best conventional controller in the

experiment 4a which is better than FLC, as in the simulation experiment.

The best overshoot in the experiment 4b for speed control is PI controller, but the

best fitness value for the first 8-second starting speed based on ITAEvp (fvp) and the

best settling time is PID controller. The total fitness value for speed control (fitv) is

obtained based on the overshoot, settling time, and ITAEvp and the best one is PID

controller.

In the position control, the best SSEP and the best fitness value based on ITAEp

(fp) is PI controller. The total fitness value for position control (fitp) is obtained based

on the SSEP and ITAEp , and the best is the PID controller.

The best total fitness value for speed and position control in the experiment 4b

(f4b) is PID controller. Therefore, PID is the best conventional controller in the

experiment 4b which is better than FLC.

Comparing with the simulation results, the performance is not exactly the same

because the tuning process was done on the transfer function obtained via system

identification of s-modeling of the system.

5.3.2 Experiment Results Summary of Conventional and Fuzzy Controllers

The speed and position control hardware of conventional and fuzzy logic controller

has been presented. PI controller is the best speed controller as compared to PID

controller and FLC for experiment of Type 1a, and 3a. PID controller is the best speed

controller as compared to PI controller and FLC for experiment of Type 2, 3b, 4a, and

4b. Using Eq. (3 - 45), the best overall speed controller is PID as compared to PI and

fuzzy logic. In the application of speed control, FLC is not as good as conventional

controller.

In both speed and position control, PI is the best controller as compared to PID

controller and FLC for experiment of Type 1a. PID controller is the best controller as

171

compared to PI controller and FLC for experiment of Type 1b, 2a,3a, 3b, 4a and 4b.

Using Eq. (3 - 45), the best overall speed and position controller is PID as compared

to PI and fuzzy logic. In the application of speed and position control, FLC is not as

good as conventional controller as in the simulation results, but in the real-time

implementation results, the best is PID controller while in the simulation results the

best is PI. Noise and filtering in the real-time implementation make the effect of

derivative part in the PID more significant.

Comparing with the simulation results, the real-time implementation results tend

to be similar to the simulation results.

5.4 Experiment of Hybrid-Fuzzy Controllers

There are three types of controllers in this experiment: FLBPI controller, FLPID

controller, and FLIC. The experiment was done as an improvement of PID and FLC

based on the results that the performance of standard FLC is not as good as PID or PI

controller.

The parameters of FLBPI and FLBPID controller and the related position

controller are the same as in the simulaton experiment of FLBPI and FLBPID

controller as described in Section 4.4. The membership functions and rules of FLIC

for both speed controller and the position constant are the same as in the simulation

experiment of FLIC as described in Section 4.4.

There are seven types of hardware experiment as explained in Section 3.7 which

are summarized in Table 5.3.

5.4.1 Results of Hybrid-Fuzzy Controller in Real-time Implementation

The comparison on the effectiveness of implementing hybrid-fuzzy controllers for

hardware experiment based on the second order underdamped response analysis is

presented in Table 5.7, the comparison based on error analysis is presented in

172

Table 5.8, and the comparison based on fitness value analysis is presented in

Table 5.9.

It is shown in Table 5.7, Table 5.8, and Table 5.9 that the best overshoot and

settling time in the experiment 1a is FLBPID controller but the best fitness value for

the first 8-second starting speed based on ITAEvp (fvp) is FLIC for speed control. The

total fitness value for speed control (fitv) is obtained based on the overshoot, settling

time, and ITAEvp and the best is the FLBPID controller.

In the position control, the best SSEP is FLBPI controller, but the best fitness

value based on ITAEp (fp) is FLIC. The total fitness value for position control (fitp) is

obtained based on the SSEP and ITAEp , and the best is the FLBPI controller.

The best total fitness value for speed and position control in the experiment 1a

(f1a) is FLBPID controller. Therefore, FLBPID is the best hybrid controller in the

experiment 1a (extreme condition).

Table 5.7 Experiment results of hybrid-fuzzy controllers based on second order

underdamped response analysis

Type PERFORMANCE ITEM
Controller

FLBPI FLBPID FLIC

1a

Overshoot (%OS, %) 27.45 17.26 26.56

Settling time (ts, sec) 2.38 1.96 2.36

SSEP (%Sp, %) 0.03 0.03 0.06

1b SSEP (%Sp) 0.79 0.79 1.00

2

Overshoot (%OS, %) 3.08 2.49 6.31

Settling time (ts, sec) 1.37 1.87 5.10

SSEP (%Sp, %) 0.06 0.08 0.03

3a

Overshoot (%OS, %) 4.23 3.97 4.60

Settling time (ts, sec) 4.45 1.91 6.93

Undershoot (%US, %) 37.95 36.42 37.72

SSEP (%Sp, %) 0.03 0.09 0.69

3b

Overshoot (%OS, %) 3.51 3.52 3.25

Settling time (ts, sec) 1.29 1.98 3.07

Overshoot 2 (%OS2, %) 58.24 45.89 61.61

SSEP (%Sp, %) 0.04 0.02 0.08

4b

Overshoot (%OS, %) 7.37 1.71 4.07

Settling time (ts, sec) 1.61 1.70 2.98

SSEP (%Sp, %) 0.06 0.08 0.09

SSEP: Steady State Error of Position

Comparing with the simulation results, the performance is not exactly the same

but the best controller with the best total fitness value for speed and position control is

the same.

173

The experiment 1b presents the position performance since it is in the extreme

condition with maximum speed and minimum position. The best SSEP and the best

fitness value based on ITAEp (fp) is both FLBPI and FLBPID. The best total fitness

value for position control (fitp) is obtained based on the SSEP and ITAEp , and the best

is both FLBPI and FLBPID.

Table 5.8 Experiment results of hybrid-fuzzy controllers based on error analysis

Type PERFORMANCE ITEM
Controller

FLBPI FLBPID FLIC

1a
ITAEvp 7.36E+01 6.70E+01 5.62E+01

ITAEp 5.92E+03 5.95E+03 5.92E+03

1b ITAEp 1.85E+01 1.85E+01 2.37E+01

2
ITAEvp 1.19E+02 1.29E+02 1.80E+02

ITAEp 3.77E+02 3.84E+02 3.78E+02

3a

ITAEvp 1.15E+02 1.27E+02 1.49E+02

ITAEvl 1.15E+03 1.93E+03 1.63E+03

ITAEp 1.29E+03 1.38E+03 1.42E+03

3b

ITAEvp 1.14E+02 2.58E+02 2.26E+02

ITAEvl 1.50E+03 1.57E+03 1.91E+03

ITAEp 1.26E+03 1.34E+03 1.29E+03

4a IAEv 8.86E+02 8.91E+02 1.14E+03

4b
ITAEvp 1.26E+02 1.15E+02 1.74E+02

ITAEp 1.79E+03 1.81E+03 1.82E+03

ITAEvp : Integral of time absolute value of error for the first 8 sec; ITAEp : ITAE for position, ITAEvl :
ITAE for the 9-sec start loading speed; IAEv : integral of absolute value of error for overall 90 sec.

The best total fitness value for speed and position control in the experiment 1b

(f1b) is both FLBPI and FLBPID. Therefore, both FLBPI and FLBPID are the best

hybrid controllers in the experiment 1b (extreme condition).

Comparing with the simulation results, the best performance is very different

because the tuning process was done on the transfer function as a result of s-modeling

of the system, but the experiment results are more valid than the simulation results.

The best overshoot in the experiment 2 for speed control is FLBPID controller but

the best settling time is FLBPI controller and the best fitness value for the first 8-

second starting speed based on ITAEvp (fvp) is FLIC. The total fitness value for speed

control (fitv) is obtained based on the overshoot, settling time, and ITAEvp and the best

is the FLBPI controller.

174

Table 5.9 Experiment results of hybrid-fuzzy controllers based on fitness value

analysis

Type PERFORMANCE ITEM
Controller

FLBPI FLBPID FLIC

1a

fvp 0.00 0.28 0.72

fp 0.45 0.00 0.55

fitv 0.00 0.72 0.28

fitp 0.49 0.24 0.28

fit1a 0.16 0.56 0.28

1b

fp 0.50 0.50 0.00

fitp 0.50 0.50 0.00

fit1b 0.50 0.50 0.00

2

fvp 0.54 0.46 0.00

fp 0.52 0.00 0.48

fitv 0.51 0.49 0.00

fitp 0.42 0.00 0.58

fit2 0.54 0.46 0.00

3a

fvp 0.61 0.39 0.00

fvpl 0.72 0.00 0.28

fp 0.76 0.24 0.00

fitv 0.51 0.42 0.07

fitp 0.64 0.36 0.00

fit3a 0.55 0.40 0.05

3b

fvp 0.82 0.00 0.18

fvpl 0.00 0.46 0.00

fp 0.62 0.00 0.38

fitv 0.37 0.21 0.27

fitp 0.52 0.29 0.19

fit3b 0.42 0.24 0.24

4a

fv 0.50 0.50 0.00

fitv 0.50 0.50 0.00

fit4a 0.50 0.50 0.00

4b

fvp 0.45 0.55 0.00

fp 0.71 0.29 0.00

fitv 0.32 0.56 0.12

fitp 0.71 0.29 0.00

fit4b 0.45 0.47 0.08

fvp : Fitness value for the first 8-sec starting speed based on ITAEvp; fp : Fitness value for position based
on ITAEp; fvpl : Fitness value for the 9-sec start loading speed (from 14 to 23 sec) based on ITAEvpl; fv:

Fitness value for overall 90 sec of speed based on IAEv; fitv : Total fitness value for speed control; fitp :
Total fitness value for position control; fitx : Total fitness value for speed and position control in the

experiment of Type x

In the position control, the best SSEP is FLIC but the best fitness value based on

ITAEp (fp) is FLBPI controller. The total fitness value for position control (fitp) is

obtained based on the SSEP and ITAEp , and the best is the FLIC.

The best total fitness value for speed and position control in the experiment 2 (f2)

is FLBPI controller. Therefore, FLBPI is the best hybrid controller in the experiment

2 (moderate condition).

175

Comparing with the simulation results, the performance is not exactly the same

and the best performance is different because the tuning process was done on the

transfer function as a result of s-modeling of the system, but the experiment results

are more valid than the simulation results.

The best overshoot, settling time and undershoot in the experiment 3a for speed

control is FLBPID controller, but the best fitness value for the first 8-second starting

speed based on ITAEvp (fvp) is FLBPI controller. The total fitness value for speed

control (fitv) is obtained based on the overshoot, settling time, undershoot, ITAEvpl and

ITAEvp and the best is FLBPID controller. When start loading, the best undershoot is

FLBPI controller.

In the position control, the best SSEP and the best fitness value based on ITAEp

(fp) is FLBPI controller. The total fitness value for position control (fitp) is obtained

based on the SSEP and ITAEp , and the best is the FLBPI controller.

The best total fitness value for speed and position control in the experiment 3a

(f3a) is FLBPI controller. Therefore, FLBPI is the best hybrid controller in the

experiment 3a (variable load condition).

Comparing with the simulation results, the performance is not exactly the same

and the best performance is different because the tuning process was done on the

transfer function as a result of s-modeling of the system, but the experiment results

are more valid than the simulation results.

The best overshoot in the experiment 3b for speed control is FLIC but the settling

time and the fitness value for the first 8-second starting speed based on ITAEvp (fvp) is

FLBPI controller, and the best overshoot 2 (when start unloading) is FLBPID

controller. The total fitness value for speed control (fitv) is obtained based on the

overshoot, settling time, overshoot 2, ITAEvpl and ITAEvp and the best is the FLBPI

controller.

In the position control, the best SSEP is FLBPID controller but the best fitness

value based on ITAEp (fp) is FLBPI controller. The total fitness value for position

176

control (fitp) is obtained based on the SSEP and ITAEp , and the best is the FLBPI

controller.

The best total fitness value for speed and position control in the experiment 3b

(f3b) is FLBPI controller. Therefore, FLBPI is the best hybrid controller in the

experiment 3b (variable load condition).

Comparing with the simulation results, the performance is not exactly the same

but the best controller with the best total fitness value for speed and position control is

the same.

The experiment 4a presents the speed performance without overshoot and settling

time since it is in the variations of speed set point. The best fitness value based on

IAEv (fv) is FLBPI controller. The best total fitness value for speed control (fitv) is

obtained based on the IAEv only, and the best is the FLBPI controller.

The best total fitness value for speed and position control in the experiment 4a

(f4a) is FLBPI controller. Therefore, FLBPI is the best hybrid controller in the

experiment 4a (variable set point condition).

Comparing with the simulation results, the best performance is different because

the tuning process was done on the transfer function as a result of s-modeling of the

system, but the experiment results are more valid than the simulation results.

In the experiment 4b, the best overshoot and the best fitness value for the first 8-

second starting speed based on ITAEvp (fvp) for speed control is FBPID controller, but

the best settling time is FBPI controller. The total fitness value for speed control (fitv)

is obtained based on the overshoot, settling time, and ITAEvp and the best is the

FLBPID controller.

In the position control, the best SSEP and the best fitness value based on ITAEp

(fp) is FLBPI controller. The total fitness value for position control (fitp) is obtained

based on the SSEP and ITAEp , and the best is the FLBPI controller.

177

The best total fitness value for speed and position control in the experiment 4b

(f4b) is FLBPID controller. Therefore, FLBPID is the best hybrid controller in the

experiment 4b (variable set point condition).

Comparing with the simulation results, the best performance is very different

because the tuning process was done on the transfer function as a result of s-modeling

of the system, but the experiment results are more valid than the simulation results.

5.4.2 Experiment Results Summary of Hybrid-Fuzzy Controllers

The speed and position control experiment of hybrid-fuzzy controller has been

presented. FLBPI controller is the best speed controller as compared to FLBPID

controller and FLIC for experiment of Type 2, 3a, 3b, and 4a. FLBPID controller is

the best speed controller as compared to FLBPI controller and FLIC for experiment of

Type 1a, and 4b. FLIC is not as good as FLBPI controller and FLBPID controller as a

speed controller. Using Eq. (3 - 45), the best overall speed controller is FLBPID as

compared to FLBPI and FLIC.

In both speed and position control, FLBPI is the best controller as compared to

FLBPID controller and FLIC for experiment of Type 2, 3a, 3b and 4b. FLBPID

controller is the best controller as compared to FLBPI controller and FLIC for

simulation of Type 1a, 1b, and 4b. FLIC is not as good as FLBPI controller and

FLBPID controller as both speed and position controller. Using Eq. (3 - 45), the best

overall speed and position controller is FLBPI as compared to FLBPID and FLIC.

Comparing with the simulation results, the real-time implementation results tend

to be similar to the simulation results.

5.5 Experiment of SPOGA Optimized Controllers

There are three types of controllers in this simulation: SPOGA-FLBPI controller,

SPOGA-FLPID controller, and SPOGA-FLIC. The experiment was done as a result

of optimization using SPOGA.

178

There are seven types of hardware experiment as explained in Section 3.7 which

are summarized in Table 5.3.

5.5.1 Results of SPOGA Optimized Controllers in Real-time Implementation

The comparison on the effectiveness of implementing SPOGA optimized hybrid-

fuzzy controllers for hardware experiment based on the second order underdamped

response analysis is presented in Table 5.10, the comparison based on error analysis is

presented in Table 5.11, and the comparison based on fitness value analysis is

presented in Table 5.12.

It is shown in Table 5.10, Table 5.11, and Table 5.12 that the best overshoot in the

experiment 1a is SPOGA-FLBPI controller, but the best settling time and fitness

value for the first 8-second starting speed based on ITAEvp (fvp) is SPOGA-FLBPID

controller for speed control. The total fitness value for speed control (fitv) is obtained

based on the overshoot, settling time, and ITAEvp and the best is the SPOGA-FLBPID

controller.

Table 5.10 Experiment results of SPOGA optimized hybrid-fuzzy controllers based

on second order underdamped response analysis

Type PERFORMANCE ITEM

Controller

SPOGA-

FLBPI

SPOGA-

FLBPID

SPOGA-

FLIC

1a

Overshoot (%OS, %) 14.55 16.83 44.52

Settling time (ts, sec) 1.79 1.74 2.06

SSEP (%Sp, %) 0.09 0.07 0.08

1b SSEP (%Sp) 0.48 0.39 0.39

2

Overshoot (%OS, %) 3.72 4.29 2.27

Settling time (ts, sec) 1.43 1.05 2.05

SSEP (%Sp, %) 0.07 0.05 0.09

3a

Overshoot (%OS, %) 2.72 3.59 3.10

Settling time (ts, sec) 1.48 1.01 2.05

Undershoot (%US, %) 38.39 32.38 41.35

SSEP (%Sp, %) 0.05 0.02 0.10

3b

Overshoot (%OS, %) 4.85 2.20 3.79

Settling time (ts, sec) 1.36 1.08 3.12

Overshoot 2 (%OS2, %) 48.72 49.62 59.43

SSEP (%Sp, %) 0.01 0.08 0.015

4b

Overshoot (%OS, %) 3.67 6.75 3.10

Settling time (ts, sec) 1.38 1.21 2.21

SSEP (%Sp, %) 0.08 0.07 0.08

SSEP: Steady State Error of Position

179

In the position control, the best SSEP and the best fitness value based on ITAEp

(fp) is SPOGA-FLBPID controller. The total fitness value for position control (fitp) is

obtained based on the SSEP and ITAEp , and the best is the SPOGA-FLBPID

controller.

Table 5.11 Experiment results of SPOGA optimized hybrid-fuzzy controllers based

on error analysis

Type PERFORMANCE ITEM

Controller

SPOGA-

FLBPI

SPOGA-

FLBPID

SPOGA-

FLIC

1a
ITAEvp 5.81E+01 5.43E+01 8.55E+01

ITAEp 5.95E+03 5.92E+03 5.93E+03

1b ITAEp 1.24E+01 1.05E+01 1.21E+01

2
ITAEvp 1.15E+02 1.06E+02 1.72E+02

ITAEp 3.80E+02 3.72E+02 3.90E+02

3a

ITAEvp 9.98E+01 9.03E+01 1.48E+02

ITAEvl 1.16E+03 1.91E+03 2.13E+03

ITAEp 1.30E+03 1.36E+03 1.49E+03

3b

ITAEvp 1.30E+02 2.40E+02 3.23E+02

ITAEvl 1.50E+03 1.42E+03 2.11E+03

ITAEp 1.30E+03 1.35E+03 1.30E+03

4a IAEv 8.89E+02 8.19E+02 1.30E+03

4b
ITAEvp 1.17E+02 9.13E+01 2.10E+02

ITAEp 1.80E+03 1.79E+03 1.88E+03

ITAEvp : Integral of time absolute value of error for the first 8 sec; ITAEp : ITAE for position, ITAEvl :
ITAE for the 9-sec start loading speed; IAEv : integral of absolute value of error for overall 90 sec.

The best total fitness value for speed and position control in the experiment 1a

(f1a) is SPOGA-FLBPID controller. Therefore, SPOGA-FLBPID is the best hybrid-

fuzzy controller in the experiment 1a (extreme condition).

Comparing with the simulation results, the best performance is different because

the tuning process was done on the transfer function as a result of s-modeling of the

system, but the experiment results are more valid than the simulation results.

The simulation 1b presents the position performance since it is in the extreme

condition with maximum speed and minimum position. The best SSEP and fitness

value based on ITAEp (fp) is SPOGA-FLBPID controller. The best total fitness value

for position control (fitp) is obtained based on the SSEP and ITAEp , and the best is the

SPOGA-FLBPID controler.

180

The best total fitness value for speed and position control in the experiment 1b

(f1b) is SPOGA-FLBPID controller. Therefore, SPOGA-FLBPID controller is the best

hybrid-fuzzy controller in the experiment 1b (extreme condition).

Comparing with the simulation results, the best performance is different because

the tuning process was done on the transfer function as a result of s-modeling of the

system, but the experiment results are more valid than the simulation results.

Table 5.12 Experiment results of SPOGA optimized hybrid-fuzzy controllers based

on fitness value analysis

Type PERFORMANCE ITEM

Controller

SPOGA-

FLBPI

SPOGA-

FLBPID

SPOGA-

FLIC

1a

fvp 0.47 0.53 0.00

fp 0.00 0.59 0.41

fitv 0.48 0.52 0.00

fitp 0.00 0.58 0.42

fit1a 0.32 0.54 0.14

1b

fp 0.00 0.86 0.14

fitp 0.00 0.68 0.32

fit1b 0.00 0.68 0.32

2

fvp 0.46 0.54 0.00

fp 0.36 0.64 0.00

fitv 0.35 0.38 0.26

fitp 0.33 0.67 0.00

fit2 0.35 0.48 0.17

3a

fvp 0.46 0.54 0.00

fvpl 0.82 0.18 0.00

fp 0.60 0.40 0.00

fitv 0.57 0.34 0.09

fitp 0.55 0.45 0.00

fit3a 0.56 0.38 0.06

3b

fvp 0.70 0.30 0.00

fvpl 0.47 0.53 0.00

fp 0.52 0.00 0.48

fitv 0.41 0.52 0.07

fitp 0.52 0.00 0.48

fit3b 0.44 0.35 0.21

4a

fv 0.46 0.54 0.00

fitv 0.46 0.54 0.00

fit4a 0.46 0.54 0.00

4b

fvp 0.44 0.56 0.00

fp 0.45 0.55 0.00

fitv 0.45 0.37 0.18

fitp 0.26 0.74 0.00

fit4b 0.39 0.49 0.12

fvp : Fitness value for the first 8-sec starting speed based on ITAEvp; fp : Fitness value for position based
on ITAEp; fvpl : Fitness value for the 9-sec start loading speed (from 14 to 23 sec) based on ITAEvpl; fv:

Fitness value for overall 90 sec of speed based on IAEv; fitv : Total fitness value for speed control; fitp :
Total fitness value for position control; fitx : Total fitness value for speed and position control in the

experiment of Type x

181

The best overshoot for speed control in the experiment 2 is SPOGA-FLIC, but the

best settling time and the best fitness value for the first 8-second starting speed based

on ITAEvp (fvp) for speed control is SPOGA-FLBPID controller. The total fitness value

for speed control (fitv) is obtained based on the overshoot, settling time, and ITAEvp

and the best is the SPOGA-FLBPID controller.

In the position control, the best SSEP and the best fitness value based on ITAEp

(fp) is SPOGA-FLBPID controller. The total fitness value for position control (fitp) is

obtained based on the SSEP and ITAEp , and the best is the SPOGA-FLBPID

controller.

The best total fitness value for speed and position control in the experiment 2 (f2)

is SPOGA-FLBPID controller. Therefore, SPOGA-FLBPID is the best hybrid-fuzzy

controller in the experiment 2 (moderate condition).

Comparing with the simulation results, the best performance is different because

the tuning process was done on the transfer function as a result of s-modeling of the

system, but the experiment results are more valid than the simulation results.

In the experiment 3a, the best overshoot, settling time and the best fitness value

for the first 8-second starting speed based on ITAEvp (fvp) for speed control is SPOGA-

FLBPID controller. The total fitness value for speed control (fitv) is obtained based on

the overshoot, settling time, undershoot, ITAEvpl and ITAEvp and the best is SPOGA-

FLBPI controller. When start loading, the best undershoot is FLBPID controller.

In the position control, the best SSEP is SPOGA-FLBPID controller but the best

fitness value based on ITAEp (fp) is SPOGA-FLBPI controller. The total fitness value

for position control (fitp) is obtained based on the SSEP and ITAEp , and the best is the

SPOGA-FLBPI controller.

The best total fitness value for speed and position control in the experiment 3a

(f3a) is SPOGA-FLBPI controller. Therefore, SPOGA-FLBPI controller is the best

hybrid-fuzzy controller in the experiment 3a (variable load)

182

Comparing with the simulation results, the performance is not exactly the same

but the best controller with the best total fitness value for speed and position control is

the same.

The best overshoot and settling for speed control in the experiment 3b is SPOGA-

FLBPID controller, but the the best fitness value for the first 8-second starting speed

based on ITAEvp (fvp) is SPOGA-FLBPI controller. The total fitness value for speed

control (fitv) is obtained based on the overshoot, settling time, overshoot 2, ITAEvpl

and ITAEvp and the best is SPOGA-FLBPID controller. The best overshoot 2 when

start unloading is FLBPIGA controller.

In the position control, the best SSEP and the best fitness value based on ITAEp

(fp) is SPOGA-FLBPI controller. The total fitness value for position control (fitp) is

obtained based on the SSEP and ITAEp , and the best is the SPOGA-FLBPI controller.

The best total fitness value for speed and position control in the experiment 3b

(f3b) is SPOGA-FLBPID controller. Therefore, SPOGA-FLBPID controller is the best

hybrid-fuzzy controller in the experiment 3b (variable load condition).

Comparing with the simulation results, the best performance is different because

the tuning process was done on the transfer function as a result of s-modeling of the

system, but the experiment results are more valid than the simulation results.

The experiment 4a presents the speed performance without overshoot and settling

time since it is in the variations of speed set point. The best fitness value based on

IAEv (fv) is SPOGA-FLBPID controller. The best total fitness value for speed control

(fitv) is obtained based on the IAEv only, and the best is the SPOGA-FLBPID

controller.

The best total fitness value for speed and position control in the experiment 4a

(f4a) is SPOGA-FLBPID controller. Therefore, SPOGA-FLBPID controller is the best

hybrid-fuzzy controller in the experiment 4a, as in the simulation experiment.

The best overshoot for speed control in the experiment 4b is SPOGA-FLIC. The

best settling time and the best fitness value for the first 8-second starting speed based

183

on ITAEvp (fvp) is SPOGA-FLBPID controller. The total fitness value for speed control

(fitv) is obtained based on the overshoot, settling time, and ITAEvp and the best is the

SPOGA-FLBPI controller.

In the position control, the best SSEP and the best fitness value based on ITAEp

(fp) is SPOGA-FLBPID controller. The total fitness value for position control (fitp) is

obtained based on the SSEP and ITAEp , and the best is the SPOGA-FLBPID

controller.

The best total fitness value for speed and position control in the experiment 4b

(f4b) is SPOGA-FLBPI controller. Therefore, SPOGA-FLBPI controller is the best

hybrid-fuzzy controller in the experiment 4b (variable set point condition).

Comparing with the simulation results, the performance is not exactly the same

but the best controller with the best total fitness value for speed and position control is

the same.

5.5.2 Experiment Results Summary of SPOGA Optimized Hybrid-Fuzzy

Controllers

The speed and position control experiment of SPOGA optimized hybrid-fuzzy

controller has been presented. SPOGA-FLBPI controller is the best speed controller

as compared to SPOGA-FLBPID controller and SPOGA-FLIC for experiment of

Type 3a and 4b. SPOGA-FLBPID controller is the best speed controller as compared

to SPOGA-FLBPI controller and SPOGA-FLIC for experiment of Type 1a, 2, 3b, and

4a. SPOGA-FLIC is not as good as SPOGA-FLBPI controller and SPOGA-FLBPID

controller for speed control. Using Eq. (3 - 45), the best overall speed controller is

SPOGA-FLBPI as compared to SPOGA-FLBPID and SPOGA-FLIC.

In the both speed and position control, SPOGA-FLBPI controller is the best speed

controller as compared to SPOGA-FLBPID controller and SPOGA-FLIC for

experiment of Type 3a and 3b. SPOGA-FLBPID controller is the best speed

controller as compared to SPOGA-FLBPI controller and SPOGA-FLIC for

experiment of Type 1a, 1b, 2, 4a and 4b. SPOGA-FLIC is not as good as SPOGA-

184

FLBPI controller and SPOGA-FLBPID controller for speed and position control.

Using Eq. (3 - 45), the best overall speed and position controller is SPOGA-FLBPID

controller as compared to SPOGA-FLBPI and SPOGA-FLIC.

Comparing with the simulation results, the real-time implementation results tend

to be similar to the simulation results.

5.6 Performance Comparisons of SPOGA to non-SPOGA Controllers

This section presents the performance improvements of non-SPOGA hybrid-fuzzy

controllers and SPOGA optimized hybrid-fuzzy controllers based on the fitness values

where the performance items are based on Table 5.7 to Table 5.12.

There are seven types of hardware experiment as explained in Section 3.7 which

are summarized in Table 5.3.

The graphs of input-output characteristic of speed error, speed, and position

between the best improvement of SPOGA optimized hybrid controllers and the

corresponding hybrid controllers are presented in this section for each experiment

type.

5.6.1 Results of Performance Comparisons of SPOGA to non-SPOGA

Controllers in Real-time Implementation

The comparison on the improvement of SPOGA optimized and non-SPOGA hybrid-

fuzzy controllers based on the performance metrics for hardware experiment is

presented in Table 5.13 where the performance items are based on Table 5.9 and

Table 5.12.

It is shown in Table 5.13 that SPOGA-FLBPI in the experiment 1a makes the best

fit improvement for speed control. This means that SPOGA-FLBPI makes the best fit

improvement in the experiment 1a. The best position controller is FLBPI but it is not

optimized by SPOGA. The improvement of SPOGA-FLIC is less than zero, this

185

means that the SPOGA-FLIC cannot make improvement in the experiment 1a. The

graphical comparisons of SPOGA-FLBPI to FLBPI are shown in Fig. 5.1 and

Fig. 5.2.

It is shown in Fig. 5.1 and Fig. 5.2 that SPOGA-FLBPI has no overshoot and the

settling time is faster than FLBPI. This makes the absolute error of SPOGA-FLBPI is

smaller than FLBPI.

In the experiment 1b, SPOGA-FLBPID has the best fit for position control but the

SPOGA is not optimize the position controller.

Table 5.13 Performance improvement comparison of SPOGA optimized and non-

SPOGA hybrid-fuzzy controllers for hardware experiment

Type
PERFORMANCE

ITEMS

Controller

FLBPI
SPOGA-

FLBPI
FLBPID

SPOGA-

FLBPID
FLIC

SPOGA-

FLIC

1a

fitv 0.08 0.26 0.20 0.27 0.14 0.05

fitp 0.30 0.02 0.17 0.16 0.24 0.12

fit 0.15 0.18 0.19 0.23 0.17 0.08

Ipv1a 0.18 0.07 -0.08

1b

fitv - - - - - -

fitp 0.10 0.24 0.10 0.28 0.00 0.27

fit 0.10 0.24 0.10 0.28 0.00 0.27

Ipv1b - - -

2

fitv 0.22 0.20 0.21 0.21 0.01 0.15

fitp 0.21 0.14 0.08 0.29 0.29 0.00

fit 0.21 0.19 0.16 0.24 0.10 0.10

Ipv2 -0.01 0.01 0.14

3a

fitv 0.18 0.30 0.13 0.22 0.04 0.12

fitp 0.26 0.25 0.19 0.21 0.09 0.00

fit 0.20 0.29 0.15 0.21 0.06 0.08

Ipv3a 0.12 0.09 0.08

3b

fitv 0.19 0.20 0.16 0.25 0.09 0.03

fitp 0.27 0.25 0.14 0.00 0.12 0.23

fit 0.22 0.21 0.15 0.17 0.10 0.10

Ipv3b 0.01 0.09 -0.06

4a

fitv 0.22 0.22 0.22 0.26 0.09 0.00

fitp - - - - - -

fit 0.22 0.22 0.22 0.26 0.09 0.00

Ipv4a -0.00 0.04 -0.09

4b

fitv 0.13 0.22 0.24 0.19 0.09 0.12

fitp 0.32 0.15 0.18 0.24 0.08 0.04

fit 0.19 0.20 0.22 0.21 0.09 0.09

Ipv4b 0.09 -0.05 0.03

In the experiment 2, SPOGA-FLIC makes the best fit improvement in the

experiment 1a eventhough the performance of SPOGA-FLIC is not as good as

186

SPOGA-FLBPI and SPOGA-FLBPID. The improvement of SPOGA-FLBPI is less

than zero, this means that both SPOGA-FLBPI cannot make improvement in the

experiment 2. The graphical comparisons of SPOGA-FLIC to FLIC are shown in

Fig. 5.3 and Fig. 5.4.

Fig. 5.1 Step response of speed control of DC servomotor using SPOGA-FLBPI vs.

FLBPI for experiment 1a (see Fig. D.6)

Fig. 5.2 Absolute error of speed control of DC servomotor using SPOGA-FLBPI vs.

FLBPI for experiment 1a

187

Fig. 5.3 Step response of speed control of DC servomotor using SPOGA-FLIC vs.

FIC for experiment 2 (see Fig. D.7)

It shown in the Fig. 5.3 and Fig. 5.4 that SPOGA-FLIC has smaller overshoot and

settling time than FLIC. This makes the absolute error of SPOGA-FLIC smaller than

FLIC. Actually, SPOGA-FLIC has not the best performace as compared to SPOGA-

FLBPI and SPOGA-FLBPID but the the SPOGA improvement is the best as

compared to FLBPI and FLBPID.

Fig. 5.4 Absolute error of speed control of DC servomotor using SPOGA-FLIC vs.

FLIC for experiment 2

In the experiment 3a, SPOGA-FLBPI makes the best fit improvement in the

experiment 3a. The graphical comparisons of SPOGA-FLBPI to FLBPI are shown in

Fig. 5.5 and Fig. 5.6.

188

Fig. 5.5 Step response of speed control of DC servomotor using SPOGA-FLBPI vs.

FLBPI for experiment 3a (see Fig. D.8)

Fig. 5.6 Absolute error of speed control of DC servomotor using SPOGA-FLBPI vs.

FLBPI for experiment 3a

It shown in the Fig. 5.5 and Fig. 5.6 that SPOGA-FLBPI is similar to FLBPI,

based on Table 5.8 and Table 5.11, the ITAE of SPOGA-FLBPI is smaller than the

ITAE of FLBPI. This makes the fit of SPOGA-FLBPI better than FLBPI.

In the experiment 3b, SPOGA-FLBPID makes the best fit improvement. The

improvement of SPOGA-FLIC is less than zero, this means that SPOGA-FLIC cannot

make improvement in the experiment 3b. The graphical comparisons of SPOGA-

FLBPID to FLBPID are shown in Fig. 5.7 and Fig. 5.8.

189

Fig. 5.7 Step response of speed control of DC servomotor using SPOGA-FLBPID vs.

FLBPID for experiment 3b (see Fig. D.9)

Fig. 5.8 Absolute error of speed control of DC servomotor using SPOGA-FLBPID

vs. FLBPID for experiment 3b

It shown in the Fig. 5.7 and Fig. 5.8 that SPOGA-FLBPI has smaller settling time

and overshoot 2 than FLBPI.

In the experiment 4a, SPOGA-FLBPID makes the best fit improvement. The

improvement of SPOGA-FLIC and GAFLBPI are less than zero, this means that both

SPOGA-FLIC and SPOGA-FLBPI cannot make improvement in the experiment 4a.

The graphical comparisons of SPOGA-FLBPID to FLBPID are shown in Fig. 5.9 and

Fig. 5.10.

190

Fig. 5.9 Speed control of DC servomotor using SPOGA-FLBPID vs. FLBPID for

experiment 4a

Fig. 5.10 Absolute error of speed control of DC servomotor using SPOGA-FLBPID

vs. FLBPID for experiment 4a

It shown in the Fig. 5.9 and Fig. 5.10 that SPOGA-FLBPI has smaller settling

time than FLBPI. This makes the absolute error of SPOGA-FLBPI smaller than

FLBPI.

In the experiment 4b, SPOGA-FLBPI makes the best fit improvement. The

improvement of SPOGA-FLBPID is less than zero, this means that SPOGA-FLBPID

cannot any improvement in the experiment 4b. The graphical comparisons of

SPOGA-FLBPI to FLBPI are shown in Fig. 5.11 to Fig. 5.13.

191

Fig. 5.11 Step response of speed control of DC servomotor using SPOGA-FLBPI vs.

FLBPI for experiment 4b (see Fig. D.10)

Fig. 5.12 Absolute error of speed control of DC servomotor using SPOGA-FLBPI vs.

FLBPI for experiment 4b

It shown in the Fig. 5.11 and Fig. 5.12 that SPOGA-FLBPI has smaller overshoot

than FLBPI. This makes the absolute error of SPOGA-FLBPI smaller than FLBPI.

It is shown in Fig. 5.13 that SPOGA-FLBPI is similar to FLBPI. This means that

SPOGA-FLBPI does not make any improvement in position control, but the SPOGA

is for optimizing the speed controller only.

192

Fig. 5.13 Position control of DC servomotor using SPOGA-FLBPI vs. FLPI for

experiment 4b

5.6.2 Experiment Results Summary of SPOGA optimized and non-SPOGA

optimized Hybrid-Fuzzy Controllers

The improvement tests of GA optimized hybrid-fuzzy controller to non-GA optimized

hybrid PID-fuzzy controller have been presented. It was shown that SPOGA-FLBPI

can make fit improvement in all of the experiment types except in the simulation of

Type 2 and 4a which failed. SPOGA-FLBPID can make improvement in all of the

experiment types except in the simulation of Type 4b which failed. SPOGA-FLIC can

make improvement in the experiment of Type 2, 3a, and 4b, and fails to make

improvement in the experiment of Type 1a, 3b, and 4a

The experiment results show that based on Eq. (3 - 47), the best total

improvement of speed control is SPOGA-FLBPI. This means that the SPOGA can

optimize the parameters of FLBPI successfully.

Comparing with the simulation results, the real-time implementation results tend

to be similar to the simulation results.

193

5.7 Performance Comparisons of Conventional, Fuzzy, and SPOGA Optimized

Hybrid-Fuzzy Controllers

This section presents the performance comparisons of conventional (PI and PID

controllers), FLC, and SPOGA optimized hybrid-fuzzy controllers based on the

fitness values where the performance items are based on Table 5.6 and Table 5.12.

There are seven types of hardware experiment as explained in Section 3.7 which

are summarized in Table 5.3.

The graphs of input-output characteristic of speed error, position error, speed, and

position between the best conventional and fuzzy controllers and the best SPOGA

optimized hybrid controllers are presented in this section for each experiment type.

5.7.1 Results on Performance Comparisons of Conventional, Fuzzy, and

SPOGA Optimized Hybrid-Fuzzy Controllers

The comparison on the effectiveness of implementing conventional, fuzzy, and

hybrid-fuzzy controllers based on the performance metrics for hardware experiment is

presented in Table 5.14 where the performance items are based on Table 5.6 and

Table 5.12.

It is shown in Table 5.14 that the best speed controller in the experiment 1a is PI

for conventional controller and SPOGA-FLBPID for hybrid controller, and the best

position controller is PID for conventional controller and SPOGA-FLBPID for hybrid

controller. As a speed and position controller, PI is the best conventional controller

and SPOGA-FLBPID is the best hybrid controller. Comparison on the best

conventional to the best hybrid are shown in the table that SPOGA optimized hybrid-

fuzzy controllers are better then conventional controllers in the experiment 1a. The

graphical comparisons are shown in the Fig. 5.14 to Fig. 5.17.

It is shown in Fig. 5.14 and Fig. 5.15 that SPOGA-FLBPI has the faster settling

time than PI where both have no overshoot. Consequently, the absolute error of

SPOGA-FLBPI is smaller than PI.

194

Table 5.14 Performance comparisons of conventional, fuzzy, and SPOGA optimized

hybrid-fuzzy controllers for hardware experiment

TYPE CONTROLLERS
Controller

fitv fitp fit1a

1a

PI 0.20 0.12 0.18

PID 0.16 0.17 0.16

FLC 0.06 0.00 0.04

SPOGA-FLBPI 0.22 0.22 0.22

SPOGA-FLBPID 0.22 0.25 0.23

SPOGA-FLIC 0.14 0.24 0.17

1b

PI - 0.18 0.18

PID - 0.19 0.19

FLC - 0.00 0.00

SPOGA-FLBPI - 0.21 0.21

SPOGA-FLBPID - 0.21 0.21

SPOGA-FLIC - 0.21 0.21

2

PI 0.16 0.19 0.17

PID 0.20 0.20 0.20

FLC 0.00 0.00 0.00

SPOGA-FLBPI 0.22 0.20 0.21

SPOGA-FLBPID 0.22 0.21 0.22

SPOGA-FLIC 0.20 0.19 0.20

3a

PI 0.16 0.15 0.16

PID 0.16 0.26 0.19

FLC 0.00 0.04 0.01

SPOGA-FLBPI 0.28 0.27 0.27

SPOGA-FLBPID 0.22 0.24 0.23

SPOGA-FLIC 0.18 0.04 0.13

3b

PI 0.18 0.20 0.18

PID 0.16 0.21 0.18

FLC 0.01 0.00 0.01

SPOGA-FLBPI 0.20 0.21 0.20

SPOGA-FLBPID 0.24 0.17 0.22

SPOGA-FLIC 0.11 0.21 0.14

4a

PI 0.17 - 0.18

PID 0.22 - 0.22

FLC 0.00 - 0.00

SPOGA-FLBPI 0.22 - 0.22

SPOGA-FLBPID 0.23 - 0.23

SPOGA-FLIC 0.15 - 0.15

4b

PI 0.17 0.14 0.16

PID 0.21 0.15 0.19

FLC 0.00 0.00 0.00

SPOGA-FLBPI 0.22 0.16 0.20

SPOGA-FLBPID 0.21 0.18 0.20

SPOGA-FLIC 0.19 0.09 0.16

195

Fig. 5.14 Step response of speed control of DC servomotor using SPOGA-FLBPI vs.

PI for experiment 1a (see Fig. D.11)

Fig. 5.15 Absolute error of speed control of DC servomotor using SPOGA-FLBPI vs.

PI for experiment 1a

It is shown in Fig. 5.16 and Fig. 5.17 that SPOGA-FLBPID has the faster settling

time than the PID. This makes the absolute error of SPOGA-FLBPID is smaller than

PID.

In the experiment 1b, the best position controller is PID for conventional

controller and SPOGA-FLBPID for hybrid controller. As a speed and position

controller, PID is the best conventional controller and SPOGA-FLBPID is the best

hybrid controller. Comparison on the best conventional to the best hybrid are shown

in the table that SPOGA optimized hybrid-fuzzy controllers are better then

196

conventional controllers in the experiment 1b. The graphical comparisons are shown

in the Fig. 5.18 and Fig. 5.19.

Fig. 5.16 Position control of DC servomotor using SPOGA-FLBPID vs. PID for

experiment 1a

Fig. 5.17 Absolute error of position control of DC servomotor using SPOGA-

FLBPID vs. PID for experiment 1a

It is shown in Fig. 5.18 and Fig. 5.19 that SPOGA-FLBPID can reach the setpoint

while PID has steady state error. This makes the absolute error of PID larger than

SPOGA-FLBPID.

197

Fig. 5.18 Position control of DC servomotor using SPOGA-FLBPID vs. PID for

experiment 1b

Fig. 5.19 Absolute error of position control of DC servomotor using SPOGA-

FLBPID vs. PID for experiment 1b

In the experiment 2, the best speed controller is PID for conventional controller

and SPOGA-FLBPID for hybrid-fuzzy controller, and the best position controller is

PID for conventional controller and SPOGA-FLBPID for hybrid-fuzzy controller. As

a speed and position controller, PID is the best conventional controller and SPOGA-

FLBPID is the best hybrid-fuzzy controller. Comparison on the best conventional to

the best hybrid are shown in the table that SPOGA optimized hybrid-fuzzy controllers

are better then conventional controllers in the experiment 2. The graphical

comparisons are shown in the Fig. 5.20 to Fig. 5.23.

198

Fig. 5.20 Step response of speed control of DC servomotor using SPOGA-FLBPID

vs. PID for experiment 2 (see Fig. D.12)

Fig. 5.21 Absolute error of speed control of DC servomotor using SPOGA-FLBPID

vs. PID for experiment 2

It is shown in Fig. 5.20 and Fig. 5.21 that SPOGA-FLBPID has the faster settling

time than PID. Consequently, the absolute error of SPOGA-FLBPID is smaller than

PID.

It is shown in Fig. 5.22 and Fig. 5.23 that SPOGA-FLBPID has the faster settling

time than PID. This makes the absolute error of SPOGA-FLBPID smaller than PID.

199

Fig. 5.22 Position control of DC servomotor using SPOGA-FLBPID vs. PID for

experiment 2

Fig. 5.23 Absolute error of position control of DC servomotor using SPOGA-

FLBPID vs. PID for experiment 2

In the experiment 3a, the best speed controller is PID for conventional controller

and SPOGA-FLBPI for hybrid-fuzzy controller, and the best position controller is

PID for conventional controller and SPOGA-FLBPI for hybrid-fuzzy controller. As a

speed and position controller, PID is the best conventional controller and SPOGA-

FLBPI is the best hybrid-fuzzy controller. Comparison on the best conventional to the

best hybrid are shown in the table that hybrid-fuzzy controllers are better then

conventional controllers in the experiment 3a. The graphical comparisons are shown

in the Fig. 5.24 to Fig. 5.27.

200

Based on Fig. 5.24 and Fig. 5.25, SPOGA-FLBPI has the faster settling time than

PID either unloaded or loaded eventhough there is a very small of overshoot.

Consequently, the absolute error of SPOGA-FLBPI is smaller than PID.

Fig. 5.24 Step response of speed control of DC servomotor using SPOGA-FLBPI vs.

PID for experiment 3a (see Fig. D.13)

Fig. 5.25 Absolute error of speed control of DC servomotor using SPOGA-FLBPI vs.

PID for experiment 3a

Based on Fig. 5.26 and Fig. 5.27, SPOGA-FLBPI has the faster settling time than

PID. This makes the absolute error of SPOGA-FLBPI smaller than PID.

201

Fig. 5.26 Position control of DC servomotor using SPOGA-FLBPI vs. PID for

experiment 3a

Fig. 5.27 Absolute error of position control of DC servomotor using SPOGA-FLBPI

vs. PID for experiment 3a

In the experiment 3b, the best speed controller is PI for conventional controller

and SPOGA-FLBPID for hybrid-fuzzy controller, and the best position controller is

PID for conventional controller and SPOGA-FLBPI for hybrid-fuzzy controller. As a

speed and position controller, PI is the best conventional controller and SPOGA-

FLBPID is the best hybrid-fuzzy controller. Comparison on the best conventional to

the best hybrid are shown in the table that hybrid-fuzzy controllers are better then

conventional controllers in the experiment 3b. The graphical comparisons are shown

in the Fig. 5.28 to Fig. 5.31.

202

Fig. 5.28 Step response of speed control of DC servomotor using SPOGA-FLBPI vs.

PID for experiment 3b (see Fig. D.14)

Fig. 5.29 Absolute error of speed control of DC servomotor using SPOGA-FLBPID

vs. PI for experiment 3b

Based on Fig. 5.28 and Fig. 5.29, SPOGA-FLBPID has the faster settling time

than PI. Consequently, the absolute error of SPOGA-FLBPID smaller than PI.

Based on Fig. 5.30 and Fig. 5.31, SPOGA-FLBPI has the faster settling time than

PID. This makes the absolute error of SPOGA-FLBPI smaller than PID.

203

Fig. 5.30 Position control of DC servomotor using SPOGA-FLBPI vs. PID for

experiment 3b

Fig. 5.31 Absolute error of position control of DC servomotor using SPOGA-FLBPI

vs. PID for experiment 3b

In the experiment 4a, the best speed controller is PID for conventional controller

and SPOGA-FLBPID for hybrid-fuzzy controller. As a speed and position controller,

PID is the best conventional controller and SPOGA-FLBPID is the best hybrid-fuzzy

controller. Comparison on the best conventional to the best hybrid are shown in the

table that SPOGA optimized hybrid-fuzzy controllers are better then conventional

controllers in the experiment 4a. The graphical comparisons are shown in the

Fig. 5.32 and Fig. 5.33.

204

Fig. 5.32 Speed control of DC servomotor using SPOGA-FLBPID vs. PID for

experiment 4a

Fig. 5.33 Absolute error of speed control of DC servomotor using SPOGA-FLBPID

vs. PID for experiment 4a

Based on Fig. 5.32 and Fig. 5.33, SPOGA-FLBPID has faster settling time than

PID. This makes the absolute error of SPOGA-FLBPID smaller than PID.

In the experiment 4b, the best speed controller is PID for conventional controller

and SPOGA-FLBPI for hybrid-fuzzy controller, and the best position controller is

PID for conventional controller and SPOGA-FLBPID for hybrid-fuzzy controller. As

a speed and position controller, PID is the best conventional controller and SPOGA-

FLBPI is the best hybrid-fuzzy controller. Comparison on the best conventional to the

best hybrid are shown in the table that SPOGA optimized hybrid-fuzzy controllers are

205

better than conventional controllers in the experiment 4b. The graphical comparisons

are shown in the Fig. 5.34 to Fig. 5.37.

Fig. 5.34 Step response of speed control of DC servomotor using SPOGA-FLBPI vs.

PID for experiment 4b (see Fig. D.15)

Fig. 5.35 Absolute error of speed control of DC servomotor using SPOGA-FLBPI vs.

PID for experiment 4b

Based on in Fig. 5.34 and Fig. 5.35, SPOGA-FLBPI has the faster settling time

than PID and on the second start, PID has overshoot. Consequently, the absolute error

of SPOGA-FLBPI is smaller than PID.

206

Fig. 5.36 Position control of DC servomotor using SPOGA-FLBPID vs. PID for

simulation 4b

Fig. 5.37 Absolute error of position control of DC servomotor using SPOGA-

FLBPID vs. PID for simulation 4b

Based on Fig. 5.36 and Fig. 5.37, SPOGA-FLBPID has faster settling time than

PID on the second set point. This makes the absolute error of SPOGA-FLBPID

smaller than PID.

207

5.7.2 Experiment Results Summary of Coventional, Fuzzy, and SPOGA

Optimized Hybrid-Fuzzy Controllers

The speed and position control experiment of SPOGA optimized hybrid-fuzzy

controller compared to conventional and fuzzy controller has been presented.

SPOGA-FLBPID controller is the best speed controller as compared to SPOGA-

FLBPI controller, SPOGA-FLIC, conventional controllers and fuzzy controller for the

experiment of Type 2, 3b, and 4a. SPOGA-FLBPI is the best speed controller as

compared to SPOGA-FLBPID controller, SPOGA-FLIC, conventional controllers and

fuzzy controller for the experiment of Type 1a, 3a and 4b. Using Eq. (3 - 45), the

best overall speed controller is SPOGA-FLBPI.

In both speed and position control, SPOGA-FLBPID controller is the best

controller as compared to SPOGA-FLBPI controller, SPOGA-FLIC, conventional

controllers and fuzzy controller for the experiment of Type 1a, 1b, 2, 3b, and 4a.

SPOGA-FLBPI is the best controller as compared to SPOGA-FLIC, SPOGA-FLBPID

controller, conventional controllers and fuzzy controller for the experiment of Type 3a

and 4b. Using Eq. (3 - 45), PID controller is the best overall speed and position

controller as compared conventional and fuzzy controller, and the best overall speed

and position controller as compared to conventional, fuzzy, and hybrid controllers is

SPOGA-FLBPI.

It is concluded that SPOGA optmized hybrid controllers have the better

performance than conventional and fuzzy controllers. Therefore, it is proved that the

SPOGA can be applied to optimize the parameters of hybrid controllers with the

performance improvements.

5.8 Summary

This Chapter has presented the experiment of speed and position controllers using

conventional controllers (PI and PID controllers), FLC, and hybrid-fuzzy controllers

(FLBPI, FLBPID, and FLIC) based on the parameters as discussed in Chapter 4.

208

The experiment results show that hybrid-fuzzy controllers have the better

performance than conventional controllers and FLC is shown to be having not as good

performance as conventional and hybrid-fuzzy controllers. The results are basically

the same as in the simulation experiments but the detailed performance and the

performance results of each experiment type are not exactly the same since the tuning

process was done in the s-modeled DC servomotor which is the approximation of real

DC servomotor. The s-modeling of DC servomotor is very useful for running the

SPOGA in the optimization process.

Experimentally, the appropriate pm for optimization process of FLBPI, FLBPID,

and FLIC is 0.01. The simulation results of GA and SPOGA show that to fulfil the

minimum criteria, SPOGA can reduce 50% of the test runs and to fulfil the good

criteria, SPOGA can reduce 9.46 % of the test runs. Therefore, SPOGA is selected as

an algorithm to optimize the hybrid PID-fuzzy controllers using minimum criteria.

Experiment results of SPOGA optimized hybrid-fuzzy controllers show that

SPOGA can optimize the parameters of FLBPI successfully, but in some experiments,

the SPOGA-FLBPID is better than SPOGA-FLBPI.

Based on the simulation and experiment conducted in Chapter 4 and 5, the results

reveal the following:

 The FLBPID developed based on FLBPI helps in improving the performance, in

several cases.

 SPOGA has the influence to decrease the number of test runs for the optimization

of some parameters.

 The population initialization in the GA using the principle of twisted ring counter

would lead to more consistent outcomes from the genetic process.

CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

The aim of this thesis has been to design the optimization algorithm to improve the

controller's performance for a DC servomotor. The controller's performance is

evaluated based on the following criterion: minimizing the overshoot, minimizing the

settling time, IAE, ITAE and achieving a zero steady state error.

It discusses fundamental issues in the development of a simulation model for a

DC servomotor, the simulation and experimental design and the optimization of the

controller used for the servomotor. In particular it has been organised to answer

questions such as what controlling method is needed to achieve the effective speed

and position control, how to optimize the controller, and how to devise and evaluate

some performance criterion for different operating conditions.

GA is effective in acquiring the optimal or near-optimal for solving optimization

problem in control engineering, specifically achieving the best values for a predefined

set of priorities defining a process model or a control law. However, GA shows

indication of several limitations such as premature convergence and occurance of

local maxima, an increase of population size without a corresponding increase in

fitness, and undesirable searching speed.

Chapter 3 describes a new proposed algorithm to reduce the iteration number and

the optimization process duration time. The proposed GA is called semi-parallel

operation genetic algorithm (SPOGA), and the application of SPOGA to optimize the

parameters of three hybrid-fuzzy controllers are presented. The three hybrid fuzzy-

controllers optimized are: FLBPI, FLBPID, and FLIC. The discussion on the

optimization process conducted in simulation model and the application of the

210

optimized parameters to the hardware experimental test rig are presented in Chapter 4

and 5, respectively.

In this study, the hybrid controllers were shown to be better controllers as

compared to the conventional and fuzzy controllers for both speed and position

control in both the simulation and in real-time implementation. The performance

comparison based on simulations conducted for GA and SPOGA reveals that SPOGA

can reduce the number of test runs (iterative number) and the duration time of the

optimization process.

In real-time optimization, SPOGA has shown to be able to improve the

performance of the hybrid controllers, namely FLBPI and FLBPID, in which during

the earlier evaluations have proven to be better than the conventional (PI and PID)

and fuzzy controllers. A closer observation shows that SPOGA-optimized FLBPI

performs better than the non-SPOGA-optimized FLBPI. The main contributions of

this work are:

 This work proposes a new GA optimization algorithm and demonstrates the steps

taken in developing the semi-parallel operation GA (SPOGA) based on the

hierarchical GA (HGA) and parallel GA (PGA) to decrease the number of test

runs during the optimization process, for some parameters.

 This work demonstrates the step taken in developing the population initialization

in the GA using the principle of twisted ring counter where the origin uses the

random principle. The purpose is to make the outcomes of the genetic process

more consistent.

 By adapting the hybrid control system viewpoint, FLBPI and FLBPID were

developed and the controller parameters for the control of a servomotor were

optimized using SPOGA. This paves way for the similar idea to be utilized in a

more complex system.

 In SPOGA each parameter to be optimized has its own sub-chromosome and each

sub-chromosome is processed separately in consequent with the others. In

contrast with PGA which use multiprocessor, SPOGA work with one processor

only.

211

6.2 Directions for Future Work

Future work should include :

 Improvement in the convergence speed:

The improved optimized algorithm proposed in this work used fixed crossover

and mutation rates. Applying variable crossover and mutation rates can speed up

the convergence and restrain the premature convergence. The improved fitness

value in GA is also relevant to SPOGA.

 Sensorless position control :

The hardware test rig developed use a DC motor in which the speed was detected

using speed sensor and the position was simulated using mathematical approach.

Practically, position control is better to be sensorless as this will reduce cost and

size and increase reliability of the overall system.

 SPOGA performance analysis :

There exists several size and ratings of DC servomotors. The analysis of the

SPOGA performance in optimizing the hybrid-fuzzy controller for the control of

the different ratings of servomotors, would be very useful.

 Real-time implementation on actual robotic arm :

The extension of the hardware test rig to have the DC motor shaft connected to a

robotic arm with real gear ratio such that the arm's movement follows the desired

position and speed, would still be required.

 Evaluation of GA optimization algorithm:

The evaluation of other GA optimization algorithms that already exist, and

comparison with SPOGA to provide better understanding of the performances,

would need to be explored.

212

REFERENCES

[1] Meijuan Gao and Jingwen Tian, “Path Planning for Mobile Robot Based on

Improved Simulated Annealing Artificial Neural Network,” Natural

Computation, 2007. ICNC 2007. Third International Conference on, 2007, pp. 8-

12.

[2] S. Terentiev, E. Povernov, and E. Sypin, “The direct-current servomotor control

system,” Electron Devices and Materials, 2004. Proceedings. 5th Annual. 2004

International Siberian Workshop on, 2004, pp. 184-186.

[3] M. Shieh and T.S. Li, “Design and implementation of integrated fuzzy logic

controller for a servomotor system,” Mechatronics, vol. 8, Apr. 1998, pp. 217-

240.

[4] L.A. Zadeh, “Fuzzy Logic,” Computer, vol. 21 No. 24, Apr. 1988, pp. 83-93.

[5] Zhen-Yu Zhao, M. Tomizuka, and S. Isaka, “Fuzzy gain scheduling of PID

controllers,” Systems, Man and Cybernetics, IEEE Transactions on, vol. 23,

1993, pp. 1392-1398.

[6] E. Yeh and Y. Tsao, “A fuzzy preview control scheme of active suspension for

rough road,” International Journal of Vehicle Design, vol. 15, 1994, pp. 166-

180.

[7] S. He, S. Tan, F. Xu, and P. Wang, “Fuzzy self-tuning of PID controllers,” Fuzzy

Sets Syst., vol. 56, 1993, pp. 37-46.

[8] X. Gao and Z. Feng, “Design study of an adaptive Fuzzy-PD controller for

pneumatic servo system,” Control Engineering Practice, vol. 13, Jan. 2005, pp.

55-65.

213

[9] S. Jee and Y. Koren, “Adaptive fuzzy logic controller for feed drives of a CNC

machine tool,” Mechatronics, vol. 14, Apr. 2004, pp. 299-326.

[10] O. Castillo, G. Huesca, and F. Valdez, “Evolutionary computing for optimizing

type-2 fuzzy systems in intelligent control of non-linear dynamic plants,” Fuzzy

Information Processing Society, 2005. NAFIPS 2005. Annual Meeting of the

North American, 2005, pp. 247-251.

[11] H. Huang, M. Pasquier, and C. Quek, “Financial Market Trading System With a

Hierarchical Coevolutionary Fuzzy Predictive Model,” Evolutionary

Computation, IEEE Transactions on, vol. 13, 2009, pp. 56-70.

[12] Jun Zhang, Henry Shu-Hung Chung, and Wai-Lun Lo, “Clustering-Based

Adaptive Crossover and Mutation Probabilities for Genetic Algorithms,”

Evolutionary Computation, IEEE Transactions on, vol. 11, 2007, pp. 326-335.

[13] H. Lau, T. Chan, and W. Tsui, “Item-Location Assignment Using Fuzzy Logic

Guided Genetic Algorithms,” Evolutionary Computation, IEEE Transactions on,

vol. 12, 2008, pp. 765-780.

[14] E. Mininno, F. Cupertino, and D. Naso, “Real-Valued Compact Genetic

Algorithms for Embedded Microcontroller Optimization,” Evolutionary

Computation, IEEE Transactions on, vol. 12, 2008, pp. 203-219.

[15] P. Whigham and G. Dick, “Implicitly Controlling Bloat in Genetic

Programming,” IEEE Transaction on Evolutionary Computation, vol. 14, Apr.

2010, pp. 173-190.

[16] W. Wang and Y. Li, “Evolutionary Learning of BMF Fuzzy-Neural Networks

Using a Reduced-Form Genetic Algorithm,” IEEE Transactions on Systems,

Man, and Cybernatics, vol. 33, Dec. 2003, pp. 966-976.

[17] Gui Yang, Yujun Lu, Ren-wang Li, and Jin Han, “Adaptive genetic algorithms

for the Job-Shop Scheduling Problems,” Intelligent Control and Automation,

2008. WCICA 2008. 7th World Congress on, 2008, pp. 4501-4505.

214

[18] P. Day and A. Nandi, “Binary String Fitness Characterization and Comparative

Partner Selection in Genetic Programming,” Evolutionary Computation, IEEE

Transactions on, vol. 12, 2008, pp. 724-735.

[19] K. Duzinkiewics, M.A. Brdys, W. Kurek, and R. Piotrowski, “Genetic Hybrid

Predictive Controller for Optimized Dissolved-Oxygen Tracking at Lower

Control Level,” IEEE Transaction on Control System Technology, vol. 17, Sep.

2009, pp. 1183-1192.

[20] B. Karanayil, F. Rahman, and C. Gratham, “Online Stator and Rotor Resistance

Estimation Scheme Using Artificial Neural Networks for Vector Controlled

Speed Sensorless Induction Motor Drive,” IEEE Transaction on Industrial

Electronics, vol. 54, Feb. 2007, pp. 167-176.

[21] Yao Jinyong, Su Haibo, and Li Xiaogang, “Using Simulated Annealing

Embedded Modified Gauss-Newton Algorithm to identify parameters of

nonlinear degradation model,” Computer Application and System Modeling

(ICCASM), 2010 International Conference on, 2010, pp. V10-653-V10-656.

[22] K.M. Takami and J. Mahmoudi, “Identification of a Best Thermal Formula and

Model for Oil and Winding of Power Transformers Using Prediction Methods,”

The 48th Scandinavian Conference on Simulation and Modeling (SIMS 2007),

Sweden: 2007, pp. 182-188.

[23] A. Cavallo, G. De Maria, C. Natale, and S. Pirozzi, “Gray-Box Identification of

Continuous-Time Models of Flexible Structures,” IEEE Transaction on Control

System Technology, vol. 15, Sep. 2007, pp. 967-981.

[24] D. Pereira and J. Pinto, “Genetic algorithm based system identification and PID

tuning for optimum adaptive control,” Advanced Intelligent Mechatronics.

Proceedings, 2005 IEEE/ASME International Conference on, 2005, pp. 801-806.

[25] H. Pongpairoj and F. Pourboghrat, “Real-Time Optimal Control of Flexible

Structures Using Subspace Techniques,” IEEE Transaction on Control Systems

Technology, vol. 14, Nov. 2006, pp. 1021-1033.

215

[26] R. Battacharya and G.J. Balas, “Control in Computationally

Constrained Environments,” IEEE Transaction on Control System Technology,

vol. 17, May. 2009, pp. 589-599.

[27] T. Yamamoto, K. Takao, and T. Yamada, “Design of a Data-Driven PID

Controller,” IEEE Transaction on Control System Technology, vol. 17, Jan.

2009, pp. 29-39.

[28] B. Lacevic, J. Velagic, and N. Osmic, “Design of Fuzzy Logic Based Mobile

Robot Position Controller Using Genetic Algorithm,” International Conference

on Advanced Intelligent Mechatronics, IEEE/ASME 2007, 2007, pp. 1-6.

[29] L. Zadeh, “Is there a need for fuzzy logic?,” Fuzzy Information Processing

Society, 2008. NAFIPS 2008. Annual Meeting of the North American, 2008, pp.

1-3.

[30] E. Mamdani, “Application of fuzzy algorithms for control of simple dynamic

plant,” Electrical Engineers, Proceedings of the Institution of, vol. 121, 1974,

pp. 1585-1588.

[31] O. Cordon, F. Herrera, F. Hoffmann, and L. Magdalena, “Genetic Fuzzy

Systems: Evolutionary Tuning and Learning of Fuzzy Knowledge Bases,”

Advances in Fuzzy Systems-Applications and Theory, PO Box 128, Farrer Road,

Singapore 912805: World Scientific Publishing Co. Pte. Ltd., .

[32] Shuqing Wang, Zipeng Zhang, and Liqin Xue, “Knowledge Acquisition of

Fuzzy Control System Based on Improved Genetic Algorithm and Neural

Networks,” Fuzzy Systems and Knowledge Discovery, 2008. FSKD '08. Fifth

International Conference on, 2008, pp. 95-99.

[33] M.I. Solihin, Wahyudi, and A. Legowo, “Fuzzy-tuned PID Anti-swing Control

of Automatic Gantry Crane,” Journal of Vibration and Control, vol. 16, 2010,

pp. 127-145.

216

[34] K. Saridakis and A. Dentsoras, “Integration of fuzzy logic, genetic algorithms

and neural networks in collaborative parametric design,” ScienceDirect,

Advanced Engineering Informatics, vol. 20, 2006, pp. 379-399.

[35] T. Park and K.R. Ryu, “A Dual-Population Genetic Algorithm for Adaptive

Diversity Control,” Evolutionary Computation, IEEE Transactions on, vol. PP,

2010, p. 1.

[36] K. Man, K. Tang, and S. Kwong, “Genetic algorithms: concepts and applications

[in engineering design],” Industrial Electronics, IEEE Transactions on, vol. 43,

1996, pp. 519-534.

[37] P. Balasubramaniam and A.V.A. Kumar, “Solution of matrix Riccati differential

equation for nonlinear singular system using genetic programming,” Springer,

Genet Program Evolvable Mach, vol. 10, 2009, pp. 71-89.

[38] M.D. Schmidt and H. Lipson, “Coevolution of Fitness Predictors,” IEEE

Transaction on Evolutionary Computation, vol. 12, Dec. 2008, pp. 736-749.

[39] Z. Xiu and G. Ren, “Optimization Design of TS-PID Fuzzy Controllers Based

on Genetic Algorithms,” 5th World Congress on Intelligent Control and

Automation, Hangzhou, P.R. China: 2004, pp. 2476-2480.

[40] E. Bagheri and H. Deldari, “Dejong Function Optimization by means of a

Parallel Approach to Fuzzified Genetic Algorithm,” Computers and

Communications, 2006. ISCC '06. Proceedings. 11th IEEE Symposium on, 2006,

pp. 675-680.

[41] G. Di Fatta, G. Lo Re, and A. Urso, “Parallel Genetic Algorithms for the Tuning

of a Fuzzy AQM Controller,” Computational Science and Its Applications —

ICCSA 2003, Springer Berlin / Heidelberg, 2003, p. 965.

[42] J. Lis, “Parallel genetic algorithm with the dynamic control parameter,”

Evolutionary Computation, 1996., Proceedings of IEEE International

Conference on, 1996, pp. 324-329.

217

[43] K. Worapradya and S. Pratishthananda, “Fuzzy supervisory PI controller using

hierarchical genetic algorithms,” Control Conference, 2004. 5th Asian, 2004, pp.

1523-1528 Vol.3.

[44] I. Bousserhane, A. Hazzab, M. Rahli, M. Kamli, and B. Mazari, “Adaptive PI

Controller using Fuzzy System Optimized by Genetic Algorithm for Induction

Motor Control,” International Power Electronics Congress, 10th IEEE, 2006,

pp. 1-8.

[45] M. Mannan, T. Murata, J. Tamura, and T. Tsuchiya, “Fuzzy-logic-based self-

tuning PI controller for speed control of indirect field-oriented induction motor

drive,” SICE 2004 Annual Conference, 2004, pp. 466-470 vol. 1.

[46] T. Kissel, Motor Control Technology for Industrial Maintenance, New Jersey

07458: Prentice-Hall, Inc., Upper Saddle River, 2002.

[47] A. Rubaai, M.J. Castro-Sitiriche, M. Garuba, and L. Burge, “Implementation of

Artificial Neural Network-Based Tracking Controller for High-Performance

Stepper Motor Drives,” IEEE Transaction on Industrial Electronics, vol. 54,

Feb. 2007, pp. 218-227.

[48] M. Bodson, J.S. Sato, and S.R. Silver, “Spontaneous Speed Reversals in Stepper

Motors,” IEEE Transaction on Control System Technology, vol. 14, Mar. 2006,

pp. 369-373.

[49] C. Erdal, “A sensitivity measure for armature-controlled DC servomotors and

calculating optimum parameter tolerances,” Electrotechnical Conference, 1996.

MELECON '96., 8th Mediterranean, 1996, pp. 342-345 vol.1.

[50] D. Karagiannis, E. Mendes, A. Astolfi, and R. Ortega, “An Experimental

Comparison of Several PWM Controllers for a Single-Phase AC–DC

Converter,” IEEE Transaction on Control System Technology, vol. 11, Nov.

2003, pp. 940-947.

218

[51] C. Hsieh and J. Chou, “Design of Optimal PID Controllers for PWM Feedback

Systems With Bilinear Plants,” IEEE Transaction on Control System

Technology, vol. 15, Nov. 2007, pp. 1075-1079.

[52] Anonim, “Control Tutorial for Matlab: DC Motor Speed Modeling,” 1997.

[53] M. Jamshidi and M. Zavarei, Linear Control Systems : A Computer-Aided

Approach., Great Britain: Wheaton & Co.Ltd., 1986.

[54] N.S. Nise, Control System Engineering, Hoboken, NJ: John Wiley & Sons Ltd.,

2004.

[55] J. Jacob, Industrial Control Electronics, Englewood Cliffs, NJ.: Prentice-Hall

International Editions, 1989.

[56] G. Olsson and G. Piani, Computer Systems for Automation and Control, UK.:

Prentice-Hall, 1992.

[57] C. Johnson, Process Control Instrumentation Technology, New Jersey: Prentice

Hall International, Inc. Englewood Cliffs., 1993.

[58] I.R. Petersen, “Actuator Saturation and Integrator Windup,” 2002.

[59] L. Wang, A Course in Fuzzy System and Control, Upper Saddle River, New

Jersey 07458: Prentice-Hall, Inc, A Division of Simon and Schuster, 1997.

[60] T.J. Ross, Fuzzy Logic with Engineering Applications, West Sussex, England:

John Wiley & Sons Ltd., 2004.

[61] D. Pham and D. Karaboga, Intelligent Optimisation Techniques: Genetic

Algorithms, Tabu Search, Simulated Annealing and Neural Networks, Great

Britain: Springer-Verlag, 1998.

[62] H. Shan, S. Li, D. Gong, and P. Lou, “Genetic simulated annealing algorithm-

based assembly sequence planning,” Technology and Innovation Conference,

2006. ITIC 2006. International, 2006, pp. 1573-1579.

219

[63] F. Rodríguez-Díaz, C. García-Martínez, and M. Lozano, “A GA-based multiple

simulated annealing,” Evolutionary Computation (CEC), 2010 IEEE Congress

on, 2010, pp. 1-7.

[64] Kunlei Lian, Chaoyong Zhang, Xinyu Li, and Liang Gao, “An Effective Hybrid

Genetic Simulated Annealing Algorithm for Process Planning Problem,” Natural

Computation, 2009. ICNC '09. Fifth International Conference on, 2009, pp. 367-

373.

[65] Zhufang Wang and Donghong Cui, “A Hybrid Algorithm Based on Genetic

Algorithm and Simulated Annealing for Solving Portfolio Problem,” Business

Intelligence and Financial Engineering, 2009. BIFE '09. International

Conference on, 2009, pp. 106-109.

[66] Enlu Zhou and Xi Chen, “A new population-based simulated annealing

algorithm,” Winter Simulation Conference (WSC), Proceedings of the 2010,

2010, pp. 1211-1222.

[67] Li-li Dong, Ni Li, and Guang-hong Gong, “Adaptive & parallel simulated

annealing genetic algorithm based on cloud model,” Intelligent Computing and

Integrated Systems (ICISS), 2010 International Conference on, 2010, pp. 7-11.

[68] Pengjun Wang, Hui Li, and Zhenhai Wang, “MPRM expressions minimization

based on simulated annealing genetic algorithm,” Intelligent Systems and

Knowledge Engineering (ISKE), 2010 International Conference on, 2010, pp.

261-265.

[69] Ming-Hao Hung, Li-Sun Shu, Shinn-Jang Ho, Shiow-Fen Hwang, and Shinn-

Ying Ho, “A Novel Intelligent Multiobjective Simulated Annealing Algorithm

for Designing Robust PID Controllers,” Systems, Man and Cybernetics, Part A:

Systems and Humans, IEEE Transactions on, vol. 38, 2008, pp. 319-330.

220

[70] Sun Fengjie, Wang He, and Fan Jieqing, “2D Otsu Segmentation Algorithm

Based on Simulated Annealing Genetic Algorithm for Iced-Cable Images,”

Information Technology and Applications, 2009. IFITA '09. International Forum

on, 2009, pp. 600-602.

[71] Shan Hong-Bo and Li Shuxia, “The Comparison Between Genetic Simulated

Annealing Algorithm and Ant Colony Optimization Algorithm for ASP,”

Wireless Communications, Networking and Mobile Computing, 2008. WiCOM

'08. 4th International Conference on, 2008, pp. 1-6.

[72] Qi Ji-Yang, “Application of improved simulated annealing algorithm in facility

layout design,” Control Conference (CCC), 2010 29th Chinese, 2010, pp. 5224-

5227.

[73] Nguyen Thanh Trung and Duong Tuan Anh, “Comparing Three Improved

Variants of Simulated Annealing for Optimizing Dorm Room Assignments,”

Computing and Communication Technologies, 2009. RIVF '09. International

Conference on, 2009, pp. 1-5.

[74] Zhonghai Lu, Lei Xia, and A. Jantsch, “Cluster-based Simulated Annealing for

Mapping Cores onto 2D Mesh Networks on Chip,” Design and Diagnostics of

Electronic Circuits and Systems, 2008. DDECS 2008. 11th IEEE Workshop on,

2008, pp. 1-6.

[75] Huang Dong and Qiao Jian-Ping, “Hybrid of ant colony algorithm and simulated

annealing algorithm and its application to the slope stability analysis,” Natural

Computation (ICNC), 2010 Sixth International Conference on, 2010, pp. 3329-

3333.

[76] Meijuan Gao and Jingwen Tian, “Network Intrusion Detection Method Based on

Improved Simulated Annealing Neural Network,” Measuring Technology and

Mechatronics Automation, 2009. ICMTMA '09. International Conference on,

2009, pp. 261-264.

221

[77] Kai Bai and Jing Xiong, “A Method of Improved BP Neural Algorithm Based on

Simulated Annealing Algorithm,” Genetic and Evolutionary Computing, 2009.

WGEC '09. 3rd International Conference on, 2009, pp. 765-768.

[78] Anonim, “Evoulutionary Algorithm,” Wikipedia, 2010.

[79] H. Zhuang and S. Wongsoontorn, Knowledge-based Tuning I: Design and

Tuning of Fuzzy Control Sufaces with Bezier Function, London: Springer-

Verlag, 2006.

[80] K. Man, S. Tang, and W. Halang, Genetic Algorithms for Control and Signal

Processing, Britain: Springer-Verlag London Limited, 1997.

[81] Z. Michalewicz, Genetic Algorithm + Data Structures = Evolution Program,

Springer-Verlag, 1994.

[82] M. Bodur, A. Acan, and T. Akyol, “Fuzzy System Modeling with the Genetic

and Differential Evolutionary Optimization,” Computational Intelligence for

Modelling, Control and Automation, 2005 and International Conference on

Intelligent Agents, Web Technologies and Internet Commerce, International

Conference on, 2005, pp. 432-438.

[83] J. Gomez, R. Poveda, and E. Leon, “Grisland: a parallel genetic algorithm for

finding near optimal solutions to the traveling salesman problem,” Proceedings

of the 11th Annual Conference Companion on Genetic and Evolutionary

Computation Conference, Montreal, Quebec, Canada: ACM, 2009, pp. 2035-

2040.

[84] T.E. Marlin, Process Control: Designing Processes and Control Systems for

Dynamic Performance, Singapore: McGraw-Hill Book Companies, Inc., 2000.

[85] M. Montanari, S.M. Peresada, C. Rossi, and A. Tilli, “Speed Sensorless Control

of Induction Motors Based on a Reduced-Order Adaptive Observer,” IEEE

Transaction on Control System Technology, vol. 15 No. 6, Nov. 2007, pp. 1049-

1064.

222

[86] Anonim, “Op-Amp Differential Amplifier.svg,” 2009.

[87] Anonim, “USB-1208FS: USB-based Analog and Digital I/O Module User's

Guide,” Jul. 2007.

[88] N. Thomas and P. Poongodi, “Position Control of DC Motor Using Genetic

Algorithm Based PID Controller,” Proceedings of the World Congress on

Engineering 2009 Vol II, WCE 2009, London, UK.: 2009.

[89] K. Chua, W. Hew, C. Foo, and K. Lai, “A Comparative Analysis of PI, Fuzzy

Logic and ANFIS Speed Control of Permanent Magnet Synchronous Motor,”

International Conference on Robotics, Vision, Signal Processing & Power

Applications (RoViSP 09), Awana Porto Malai, Langkawi, Kedah, Malaysia:

2009.

