
ix 

In compliance with the terms of the Copyright Act 1987 and the IP Policy of the 

university, the copyright of this thesis has been reassigned by the author to the legal 

entity of the university, 

Institute of Technology PETRONAS Sdn Bhd. 

 

Due acknowledgement shall always be made of the use of any material contained 

in, or derived from, this thesis. 

 

© Oyas Wahyunggoro, 2011 

Institute of Technology PETRONAS Sdn Bhd  

All rights reserved. 



x 

 

TABLE OF CONTENTS 

STATUS OF THESIS ........................................................................................................ i 

APPROVAL PAGE .......................................................................................................... ii 

TITLE PAGE ................................................................................................................... iii 

DECLARATION OF THESIS ........................................................................................ iv 

ACKNOWLEDGEMENT ................................................................................................ v 

ABSTRACT ..................................................................................................................... vi 

ABSTRAK ...................................................................................................................... vii 

COPYRIGHT PAGE ....................................................................................................... ix 

TABLE OF CONTENTS .................................................................................................. x 

LIST OF FIGURES ....................................................................................................... xiv 

LIST OF TABLES ........................................................................................................ xxii 

LIST OF ABBREVIATIONS ....................................................................................... xxv 

NOMENCLATURES ................................................................................................. xxvii 

CHAPTER 1 INTRODUCTION .................................................................................. 1 
1.1 Background ....................................................................................................... 1 

1.2 Issues on Optimization Using GA ..................................................................... 2 
1.3 Motivations ........................................................................................................ 3 
1.4 Objective and Contribution of Research ........................................................... 4 

1.5 Thesis Outline ................................................................................................... 4 

CHAPTER 2 LITERATURE REVIEW ....................................................................... 6 
2.1 Introduction ....................................................................................................... 6 
2.2 Servomotor ........................................................................................................ 6 
2.3 System Identification ......................................................................................... 7 

2.4 Speed and Position Controller ........................................................................... 7 
2.5 Fuzzy Logic Controllers .................................................................................... 8 

2.6 Hybrid-Fuzzy Controllers ................................................................................. 8 
2.7 Overview of Genetic Algorithms (GA) ........................................................... 10 
2.8 Some Related Work on GA Applications ....................................................... 14 
2.9 The Proposed Methods .................................................................................... 15 



xi 

2.10 DC Servomotor and Power Amplifier ............................................................. 15 
2.10.1 Power Amplifier ................................................................................. 16 
2.10.2 Transfer Function Model of a DC Motor ............................................ 17 
2.10.3 Input-Output Modelling of a DC Servomotor .................................... 20 

2.11 Overview on Control Theory .......................................................................... 21 
2.11.1 Feed Forward and Feedback Control .................................................. 22 
2.11.2 PID Controller ..................................................................................... 24 
2.11.3 Integral Windup .................................................................................. 25 
2.11.4 Fuzzy Logic Controller ....................................................................... 26 

2.12 Evolutionary Algorithms ................................................................................. 30 
2.12.1 Genetic Algorithms ............................................................................. 31 
2.12.2 Parallel Genetic Algorithm ................................................................. 35 

2.12.3 Hierarchical Genetic Algorithms ........................................................ 36 
2.13 Controller Performance ................................................................................... 37 
2.14 Summary ......................................................................................................... 39 

CHAPTER 3 SIMULATION AND HARDWARE EXPERIMENT.......................... 40 
3.1 Introduction ..................................................................................................... 40 

3.2 Hardware Implementation ............................................................................... 41 
3.3 Input-Output Modelling of A DC Servomotor ................................................ 48 

3.3.1 Designing An Experiment .................................................................. 49 

3.3.2 Collecting Input-Output Data ............................................................. 52 
3.3.3 Selecting and Defining A Model Structure ......................................... 52 

3.3.4 Computing The Best Model ................................................................ 53 
3.3.5 Selection of The Best Model .............................................................. 53 

3.4 Simulation and Experiment Design of Speed and Position Control ............... 53 
3.4.1 Simulation and Experiment Design of Position Controller ................ 57 
3.4.2 Simulation and Experiment Design of Conventional Speed 

Controllers .......................................................................................... 60 
3.4.3 Simulation and Experiment Design of Fuzzy Logic Controller 

(FLC) .................................................................................................. 61 
3.4.4 Simulation and Experiment Design of Hybrid-Fuzzy Controller ....... 64 

3.5 Design of Genetic Algorithm .......................................................................... 67 
3.5.1 Simulation of GA ................................................................................ 71 

3.5.2 The Structure of Semi-Parallel Operation Genetic Algorithm 

(SPOGA) ............................................................................................. 73 

3.5.3 Simulation of SPOGA ........................................................................ 75 
3.6 Design and Application of SPOGA to Optimize Hybrid-Fuzzy 

Controller ........................................................................................................ 77 
3.6.1 Design and Application of SPOGA to Optimize FLBPI .................... 77 
3.6.2 Design and Application of SPOGA to Optimize FLBPID ................. 83 

3.6.3 Design and Application of SPOGA to Optimize FLIC ...................... 88 
3.6.3.1 Optimizing Membership Function and Rules ..................................... 88 
3.6.3.2 Optimizing I/O Scales and Integral Constant ..................................... 92 

3.7 Performance Comparisons and Evaluations .................................................... 96 
3.8 Summary ....................................................................................................... 107 

CHAPTER 4 SIMULATION RESULTS AND DISCUSSIONS ............................. 109 
4.1 Introduction ................................................................................................... 109 



xii 

4.2 Input-Output Modeling of A DC Servomotor ............................................... 110 
4.3 Simulation of Conventional and Fuzzy Controllers ...................................... 111 

4.3.1 Description on Types of Simulations ................................................ 112 
4.3.2 Performance Comparisons of Conventional and Fuzzy 

Controllers ........................................................................................ 113 
4.3.3 Simulation Results Summary of Conventional and Fuzzy 

Controllers ........................................................................................ 117 
4.4 Simulation of Hybrid-Fuzzy Controllers ....................................................... 118 

4.4.1 Performance Comparisons of Hybrid-Fuzzy Controllers ................. 119 

4.4.2 Simulation Results Summary of Hybrid-Fuzzy Controllers ............. 123 
4.5 Performance Comparisons of Conventional, Fuzzy, and Hybrid-Fuzzy 

Controllers ..................................................................................................... 124 

4.5.1 Results on Performance Comparisons of Conventional, Fuzzy, 

and Hybrid-Fuzzy Controllers .......................................................... 124 
4.5.2 Simulation Results Summary of Conventional, Fuzzy, and 

Hybrid-Fuzzy Controllers ................................................................. 137 
4.6 Simulation results of GA and SPOGA .......................................................... 138 

4.7 Process Results of SPOGA in Optimizing Controllers ................................. 141 
4.7.1 FLBPI ................................................................................................ 141 
4.7.2 FLBPID ............................................................................................. 142 

4.7.3 FLIC .................................................................................................. 143 
4.7.3.1 Optimizing Membership Function and Rules ................................... 143 
4.7.3.2 Optimizing I/O Scales and Integral Constant ................................... 145 

4.8 Simulation of SPOGA Optimized Controllers .............................................. 146 

4.8.1 Results and Discussions on SPOGA Optimized Controllers ............ 146 
4.8.2 Simulation Results Summary of SPOGA-Hybrid-Fuzzy 

Controllers ........................................................................................ 151 

4.9 Performance Comparisons of SPOGA to non-SPOGA Controllers ............. 152 
4.9.1 Comparison of SPOGA Optimized and Non-SPOGA Optimized 

Controllers ........................................................................................ 152 
4.9.2 Simulation Results Summary of SPOGA Optimized and non-

SPOGA Optimized Hybrid-Fuzzy Controllers ................................. 160 
4.10 Summary ....................................................................................................... 160 

CHAPTER 5 REAL-TIME IMPLEMENTATION RESULTS AND 

DISCUSSIONS ................................................................................... 162 

5.1 Introduction ................................................................................................... 162 
5.2 Experiment on Sampling Period and FIR ..................................................... 163 
5.3 Experiments of Conventional and Fuzzy Logic Controllers ......................... 164 

5.3.1 Results for Conventional and Fuzzy Logic Controllers in Real-

time Implementation ......................................................................... 165 

5.3.2 Experiment Results Summary of Conventional and Fuzzy 

Controllers ........................................................................................ 170 
5.4 Experiment of Hybrid-Fuzzy Controllers ..................................................... 171 

5.4.1 Results of Hybrid-Fuzzy Controller in Real-time 

Implementation ................................................................................. 171 

5.4.2 Experiment Results Summary of Hybrid-Fuzzy Controllers ............ 177 
5.5 Experiment of SPOGA Optimized Controllers ............................................. 177 



xiii 

5.5.1 Results of SPOGA Optimized Controllers in Real-time 

Implementation ................................................................................. 178 
5.5.2 Experiment Results Summary of SPOGA Optimized Hybrid-

Fuzzy Controllers .............................................................................. 183 

5.6 Performance Comparisons of SPOGA to non-SPOGA Controllers ............. 184 
5.6.1 Results of Performance Comparisons of SPOGA to non-SPOGA 

Controllers in Real-time Implementation ......................................... 184 
5.6.2 Experiment Results Summary of SPOGA optimized and non-

SPOGA optimized Hybrid-Fuzzy Controllers .................................. 192 

5.7 Performance Comparisons of Conventional, Fuzzy, and SPOGA 

Optimized Hybrid-Fuzzy Controllers ............................................................ 193 
5.7.1 Results on Performance Comparisons of Conventional, Fuzzy, 

and SPOGA Optimized Hybrid-Fuzzy Controllers .......................... 193 
5.7.2 Experiment Results Summary of Coventional, Fuzzy, and 

SPOGA Optimized Hybrid-Fuzzy Controllers ................................. 207 
5.8 Summary ....................................................................................................... 207 

CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS ............................. 209 

6.1 Conclusions ................................................................................................... 209 
6.2 Directions for Future Work ........................................................................... 211 

REFERENCES ............................................................................................................. 212 

 

APPENDICES 

A. Publications 

B. Performances of GA and SPOGA 

C. Chromosomes in SPOGA Process 

D. Speed Control Responses 

 

 



xiv 

 

LIST OF FIGURES 

Fig. 2.1 Structure of optimal fuzzy control system [32] ............................................. 9 

Fig. 2.2 Fuzzy-tuned PID controller scheme [33] ..................................................... 10 

Fig. 2.3 A hierarchical membership chromosome [43] ............................................. 14 

Fig. 2.4: Electrical circuit and free body diagram of the rotor of DC motor 

[52] ............................................................................................................... 17 

Fig. 2.5 Simplified description of a control system [54] ........................................... 22 

Fig. 2.6 Block diagram of feed forward control system [54] .................................... 22 

Fig. 2.7 Block diagram of feedback control system [54] .......................................... 22 

Fig. 2.8 Saturation feedback as an anti integral windup [58] .................................... 26 

Fig. 2.9 Membership function for 'high" where the horizontal axis 

represents the speed of the car and the vertical axis represents the 

membership value for "high" [59]................................................................ 27 

Fig. 2.10 Membership function for "less", where the horizontal axis 

represents the force applied to the accelerator and the vertical axis 

represents the membership value for "less" [59].......................................... 27 

Fig. 2.11 Basic configuration of fuzzy systems with fuzzifier and defuzzifier 

[59] ............................................................................................................... 29 

Fig. 2.12 Process flowchart of Genetic Algorithm ...................................................... 32 

Fig. 2.13 Example of one-point (in the middle) of crossover [80] .............................. 34 

Fig. 2.14 Example of bit mutation on the fourth bit [80] ............................................ 34 

Fig. 2.15 An example of HGA structure with 8-bit control genes and 8-bit 

parameter genes ............................................................................................ 37 

Fig. 2.16 Second-order underdamped response specifications [54] ............................ 38 

Fig. 3.1 Structure of feedback controller [28] ........................................................... 41 

Fig. 3.2 Block diagram of hardware design .............................................................. 44 



xv 

Fig. 3.3 Power amplifier circuit diagram .................................................................. 45 

Fig. 3.4 Differential amplifier circuit diagram .......................................................... 45 

Fig. 3.5 USB-1208FS functional block diagram [87] ............................................... 46 

Fig. 3.6 Signal conditioner flowchart for DAC ......................................................... 47 

Fig. 3.7 Input-output of signal conditioner................................................................ 48 

Fig. 3.8 Process of input-output modeling ................................................................ 49 

Fig. 3.9 Input sequence 1 for input-output modelling ............................................... 50 

Fig. 3.10 Input sequence 2 for input-output modelling ............................................... 50 

Fig. 3.11 Input sequence 3 for input-output modelling ............................................... 51 

Fig. 3.12 Input sequence 4 for input-output modelling ............................................... 51 

Fig. 3.13 Input sequence 5 for input-output modelling ............................................... 52 

Fig. 3.14 Block diagram of simulation experiment in SIMULINK platform ............. 54 

Fig. 3.15 Block diagram of hardware experiment in SIMULINK platform ............... 54 

Fig. 3.16 Pattern of variations of speed set-point ........................................................ 55 

Fig. 3.17 Flowchart of conditioner of actual speed set-point ...................................... 56 

Fig. 3.18 Fuzzy input membership functions for position controller: (a) error; 

(b) change of error ........................................................................................ 59 

Fig. 3.19 Fuzzy output membership function for position controller ......................... 59 

Fig. 3.20 Fuzzy input membership functions for speed controller: (a) error; 

(b) change of error ........................................................................................ 62 

Fig. 3.21 Fuzzy output rate membership function for speed controller ...................... 62 

Fig. 3.22 Block diagram of fuzzy-logic-based self-tuning PI for the speed 

controller [45] .............................................................................................. 64 

Fig. 3.23 Fuzzy sets and their corresponding membership functions: (a) 

Input, (b) Output [45] ................................................................................... 65 

Fig. 3.24 Structure of FLIC ......................................................................................... 66 

Fig. 3.25 Fuzzy output membership functions in FLIC .............................................. 66 

Fig. 3.26 Population initialization using random generation ...................................... 68 



xvi 

Fig. 3.27 Flowchart of SUS Roulette Wheel selection................................................ 69 

Fig. 3.28 Flowchart of one-point crossover process ................................................... 70 

Fig. 3.29 Flowchart of mutation process ..................................................................... 71 

Fig. 3.30 Chromosome structure of SPOGA, typically six bit per sub-

chromosome ................................................................................................. 74 

Fig. 3.31 Process flowchart of SPOGA ....................................................................... 75 

Fig. 3.32 Initial population for SPOGA using twisted ring counters .......................... 76 

Fig. 3.33 Flowchart of fitness evaluation for SPOGA ................................................ 80 

Fig. 3.34 Set-point signal for the speed test run in fitness evaluation ......................... 80 

Fig. 3.35 Flowchart of chromosome decoding for FLBPI of SPOGA process ........... 81 

Fig. 3.36 Flowchart of crossover process for FLBPI of SPOGA process ................... 82 

Fig. 3.37 Flowchart of mutation process for FLBPI of SPOGA process .................... 82 

Fig. 3.38 Solution chromosome as a result of SPOGA process .................................. 83 

Fig. 3.39 Flowchart of chromosome decoding for FLBPID of SPOGA 

process .......................................................................................................... 86 

Fig. 3.40 Flowchart of crossover process for FLBPID of SPOGA process ................ 87 

Fig. 3.41 Flowchart of mutation process for FLBPID of SPOGA process ................. 87 

Fig. 3.42 Flowchart of chromosome decoding of SPOGA process for 

membership functions in FLIC .................................................................... 90 

Fig. 3.43 Fuzzy membership functions related to chromosome .................................. 91 

Fig. 3.44 Flowchart of crossover process in SPOGA process for membership 

functions in FLIC ......................................................................................... 91 

Fig. 3.45 Flowchart of mutation process in SPOGA process for membership 

functions in FLIC ......................................................................................... 92 

Fig. 3.46 Flowchart of chromosome decoding in SPOGA process for I/O/ 

scales and integral constant .......................................................................... 94 

Fig. 3.47 Flowchart of crossover process in SPOGA process for I/O/ scales 

and integral constant .................................................................................... 95 

Fig. 3.48 Flowchart of mutation process in SPOGA process for I/O/ scales 

and integral constant .................................................................................... 96 



xvii 

Fig. 3.49 Set-point of speed in the experiment of type 1a........................................... 98 

Fig. 3.50 Set-point of position in the experiment of type 1a. ...................................... 98 

Fig. 3.51 Set-point of speed in the experiment of type 1b. ....................................... 100 

Fig. 3.52 Set-point of position in the experiment of type 1b..................................... 100 

Fig. 3.53 Set-point of speed in the experiment of type 2 and 4b............................... 101 

Fig. 3.54 Set-point of position in the experiment of type 2....................................... 101 

Fig. 3.55 Set-point of speed in the experiment of type 3a......................................... 103 

Fig. 3.56 Set-point of position in the experiment of type 3a and 3b ......................... 103 

Fig. 3.57 Set-point of speed in the experiment of type 3b ........................................ 104 

Fig. 3.58 Set-point of speed in the experiment of type 4a......................................... 106 

Fig. 3.59 Set-point of position in the experiment of type 4b..................................... 106 

Fig. 4.1 Graphical verification of input-output modelling of a DC 

servomotor ................................................................................................. 111 

Fig. 4.2 Speed control of DC servomotor using FLBPID vs. PI for 

simulation 1a .............................................................................................. 126 

Fig. 4.3 Absolute error of speed control of DC servomotor using FLBPID 

vs. PI for simulation 1a .............................................................................. 126 

Fig. 4.4 Position control of DC servomotor using FLBPI vs. FLC for 

simulation 1a .............................................................................................. 127 

Fig. 4.5 Absolute error of position control of DC servomotor using FLBPI 

vs. FLC for simulation 1a .......................................................................... 127 

Fig. 4.6 Position control of DC servomotor using FLBPID vs. PID for 

simulation 1b .............................................................................................. 128 

Fig. 4.7 Absolute error of position control of DC servomotor using FLBPID 

vs. PID for simulation 1b ........................................................................... 128 

Fig. 4.8 Speed control of DC servomotor using FLIC vs. PI for simulation 2 ....... 129 

Fig. 4.9 Absolute error of speed control of DC servomotor using FLIC vs. 

PI for simulation 2...................................................................................... 129 

Fig. 4.10 Position control of DC servomotor using FLIC vs. PID for 

simulation 2 ................................................................................................ 130 



xviii 

Fig. 4.11 Absolute error of position control of DC servomotor using FLIC 

vs. PID for simulation 2 ............................................................................. 130 

Fig. 4.12 Speed control of DC servomotor using FLBPID vs. PI for 

simulation 3a .............................................................................................. 131 

Fig. 4.13 Absolute error of speed control of DC servomotor using FLBPID 

vs. PI for simulation 3a .............................................................................. 131 

Fig. 4.14 Position control of DC servomotor using FLBPID vs. PID for 

simulation 3a .............................................................................................. 132 

Fig. 4.15 Absolute error of position control of DC servomotor using FLBPID 

vs. PID for simulation 3a ........................................................................... 132 

Fig. 4.16 Speed control of DC servomotor using FLBPID vs. PID for 

simulation 3b .............................................................................................. 133 

Fig. 4.17 Absolute error of speed control of DC servomotor using FLBPID 

vs. PID for simulation 3b ........................................................................... 133 

Fig. 4.18 Position control of DC servomotor using FLBPI vs. PI for 

simulation 3b .............................................................................................. 134 

Fig. 4.19 Absolute error of position control of DC servomotor using FLBPI 

vs. PI for simulation 3b .............................................................................. 134 

Fig. 4.20 Speed control of DC servomotor using FLBPID vs. PID for 

simulation 4a .............................................................................................. 135 

Fig. 4.21 Absolute error of speed control of DC servomotor using FLBPID 

vs. PID for simulation 4a ........................................................................... 135 

Fig. 4.22 Speed control of DC servomotor using FLIC vs. PI for simulation 

4b ................................................................................................................ 136 

Fig. 4.23 Absolute error of speed control of DC servomotor using FLIC vs. 

PI for simulation 4b.................................................................................... 136 

Fig. 4.24 Position control of DC servomotor using FLIC vs. PI for simulation 

4b ................................................................................................................ 137 

Fig. 4.25 Absolute error of position control of DC servomotor using FLIC 

vs. PI for simulation 4b .............................................................................. 137 

Fig. 4.26 Input membership functions of SPOGA-optimized FLIC: (a) Error 

membership function, (b) Change of error membership functions ............ 144 

Fig. 4.27 Output membership functions SPOGA-optimized FLIC ........................... 144 



xix 

Fig. 4.28 Step response of speed control of DC servomotor using SPOGA-

FLBPI vs. FLBPI for simulation 1a (see Fig. D.1) .................................... 154 

Fig. 4.29 Absolute error of speed control of DC servomotor using SPOGA-

FLBPI vs. FLBPI for simulation 1a ........................................................... 154 

Fig. 4.30 Step response of speed control of DC servomotor using SPOGA-

FLBPI vs. FLBPI for simulation 2 (see Fig. D.2) ...................................... 155 

Fig. 4.31 Absolute error of speed control of DC servomotor using SPOGA-

FLBPI vs. FLBPI for simulation 2 ............................................................. 155 

Fig. 4.32 Step response of speed control of DC servomotor using SPOGA-

FLBPI vs. FLBPI for simulation 3a (see Fig. D.3) .................................... 156 

Fig. 4.33 Absolute error of speed control of DC servomotor using SPOGA-

FLBPI vs. FLBPI for simulation 3a ........................................................... 156 

Fig. 4.34 Step response of speed control of DC servomotor using SPOGA-

FLBPI vs. FLBPI for simulation 3b (see Fig. D.4) .................................... 157 

Fig. 4.35 Absolute error of speed control of DC servomotor using SPOGA-

FLBPI vs. FLBPI for simulation 3b ........................................................... 157 

Fig. 4.36 Speed control of DC servomotor using SPOGA-FLBPI vs. FLBPI 

for simulation 4a ........................................................................................ 158 

Fig. 4.37 Absolute error of speed control of DC servomotor using SPOGA-

FLBPI vs. FLBPI for simulation 4a ........................................................... 158 

Fig. 4.38 Step response of speed control of DC servomotor using SPOGA-

FLBPI vs. FLBPI for simulation 4b (see Fig. D.5) .................................... 159 

Fig. 4.39 Absolute error of speed control of DC servomotor using SPOGA-

FLBPI vs. FLBPI for simulation 4b ........................................................... 159 

Fig. 4.40 Position control of DC servomotor using SPOGA-FLBPI vs. FLPI 

for simulation 4b ........................................................................................ 160 

Fig. 5.1 Step response of speed control of DC servomotor using SPOGA-

FLBPI vs. FLBPI for experiment 1a (see Fig. D.6) ................................... 186 

Fig. 5.2 Absolute error of speed control of DC servomotor using SPOGA-

FLBPI vs. FLBPI for experiment 1a .......................................................... 186 

Fig. 5.3 Step response of speed control of DC servomotor using SPOGA-

FLIC vs. FIC for experiment 2 (see Fig. D.7)............................................ 187 

Fig. 5.4 Absolute error of speed control of DC servomotor using SPOGA-

FLIC vs. FLIC for experiment 2 ................................................................ 187 



xx 

Fig. 5.5 Step response of speed control of DC servomotor using SPOGA-

FLBPI vs. FLBPI for experiment 3a (see Fig. D.8) ................................... 188 

Fig. 5.6 Absolute error of speed control of DC servomotor using SPOGA-

FLBPI vs. FLBPI for experiment 3a .......................................................... 188 

Fig. 5.7 Step response of speed control of DC servomotor using SPOGA-

FLBPID vs. FLBPID for experiment 3b (see Fig. D.9) ............................. 189 

Fig. 5.8 Absolute error of speed control of DC servomotor using SPOGA-

FLBPID vs. FLBPID for experiment 3b .................................................... 189 

Fig. 5.9 Speed control of DC servomotor using SPOGA-FLBPID vs. 

FLBPID for experiment 4a ........................................................................ 190 

Fig. 5.10 Absolute error of speed control of DC servomotor using SPOGA-

FLBPID vs. FLBPID for experiment 4a .................................................... 190 

Fig. 5.11 Step response of speed control of DC servomotor using SPOGA-

FLBPI vs. FLBPI for experiment 4b (see Fig. D.10) ................................. 191 

Fig. 5.12 Absolute error of speed control of DC servomotor using SPOGA-

FLBPI vs. FLBPI for experiment 4b .......................................................... 191 

Fig. 5.13 Position control of DC servomotor using SPOGA-FLBPI vs. FLPI 

for experiment 4b ....................................................................................... 192 

Fig. 5.14 Step response of speed control of DC servomotor using SPOGA-

FLBPI vs. PI for experiment 1a (see Fig. D.11) ........................................ 195 

Fig. 5.15 Absolute error of speed control of DC servomotor using SPOGA-

FLBPI vs. PI for experiment 1a ................................................................. 195 

Fig. 5.16 Position control of DC servomotor using SPOGA-FLBPID vs. PID 

for experiment 1a ....................................................................................... 196 

Fig. 5.17 Absolute error of position control of DC servomotor using 

SPOGA-FLBPID vs. PID for experiment 1a ............................................. 196 

Fig. 5.18 Position control of DC servomotor using SPOGA-FLBPID vs. PID 

for experiment 1b ....................................................................................... 197 

Fig. 5.19 Absolute error of position control of DC servomotor using 

SPOGA-FLBPID vs. PID for experiment 1b ............................................. 197 

Fig. 5.20 Step response of speed control of DC servomotor using SPOGA-

FLBPID vs. PID for experiment 2 (see Fig. D.12) .................................... 198 

Fig. 5.21 Absolute error of speed control of DC servomotor using SPOGA-

FLBPID vs. PID for experiment 2 ............................................................. 198 



xxi 

Fig. 5.22 Position control of DC servomotor using SPOGA-FLBPID vs. PID 

for experiment 2 ......................................................................................... 199 

Fig. 5.23 Absolute error of position control of DC servomotor using 

SPOGA-FLBPID vs. PID for experiment 2 ............................................... 199 

Fig. 5.24 Step response of speed control of DC servomotor using SPOGA-

FLBPI vs. PID for experiment 3a (see Fig. D.13) ..................................... 200 

Fig. 5.25 Absolute error of speed control of DC servomotor using SPOGA-

FLBPI vs. PID for experiment 3a .............................................................. 200 

Fig. 5.26 Position control of DC servomotor using SPOGA-FLBPI vs. PID 

for experiment 3a ....................................................................................... 201 

Fig. 5.27 Absolute error of position control of DC servomotor using 

SPOGA-FLBPI vs. PID for experiment 3a ................................................ 201 

Fig. 5.28 Step response of speed control of DC servomotor using SPOGA-

FLBPI vs. PID for experiment 3b (see Fig. D.14) ..................................... 202 

Fig. 5.29 Absolute error of speed control of DC servomotor using SPOGA-

FLBPID vs. PI for experiment 3b .............................................................. 202 

Fig. 5.30 Position control of DC servomotor using SPOGA-FLBPI vs. PID 

for experiment 3b ....................................................................................... 203 

Fig. 5.31 Absolute error of position control of DC servomotor using 

SPOGA-FLBPI vs. PID for experiment 3b ................................................ 203 

Fig. 5.32 Speed control of DC servomotor using SPOGA-FLBPID vs. PID 

for experiment 4a ....................................................................................... 204 

Fig. 5.33 Absolute error of speed control of DC servomotor using SPOGA-

FLBPID vs. PID for experiment 4a ........................................................... 204 

Fig. 5.34 Step response of speed control of DC servomotor using SPOGA-

FLBPI vs. PID for experiment 4b (see Fig. D.15) ..................................... 205 

Fig. 5.35 Absolute error of speed control of DC servomotor using SPOGA-

FLBPI vs. PID for experiment 4b .............................................................. 205 

Fig. 5.36 Position control of DC servomotor using SPOGA-FLBPID vs. PID 

for simulation 4b ........................................................................................ 206 

Fig. 5.37 Absolute error of position control of DC servomotor using 

SPOGA-FLBPID vs. PID for simulation 4b .............................................. 206 

 



xxii 

 

LIST OF TABLES 

Table 2.1 Example of DC motor parameters ............................................................... 19 

Table 3.1 Values of KPv ................................................................................................ 58 

Table 3.2 Rules of FLC for position controller ............................................................ 60 

Table 3.3 Rules of FLC for speed controller ................................................................ 63 

Table 3.4 Fuzzy rules base for KP and KI in FLBPI [45] ............................................. 65 

Table 3.5 Parameters of GA ......................................................................................... 71 

Table 3.6 Initial population of SPOGA for 10 bit length, 30 population size ............. 77 

Table 3.7 Initial population in FLBPI .......................................................................... 79 

Table 3.8 Initial population in FLBPID ....................................................................... 85 

Table 3.9 Initial population for membership functions of FLIC .................................. 89 

Table 3.10 Initial population for I/O scales and integral constant ................................. 93 

Table 4.1 The best model of each type of input sequence ......................................... 110 

Table 4.2 Types of simulation .................................................................................... 113 

Table 4.3 Simulation results of conventional and fuzzy logic controllers 

based on second order underdamped response analysis ............................ 114 

Table 4.4 Simulation results of conventional and fuzzy logic controllers 

based on error analysis ............................................................................... 114 

Table 4.5 Simulation results of conventional and fuzzy logic controllers 

based on fitness value analysis................................................................... 115 

Table 4.6 Simulation results of hybrid-fuzzy controllers based on second 

order underdamped response analysis........................................................ 120 

Table 4.7 Simulation results of hybrid-fuzzy controllers based on error 

analysis ....................................................................................................... 120 

Table 4.8 Simulation results of hybrid-fuzzy controllers based on fitness 

value analysis ............................................................................................. 121 



xxiii 

Table 4.9 Performance comparisons of conventional, fuzzy, and hybrid-fuzzy 

controllers................................................................................................... 125 

Table 4.10 Performance of GA and SPOGA with minimum specification ................. 139 

Table 4.11 Results of GA simulation for minimum criteria ........................................ 139 

Table 4.12 Results of SPOGA simulation for minimum criteria ................................. 139 

Table 4.13 Results of GA simulation for good criteria ................................................ 140 

Table 4.14 Results of SPOGA simulation for good criteria......................................... 140 

Table 4.15 Maximum fit chromosome for FLBPI parameters ..................................... 142 

Table 4.16 Maximum fit chromosome for FLBPID parameters .................................. 143 

Table 4.17 Maximum fit chromosome for FLC parameters in FLIC .......................... 143 

Table 4.18 Rules of SPOGA-optimized FLIC ............................................................. 145 

Table 4.19 Maximum fit chromosome for I/O scales and integral constant  in 

FLIC ........................................................................................................... 146 

Table 4.20 Simulation results of SPOGA optimized hybrid-fuzzy controllers 

based on second order underdamped response analysis ............................ 147 

Table 4.21 Simulation results of SPOGA optimized hybrid-fuzzy controllers 

based on error analysis ............................................................................... 147 

Table 4.22 Simulation results of SPOGA optimized hybrid-fuzzy controllers 

based on fitness value analysis................................................................... 148 

Table 4.23 Performance improvement comparison of SPOGA optimized and 

non-SPOGA hybrid-fuzzy controllers for simulation experiment ............. 153 

Table 5. 1 Experiment result of sampling period ........................................................ 163 

Table 5.2 Comparison between 25-point FIR and 30-point FIR ............................... 164 

Table 5.3 Types of experiment................................................................................... 165 

Table 5.4 Experiment results of conventional and fuzzy logic controllers 

based on second order underdamped response analysis ............................ 166 

Table 5.5 Experiment results of conventional and fuzzy logic controllers 

based on error analysis ............................................................................... 166 

Table 5.6 Experiment results of conventional and fuzzy logic controllers 

based on fitness value analysis................................................................... 167 



xxiv 

Table 5.7 Experiment results of hybrid-fuzzy controllers based on second 

order underdamped response analysis........................................................ 172 

Table 5.8 Experiment results of hybrid-fuzzy controllers based on error 

analysis ....................................................................................................... 173 

Table 5.9 Experiment results of hybrid-fuzzy controllers based on fitness 

value analysis ............................................................................................. 174 

Table 5.10 Experiment results of SPOGA optimized hybrid-fuzzy controllers 

based on second order underdamped response analysis ............................ 178 

Table 5.11 Experiment results of SPOGA optimized hybrid-fuzzy controllers 

based on error analysis ............................................................................... 179 

Table 5.12 Experiment results of SPOGA optimized hybrid-fuzzy controllers 

based on fitness value analysis................................................................... 180 

Table 5.13 Performance improvement comparison of SPOGA optimized and 

non-SPOGA hybrid-fuzzy controllers for hardware experiment ............... 185 

Table 5.14 Performance comparisons of conventional, fuzzy, and SPOGA 

optimized hybrid-fuzzy controllers for hardware experiment ................... 194 

 



xxv 

 

LIST OF ABBREVIATIONS 

ADC Analog to Digital Converter 

AC Alternating Current 

AGA Adaptive Genetic Algorithm 

AI Artificial Intelligence 

ANN Artificial Neural Network 

AQM Active Queue Management 

BSFC Binary String Fitness Characterisation 

cGA compact Genetic Algorithm 

CPS Comparative Partner Selection 

D  Derivative 

DAC Digital to Analog Converter 

DAQ Data Acquisition 

DC Direct Current 

DD Data-Driven 

EA Evolutionary Algorithm  

ECM Evolutionary Computation Methods  

FIR Finite Impulse Response 

FLBPI Fuzzy Logic  

FLBPI Fuzzy Logic Based self tuning PI 

FLBPID Fuzzy Logic Based self tuning PID 

FLC Fuzzy Logic Controller 

FLGA Fuzzy Logic guided Genetic Algorithm 

FLIC Fuzzy Logic parallel Integral Controller 

FPI Fuzzy Proportional Integral 

FRBS Fuzzy Rule Base System 

FS  Fuzzy System 

FSPID Fuzzy-Scheduled PID 

GA Genetic Algorithm 

GP Genetic Programming 

HGA Hierarchical Genetic Algorithm 

HGU Hydroelectric Generating Unit 

I  Integral  

IGBT Insulated Gate Bipolar Transistor 

KVL Kirchoff Voltage Law 

MA Moving Average 

MIE Minimum Inference Engine 

MRDE Matrix Riccati Differential Equation 

P  Proportional  

PC Personal Computer 

PFP Power Factor Precompensators 

PGA Parallel Genetic Algorithm 

PI Proportional-Integral 



xxvi 

PID Proportional-Integral-Derivative 

PIE Product Inference Engine 

PLC Programmable Logic Controller 

PWM Pulse Width Modulation 

RS Regulatory Sequence 

RWM Roulette Wheel Mechanism 

SG  Structural Gene 

sGA standard GA 

SPOGA Semi-Parallel Operation Genetic Algorithm 

SPOGA-FLBPI SPOGA optimized Fuzzy Logic Based self tuning PI 

SPOGA-FLBPID SPOGA optimized Fuzzy Logic Based self tuning PID 

SPOGA-FLIC SPOGA optimized Fuzzy Logic parallel Integral Controller 

SSPR Stochastic Sampling with Partial Replacement 

SSR Stochastic Sampling with Replacement 

SUMP Shift and Uniform based Multi-Point 

SUS Stochastic Universal Sampling 

TS  Takagi-Sugeno  

TS-PID Takagi-Sugeno-Proportional Integral Derivative 

USB Universal Serial Bus 
 
 
 
 

 



xxvii 

 

NOMENCLATURES 

  

A Ampere 

%Os Percent of overshoot 

%Os2 Percent of second overshoot 

%Sp Percent of steady state error for position 

%Us percent of undershoot 

AP Input element for position 

ASSP Actual speed set point 

Av Input element for speed 

b Damping ratio 

bl Damping ratio of load 

bl Bit length 

D Change of error input of FLC 

Dt Delay time in process model 

e Controller input (error) 

E  Error input of FLC 

fitp Total fitness function for position control 

fitv Total fitness function for speed control 

fitv,g 
Total fitness function of SPOGA-optimized hybrid controller for 

speed control in the experiment x 

fitv,h 
Total fitness function of non-SPOGA-optimized hybrid controller 

for speed control in the experiment x 

fitx Total fitness function for speed and position control in experiment x 

fos Fitness funxtion based on % overshoot 

fp Fitness function for position based on ITAEp 

fsp Fitness function based on %Sp 

fts Fitness function based on settling time 

fvp Fitness function for the first 8-second starting speed 

h  Output of fuzzy controller in FLBPI/FLBPID 

H(w,x,y) Fuzzy rule string 

HP Feedback element for position 

Hv Feedback element for speed 

i_FIT Fitness value for identification process 

Ia Armature current 

IAE Integral of Absolute value of Error 

if Field current 

Ipvx Improvement value for speed control in the experiment x 

ITAE Integral of Time Absolute value of Error 

J Moment of inertia 

Jl Moment of inertia of load 

Ka Feedback constant of saturation feedback 

Kce Input scale for fuzzy change of error input 



xxviii 

KD Derivative constant 

KDm Maximum value of KD 

Ke Input scale for fuzzy error input 

KI Integral constant 

KIm Maximum value of KI 

KP Proportional constant 

KPt Output element for position 

KP-u Ultimate value of KP 

KPm Maximum value of KP 

KPp Proportional constant of position controller 

KPv Variable position constant 

Ku Output scale for fuzzy output 

Kv Output element for speed 

L Electric inductance 

m Controller output 

M  Output of controller to be fed to the signal conditioner 

mo Initial condition of controller 

Mp  Output of variable proportional controller 

N Number of points 

n  Number of poles 

NB Negative big 

Nc Population size 

Ng Number of generation 

ni Iteration number 

NM Negative medium 

NS Negative small 

P Process model 

PB Positive big 

pc Crossover rate 

PE Position error 

pm  Mutation probability/rate 

PM  Positive medium 

pm0 Initial mutation probability/rate 

PMV Output of position controller 

PPV Position process value 

PR Position reference 

PS  Positive small 

PSP Position set point 

PV Process value 

R Electric resistance 

rpm Revolutions per minute 

SE Input to the speed controller 

SEC Output of speed comparator 

SP  Set point 

SPV Speed process value 

T  Rotor torque 

Tl Load torque 

tp Peak time 

tr Rise time 



xxix 

Ts Sampling period 

ts Settling time 

Tu Ultimate period of oscillation 

Uc Possible complex-valued poles  

U Output of FLC 

V Source voltage 

W Watt 

wl The height of lth fuzzy membership functions 

X Input 

Y Output 

Ym Real (measured) output of identification process 

Z Zero in process model 

zc Control genes 

ZE Zero  

zp Parameter genes 

θ Position 

Φ Flux magnetic 

𝑦  Estimated output of identification process 

𝑦  Mean value of real output in identification process 
 
 
 

 





 

CHAPTER 1 

INTRODUCTION 

1.1 Background 

Servomotors are used in a variety of applications in industrial electronics and robotics 

that includes precision positioning as well as speed control. Sometimes, the robot 

searches an optimum or approximate optimum non-collision path from start state to 

goal state according to a performance objective [1]. They use feedback controller to 

control the speed or the position or both. A robot used as manipulator has an end 

effector mounted on the last link. This end effector can be anything from a welding 

device to a mechanical hand used to manipulate the environment. 

Consider a robot-manipulator system with its controller. The objective of the 

controller would be to move the robot arm via an effective control of the drive with 

DC servomotor [2]. The control system to implement can be classified into the 

following three stages [2] : 

i. develop the circuit and the corresponding software for control of servomotors, 

ii. develop a control system of the pneumodrive, and 

iii. arrange a control system of the robot - manipulator. 

Control theory is an interdisciplinary branch of engineering and mathematics, that 

deals with the behavior of dynamical systems. The desired output of a system is called 

the reference. When one or more output variables of a system need to follow a certain 

reference over time, a controller manipulates the inputs to the system to obtain the 

desired effect on the output of the system. 

The basic continuous feedback control is PID controller. PID controllers have 

good performance but are not adaptive enough. This is appealing when the load is 
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changed, where the original controller generally cannot maintain the desired 

performance and thus should be re-designed for the new system conditions [3]. 

The pioneering work dealing with expert knowledge that can be well applied to 

the control of systems with uncertained, nonlinear dynamics is credited to Zadeh [4] 

who proposed fuzzy control theory to overcome the weakness of conventional 

controllers, and investigated by which owns good robustness [5]. Experimentally, the 

response of a fuzzy logic controller is slower than a PID controller. It has been 

reported in a number of papers that hybrid of PID or PI, with fuzzy logic in control 

system can overcome the set-back of fuzzy logic controller, see [6-9].  

Fuzzy systems are capable of handling complex, non-linear and sometimes 

mathematically intangible dynamic systems using simple solutions. Fuzzy logic uses 

human-like but systematic properties of converting linguistic control rules based on 

expert knowledge into automatic control strategies. It requires time, experience and 

skills of the designer for the tedious fuzzy tuning exercise [10] because it lacks a 

learning mechanism [11]. It is expected that any algorithm can overcome some of the 

problems. 

The most significant advantage of using evolutionary search lies in the gain of 

flexibility and adaptability to the task at hand and the global search characteristics. 

Among various evolutionary computation methods (ECM) is genetic algorithms (GA) 

which employ a random, yet directed search for locating global optimal solution [12].  

GA is effective in acquiring the optimal or near-optimal for solving optimization 

problems [13]. The typical task of a GA in a control engineering application is finding 

the best values for a predefined set of free parameters which defining either a process 

model or a control law [14]. 

1.2 Issues on Optimization Using GA 

Besides the advantages as explained in Sec 1.1, in contrast, GAs also have some 

problems as follows: 
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1. There are possibilities that the premature convergence and local maxima occur. 

2. During the evolution of solutions using genetic programming (GP) there is 

generally an increase in average tree size or population size without a 

corresponding increase in fitness. This phenomenon is commonly referred to as 

bloat [15].  

3. It is well known that the searching speed of the conventional genetic algorithms 

is not desirable [16]. 

1.3 Motivations 

Based on the recent work on GA as reported in [12-16], the need to the issues of local 

maxima, premature convergence and bloat has been recognized. 

There are some solutions to the premature convergence and local maxima 

problems. Adjusting to the proper mutation rate is basically able to solve the problem. 

In a recent work, Lau et. al. [13] consider the fuzzy logic guided genetic algorithm 

(FLGA) with shift and uniform based multi-point (SUMP) crossover and swap 

mutation in GA to fight against premature convergence, based on the knowledge that 

the probability of crossover and mutation are adaptable. Adaptive probability of 

crossover and mutation also prevent a local optima in solution [12],[17]. Selecting 

parents using binary string fitness characterisation (BSFC) and comparative partner 

selection (CPS) can also prevent the premature convergence problem [18]. 

There are some solutions to the bloat problem, one of them is by using spatial 

population structure in combination with local elitist replacement. However, this 

method is quite complex and is effective only for parallel genetic algorithms [15]. 

Motivated by this noticeable inadequacy, this research attempts to find answers to 

the problem of local maxima, premature convergence and bloat that make the 

searching speed slow. The recent work on GA shows some advances that have been 

made, but these remain the requirement to improve the searching speed. The task of 

solving such a searching speed problem using the method based on the GA 

application and its implementation in optimizing the performance of a controller for a 

DC servomotor is challenging and significant. 
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1.4 Objective and Contribution of Research 

The objective of the research is improving the controller's performance (minimize the 

overshoot, settling time, IAE/ITAE and making the steady state error zero) for a DC 

servomotor application. A hybrid-fuzzy is selected as a controller which is optimized 

using GA in off-line mode. The GA is improved to reduce the searching speed 

problem.  

In this research, the GA is applied to optimize the parameters of the hybrid-fuzzy 

for DC servomotor control using Simulink/MATLAB platform. Control application 

using this platform requires the simplicity in the programming. Optimizing the 

parameters of hybrid-fuzzy controller requires that some parameters to be optimized 

in parallel. The approach to solve the searching speed problem that would lead to the 

contribution of the research are as follows: 

 Modify the conventional population initialization which use random process to 

the population initialization using patterned structure. 

 Modify the conventional genetic operations to the new genetic operations which 

are appropriate for the problem to be solved 

 Modify the conventional solution searching to the method based on elitism 

process [19] 

The main contributions of this research are that, this thesis presents a new genetic 

algorithm in which improve the performance of the hybrid controllers with the 

reduction of the number of test runs (iterative number) and the duration time of the 

optimization process, and with the more consistent in the genetic process. The hybrid 

controller is also developed to improve the controller's performance. 

1.5 Thesis Outline 

The thesis consists of six chapters: introduction, literature review, simulation and real-

time implementation on a test rig, discussion on the simulation results, discussion on 

the experiment results, and conclusions and the suggested future work. 
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Chapter 1 presents the background of the research, highlights the problem to be 

solved in the research, the motivations for the research, the research objective and 

approach, and the basis for the contributions of this research. 

Chapter 2 presents the previous work related to the research topic, overview of the 

proposed methods based on the previous work, and discusses the basic theory used in 

the simulation and experiment work. 

Chapter 3 discusses the simulation and experiment procedures from s-modelling 

of a DC servomotor, the hardware design, the GA design, etc. to the performance 

comparisons of the proposed method to the conventional methods. 

Chapter 4 discusses the results of simulation for seven predefined conditions for 

evaluations of the controller's performances from the conventional to SPOGA-

optimized hybrid-fuzzy controllers. 

Chapter 5 discusses the results of hardware experiment for the seven predefined 

conditions for controllers from the conventional to SPOGA-optimized hybrid-fuzzy 

controllers. 

Finally, Chapter 6 gives the conclusion for both the simulation and hardware 

experiment and suggests future research directions relevan to the controller for a 

servomotor.  

 

 

 



 

CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

This chapter provides an overview of the work related to the research topic, the basis 

of the proposed method for use in the controller's performance optimization, and the 

foundation for the controller's performance criterion used in the 

simulation/experiment. 

The basic theory starts with DC servomotor and power amplifier. The modelling 

of a DC servomotor based on the specification and the method of getting the s-transfer 

function using MATLAB command are presented. The basic control theory discussed 

is the feedforward and feedback control, PID controller, and fuzzy logic controller. 

The basic theory on genetic algorithm, parallel genetic algorithm, and hierarchical 

genetic algorithm are also presented. Finally, the controller performance criterion 

used for comparisons and evaluations are presented. 

2.2 Servomotor 

Servomotors are used in a variety of applications in industrial electronics and robotics 

that includes precision positioning as well as speed control. There are some types of 

motor : induction AC, synchronous AC, stepper DC, brushless DC, and brushed DC. 

The speed of electrical motor can be sensorless but an estimation of parameters is 

required, as in their work in 2007 Karanayil et. al. [20] presented a new method of 

online estimation for the stator and rotor resistances of the induction motor for speed 

sensorless indirect vector controlled drives, using artificial neural networks. 



7 

2.3 System Identification 

System identification is about building models from data. A data set is characterized 

by several pieces of information: the input and output signals, the sampling interval, 

the variable names and units, etc. Similarly, the estimated models contain information 

of different kinds, estimated parameters [21], their covariance matrices, and model 

structure and so on. The modelling process can be done using MATLAB command 

[22]. A gray-box modeling is useful to preserve the physical meaning of the model 

parameters and to naturally impose physical constraints to the model [23]. 

In 2005, Pereira et al. [24] proposed a system identification and PID tuning using 

GA sequentially. The identification is for first order plant cascaded by PID system. 

The result is better than PID control system optimized using Ziegler-Nichols. 

Practically, the dynamic model of an embedded mechanical structure can change 

over time due to many factors such as structural deformation and sensor/actuator 

degradation [25]. 

2.4 Speed and Position Controller 

There are two types of controller based on the control signal: analog controller, 

and digital controller. In digital controllers, efforts to reduce computational time is 

desirable and applicable when controllers have large number of states, when 

computational time becomes an issue [26]. 

The basic controller that is commonly used is PID controller. Yamamoto et al. in 

2009, [27] proposed a new design scheme of PID controllers based on data-driven 

(DD) for nonlinear systems. In this method, a suitable set of PID parameters is 

automatically generated based on input/output data pairs of the controlled object 

stored in the database. The performance result is better as compared to fixed PID 

controller. 

Position is a time integral of speed. Therefore, a certain position can be reached 

with a certain speed for a certain time duration. In 2007, Lacevic et al. [28] reported 
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an experiment of speed and position control in cascade mode where speed control 

loop is in the position control loop.  

2.5 Fuzzy Logic Controllers 

The basic idea of fuzzy logic control was suggested in notes published in 1968. After 

the basic idea of fuzzy logic control became well-understood, the use of fuzzy logic 

control is being pursued in many application areas especially in Japan. In most of 

current applications, the medium for fuzzy implementation in control is software. 

That is why fuzzy logic chips especially computers are more cheap and effective in 

implementation [4]. 

In his responses to the many misconceptions about fuzzy logic, Zadeh [29] gives 

the following explanation. Fuzzy logic is not fuzzy, but basically it is about a precise 

logic of imprecision and approximate reasoning. Hence, fuzzy logic is much more 

than a logical system and has many facets. The principal facets are: logical, fuzzy-set-

theoretic, epistemic and relational. Most of the practical applications of fuzzy logic 

are associated with its relational facet. 

The first type of fuzzy rule base system (FRBS) that deals with real inputs and 

outputs was proposed by Mamdani in 1974 [30], who was able to augment Zadeh's 

initial formulation in a way that allows it to apply a fuzzy system (FS) to a control 

problem [31]. 

2.6 Hybrid-Fuzzy Controllers 

A combination of PID controller and fuzzy logic controller is called a hybrid-fuzzy 

controller. The purpose of hybrid-fuzzy controller is to overcome the problem of 

standalone PID controller and fuzzy logic controller. 

In 1993, Zhen-Yu Zhao et al. [5] developed a fuzzy gain scheduling scheme of 

PID controllers for process control. Fuzzy rules and reasoning are utilized online to 

determine the controller parameters based on the error signal and its first difference. 
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Simulation results demonstrate that better control performance can be achieved in 

comparison with Ziegler-Nichols controllers and Kitamori's PID controllers. 

Wang et al. in 2008, [32] proposed an optimal fuzzy control in HGU system 

which the membership functions and rules are optimized by GA and the real plant is 

identified using dynamic neural networks. Simulation results show that the advanced 

knowledge acquisition technique makes control parameters and rules of fuzzy 

controller arrive to optimization and its control performance is superior to 

conventional controller. The output of fuzzy controller is proportional based and 

paralleled with integrator to make the steady state error zero. The structure of optimal 

fuzzy controller is shown in Fig. 2.1. 

 

Fig. 2.1  Structure of optimal fuzzy control system [32] 

In more recent work in 2010, Solihin et al. [33] proposed a PID controller which 

the parameters are tuned using fuzzy logic in the application of automatic gantry 

crane. First, the PID gains were obtained from root locus as a guideline for fuzzy 

output of the proposed fuzzy-tuned PID controllers. The fuzzy has error and error rate 

as inputs and the tuned gain as the output with Mamdani fuzzy inference system. 

There are seven singleton fuzzy membership functions for output and five Gaussian 

fuzzy membership functions for input. The scheme of fuzzy-tuned PID controller is 

shown in Fig. 2.2 where the range of α is [1.00,2.00] and obtained experimentally. 

The proposed controller has satisfactory performance 
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Fig. 2.2  Fuzzy-tuned PID controller scheme [33] 

2.7 Overview of Genetic Algorithms (GA) 

An AI field of major importance is comprised by the so-called soft-computing 

techniques that include genetic algorithms (GA), fuzzy logic (FL), artificial neural 

networks (ANN) and combination among them. The combination of soft-computing 

techniques for resolving scientific problems has produced results that could not have 

been extracted with traditional methods [34]. GAs are more robust than other local 

search algorithms because the population provides the advantage of maintaining 

diversity [35]. 

In their paper in 1996, Man et al. [36] introduces GA as a complete entity, in 

which knowledge of this emerging technology can be integrated together to form the 

framework of a design tool for industrial engineers. 

In quite a recent paper in 2009, Balasubramaniam et al. [37] proposed a novel 

approach to find the solution of the matrix riccati differential equation (MRDE) for 

nonlinear singular systems using genetic programming (GP). The technique of GP is 

based on the evolution of the large number of candidate solutions through genetic 

operations such as reproduction, crossover and mutation. The GP approach to the 

problem is qualitatively better in terms of accuracy as compared to traditional Runge 

Kutta (RK) method. 
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One of the problem in GP is premature convergence that has been highlighted by 

Day et al. [18] who presented a binary string fitness characterization (BSFC) which 

gives both population measures and a pairwise mating strategy, and comparative 

partner selection (CPS), with aim of evolving a population that promotes effective 

solutions by reducing population-wide weakness. Actually, the CPS operation makes 

the process requires extra time (typically around 15%). 

Fitness prediction is a technique used to replace fitness evaluations in 

evolutionary algorithms with a lightweight approximation that adapts with the 

solution population [38]. It is possible to identify the fundamental difficulties faced in 

many fitness prediction applications as : 

i. Model training effort: Often significant computational effort is required to 

train the desired fitness model 

ii. Level of approximation: It is often unclear what level of approximation is 

accurate enough to achieve desired results. High-quality approximations 

provide greater accuracy, but require more computation. Low-quality 

approximations are less accurate, but require less computation. 

iii. Loss of accuracy: Similarly, even high-quality approximations are bound to 

have some loss accuracy due to either the model structure itself or the data 

available to tune it. In the worst case, this effect can hide or even change the 

global optimum in which case, exact fitness calculations are still needed to 

find the optimal solution. 

In 2004, Xiu et al. [39] did an optimization design of Takagi-Sugeno-proportional 

integral derivative (TS-PID) fuzzy controllers based on GA. TS-PID controllers are a 

class of Takagi-Sugeno (TS) fuzzy controllers whose rule consequences employ PID 

expressions. The essential character of a typical TS-PID fuzzy controller is 

investigated to be a nonlinear PID controller. Based on GA, an optimal design method 

of TS-PID fuzzy controllers is discussed in detail by means of the analytical model. 

The simulations results of a marine control system show that a TS-PID fuzzy 

controller designed via GA's has a good performance. 

The selection of a fitness function will influence the performance of GA. From 

any former studies, it can achieve a good effect to use         
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𝐽 𝐼𝑇𝐴𝐸 =  𝑡 𝑒(𝑡) 𝑑𝑡 = 𝑚𝑖𝑛
∞

0
 as object function in optimizing a control system. 

Since a GA is to search for the maximum of solutions, the 𝐼𝑇𝐴𝐸 is changed by a 

fitness function as follows [39]: 

𝑓 𝑖 =
𝐼𝑇𝐴𝐸𝑚𝑎𝑥 − 𝐼𝑇𝐴𝐸(𝑖)

  𝐼𝑇𝐴𝐸𝑚𝑎𝑥 − 𝐼𝑇𝐴𝐸(𝑖) 𝑖
 

( 2 - 1 ) 

 

In 2008, Yang et al. [17] proposed a new improvement of GA, i.e. adaptive 

genetic algorithm (AGA). The probability of crossover and mutation is adapted 

according to the generation. When the generation is increased, the probability of 

mutation is decreased. The probability of crossover compensates the probability of 

mutation. When the crossover operation effect is feeble, the probability of mutation is 

increased. The superiority of AGA is: speed up the convergence, and restrain the 

premature. 

In their work in 2007, Zhang et al. [12] proposed adaptive probability of crossover 

and mutation in GA using fuzzy logic. This is not only improved the convergence rate 

of the GA, but also prevents a local optima in solution. The result is better than using 

fixed probability of crossover and mutation. 

In 2009, Lau et al. [13] proposed a shift and uniform based multi-point (SUMP) 

crossover and swap mutation in GA which are adjusted using fuzzy logic, called 

Fuzzy logic guided genetic algorithm (FLGA). In this method, the probability of 

crossover and mutation are adjusted by fuzzy logic after ten consecutive generations. 

FLGA with SUMP can fight against premature convergence but requires longer 

running time than standard GA since that the operations involved in fuzzy logic 

involve additional computation effort. 

In a quite recent paper in 2009, Duzinkiewics et al. [19] presented a genetic 

hybrid applied to a predictive controller for optimized dissolved-oxygen tracking at 

lower control level. The used initialization scheme is hybrid. A fixed number of initial 

solutions are obtained using a priori knowledge about the aeration system. The 

remaining solutions are initialized randomly. Elitism process is done before the next 
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generation to maintain the diversity of the population while the best solutions found 

so far are preserved and used in the search process. 

There is a method of parallel genetic algorithms in which a parallel client server 

single population is configured in order to reach a global solution in the least possible 

iteration. The fitness value assessment is done on different parallel processors; as 

genetic operators affect all the population in this method the model is called a global 

genetic algorithm. This method was applied to optimize the performance of the first 

three Dejong function [40]. 

In 2003, Fatta et. al. [41] did an experiment of parallel GA using two basic ones: 

the simple global model and the coarse grained model, to design a fuzzy proportional 

integral (FPI) controller for active queue management (AQM) on Internet routers. The 

parallel GA is valid enough as a tool for optimal tuning of the fuzzy controller 

parameters. 

In his paper in 1996, Lis [42] proposed a parallel genetic algorithm with dynamic 

mutation probability. If 𝑝𝑚0 is initial mutation probability and 𝑛𝑖  is iteration number, 

then the mutation probability (𝑝𝑚 ) is [42] 

𝑝
𝑚

≈ 𝑝
𝑚0

 
1

𝑛𝑖
  

( 2 - 2 ) 

 

There is no need for choosing any initial mutation probability and decreasing 

mutation probability convergence rate. 

An application of hierarchical genetic algorithms (HGA) to optimize the 

membership functions of fuzzy logic controller (FLC) is shown in Fig. 2.3. 

There were seven membership functions of FLC as an initial. The control genes 

(zc) which the values are {0, 1} controlled the existence of membership functions. If zc 

= 0 then the corresponding membership function would be deleted. Otherwise, it 

would remain exist. The parameter genes (zp) which had real values controlled the 

boundaries of membership function [43]. This method will results in that the 

crossover points of a membership function have not the value equal to 0.5. 
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Fig. 2.3  A hierarchical membership chromosome [43] 

2.8 Some Related Work on GA Applications 

Genetic algorithms can be applied on the optimization of hybrid-fuzzy controllers in 

either simulation experiments or hardware experiments. 

In 2006, Bousserhane et al. [44] did an optimal fuzzy gain scheduling of PI 

controller to the speed control of induction motor. The parameters of PI controller is 

scheduled by FLC where the parameters of FLC is first optimized by genetic 

algorithm. The performance result is better as compared to FLC which is optimized 

by human operator. 

Applying GA on a memory-constrained hardware (e.g. microcontroller, PLC, etc) 

needs a compact GA (cGA) which proposed by Mininno et al. [14] in 2008. A cGA 

iteratively processes the PV with updating mechanisms that mimic the typical 

selection and recombination operations performed in a standard GA (sGA) until a 

stopping criterion is met. A cGA is almost equivalent to a sGA with binary 

tournament selection and uniform crossover on a number of test problems, and also 

suggested some mechanisms to alter the selection pressure in the cGA. 
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2.9 The Proposed Methods 

Based on the previous work on the electrical motor, the system identification, the 

control technique, fuzzy logic controller, hybrid-fuzzy controller, and the controller 

parameters optimization using genetic algorithm, the following steps (i to viii) are 

identified in this work as guidelines for the controller development: 

i. DC motor is used as a plant because it is easy to control the speed and the 

starting torque is good. 

ii. The DC servomotor is identified to get the s-transfer function for off-line mode 

control using MATLAB command as in [22]. 

iii. Cascaded speed and position control is used where the speed control loop is in 

the position control loop as in [32] 

iv. The conventional, fuzzy, and hybrid-fuzzy controllers are compared and the best 

one is selected to be optimized using GA. 

v. There are three hybrid-fuzzy controllers: (1) Fuzzy-logic based self-tuning PI 

controller (FLBPI) as in [45], (2) Fuzzy-logic based self-tuning PID controller 

(FLBPID) as in [45] with additional D component, and (3) Fuzzy logic parallel 

integral controller (FLIC) as in [32]. 

vi. The new GA-based optimization algorithm, namely Semi-parallel operation GA 

(SPOGA) is proposed. The method is based on HGA as in [43] but the string 

structure is for parallel optimization of parameters.  

vii. The structure of twisted ring counter is used as a population initialization as a 

replacement of random generation. 

viii. The solution process is done by searching the chromosome with the best fitness 

value among the all chromosomes in all generations, this method is based on 

elitism process as in [19]. 

2.10 DC Servomotor and Power Amplifier 

An electric motor which has control system components is called a servomotor. 

Basically, any motor can be used in a servo system [46]. There are some types of 

motor : induction AC, synchronous AC, stepper DC, permanent magnet DC, serial 

field DC, shunt field DC, compound field DC, brushless DC, and brushed DC. 
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Stepper motor are widely used in applications which need high precision speed 

and position, but if there are mechanical changes such as load torque disturbances and 

inertia variations, can lead to a loss of synchronism for high stepping rates [47]. 

According to the field type of DC motor, there is also a permanent magnet stepper 

motors which can spontaneously reverse their direction of rotation when controlled in 

full step, open-loop mode [48]. In the closed loop mode, they cannot spontaneously 

reverse their direction. 

DC motors have better starting torque than AC motors although they are more 

expensive than AC motors [46]. There are several method in controlling the DC 

servomotor, one of them is armature-controlled DC servomotors which are widely 

used in the motion control area in the process control industry [49]. 

2.10.1 Power Amplifier 

Controller signals usually have the range of [0.00,10.00] volts with the current output 

is limited in the order of milliampere. Consequently, a controller needs a power 

amplifier to drive a DC motor. One of the power amplifier which can drive a motor is 

chopper type where the process needs DC-AC and AC-DC converters. 

Power factor precompensators (PFP) are an important class of switched ac-dc 

converters. The main drawback is that they require very high switching frequency 

(typically in few hundred kHz) leading to high converter losses. Pulse width 

modulation (PWM) control techniques are more interesting which can be 

implemented using lower switching frequency (typically 10 kHz) [50]. 

PWM are widely used in power electronic system and control systems. The 

reasons for the wide applicability of PWM are as follows:  

i. the control variable has only two or three values such that the realization of 

PWM control is simple and  

ii. the PWM can process large signals with high efficiency and low sensitivity of 

noise [51]. 
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2.10.2 Transfer Function Model of a DC Motor 

A DC motor has two main components: electrical component and mechanical 

component. The electrical circuit of the armature and the free body diagram of the 

rotor are shown in Fig. 2.4.  

 

Fig. 2.4: Electrical circuit and free body diagram of the rotor of DC motor [52] 

The flux magnetic ∅ in the field coil is a constant 𝑘1 by the assumption that the 

field current 𝑖𝑓  is constant [53]. If 𝑇 is the rotor torque, 𝑘2 is torque constant, and 𝑖𝑎  is 

armature current then  

𝑇 𝑡 = 𝑘2𝑖𝑎(𝑡) ( 2 - 3 ) 

If 𝐿 is electric inductance, 𝑅 is electric resistance, 𝑉 is source voltage, 𝐾 is 

electromotive force constant, and 𝜃 is rotor position, then using KVL principle for the 

armature circuit,
 
 

𝑉 𝑡 = 𝐿
𝜕𝑖𝑎
𝜕𝑡

+ 𝑅. 𝑖𝑎 𝑡 + 𝐾
𝜕𝜃

𝜕𝑡
 ( 2 - 4 ) 

If 𝐽 is moment of inertia of the rotor, 𝐽𝑙  is moment inertia of load, 𝑏 is damping ratio 

of the mechanical system, 𝑏𝑙  is damping ratio of load and 𝑇𝑙  is load torque, then using 

Newton II principle for mechanical system,
 
 

𝑇 𝑡 = 𝑇𝑙 𝑡 + 𝐽
𝜕𝜃(𝑡)

𝜕𝑡
+ 𝑏𝜃(𝑡) ( 2 - 5 ) 

𝑇𝑙 𝑡 = 𝐽𝑙
𝜕𝜃(𝑡)

𝜕𝑡
+ 𝑏𝑙𝜃(𝑡) ( 2 - 6 ) 
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Substituting Eq ( 2 - 6 ) to Eq ( 2 - 5 ) the result is:  

𝑇 𝑡 =  𝐽 + 𝐽𝑙 
𝜕𝜃(𝑡)

𝜕𝑡
+  𝑏 + 𝑏𝑙 𝜃(𝑡) ( 2 - 7 ) 

Converting Eq. ( 2 - 3 ), ( 2 - 4 ), and ( 2 - 7 ) to the s-domain results :  

𝑇 𝑠 = 𝑘2𝐼𝑎(𝑠) ( 2 - 8 ) 

𝑉 𝑠 = 𝑠𝐿𝐼𝑎 𝑠 + 𝑅𝐼𝑎 𝑠 + 𝑠𝐾𝜃(𝑠) ( 2 - 9 ) 

𝑇 𝑠 = 𝑠 𝐽 + 𝐽𝑙 𝜃 𝑠 +  𝑏 + 𝑏𝑙 𝜃(𝑠) ( 2 - 10 ) 

𝐼𝑎(𝑠) can be found using Eq ( 2 - 9 )  

𝐼𝑎 𝑠 =
𝑉 𝑠 − 𝑠𝐾𝜃(𝑠)

𝐿𝑠 + 𝑅
 ( 2 - 11 ) 

Practically, 𝑘2 = 𝐾 [53]. If 𝑠𝜃(𝑠) : speed, 𝐽𝑒 = 𝐽 + 𝐽𝑙  , 𝑏𝑒 = 𝑏 + 𝑏𝑙  , then substituting 

Eq ( 2 - 8 ), ( 2 - 10 ), and ( 2 - 11 ) gives the result :  

𝑠𝜃(𝑠)

𝑉(𝑠)
=

𝐾

𝐽𝑒𝐿𝑠2 +  𝐽𝑒𝑅 + 𝑏𝑒𝐿 𝑠 + 𝑏𝑒𝑅 + 𝐾2
 ( 2 - 12 ) 

When 𝐽𝑙 = 𝐽 and 𝑏𝑙 = 𝑏 , Eq ( 2 - 12 ) becomes  

𝑠𝜃(𝑠)

𝑉(𝑠)
=

𝐾
2 

𝐽𝐿𝑠2 +  𝐽𝑅 + 𝑏𝐿 𝑠 + 𝑏𝑅 + 2𝐾2
 ( 2 - 13 ) 

When no load, Eq ( 2 - 12 ) becomes 

𝑠𝜃(𝑠)

𝑉(𝑠)
=

𝐾

𝐽𝐿𝑠2 +  𝐽𝑅 + 𝑏𝐿 𝑠 + 𝑏𝑅 + 𝐾2
 ( 2 - 14 ) 

Dividing Eq ( 2 - 12 ) to Eq ( 2 - 14 ) by s to produce the transfer function of the 

position,  
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𝜃(𝑠)

𝑉(𝑠)
=

𝐾

𝐽𝑒𝐿𝑠3 +  𝐽𝑒𝑅 + 𝑏𝑒𝐿 𝑠2 +  𝑏𝑒𝑅 + 𝐾2 𝑠
 ( 2 - 15 ) 

𝜃(𝑠)

𝑉(𝑠)
=

𝐾
2 

𝐽𝐿𝑠3 +  𝐽𝑅 + 𝑏𝐿 𝑠2 +  𝑏𝑅 + 2𝐾2 𝑠
 ( 2 - 16 ) 

𝜃(𝑠)

𝑉(𝑠)
=

𝐾

𝐽𝐿𝑠3 +  𝐽𝑅 + 𝑏𝐿 𝑠2 +  𝑏𝑅 + 𝐾2 𝑠
 ( 2 - 17 ) 

An example of DC motor parameters are shown as discussed in [52] as in      

Table 2.1. 

Table 2.1  Example of DC motor parameters 

Parameter Symbol Unit Magnitude 
 Moment of inertia 𝐽 kg.m

2
  0.01 

 Damping constant 𝑏 kg.m
2
/sec  0.1 

 Constant 𝐾 -  0.01 

 Resistance 𝑅 ohm  1.00 

 Inductance 𝐿 henry  0.50 

 Source voltage (input) 𝑉 volt Variable 

 Rotor position (output) 𝜃 rad Variable 

 

In Table 2.1, the rotor and shaft are assumed to be rigid. Thus, the transfer functions 

of the speed and position are given by:  

𝑠𝜃(𝑠)

𝑉(𝑠)
=

20

𝑠2 + 102𝑠 + 200.2
 (speed in rad/s) ( 2 - 18 ) 

𝜃(𝑠)

𝑉(𝑠)
=

20

𝑠3 + 102𝑠2 + 200.2𝑠
 

(position in rad/s) ( 2 - 19 ) 

When the plant is loaded with the same mechanical system, then 

𝑠𝜃(𝑠)

𝑉(𝑠)
=

10

𝑠2 + 102𝑠 + 200.1
 (speed in rad/s) ( 2 - 20 ) 

𝜃(𝑠)

𝑉(𝑠)
=

10

𝑠3 + 102𝑠2 + 200.1𝑠
 

(position in rad/s) ( 2 - 21 ) 
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In the simulation experiment, the loaded DC motor can be approximated by 

multiplying the plant with 0.5. 

2.10.3 Input-Output Modelling of a DC Servomotor 

Servomotor controllers need optimization to give a good performance as desired. 

Sometimes, it requires more time and has big risk in optimization process. To 

overcome the problem, a real plant (DC motor) is identified to get a transfer function 

and build a virtual controller. The virtual controller is optimized, and then the 

optimized parameters are applied to the real controller in the real control system. 

The system identification problem is to estimate a model of a system based on the 

observed input-output data [22]. The typical identification process consists of stages 

where the model structure is iteratively selected, compute the best model in the 

structure, and evaluate this model's properties [22]. This cycle can be itemized, as 

follows [22]:  

i. Design an experiment and collect input-output data from the process to be 

identified 

ii. Examine the data. Refine the data by removing trends and outliers, and select 

useful portions of the original data. Apply filters to the data to enhance 

important frequency ranges 

iii. Select and define a model structure (a set of candidate system descriptions), 

within which a model is to be found 

iv. Compute the best model in the model structure according to the input-output 

data and a given criterion for goodness of fit. 

v. Examine the properties of the model obtained. If the model is good enough, 

then stop; otherwise go back to step iii to try another model structure. Attemp 

other estimation methods (step iv), or work further on the input-output data 

(steps i and ii). 
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If Ts is sampling period, then the data for identification is obtained from the 

MATLAB command below: 

data=iddata(workspace_output,workspace_input,Ts); 

Using MATLAB command, the general command to get the process model is as 

follows: 

model=pem(data, 'PnDtZUc'); 

where, 

P : (required) for process model 

n : 0,1,2 or 3 (required) for the number of poles 

Dt : (optional) to include a time-delay term 

Z : (optional) to include a process zero (numerator term) 

Uc : (optional) to indicate possible complex-valued (underdamped) poles 

To select the best process model, the fitness function has to be obtained. If 𝑖_𝐹𝐼𝑇 

is the fitness function for identification process, 𝑌𝑚  is the real (measured) output, 𝑌   is 

the estimated output, and 𝑌  is the mean value of real output, then the fitness function 

can be obtained from the formula as shown in Eq ( 2 - 22 ), [22] 

𝑖_𝐹𝐼𝑇 =  
1 − 𝑁𝑂𝑅𝑀 𝑌𝑚 − 𝑌  

𝑁𝑂𝑅𝑀 𝑌𝑚 − 𝑌  
 ∗ 100 ( 2 - 22 ) 

2.11 Overview on Control Theory 

Control systems are an integral part of modern society. It consists of subsystems and 

processes (or plants) assembled for the purpose of controlling the outputs of the 

processes. In its simplest form, a control system provides an output or response for a 

given input or stimulus, as shown in Fig. 2.5 [54]. 
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Fig. 2.5  Simplified description of a control system [54] 

2.11.1 Feed Forward and Feedback Control 

A generic open-loop system or feed forward control system is shown in Fig. 2.6. It 

starts with a subsystem called an input transducer; which converts the form of the 

input to that used by the controller. The controller drives a process or plant. The input 

is sometimes called the reference or set-point, while the output can be called the 

controlled variable or process value. Other signals, such as disturbances, are shown 

added to the controller and process outputs via summing junctions, which yield the 

algebraic sum of their input signals using associated signs. These systems are simply 

commanded by the input but do not correct for disturbances [54]. 

 

Fig. 2.6  Block diagram of feed forward control system [54] 

The disadvantages of feed forward control systems, namely sensitivity to 

disturbances and inability to correct for these disturbances, may be overcome in 

closed-loop systems or feedback control systems. The generic architecture of a 

feedback control system is shown in Fig. 2.7 [54]. 

 

Fig. 2.7  Block diagram of feedback control system [54] 
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The input transducer converts the form of the input to the form used by controller. 

An output transducer or sensor measures the output response and converts it into the 

form used by the controller [54]. 

The first summing junction algebraically adds the signal from the input to signal 

from the output, which arrives via the feedback path, the return path from the output 

to the summing junction. In Fig. 2.7, the output signal is subtracted from the input 

signal. The result is generally called the actuating signal. However, in systems where 

both the input and output transducers have unity gain, the actuating signal's value is 

equal to the actual difference between the input and output. Under this condition, the 

actuating signal is called the error [54]. 

The feedback system compensates for disturbances by measuring the output 

response, feeding that measurement back through a feedback path, and comparing that 

response to the input at the summing junction. If there is any difference between the 

two responses, the system drives the plant, via the actuating signal, to make a 

correction. If there is no difference, the system does not drive the plant, since the 

plant's response is already the desired response [54]. 

Feedback systems, then, have the obvious advantage of greater accuracy than feed 

forward systems. They are less sensitive to noise, disturbances, and changes in the 

environment. Transient response and steady-state error can be controlled more 

conveniently and with greater flexibility in closed-loop systems, often by a simple 

adjustment of gain (amplification) in the loop and sometimes by redesigning the 

controller. On the other hand, feedback systems are more complex and expensive than 

feed forward systems [54]. 

In many modern systems, the controller (or compensator) is a digital computer. 

The advantage of using computer is that many loops can be controlled or 

compensated by the same computer through time sharing. Furthermore, any 

adjustments of the compensator parameters required to yield a desired response can be 

made by changes in software rather than hardware. The computer can also perform 

supervisory functions, such as scheduling many required applications [54]. 
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2.11.2 PID Controller 

PID controller is a combination of three basic characteristics of system, that is, 

proportional (P), integral (I), and derivative (D). There are two types of system 

combination: parallel and cascaded. If 𝑚 is output, 𝑒 is input, 𝑚0 is initial condition 

or offset, 𝐾𝑃 is proportional constant, 𝐾𝐼 is integral constant and 𝐾𝐷 is derivative 

constant, then in parallel combination, the general form of PID controller is 

formulated as [55] 

𝑚(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼 𝑒 𝑡 𝑑𝑡 + 𝐾𝐷
𝑑𝑒 𝑡 

𝑑𝑡
+ 𝑚0(𝑡) ( 2 - 23 ) 

in 𝑡-domain, and 

𝑀(𝑠) = 𝐾𝑃𝐸(𝑠) +
𝐾𝐼
𝑠
𝐸(𝑠) + 𝐾𝐷𝑠𝐸(𝑠) + 𝑀0(𝑠) ( 2 - 24 ) 

in 𝑠-domain 

In more general form, Eq. ( 2 - 23 ) can be written as, 

𝑚(𝑡) = 𝑚𝑃(𝑡) + 𝑚𝐼(𝑡) + 𝑚𝐷(𝑡) + 𝑚0(𝑡) ( 2 - 25 ) 

If 𝑇𝑠 is sampling period, then Eq. ( 2 - 25 ) can be written in discrete form as follows 

[56] : 

𝑚(𝑘𝑇𝑠) = 𝑚𝑃(𝑘𝑇𝑠) + 𝑚𝐼(𝑘𝑇𝑠) + 𝑚𝐷(𝑘𝑇𝑠) + 𝑚0(𝑘𝑇𝑠) ( 2 - 26 ) 

The proportional part, 𝑚𝑃 𝑘𝑇𝑠 , of Eq. ( 2 - 26 ) is [56] 

𝑚𝑃 𝑘𝑇𝑠 = 𝐾𝑃𝑒 𝑘𝑇𝑠  ( 2 - 27 ) 

The integral part, 𝑚𝐼 𝑘𝑇𝑠 , of Eq. ( 2 - 26 ) is approximated as  

𝑚𝐼 𝑘𝑇𝑠 = 𝐾𝐼𝑇𝑠 𝑒 𝑘𝑇𝑠 

𝑘

+ 𝑚𝐼(0) ( 2 - 28 ) 

 



25 

The derivative part, 𝑚𝐷 𝑘𝑇𝑠 , of Eq. ( 2 - 26 ) is approximated as 

𝑚𝐷 𝑘𝑇𝑠 =
𝐾𝐷
𝑇𝑠

 𝑒 𝑘𝑇𝑠 − 𝑒 𝑘𝑇𝑠 − 𝑇𝑠   ( 2 - 29 ) 

The parameters of PID controller (𝐾𝑃, 𝐾𝐼 and 𝐾𝐷) can be set using ultimate cycle 

method (Ziegler-Nichols). If 𝐾𝑃−𝑢  is ultimate value of 𝐾𝑃, i.e. the value of 𝐾𝑃 where 

the output response is constant oscillation and 𝑇𝑢  is the ultimate period of oscillation, 

then there are three combination of PID controller [57]: 

a. P controller 

𝐾𝑃 = 0.5𝐾𝑃−𝑢  ( 2 - 30 ) 

 

b. PI controller 

𝐾𝑃 = 0.45𝐾𝑃−𝑢  

𝐾𝐼 =
1.2

𝑇𝑢
 

( 2 - 31 ) 

 

c. PID controller 

𝐾𝑃 = 0.6𝐾𝑃−𝑢  

𝐾𝐼 =
2

𝑇𝑢
 

𝐾𝐷 =
𝑇𝑢
8

 

( 2 - 32 ) 

2.11.3 Integral Windup 

When the error or actuating signal has the same sign for a long time, the integral part 

output of PID controller will increase larger and larger. This symptom is called 

integral windup. The integral windup can inflict overshoot [56].  
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One of the methods to overcome the problem caused by integral windup is 

saturation feedback [58]. The output of the integral part in Eq. ( 2 - 23 ), Eq. ( 2 - 24 ) 

and Eq. ( 2 - 28 ) will increase as the time increase but the manipulated variable is 

limited by hardware, e.g. data acquisition (DAQ). The difference between 

manipulated variable and controller output is added to the error or actuating signal 

through the feedback constant, Ka. The block diagram of saturation feedback is 

shown in Fig. 2.8. 

 

Fig. 2.8  Saturation feedback as an anti integral windup [58] 

2.11.4 Fuzzy Logic Controller 

According to the Oxford English Dictionary, the word "fuzzy" is defined as "blurred, 

indistinct; imprecisely defined; confused, vague". Fuzzy systems are knowledge-

based or rule-based systems. The heart of a fuzzy system is a knowledge base 

consisting of the so-called fuzzy IF-THEN rules. A fuzzy IF-THEN rule is an IF-

THEN statement in which some words are characterized by continuous membership 

functions [59]. For example, if 𝑋 is the speed of a car, 𝑌 is force application to the 

accelerator, then the following is a fuzzy IF-THEN rule [59]: 

IF 𝑋 is high, THEN 𝑌 is less ( 2 - 33 ) 

where the words "high" and "less" are characterized by the membership functions 

shown in Fig. 2.9 and Fig. 2.10 respectively. A fuzzy system is constructed from a 

collection of fuzzy IF-THEN rules [59].  

The core of a membership function for some fuzzy set A is defined as the region 

of the universe that is characterized by complete and full membership in the set A. 

That is, the core comprises those elements 𝑥 of the universe such that 𝜇A 𝑥 = 1 [60].  
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The support of a membership function for some fuzzy set A is defined as that 

region of the universe that is characterized by nonzero membership in the set A. That 

is, the support comprises those elements x of the universe such that 𝜇A 𝑥 > 0 [60].  

 

Fig. 2.9  Membership function for 'high" where the horizontal axis represents the 

speed of the car and the vertical axis represents the membership value for "high" [59] 

 

Fig. 2.10  Membership function for "less", where the horizontal axis represents the 

force applied to the accelerator and the vertical axis represents the membership value 

for "less" [59] 

The boundaries of a membership function for some fuzzy set A are defined as that 

region of the universe containing elements that have a nonzero membership but not 

complete membership. That is, the boundaries comprise those elements 𝑥 of the 

universe such that 0 <  𝜇A 𝑥 < 1. These elements of the universe are those with 

some degree of fuzziness, or only partial membership in the fuzzy set A [60]. 

A convex fuzzy set is described by a membership function whose membership 

values are strictly monotonically increasing, or whose membership values are 

monotonically decreasing, or whose membership values are strictly monotonically 
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increasing then strictly monotonically decreasing with increasing values for elements 

in the universe. Said another way, if, for any elements 𝑥, 𝑦, and 𝑧 in a fuzzy set A, the 

relation 𝑥 < 𝑦 < 𝑧 implies that  

𝜇A 𝑦 ≥ min 𝜇A 𝑥 ,𝜇A 𝑧   ( 2 - 34 ) 

then A is said to be a convex fuzzy set [60].  

A special property of two convex fuzzy sets, say A and B , is that the intersection 

of these two convex fuzzy sets is also a convex fuzzy set. That is, for A and B, which 

are both convex, A ∩ B is also convex [60]. 

The crossover points of a membership function are defined as the elements in the 

universe for which a particular fuzzy set A has values equal to 0.5, i.e., for which 

𝜇A  𝑥 = 0.5 [60].  

The height of fuzzy set A is the maximum value of the membership functions, i.e., 

hgt A = max 𝜇A (𝑥) . If the hgt A < 1, the fuzzy set is said to be subnormal [60]. 

The first step in building fuzzy system is to gather fuzzy IF-THEN rules based on 

human experiences or skills. The next step is combining the rules to the unique 

system [59]. 

There are three types of fuzzy system commonly used: Pure fuzzy systems, 

Takagi-Sugeno-Kang (TSK) fuzzy systems, and Fuzzy systems with fuzzifier and 

defuzzifier [59]. Basic configuration of fuzzy systems with fuzzifier and defuzzifier is 

shown in Fig. 2.11. 

The fuzzifier is defined as a mapping from a real valued point 𝑥∗ ∈ 𝑈 ⊂ 𝑅𝑛  to a 

fuzzy set 𝐴′  in 𝑈 [59]. There are three criteria in designing fuzzifier [59]: 

i. The fuzzifier should consider the fact that the input is at the crisp point 

ii. If the input to fuzzy system is corrupted by noise, then the fuzzifier should 

help to supress the noise 

iii. The fuzzifier should help to simplify the computations involved in the fuzzy 

inference engine. 
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Fig. 2.11  Basic configuration of fuzzy systems with fuzzifier and defuzzifier [59] 

There are three types of fuzzifier [59]: Singletion fuzzifier, Gaussian fuzzifier, 

and Triangle fuzzifier. Singleton fuzzifier can fulfill the three criteria above. It maps a 

real valued point 𝑥∗ ∈ 𝑈 into a fuzzy singleton 𝐴′ in 𝑈, which has the membership 

value 1 at 𝑥∗ and zero at all other point in 𝑈 [59]: 

𝜇𝐴′  𝑥 =  
1    𝑖𝑓 𝑥 = 𝑥∗

0  𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒
  ( 2 - 35 ) 

In fuzzy inference engine, the fuzzy logic base is used to combine IF-THEN rules 

in the fuzzy rules base to the mapping from a fuzzy set 𝐴′ in 𝑈 into a fuzzy set 𝐵′ in 𝑉 

[59]. There several types of fuzzy inference engine [59]: 

i. Product inference engine 

ii. Minimum inference engine 

iii. Lukasiewicz inference engine 

iv. Zadeh inference engine 

v. Dienes-Rescher inference engine 

On the simplicity reason, product inference engine (PIE) and minimum inference 

engine (MIE) are commonly used as a fuzzy inference engine. For 𝑀 rules and 𝑛 

membership functions, the PIE is formulated as [59] 

𝜇𝐵𝑙 𝑦 =
𝑀

max
𝑙 = 1

  sup
𝑥 ∈ 𝑈

 𝜇𝐴𝑙(𝑥) 𝜇
𝐴𝑖
𝑙 𝑥𝑖 𝜇𝐵𝑙(𝑦)

𝑛

𝑖=1

   ( 2 - 36 ) 
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and the MIE is formulated as [59] 

𝜇𝐵𝑙 𝑦 =
𝑀

max
𝑙 = 1

  sup
𝑥 ∈ 𝑈

min  𝜇𝐴𝑙 𝑥 ,𝜇𝐴1
𝑙  𝑥1 ,… , 𝜇𝐴𝑛𝑙  𝑥𝑛 , 𝜇𝐵𝑙(𝑦)   ( 2 - 37 ) 

Defuzzifier is defined as a mapping from a fuzzy set 𝐵′ in 𝑉 ⊂ 𝑅 (output of the 

fuzzy inference engine) to a crisp value 𝑦∗ ∈ 𝑉 [59]. There are three criteria in 

designing defuzzifiers [59]: 

i. Plausibility: the point 𝑦∗ represents 𝐵′ from an intuitive point of view 

ii. Computational simplicity: particularly important for real time application 

iii. Continuity: small change of 𝐵′ should not make large change of 𝑦∗. 

There are three types of defuzzifier [59]: center of gravity defuzzifier, center 

average defuzzifier, and maximum defuzzifier. Center average defuzzifier can fulfil 

all of the three criteria. If wl is the height of 𝑙𝑡  fuzzy membership function then for 𝑀 

fuzzy membership functions it can be formulated as [59] 

𝑦∗ =
 𝑦 𝑙𝑤𝑙
𝑀
𝑙=1

 𝑤𝑙
𝑀
𝑙=1

 ( 2 - 38 ) 

Eq. ( 2 - 38 ) shows that the crisp value of fuzzy output is the sum of core of 𝑙𝑡 -

fuzzy membership function multiplied by the height of 𝑙𝑡 -fuzzy membership 

function over the sum of the height of 𝑙𝑡 -fuzzy membership function. 

2.12 Evolutionary Algorithms 

Conventional search techniques, such as hill-climbing, are often incapable of 

optimizing non-linear multimodal functions. In such cases, a random search method 

might be required. However, undirected search techniques are extremely inefficient 

for large domain [61]. To overcome the problem, an artificial intelligence (AI) is 

introduced. 
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AI is the intelligence of machines and the branch of computer science that aims to 

create it. One of the subfield of AI is evolutionary computation that involves 

combinatorial optimization problems.  

In AI, an evolutionary algorithm (EA) is a subset of evolutionary computation. An 

EA uses some mechanisms inspired by biological evolution, i.e. : reproduction, 

mutation, recombination, and selection. Candidate solutions to the optimization 

problem play the role of individuals in a population, and the fitness function 

determines the environment within which the solutions "live". 

The popular type of EA is neural network, simulated annealing, ant colony 

algorithm and genetic algorithm (GA) as discussed in [62-77]. One seeks the solution 

of a problem in the form of strings of numbers (traditionally binary, although the best 

representations are usually those that reflect something about the problem being 

solved), by applying operators such as recombination and mutation. This type of EA 

is often used in optimization problems [78]. 

2.12.1 Genetic Algorithms 

A GA is a directed random search technique, invented by Holland in 1975 as 

mentioned by Pham et al. [61], which can find the global optimal solution in complex 

multi-dimensional search spaces. A GA is modelled on natural evolution in that the 

operators it employs are inspired by the natural evolution process. These operators, 

known as genetic operators, manipulate individuals in a population over several 

generations to improve their fitness gradually. Individuals in a population are likened 

to chromosomes and usually represented as strings of binary numbers [61]. 

A simple GA is composed of three main components: initialization; evaluation; 

and genetic operators. There are three genetic operators: selection, crossover, and 

mutation [79]. 

The process of GA is shown in Fig. 2.12. After initialization of population with 

certain bit size and population size, then the fitness evaluations for each population 

are performed to select fit populations to be crossed (in crossover operation) and then 
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to be mutated (mutation operation). Next, the fitness evaluations for each population 

are done every time after mutation operation to find the best fitness for first 

generation. Following this, crossover and mutation are conducted for the next 

generations until getting the certain generation set by user. The solution is the best fit 

of all generations. 

 

Fig. 2.12  Process flowchart of Genetic Algorithm 

To generate good offspring, a good parent selection mechanism is necessary. This 

is a process used for determining the number of trials for one particular individual 

used in reproduction. The chance of selecting one chromosome as a parent should be 

directly proportional to the number of offspring produced [80]. 

There are three measures of performance of the selection algorithms [80]: 
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i. Bias: the absolute difference between individuals in actual and expected 

probability for selection. The best value is zero or zero bias, when an 

individual's probability equals its expected number of trials 

ii. Spread: a range in the possible number of trials that an individual may 

achieve. The minimum spread is the smallest spread that theoretically permits 

zero bias. 

iii. Efficiency: the overall time complexity of the algorithms. 

The selection algorithm should thus be achieving a zero bias while is maintaining 

a minimum spread and not contributing to an increased time complexity of GA [80]. 

Many selection techniques employ roulette wheel mechanism (RWM). The basic 

roulette wheel selection method is a stochastic sampling with replacement (SSR). The 

segment size and selection probability remain the same throughout the selection 

phase. SSR tends to give zero bias but potentially inclines to a spread that is unlimited 

[80]. 

Stochastic sampling with partial replacement (SSPR) extends upon SSR by 

resizing a chromosome's segment if it is selected. Each time a chromosome is 

selected, the size of its segment is reduced by a certain factor. If the segment size 

becomes negative, then it is set to zero. This provides a reduction of spread but 

contributing to an increased time complexity [80]. 

Stochastic universal sampling (SUS) is another single-phase sampling algorithm 

with minimum spread, zero bias, and the time complexity. SUS uses an 𝑁𝑠 equally 

spaced pointer, where 𝑁𝑠 is the number of selection required. The population is 

shuffled randomly and a single random number in the range  0,
𝐹𝑠𝑢𝑚

𝑁𝑠
  is generated, 

𝑝𝑡𝑟, where 𝐹𝑠𝑢𝑚  is the sum of individual's fitness functions. The 𝑁𝑠 individuals are 

then chosen by generating the 𝑁𝑠 pointers spaced by                                1, 𝑝𝑡𝑟,𝑝𝑡𝑟 +

1,… , 𝑝𝑡𝑟 + 𝑁𝑠 + 1 , and selecting those individuals whose fitness span the positions 

of the pointers. In addition, as individuals are selected entirely on their position in the 

population, SUS has zero bias [80].  
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Crossover mechanism is shown in Fig. 2.13. A crossover point is randomly set. 

The portions of the two chromosomes beyond this cut-off point to the right are to be 

exchanged to form the offspring. An operation rate (pc) with a typical value between 

0.6 and 1.0 is normally used as the probability of crossover [80]. 

 

Fig. 2.13  Example of one-point (in the middle) of crossover [80] 

Although the one-point crossover method was inspired by biological processes, it 

has one major drawback in that certain combinations of schema cannot be combined 

in some situations [81]. 

The mutation mechanism is shown in Fig. 2.14. This applied to each offspring 

individually after the crossover exercise. It alters each bit randomly with a small 

probability (pm) with a typical value of less then 0.1 [80]. Mutation operation is used 

for avoiding the premature convergence in optimization process [82]. 

 

Fig. 2.14  Example of bit mutation on the fourth bit [80] 

The choices of pm and pc as the control parameters can be a complex nonlinear 

optimization problem to solve. Furthermore, their setting are critically dependent 

upon the nature of the objective function. This selection issue still remains open to 

suggestion although some guidelines have been introduced by Grefenstette in 1986 

and Dejong and Spears in 1990 [80]: 

- For large population size (100) 

 crossover rate: 0.6 

 mutation rate: 0.001 
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- For small population size (30) 

 crossover rate: 0.9 

 mutation rate: 0.01 

2.12.2 Parallel Genetic Algorithm 

Brief mention should be made of the GA properties that will be important to this 

work. One can see that the GA already possesses an intrinsic parallelism architecture, 

in a nutshell, and hence less effort is required to construct a parallel computational 

framework. This provide the opportunity for the GA be fully exploited in its parallel 

structure to gain the required speed for practical use [80]. 

There are some GA-based parallel methods to enhance the computational speed. 

The methods of parallelization can be classified as: embarrassingly parallel algorithm 

[83], global parallel algorithm, migration parallel algorithm, and diffusion parallel 

algorithm. These categories reflect the different ways in which parallelism can be 

exploited in the GA as well as the nature of the population structure and 

recombination mechanisms used. A useful review on these techniques has been given 

by Man et al. [80]. 

For example, in embarrassingly parallel algorithm, the same evolutionary 

algorithm is run under different initial conditions in a parallel way. In this technique, 

once all the different configurations have been executed, the configuration showing 

the best behaviour is chosen [83]. 

Global parallel algorithm on the other hand treats the entire population as a single 

breeding mechanism. This can be implemented on the shared memory multiprocessor 

or distributed memory computer. In this case on a shared memory multiprocessor, 

chromosomes are stored in the shared memory. Each processor accesses the particular 

assigned chromosome and return the fitness functions without any conflicts. It should 

be noted that there is some synchronization needed between generation to generation. 

There is a need for the computational load among the processors to be balanced using 

a dynamic scheduling algorithm, e.g. guided self-schedule [80]. 
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Another parallel processing mechanism for computing the GA is the migration 

parallel algorithm. The migration GA (coarse grained parallel GA) divides the 

population into a number of sub-populations, each of which is treated as a separate 

breeding unit under the control of conventional GA. The proliferation of good genetic 

material throughout the whole population is encouraged, and therefore the individual 

migration between sub-populations occurs from time to time [80]. 

Apart from the global and migration techniques, diffusion parallel algorithm (fine 

grained parallel GA) considers the population as a single continuous structure. Here, 

each individual is assigned to a geographic location on the population surface and 

usually placed in a 2-D grid, for the reason that the topology of the processing 

element in many massively parallel computers that are constructed in this form [80]. 

As noted in [80], the individuals are allowed to breed with individuals contained 

in a small local neighbourhood. Usually, this neighbourhood is chosen from the 

immediate adjacent individuals on the population surface and is motivated by the 

practical communication restrictions of parallel computers. 

2.12.3 Hierarchical Genetic Algorithms 

The following discussion on hierarchical genetic algorithm (HGA) is referred to the 

review given by Man et al. in [80]. On the biological inspiration, the genes can be 

classified into two different types: regulatory sequences (RSs) and structural genes 

(SGs). The SGs are coded for polypeptides or RNAs, while the RSs serve as the 

leaders that denote the beginning and ending of SGs, or participate in turning on or off 

the transcription on SGs, or function as initiation points for replication or 

recombination [80]. 

As has been mentioned in [80], one of the most surprising discoveries in the 

founding of molecular biology was that active and inactive genes exist in the SGs. 

Here, the active genes are separated into non-contiguous pieces along the parental 

DNA. Accordingly, the pieces that code mRNA are referred to as exons (active genes) 

and the non-coding pieces are referred as introns (inactive genes). During a 

transcription, there is a process of splicing. 
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On the algorithm application, to indicate the activation of the control gene, an 

integer "1" is assigned for each control gene that is being ignited where "0" is for 

turning off. When "1" is signalled, the associated parameter genes due to that 

particular active control gene are activated in the lower level structure. It should be 

noticed that the inactive genes always exist within the chromosome even when "0" 

appears. This hierarchical architecture implies that the chromosome contains more 

information that of the conventional GA structure. Hence, it is called hierarchical 

genetic algorithm (HGA) [80]. An example of HGA structure with 8-bit control genes 

and 8-bit parameter genes is shown in Fig. 2.15. 

 

Fig. 2.15  An example of HGA structure with 8-bit control genes and 8-bit parameter 

genes 

2.13 Controller Performance 

There are some performance indexes usually used as a controller performance which 

are able to be classified as two groups: second order underdamped response and error 

analysis 

The performance index in second order underdamped response are specified as 

follows [54]: 

i. Rise time, tr. The time required for the waveform to go from 0.1 of the final 

value to 0.9 of the final value. 

ii. Peak time, tp. The time required to reach the first, or maximum, peak. 

iii. Percent overshoot, %OS. The amount that the waveform overshoots the steady 

state, or final value at the peak time, expressed as a percentage of the steady 

state value. 

iv. Settling time, ts. The time required for the transient's damped oscillations to 

reach and stay within + 2 % of the steady-state value, or + 5 % of the steady-

state value [55]. 
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The second-order underdamped response specification is shown in Fig. 2.16. 

Notice that all definitions are also valid for systems of order higher than 2, although 

analytical expressions for these parameters cannot be found unless the response of the 

higher-order system can be approximated as a second-order system [54]. 

There are several kinds of error analysis as a performance index, and the two of 

them are as follows: 

1. Integral of absolute value of error (𝐼𝐴𝐸) is defined as [84]: 

𝐼𝐴𝐸 =   𝑆𝑃 𝑡 − 𝑃𝑉(𝑡) 𝑑𝑡

𝑡

0

 ( 2 - 39 ) 

where 𝑆𝑃 is set-point and 𝑃𝑉 is process value. 

𝐼𝐴𝐸 is appropriate for measuring the performance when the transient process is more 

important or when the input is variable.  

 

Fig. 2.16  Second-order underdamped response specifications [54] 
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2. Integral of time absolute value of error (𝐼𝐴𝐸) is defined as [84]: 

𝐼𝑇𝐴𝐸 = 𝑡   𝑆𝑃 𝑡 − 𝑃𝑉(𝑡) 𝑑𝑡

𝑡

0

 ( 2 - 40 ) 

where 𝑆𝑃 is set-point, 𝑃𝑉 is process value, and 𝑡 is time (duration). 

𝐼𝑇𝐴𝐸 is appropriate for measuring the performance when the steady process is 

important besides the transient process and when the input is constant. 

2.14 Summary 

The overview of some related previous work and the basic theory of electrical motor, 

system identification, control, fuzzy, and genetic algorithm has been presented in this 

chapter. The proposed method on the optimization algorithm has been introduced. 

The optimization algorithm proposed in this chapter offers some promising ways 

for achieving the best controller for a DC servomotor. 

In the following chapter, detailed discussion on the model development, the 

controller's design and the optimization algorithm development, and the verification 

of the controllers and the optimization algorithm via simulation to determine the 

correctness of the model, the controllers and the optimization algorithm will be 

presented. 

 

  



 

CHAPTER 3 

SIMULATION AND HARDWARE EXPERIMENT 

3.1 Introduction 

This chapter presents the methodology devised for the experiments setup. It starts 

with the modelling of a DC motor from a known source with known specifications. 

The associated controllers were then designed and applied to the model using 

MATLAB/SIMULINK. There were six speed controllers: (1) proportional-integral 

(PI), (2) proportional-integral-derivative (PID), (3) fuzzy logic controller (FLC), (4) 

fuzzy logic-based self-tuning PI (FLBPI), (5) fuzzy logic-based self-tuning PID 

(FLBPID), (6) and fuzzy logic parallel integral controller (FLIC). There were three 

position controllers: (1) fixed proportional controller, (2) FLC, and (3) variable 

proportional controller. The performance of the controllers were compared and the 

controllers in which the performance are better than PI and PID controllers would be 

selected to be optimized using GA. 

It would be time consuming and risky if the GA process is applied to the real 

hardware. Therefore, from the hardware servomotor system, a gray box s-modeling of 

the system was first build. The controllers were then applied to the transfer function 

model for evaluation. Once the controller's performances are understood, then a real-

time implementation on an experiment rig that constitutes the servo speed and 

position controller system consisting of the servomotor and load, measuring and 

controlling devices would be conducted. 

The next step is designing GA to optimize the speed controllers. Before 

optimizing the controllers, the GA simulation is conducted to get the ideal 

specifications. In the GA simulation, it is designed to get the maximum value of the 

function. Based on the simulation result, a new method of GA is proposed, i.e. the 
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semi-parallel operation GA (SPOGA) with the change of the operation process. The 

initial population and solution processes are also changed. 

The SPOGA is then applied to the transfer function and hardware experimental 

rig. The performance of SPOGA optimized controllers are compared to non-SPOGA 

optimized controllers and conventional controllers. 

3.2 Hardware Implementation 

The experiment on DC servomotor for the speed and position was conducted using 

SIMULINK where the block diagram is shown in Fig. 3.1. The speed control loop is 

in the position control loop [28]. Basically, the position control loop is executed until 

reaching the position set-point while the speed is limited to the speed set-point. 

Practically, position control is better to be sensorless because it will reduce cost and 

size and increase the reliability of the overall system [85]. 

 

Fig. 3.1  Structure of feedback controller [28] 

 

The input, feedback, and output elements for position and speed are implemented 

in the SIMULINK diagram with specifications as follows: 

 



42 

AP=1 

Av=0.002 

Kv=9.5455 

Hv=0.002 

HP=0.005 

Kpt=0.005 

These specifications have been based on realistic assumptions. 

Position control was done based on the position set-point and integration of speed 

sensor as a process value. The position controller was designed to control the radian 

position where the maximum position is less then 2π or 6.28 rad. In the experiment, 

the range of position is [0.00, 6.00] rad. Based on the experiment on the hardware 

device, the range of speed is [150.00, 426.47] rpm when no load and in the full load 

condition (1 Nm), the range of speed is [150.00, 278.29] rpm. Hopefully, the position 

will reach the maximum position set-point with the minimum of speed set-point 

within 90 sec. Based on the gear specification in the RS Component web, there are 

three reduction gears with ratio 12/70 each. Therefore, the overall gear ratio is 0.005 

and as depicted in Fig. 3.1, HP would be assigned the value 0.005, and similarity for 

Kpt. 

The input range of position controller is [0.00, 6.00]. The range of position set-

point is [0.00, 6.00] rad. Therefore, the value of AP is unity. The input range of speed 

controller is [0.00, 10.00]. The speed sensor has 0.002 volts/rpm. The range of speed 

set-point in the experiment is [0.00, 400.00] rpm. Therefore, the value of AV is 0.002 

and it needs conditioning of input constant. The value of HV is the same as AV to 

compare the values of set-point and process value that yields an actuating signal. 

The hardware implementation for the block diagram is as follows: 

Plant/DC motor: 175 W, 1500 rpm, 240 V, 1.1 A 

Load : Dynamometer load controller 

Input elements: 

Tacho-generator with 500 rpm/volt 

ADC: 1 channel [0, 10] volts 

Filtering : FIR with 30 points 
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Output elements: 

DAC: 2 channels [0, 4] volts 

Differential amp: HA-17741 

Power amp: Chopper/Inverter and IGBT 

Controller elements: 

Computer with Intel Pentium Dual Core T2080 processor, Windows XP SP3, 

MATLAB/SIMULINK software. 

The DAQ USB-1208FS has 250 samples per second and it depends on a PC that 

is used. Using computer and software as specified above, it has 1000 samples per 

second. In other words, the sampling rate is  1 ms.  

It is to note that at this point, from the experiment the appropriate sampling period 

for the control algorithms with regards to the time constant of the plant in the open 

loop condition is 10 ms. The more detail discussion on the experiment will be 

presented in Chapter 5. 

The experimental rig constituting the servo speed and position controller system 

consists of the servomotor and load, measuring and controlling devices. The servo 

system contains a DC motor driven by an IGBT chopper inverter. The measuring 

device is the speed sensor (tacho-generator), ADC and a digital filter i.e., finite 

impulse response (FIR), while the controlling devices are DAC, differential amplifier, 

and the IGBT inverter circuit. The measuring devices provide status of the output 

responses of the speed and position where the information about the speed and 

position is fed through signal conditioning circuit and anti-aliasing filter for analysis 

and calculation of the control signal. The speed and position requirements 

proportional to the manipulated variable of the controller’s output are fed to a 

computer. 

The block diagram of hardware design is shown in Fig. 3.2 where the power 

amplifier and differential amplifier are presented more detail in Fig. 3.3 and Fig. 3.4. 

The output range of controller is [0.00, 20.00] volts. This follows the input range 

of Chopper/Inverter Control Unit in the power amplifier circuit diagram (Fig. 3.3) 
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where the input range is [-10.00, +10.00] volts. This range is fed by the output of 

differential amplifier in Fig. 3.4 which has a formula [86]:   

VOUT =  
R2

R1
  V2 − V1  

( 3 - 1 ) 

  

 

Fig. 3.2  Block diagram of hardware design  

The gain of differential amplifier is chosen to be 5 (five) regarding to the output 

range of DAC which is about 2 volts. The values of V1 and V2 are fed from a DAC 

which has two channels 12 bit each. The block diagram of USB-1208FS DAQ is 

shown in Fig. 3.5. The output of ADC or input of DAC are connected to the computer 

using full speed USB 2.0 compliant interface which is also compatible with USB 1.1.  

Signal conditioner software is needed in communication between computer and 

DAC. Refer to the Fig. 3.6 and Fig. 3.7, if in is the output of computer as a controller 

to the signal conditioner, and v1 and v2 are the output of signal conditioner to DAC, 

then the flowchart is shown in Fig. 3.6. 
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Fig. 3.3  Power amplifier circuit diagram 

 

Fig. 3.4  Differential amplifier circuit diagram 
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Fig. 3.5  USB-1208FS functional block diagram [87] 

As seen in Fig. 3.6, with the range of in is [0.00, 10.00], the range of v1 will be 

[4.00, 0.00] and v2 will be zero. With the range of in is [10.00, 20.00], the range of v2 

will be [0.00, 4.00] and v1 will be zero as shown in Fig. 3.7. 

The output of speed sensor has the range of [0.00, 0.85] volts and can directly 

connected to the ADC which is within the range input of ADC, [0.00, 10.00] volts. 

The output of ADC is digital 0.85 and filtered using 30-point FIR for noise reduction. 

It is a digital software filter based on moving average (MA) filter. If 𝑁 is the number 

of points, 𝑋𝑖  is input at 𝑖𝑡  point, then the output at 𝑖𝑡  point, 𝑌𝑖 , is given by 

𝑌𝑖 =
 𝑋𝑖−𝑘
𝑁−1
𝑘=0

𝑁
 ( 3 - 2 ) 

Experimentally, the value of 𝑁 is 30. This was done by searching the minimum 

value of N in the multiples of 5 in which the maximum deviation of noise is less than 

the maximum steady state error, i.e. 2 % [54]. The experiment result will be presented 

in Chapter 5. 
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There are two output transducers: speed output transducer, and position 

transducer. There are two speed transducers sequentially: 

i. Zero tolerance regarding to noise: when the magnitude is less than or equal to 

0.05 volts, then it is assumed to be zero 

ii. Converter volt to rpm: regarding to the speed sensor, the magnitude in volt is 

converted to speed by multiplying with 500. 

 

Fig. 3.6  Signal conditioner flowchart for DAC 

The position transducer converts the rpm to rad/sec by multipying with 0.1048 and 

then multipying with 0.005 as a gear ratio. The final value is then integrated to 

convert the speed to position.  
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Fig. 3.7  Input-output of signal conditioner 

3.3 Input-Output Modelling of A DC Servomotor 

In the optimization process of a servomotor, it requires time and has big risk. To 

investigate this issue, a real plant, constituting of a DC motor and its controller is 

modeled and simulated to allow detail analysis of its control system. The flowchart of 

input-output modeling process is shown in Fig. 3.8. 
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Fig. 3.8  Process of input-output modeling 

3.3.1 Designing An Experiment 

The DC motor used in experiment is rated 175 W, 1,500 rpm, 240 V, 1.1 A. The DC 

motor is coupled with a dynamometer. These components are combined as a gray box 

to be identified as a transfer function in s-domain. 

Open loop characteristic of the gray box is tested using SIMULINK which is 

applied to the plant through DAQ, 30-point-FIR filter, chopper/inverter control unit, 

and IGBT. The input voltage is varied randomly in the range of [0.00, 20.00] volts for 

100 seconds with about 32 sequences. There are five patterns of input signal shown in  
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Fig. 3.9 to Fig. 3.13. These patterns are generated randomly using 

SIMULINK/MATLAB command. 

 

Fig. 3.9  Input sequence 1 for input-output modelling 

 

 

Fig. 3.10  Input sequence 2 for input-output modelling 
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Fig. 3.11  Input sequence 3 for input-output modelling 

 

Fig. 3.12  Input sequence 4 for input-output modelling 
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Fig. 3.13  Input sequence 5 for input-output modelling 

3.3.2 Collecting Input-Output Data 

The DC motor is run for 100 sec with variations of input voltage in Fig. 3.9 to        

Fig. 3.13. The sampling time is 0.01 sec. The result (output voltage) and the input are 

then saved in the workspace. The data for input-output modeling is obtained from the 

MATLAB command below: 

data=iddata(workspace_input,workspace_output,0.01); 

 

3.3.3 Selecting and Defining A Model Structure 

There are six process models to be compared and selected the best one: process model 

using 1
st
 order transfer function without zero, process model using 1

st
 order transfer 

function with zero, process model using 2
nd

 order transfer function without zero, 

process model using 2
nd

 order transfer function with zero, process model using 3
rd
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order transfer function without zero, and process model using 3
rd

 order transfer 

function with zero. 

If P is the process model, n is the number of poles (1,2 or 3), D is to include a 

time-delay term (optional), Z is to include a process zero (optional) and U is to 

indicate possible complex-valued (underdamped) poles (optional), then using 

MATLAB command, the general command to get the process model is as follows: 

model=pem(data, 'PnDtZUc'); 

3.3.4 Computing The Best Model 

To select the best model, both the real time system and the six type input-output 

model systems are fed with the same input pattern and the output are compared. An 

input-output model system type with the best fitness (i.e. the largest fitness value) is 

selected and the fitness value is obtained from Eq ( 2 - 22 ). 

3.3.5 Selection of The Best Model 

To select the best model, the previous steps are repeated 10 times for each type of 

input sequence, and the result are ten s-models with the best fitness. The best model is 

selected from the best s-model among the ten best s-models. These steps are then 

repeated for five different types of input sequence. The best model is selected among 

the five best s-models. 

3.4 Simulation and Experiment Design of Speed and Position Control 

The speed and position control was build based on the structure of feedback controller 

in Fig. 2.7. The block diagram of simulation experiment in SIMULINK is shown in 

Fig. 3.14, and for hardware experiment is shown in Fig. 3.15 
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Fig. 3.14  Block diagram of simulation experiment in SIMULINK platform 

 

Fig. 3.15  Block diagram of hardware experiment in SIMULINK platform 

The SSP selector is used for selecting the two types of input: constant input 

according to the value given by user, and variations of input with the range of     
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[0.00, 400.00] rpm for the experiment with variations of speed set-point. The pattern 

of speed set-point for variations of input is shown in Fig. 3.16 

 

Fig. 3.16  Pattern of variations of speed set-point 

The speed-pos element is used for : conditioning the actual speed set-point in the 

speed controller based on input speed set-point and position manipulated variable, 

speed comparator, i.e. comparison between speed set-point and speed process value, 

and conditioning the input constant of controller.  

In the first function of speed-pos element, if ASSP is actual speed set-point, ISSP 

is input speed set-point (set by user) and PMV is position manipulated variable, then 

the flowchart is shown in Fig. 3.17. 

In the second function of speed-pos element, if 𝐴𝑆𝑆𝑃  is actual speed set-point and  

𝑆𝑃𝑉  is speed process value, then the output of speed comparator, 𝑆𝐸𝐶 , is formulated in 

Eq. ( 3 - 3 ) 

𝑆𝐸𝐶 = 𝐴𝑆𝑆𝑃 − 𝑆𝑃𝑉  ( 3 - 3 ) 

In the third function of speed-pos element, if 𝐴𝑆𝑆𝑃  is actual set-point and 𝑆𝐸𝐶  is 

output of speed comparator, then the input to the speed controller, 𝑆𝐸  , is formulated 

in Eq. ( 3 - 4 ) 

𝑆𝐸 =
10 ∗ 𝑆𝐸𝐶
𝐴𝑆𝑆𝑃

 ( 3 - 4 ) 
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Fig. 3.17  Flowchart of conditioner of actual speed set-point 

 

Position comparator is used for comparison between position set-point and 

position process value. If 𝑃𝑆𝑃  is position set-point and 𝑃𝑃𝑉  is position process value, 

then the output of position comparator, 𝑃𝐸 , is formulated in Eq. ( 3 - 5 ) 

𝑃𝐸 = 𝑃𝑆𝑃 − 𝑃𝑃𝑉  ( 3 - 5 ) 

The output transducer contains filtering (FIR) and controller conditioning. The 

USB-1208FS was used as an ADC and DAC. In the simulation experiment, the Mv 

conditioner has the value of unity. In the hardware experiment, the Mv conditioner is 

used as a conditioner to the DAC as shown in Fig. 3.6 and Fig. 3.7. 

The position controller is used for controlling the position in one direction only. 

Therefore, the appropriate controller is proportional based. There were three kinds of 

position controller in the experiment: 

i. Fixed proportional controller 

ii. Variable proportional controller 

iii. Fuzzy logic controller 

The speed controller is used for controlling the speed in one direction only. There 

were nine kinds of speed controller in the experiment: 
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i. PI controller 

ii. PID controller 

iii. FLC (Fuzzy Logic Controller) 

iv. FLBPI (Fuzzy Logic Based self tuning PI) controller 

v. FLBPI-GA (Fuzzy Logic Based self tuning PI that optimized by GA/SPOGA) 

controller 

vi. FLBPID (Fuzzy Logic Based self tuning PID) controller 

vii. FLBPID-GA (Fuzzy Logic Based self tuning PID that optimized by 

GA/SPOGA) controller 

viii. FLIC (Fuzzy Logic parallel Integral Controller) 

ix. FLIC-GA (Fuzzy Logic parallel Integral Controller that optimized by 

GA/SPOGA). 

3.4.1 Simulation and Experiment Design of Position Controller 

The three kinds of position controller were implemented based on the type of speed 

controller. The fixed proportional position controller was conducted with 

conventional speed controllers. The variable proportional position controller in which 

the idea is based on [27] was done with hybrid-fuzzy speed controllers. The fuzzy 

logic position controller was conducted with a fuzzy logic speed controller. 

Similarly, the parameter of fixed proportional position controller (proportional 

constant, 𝐾𝑃𝑝 ), was optimized via experiment method. It was conducted after 

optimizing each type of the conventional speed controllers. 

The parameter of variable proportional controller (proportional constant, 𝐾𝑃𝑝 ) was 

optimized using experiment method. It was conducted after optimizing each type of 

the hybrid-fuzzy speed controllers. If 𝑀𝑝  is the output of variable proportional 

controller, 𝐾𝑃𝑝  is proportional constant of position controller, then the output of 

position controller, 𝑃𝑀𝑉 , can be formulated as follows: 

𝑃𝑀𝑉 = 𝐾𝑃𝑝 ∗ 𝑀𝑝  ( 3 - 6 ) 
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If 𝑃𝐸  is position error, and 𝐾𝑃𝑣  is variable proportional constant, then 𝑀𝑝  can be 

formulated as 

𝑀𝑝 = 𝐾𝑃𝑣 ∗ 𝑃𝐸  ( 3 - 7 ) 

If PR is position reference, then the values of KPv are shown in Table 3.1. 

Table 3.1  Values of KPv  

PR KPV 
[0.5 , 1.0) 0.08   

[1.0 , 1.5) 0.25   

[1.5 , 2.5] 0.50   

(2.5 , 3.5] 1.00   

(3.5 , 6.0] 1.10   

 

In FLC, as a fuzzifier is the singleton mode ( Eq. ( 2 - 35 ) ) with two inputs, 

namely, error and change of error, seven triangular membership functions each, and 

one output with four triangular membership functions. For the choice based on 

suitability and practicality, as an inference engine is the Mamdani product                   

( Eq. ( 2 - 36 ) ) and as a defuzzifier is the center average ( eq. ( 2 - 38 ) ) . The input 

membership functions and output membership functions are shown in Fig. 3.18 and 

Fig. 3.19 respectively. 

If E, D, and U are error input, change of error input, and output of FLC for 

position controller, then the rule table formulated is shown in Table 3.2. 
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Fig. 3.18  Fuzzy input membership functions for position controller: (a) error; (b) 

change of error 

 

Fig. 3.19  Fuzzy output membership function for position controller 
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Table 3.2  Rules of FLC for position controller 

E 

D 

NB NM NS ZE PS PM PB 

NB ZE ZE ZE ZE ZE ZE ZE 

NM ZE ZE ZE ZE ZE ZE ZE 

NS ZE ZE ZE ZE ZE ZE ZE 

ZE ZE ZE ZE ZE PS PS PS 

PS PS PS PS PS PM PM PM 

PM PS PM PM PM PB PB PB 

PB PS PM PB PB PB PB PB 

NB: Negative Big; NM: Negative Medium; NS: Negative Small; ZE: Zero 

PS: Positive Small; PM: Positive Medium; PB: Positive Big 
 

3.4.2 Simulation and Experiment Design of Conventional Speed Controllers 

There were two kinds of conventional speed controller in the experiment: 

i. PI controller 

ii. PID controller 

In PI controller experiment, the parallel combination of PI controller was used 

which has the basic formulation in time domain as in Eq. ( 2 - 23 ), without the 

derivative part. In discrete form with sampling period of 0.01 sec, Eq. ( 2 - 26 ), to  

Eq. ( 2 - 28 ) are modified to be as follows: 

𝑚(0.01𝑘) = 𝑚𝑃(0.01𝑘) + 𝑚𝐼(0.01𝑘) ( 3 - 8 ) 

𝑚𝑃 0.01𝑘 = 𝐾𝑃𝑒 0.01𝑘  ( 3 - 9 ) 

𝑚𝐼 0.01𝑘 = 0.01𝐾𝐼 𝑒 0.01𝑘 

𝑘

+ 𝑚𝐼(0) 
( 3 - 10 ) 
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In the experiment on PID controller, the parallel combination PID controller was 

used which has the basic formulation in time domain as in Eq. ( 2 - 23 ). In discrete 

form with sampling period of 0.01 sec, Eq. ( 2 - 26 ) to Eq. ( 2 - 29 ) are modified to 

be as follows: 

𝑚 0.01𝑘 = 𝑚𝑃 0.01𝑘 + 𝑚𝐼 0.01𝑘 + 𝑚𝐷(0.01𝑘) ( 3 - 11 ) 

𝑚𝑃 0.01𝑘 = 𝐾𝑃𝑒 0.01𝑘  ( 3 - 12 ) 

𝑚𝐼 0.01𝑘 =  0.01𝐾𝐼 𝑒 0.01𝑘 

𝑘

 + 𝑚𝐼(0) 
( 3 - 13 ) 

𝑚𝐷 0.01𝑘 =
𝐾𝐷

0.01
 𝑒 0.01𝑘 − 𝑒 0.01𝑘 − 0.01   

( 3 - 14 ) 

In SIMULINK platform, there is a facility to use continuous programming and the 

software can automatically does the conversion from discrete or digital form. 

The parameters of PI controller was optimized using Ziegler-Nichols (ultimate 

cycle) method using Eq. ( 2 - 31 ), and the parameters of PID controller was 

optimized using Eq. ( 2 - 32 ). 

Both PI and PID experiments were provided with anti integral windup using 

saturation feedback as in Fig. 2.8. Experimentally, the value of Ka is 
100

𝐾𝐼
. 

3.4.3 Simulation and Experiment Design of Fuzzy Logic Controller (FLC) 

In the experiment of speed controller using FLC, as the fuzzifier is a singleton mode,   

Eq. ( 2 - 35 ), with two inputs, namely, error and change of error, seven triangular 

membership functions each, and one output rate with seven triangular membership 

functions. As an inference engine is the Mamdani product, Eq. ( 2 - 36 ), and as a 

defuzzifier is the center average, Eq. ( 2 - 38 ). The input and output membership 

functions are shown in Fig. 3.20 and Fig. 3.21 respectively. 
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Fig. 3.20  Fuzzy input membership functions for speed controller: (a) error; (b) 

change of error 

 

Fig. 3.21  Fuzzy output rate membership function for speed controller 

If E, D, and U are error input, change of error input, and output rate of FLC for 

speed controller, then the rule table in Table 3.3 can be coded into the fuzzy rule 

string 𝐻(𝑤 ,𝑥 ,𝑦) which is formulated in the form of integer matrix [43], 
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𝐻(𝑤 ,𝑥 ,𝑦) =

 
 
 
 
 
1,1

. . . 1,𝑗

.

.

.

.
.

.

.

.

.

𝑖 ,1 . . . 𝑖 ,𝑗  
 
 
 
 

 ( 3 - 15 ) 

where 𝑖 ,𝑗 ∈  1,𝑦  and ∀𝑖 ≤ 𝑤, 𝑗 ≤ 𝑥 and the 𝑖 − 𝑗 element implies the following rule 

[43]: 

Ri,j : If E is Ei and D is Dj then U is Uk 

In the experiment, E1=D1=U1=NB, E2=D2=U2=NM, E3=D3=U3=NS, E4=D4=U4=ZE, 

E5=D5=U5=PS, E6=D6=U6=PM, E7=D7=U7=PB, i = 4, j = 2, k = 4, w = x = y = 7. 

If M is the output of controller to be fed to the signal conditioner, then it can be 

formulated as 

𝑀 𝑘 =  𝑇𝑠 𝑈 𝑘 

𝑘

 + 𝑀(0) ( 3 - 16 ) 

Table 3.3  Rules of FLC for speed controller 

E 

D 

NB 

(D1) 

NM 

(D2) 

NS 

(D3) 

ZE 

(D4) 

PS 

(D5) 

PM 

(D6) 

PB 

(D7) 

NB (D1) NB NM NM NM NM NM NM 

NM (D2) NM NM NM NM NM NM NM 

NS (D3) NS NS NS NS NS NS NS 

ZE (D4) Z Z Z Z PS PM PB 

PS (D5) Z PS PM PB PB PB PB 

PM (D6) Z PS PM PB PB PB PB 

PB (D7) Z PS PM PB PB PB PB 

The output of controller was provided with anti integral windup using saturation 

feedback as in Fig. 2.8. Experimentally, the value of Ka is 
100

𝐾𝐼
. 
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3.4.4 Simulation and Experiment Design of Hybrid-Fuzzy Controller 

There were three kinds of hybrid controller in the experiment: FLBPI, FLBPID, and 

FLIC. FLBPID uses the basis of FLBPI with additional of fixed value of 𝐾𝐷 . The 

block diagram of fuzzy-logic-based self tuning PI for speed controller is shown in  

Fig. 3.22. In this figure, pv(k) is the process value of speed, r(k) is the reference value 

or set-point of speed, h is the output of fuzzy controller, and m(k) is the output of 

controller. 

 

Fig. 3.22  Block diagram of fuzzy-logic-based self-tuning PI for the speed controller 

[45] 

The fuzzy sets and their corresponding membership functions for input error, e(k) 

and change of error, d(k) and output (h) are shown in Fig. 3.23. The rules for FLBPI 

and FLBPID (𝐾𝑃 and 𝐾𝐼) are shown in Table 3.4. The value of 𝐾𝐷 is constant based 

on Ziegler-Nichols method in PID tuning. 

If 𝐾𝑃𝑚  is the maximum value of 𝐾𝑃 (experiment), 𝐾𝐼𝑚  is the maximum value of 

𝐾𝐼 (experiment), and 𝐾𝐷𝑚  is the maximum value of 𝐾𝐷 (Ziegler-Nichols), then the 

values of 𝐾𝑃, 𝐾𝐼, and 𝐾𝐷 for hybrid controllers are obtained from Eq. ( 3 - 17 ) for 

FLBPI and Eq. ( 3 - 18 ) for FLBPID.  

𝐾𝑃 = .𝐾𝑃𝑚 ;  𝐾𝐼 = 2 .𝐾𝐼𝑚  ( 3 - 17 ) 

𝐾𝑃 = .𝐾𝑃𝑚 ;  𝐾𝐼 = 2 .𝐾𝐼𝑚 ;  𝐾𝐷 = 𝐾𝐷𝑚  ( 3 - 18 ) 
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Fig. 3.23  Fuzzy sets and their corresponding membership functions: (a) Input, (b) 

Output [45] 

The FLIC experiment was based on the FLC experiment for speed and the output 

is paralleled with integral controller which was optimized using experiment method. 

The structure of FLIC is shown in Fig. 3.24.  

Table 3.4  Fuzzy rules base for KP and KI in FLBPI [45] 

E 

D 

N ZE P 

N S B S 

ZE S B S 

P S B S 

N: Negative; ZE: Zero; P: Positive; S: Small; B: Big 
 

In the experiment of FLIC, the structure of input and output membership 

functions are the same as in FLC. The input membership functions is shown in        

Fig. 3.20 and output membership functions is shown in Fig. 3.25. 
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Fig. 3.24  Structure of FLIC 

 

Fig. 3.25  Fuzzy output membership functions in FLIC 

The output of FLC part is clamped to the range of [0.00, 10.00]. If E, D, and U are 

error input, change of error input, and output of FLC in FLIC, then the rule table in      

Table 3.3 can be coded into the fuzzy rule string 𝐻(𝑤 ,𝑥 ,𝑦) which is formulated in the 

form of integer matrix as shown in Eq. ( 3 - 15 ) [43]. 

If 𝑀 is the output of controller to be fed to the signal conditioner, 𝑒 is error signal, 

𝐾𝐼 is integral constant, 𝑇𝑠 is sampling rate, and 𝑈 is fuzzy output, then the 

manipulated variable can be formulated as 

𝑀 𝑘 =  𝐾𝐼𝑇𝑠 𝑒 𝑘  

𝑘

 + 𝑈 𝑘 + 𝑀(0) ( 3 - 19 ) 

The output of integral controller was provided with anti integral windup using 

saturation feedback as in Fig. 2.8. Experimentally, the value of Ka is 
100

𝐾𝐼
. 
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3.5 Design of Genetic Algorithm 

The process of GA is shown in Fig. 2.12. The first step of GA process is initialization 

as shown in Fig. 3.26. The maximum population size, i.e. the maximum number of 

chromosome is 2
bitlength

. If the number of chromosome is set to be more than the 

maximum population size, then it will be clamped to the maximum population size. 

The random number with the range [0.00, 1.00] is generated for each bit each 

chromosome. If the number is more than or equal to 0.5 then the bit value is 1. 

Otherwise, the bit value is 0. 

After having initialized the population, the next step is selection process using 

SUS Roulette wheel as shown in Fig. 3.27. This selection is used for selecting the 

good fitness to be a new population. In the figure, Nf is the total fitness value. Start 

from the first position to be occupied, given a random value, z, in the range of [0, Nf] 

to the first position. Start from the first chromosome, if the fitness value of the first 

chromosome is larger or the same as z, then the first position will be occupied by the 

first chromosome. Otherwise, the fitness value of the first chromosome will be 

combined with the second chromosome and so on until the combined fitness value is 

larger or equal to z. The first position will then be occupied by the last combination 

chromosome where the fitness value is larger or equal to z. The procedures are 

repeated for the second, the third and until the last position of population is attained. 

After the selection process, the next step is running the GA operations: crossover 

and mutation. The flowchart of crossover process is shown in Fig. 3.28. First of all, 

the two chromosomes are selected and coupled randomly. Then a random value with 

the range of [0.00, 1.00] is given to the couple of chromosomes. If the random value 

is smaller or equal to the crossover rate then the crossover operation as in Fig. 2.13 

will occur. Otherwise, no crossover operations. The crossover point is selected 

randomly. This process is repeated until all of the chromosomes in the population are 

coupled. 
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Fig. 3.26  Population initialization using random generation 
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Fig. 3.27  Flowchart of SUS Roulette Wheel selection 

The flowchart of mutation process is shown in Fig. 3.29. This process starts with 

generating a random number in the range of [0.00, 1.00] to each chromosome. If the 

number is smaller or equal to the mutation rate, then the mutation operation as in    

Fig. 2.14 will occur. Otherwise, no mutation operation. 
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Fig. 3.28  Flowchart of one-point crossover process 

 

The parameters of GA is shown in Table 3.5. The bit length is determined based 

on the problem to be solved. The crossover rate and mutation rate is determined based 

on the population size as explained in 2.6.1. Based on literature review, the minimum 

number of generation is 2 [80] and the maximum is unlimited. In this experiment, the 

number of generation is set to be 20 [88]. 
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Fig. 3.29  Flowchart of mutation process 

Table 3.5  Parameters of GA 

NO. SYMBOL NAME OF PARAMETER 
1 bl Bit length 

2 Nc Population size 

3 Ng Number of generation 

4 pc Crossover rate 

5 pm Mutation rate 

The population size is determined based on the bit length and accuracy of the 

result of the GA process. To understand the population trends, a simulation is needed. 

3.5.1 Simulation of GA 

Simulation of GA was done to determine the ideal population size according to the bit 

length with the number of generation is 20.  
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The simulation is done for conventional GA to get the maximum value of the 

function as in Eq. ( 3 - 20 ) and ( 3 - 21 ). 

𝑓 = max 𝑓1 𝑥 + 𝑓2 𝑥 + 𝑓3 𝑥 + 𝑓4 𝑥   ( 3 - 20 ) 

where 

𝑓1 𝑥 = −𝑥2 + 2𝑥 

𝑓2 𝑥 = −𝑥2 + 4𝑥 

𝑓3 𝑥 = −𝑥2 + 6𝑥 

𝑓4 𝑥 = −𝑥2 + 8𝑥 

( 3 - 21 ) 

The process of GA is as in Fig. 2.12 with the max generation of 20. The 

initialization process is as in Fig. 3.26 with 40 bit length. This value was chosen based 

on the function in Eq. ( 3 - 21 ) that there were four functions where each function had 

the range of [0.00, 10.00] with the resolution of 0.01. If 𝑏𝑙 is the bit length, 𝑚𝑑  is the 

maximum value of the decimal number, and 𝑟 is the resolution, then the bit length for 

each function is obtained from the formula 

𝑏𝑙 = log2  
𝑚𝑑

𝑟
  ( 3 - 22 ) 

From the specifications, using Eq. ( 3 - 22 ) gives the following result: 10 bit per 

function or the total is 40 bit. 

The minimum population size is statistically 30, then was increased to 40, 50, and 

so on until fulfilling a criteria. When the population size is less then 100, the 

crossover rate is 0.9 and to avoid the premature convergence, the mutation rate is set 

to 0.01 [80] and 0.1 [88]. When the population size is 100, the crossover rate is 0.6 

and to avoid the premature convergence, the mutation rate is set to be 0.01 [80] 

The performance index for this experiment is as follows. 

The result of GA to solve the Eq. ( 3 - 20 ) is compared to the result of manual 

calculation. In the manual calculation, each function in Eq. ( 3 - 21 ) is derived and 
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then find the x such that the value of the derived function is zero. The result value of x 

is {1, 4, 9, 16}. Using these values to solve Eq. ( 3 - 20 ) yields 30. The % error is 100 

times the deviation between the GA result and the manual result over the manual 

result.  

There are two criteria for this experiment: minimum criteria and good criteria. 

The minimum criteria is as follows: 

If the % error is less than or equal to 5 then the GA result is called true. Otherwise, 

the GA result is called false. The experiment was repeated 100 times and then the 

accuracy was calculated by counting the false result within the 100 experiments. The 

accuracy is 100 % if there are no false. The ideal population size for this criteria is the 

minimum population size in the resolution of 10 with 100 % accuracy and less then   

2 % average error. The good criteria is as follows: 

If the % error is less than or equal to 2 then the GA result is called true. Otherwise, 

the GA result is called false. The experiment was repeated 100 times and then the 

accuracy was calculated by counting the false result within the 100 experiments. The 

accuracy is 100 % if there are no false. The ideal population size for this criteria is the 

minimum population size in the resolution of 10 with 100 % accuracy and less than   

2 % average error. 

3.5.2 The Structure of Semi-Parallel Operation Genetic Algorithm (SPOGA) 

Applying one-point crossover operation as in the biological inspiration in the 

conventional GA for solving the function in Eq. ( 3 - 20 ) and Eq. ( 3 - 21 ) will raise 

some problems. Applying parallel genetic algorithms will be more complicated. HGA 

is appropriate for optimizing membership functions of FLC with the consequence that 

the crossover point will be more or less than 0.5. It is expected that any new type of 

GA would solve the problems. 

A new GA-based optimization algorithm is proposed in the thesis. The underlying 

specific mechanism of applying this algorithm in control problem has not been 

reported. The thrust of the idea for proposing this algorithm in this thesis comes from 

the conventional GA in particular the intrinsic parallelism architecture of the GA and 
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the subpartition of chromosomes in HGA, with the chromosome separated into some 

sub-chromosome according with the problem to be solved as shown in Fig. 3.30. 

 
 

Fig. 3.30  Chromosome structure of SPOGA, typically six bit per sub-chromosome 

The selection operation is conventional, but the crossover and mutation operation 

is parallel process between each sub-chromosome. Noticably, the structure is different 

from parallel genetic algorithms and therefore it is called semi-parallel operation 

genetic algorithm (SPOGA). 

The operation of SPOGA is the same as operation in the HGA. In the HGA, the 

selection process is done as in the conventional GA, but for crossover and mutation, 

the control genes and the parameter genes are done separately [43]. In the SPOGA, 

the crossover and mutation operation is done separately between each sub-

chromosome. 

It is expected that SPOGA can reduce the population size with still using one-

point crossover operation and when it is applied to optimize the membership functions 

of FLC, the crossover point will still remain 0.5. The process flowchart of SPOGA is 

shown in Fig. 3.31. 

Based on the Fig. 3.31, there are three boxes with dotted line indicating the new 

proposed methods. Twisted ring counter principle is applied as an initial population 

instead of using random number principle. SPOGA operator is the specific difference 

between SPOGA and conventional GA. The solution process is done by searching the 

chromosome with the best fitness value among the all chromosomes in all 

generations, this method is based on elitism process as in [19]. 
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Fig. 3.31  Process flowchart of SPOGA 

3.5.3 Simulation of SPOGA 

Simulation of SPOGA was done to determine the ideal population size according to 

the bit length with the number of generation is 20. The simulation was done to get the 

maximum value of the function as in Eq. ( 3 - 20 ) and ( 3 - 21 ). 

The process of SPOGA is as in Fig. 3.31 with the max generation of 20. The 

initialization process is shown in Fig. 3.32 with 40 bit length. This value was chosen 

based on as in Section 3.6.1. 
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Fig. 3.32 shows the process of population initialization using bl-bit mod-2bl Nc- 

step ring counter. For example, if bl=10 Nc=30, then the initial population is shown in 

Table 3.6. 

The minimum population size is statistically 30, then was increased to 40, 50, 

until fulfilling the criteria. When the population size is less then 100, the crossover 

rate is 0.9 and to avoid the premature convergence, the mutation rate is set to 0.01 

[80] and 0.1 [88]. When the population size is 100, the crossover rate is 0.6 and to 

avoid the premature convergence, the mutation rate is set to 0.01 [80]. The 

performance index was done as in Section 3.6.1. 

 

Fig. 3.32  Initial population for SPOGA using twisted ring counters 
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Table 3.6  Initial population of SPOGA for 10 bit length, 30 population size 

No. Chromosome 
1 0 0 0 0 0 0 0 0 0 1 

2 0 0 0 0 0 0 0 0 1 1 

3 0 0 0 0 0 0 0 1 1 1 

4 0 0 0 0 0 0 1 1 1 1 

5 0 0 0 0 0 1 1 1 1 1 

6 0 0 0 0 1 1 1 1 1 1 

7 0 0 0 1 1 1 1 1 1 1 

8 0 0 1 1 1 1 1 1 1 1 

9 0 1 1 1 1 1 1 1 1 1 

10 1 1 1 1 1 1 1 1 1 1 

11 1 1 1 1 1 1 1 1 1 0 

12 1 1 1 1 1 1 1 1 0 0 

13 1 1 1 1 1 1 1 0 0 0 

14 1 1 1 1 1 1 0 0 0 0 

15 1 1 1 1 1 0 0 0 0 0 

16 1 1 1 1 0 0 0 0 0 0 

17 1 1 1 0 0 0 0 0 0 0 

18 1 1 0 0 0 0 0 0 0 0 

19 1 0 0 0 0 0 0 0 0 0 

20 0 0 0 0 0 0 0 0 0 0 

21 0 0 0 0 0 0 0 0 0 1 

22 0 0 0 0 0 0 0 0 1 1 

23 0 0 0 0 0 0 0 1 1 1 

24 0 0 0 0 0 0 1 1 1 1 

25 0 0 0 0 0 1 1 1 1 1 

26 0 0 0 0 1 1 1 1 1 1 

27 0 0 0 1 1 1 1 1 1 1 

28 0 0 1 1 1 1 1 1 1 1 

29 0 1 1 1 1 1 1 1 1 1 

30 1 1 1 1 1 1 1 1 1 1 

 

3.6 Design and Application of SPOGA to Optimize Hybrid-Fuzzy Controller 

There were three kinds of hybrid-fuzzy controller to be optimized by SPOGA: FLBPI, 

FLBPID, and FLIC. 

3.6.1 Design and Application of SPOGA to Optimize FLBPI 

There are two parameters to be optimized in FLBPI: KPm and KIm. The membership 

functions and rules of fuzzy logic part is unnecessary to be optimized since the 

number of membership functions is small and the rules are simple. Experimentally, 

the input scales of fuzzy logic part have no effect to be optimized and the output scale 

has to be 1. Therefore, the I/O scales were set to be 1.  
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Experimentally, the range of KPm is [0.00, 23.50] and the range of KIm  is         

[0.00, 130.00]. Using Eq. ( 3 - 22 ) with resolution of 0.01, the bit length of sub-

chromosome for KPm is 12 and for KIm is 14. The bit length of chromosome is 26. 

Based on the simulation result in Section 3.6.3 that will be presented in Chapter 4, the 

population size is about 4/3 times the bit length of chromosome, or 35. The number of 

generation is 20. 

The initial population of each sub-chromosome is shown in Fig. 3.32. In the 

figure, bl is 12 for KPm and 14 for KIm. The nc is 35 for both and fulfil the requirement 

that nc≥n. The result is 12-bit mod-24 35- step ring counter for KPm and 14-bit mod-

28 35- step ring counter for KIm. as shown in Table 3.7. 

SUS Roulette wheel was used for the selection operation where the flowchart is 

shown in Fig. 3.27. The selection work based on the fitness evaluation where the 

flowchart is shown in Fig. 3.33. Note that the fitness evaluation process used for 

SPOGA is the same is the GA process. Before selection process, each chromosome in 

the population is decoded. The result of decoding is then fed to the FLBPI system to 

get the values of KPm and KIm. The FLBPI system is then run to control the speed of s-

modelled DC motor to test the performance of speed controller with regards to the 

chromosome.  

The set-point signal for the speed test run is shown in Fig. 3.34. There are 4 areas 

in the test. The area 1 is in the set-point of 150 rpm unloaded, the area 2 is in the set-

point of 400 rpm unloaded, the area 3 is in the set-point of 250 rpm unloaded, and 

area 4 is in the set-point of 250 rpm loaded. 

As in Fig. 3.33, there are two possibilities of condition when doing the test run: 

error and success. If the condition is 'error', then the ITAE value is 10
30

. Else if the 

condition is 'success', then the ITAE is the sum of ITAE in area 1, ITAE in area 2, 

ITAE in area 3, and ITAE in area 4. 
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Table 3.7  Initial population in FLBPI 

No. Sub-Chrom KPm Sub-Chrom KIm 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 0 0 0 0 0 1 1 1 

0 0 0 0 0 0 0 0 1 1 1 1 

0 0 0 0 0 0 0 1 1 1 1 1 

0 0 0 0 0 0 1 1 1 1 1 1 

0 0 0 0 0 1 1 1 1 1 1 1 

0 0 0 0 1 1 1 1 1 1 1 1 

0 0 0 1 1 1 1 1 1 1 1 1 

0 0 1 1 1 1 1 1 1 1 1 1 

0 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 0 

1 1 1 1 1 1 1 1 1 1 0 0 

1 1 1 1 1 1 1 1 1 0 0 0 

1 1 1 1 1 1 1 1 0 0 0 0 

1 1 1 1 1 1 1 0 0 0 0 0 

1 1 1 1 1 1 0 0 0 0 0 0 

1 1 1 1 1 0 0 0 0 0 0 0 

1 1 1 1 0 0 0 0 0 0 0 0 

1 1 1 0 0 0 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 0 0 0 0 0 0 0 1 1 1 

0 0 0 0 0 0 0 0 0 0 1 1 1 1 

0 0 0 0 0 0 0 0 0 1 1 1 1 1 

0 0 0 0 0 0 0 0 1 1 1 1 1 1 

0 0 0 0 0 0 0 1 1 1 1 1 1 1 

0 0 0 0 0 0 1 1 1 1 1 1 1 1 

0 0 0 0 0 1 1 1 1 1 1 1 1 1 

0 0 0 0 1 1 1 1 1 1 1 1 1 1 

0 0 0 1 1 1 1 1 1 1 1 1 1 1 

0 0 1 1 1 1 1 1 1 1 1 1 1 1 

0 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 0 

1 1 1 1 1 1 1 1 1 1 1 1 0 0 

1 1 1 1 1 1 1 1 1 1 1 0 0 0 

1 1 1 1 1 1 1 1 1 1 0 0 0 0 

1 1 1 1 1 1 1 1 1 0 0 0 0 0 

1 1 1 1 1 1 1 1 0 0 0 0 0 0 

1 1 1 1 1 1 1 0 0 0 0 0 0 0 

1 1 1 1 1 1 0 0 0 0 0 0 0 0 

1 1 1 1 1 0 0 0 0 0 0 0 0 0 

1 1 1 1 0 0 0 0 0 0 0 0 0 0 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 0 0 0 0 0 1 1 1 

0 0 0 0 0 0 0 0 1 1 1 1 

0 0 0 0 0 0 0 1 1 1 1 1 

0 0 0 0 0 0 1 1 1 1 1 1 

0 0 0 0 0 1 1 1 1 1 1 1 

0 0 0 0 1 1 1 1 1 1 1 1 

0 0 0 1 1 1 1 1 1 1 1 1 

0 0 1 1 1 1 1 1 1 1 1 1 

0 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 0 0 0 0 0 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 0 0 0 0 0 0 0 1 1 1 

0 0 0 0 0 0 0 0 0 0 1 1 1 1 

0 0 0 0 0 0 0 0 0 1 1 1 1 1 

0 0 0 0 0 0 0 0 1 1 1 1 1 1 

0 0 0 0 0 0 0 1 1 1 1 1 1 1 

 

There were three additional criteria in calculating the fitness value: maximum 

overshoot of all areas, maximum settling time of all areas, and maximum steady state 

error of all areas. The maximum overshoot criteria is set to be 10 %. The maximum 

settling time criteria is set to be 2 seconds. The maximum steady state criteria is set to 

be 2 %. If all of the criteria are fulfilled, then the fitness value is 
103

𝐼𝑇𝐴𝐸
, otherwise, the 

fitness value is 
0.8

𝐼𝑇𝐴𝐸
.  
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Fig. 3.33  Flowchart of fitness evaluation for SPOGA 

 

Fig. 3.34  Set-point signal for the speed test run in fitness evaluation 
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The flowchart of chromosome decoding for FLBPI is shown in Fig. 3.35. The bit 

length of chromosome is 26. The bit 14 to 25 or the chromosome{1} to 

chromosome{12} are 12 bit for KPm , and the bit 0 to 13 or the chromosome{13} to 

chromosome{26} are 14 bit for KIm. The value of KPm is the conversion from 12 bit 

biner number to real number in the range of [0.00, 23.50]. The value of KIm is the 

conversion from 14 bit biner number to real number in the range of [0.00, 130.00]. 

 

Fig. 3.35  Flowchart of chromosome decoding for FLBPI of SPOGA process 

The crossover operation is basically the same as in Fig. 3.28 but the process is 

done separately for each sub-chromosome as shown in Fig. 3.36. The result is two 

new sub-chromosomes for KPm (12 bit) and KIm (14 bit) to the further process, i.e. 

mutation as shown in Fig. 3.37. As in crossover operation, the mutation operation is 

basically the same as in Fig. 3.29 but the process is done separately for each sub-

chromosome. The result is two new sub-chromosomes for KPm (12 bit) and KIm       
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(14 bit) and then combined in one chromosome 26 bit to the further process, i.e. new 

fitness evaluation as in Fig. 3.33. The operation process is repeated until 20 

generations. Finally, the solution process is done by searching the chromosome with 

the best fitness value among the all chromosomes in all generations as shown in     

Fig. 3.38. 

 

Fig. 3.36  Flowchart of crossover process for FLBPI of SPOGA process 

 

Fig. 3.37  Flowchart of mutation process for FLBPI of SPOGA process 
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Fig. 3.38  Solution chromosome as a result of SPOGA process 

 

3.6.2 Design and Application of SPOGA to Optimize FLBPID 

There are three parameters to be optimized in FLBPID: KPm, KDm, and KIm. The 

membership functions and rules of fuzzy logic part is unnecessary to be optimized for 

the number of membership functions is small and the rules is simple. Experimentally, 

the input scales of fuzzy logic part have no effect to be optimized and the output scale 

has to be 1. Therefore, the I/O scales were set to be 1.  

Experimentally, the range of KPm is [0.00, 23.50] and the range of KIm is         

[0.00, 110.00]. The range of KDm is determined based on the result of PID tuning 
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using Ziegler-Nichols method as in Eq. ( 2 - 32 ). This was conducted since the 

derivative component of PID controller is very sensitive to any disturbances [89]. The 

range of KDm was set not too far from the result of Ziegler Nichols, that is [0.00, 0.20]. 

The result of Ziegler Nichols method in tuning PID would be presented in Chapter 4. 

Using Eq. ( 3 - 22 ) with resolution of 0.01, the bit length of sub-chromosome for KPm 

is 12, KDm is 5, and for KIm is 14. The bit length of chromosome is 31. Based on the 

simulation result in Section 3.6.3 that will be presented in Chapter 4, the population 

size is about 4/3 times the bit length of chromosome, or 42. The number of generation 

is 20. 

The initial population of each sub-chromosome is shown in Fig. 3.32. In the 

figure, the bl is 12 for KPm, 5 for KDm , and 14 for KIm. The nc is 42 for both and fulfil 

the requirement that nc≥n. The result is 12-bit mod-24 42- step ring counter for KPm, 

5-bit mod 10 42- step ring counter for KDm, and 14-bit mod-28 42- step ring counter 

for KIm., as shown in Table 3.8. 

SUS Roulette wheel was used for selection operation where the flowchart is 

shown in Fig. 3.27. The selection work based on the fitness evaluation where the 

flowchart is shown in Fig. 3.33. Before the selection process, each chromosome in the 

population is decoded. The result of decoding is then fed to the FLBPID system to get 

the values of KPm, KDm , and KIm. The FLBPID system is then run to control the speed 

of s-modelled DC motor to test the performance of speed controller with regards to 

the chromosome. The set-point signal for the speed test run is shown in  Fig. 3.32.  

The flowchart of chromosome decoding for FLBPID is shown in Fig. 3.39. The 

bit length of chromosome is 31. The bit 19 to 30 or the chromosome{1} to 

chromosome{12} are 12 bit for KPm , the bit 14 to 18 or the chromosome{13} to 

chromosome{17} are 5 bit for KDm, and the bit 0 to 13 or chromosome{18} to 

chromosome{31} are 5 bit for KIm. The value of KPm is the conversion from 12 bit 

biner number to real number in the range [0.00, 23.50]. The value of KIm is the 

conversion from 14 bit biner number to real number in the range [0.00, 130.00]. The 

value of KDm is the conversion from 5 bit biner number to real number in the range  

[0.00, 0.20]. 

 



85 

Table 3.8  Initial population in FLBPID 

No. Sub-Chrom KPm Sub-Chrom KDm Sub-Chrom KIm 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 0 0 0 0 0 1 1 1 

0 0 0 0 0 0 0 0 1 1 1 1 

0 0 0 0 0 0 0 1 1 1 1 1 

0 0 0 0 0 0 1 1 1 1 1 1 

0 0 0 0 0 1 1 1 1 1 1 1 

0 0 0 0 1 1 1 1 1 1 1 1 

0 0 0 1 1 1 1 1 1 1 1 1 

0 0 1 1 1 1 1 1 1 1 1 1 

0 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 0 

1 1 1 1 1 1 1 1 1 1 0 0 

1 1 1 1 1 1 1 1 1 0 0 0 

1 1 1 1 1 1 1 1 0 0 0 0 

1 1 1 1 1 1 1 0 0 0 0 0 

1 1 1 1 1 1 0 0 0 0 0 0 

1 1 1 1 1 0 0 0 0 0 0 0 

1 1 1 1 0 0 0 0 0 0 0 0 

1 1 1 0 0 0 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 0 0 0 0 0 1 1 1 

0 0 0 0 0 0 0 0 1 1 1 1 

0 0 0 0 0 0 0 1 1 1 1 1 

0 0 0 0 0 0 1 1 1 1 1 1 

0 0 0 0 1 

0 0 0 1 1 

0 0 1 1 1 

0 1 1 1 1 

1 1 1 1 1 

1 1 1 1 0 

1 1 1 0 0 

1 1 0 0 0 

1 0 0 0 0 

0 0 0 0 0 

0 0 0 0 1 

0 0 0 1 1 

0 0 1 1 1 

0 1 1 1 1 

1 1 1 1 1 

1 1 1 1 0 

1 1 1 0 0 

1 1 0 0 0 

1 0 0 0 0 

0 0 0 0 0 

0 0 0 0 1 

0 0 0 1 1 

0 0 1 1 1 

0 1 1 1 1 

1 1 1 1 1 

1 1 1 1 0 

1 1 1 0 0 

1 1 0 0 0 

1 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 0 0 1 1 

0 0 0 0 0 0 0 0 0 0 0 1 1 1 

0 0 0 0 0 0 0 0 0 0 1 1 1 1 

0 0 0 0 0 0 0 0 0 1 1 1 1 1 

0 0 0 0 0 0 0 0 1 1 1 1 1 1 

0 0 0 0 0 0 0 1 1 1 1 1 1 1 

0 0 0 0 0 0 1 1 1 1 1 1 1 1 

0 0 0 0 0 1 1 1 1 1 1 1 1 1 

0 0 0 0 1 1 1 1 1 1 1 1 1 1 

0 0 0 1 1 1 1 1 1 1 1 1 1 1 

0 0 1 1 1 1 1 1 1 1 1 1 1 1 

0 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 0 

1 1 1 1 1 1 1 1 1 1 1 1 0 0 

1 1 1 1 1 1 1 1 1 1 1 0 0 0 

1 1 1 1 1 1 1 1 1 1 0 0 0 0 

1 1 1 1 1 1 1 1 1 0 0 0 0 0 

1 1 1 1 1 1 1 1 0 0 0 0 0 0 

1 1 1 1 1 1 1 0 0 0 0 0 0 0 

1 1 1 1 1 1 0 0 0 0 0 0 0 0 

1 1 1 1 1 0 0 0 0 0 0 0 0 0 

1 1 1 1 0 0 0 0 0 0 0 0 0 0 

1 1 1 0 0 0 0 0 0 0 0 0 0 0 

1 1 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 0 0 0 1 1 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

0 0 0 0 0 1 1 1 1 1 1 1 

0 0 0 0 1 1 1 1 1 1 1 1 

0 0 0 1 1 1 1 1 1 1 1 1 

0 0 1 1 1 1 1 1 1 1 1 1 

0 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 0 

1 1 1 1 1 1 1 1 1 1 0 0 

1 1 1 1 1 1 1 1 1 0 0 0 

1 1 1 1 1 1 1 1 0 0 0 0 

1 1 1 1 1 1 1 0 0 0 0 0 

1 1 1 1 1 1 0 0 0 0 0 0 

0 0 0 0 1 

0 0 0 1 1 

0 0 1 1 1 

0 1 1 1 1 

1 1 1 1 1 

1 1 1 1 0 

1 1 1 0 0 

1 1 0 0 0 

1 0 0 0 0 

0 0 0 0 0 

0 0 0 0 1 

0 0 0 1 1 

0 0 0 0 0 0 0 0 0 0 0 1 1 1 

0 0 0 0 0 0 0 0 0 0 1 1 1 1 

0 0 0 0 0 0 0 0 0 1 1 1 1 1 

0 0 0 0 0 0 0 0 1 1 1 1 1 1 

0 0 0 0 0 0 0 1 1 1 1 1 1 1 

0 0 0 0 0 0 1 1 1 1 1 1 1 1 

0 0 0 0 0 1 1 1 1 1 1 1 1 1 

0 0 0 0 1 1 1 1 1 1 1 1 1 1 

0 0 0 1 1 1 1 1 1 1 1 1 1 1 

0 0 1 1 1 1 1 1 1 1 1 1 1 1 

0 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 
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Fig. 3.39  Flowchart of chromosome decoding for FLBPID of SPOGA process 

The crossover operation is basically the same as in Fig. 3.28 but the process is 

done separately for each sub-chromosome as shown in Fig. 3.40. The result is three 

new sub-chromosomes for KPm (12 bit), KDm (5 bit), and KIm (14 bit) to the further 

process, i.e. mutation as shown in Fig. 3.41. As in crossover operation, the mutation 

operation is basically the same as in Fig. 3.29 but the process is done separately for 

each sub-chromosome. The result is three new sub-chromosomes for KPm (12 bit), 

KDm (5 bit), and KIm (14 bit) and then combined in one chromosome 31 bit to the 

further process, i.e. new fitness evaluation as in Fig. 3.33. The operation process is 

repeated until 20 generations. Finally, the solution process is done by searching the 

chromosome with the best fitness value among the all chromosomes in all generations 

as shown in Fig. 3.38 
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Fig. 3.40  Flowchart of crossover process for FLBPID of SPOGA process 

 

Fig. 3.41  Flowchart of mutation process for FLBPID of SPOGA process 
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3.6.3 Design and Application of SPOGA to Optimize FLIC 

Regarding to the structure of FLIC as shown in Fig. 3.24, there are two steps in 

optimizing FLIC using SPOGA: optimizing the membership functions and rules of 

FLC part, and optimizing I/O scales of FLC part and integral constant of integral 

controller part.  

3.6.3.1 Optimizing Membership Function and Rules 

There are three parameters to be optimized in membership functions: the error 

membership functions, E, the change of error membership functions, D, and the 

output membership functions, U. In this process, the I/O constant of FLC part is set to 

be 1 and the integral constant of integral controller part is set to be 0. 

Initially, there are seven triangular membership functions for input and output of 

FLC as shown in Fig. 3.20 and Fig. 3.21. Consequently, there are three sub-

chromosomes with 7 bit each, for E, D, and U. The bit length of chromosome is 21. 

Based on the simulation result in Section 3.6.3 that will be presented in Chapter 4, the 

population size is about 4/3 times the bit length of chromosome, or 30, since 

statistically, the minimum population size is 30. The number of generation is 20. The 

initial population of each sub-chromosome is shown in Fig. 3.32. The result is 7-bit 

mod-14 30- step ring counter for E, D, and U, as shown in Table 3.9. 

For consistency, SUS Roulette wheel was used for the selection operation where 

the flowchart is shown in Fig. 3.27. The selection work based on the fitness 

evaluation where the flowchart is shown in Fig. 3.33. The maximum overshoot 

criteria was set to 100 %, while the maximum settling time criteria is set to be 10 

seconds, and the maximum steady state error criteria is set to be 100 %. Before the 

selection process, each chromosome in the population is decoded. The result of the 

decoding is then fed to the FLIC system to get the E, D, and U. The FLIC system is 

then run to control the speed of s-modelled DC motor to test the performance of speed 

controller with regards to the chromosome. The set-point signal for the speed test run 

is shown in Fig. 3.34. 
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Table 3.9  Initial population for membership functions of FLIC 

No. Sub-Chrom E Sub-Chrom D Sub-Chrom U 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

0 0 0 0 0 0 1 

0 0 0 0 0 1 1 

0 0 0 0 1 1 1 

0 0 0 1 1 1 1 

0 0 1 1 1 1 1 

0 1 1 1 1 1 1 

1 1 1 1 1 1 1 

1 1 1 1 1 1 0 

1 1 1 1 1 0 0 

1 1 1 1 0 0 0 

1 1 1 0 0 0 0 

1 1 0 0 0 0 0 

1 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 1 

0 0 0 0 0 1 1 

0 0 0 0 1 1 1 

0 0 0 1 1 1 1 

0 0 1 1 1 1 1 

0 1 1 1 1 1 1 

1 1 1 1 1 1 1 

1 1 1 1 1 1 0 

1 1 1 1 1 0 0 

1 1 1 1 0 0 0 

1 1 1 0 0 0 0 

1 1 0 0 0 0 0 

1 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 1 

0 0 0 0 0 1 1 

0 0 0 0 0 0 1 

0 0 0 0 0 1 1 

0 0 0 0 1 1 1 

0 0 0 1 1 1 1 

0 0 1 1 1 1 1 

0 1 1 1 1 1 1 

1 1 1 1 1 1 1 

1 1 1 1 1 1 0 

1 1 1 1 1 0 0 

1 1 1 1 0 0 0 

1 1 1 0 0 0 0 

1 1 0 0 0 0 0 

1 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 1 

0 0 0 0 0 1 1 

0 0 0 0 1 1 1 

0 0 0 1 1 1 1 

0 0 1 1 1 1 1 

0 1 1 1 1 1 1 

1 1 1 1 1 1 1 

1 1 1 1 1 1 0 

1 1 1 1 1 0 0 

1 1 1 1 0 0 0 

1 1 1 0 0 0 0 

1 1 0 0 0 0 0 

1 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 1 

0 0 0 0 0 1 1 

0 0 0 0 0 0 1 

0 0 0 0 0 1 1 

0 0 0 0 1 1 1 

0 0 0 1 1 1 1 

0 0 1 1 1 1 1 

0 1 1 1 1 1 1 

1 1 1 1 1 1 1 

1 1 1 1 1 1 0 

1 1 1 1 1 0 0 

1 1 1 1 0 0 0 

1 1 1 0 0 0 0 

1 1 0 0 0 0 0 

1 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 1 

0 0 0 0 0 1 1 

0 0 0 0 1 1 1 

0 0 0 1 1 1 1 

0 0 1 1 1 1 1 

0 1 1 1 1 1 1 

1 1 1 1 1 1 1 

1 1 1 1 1 1 0 

1 1 1 1 1 0 0 

1 1 1 1 0 0 0 

1 1 1 0 0 0 0 

1 1 0 0 0 0 0 

1 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 1 

0 0 0 0 0 1 1 

The flowchart of chromosome decoding for FLIC is as shown in Fig. 3.42. The bit 

length of chromosome is 21. The bit 14 to 20 or the chromosome{1} to 

chromosome{7} are 7 bit for E, the bit 7 to 13 or the chromosome{8} to 

chromosome{14} are 7 bit for D, and the bit 0 to 6 or chromosome{15} to 

chromosome{21} are 7 bit for U. The related membership functions are shown in  

Fig. 3.43 where µi is i
th

-fuzzy membership function, αia, αib, and αic are i
th

-fuzzy 

boundaries. 

Note that when the membership function is deleted, then the existing neighbour 

membership functions will change their boundary of fuzzy membership functions 

such that the crossover point is still 0.5. 

The crossover operation is basically the same as in Fig. 3.28 but the process is 

done separately for each sub-chromosomes as shown in Fig. 3.44. The result is three 

new sub-chromosomes for E (7 bit), D (7 bit), and U (7 bit) to the further process, i.e. 
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mutation as shown in Fig. 3.45. As in crossover operation, the mutation operation is 

basically the same as in Fig. 3.29 but the process is done separately for each sub-

chromosome. The result is three new sub-chromosomes for E (7 bit), D (7 bit), and U 

(7 bit) and then combined in one 21-bit size chromosome to the further process, i.e. 

new fitness evaluation as in Fig. 3.33. The operation process is repeated until 20 

generations. Finally, the solution process is done by searching the chromosome with 

the best fitness value among the all chromosomes in all generations as shown in     

Fig. 3.38. 

 

Fig. 3.42  Flowchart of chromosome decoding of SPOGA process for membership 

functions in FLIC 
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Fig. 3.43  Fuzzy membership functions related to chromosome 

There are only one operation in the rules optimization, i.e. mutation operation 

with the mutation rate of 0.01. The rules to be optimized is as in Eq. ( 3 - 15 ) using 

delta shift operation which alters each element in the fuzzy rule chromosome as 

follows [80]: 

𝑖 ,𝑗 = 𝑖+∆𝑖 ,𝑗+∆𝑗  ( 3 - 23 ) 

where ∆𝑖, ∆𝑗 have equal chance to be +1 or -1 with a probability of 0.01 [80]. 

 

Fig. 3.44  Flowchart of crossover process in SPOGA process for membership 

functions in FLIC 
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Fig. 3.45  Flowchart of mutation process in SPOGA process for membership 

functions in FLIC 

 

3.6.3.2 Optimizing I/O Scales and Integral Constant 

There are three parameters to be optimized: the input scale for fuzzy error input, Ke, 

the output scale for fuzzy output, Ku, and the integral constant, KI. This is done with 

the optimized membership functions and rules. Experimentally, the input scale for 

fuzzy change of error input, Kce, have no effect to be optimized, thus, it is set to be 1.  

Experimentally, the range of Ke is [0.00, 1.50], the range of Ku is [0.00, 0.50]. The 

range of Ki is [0.00, 1.00]. Using Eq. ( 3 - 22 ) with resolution of 0.01, the bit length 

of sub-chromosome for Ke is 8, Ku is 6, and for KI is 7. The bit length of chromosome 

is 21. Based on the simulation result in Section 3.6.3 that will be presented in    

Chapter 4, the population size is about 4/3 times the bit length of chromosome, but 

statistically, the minimum population size is 30. The number of generation is 20. 
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The initial population of each sub-chromosome is shown in Fig. 3.32. In the 

figure, the bl is 8 for Ke, 6 for Ku , and 7 for KI. The nc is 30 for all and fulfil the 

requirement that nc≥n. The result is 8-bit mod-16 30- step ring counter for Ke, 6-bit 

mod 12 30- step ring counter for Ku, and 7-bit mod-14 30- step ring counter for KI., as 

shown in Table 3.10. 

Table 3.10  Initial population for I/O scales and integral constant 

No. Sub-Chrom Ke Sub-Chrom Ku Sub-Chrom KI 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

0 0 0 0 0 0 0 1 

0 0 0 0 0 0 1 1 

0 0 0 0 0 1 1 1 

0 0 0 0 1 1 1 1 

0 0 0 1 1 1 1 1 

0 0 1 1 1 1 1 1 

0 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 0 

1 1 1 1 1 1 0 0 

1 1 1 1 1 0 0 0 

1 1 1 1 0 0 0 0 

1 1 1 0 0 0 0 0 

1 1 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 

0 0 0 0 0 0 1 1 

0 0 0 0 0 1 1 1 

0 0 0 0 1 1 1 1 

0 0 0 1 1 1 1 1 

0 0 1 1 1 1 1 1 

0 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 0 

1 1 1 1 1 1 0 0 

1 1 1 1 1 0 0 0 

1 1 1 1 0 0 0 0 

1 1 1 0 0 0 0 0 

1 1 0 0 0 0 0 0 

0 0 0 0 0 1 

0 0 0 0 1 1 

0 0 0 1 1 1 

0 0 1 1 1 1 

0 1 1 1 1 1 

1 1 1 1 1 1 

1 1 1 1 1 0 

1 1 1 1 0 0 

1 1 1 0 0 0 

1 1 0 0 0 0 

1 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 1 

0 0 0 0 1 1 

0 0 0 1 1 1 

0 0 1 1 1 1 

0 1 1 1 1 1 

1 1 1 1 1 1 

1 1 1 1 1 0 

1 1 1 1 0 0 

1 1 1 0 0 0 

1 1 0 0 0 0 

1 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 1 

0 0 0 0 1 1 

0 0 0 1 1 1 

0 0 1 1 1 1 

0 1 1 1 1 1 

1 1 1 1 1 1 

0 0 0 0 0 0 1 

0 0 0 0 0 1 1 

0 0 0 0 1 1 1 

0 0 0 1 1 1 1 

0 0 1 1 1 1 1 

0 1 1 1 1 1 1 

1 1 1 1 1 1 1 

1 1 1 1 1 1 0 

1 1 1 1 1 0 0 

1 1 1 1 0 0 0 

1 1 1 0 0 0 0 

1 1 0 0 0 0 0 

1 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 1 

0 0 0 0 0 1 1 

0 0 0 0 1 1 1 

0 0 0 1 1 1 1 

0 0 1 1 1 1 1 

0 1 1 1 1 1 1 

1 1 1 1 1 1 1 

1 1 1 1 1 1 0 

1 1 1 1 1 0 0 

1 1 1 1 0 0 0 

1 1 1 0 0 0 0 

1 1 0 0 0 0 0 

1 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 1 

0 0 0 0 0 1 1 

As with the other cases, SUS Roulette wheel was used for selection operation 

where the flowchart is shown in Fig. 3.27. The selection work based on the fitness 

evaluation where the flowchart is shown in Fig. 3.33. The maximum overshoot 

criteria is set to be 25 %. The maximum settling time criteria is set to be 4 seconds. 

The maximum steady state error criteria is set to be 2 %. Before selection process, 

each chromosome in the population is decoded. The result of decoding is then fed to 

the FLIC system to get the values of Ke, Ku , and KI. The FLIC system is then run to 

control the speed of s-modelled DC motor to test the performance of speed controller 
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with regards to to the chromosome. The set-point signal for the speed test run is 

shown in Fig. 3.34. 

The flowchart of chromosome decoding for FLIC is shown in Fig. 3.46. The bit 

length of chromosome is 21. The bit 13 to 20 or the chromosome{1} to 

chromosome{8} are 8 bit for Ke , the bit 7 to 12 or the chromosome{9} to 

chromosome{14} are 6 bit for Ku, and the bit 0 to 6 or chromosome{15} to 

chromosome{21} are 7 bit for KI. The value of Ke is the conversion from 8 bit biner 

number to real number in the range [0.00, 1.50]. The value of Ku is the conversion 

from 6 bit biner number to real number in the range [0.00, 0.50]. The value of KI is 

the conversion from 7 bit binary number to real number in the range [0.00, 1.00]. 

 

Fig. 3.46  Flowchart of chromosome decoding in SPOGA process for I/O/ scales and 

integral constant 
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The crossover operation is basically the same as in Fig. 3.28 but the process is 

done separately for each sub-chromosome as shown in Fig. 3.47. The result is three 

new sub-chromosomes for Ke (8 bit), Ku (6 bit), and KI (7 bit) to the further process, 

i.e. mutation as shown in Fig. 3.28. As in crossover operation, the mutation operation 

is basically the same as in Fig. 3.29 but the process is done separately for each sub-

chromosome. The result is three new sub-chromosomes for Ke (8 bit), Ku (6 bit), and 

KI (7 bit) and then combined in one chromosome 21 bit for the further process, i.e. 

new fitness evaluation as in Fig. 3.33. The operation process is repeated until 20 

generations. Finally, the solution process is done by searching the chromosome with 

the best fitness value among the all chromosomes in all generations as shown in     

Fig. 3.38. 

 

Fig. 3.47  Flowchart of crossover process in SPOGA process for I/O/ scales and 

integral constant 
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Fig. 3.48  Flowchart of mutation process in SPOGA process for I/O/ scales and 

integral constant 

 

3.7 Performance Comparisons and Evaluations 

There are two types of experiment to compare the nine types of controller as 

explained in Section 3.5. The types of experiment are simulation and hardware 

experiments and are divided into four conditions as follows: 

1. Extreme conditions: 

a. Experiment of speed and position controller with the set-point of 150 rpm, 6 

rad, unloaded 

b. Experiment of speed and position controller with the set-point of 400 rpm, 0.5 

rad, unloaded 
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2. Moderate conditions: 

Experiment of speed and position controller with the set-point of 275 rpm, 3.5 

rad, unloaded 

3. Variable load conditions: 

a. Experiment of speed and position controller with the set-point of 250 rpm, 5 

rad, unloaded, full-loaded after 15 sec 

b. Experiment of speed and position controller with the set-point of 250 rpm, 5 

rad, full-loaded, unloaded after 15 sec 

4. Variable set-point: 

a. Experiment of speed controller with the variable set-point of speed in the 

range of [0.00, 400.00] rpm, unloaded 

b. Experiment of speed and position controller with the set-point of 275 rpm, 2 

rad, 5 rad after 45 sec, unloaded 

The set-points in the experiment of speed and position controllers with the set-

point of 150 rpm, 6 rad, unloaded (type 1a) are shown in Fig. 3.49 and Fig. 3.50. The 

performance items used as a performance index for Fig. 3.49 are: 

i. % overshoot (%𝑂𝑠) 

ii. Settling time (𝑡𝑠) 

iii. 𝐼𝑇𝐴𝐸 for the first 8 sec only since the open loop time constant of plant is 0.5 sec. 

Based on the Eq. ( 2 - 40 ),  the formula is as follows: 

𝐼𝑇𝐴𝐸𝑣𝑝 = 𝑡   𝑆𝑃 𝑡 − 𝑃𝑉(𝑡) 𝑑𝑡

8

0

 ( 3 - 24 ) 

The performance items used as a performance index for Fig. 3.50 are: 

i. % steady state error for position (%𝑆𝑝) 

ii. 𝐼𝑇𝐴𝐸 for overall 90 seconds. Based on the Eq. ( 2 - 40 ), the formula is as 

follows: 

𝐼𝑇𝐴𝐸𝑝 = 𝑡   𝑆𝑃 𝑡 − 𝑃𝑉(𝑡) 𝑑𝑡

90

0

 ( 3 - 25 ) 
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Fig. 3.49  Set-point of speed in the experiment of type 1a. 

 

Fig. 3.50  Set-point of position in the experiment of type 1a. 

As implied in Eq. ( 3 - 24 ) and Eq. ( 3 - 25 ), the best is the minimum value. 

Making a comparison is better to use a number which is easy to understand and 

assigned it as the best is the maximum value. Consequently, Eq.  ( 3 - 24 )and         

Eq. ( 3 - 25 ) can be changed to fitness functions based on Eq. ( 2 - 1 ). In the 

experiment of type 1a, 𝑓𝑣𝑝  is the fitness function for the first 8-second starting speed 

based on 𝐼𝑇𝐴𝐸𝑣𝑝 , 𝑓𝑝  is the fitness function for position based on 𝐼𝑇𝐴𝐸𝑝 , for N types 

of controller, are formulated as 

𝑓𝑣𝑝 𝑖 =
 𝐼𝑇𝐴𝐸𝑣𝑝 ,𝑚𝑎𝑥 − 𝐼𝑇𝐴𝐸𝑣𝑝(𝑖) 

  𝐼𝑇𝐴𝐸𝑣𝑝 ,𝑚𝑎𝑥 − 𝐼𝑇𝐴𝐸𝑣𝑝(𝑖) 𝑁
𝑖=1

 ( 3 - 26 ) 
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𝑓𝑝 𝑖 =
 𝐼𝑇𝐴𝐸𝑝 ,𝑚𝑎𝑥 − 𝐼𝑇𝐴𝐸𝑝(𝑖) 

  𝐼𝑇𝐴𝐸𝑝 ,𝑚𝑎𝑥 − 𝐼𝑇𝐴𝐸𝑝(𝑖) 𝑁
𝑖=1

 
( 3 - 27 ) 

Based on Eq. ( 3 - 26 ) and Eq. ( 3 - 27 ) from Eq. ( 3 - 24 ) and Eq. ( 3 - 25 ), if 

𝑓𝑜𝑠  is the fitness function based on % overshoot, 𝑓𝑡𝑠  is the fitness function based on 

settling time, and 𝑓𝑠𝑝  is the steady state error for position control, then for 𝑁 types of 

controller, the fitness functions can be formulated as follows: 

𝑓𝑜𝑠 𝑖 =
 %𝑂𝑠,𝑚𝑎𝑥 − %𝑂𝑠(𝑖) 

  %𝑂𝑠,𝑚𝑎𝑥 − %𝑂𝑠(𝑖) 𝑁
𝑖=1

 ( 3 - 28 ) 

𝑓𝑡𝑠 𝑖 =
 𝑡𝑠,𝑚𝑎𝑥 − 𝑡𝑠(𝑖) 

  𝑡𝑠,𝑚𝑎𝑥 − 𝑡𝑠(𝑖) 𝑁
𝑖=1

 ( 3 - 29 ) 

𝑓𝑠𝑝 𝑖 =
 𝑆𝑝 ,𝑚𝑎𝑥 − 𝑆𝑝(𝑖) 

  𝑆𝑝 ,𝑚𝑎𝑥 − 𝑆𝑝(𝑖) 𝑁
𝑖=1

 ( 3 - 30 ) 

If 𝑓𝑖𝑡𝑣 is the total function fitness for speed control, 𝑓𝑖𝑡𝑝  is the total fitness 

function for position control, and 𝑓𝑖𝑡1𝑎  is the total fitness function for speed and 

position control in the experiment 1a, then these fitness functions can be formulated 

as follows: 

𝑓𝑖𝑡𝑣 =
𝑓𝑣𝑝 + 𝑓𝑜𝑠 + 𝑓𝑡𝑠

3
 ( 3 - 31 ) 

𝑓𝑖𝑡𝑝 =
𝑓𝑝 + 𝑓𝑠𝑝

2
 ( 3 - 32 ) 

𝑓𝑖𝑡1𝑎 =
2𝑓𝑖𝑡𝑣 + 𝑓𝑖𝑡𝑝

3
 ( 3 - 33 ) 

It is noted that Eq. ( 3 - 33 ) is built based on the fact that the SPOGA is not used 

for optimizing the position controller. Therefore, the speed fitness is more important 

than the position fitness. 
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The set-points in the experiment of speed and position controller with set-point of 

400 rpm, 0.5 rad, unloaded (type 1b) are shown in Fig. 3.51 and Fig. 3.52. The are no 

performance items used as a performance index for Fig. 3.51. The performance items 

used as a performance index for Fig. 3.52 are: 

i. % steady state error (%𝑆𝑝) 

ii. 𝐼𝑇𝐴𝐸 for overall 90 seconds with the formula as in Eq. ( 3 - 25 ). 

 

Fig. 3.51  Set-point of speed in the experiment of type 1b. 

 

Fig. 3.52  Set-point of position in the experiment of type 1b. 

The fitness function for position based on 𝐼𝑇𝐴𝐸𝑝  is formulated as in Eq. ( 3 - 27 ). 

The total fitness function for position control is formulated as in Eq. ( 3 - 32 ). If 𝑓𝑖𝑡1𝑏  

is the total fitness function for speed and position control in the experiment 1b, then it 

can be formulated as follows: 
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𝑓𝑖𝑡1𝑏 = 𝑓𝑖𝑡𝑝  ( 3 - 34 ) 

The set-points in the experiment of speed and position controller with set-point of 

275 rpm, 3.5 rad, unloaded (type 2) are shown in Fig. 3.53 and Fig. 3.54. The 

performance items used as a performance index for Fig. 3.53 are: 

i. % overshoot (%𝑂𝑠) 

ii. Settling time (𝑡𝑠) 

iii. 𝐼𝑇𝐴𝐸 for the first 8 sec with the formula as in Eq. ( 3 - 24 ). 

 

Fig. 3.53  Set-point of speed in the experiment of type 2 and 4b 

 

Fig. 3.54  Set-point of position in the experiment of type 2 
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The performance items used as a performance index for Fig. 3.54 are: 

i. % steady state error for position (𝑆𝑝) 

ii. 𝐼𝑇𝐴𝐸 for overall 90 seconds with the formula as in Eq. ( 3 - 25 ). 

The fitness function for the first 8-second starting speed based on 𝐼𝑇𝐴𝐸𝑣𝑝  (𝑓𝑣𝑝 ) 

and for position based on 𝐼𝑇𝐴𝐸𝑝  (𝑓𝑝 ) are formulated as in Eq. ( 3 - 26 ) and             

Eq. ( 3 - 27 ) respectively. The fitness function based on %𝑂𝑠 (𝑓𝑜𝑠 ), based on 𝑡𝑠 (𝑓𝑡𝑠), 

and based on %𝑆𝑝  (𝑓𝑠𝑝 ) are formulated as in Eq. ( 3 - 28 ), Eq. ( 3 - 29 ), and            

Eq. ( 3 - 30 ) respectively. 

The total fitness function for speed control (𝑓𝑖𝑡𝑣) and the total fitness function for 

position control (𝑓𝑖𝑡𝑝) are formulated as in Eq. ( 3 - 31 ) and Eq. ( 3 - 32 ) 

respectively. If 𝑓𝑖𝑡2 is the total fitness function for speed and position control in the 

experiment 2, then it can be formulated as follows: 

𝑓𝑖𝑡2 =
2𝑓𝑖𝑡𝑣 + 𝑓𝑖𝑡𝑝

3
 ( 3 - 35 ) 

The set-points in the experiment of speed and position controller with set-point of 

250 rpm, 5 rad, unloaded, full-loaded after 15 sec (type 3a) are shown in Fig. 3.55 and 

Fig. 3.56. The performance items used as a performance index for Fig. 3.55 are: 

i. % overshoot (%𝑂𝑠) 

ii. Settling time (𝑡𝑠) 

iii. % undershoot (%𝑈𝑠) 

iv. 𝐼𝑇𝐴𝐸 for the first 8 sec with the formula as in Eq. ( 3 - 24 ). 

v. 𝐼𝑇𝐴𝐸 for the 9-sec start loading speed (from 15 to 24 sec) with the formula as 

follows: 

𝐼𝑇𝐴𝐸𝑣𝑝𝑙 = 𝑡   𝑆𝑃 𝑡 − 𝑃𝑉(𝑡) 𝑑𝑡

24

15

 ( 3 - 36 ) 
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The performance items used as a performance index for Fig. 3.56 are: 

i. % steady state error for position (𝑆𝑝) 

ii. 𝐼𝑇𝐴𝐸 for overall 90 seconds with the formula as in Eq. ( 3 - 25 ). 

The fitness function for the first 8-second starting speed based on 𝐼𝑇𝐴𝐸𝑣𝑝  (𝑓𝑣𝑝 ) 

and for position based on 𝐼𝑇𝐴𝐸𝑝  (𝑓𝑝 ) are formulated as in Eq. ( 3 - 26 ) and             

Eq. ( 3 - 27 ) respectively. The fitness function for the 9-sec start loading speed (from 

14 to 23 sec) based on 𝐼𝑇𝐴𝐸𝑣𝑝𝑙  for 𝑁 types of controller is formulated as follows: 

𝑓𝑣𝑝𝑙  𝑖 =
 𝐼𝑇𝐴𝐸𝑣𝑝𝑙 ,𝑚𝑎𝑥 − 𝐼𝑇𝐴𝐸𝑣𝑝𝑙 (𝑖) 

  𝐼𝑇𝐴𝐸𝑣𝑝𝑙 ,𝑚𝑎𝑥 − 𝐼𝑇𝐴𝐸𝑣𝑝𝑙 (𝑖) 
𝑁
𝑖=1

 ( 3 - 37 ) 

 

Fig. 3.55  Set-point of speed in the experiment of type 3a 

 

Fig. 3.56  Set-point of position in the experiment of type 3a and 3b 
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The total fitness function for speed control (𝑓𝑖𝑡𝑣3) is formulated as follows: 

𝑓𝑖𝑡𝑣3 =
𝑓𝑣𝑝 + 𝑓𝑜𝑠 + 𝑓𝑢𝑠 + 𝑓𝑣𝑝𝑙 + 𝑓𝑡𝑠

5
 ( 3 - 38 ) 

and the total fitness function for position control (𝑓𝑖𝑡𝑝) is formulated as in                  

Eq. ( 3 - 32 ). If 𝑓𝑖𝑡3𝑎  is the total fitness function for speed and position control in the 

experiment 3a, then it can be formulated as follows: 

𝑓𝑖𝑡3𝑎 =
2𝑓𝑖𝑡𝑣3 + 𝑓𝑖𝑡𝑝

3
 ( 3 - 39 ) 

The set-points in the experiment of speed and position controller with set-point of 

250 rpm, 5 rad, full-loaded, unloaded after 15 sec (type 3b) are shown in Fig. 3.57 and 

Fig. 3.56. The performance items used as a performance index for Fig. 3.57 are: 

i. % overshoot (%𝑂𝑠) 

ii. Settling time (𝑡𝑠) 

iii. % overshoot when start unloading (%𝑂𝑠2) 

iv. 𝐼𝑇𝐴𝐸 for the first 8 sec with the formula as in Eq. ( 3 - 24 ). 

v. 𝐼𝑇𝐴𝐸 for the 9-sec start unloading speed (from 15 to 24 sec) with the formula as 

in Eq. ( 3 - 36 ). 

The performance items used as a performance index for Fig. 3.56 are: 

i. % steady state error for position (𝑆𝑝) 

ii. 𝐼𝑇𝐴𝐸 for overall 90 seconds with the formula as in Eq. ( 3 - 25 ). 

 

Fig. 3.57  Set-point of speed in the experiment of type 3b 
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The fitness function for the first 8-second starting speed based on 𝐼𝑇𝐴𝐸𝑣𝑝  (𝑓𝑣𝑝 ) 

and for position based on 𝐼𝑇𝐴𝐸𝑝  (𝑓𝑝 ) are formulated as in Eq. ( 3 - 26 ) and             

Eq. ( 3 - 27 ) respectively. The fitness function for the 9-sec start loading speed (from 

14 to 23 sec) based on 𝐼𝑇𝐴𝐸𝑣𝑝𝑙  is formulated as in Eq. ( 3 - 37 ). 

The total fitness function for speed control (𝑓𝑖𝑡𝑣3) and the total fitness function 

for position control (𝑓𝑖𝑡𝑝) is formulated as in Eq. ( 3 - 38 ) and Eq. ( 3 - 32 ) 

respectively. If 𝑓𝑖𝑡3𝑏  is the total fitness function for speed and position control in the 

experiment 3b, then it can be formulated as follows: 

𝑓3𝑏 =
2𝑓𝑖𝑡𝑣3 + 𝑓𝑖𝑡𝑝

3
 ( 3 - 40 ) 

The set-points in the experiment of speed and position controller with variations 

of speed, unloaded (type 4a) is shown in Fig. 3.58. The performance items used as a 

performance index is 𝐼𝐴𝐸 with the formula as follows: 

𝐼𝐴𝐸𝑣 =   𝑆𝑃 𝑡 − 𝑃𝑉(𝑡) 𝑑𝑡

90

0

 ( 3 - 41 ) 

The fitness function for speed (𝑓𝑣) is formulated as follows: 

𝑓𝑣(𝑖) =
 𝐼𝐴𝐸𝑣,𝑚𝑎𝑥 − 𝐼𝐴𝐸𝑣(𝑖) 

  𝐼𝐴𝐸𝑣,𝑚𝑎𝑥 − 𝐼𝐴𝐸𝑣(𝑖) 9
𝑖=1

 ( 3 - 42 ) 

and the overall fitness function for the experiment of type 4a is as follows: 

𝑓𝑖𝑡4𝑎 = 𝑓𝑣 ( 3 - 43 ) 

 

The set-points in the experiment of speed and position controller with set-point of 

275 rpm, 2 rad, 5 rad after 45 sec, unloaded (type 4b) are shown in Fig. 3.53 and    

Fig. 3.59. The performance items used as a performance index for Fig. 3.53 are: 

i. % overshoot (%𝑂𝑠) 

ii. Settling time (𝑡𝑠) 

iii. 𝐼𝑇𝐴𝐸 for the first 8 sec with the formula as in Eq. ( 3 - 24 ). 
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Fig. 3.58  Set-point of speed in the experiment of type 4a 

 

Fig. 3.59  Set-point of position in the experiment of type 4b 

The performance items used as a performance index for Fig. 3.59 are: 

i. % steady state error for position (𝑆𝑝) 

ii. 𝐼𝑇𝐴𝐸 for overall 90 seconds with the formula as in Eq. ( 3 - 25 ). 

The fitness function for the first 8-second starting speed based on 𝐼𝑇𝐴𝐸𝑣𝑝  (𝑓𝑣𝑝 ) 

and for position based on 𝐼𝑇𝐴𝐸𝑝  (𝑓𝑝 ) are formulated as in Eq. ( 3 - 26 ) and             

Eq. ( 3 - 27 ) respectively. The fitness function based on %𝑂𝑠 (𝑓𝑜𝑠 ), based on 𝑡𝑠 (𝑓𝑡𝑠), 

and based on %𝑆𝑝  (𝑓𝑠𝑝 ) are formulated as in Eq. ( 3 - 28 ), Eq. ( 3 - 29 ), and            

Eq. ( 3 - 30 ) respectively. 
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The total fitness function for speed control (𝑓𝑖𝑡𝑣) and the total fitness function for 

position control (𝑓𝑖𝑡𝑝) are formulated as in Eq. ( 3 - 31 ) and Eq. ( 3 - 32 ) 

respectively. If 𝑓𝑖𝑡4𝑏  is the total fitness function for speed and position control in the 

experiment 4b, then it can be formulated as follows: 

𝑓𝑖𝑡4𝑏 =
2𝑓𝑖𝑡𝑣 + 𝑓𝑖𝑡𝑝

3
 ( 3 - 44 ) 

The overall fitness function for all experiments can be formulated as: 

𝑓𝑖𝑡 = 𝑓𝑖𝑡1𝑎 + 𝑓𝑖𝑡1𝑏 + 𝑓𝑖𝑡2 + 𝑓𝑖𝑡3𝑎 + 𝑓𝑖𝑡3𝑏 + 𝑓𝑖𝑡4𝑎 + 𝑓𝑖𝑡4𝑏  ( 3 - 45 ) 

The maximum value of fit is the best performance. 

If 𝑓𝑖𝑡𝑣𝑥 ,𝑔  is the total fitness function of SPOGA-optimized hybrid controller for 

speed control in the experiment 𝑥 and 𝑓𝑖𝑡𝑣𝑥 ,  is the total fitness function of non-

SPOGA-optimized hybrid controller for speed control in the experiment 𝑥 where 

𝑥 =  1𝑎, 1𝑏, 2,3𝑎, 3𝑏, 4𝑎, 4𝑏 , then the improvement value for speed control in the 

experiment 𝑥, 𝐼𝑝𝑣𝑥 , is formulated as follows: 

𝐼𝑝𝑣𝑥 = 𝑓𝑖𝑡𝑣𝑥 ,𝑔 − 𝑓𝑖𝑡𝑣𝑥 ,  ( 3 - 46 ) 

The overall improvement value for speed for all experiments can be formulated 

as: 

𝐼𝑝𝑣 = 𝐼𝑝𝑣1𝑎 + 𝐼𝑝𝑣1𝑏 + 𝐼𝑝𝑣2 + 𝐼𝑝𝑣3𝑎 + 𝐼𝑝𝑣3𝑏 + 𝐼𝑝𝑣4𝑎 + 𝐼𝑝𝑣4𝑏  ( 3 - 47 ) 

3.8 Summary 

The detailed methodology of experiments has been presented in this chapter. There 

were two types of experiments: simulation and hardware experiments. The simulation 

experiments were conducted to predict the characteristic and the performance of 

controllers applied to the DC servomotor. Running the GA/SPOGA in the 

optimization process is much better on the simulation experiment mode than on the 
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hardware experiment mode. Identification of DC servomotor was conducted to run on 

the simulation mode by obtaining the transfer function in s-domain. 

The results of simulation experiment, gray box s-modeling of hardware, 

GA/SPOGA simulation, and SPOGA optimization will be presented in Chapter 4. The 

results of hardware experiment and experiment of hardware specification will be 

presented in Chapter 5. The performance comparisons will be presented in Chapter 4 

for simulation results and Chapter 5 for hardware experiment results. 



 

CHAPTER 4 

SIMULATION RESULTS AND DISCUSSIONS 

4.1 Introduction 

The design of controllers and algorithms which are then verified via simulations and 

real-time implementations have been presented in Chapter 3. The results of 

experiments on s-modelling, GA and SPOGA, and the simulations of speed and 

position control will be presented in this chapter, and the real-time implementation 

will be presented in Chapter 5. 

Performing simulations of speed and position controllers need a transfer function 

that is to be obtained from s-modelling of a servomotor system. The simulation results 

of conventional and fuzzy logic controllers are then obtained, followed by the 

simulation results of hybrid-fuzzy controllers. The best conventional and fuzzy logic 

controllers are compared graphically with the best hybrid-fuzzy controllers. 

Simulation of GA and SPOGA are done to compare the performance and 

efficiency. Either one is then selected based on the performance and efficiency, and 

then applied to optimize the hybrid-fuzzy controllers using the specifications based on 

the result of simulation. 

The optimized controllers are evaluated via simulation and the performance 

indices were recorded. Note that at this point, the controllers are optimized using GA 

or SPOGA and their performances are going to be evaluated. The notation of 

GA/SPOGA is being used here to indicate the exercise conducted. The performance 

of GA/SPOGA optimized controllers are then compared graphically with               

non-GA/SPOGA optimized controllers to the improvement value of the GA/SPOGA 

over the non-GA/SPOGA optimized controllers. One of the GA/SPOGA optimized 
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hybrid-fuzzy controllers is selected as the best controller based on the improvement 

values attained. 

4.2 Input-Output Modeling of A DC Servomotor 

The process of s-modeling is shown in Fig. 3.8. There are five types of input 

sequences, namely Type 1, Type 2, Type 3, Type 4, and Type 5. The result of the best 

model of each type of input sequence is shown in Table 4.1. 

Table 4.1  The best model of each type of input sequence 

NO. INPUT SEQUENCE BEST MODEL FIT 

1 Type 1 
456.3713𝑒−0.1682𝑠

𝑠3 + 9.504𝑠2 + 80.7𝑠 + 204.5
  86.59 

2 Type 2 
9.7174𝑒−0.2077𝑠

𝑠 + 4.4293
  79.47 

3 Type 3 
151.9520𝑒−0.1503𝑠

𝑠2 + 18.8651𝑠 + 67.8296
  80.47 

4 Type 4 
465.5417𝑒−0.0302𝑠

𝑠3 + 8.981𝑠2 + 85.05𝑠 + 214.2
  78.99 

5 Type 5 
210.9704

𝑠3 + 6.639𝑠2 + 49.64𝑠 + 94.91
  85.64 

Based on Table 4.1, the best model is indicated by the largest value of FIT which 

is obtained from Eq. ( 2 - 22 ), as follows: 

𝐺 𝑠 =
456.3713𝑒−0.1682𝑠

𝑠3 + 9.504𝑠2 + 80.7𝑠 + 204.5
 

( 4 - 1 ) 

   

The graphical comparison of actual (real time) and estimation (model) based on 

eq. ( 4 - 1 ) is shown in Fig. 4.1. Based on this figure, the average deviation between 

actual and estimation is 0.78 % for IN1, 2.00 % for IN2, and 4.03 % for overall. 

These values are good enough as a verification result. Eq ( 4 - 1 ) is then used as the 

plant transfer function in all of the simulation experiments. 
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Fig. 4.1  Graphical verification of input-output modelling of a DC servomotor 

 

4.3 Simulation of Conventional and Fuzzy Controllers 

There are three types of controllers in this simulation: PI controller, PID controller, 

and fuzzy logic controller (FLC). The simulation is done as a basis of controllers in 

GA application (especially for FLC) and in measuring the performance improvement 

of GA optimized controllers (especially for PI and PID). 

Based on Eq. ( 2 - 31 ) and Eq. ( 2 - 32 ), the experiment of ultimate cycle in 

tuning PI and PID gives the result as follows: 

KP-u = 23.5, Tu = 10 sec 

Using Eq. ( 2 - 31 ), the parameters of PI after fine-tuning are as shown below: 

KP = 10.58, KI = 14.7 

Using Eq. ( 2 - 32 ), the parameters of PID after fine-tuning are as follow: 

KP = 14.1, KD = 0.1, KI = 24.4 

Experimentally, the proportional constant for position controller (KPp) is 0.61. 

The membership functions of FLC in the simulation of speed controller 

experiment are shown in Fig. 3.20 and Fig. 3.21, the rules are shown in Table 3.3, and 

the output is integrated using Eq. ( 3 - 16 ). 

The membership functions of FLC in the simulation of position controller 

experiment are shown in Fig. 3.18 and Fig. 3.19, the rules are shown in Table 3.2, and 
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the output is directly applied to the next stage. The output is multiplied by an 

adjustable constant (KPp) and experimentally, the value is 0.35. 

4.3.1 Description on Types of Simulations 

There are seven types of simulation experiment as explained in Section 3.7 which 

are classified into four condition, i.e.: 

i. Extreme condition, namely Simulation 1a and 1b 

ii. Moderate condition, namely Simulation 2 

iii. Variable load condition, namely Simulation 3a and 3b 

iv. Variable set point condition, namely Simulation 4a and 4b 

The types of simulation are summarized in Table 4.2. 

The number of simulation types are larger than that in Table 4.2, however most 

would fall into the listed conditions, hence the simulation and analysis are limited 

only to these condition. 

For the different controllers that will be applied in the system, their performance 

will be taken for analysis and comparison based on the condition as specified in  

Table 4.2.  
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Table 4.2  Types of simulation 

Type Simulation Condition Specifications 

1a Extreme a 

Set point of speed (rpm)  150.00 

Set point of position (rad)  6.00 

Loaded No 

1b Extreme b 

Set point of speed (rpm)  400.00 

Set point of position (rad)  0.50 

Loaded No 

2 Moderate 

Set point of speed (rpm)  275.00 

Set point of position (rad)  3.50 

Loaded No 

3a Variable load a 

Set point of speed (rpm)  250.00 

Set point of position (rad)  5.00 

Loaded After 15 sec 

3b Variable load b 

Set point of speed (rpm)  250.00 

Set point of position (rad)  5.00 

Loaded Up to 15 sec 

4a Variable set point a 

Set point of speed (rpm) variable [0.00, 400.00] 

Set point of position (rad) - 

Loaded No 

4b Variable set point b 

Set point of speed (rpm)  275.00 

Set point of position (rad) 2 (up to 45 sec), 5 (after 45 sec) 

Loaded No 

4.3.2 Performance Comparisons of Conventional and Fuzzy Controllers 

The comparison on the effectiveness of implementing conventional and fuzzy 

logic controllers for simulation experiment based on the second order underdamped 

response analysis is presented in Table 4.3, the comparison based on error analysis is 

presented in Table 4.4, and the comparison based on fitness value analysis is 

presented in Table 4.5. 

It is shown in Table 4.3, Table 4.4, and Table 4.5 in the simulation 1a that the best 

overshoot and settling time for speed control is PI controller, but the best fitness value 

for the first 8-second starting speed based on ITAEvp (fvp) is PID controller. The total 

fitness value for speed control (fitv) is obtained based on the overshoot, settling time, 

and ITAEvp and the best is found to be the PI controller.  

In the position control, the best SSEP is PI controller, but the best fitness value 

based on ITAEp (fp) is FLC. The total fitness value for position control (fitp) is 

obtained based on the SSEP and ITAEp , and the best is the PI controller. 
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Table 4.3  Simulation results of conventional and fuzzy logic controllers based on 

second order underdamped response analysis 

Type PERFORMANCE ITEM 
Controller 

PI PID FLC 

1a 

Overshoot (%OS, %)  0.00  18.07  24.53 

Settling time (ts, sec)  4.10  4.85  9.91 

SSEP (%Sp, %)  0.13  0.19  0.32 

1b SSEP (%Sp, %)  24.50  13.46  138.67 

2 

Overshoot (%OS, %)  0.00  18.06  13.22 

Settling time (ts, sec)  4.10  4.85  5.93 

SSEP (%Sp, %)  0.35  0.04  0.10 

3a 

Overshoot (%OS, %)  0.00  18.07  15.45 

Settling time (ts, sec)  4.10  4.85  7.69 

Undershoot (%US, %)  39.60  39.96  41.69 

SSEP (%Sp, %)  0.55  0.04  0.02 

3b 

Overshoot (%OS, %)  0.00  0.00  2.23 

Settling time (ts, sec)  5.31  3.52  4.26 

Overshoot 2 (%OS2, %)  66.32  66.76  62.66 

SSEP (%Sp, %)  0.02  0.08  0.00 

4b 

Overshoot (%OS, %)  0.00  18.06  13.22 

Settling time (ts, sec)  4.10  4.85  5.93 

SSEP (%Sp, %)  0.02  0.08  0.04 

SSEP: Steady State Error of Position 

Table 4.4  Simulation results of conventional and fuzzy logic controllers based on 

error analysis 

Type PERFORMANCE ITEM 
Controller 

PI PID FLC 

1a 
ITAEvp  1.14E+02  1.09E+02  2.44E+02 

ITAEp  6.04E+03  5.97E+03  5.66E+03 

1b ITAEp  4.96E+02  2.73E+02  2.80E+03 

2 
ITAEvp  2.10E+02  2.00E+02  4.51E+02 

ITAEp  4.26E+02  3.77E+02  4.40E+02 

3a 

ITAEvp  1.91E+02  1.81E+02  3.80E+02 

ITAEvl  2.06E+03  1.26E+03  2.06E+03 

ITAEp  1.43E+03  1.30E+03  1.42E+03 

3b 

ITAEvp  4.15E+02  1.72E+02  5.19E+02 

ITAEvl  2.09E+03  1.88E+03  5.23E+03 

ITAEp  1.32E+03  1.29E+03  1.36E+03 

4a IAEv  9.44E+02  8.31E+02  2.62E+03 

4b 
ITAEvp  2.10E+02  2.00E+02  4.51E+02 

ITAEp  1.84E+03  1.81E+03  1.96E+03 

ITAEvp : Integral of time absolute value of error for the first 8 sec; ITAEp : ITAE for position, ITAEvl : 
ITAE for the 9-sec start loading speed; IAEv : integral of absolute value of error for overall 90 sec. 

 

The best total fitness value for speed and position control in the simulation 1a (f1a) 

is PI controller. Therefore, PI is the best conventional controller in simulation 1a 

which is shown to be better than FLC. 
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Table 4.5  Simulation results of conventional and fuzzy logic controllers based on 

fitness value analysis 

Type PERFORMANCE ITEM 
Controller 

PI PID FLC 

1a 

fvp  0.49  0.51  0.00 

fp  0.00  0.15  0.85 

fitv  0.61  0.39  0.00 

fitp  0.29  0.28  0.43 

fit1a  0.50  0.36  0.14 

1b 

fp  0.48  0.52  0.00 

fitp  0.48  0.52  0.00 

fit1b  0.48  0.52  0.00 

2 

fvp  0.49  0.51  0.00 

fp  0.18  0.82  0.00 

fitv  0.63  0.29  0.07 

fitp  0.09  0.69  0.22 

fit2  0.45  0.43  0.12 

3a 

fvp  0.49  0.51  0.00 

fvpl  0.00  0.10  0.00 

fp  0.00  0.97  0.03 

fitv  0.48  0.49  0.03 

fitp  0.00  0.73  0.27 

fit3a  0.32  0.57  0.11 

3b 

fvp  0.23  0.77  0.00 

fvpl  0.00  0.00  0.00 

fp  0.41  0.59  0.00 

fitv  0.18  0.47  0.09 

fitp  0.42  0.30  0.28 

fit3b  0.26  0.41  0.16 

4a 

fv  0.48  0.52  0.00 

fitv  0.48  0.52  0.00 

fit4a  0.48  0.52  0.00 

4b 

fvp  0.49  0.51  0.00 

fp  0.44  0.56  0.00 

fitv  0.63  0.29  0.07 

fitp  0.52  0.28  0.20 

fit4b  0.60  0.29  0.11 

fvp : Fitness value for the first 8-sec starting speed based on ITAEvp; fp : Fitness value for position based 
on ITAEp; fvpl : Fitness value for the 9-sec start loading speed (from 14 to 23 sec) based on ITAEvpl; fv: 

Fitness value for overall 90 sec of speed based on IAEv; fitv : Total fitness value for speed control; fitp : 
Total fitness value for position control; fitx : Total fitness value for speed and position control in the 

experiment of Type x 
 

The simulation 1b presents the position performance since it is in the extreme 

condition with maximum speed and minimum position. The best fitness value based 

on ITAEp (fp) is PID. The best total fitness value for position control (fitp) is obtained 

based on the SSEP and ITAEp , and the best is the PID controller. 

The best total fitness value for speed and position control in the simulation 1b (f1b) 

is PID controller. Therefore, PID is the best conventional controller in the simulation 

1b which is observed to be better than FLC. 
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The best overshoot and settling time in the simulation 2 for speed control is PI 

controller, but the best fitness value for the first 8-second starting speed based on 

ITAEvp (fvp) is PID controller. The total fitness value for speed control (fitv) is obtained 

based on the overshoot, settling time, and ITAEvp and the best one is the PI controller.  

In the position control, the best SSEP and the best fitness value based on ITAEp 

(fp) is PID controller. The total fitness value for position control (fitp) is obtained 

based on the SSEP and ITAEp , and the best one is PID controller. 

The best total fitness value for speed and position control in the simulation 2 (f2) 

is PI controller. Therefore, PI is the best conventional controller in the simulation 2 

which is better than FLC in term of position control. In term of speed control, PI is the 

best for simulation 2. 

The best overshoot and settling time in the simulation 3a for speed control is PI 

controller, but the best fitness value for the first 8-second starting speed based on 

ITAEvp (fvp) is PID controller. The total fitness value for speed control (fitv) is obtained 

based on the overshoot, settling time, undershoot, ITAEvpl and ITAEvp and the best is 

the PID controller. When start loading, the best undershoot is the PI controller. 

In the position control, the best SSEP and the best fitness value based on ITAEp 

(fp) is PID controller. The total fitness value for position control (fitp) is obtained 

based on the SSEP and ITAEp , and the best is the PID controller. 

The best total fitness value for speed and position control in the simulation 3a (f3a) 

is PID controller. Therefore, PID is the best conventional controller in the simulation 

3a which is better than FLC. 

In the simulation 3b, the best overshoot and settling time, and the best fitness 

value for the first 8-second starting speed based on ITAEvp (fvp) for speed control is 

PID controller. The total fitness value for speed control (fitv) is obtained based on the 

overshoot, settling time, overshoot 2, ITAEvpl and ITAEvp and the best is the PID 

controller. All of the overshoot 2 when start unloading are more than 50%. 

Consequently, the fitness value for 9-sec start unloading speed based on ITAEvpl (fvpl) 

are zero. 
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In the position control, the best SSEP is FLC but the best fitness value based on 

ITAEp (fp) is PI controller. The total fitness value for position control (fitp) is obtained 

based on the SSEP and ITAEp , and the best is the PI controller. 

The best total fitness value for speed and position control in the simulation 3b (f3b) 

is PID controller. Therefore, PID is the best conventional controller in the simulation 

3b which is shown to be better than FLC. 

The simulation 4a presents the speed performance without overshoot and settling 

time since it is in the variations of speed set point. The best fitness value based on 

IAEv (fv) is PID controller. The best total fitness value for speed control (fitv) is 

obtained based on the IAEv only, and the best is the PID controller. 

The best total fitness value for speed and position control in the simulation 4a (f4a) 

is PID controller. Therefore, PID is the best conventional controller in the simulation 

4a which is better than FLC. 

The best overshoot and settling time in the simulation 4b for speed control is PI 

controller, but the best fitness value for the first 8-second starting speed based on 

ITAEvp (fvp) is PID controller. The total fitness value for speed control (fitv) is obtained 

based on the overshoot, settling time, and ITAEvp and the best is the PI controller.  

In the position control, the best SSEP and the best fitness value based on ITAEp 

(fp) is PI controller. The total fitness value for position control (fitp) is obtained based 

on the SSEP and ITAEp , and the best is the PI controller. 

The best total fitness value for speed and position control in the simulation 4b (f4b) 

is PI controller. Therefore, PI is the best conventional controller in the simulation 4b 

which is better than FLC. 

4.3.3 Simulation Results Summary of Conventional and Fuzzy Controllers 

The speed and position control simulation of the conventional and fuzzy logic 

controller have been presented. PI controller is the best speed controller as compared 

to PID controller and FLC for the simulation of Type 1a, 2, and 4b. PID controller is 
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the best speed controller as compared to PI controller and FLC for the simulation of 

Type 3a, 3b, and 4a. Using Eq.( 3 - 45 ), the best overall speed controller is PID as 

compared to PI and fuzzy logic. In the application of speed control, FLC is not as 

good as the conventional controllers. 

In both speed and position control, PI is the best controller as compared to PID 

controller and FLC for the simulation of Type 1a, 2 and 4b. PID controller is the best 

controller as compared to PI controller and FLC for the simulation of Type 1b, 3a, 3b, 

and 4a. Using Eq. ( 3 - 45 ), the best overall speed and position controller is PI as 

compared to PID and fuzzy logic. In the application of speed and position control, 

FLC is not as good as conventional controller because in the standalone condition, the 

output of FLC has to be in integration mode to make the zero steady state error. This 

makes the time response slow and tends to be unstable. 

4.4 Simulation of Hybrid-Fuzzy Controllers 

There are three types of controllers in the simulation: FLBPI controller, FLBPID 

controller, and FLIC. The simulation was conducted as an improvement of PID and 

FLC based on the results that the performance of standard FLC is not as good as PID 

or PI controller. 

The membership functions of FLBPI and FLBPID in the simulation of speed 

controller experiment are shown in Fig. 3.23, the rules are shown in Table 3.4, and the 

output is connected to PI for FLBPI and PID for FLBPID using Eq.( 3 - 17 ) for 

FLBPI and Eq.( 3 - 18 ) for FLBPID. Experimentally, the parameters of FLBPI and 

FLBPID are as follow: 

KPm = 6 and KIm = 79 for FLBPI 

KPm = 10.4, KDm = 0.1, and KIm = 66 for FLBPID 

The KDm in FLBPID is taken from the result of PID tuning using Ziegler-Nichols 

(ultimate cycle). 

The membership functions of FLIC in the simulation of speed controller 

experiment are shown in Fig. 3.20 and Fig. 3.25, the rules are shown in Table 3.3, and 
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the output is paralleled with integral controller. Experimentally, the parameters of 

FLIC are as follow: 

Ke = 1.03, Kce = 1, Ku = 0.25, KI = 1. 

The variable proportional controller is used as a position controller for hybrid 

speed controller where the value of KPv is as in Table 3.1. The values of KPp are 

experimentally as follow: 

KPp = 0.98 for FLBPI and FLBPID controllers, and KPp = 0.75 for FLIC. 

There are seven types of simulation as explained in Section 3.7 which are 

summarized in Table 4.2. 

4.4.1 Performance Comparisons of Hybrid-Fuzzy Controllers 

The comparison on the effectiveness of implementing hybrid-fuzzy controllers for 

simulation experiment based on the second order underdamped response analysis is 

presented in Table 4.6, the comparison based on error analysis is presented in       

Table 4.7, and the comparison based on fitness value analysis is presented in       

Table 4.8. 

It is shown in Table 4.6, Table 4.7, and Table 4.8 in the simulation 1a that the best 

overshoot, settling time and fitness value for the first 8-second starting speed based on 

ITAEvp (fvp) is FLBPID controller for speed control. The total fitness value for speed 

control (fitv) is obtained based on the overshoot, settling time, and ITAEvp and the best 

is the FLBPID controller.  

In the position control, the best SSEP is FLBPID controller, but the best fitness 

value based on ITAEp (fp) is FLIC. The total fitness value for position control (fitp) is 

obtained based on the SSEP and ITAEp , and the best is the FLBPI controller. 

The best total fitness value for speed and position control in the simulation 1a (f1a) 

is FLBPID controller. Therefore, FLBPID is the best hybrid controller in the 

simulation 1a (extreme condition). 
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Table 4.6  Simulation results of hybrid-fuzzy controllers based on second order 

underdamped response analysis 

Type PERFORMANCE ITEM 
Controller 

FLBPI FLBPID FLIC 

1a 

Overshoot (%OS, %)  20.21  3.74  22.07 

Settling time (ts, sec)  2.37  1.81  2.23 

SSEP (%Sp, %)  0.08  0.08  0.11 

1b SSEP (%Sp)  0.47  0.53  0.00 

2 

Overshoot (%OS, %)  8.99  3.55  2.27 

Settling time (ts, sec)  2.57  1.74  1.44 

SSEP (%Sp, %)  0.04  0.04  0.03 

3a 

Overshoot (%OS, %)  8.48  3.41  4.78 

Settling time (ts, sec)  2.52  1.73  1.62 

Undershoot (%US, %)  40.00  40.00  39.99 

SSEP (%Sp, %)  0.05  0.01  0.01 

3b 

Overshoot (%OS, %)  1.54  0.06  0.00 

Settling time (ts, sec)  1.45  2.23  3.09 

Overshoot 2 (%OS2, %)  66.67  66.67  66.67 

SSEP (%Sp, %)  0.07  0.07  0.06 

4b 

Overshoot (%OS, %)  8.99  3.55  2.27 

Settling time (ts, sec)  2.57  1.74  1.44 

SSEP (%Sp, %)  0.07  0.07  0.06 

SSEP: Steady State Error of Position 

Table 4.7  Simulation results of hybrid-fuzzy controllers based on error analysis 

Type PERFORMANCE ITEM 
Controller 

FLBPI FLBPID FLIC 

1a 
ITAEvp  4.96E+01  3.63E+01  4.79E+01 

ITAEp  5.93E+03  5.97E+03  5.93E+03 

1b ITAEp  4.42E+00  4.36E+00  4.88E+00 

2 
ITAEvp  9.03E+01  8.01E+01  6.97E+01 

ITAEp  3.77E+02  3.80E+02  3.78E+02 

3a 

ITAEvp  7.74E+01  7.05E+01  6.28E+01 

ITAEvl  1.03E+03  1.11E+03  1.50E+03 

ITAEp  1.30E+03  1.30E+03  1.31E+03 

3b 

ITAEvp  8.56E+01  1.29E+02  1.73E+02 

ITAEvl  1.47E+03  1.38E+03  2.25E+03 

ITAEp  1.27E+03  1.28E+03  1.29E+03 

4a IAEv  7.13E+02  6.62E+02  9.17E+02 

4b 
ITAEvp  9.03E+01  8.01E+01  6.97E+01 

ITAEp  1.80E+03  1.81E+03  1.82E+03 

ITAEvp : Integral of time absolute value of error for the first 8 sec; ITAEp : ITAE for position, ITAEvl : 
ITAE for the 9-sec start loading speed; IAEv : Integral of absolute value of error for overall 90 sec. 

 

The simulation 1b presents the position performance since it is in the extreme 

condition with maximum speed and minimum position. The best SSEP is FLBPI but 

the best fitness value based on ITAEp (fp) is FLIC. The best total fitness value for 

position control (fitp) is obtained based on the SSEP and ITAEp , and the best is the 

FLIC. 
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Table 4.8  Simulation results of hybrid-fuzzy controllers based on fitness value 

analysis 

Type PERFORMANCE ITEM 
Controller 

FLBPI FLBPID FLIC 

1a 

fvp  0.00  0.89  0.11 

fp  0.47  0.00  0.53 

fitv  0.03  0.87  0.10 

fitp  0.48  0.25  0.27 

fit1a  0.18  0.66  0.16 

1b 

fp  0.00  0.06  0.27 

fitp  0.24  0.26  0.49 

fit1b  0.24  0.26  0.49 

2 

fvp  0.00  0.33  0.67 

fp  0.63  0.00  0.37 

fitv  0.00  0.40  0.60 

fitp  0.32  0.03  0.65 

fit2  0.11  0.28  0.62 

3a 

fvp  0.00  0.32  0.68 

fvpl  0.55  0.45  0.00 

fp  0.62  0.38  0.00 

fitv  0.14  0.45  0.41 

fitp  0.31  0.46  0.23 

fit3a  0.19  0.46  0.35 

3b 

fvp  0.67  0.33  0.00 

fvpl  0.00  0.00  0.00 

fp  0.70  0.30  0.00 

fitv  0.45  0.42  0.13 

fitp  0.35  0.25  0.40 

fit3b  0.42  0.37  0.22 

4a 

fv  0.45  0.56  0.00 

fitv  0.45  0.56  0.00 

fit4a  0.45  0.56  0.00 

4b 

fvp  0.00  0.33  0.67 

fp  0.67  0.33  0.00 

fitv  0.00  0.40  0.60 

fitp  0.33  0.26  0.41 

fit4b  0.11  0.35  0.53 

fvp : Fitness value for the first 8-sec starting speed based on ITAEvp; fp : Fitness value for position based 
on ITAEp; fvpl : Fitness value for the 9-sec start loading speed (from 14 to 23 sec) based on ITAEvpl; fv: 

Fitness value for overall 90 sec of speed based on IAEv; fitv : Total fitness value for speed control; fitp : 
Total fitness value for position control; fitx : Total fitness value for speed and position control in the 

experiment of Type x 
 

The best total fitness value for speed and position control in the simulation 1b (f1b) 

is FLIC. Therefore, FLIC is the best hybrid controller in the simulation 1b (extreme 

condition). 

The best overshoot in the simulation 2 for speed control is FLBPID but the best 

settling time and the best fitness value for the first 8-second starting speed based on 

ITAEvp (fvp) is FLIC. The total fitness value for speed control (fitv) is obtained based 

on the overshoot, settling time, and ITAEvp and the best is the FLIC.  
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In the position control, the best SSEP is FLIC but the best fitness value based on 

ITAEp (fp) is FLBPI controller. The total fitness value for position control (fitp) is 

obtained based on the SSEP and ITAEp , and the best is the FLIC. 

The best total fitness value for speed and position control in the simulation 2 (f2) 

is FLIC. Therefore, FLIC is the best hybrid controller in the simulation 2 (moderate 

condition). 

The best overshoot and settling time in the simulation 3a for speed control is 

FLBPID controller, but the best fitness value for the first 8-second starting speed 

based on ITAEvp (fvp) is FLIC. The total fitness value for speed control (fitv) is 

obtained based on the overshoot, settling time, undershoot, ITAEvpl and ITAEvp and the 

best is PID controller. When start loading, the best undershoot is FLBPID controller. 

In the position control, the best SSEP and the best fitness value based on ITAEp 

(fp) is FLBPI controller. The total fitness value for position control (fitp) is obtained 

based on the SSEP and ITAEp , and the best is the FLBPID controller. 

The best total fitness value for speed and position control in the simulation 3a (f3a) 

is FLBPID controller. Therefore, FLPID is the best hybrid controller in the simulation 

3a (variable load condition). 

The best overshoot in the simulation 3b for speed control is FLIC but the settling 

time and the fitness value for the first 8-second starting speed based on ITAEvp (fvp) is 

FLBPI controller. The total fitness value for speed control (fitv) is obtained based on 

the overshoot, settling time, overshoot 2, ITAEvpl and ITAEvp and the best is FLBPI 

controller. All of the overshoot 2 when start unloading are more than 50%. 

Consequently, the fitness value for 9-sec start unloading speed based on ITAEvpl (fvpl) 

are zero. 

In the position control, the best SSEP is FLIC but the best fitness value based on 

ITAEp (fp) is FLBPI controller. The total fitness value for position control (fitp) is 

obtained based on the SSEP and ITAEp , and the best is the FLIC. 
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The best total fitness value for speed and position control in the simulation 3b (f3b) 

is FLBPI controller. Therefore, FLBPI is the best hybrid controller in the simulation 

3b (variable load condition). 

The simulation 4a presents the speed performance without overshoot and settling 

time since it is in the variations of speed set point. The best fitness value based on 

IAEv (fv) is FLBPID controller. The best total fitness value for speed control (fitv) is 

obtained based on the IAEv only, and the best is the FLBPID controller. 

The best total fitness value for speed and position control in the simulation 4a (f4a) 

is FLBPID controller. Therefore, FLBPID is the best hybrid controller in the 

simulation 4a (variable set point). 

In the simulation 4b, the best overshoot, settling time, and fitness value for the 

first 8-second starting speed based on ITAEvp (fvp) for speed control is FLIC. The total 

fitness value for speed control (fitv) is obtained based on the overshoot, settling time, 

and ITAEvp and the best is the FLIC.  

In the position control, the best SSEP and the best fitness value based on ITAEp 

(fp) is FLIC. The total fitness value for position control (fitp) is obtained based on the 

SSEP and ITAEp , and the best is the FLIC. 

The best total fitness value for speed and position control in the simulation 4b (f4b) 

is FLIC. Therefore, FLIC is the best hybrid controller in the simulation 4b (variable 

set point). 

4.4.2 Simulation Results Summary of Hybrid-Fuzzy Controllers 

The speed and position control simulation of hybrid-fuzzy controller has been 

presented. FLBPI controller is the best speed controller as compared to FLBPID 

controller and FLIC for simulation of Type 3b. FLBPID controller is the best speed 

controller as compared to FLBPI controller and FLIC for simulation of Type 1a, 3a, 

and 4a. FLIC is the best speed controller as compared to FLBPI controller and 

FLBPID controller for simulation of Type 2 and 4b. Using Eq.( 3 - 45 ), the best 

overall speed controller is FLBPID as compared to FLBPI and FLIC.  
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In both speed and position control, FLBPI is the best controller as compared to 

FLBPID controller and FLIC for simulation of Type 3b. FLBPID controller is the best 

controller as compared to FLBPI controller and FLIC for simulation of Type 1a, 1b, 

3a, and 4a. FLIC is the best controller as compared to FLBPI controller and FLBPID 

controller for simulation of Type 2 and 4b. Using Eq. ( 3 - 45 ), the best overall speed 

and position controller is FLBPID as compared to FLBPI and FLIC.  

4.5 Performance Comparisons of Conventional, Fuzzy, and Hybrid-Fuzzy 

Controllers 

This section presents the performance comparisons of conventional (PI and PID 

controllers), FLC, and hybrid-fuzzy controllers based on the fitness values where the 

performance items are based on Table 4.3 to Table 4.8. 

There are seven types of simulation as explained in Section 3.7 which are 

summarized in Table 4.2. 

4.5.1 Results on Performance Comparisons of Conventional, Fuzzy, and 

Hybrid-Fuzzy Controllers 

The graphs of input-output characteristic of speed error, position error,  speed, and 

position between the best conventional and fuzzy controllers and the best hybrid 

controllers are presented in the section for each simulation type. 

The comparison on the effectiveness of implementing conventional, fuzzy, and 

hybrid controllers based on the performance metrics for simulation experiment is 

presented in Table 4.9 where the performance items are based on Table 4.5 and   

Table 4.8. 

It is shown in the Table 4.9 that the best speed controller for simulation 1a is PI 

for conventional controller and FLBPID for hybrid-fuzzy controller, and the best 

position controller is FLC for conventional controller and FLBPI for hybrid-fuzzy 

controller. For speed and position control, PI is the best conventional controller and 
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FLBPID is the best hybrid controller. Comparison on the best conventional to the best 

hybrid are shown in the table that hybrid-fuzzy controllers are better then 

conventional controllers in the simulation 1a. The graphical comparisons are shown in 

the Fig. 4.2 to Fig. 4.5. 

Table 4.9  Performance comparisons of conventional, fuzzy, and hybrid-fuzzy 

controllers  

Type CONTROLLERS 
Fitness 

fitv fitp fitx 

1a 

PI  0.25  0.09  0.19 

PID  0.14  0.11  0.13 

FLC  0.00  0.26  0.09 

FLBPI  0.17  0.20  0.18 

FLBPID  0.28  0.17  0.24 

FLIC  0.16  0.18  0.17 

1b 

PI -  0.17  0.17 

PID -  0.19  0.19 

FLC -  0.00  0.00 

FLBPI -  0.21  0.21 

FLBPID -  0.21  0.21 

FLIC -  0.21  0.21 

2 

PI  0.19  0.03  0.13 

PID  0.08  0.22  0.13 

FLC  0.03  0.08  0.04 

FLBPI  0.20  0.22  0.21 

FLBPID  0.25  0.22  0.24 

FLIC  0.26  0.23  0.25 

3a 

PI  0.15  0.00  0.10 

PID  0.13  0.22  0.16 

FLC  0.01  0.10  0.04 

FLBPI  0.23  0.22  0.23 

FLBPID  0.26  0.23  0.25 

FLIC  0.22  0.22  0.22 

3b 

PI  0.07  0.24  0.13 

PID  0.15  0.10  0.13 

FLC  0.02  0.23  0.09 

FLBPI  0.17  0.15  0.16 

FLBPID  0.18  0.14  0.17 

FLIC  0.16  0.14  0.15 

4a 

PI  0.19 -  0.19 

PID  0.20 -  0.20 

FLC  0.00 -  0.00 

FLBPI  0.21 -  0.21 

FLBPID  0.22 -  0.22 

FLIC  0.19 -  0.19 

4b 

PI  0.20  0.30  0.23 

PID  0.08  0.10  0.09 

FLC  0.03  0.15  0.07 

FLBPI  0.20  0.15  0.18 

FLBPID  0.25  0.14  0.21 

FLIC  0.26  0.15  0.23 
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Fig. 4.2  Speed control of DC servomotor using FLBPID vs. PI for simulation 1a 

 

 

Fig. 4.3  Absolute error of speed control of DC servomotor using FLBPID vs. PI for 

simulation 1a 

It is shown in Fig. 4.2 and Fig. 4.3 that FLBPID has the faster settling time than 

PI eventhough there is a very small overshoot. Consequently, the absolute error of 

FLBPID is smaller than PI. 

It is shown in Fig. 4.4 and Fig. 4.5 that FLBPI has the faster rise time although the 

settling time is similar to the FLC. This makes the absolute error of FLBPI smaller 

than FLC. 
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Fig. 4.4  Position control of DC servomotor using FLBPI vs. FLC for simulation 1a 

 

Fig. 4.5  Absolute error of position control of DC servomotor using FLBPI vs. FLC 

for simulation 1a 

The best position controller for simulation 1b is PID for conventional controller 

and FLBPID for hybrid-fuzzy controller. As a speed and position controller, PID is 

the best conventional controller and FLBPID is the best hybrid-fuzzy controller. 

Comparison on the best conventional to the best hybrid are shown in the table that 

hybrid-fuzzy controllers are better then conventional controllers in the simulation 1b. 

The graphical comparisons are shown in the Fig. 4.6 and Fig. 4.7. 
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Fig. 4.6  Position control of DC servomotor using FLBPID vs. PID for simulation 1b 

 

Fig. 4.7  Absolute error of position control of DC servomotor using FLBPID vs. PID 

for simulation 1b 

It is shown in Fig. 4.6 and Fig. 4.7 that FLBPID can reach the setpoint while PID 

has steady state error. This makes the absolute error of PID larger than FLBPID. 

The best speed controller in the simulation 2 is PI for conventional controller and 

FLIC for hybrid-fuzzy controller, and the best position controller is PID for 

conventional controller and FLIC for hybrid-fuzzy controller. As a speed and position 

controller, PI is the best conventional controller and FLIC is the best hybrid-fuzzy 

controller. Comparison on the best conventional to the best hybrid are shown in the 

table that hybrid-fuzzy controllers are better then conventional controllers in the 

simulation 2. The graphical comparisons are shown in the Fig. 4.8 to Fig. 4.11. 
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Fig. 4.8  Speed control of DC servomotor using FLIC vs. PI for simulation 2 

 

Fig. 4.9  Absolute error of speed control of DC servomotor using FLIC vs. PI for 

simulation 2 

It is shown in Fig. 4.8 and Fig. 4.9 that FLIC has the faster settling time than PI 

eventhough there is a very small overshoot. Consequently, the absolute error of FLIC 

is smaller than PI. 

It is shown in Fig. 4.10 and Fig. 4.11 that FLIC has the faster settling time than PI. 

This makes the absolute error of FLIC smaller than PI. 

The best speed controller in the simulation 3a is PI for conventional controller and 

FLBPID for hybrid-fuzzy controller, and the best position controller is PID for 

conventional controller and FLBPID for hybrid-fuzzy controller. As a speed and 

position controller, PID is the best conventional controller and FLBPID is the best 
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hybrid-fuzzy controller. Comparison on the best conventional to the best hybrid are 

shown in the table that hybrid-fuzzy controllers are better then conventional 

controllers in the simulation 3a. The graphical comparisons are shown in the          

Fig. 4.12 to Fig. 4.15. 

 

Fig. 4.10  Position control of DC servomotor using FLIC vs. PID for simulation 2 

 

Fig. 4.11  Absolute error of position control of DC servomotor using FLIC vs. PID for 

simulation 2 

Based on Fig. 4.12 and Fig. 4.13, FLBPID has the faster settling time than PI 

either unloaded or loaded eventhough there is a very small of overshoot. 

Consequently, the absolute error of FLBPID is smaller than PI. 
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Fig. 4.12  Speed control of DC servomotor using FLBPID vs. PI for simulation 3a 

 

Fig. 4.13  Absolute error of speed control of DC servomotor using FLBPID vs. PI for 

simulation 3a 

Based on Fig. 4.14 and Fig. 4.15, FLBPID has the faster settling time than PID. 

This makes the absolute error of FLBPID is smaller than PID. 

The best speed controller in the simulation 3b is PID for conventional controller 

and FLBPID for hybrid-fuzzy controller, and the best position controller is PI for 

conventional controller and FLBPID for hybrid-fuzzy controller. As a speed and 

position controller, PID is the best conventional controller and FLBPID is the best 

hybrid-fuzzy controller. Comparison on the best conventional to the best hybrid are 

shown in the table that hybrid-fuzzy controllers are better then conventional 
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controllers in the simulation 3b. The graphical comparisons are shown in the          

Fig. 4.16 to Fig. 4.19. 

 

Fig. 4.14  Position control of DC servomotor using FLBPID vs. PID for simulation 3a 

 

Fig. 4.15  Absolute error of position control of DC servomotor using FLBPID vs. PID 

for simulation 3a 

Based on Fig. 4.16 and Fig. 4.17, FLBPID has the faster settling time than PI 

eventhough the overshoot 2 of both FBPID and PID are more than 50%.. 

Consequently, the absolute error of FLBPID is smaller than PI. 

Based on Fig. 4.18 and Fig. 4.19, FLBPID has the faster settling time than PID. 

This makes the absolute error of FLBPID is smaller than PID. 
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Fig. 4.16  Speed control of DC servomotor using FLBPID vs. PID for simulation 3b 

 

Fig. 4.17  Absolute error of speed control of DC servomotor using FLBPID vs. PID 

for simulation 3b 

The best speed controller in the simulation 4a is PID for conventional controller 

and FLBPID for hybrid-fuzzy controller. As a speed and position controller, PID is 

the best conventional controller and FLBPID is the best hybrid-fuzzy controller. 

Comparison on the best conventional to the best hybrid are shown in the table that 

hybrid controllers are better than conventional controllers in the simulation 4a. The 

graphical comparisons are shown in the Fig. 4.20 and Fig. 4.21. 

Based on Fig. 4.20 and Fig. 4.21, PID has more oscillation than FLBPID. This 

makes the absolute error of PID is larger than FLBPID. 
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The best speed controller in the simulation 4b is PI for conventional controller and 

FLIC for hybrid-fuzzy controller, and the best position controller is PI for 

conventional controller and FLIC for hybrid-fuzzy controller. As a speed and position 

controller, PI is the best conventional controller and FLIC is the best hybrid 

controller. Comparison on the best conventional to the best hybrid are shown in the 

table that conventional controllers are better than hybrid-fuzzy controllers in the 

simulation 4b since the position controller of PI is much better then FLIC. The 

graphical comparisons are shown in the Fig. 4.22 to Fig. 4.25. 

 

Fig. 4.18  Position control of DC servomotor using FLBPI vs. PI for simulation 3b 

 

Fig. 4.19  Absolute error of position control of DC servomotor using FLBPI vs. PI for 

simulation 3b 
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Fig. 4.20  Speed control of DC servomotor using FLBPID vs. PID for simulation 4a 

 

Fig. 4.21  Absolute error of speed control of DC servomotor using FLBPID vs. PID 

for simulation 4a 

Based on in Fig. 4.22 and Fig. 4.23, FLIC has the faster settling time than PI 

eventhough there is a very small of overshoot. Consequently, the absolute error of 

FLIC is smaller than PI. 

Based on Fig. 4.24 and Fig. 4.25, FLIC has steady state error. This makes the 

absolute error of FLIC larger than PI. 
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Fig. 4.22  Speed control of DC servomotor using FLIC vs. PI for simulation 4b 

 

Fig. 4.23  Absolute error of speed control of DC servomotor using FLIC vs. PI for 

simulation 4b 
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Fig. 4.24  Position control of DC servomotor using FLIC vs. PI for simulation 4b 

 

Fig. 4.25  Absolute error of position control of DC servomotor using FLIC vs. PI for 

simulation 4b 

4.5.2 Simulation Results Summary of Conventional, Fuzzy, and Hybrid-Fuzzy 

Controllers 

The speed and position control simulation of hybrid-fuzzy controller compared to 

conventional and fuzzy controller has been presented. FLBPID controller is the best 

speed controller as compared to FLBPI controller, FLIC, conventional controllers and 

fuzzy controller for the simulation of Type 1a, 1b, 3a, 3b, and 4a. FLIC is the best 

speed controller as compared to FLBPI controller, FLBPID controller, conventional 
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controllers and fuzzy controller for the simulation of Type 2 and 4b. Using               

Eq.( 3 - 45 ), the best overall speed controller is FLBPID.  

In both speed and position control, FLBPID controller is the best controller as 

compared to FLBPI controller, FLIC, conventional controllers and fuzzy controller 

for the simulation of Type 1a, 1b, 3a, 3b, and 4a. FLIC is the best controller as 

compared to FLBPI controller, FLBPID controller, conventional controllers and fuzzy 

controller for the simulation of Type 2. PI controller is the best controller as compared 

to hybrid-fuzzy controllers, PID controller, and fuzzy controller for the simulation of 

Type 4b. Using  Eq.( 3 - 45 ), the best overall speed and position controller is 

FLBPID. 

It is concluded that hybrid-fuzzy controllers have the better performance than 

conventional and fuzzy controllers. Therefore, the genetic algorithm will be applied to 

optimize the parameters of hybrid-fuzzy controllers. 

4.6 Simulation results of GA and SPOGA 

The simulation was done using the method as in Section 3.6.1. There are three results 

for both GA and SPOGA: the result with minimum specifications, the result with the 

specifications in which fulfill the minimum criteria, and the result with the 

specifications in which fulfill the good criteria. 

The minimum specifications for both GA and SPOGA are as follow: 

Bit length : 40 

Population size : 30 

Number of generation : 20 

Probability of crossover : 0.9 

Probability of mutation : 0.01 and 0.1 

The result is shown in Table 4.10. 

To fulfil the minimum criteria, the number of generation is maintained to be 20 

but the population size is continuously increased by 10 until fulfil the requirements. 

The result for GA is shown in Table 4.11 and for SPOGA is shown in Table 4.12. 
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Table 4.10  Performance of GA and SPOGA with minimum specification 

NO. ITEMS 
pm = 0.01 pm = 0.1 

GA SPOGA GA SPOGA 
1 Average error (%)  2.99  2.42  2.62  2.44 

2 Accuracy (%)  82.00  96.00  95.00  98.00 

The complete results of simulation are shown in Appendix B.  

Table 4.11  Results of GA simulation for minimum criteria 

NO. 
POPULATION 

SIZE 

pm = 0.01 pm = 0.1 
AVERAGE 

ERROR (%) 

ACCURACY 

(%) 

AVERAGE 

ERROR (%) 

ACCURACY 

(%) 

1 30 2.99 82.00 2.62 95.00 

2 40 2.39 94.00 2.54 99.00 

3 50 2.00 97.00 2.45 99.00 

4 60 1.72 98.00 2.16 100.00 

5 70 1.49 99.00 2.05 100.00 

6 80 1.45 100.00 2.03 100.00 

7 90 - - 1.80 100.00 

 

Table 4.12  Results of SPOGA simulation for minimum criteria 

NO. 
POPULATION 

SIZE 

pm = 0.01 pm = 0.1 
AVERAGE 

ERROR (%) 

ACCURACY 

(%) 

AVERAGE 

ERROR (%) 

ACCURACY 

(%) 

1 30 2.42 96.00 2.44 98.00 

2 40 1.63 100.00 2.19 100.00 

3 50 - - 1.61 100.00 

 

To fulfil good criteria, the number of generation is increased until it fulfils the 

requirements using the population size in which fulfils the minimum criteria. The 

result of good criteria for GA is shown in Table 4.13 and for SPOGA is shown in 

Table 4.14. 

It is shown in Table 4.10 that in the minimum specification, SPOGA has the better 

performance than GA in which the average error is smaller and the accuracy is larger. 

To fulfil the minimum criteria, GA needs 80 population size for pm=0.01 and 90 

population size for pm=0.1 in 20 generations as shown in Table 4.11. This means that 

GA needs (80x21) or 1,680 test runs for pm=0.01 and (90x21) or 1,890 test runs for 

pm=0.1 to get the fitness values for minimum criteria. Meanwhile, SPOGA needs 40 

population size for pm=0.01 and 50 population size for pm=0.1 in 20 generations as 

shown in Table 4.12. This means that SPOGA needs (40x21) or 840 test runs for 

pm=0.01 and (50x21) or 1,050 test runs for pm=0.1 to get the fitness values for 
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minimum criteria. Therefore, SPOGA can make the reduction of (1,680-840) or 840 

test runs for pm=0.01 and (1,890-1,050) or 840 test runs for pm=0.1 for minimum 

criteria. In other words, SPOGA can reduce 50 % test runs for pm=0.01 and 44.44 % 

test runs for pm=0.1 for minimum criteria. 

Table 4.13  Results of GA simulation for good criteria 

NO. GENERATION 

pm = 0.01 (population=80) pm = 0.1 (population=90) 
AVERAGE 

ERROR (%) 

ACCURACY 

(%) 

AVERAGE 

ERROR (%) 

ACCURACY 

(%) 

1 30 0.92 92.00 1.29 82.00 

2 40 0.70 95.00 0.92 94.00 

3 50 0.66 93.00 0.92 99.00 

4 100 0.52 97.00 0.39 99.00 

5 110 0.40 100.00 - - 

6 160 - - 0.20 100.00 

 

Table 4.14  Results of SPOGA simulation for good criteria 

NO. GENERATION 

pm = 0.01 (population=40) pm = 0.1 (population=50) 
AVERAGE 

ERROR (%) 

ACCURACY 

(%) 

AVERAGE 

ERROR (%) 

ACCURACY 

(%) 

1 30 1.59 76.00 1.29 82.00 

2 40 1.43 80.00 0.92 94.00 

3 50 1.14 85.00 0.92 99.00 

4 100 1.11 94.00 0.39 99.00 

5 200 0.62 100.00 - - 

6 210 - - 0.17 100.00 

 

It is shown in Table 4.13 that to fulfil the good criteria, GA needs 110 generations 

with 80 populations for pm=0.01 and 160 generations with 90 populations for pm=0.1. 

This means that GA needs (80x111) or 8,880 test runs for pm=0.01 and (90x161) or 

14,490 test runs for pm=0.1 to get the fitness values for good criteria.  

Based on Table 4.14, to fulfil the good criteria, SPOGA needs 200 generations 

with 40 populations for pm=0.01 and 210 generations with 50 populations for pm=0.1. 

This means that SPOGA needs (40x201) or 8,040 test runs for pm=0.01 and (50x211) 

or 10,550 test runs to get the fitness values for good criteria. To say it in another way, 

SPOGA can reduce 9.46 % test runs for pm=0.01, and 27.19 % test runs for pm=0.1 for 

good criteria. 

The SPOGA is then applied to optimize the hybrid-fuzzy controllers using 

minimum criteria. Regarding the simulation with minimum criteria and based on the 
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fact that GAs work based on natural evolutions or random processes, it is noted that 

the population size is better to be set at about 4/3 x bit length. 

4.7 Process Results of SPOGA in Optimizing Controllers 

There are three hybrid controllers to be optimized by SPOGA: FLBPI, FLBPID, and 

FLIC. The performance of three controllers are to be compared for seven types of 

experiments. 

4.7.1 FLBPI 

The SPOGA optimizes the KPm in the range of [0.00, 23.50] and KIm in the range of         

[0.00, 130.00] with 12 bit length and 14 bit length respectively using the method as 

discussed in Section 3.6.1. The probability of crossover and mutation are set to be 0.9 

and 0.01 respectively. 

In the process of SPOGA, there are three conditions of generation: maximum 

duplicate chromosomes generation, maximum homogeneous chromosomes 

generation, and maximum fit chromosome generation. The maximum duplicate 

chromosomes happened in the second generation as in Table C.1. The maximum 

homogeneous chromosomes happened in the 16
th

 generation as in Table C.3. The 

maximum fit chromosome generation happened in the 17
th

 generation as in Table C.7. 

The maximum fit is the 16
th

 chromosome in the 17
th

 generation as in Table 4.15. 

The maximum duplicate chromosomes are not solution chromosomes since there 

is a possibility a local maxima condition. The generation was still going on with the 

probability of mutation 0.01 until the maximum generation, i.e. 20. After 20
th

 

generation, the maximum fit chromosome was searched and found in the 17
th

 

generation as a 16
th

 chromosome as in Table 4.15 in the generation as in Table C.7. 

Table 4.15 is a solution chromosome where by using Fig. 3.35 gives the parameters of 

FLBPI as follows: 
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KPm = 9.5492, KIm = 73.1295, and experimentally, the KPp for position controller 

is 0.97. 

Table 4.15  Maximum fit chromosome for FLBPI parameters 

0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 

 

4.7.2 FLBPID 

The SPOGA optimizes the KPm in the range of [0.00, 23.50], KDm in the range of      

[0.00, 0.20] and KIm in the range of [0.00, 110.00] with 12 bit length, 5 bit length, and 

14 bit length respectively using the method as in Section 3.6.2. The probability of 

crossover and mutation are set to be 0.9 and 0.01 respectively. 

In the process of SPOGA, there are three conditions of generation: maximum 

duplicate chromosomes generation, maximum homogeneous chromosomes 

generation, and maximum fit chromosome generation. The maximum duplicate 

chromosomes happened in the second generation as in Table C.2. The maximum 

homogeneous chromosomes happened in the 19
th

 generation as in Table C.4. The 

maximum fit chromosome generation happened in the 17
th

 generation as in          

Table C.8. The maximum fit is the 15
th

 chromosome in the 17
th

 generation as in  

Table 4.16. 

The maximum duplicate chromosomes are not solution chromosomes since there 

is a possibility of a local maxima condition. The generation was still going on with the 

probability of mutation 0.01 until getting the maximum generation, i.e. 20. After 20
th

 

generation, the maximum fit chromosome was searched and it was found in the 17
th

 

generation as a 15
th

 chromosome as in Table 4.16 in the generation as in Table C.8. 

Table 4.16 is a solution chromosome where by using Fig. 3.35 gives the parameters of 

FLBPID as follow: 

KPm = 11.7529, KDm = 0.2, and KIm = 106.5757, and experimentally, the KPp for 

position controller is 0.99. 
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Table 4.16  Maximum fit chromosome for FLBPID parameters 

1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 

 

4.7.3 FLIC 

There are two steps in optimizing FLIC and these are outlined as follow: 

i. Optimizing the membership functions and rules of FLC part 

ii. Optimizing the I/O scales of FLC part and constant of integral controller part 

4.7.3.1 Optimizing Membership Function and Rules 

The SPOGA optimizes the error membership functions, change of error membership 

functions and output membership functions which are initially 7 membership 

functions each with 7 bit length each using the method as in Section 3.6.3.1. The 

probability of crossover and mutation are set to be 0.9 and 0.01 respectively. 

In the process of SPOGA, there are two conditions of generation: maximum 

homogeneous chromosomes generation and maximum fit chromosome generation. 

The maximum homogeneous chromosomes occured in the 10
th

 generation as in   

Table C.5 since the average fit is the largest among the 20-generation. The maximum 

fit chromosome generation occured in the 11
th

 generation as in Table C.9. The 

maximum fit is the 26
th

 chromosome in the 11
th

 generation as in Table 4.17. 

Table 4.17  Maximum fit chromosome for FLC parameters in FLIC 

1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 

 

The maximum duplicate chromosomes are not solution chromosomes since there 

is a possibility of a local maxima condition. The generation was still going on with the 

probability of mutation 0.01 until the maximum generation, i.e. 20. The maximum fit 

chromosome was searched and it was found in the 11
th

 generation as a 26
th

 

chromosome as in Table 4.17 in the generation as in Table C.9. Table 4.17 is a 

solution chromosome only for FLC part of FLIC in which the results are as in        

Fig. 4.26, Fig. 4.27 and Table 4.18. This is not a final solution since the process is still 
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continued for optimization of FLC I/O scales and integral constant of integral 

controller. 

 

Fig. 4.26  Input membership functions of SPOGA-optimized FLIC: (a) Error 

membership function, (b) Change of error membership functions 

 

 

Fig. 4.27  Output membership functions SPOGA-optimized FLIC 
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Table 4.18  Rules of SPOGA-optimized FLIC 

E, 

Error 

D, Change of Error 

D1 D2 D3 D4 D5 D6 

E1 U1 U2 U2 U2 U2 U2 

E2 U2 U2 U2 U2 U2 U2 

E3 U3 U3 U3 U4 U4 U4 

E4 U3 U4 U4 U4 U4 U4 

E5 U3 U4 U4 U4 U4 U4 

 

4.7.3.2 Optimizing I/O Scales and Integral Constant 

The SPOGA optimizes the Ke in the range of [0.00, 1.50], Ku in the range of        

[0.00, 0.50], and KI in the range of [0.00, 1.00] with 8 bit length, 6 bit length, and 7 bit 

length respectively using the method as described in Section 3.6.3.2. The probability 

of crossover and mutation are set to be 0.90 and 0.01 respectively. 

In the process of SPOGA, there are two conditions of generation: maximum 

average fit generation and maximum fit chromosome generation. The maximum 

homogeneous chromosomes occured in the 3
rd

 generation as in Table C.6 since the 

average fit is the largest among the 20-generation. The maximum fit chromosome 

generation occured in the 10
th

 generation as in Table C.10. The maximum fit is the 

26
th

 chromosome in the 10
th

 generation as in Table 4.19. 

The maximum homogenous chromosomes are not solution chromosomes since 

there is a possibility of a local maxima condition. The generation keeps going with the 

probability of mutation 0.01 until the maximum generation, i.e. 20. The maximum fit 

chromosome was searched and it was found in the 10
th

 generation as a 26
th

 

chromosome as in Table 4.19 in the generation as in Table C.10. Table 4.19 is a 

solution chromosome only for I/O scales of FLC and integral constant of integral 

controller of FLIC after the membership functions and rules are optimized.  
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Using Fig. 3.35 the I/O scales of FLC and integral constant of integral controllers 

are as follow: 

Ke = 1.50, Ku = 0.00; KI = 0.54, and experimentally, the KPp for position controller is 

0.69. 

This means that the result is an integral controller only. As shown in Table C.5 and 

Table C.6, comparing with Table C.1 and Table C.2, the homogenous chromosomes 

in FLIC are not as good as in FLBPI and FLBPID. It is predicted that the result of 

SPOGA-optimized FLIC will not be as good as the result of SPOGA-optimized 

FLBPI and FLBPID.  

Table 4.19  Maximum fit chromosome for I/O scales and integral constant  in FLIC 

1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 

4.8 Simulation of SPOGA Optimized Controllers 

There are three types of controllers in the simulation: SPOGA-FLBPI controller, 

SPOGA-FLPID controller, and SPOGA-FLIC. This simulation was done with the 

controllers having their parameters optimized using SPOGA. 

There are seven types of simulation as explained in Section 3.7 which are 

summarized in Table 4.2. 

4.8.1 Results and Discussions on SPOGA Optimized Controllers 

The comparison on the effectiveness of implementing SPOGA optimized hybrid-

fuzzy controllers for simulation experiment based on the second order underdamped 

response analysis is presented in Table 4.20, the comparison based on error analysis is 

presented in Table 4.21, and the comparison based on fitness value analysis is 

presented in Table 4.22. 

It is shown in Table 4.20, Table 4.21, and Table 4.22 that the best overshoot, 

settling time and fitness value for the first 8-second starting speed based on ITAEvp 

(fvp) is SPOGA-FLBPI controller for speed control in the simulation 1a. The total 
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fitness value for speed control (fitv) is obtained based on the overshoot, settling time, 

and ITAEvp and the best is the SPOGA-FLBPI controller.  

Table 4.20  Simulation results of SPOGA optimized hybrid-fuzzy controllers based on 

second order underdamped response analysis 

Type PERFORMANCE ITEM 

Controllers 

SPOGA-

FLBPI 

SPOGA-

FLBPID 

SPOGA-

FLIC 

1a 

Overshoot (%OS, %)  1.88  3.41  27.31 

Settling time (ts, sec)  0.80  1.80  4.31 

SSEP (%Sp, %)  0.08  0.08  0.12 

1b SSEP (%Sp)  0.08  0.08  0.04 

2 

Overshoot (%OS, %)  6.07  8.26  6.03 

Settling time (ts, sec)  1.88  2.35  3.31 

SSEP (%Sp, %)  0.06  0.06  0.00 

3a 

Overshoot (%OS, %)  5.64  8.16  8.32 

Settling time (ts, sec)  1.87  2.34  3.14 

Undershoot (%US, %)  40.00  40.00  40.00 

SSEP (%Sp, %)  0.05  0.07  0.34 

3b 

Overshoot (%OS, %)  0.67  1.30  0.28 

Settling time (ts, sec)  1.70  1.39  3.18 

Overshoot 2 (%OS2, %)  66.67  66.67  66.67 

SSEP (%Sp, %)  0.07  0.07  0.06 

4b 

Overshoot (%OS, %)  6.07  8.26  6.03 

Settling time (ts, sec)  1.88  2.35  3.31 

SSEP (%Sp, %)  0.07  0.07  0.06 

SSEP: Steady State Error of Position 
 

Table 4.21  Simulation results of SPOGA optimized hybrid-fuzzy controllers based on 

error analysis 

Type PERFORMANCE ITEM 

Controller 

SPOGA-

FLBPI 

SPOGA-

FLBPID 

SPOGA-

FLIC 

1a 
ITAEvp  2.20E+01  2.25E+01  1.36E+02 

ITAEp  5.94E+03  5.93E+03  5.99E+03 

1b ITAEp  4.45E+00  4.46E+00  4.82E+00 

2 
ITAEvp  7.76E+01  7.01E+01  2.30E+02 

ITAEp  3.78E+02  3.74E+02  3.90E+02 

3a 

ITAEvp  6.60E+01  6.29E+01  2.00E+02 

ITAEvl  9.77E+02  8.55E+02  1.94E+03 

ITAEp  1.30E+03  1.29E+03  1.40E+03 

3b 

ITAEvp  9.61E+01  7.49E+01  3.32E+02 

ITAEvl  1.25E+03  1.20E+03  2.46E+03 

ITAEp  1.28E+03  1.27E+03  1.33E+03 

4a IAEv  6.59E+02  6.14E+02  1.30E+03 

4b 
ITAEvp  7.76E+01  7.01E+01  2.30E+02 

ITAEp  1.80E+03  1.78E+03  1.89E+03 

ITAEvp : Integral of time absolute value of error for the first 8 sec; ITAEp : ITAE for position, ITAEvl : 
ITAE for the 9-sec start loading speed; IAEv : Integral of absolute value of error for overall 90 sec. 

 
 



148 

Table 4.22  Simulation results of SPOGA optimized hybrid-fuzzy controllers based on 

fitness value analysis 

Type PERFORMANCE ITEM 

Controller 

SPOGA-

FLBPI 

SPOGA-

FLBPID 

SPOGA-

FLIC 

1a 

fvp  0.50  0.50  0.00 

fp  0.46  0.54  0.00 

fitv  0.53  0.47  0.00 

fitp  0.49  0.51  0.00 

fit1a  0.52  0.48  0.00 

1b 

fp  0.51  0.49  0.00 

fitp  0.28  0.25  0.48 

fit1b  0.28  0.25  0.48 

2 

fvp  0.49  0.51  0.00 

fp  0.43  0.57  0.00 

fitv  0.53  0.30  0.17 

fitp  0.25  0.29  0.46 

fit2  0.43  0.30  0.27 

3a 

fvp  0.49  0.51  0.00 

fvpl  0.47  0.53  0.00 

fp  0.48  0.52  0.00 

fitv  0.63  0.37  0.00 

fitp  0.50  0.50  0.00 

fit3a  0.59  0.41  0.00 

3b 

fvp  0.48  0.52  0.00 

fvpl  0.00  0.00  0.00 

fp  0.48  0.52  0.00 

fitv  0.33  0.27  0.15 

fitp  0.36  0.26  0.39 

fit3b  0.34  0.26  0.23 

4a 

fv  0.48  0.52  0.00 

fitv  0.48  0.52  0.00 

fit4a  0.48  0.52  0.00 

4b 

fvp  0.49  0.51  0.00 

fp  0.45  0.55  0.00 

fitv  0.53  0.30  0.17 

fitp  0.32  0.27  0.41 

fit4b  0.46  0.29  0.25 

fvp : Fitness value for the first 8-sec starting speed based on ITAEvp; fp : Fitness value for position based 
on ITAEp; fvpl : Fitness value for the 9-sec start loading speed (from 14 to 23 sec) based on ITAEvpl; fv: 

Fitness value for overall 90 sec of speed based on IAEv; fitv : Total fitness value for speed control; fitp : 
Total fitness value for position control; fitx : Total fitness value for speed and position control in the 

experiment of Type x 
 

In the position control, the best SSEP is SPOGA-FLBPI controller, but the best 

fitness value based on ITAEp (fp) is SPOGA-FLBPID. The total fitness value for 

position control (fitp) is obtained based on the SSEP and ITAEp , and the best is the 

SPOGA-FLBPID controller. 
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The best total fitness value for speed and position control in the simulation 1a (f1a) 

is SPOGA-FLBPI controller. Therefore, SPOGA-FLBPI is the best hybrid-fuzzy 

controller in the simulation 1a (extreme condition). 

The simulation 1b presents the position performance since it is in the extreme 

condition with maximum speed and minimum position. The best SSEP and fitness 

value based on ITAEp (fp) is SPOGA-FLBPI. The best total fitness value for position 

control (fitp) is obtained based on the SSEP and ITAEp , and the best is the SPOGA-

FLBPI. 

The best total fitness value for speed and position control in the simulation 1b (f1b) 

is SPOGA-FLBPI. Therefore, SPOGA-FLBPI is the best hybrid-fuzzy controller in 

the simulation 1b (extreme condition). 

The best overshoot and settling time for speed control in the simulation 2 is 

SPOGA-FLBPI but the best fitness value for the first 8-second starting speed based 

on ITAEvp (fvp) is SPOGA-FLBPID. The total fitness value for speed control (fitv) is 

obtained based on the overshoot, settling time, and ITAEvp and the best is the SPOGA-

FLBPI. 

In the position control, the best SSEP is SPOGA-FLIC but the best fitness value 

based on ITAEp (fp) is SPOGA-FLBPID controller. The total fitness value for position 

control (fitp) is obtained based on the SSEP and ITAEp , and the best is the SPOGA-

FLBPID. 

The best total fitness value for speed and position control in the simulation 2 (f2) 

is SPOGA-FLBPI. Therefore, SPOGA-FLBPI is the best hybrid-fuzzy controller in 

the simulation 2 (moderate condition). 

The best overshoot and settling time for speed control in the simulation 3a is 

SPOGA-FLBPI controller, but the best fitness value for the first 8-second starting 

speed based on ITAEvp (fvp) is SPOGA-FLBPID. The total fitness value for speed 

control (fitv) is obtained based on the overshoot, settling time, undershoot, ITAEvpl and 

ITAEvp and the best is the SPOGA-FLBPI controller. When start loading, the 

undershoot is the same for all controllers. 
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In the position control, the best SSEP is SPOGA-FLBPI controller and the best 

fitness value based on ITAEp (fp) is SPOGA-FLBPID controller. The total fitness 

value for position control (fitp) is obtained based on the SSEP and ITAEp , and the best 

is the SPOGA-FLBPID controller. 

The best total fitness value for speed and position control in the simulation 3a (f3a) 

is SPOGA-FLBPI controller. Therefore, SPOGA-FLBPI is the best hybrid-fuzzy 

controller in the simulation 3a (variable load condition) 

The best overshoot for speed control in the simulation 3b is SPOGA-FLBPI but 

the settling time and the fitness value for the first 8-second starting speed based on 

ITAEvp (fvp) is SPOGA-FLBPID controller. The total fitness value for speed control 

(fitv) is obtained based on the overshoot, settling time, overshoot 2, ITAEvpl and 

ITAEvp and the best is SPOGA-FLBPI controller. All of the overshoot 2 when start 

unloading are more than 50%. Consequently, the fitness value for 9-sec start 

unloading speed based on ITAEvpl (fvpl) are zero. 

In the position control, the best SSEP is SPOGA-FLIC but the best fitness value 

based on ITAEp (fp) is SPOGA-FLBPID controller. The total fitness value for position 

control (fitp) is obtained based on the SSEP and ITAEp , and the best is the SPOGA-

FLIC. 

The best total fitness value for speed and position control in the simulation 3b (f3b) 

is SPOGA-FLBPI controller. Therefore, SPOGA-FLBPI is the best hybrid-fuzzy 

controller in the simulation 3b (variable load condition) 

The simulation 4a presents the speed performance without overshoot and settling 

time since it is in the variations of speed set point. The best fitness value based on 

IAEv (fv) is SPOGA-FLBPID controller. The best total fitness value for speed control 

(fitv) is obtained based on the IAEv only, and the best is the SPOGA-FLBPID 

controller. 

The best total fitness value for speed and position control in the simulation 4a (f4a) 

is SPOGA-FLBPID controller. Therefore, SPOGA-FLBPID is the best hybrid 

controller in the simulation 4a (variable set point condition). 
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The best overshoot for speed control in the simulation 4b is SPOGA-FLIC. The 

best settling time is SPOGA-FLBPI controller, and the best fitness value for the first 

8-second starting speed based on ITAEvp (fvp) is SPOGA-FLBPID controller. The total 

fitness value for speed control (fitv) is obtained based on the overshoot, settling time, 

and ITAEvp and the best is the SPOGA-FLBPI controller.  

In the position control, the best SSEP is SPOGA-FLIC but the best fitness value 

based on ITAEp (fp) is SPOGA-FLBPID. The total fitness value for position control 

(fitp) is obtained based on the SSEP and ITAEp , and the best is the SPOGA-FLBPI. 

The best total fitness value for speed and position control in the simulation 4b (f4b) 

is SPOGA-FLBPI. Therefore, SPOGA-FLBPI is the best hybrid controller in the 

simulation 4b (variable set point condition). 

4.8.2 Simulation Results Summary of SPOGA-Hybrid-Fuzzy Controllers 

The speed and position control simulation of SPOGA optimized hybrid-fuzzy 

controller has been presented. SPOGA-FLBPI controller is the best speed controller 

as compared to SPOGA-FLBPID controller and SPOGA-FLIC for simulation of Type 

1a, 2, 3a, 3b, and 4b. SPOGA-FLBPID controller is the best speed controller as 

compared to SPOGA-FLBPI controller and SPOGA-FLIC for simulation of Type 4a. 

Using Eq. ( 3 - 45 ), the best overall speed controller is SPOGA-FLBPI as compared 

to SPOGA-FLBPID and SPOGA-FLIC.  

In both speed and position control, SPOGA-FLBPI controller is the best speed 

controller as compared to SPOGA-FLBPID controller and SPOGA-FLIC for 

simulation of Type 1a, 2, 3a, 3b, and 4b. SPOGA-FLBPID controller is the best speed 

controller as compared to SPOGA-FLBPI controller and SPOGA-FLIC for simulation 

of Type 4a. SPOGA-FLIC is the best controller as compared to SPOGA-FLBPI 

controller and SPOGA-FLBPID controller for simulation of Type 1b. Using             

Eq. ( 3 - 45 ), the best overall speed and position controller is SPOGA-FLBPI as 

compared to SPOGA-FLBPID and SPOGA-FLIC. 
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4.9 Performance Comparisons of SPOGA to non-SPOGA Controllers 

This section presents the performance improvements of non-SPOGA hybrid-fuzzy 

controllers and SPOGA optimized hybrid-fuzzy controllers based on the fitness values 

where the performance items are based on Table 4.6 to Table 4.8 and Table 4.20 to 

Table 4.22. 

There are seven types of simulation as explained in Section 3.7 which are 

summarized in Table 4.2. 

The graphs of input-output characteristic of speed error, position error,  speed, and 

position between the best improvement of SPOGA optimized hybrid controllers and 

the corresponding hybrid controllers are presented in the section for each simulation 

type. 

4.9.1 Comparison of SPOGA Optimized and Non-SPOGA Optimized 

Controllers 

The comparison on the improvement of SPOGA optimized and non-SPOGA hybrid 

controllers based on the performance metrics for simulation experiment is presented 

in Table 4.23 where the performance items are based on Table 4.8 and Table 4.22. 

It is shown in Table 4.23 that SPOGA-FLBPI makes the best fit improvement in 

the simulation 1a for speed control. This means that SPOGA-FLBPI makes the best fit 

improvement in the simulation 1a. The best position controller is SPOGA-FLBPID 

but it is not optimized by SPOGA. The improvement of SPOGA-FLIC is less than 

zero, this means that the SPOGA-FLIC cannot make improvement in the simulation 

1a. The graphical comparisons of SPOGA-FLBPI to FLBPI are shown in Fig. 4.28 

and Fig. 4.29. 

It is shown in Fig. 4.28 and Fig. 4.29 that SPOGA-FLBPI has no overshoot and 

the settling time is faster than FLBPI. This makes the absolute error of SPOGA-

FLBPI is smaller than FLBPI. 
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In the simulation 1b, SPOGA-FLIC has the best fit for position control but the 

SPOGA is not optimize the position controller. This means that SPOGA-FLIC does 

not make improvement in the simulation 1b. 

Table 4.23  Performance improvement comparison of SPOGA optimized and non-

SPOGA hybrid-fuzzy controllers for simulation experiment 

Type 
PERFORMANCE 

ITEMS 

Controller 

FLBPI 
SPOGA-

FLBPI 
FLBPID 

SPOGA-

FLBPID 
FLIC 

SPOGA-

FLIC 

1a 

fitv 0.14 0.27 0.22 0.24 0.13 0.00 

fitp 0.24 0.21 0.17 0.22 0.17 0.00 

fit 0.17 0.25 0.21 0.23 0.15 0.00 

Ipv1a  0.13  0.01  -0.13 

1b 

fitv - - - - - - 

fitp 0.15 0.13 0.16 0.11 0.15 0.31 

fit 0.15 0.13 0.16 0.11 0.15 0.31 

Ipv1b  -  -  - 

2 

fitv 0.10 0.19 0.24 0.13 0.28 0.05 

fitp 0.18 0.11 0.16 0.12 0.22 0.20 

fit 0.12 0.16 0.22 0.13 0.26 0.10 

Ipv2  0.09  -0.11  -0.23 

3a 

fitv 0.13 0.22 0.27 0.16 0.22 0.00 

fitp 0.20 0.20 0.21 0.20 0.20 0.00 

fit 0.15 0.21 0.25 0.17 0.22 0.00 

Ipv3a  0.10  -0.11  -0.22 

3b 

fitv 0.11 0.12 0.12 0.12 0.10 0.06 

fitp 0.14 0.13 0.12 0.13 0.11 0.04 

fit 0.12 0.13 0.12 0.12 0.11 0.05 

Ipv3b  0.01  -0.00  -0.04 

4a 

fitv 0.20 0.22 0.22 0.23 0.13 0.00 

fitp - - - - - - 

fit 0.20 0.22 0.22 0.23 0.13 0.00 

Ipv4a  0.02  0.02  -0.13 

4b 

fitv 0.10 0.19 0.24 0.13 0.28 0.05 

fitp 0.15 0.15 0.16 0.12 0.20 0.22 

fit 0.12 0.18 0.21 0.13 0.26 0.11 

Ipv4b  0.09  -0.11  -0.23 

 

SPOGA-FLBPI makes the best fit improvement in the simulation 2. The 

improvement of SPOGA-FLBPID and SPOGA-FLIC are less than zero, this means 

that both SPOGA-FLBPID and SPOGA-FLIC cannot make improvement in the 

simulation 2. The graphical comparisons of SPOGA-FLBPI to FLBPI are shown in 

Fig. 4.30 and Fig. 4.31. 
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Fig. 4.28  Step response of speed control of DC servomotor using SPOGA-FLBPI vs. 

FLBPI for simulation 1a (see Fig. D.1) 

 

Fig. 4.29  Absolute error of speed control of DC servomotor using SPOGA-FLBPI vs. 

FLBPI for simulation 1a 

It shown in the Fig. 4.30 and Fig. 4.31 that SPOGA-FLBPI has smaller overshoot 

than FLBPI. This makes the absolute error of SPOGA-FLBPI smaller than FLBPI. 

SPOGA-FLBPI makes the best fit improvement in the simulation 3a. The 

improvement of SPOGA-FLBPID and SPOGA-FLIC are less than zero, this means 

that both SPOGA-FLBPID and SPOGA-FLIC cannot make improvement in the 

simulation 3a. The graphical comparisons of SPOGA-FLBPI to FLBPI are shown in 

Fig. 4.32 and Fig. 4.33. 
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Fig. 4.30  Step response of speed control of DC servomotor using SPOGA-FLBPI vs. 

FLBPI for simulation 2 (see Fig. D.2) 

 

Fig. 4.31  Absolute error of speed control of DC servomotor using SPOGA-FLBPI vs. 

FLBPI for simulation 2 

It shown in the Fig. 4.32 and Fig. 4.33 that SPOGA-FLBPI has smaller overshoot 

than FLBPI. This makes the absolute error of SPOGA-FLBPI smaller than FLBPI. 

SPOGA-FLBPI makes the best fit improv`ement in the simulation 3b. The 

improvement of SPOGA-FLBPID and SPOGA-FLIC are less than zero, this means 

that SPOGA-FLBPID and SPOGA-FLIC cannot make improvement in the simulation 

3b. The graphical comparisons of SPOGA-FLBPI to FLBPI are shown in Fig. 4.34 

and Fig. 4.35. 
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Fig. 4.32  Step response of speed control of DC servomotor using SPOGA-FLBPI vs. 

FLBPI for simulation 3a (see Fig. D.3) 

 

Fig. 4.33  Absolute error of speed control of DC servomotor using SPOGA-FLBPI vs. 

FLBPI for simulation 3a 

 

It shown in the Fig. 4.34 and Fig. 4.35 that SPOGA-FLBPI has smaller overshoot 

than FLBPI. On the breaking process SPOGA-FLBPI stops faster than FLBPI. This 

makes the absolute error of SPOGA-FLBPI smaller than FLBPI eventhough on the 

start unloading both SPOGA-FLBPI and FLBPI have overshoot more than 50 %. 

SPOGA-FLBPI makes the best fit improvement in the simulation 4a. The 

improvement of SPOGA-FLIC is less than zero, this means that SPOGA-FLIC is 
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cannot make improvement in the simulation 4a. The graphical comparisons of 

SPOGA-FLBPI to FLBPI are shown in Fig. 4.36 and Fig. 4.37. 

 

Fig. 4.34  Step response of speed control of DC servomotor using SPOGA-FLBPI vs. 

FLBPI for simulation 3b (see Fig. D.4) 

 

Fig. 4.35  Absolute error of speed control of DC servomotor using SPOGA-FLBPI vs. 

FLBPI for simulation 3b 

 

It shown in the Fig. 4.36 and Fig. 4.37 that SPOGA-FLBPI has smaller overshoot 

than FLBPI. This makes the absolute error of SPOGA-FLBPI smaller than FLBPI. 

SPOGA-FLBPI makes the best fit improvement in the simulation 4b. The 

improvement of SPOGA-FLBPID and SPOGA-FLIC are less than zero, this means 

that both SPOGA-FLBPID and SPOGA-FLIC cannot any improvement in the 



158 

simulation 4b. The graphical comparisons of SPOGA-FLBPI to FLBPI are shown in 

Fig. 4.38 to Fig. 4.40. 

 

Fig. 4.36  Speed control of DC servomotor using SPOGA-FLBPI vs. FLBPI for 

simulation 4a 

 

Fig. 4.37  Absolute error of speed control of DC servomotor using SPOGA-FLBPI vs. 

FLBPI for simulation 4a 

 

It shown in the Fig. 4.38 and Fig. 4.39 that SPOGA-FLBPI has smaller overshoot 

than FLBPI. This makes the absolute error of SPOGA-FLBPI smaller than FLBPI. 

It is shown in Fig. 4.40 that SPOGA-FLBPI is similar to FLBPI. This means that 

SPOGA-FLBPI does not make any improvement in position control, but the SPOGA 

is for optimizing the speed controller only. 
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Fig. 4.38  Step response of speed control of DC servomotor using SPOGA-FLBPI vs. 

FLBPI for simulation 4b (see Fig. D.5) 

 

Fig. 4.39  Absolute error of speed control of DC servomotor using SPOGA-FLBPI vs. 

FLBPI for simulation 4b 
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Fig. 4.40  Position control of DC servomotor using SPOGA-FLBPI vs. FLPI for 

simulation 4b 

4.9.2 Simulation Results Summary of SPOGA Optimized and non-SPOGA 

Optimized Hybrid-Fuzzy Controllers 

The improvement tests of SPOGA optimized hybrid-fuzzy to non-SPOGA optimized 

hybrid-fuzzy controllers have been presented. It was shown that the SPOGA-FLBPI 

can make fit improvement in all of the simulation types. SPOGA-FLBPID can make 

improvement in the simulation of Type 1a, and 4a, and cannot make improvement in 

the simulation of Type 2, 3a, 3b and 4b. SPOGA-FLIC cannot make improvement in 

all of the simulation types.  

The simulation results show that the best total improvement of speed control is 

SPOGA-FLBPI based on Eq. ( 3 - 47 ). This means that the SPOGA can optimize the 

parameters of FLBPI successfully.  

4.10 Summary 

This Chapter has presented the simulation of speed and position controllers using 

conventional controllers (PI and PID controllers), FLC, and hybrid-fuzzy controllers 

(FLBPI, FLBPID, and FLIC) based on the result of s-modeling the DC servomotor.  
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The simulation results show that hybrid controllers have the better performance 

than conventional controllers and FLC alone has not been as good performance as 

conventional and hybrid controllers. Therefore, the GA/SPOGA is applied to optimize 

the hybrid-fuzzy controllers to make a significant improvement to the conventional 

controllers. 

The simulation results of GA and SPOGA show that to fulfil the minimum 

criteria, SPOGA can reduce 50% test runs for pm=0.01 and 44.44 % test runs for 

pm=0.1. To fulfil the good criteria, SPOGA can reduce 9.46 % test runs for pm=0.01 

and 27.19 % test runs for pm=0.1. Therefore, SPOGA is selected to optimize the 

hybrid-fuzzy controllers using minimum criteria. 

Simulation results of SPOGA optimized hybrid-fuzzy controllers show that 

SPOGA can optimize the parameters of FLBPI successfully, and the comparison to 

the conventional controllers will be presented in Chapter 5.. 



 

CHAPTER 5 

REAL-TIME IMPLEMENTATION RESULTS AND DISCUSSIONS 

5.1 Introduction 

The simulation design of controllers and algorithms have been presented in Chapter 3. 

The results of s-modelling, GA and SPOGA experiments, and simulations of speed 

and position control have been presented in Chapter 4. The results of real-time 

implementation on hardware experimental rig will be presented in this chapter. 

The simulation results show that hybrid-fuzzy controllers have the better 

performance than conventional controllers and FLC has not as good performance as 

conventional and hybrid-fuzzy controllers. The simulation results of SPOGA 

optimized hybrid-fuzzy controllers show that SPOGA can optimize the parameters of 

FLBPI successfully, and the comparison to the conventional controllers will be 

presented in this chapter. 

Experiment of sampling period and FIR is conducted to find the appropriate 

sampling period and the number of points in FIR based on the computer system and 

the open loop characteristic of the plant. The experiment determines whether the 

computer based controller can be applied to the hardware or not and determines the 

appropriate number of points in FIR. 

Based on the experiment of sampling period and FIR, the hardware experiment is 

continued to the experiment of conventional, fuzzy, and hybrid PID-fuzzy controllers 

using the parameters as in the Chapter 4. The performance evaluations are used as in 

the Chapter 4 with the 5 % criteria for settling time and steady state error. The 

experiment results are then compared with the simulation results to test the result of s-

modeling of the DC servomotor.  
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The parameters of SPOGA optimized hybrid-fuzzy controllers in the Chapter 4 

are applied to the hardware experiment rig and the results are compared with the 

simulation results. The performance of SPOGA optimized hybrid-fuzzy controllers 

are then compared graphically with non-SPOGA optimized hybrid-fuzzy controllers 

to get the improvement value. Finally, the SPOGA optimized hybrid-fuzzy controllers 

are compared graphically with the conventional and fuzzy controller to determine 

how much the SPOGA optimized hybrid-fuzzy controllers can improve the 

performance of a controller. 

5.2 Experiment on Sampling Period and FIR 

The hardware design was explained in Section 3.2 of Chapter 3. This section shows 

the experiment result of determining the sampling period and the appropriate number 

of points of FIR.  

Experiment of sampling period is conducted to get the minimum sampling period 

that the computer system can handle the hardware and to calibrate between the 

SIMULINK time and the real time. The experiment result is shown in Table 5. 1. 

Table 5. 1  Experiment result of sampling period 

SAMPLING 

PERIOD  

(sec) 

SIMULINK 

TIME 

(sec) 

REAL TIME 

(sec) 

PLANT TIME 

CONSTANT 

(sec) 

REMARKS 

0.100 100.00 100.89 

0.50 

Too long 

0.010 100.00 101.60 
Fulfil the 

requirement 

0.001 100.000 - 
Error/Stop 

responding 

 

Based on Table 5. 1, the sampling period of 0.01 sec can fulfil the requirement 

regarding to the open loop time constant of DC servomotor which is 0.5 sec, where 

the maximum sampling period is 
0.5

10
= 0.05 sec. Using this sampling period, the 

difference between real time and SIMULINK time is 1.6 sec, or the real time is 

delayed 1.6 sec. 



 

164 

Experiment of FIR is conducted to get the appropriate number of points (N) of 

FIR in which the output has the maximum deviation with respect to noise less than 2 

% and the time constant of the process value is not too long. Comparison between 25-

point FIR and 30-point FIR gives the result as in Table 5.2 

Table 5.2  Comparison between 25-point FIR and 30-point FIR 

Item 25-point FIR 30-point FIR 
 Maximum deviation  2.20  1.87 

 Time constant of process value  0.62  0.66 

 

Based on Table 5.2, the 30-point FIR has the maximum deviation less than 2 %. 

Increasing the number of point of FIR will make the time constant of process value 

longer. 

5.3 Experiments of Conventional and Fuzzy Logic Controllers 

There are three types of controllers in this hardware experiment: (1) PI controller, (2) 

PID controller, and (3) Fuzzy logic controller. The experiment was done as a 

comparison with the simulation results for the same controllers. 

The parameters of PI and PID controller and the related position controller are the 

same as in the simulaton experiment of PI and PID controller as described in Section 

4.3. The membership functions and rules of FLC for both speed and position 

controller and the position constant are the same as in the simulation experiment of 

FLC as described in Section 4.3. 

The seven types of hardware experiment similar to as explained in Section 3.7 are 

going to be conducted. These are classified into four conditions, i.e.: 

i. Extreme condition, namely Experiment 1a and 1b 

ii. Moderate condition, namely Experiment 2 

iii. Variable load condition, namely Experiment 3a and 3b 

iv. Variable set point condition, namely Experiment 4a and 4b 

The types of experiment are summarized in Table 5.3. 
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For convenience, Table 4.2 is adopted here and is presented as Table 5.3 that 

suumarize the type of experiments to be conducted. 

Table 5.3  Types of experiment 

Type Experiment Condition Specifications 

1a Extreme a 

Set point of speed (rpm)  150.00 

Set point of position (rad)  6.00 

Loaded No 

1b Extreme b 

Set point of speed (rpm)  400.00 

Set point of position (rad)  0.50 

Loaded No 

2 Moderate 

Set point of speed (rpm)  275.00 

Set point of position (rad)  3.50 

Loaded No 

3a Variable load a 

Set point of speed (rpm)  250.00 

Set point of position (rad)  5.00 

Loaded After 15 sec 

3b Variable load b 

Set point of speed (rpm)  250.00 

Set point of position (rad)  5.00 

Loaded Up to 15 sec 

4a Variable set point a 

Set point of speed (rpm) variable [0.00, 400.00] 

Set point of position (rad) - 

Loaded No 

4b Variable set point b 

Set point of speed (rpm)  275.00 

Set point of position (rad) 2 (up to 45 sec), 5 (after 45 sec) 

Loaded No 

5.3.1 Results for Conventional and Fuzzy Logic Controllers in Real-time 

Implementation 

The comparison on the effectiveness of implementing conventional and fuzzy logic 

controllers for hardware experiment based on the second order underdamped response 

analysis is presented in Table 5.4, the comparison based on error analysis is presented 

in Table 5.5, and the comparison based on fitness value analysis is presented in    

Table 5.6. 

It is shown in Table 5.4, Table 5.5, and Table 5.6 that the best overshoot and 

settling time in the experiment 1a for speed control is PI controller, but the best fitness 

value for the first 8-second starting speed based on ITAEvp (fvp) is PID controller. The 

total fitness value for speed control (fitv) is obtained based on the overshoot, settling 

time, and ITAEvp and the best is the PI controller.  
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In the position control, the best SSEP is PI controller, but the best fitness value 

based on ITAEp (fp) is PID controller. The total fitness value for position control (fitp) 

is obtained based on the SSEP and ITAEp , and the best is the PID controller. 

Table 5.4  Experiment results of conventional and fuzzy logic controllers based on 

second order underdamped response analysis 

Type PERFORMANCE ITEM 
Controller 

PI PID FLC 

1a 

Overshoot (%OS, %)  0.50  23.04  18.84 

Settling time (ts, sec)  3.53  3.82  9.91 

SSEP (%Sp, %)  0.17  0.20  0.42 

1b SSEP (%Sp)  23.05  13.15  144.59 

2 

Overshoot (%OS, %)  1.44  2.20  14.57 

Settling time (ts, sec)  4.06  2.70  6.02 

SSEP (%Sp, %)  0.09  0.08  0.90 

3a 

Overshoot (%OS, %)  0.84  4.42  12.85 

Settling time (ts, sec)  4.03  6.96  7.70 

Undershoot (%US, %)  35.04  33.42  41.83 

SSEP (%Sp, %)  0.46  0.03  0.72 

3b 

Overshoot (%OS, %)  0.00  1.74  4.12 

Settling time (ts, sec)  5.42  3.47  6.14 

Overshoot 2 (%OS2, %)  46.66  51.63  63.59 

SSEP (%Sp, %)  0.00  0.03  0.59 

4b 

Overshoot (%OS, %)  0.00  2.49  11.57 

Settling time (ts, sec)  3.52  2.40  5.33 

SSEP (%Sp, %)  0.07  0.09  0.15 

SSEP: Steady State Error of Position 

Table 5.5  Experiment results of conventional and fuzzy logic controllers based on 

error analysis 

Type PERFORMANCE ITEM 
Controller 

PI PID FLC 

1a 
ITAEvp  1.22E+02  1.03E+02  2.21E+02 

ITAEp  6.02E+03  5.96E+03  6.05E+03 

1b ITAEp  4.67E+02  2.67E+02  2.91E+03 

2 
ITAEvp  2.27E+02  1.22E+02  4.55E+02 

ITAEp  3.92E+02  3.79E+02  5.31E+02 

3a 

ITAEvp  2.38E+02  1.45E+02  3.69E+02 

ITAEvl  2.04E+03  1.60E+03  2.42E+03 

ITAEp  1.41E+03  1.34E+03  1.55E+03 

3b 

ITAEvp  1.51E+03  1.63E+03  2.18E+03 

ITAEvl  2.17E+03  1.55E+03  4.24E+03 

ITAEp  1.32E+03  1.30E+03  1.47E+03 

4a IAEv  1.14E+03  8.86E+02  2.30E+03 

4b 
ITAEvp  2.52E+02  1.27E+02  4.42E+02 

ITAEp  1.84E+03  1.81E+03  1.93E+03 

ITAEvp : Integral of time absolute value of error for the first 8 sec; ITAEp : ITAE for position, ITAEvl : 
ITAE for the 9-sec start loading speed; IAEv : integral of absolute value of error for overall 90 sec. 
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The best total fitness value for speed and position control in the experiment 1a 

(f1a) is PI controller. Therefore, PI is the best conventional controller in the 

experiment 1a which is better than FLC.  

Comparing with the simulation results, the performance is not exactly the same 

but the best controller with the best total fitness value for speed and position control is 

the same.  

Table 5.6  Experiment results of conventional and fuzzy logic controllers based on 

fitness value analysis 

Type PERFORMANCE ITEM 
Controller 

PI PID FLC 

1a 

fvp  0.46  0.54  0.00 

fp  0.27  0.73  0.00 

fitv  0.60  0.34  0.05 

fitp  0.40  0.60  0.00 

fit1a  0.54  0.43  0.03 

1b 

fp  0.48  0.52  0.00 

fitp  0.48  0.52  0.00 

fit1b  0.48  0.52  0.00 

2 

fvp  0.41  0.59  0.00 

fp  0.48  0.52  0.00 

fitv  0.43  0.57  0.00 

fitp  0.49  0.51  0.00 

fit2  0.45  0.55  0.00 

3a 

fvp  0.37  0.63  0.00 

fvpl  0.32  0.68  0.00 

fp  0.39  0.61  0.00 

fitv  0.37  0.63  0.00 

fitp  0.32  0.68  0.00 

fit3a  0.39  0.61  0.00 

3b 

fvp  0.31  0.69  0.00 

fvpl  0.43  0.00  0.00 

fp  0.46  0.54  0.00 

fitv  0.40  0.46  0.00 

fitp  0.49  0.51  0.00 

fit3b  0.43  0.48  0.00 

4a 

fv  0.45  0.55  0.00 

fitv  0.45  0.55  0.00 

fit4a  0.45  0.55  0.00 

4b 

fvp  0.38  0.62  0.00 

fp  0.43  0.57  0.00 

fitv  0.44  0.56  0.00 

fitp  0.51  0.49  0.00 

fit4b  0.46  0.54  0.00 

fvp : Fitness value for the first 8-sec starting speed based on ITAEvp; fp : Fitness value for position based 
on ITAEp; fvpl : Fitness value for the 9-sec start loading speed (from 14 to 23 sec) based on ITAEvpl; fv: 

Fitness value for overall 90 sec of speed based on IAEv; fitv : Total fitness value for speed control; fitp : 
Total fitness value for position control; fitx : Total fitness value for speed and position control in the 

experiment of Type x 
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The experiment 1b presents the position performance since it is in the extreme 

condition with maximum speed and minimum position. The best SSEP and the best 

fitness value based on ITAEp (fp) is PID controller. The best total fitness value for 

position control (fitp) is obtained based on the SSEP and ITAEp , and the best is the 

PID controller. 

The best total fitness value for speed and position control in the experiment 1b 

(f1b) is PID controller. Therefore, PID is the best conventional controller in the 

experiment 1b which is better than FLC, as in the simulation experiment. 

The best overshoot in the experiment 2 for speed control is PI controller, but the 

best fitness value for the first 8-second starting speed based on ITAEvp (fvp) and the 

best settling time is PID controller. The total fitness value for speed control (fitv) is 

obtained based on the overshoot, settling time, and ITAEvp and the best is the PID 

controller.  

In the position control, the best SSEP and the best fitness value based on ITAEp 

(fp) is PID controller. The total fitness value for position control (fitp) is obtained 

based on the SSEP and ITAEp , and the best is the PID controller. 

The best total fitness value for speed and position control in the experiment 2 (f2) 

is PID controller. Therefore, PID is the best conventional controller in the experiment 

2 which is better than FLC.  

Comparing with the simulation results, the performance is not exactly the same 

but the best controller with the best total fitness value for speed and position control is 

the same. 

The best overshoot and settling time in the experiment 3a for speed control is PI 

controller, but the best fitness value for the first 8-second starting speed based on 

ITAEvp (fvp) is PID controller. The total fitness value for speed control (fitv) is obtained 

based on the overshoot, settling time, undershoot, ITAEvpl and ITAEvp and the best is 

PI controller. When start loading, the best undershoot is PID controller. 
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In the position control, the best SSEP and the best fitness value based on ITAEp 

(fp) is PID controller. The total fitness value for position control (fitp) is obtained 

based on the SSEP and ITAEp , and the best is the PID controller. 

The best total fitness value for speed and position control in the experiment 3a 

(f3a) is PID controller. Therefore, PID is the best conventional controller in the 

experiment 3a which is better than FLC. 

Comparing with the simulation results, the performance is not exactly the same 

but the best controller with the best total fitness value for speed and position control is 

the same. 

The best overshoot and overshoot 2 (when start unloading ) in the experiment 3b 

is PI controller but the best settling time and the best fitness value for the first 8-

second starting speed based on ITAEvp (fvp) for speed control is PID controller. The 

total fitness value for speed control (fitv) is obtained based on the overshoot, settling 

time, overshoot 2, ITAEvpl and ITAEvp and the best is the PID controller.  

In the position control, the best SSEP is PI controller but the best fitness value 

based on ITAEp (fp) is PID controller. The total fitness value for position control (fitp) 

is obtained based on the SSEP and ITAEp , and the best is the PID controller. 

The best total fitness value for speed and position control in the experiment 3b 

(f3b) is PID controller. Therefore, PID is the best conventional controller in the 

experiment 3b which is better than FLC. 

Comparing with the simulation results, the performance is not exactly the same 

but the best controller with the best total fitness value for speed and position control is 

the same. 

The experiment 4a presents the speed performance without overshoot and settling 

time since it is in the variations of speed set point. The best fitness value based on 

IAEv (fv) is PID controller. The best total fitness value for speed control (fitv) is 

obtained based on the IAEv only, and the best is the PID controller. 
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The best total fitness value for speed and position control in the experiment 4a 

(f4a) is PID controller. Therefore, PID is the best conventional controller in the 

experiment 4a which is better than FLC, as in the simulation experiment. 

The best overshoot in the experiment 4b for speed control is PI controller, but the 

best fitness value for the first 8-second starting speed based on ITAEvp (fvp) and the 

best settling time is PID controller. The total fitness value for speed control (fitv) is 

obtained based on the overshoot, settling time, and ITAEvp and the best one is PID 

controller.  

In the position control, the best SSEP and the best fitness value based on ITAEp 

(fp) is PI controller. The total fitness value for position control (fitp) is obtained based 

on the SSEP and ITAEp , and the best is the PID controller. 

The best total fitness value for speed and position control in the experiment 4b 

(f4b) is PID controller. Therefore, PID is the best conventional controller in the 

experiment 4b which is better than FLC.  

Comparing with the simulation results, the performance is not exactly the same 

because the tuning process was done on the transfer function obtained via system 

identification of s-modeling of the system. 

5.3.2 Experiment Results Summary of Conventional and Fuzzy Controllers 

The speed and position control hardware of conventional and fuzzy logic controller 

has been presented. PI controller is the best speed controller as compared to PID 

controller and FLC for experiment of Type 1a, and 3a. PID controller is the best speed 

controller as compared to PI controller and FLC for experiment of Type 2, 3b, 4a, and 

4b. Using Eq. ( 3 - 45 ), the best overall speed controller is PID as compared to PI and 

fuzzy logic. In the application of speed control, FLC is not as good as conventional 

controller. 

In both speed and position control, PI is the best controller as compared to PID 

controller and FLC for experiment of Type 1a. PID controller is the best controller as 
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compared to PI controller and FLC for experiment of Type 1b, 2a,3a, 3b, 4a and 4b. 

Using Eq. ( 3 - 45 ), the best overall speed and position controller is PID as compared 

to PI and fuzzy logic. In the application of speed and position control, FLC is not as 

good as conventional controller as in the simulation results, but in the real-time 

implementation results, the best is PID controller while in the simulation results the 

best is PI. Noise and filtering in the real-time implementation make the effect of 

derivative part in the PID more significant. 

Comparing with the simulation results, the real-time implementation results tend 

to be similar to the simulation results. 

5.4 Experiment of Hybrid-Fuzzy Controllers 

There are three types of controllers in this experiment: FLBPI controller, FLPID 

controller, and FLIC. The experiment was done as an improvement of PID and FLC 

based on the results that the performance of standard FLC is not as good as PID or PI 

controller. 

The parameters of FLBPI and FLBPID controller and the related position 

controller are the same as in the simulaton experiment of FLBPI and FLBPID 

controller as described in Section 4.4. The membership functions and rules of FLIC 

for both speed controller and the position constant are the same as in the simulation 

experiment of FLIC as described in Section 4.4. 

There are seven types of hardware experiment as explained in Section 3.7 which 

are summarized in Table 5.3. 

5.4.1 Results of Hybrid-Fuzzy Controller in Real-time Implementation 

The comparison on the effectiveness of implementing hybrid-fuzzy controllers for 

hardware experiment based on the second order underdamped response analysis is 

presented in Table 5.7, the comparison based on error analysis is presented in       
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Table 5.8, and the comparison based on fitness value analysis is presented in       

Table 5.9. 

It is shown in Table 5.7, Table 5.8, and Table 5.9 that the best overshoot and 

settling time in the experiment 1a is FLBPID controller but the best fitness value for 

the first 8-second starting speed based on ITAEvp (fvp) is FLIC for speed control. The 

total fitness value for speed control (fitv) is obtained based on the overshoot, settling 

time, and ITAEvp and the best is the FLBPID controller.  

In the position control, the best SSEP is FLBPI controller, but the best fitness 

value based on ITAEp (fp) is FLIC. The total fitness value for position control (fitp) is 

obtained based on the SSEP and ITAEp , and the best is the FLBPI controller. 

The best total fitness value for speed and position control in the experiment 1a 

(f1a) is FLBPID controller. Therefore, FLBPID is the best hybrid controller in the 

experiment 1a (extreme condition). 

Table 5.7  Experiment results of hybrid-fuzzy controllers based on second order 

underdamped response analysis 

Type PERFORMANCE ITEM 
Controller 

FLBPI FLBPID FLIC 

1a 

Overshoot (%OS, %)  27.45  17.26  26.56 

Settling time (ts, sec)  2.38  1.96  2.36 

SSEP (%Sp, %)  0.03  0.03  0.06 

1b SSEP (%Sp)  0.79  0.79  1.00 

2 

Overshoot (%OS, %)  3.08  2.49  6.31 

Settling time (ts, sec)  1.37  1.87  5.10 

SSEP (%Sp, %)  0.06  0.08  0.03 

3a 

Overshoot (%OS, %)  4.23  3.97  4.60 

Settling time (ts, sec)  4.45  1.91  6.93 

Undershoot (%US, %)  37.95  36.42  37.72 

SSEP (%Sp, %)  0.03  0.09  0.69 

3b 

Overshoot (%OS, %)  3.51  3.52  3.25 

Settling time (ts, sec)  1.29  1.98  3.07 

Overshoot 2 (%OS2, %)  58.24  45.89  61.61 

SSEP (%Sp, %)  0.04  0.02  0.08 

4b 

Overshoot (%OS, %)  7.37  1.71  4.07 

Settling time (ts, sec)  1.61  1.70  2.98 

SSEP (%Sp, %)  0.06  0.08  0.09 

SSEP: Steady State Error of Position 

Comparing with the simulation results, the performance is not exactly the same 

but the best controller with the best total fitness value for speed and position control is 

the same. 
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The experiment 1b presents the position performance since it is in the extreme 

condition with maximum speed and minimum position. The best SSEP and the best 

fitness value based on ITAEp (fp) is both FLBPI and FLBPID. The best total fitness 

value for position control (fitp) is obtained based on the SSEP and ITAEp , and the best 

is both FLBPI and FLBPID. 

Table 5.8  Experiment results of hybrid-fuzzy controllers based on error analysis 

Type PERFORMANCE ITEM 
Controller 

FLBPI FLBPID FLIC 

1a 
ITAEvp  7.36E+01  6.70E+01  5.62E+01 

ITAEp  5.92E+03  5.95E+03  5.92E+03 

1b ITAEp  1.85E+01  1.85E+01  2.37E+01 

2 
ITAEvp  1.19E+02  1.29E+02  1.80E+02 

ITAEp  3.77E+02  3.84E+02  3.78E+02 

3a 

ITAEvp  1.15E+02  1.27E+02  1.49E+02 

ITAEvl  1.15E+03  1.93E+03  1.63E+03 

ITAEp  1.29E+03  1.38E+03  1.42E+03 

3b 

ITAEvp  1.14E+02  2.58E+02  2.26E+02 

ITAEvl  1.50E+03  1.57E+03  1.91E+03 

ITAEp  1.26E+03  1.34E+03  1.29E+03 

4a IAEv  8.86E+02  8.91E+02  1.14E+03 

4b 
ITAEvp  1.26E+02  1.15E+02  1.74E+02 

ITAEp  1.79E+03  1.81E+03  1.82E+03 

ITAEvp : Integral of time absolute value of error for the first 8 sec; ITAEp : ITAE for position, ITAEvl : 
ITAE for the 9-sec start loading speed; IAEv : integral of absolute value of error for overall 90 sec. 

 

The best total fitness value for speed and position control in the experiment 1b 

(f1b) is both FLBPI and FLBPID. Therefore, both FLBPI and FLBPID are the best 

hybrid controllers in the experiment 1b (extreme condition). 

Comparing with the simulation results, the best performance is very different 

because the tuning process was done on the transfer function as a result of s-modeling 

of the system, but the experiment results are more valid than the simulation results. 

The best overshoot in the experiment 2 for speed control is FLBPID controller but 

the best settling time is FLBPI controller and the best fitness value for the first 8-

second starting speed based on ITAEvp (fvp) is FLIC. The total fitness value for speed 

control (fitv) is obtained based on the overshoot, settling time, and ITAEvp and the best 

is the FLBPI controller.  
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Table 5.9  Experiment results of hybrid-fuzzy controllers based on fitness value 

analysis 

Type PERFORMANCE ITEM 
Controller 

FLBPI FLBPID FLIC 

1a 

fvp  0.00  0.28  0.72 

fp  0.45  0.00  0.55 

fitv  0.00  0.72  0.28 

fitp  0.49  0.24  0.28 

fit1a  0.16  0.56  0.28 

1b 

fp  0.50  0.50  0.00 

fitp  0.50  0.50  0.00 

fit1b  0.50  0.50  0.00 

2 

fvp  0.54  0.46  0.00 

fp  0.52  0.00  0.48 

fitv  0.51  0.49  0.00 

fitp  0.42  0.00  0.58 

fit2  0.54  0.46  0.00 

3a 

fvp  0.61  0.39  0.00 

fvpl  0.72  0.00  0.28 

fp  0.76  0.24  0.00 

fitv  0.51  0.42  0.07 

fitp  0.64  0.36  0.00 

fit3a  0.55  0.40  0.05 

3b 

fvp  0.82  0.00  0.18 

fvpl  0.00  0.46  0.00 

fp  0.62  0.00  0.38 

fitv  0.37  0.21  0.27 

fitp  0.52  0.29  0.19 

fit3b  0.42  0.24  0.24 

4a 

fv  0.50  0.50  0.00 

fitv  0.50  0.50  0.00 

fit4a  0.50  0.50  0.00 

4b 

fvp  0.45  0.55  0.00 

fp  0.71  0.29  0.00 

fitv  0.32  0.56  0.12 

fitp  0.71  0.29  0.00 

fit4b  0.45  0.47  0.08 

fvp : Fitness value for the first 8-sec starting speed based on ITAEvp; fp : Fitness value for position based 
on ITAEp; fvpl : Fitness value for the 9-sec start loading speed (from 14 to 23 sec) based on ITAEvpl; fv: 

Fitness value for overall 90 sec of speed based on IAEv; fitv : Total fitness value for speed control; fitp : 
Total fitness value for position control; fitx : Total fitness value for speed and position control in the 

experiment of Type x 
 

In the position control, the best SSEP is FLIC but the best fitness value based on 

ITAEp (fp) is FLBPI controller. The total fitness value for position control (fitp) is 

obtained based on the SSEP and ITAEp , and the best is the FLIC. 

The best total fitness value for speed and position control in the experiment 2 (f2) 

is FLBPI controller. Therefore, FLBPI is the best hybrid controller in the experiment 

2 (moderate condition). 
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Comparing with the simulation results, the performance is not exactly the same 

and the best performance is different because the tuning process was done on the 

transfer function as a result of s-modeling of the system, but the experiment results 

are more valid than the simulation results. 

The best overshoot, settling time and undershoot in the experiment 3a for speed 

control is FLBPID controller, but the best fitness value for the first 8-second starting 

speed based on ITAEvp (fvp) is FLBPI controller. The total fitness value for speed 

control (fitv) is obtained based on the overshoot, settling time, undershoot, ITAEvpl and 

ITAEvp and the best is FLBPID controller. When start loading, the best undershoot is 

FLBPI controller. 

In the position control, the best SSEP and the best fitness value based on ITAEp 

(fp) is FLBPI controller. The total fitness value for position control (fitp) is obtained 

based on the SSEP and ITAEp , and the best is the FLBPI controller. 

The best total fitness value for speed and position control in the experiment 3a 

(f3a) is FLBPI controller. Therefore, FLBPI is the best hybrid controller in the 

experiment 3a (variable load condition). 

Comparing with the simulation results, the performance is not exactly the same 

and the best performance is different because the tuning process was done on the 

transfer function as a result of s-modeling of the system, but the experiment results 

are more valid than the simulation results. 

The best overshoot in the experiment 3b for speed control is FLIC but the settling 

time and the fitness value for the first 8-second starting speed based on ITAEvp (fvp) is 

FLBPI controller, and the best overshoot 2 (when start unloading) is FLBPID 

controller. The total fitness value for speed control (fitv) is obtained based on the 

overshoot, settling time, overshoot 2, ITAEvpl and ITAEvp and the best is the FLBPI 

controller.  

In the position control, the best SSEP is FLBPID controller but the best fitness 

value based on ITAEp (fp) is FLBPI controller. The total fitness value for position 
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control (fitp) is obtained based on the SSEP and ITAEp , and the best is the FLBPI 

controller. 

The best total fitness value for speed and position control in the experiment 3b 

(f3b) is FLBPI controller. Therefore, FLBPI is the best hybrid controller in the 

experiment 3b (variable load condition). 

Comparing with the simulation results, the performance is not exactly the same 

but the best controller with the best total fitness value for speed and position control is 

the same. 

The experiment 4a presents the speed performance without overshoot and settling 

time since it is in the variations of speed set point. The best fitness value based on 

IAEv (fv) is FLBPI controller. The best total fitness value for speed control (fitv) is 

obtained based on the IAEv only, and the best is the FLBPI controller. 

The best total fitness value for speed and position control in the experiment 4a 

(f4a) is FLBPI controller. Therefore, FLBPI is the best hybrid controller in the 

experiment 4a (variable set point condition). 

Comparing with the simulation results, the best performance is different because 

the tuning process was done on the transfer function as a result of s-modeling of the 

system, but the experiment results are more valid than the simulation results. 

In the experiment 4b, the best overshoot and the best fitness value for the first 8-

second starting speed based on ITAEvp (fvp) for speed control is FBPID controller, but 

the best settling time is FBPI controller. The total fitness value for speed control (fitv) 

is obtained based on the overshoot, settling time, and ITAEvp and the best is the 

FLBPID controller.  

In the position control, the best SSEP and the best fitness value based on ITAEp 

(fp) is FLBPI controller. The total fitness value for position control (fitp) is obtained 

based on the SSEP and ITAEp , and the best is the FLBPI controller. 
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The best total fitness value for speed and position control in the experiment 4b 

(f4b) is FLBPID controller. Therefore, FLBPID is the best hybrid controller in the 

experiment 4b (variable set point condition). 

Comparing with the simulation results, the best performance is very different 

because the tuning process was done on the transfer function as a result of s-modeling 

of the system, but the experiment results are more valid than the simulation results. 

5.4.2 Experiment Results Summary of Hybrid-Fuzzy Controllers 

The speed and position control experiment of hybrid-fuzzy controller has been 

presented. FLBPI controller is the best speed controller as compared to FLBPID 

controller and FLIC for experiment of Type 2, 3a, 3b, and 4a. FLBPID controller is 

the best speed controller as compared to FLBPI controller and FLIC for experiment of 

Type 1a, and 4b. FLIC is not as good as FLBPI controller and FLBPID controller as a 

speed controller. Using Eq. ( 3 - 45 ), the best overall speed controller is FLBPID as 

compared to FLBPI and FLIC.  

In both speed and position control, FLBPI is the best controller as compared to 

FLBPID controller and FLIC for experiment of Type 2, 3a, 3b and 4b. FLBPID 

controller is the best controller as compared to FLBPI controller and FLIC for 

simulation of Type 1a, 1b, and 4b. FLIC is not as good as FLBPI controller and 

FLBPID controller as both speed and position controller. Using Eq. ( 3 - 45 ), the best 

overall speed and position controller is FLBPI as compared to FLBPID and FLIC.  

Comparing with the simulation results, the real-time implementation results tend 

to be similar to the simulation results. 

5.5 Experiment of SPOGA Optimized Controllers 

There are three types of controllers in this simulation: SPOGA-FLBPI controller, 

SPOGA-FLPID controller, and SPOGA-FLIC. The experiment was done as a result 

of optimization using SPOGA. 
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There are seven types of hardware experiment as explained in Section 3.7 which 

are summarized in Table 5.3. 

5.5.1 Results of SPOGA Optimized Controllers in Real-time Implementation 

The comparison on the effectiveness of implementing SPOGA optimized hybrid-

fuzzy controllers for hardware experiment based on the second order underdamped 

response analysis is presented in Table 5.10, the comparison based on error analysis is 

presented in Table 5.11, and the comparison based on fitness value analysis is 

presented in Table 5.12. 

It is shown in Table 5.10, Table 5.11, and Table 5.12 that the best overshoot in the 

experiment 1a is SPOGA-FLBPI controller, but the best settling time and fitness 

value for the first 8-second starting speed based on ITAEvp (fvp) is SPOGA-FLBPID 

controller for speed control. The total fitness value for speed control (fitv) is obtained 

based on the overshoot, settling time, and ITAEvp and the best is the SPOGA-FLBPID 

controller.  

Table 5.10  Experiment results of SPOGA optimized hybrid-fuzzy controllers based 

on second order underdamped response analysis 

Type PERFORMANCE ITEM 

Controller 

SPOGA-

FLBPI 

SPOGA-

FLBPID 

SPOGA-

FLIC 

1a 

Overshoot (%OS, %)  14.55  16.83  44.52 

Settling time (ts, sec)  1.79  1.74  2.06 

SSEP (%Sp, %)  0.09  0.07  0.08 

1b SSEP (%Sp)  0.48  0.39  0.39 

2 

Overshoot (%OS, %)  3.72  4.29  2.27 

Settling time (ts, sec)  1.43  1.05  2.05 

SSEP (%Sp, %)  0.07  0.05  0.09 

3a 

Overshoot (%OS, %)  2.72  3.59  3.10 

Settling time (ts, sec)  1.48  1.01  2.05 

Undershoot (%US, %)  38.39  32.38  41.35 

SSEP (%Sp, %)  0.05  0.02  0.10 

3b 

Overshoot (%OS, %)  4.85  2.20  3.79 

Settling time (ts, sec)  1.36  1.08  3.12 

Overshoot 2 (%OS2, %)  48.72  49.62  59.43 

SSEP (%Sp, %)  0.01  0.08  0.015 

4b 

Overshoot (%OS, %)  3.67  6.75  3.10 

Settling time (ts, sec)  1.38  1.21  2.21 

SSEP (%Sp, %)  0.08  0.07  0.08 

SSEP: Steady State Error of Position 
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In the position control, the best SSEP and the best fitness value based on ITAEp 

(fp) is SPOGA-FLBPID controller. The total fitness value for position control (fitp) is 

obtained based on the SSEP and ITAEp , and the best is the SPOGA-FLBPID 

controller. 

Table 5.11  Experiment results of SPOGA optimized hybrid-fuzzy controllers based 

on error analysis 

Type PERFORMANCE ITEM 

Controller 

SPOGA-

FLBPI 

SPOGA-

FLBPID 

SPOGA-

FLIC 

1a 
ITAEvp  5.81E+01  5.43E+01  8.55E+01 

ITAEp  5.95E+03  5.92E+03  5.93E+03 

1b ITAEp  1.24E+01  1.05E+01  1.21E+01 

2 
ITAEvp  1.15E+02  1.06E+02  1.72E+02 

ITAEp  3.80E+02  3.72E+02  3.90E+02 

3a 

ITAEvp  9.98E+01  9.03E+01  1.48E+02 

ITAEvl  1.16E+03  1.91E+03  2.13E+03 

ITAEp  1.30E+03  1.36E+03  1.49E+03 

3b 

ITAEvp  1.30E+02  2.40E+02  3.23E+02 

ITAEvl  1.50E+03  1.42E+03  2.11E+03 

ITAEp  1.30E+03  1.35E+03  1.30E+03 

4a IAEv  8.89E+02  8.19E+02  1.30E+03 

4b 
ITAEvp  1.17E+02  9.13E+01  2.10E+02 

ITAEp  1.80E+03  1.79E+03  1.88E+03 

ITAEvp : Integral of time absolute value of error for the first 8 sec; ITAEp : ITAE for position, ITAEvl : 
ITAE for the 9-sec start loading speed; IAEv : integral of absolute value of error for overall 90 sec. 

 

The best total fitness value for speed and position control in the experiment 1a 

(f1a) is SPOGA-FLBPID controller. Therefore, SPOGA-FLBPID is the best hybrid-

fuzzy controller in the experiment 1a (extreme condition). 

Comparing with the simulation results, the best performance is different because 

the tuning process was done on the transfer function as a result of s-modeling of the 

system, but the experiment results are more valid than the simulation results. 

The simulation 1b presents the position performance since it is in the extreme 

condition with maximum speed and minimum position. The best SSEP and fitness 

value based on ITAEp (fp) is SPOGA-FLBPID controller. The best total fitness value 

for position control (fitp) is obtained based on the SSEP and ITAEp , and the best is the 

SPOGA-FLBPID controler. 
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The best total fitness value for speed and position control in the experiment 1b 

(f1b) is SPOGA-FLBPID controller. Therefore, SPOGA-FLBPID controller is the best 

hybrid-fuzzy controller in the experiment 1b (extreme condition). 

Comparing with the simulation results, the best performance is different because 

the tuning process was done on the transfer function as a result of s-modeling of the 

system, but the experiment results are more valid than the simulation results. 

Table 5.12  Experiment results of SPOGA optimized hybrid-fuzzy controllers based 

on fitness value analysis 

Type PERFORMANCE ITEM 

Controller 

SPOGA-

FLBPI 

SPOGA-

FLBPID 

SPOGA-

FLIC 

1a 

fvp  0.47  0.53  0.00 

fp  0.00  0.59  0.41 

fitv  0.48  0.52  0.00 

fitp  0.00  0.58  0.42 

fit1a  0.32  0.54  0.14 

1b 

fp  0.00  0.86  0.14 

fitp  0.00  0.68  0.32 

fit1b  0.00  0.68  0.32 

2 

fvp  0.46  0.54  0.00 

fp  0.36  0.64  0.00 

fitv  0.35  0.38  0.26 

fitp  0.33  0.67  0.00 

fit2  0.35  0.48  0.17 

3a 

fvp  0.46  0.54  0.00 

fvpl  0.82  0.18  0.00 

fp  0.60  0.40  0.00 

fitv  0.57  0.34  0.09 

fitp  0.55  0.45  0.00 

fit3a  0.56  0.38  0.06 

3b 

fvp  0.70  0.30  0.00 

fvpl  0.47  0.53  0.00 

fp  0.52  0.00  0.48 

fitv  0.41  0.52  0.07 

fitp  0.52  0.00  0.48 

fit3b  0.44  0.35  0.21 

4a 

fv  0.46  0.54  0.00 

fitv  0.46  0.54  0.00 

fit4a  0.46  0.54  0.00 

4b 

fvp  0.44  0.56  0.00 

fp  0.45  0.55  0.00 

fitv  0.45  0.37  0.18 

fitp  0.26  0.74  0.00 

fit4b  0.39  0.49  0.12 

fvp : Fitness value for the first 8-sec starting speed based on ITAEvp; fp : Fitness value for position based 
on ITAEp; fvpl : Fitness value for the 9-sec start loading speed (from 14 to 23 sec) based on ITAEvpl; fv: 

Fitness value for overall 90 sec of speed based on IAEv; fitv : Total fitness value for speed control; fitp : 
Total fitness value for position control; fitx : Total fitness value for speed and position control in the 

experiment of Type x 
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The best overshoot for speed control in the experiment 2 is SPOGA-FLIC, but the 

best settling time and the best fitness value for the first 8-second starting speed based 

on ITAEvp (fvp) for speed control is SPOGA-FLBPID controller. The total fitness value 

for speed control (fitv) is obtained based on the overshoot, settling time, and ITAEvp 

and the best is the SPOGA-FLBPID controller.  

In the position control, the best SSEP and the best fitness value based on ITAEp 

(fp) is SPOGA-FLBPID controller. The total fitness value for position control (fitp) is 

obtained based on the SSEP and ITAEp , and the best is the SPOGA-FLBPID 

controller. 

The best total fitness value for speed and position control in the experiment 2 (f2) 

is SPOGA-FLBPID controller. Therefore, SPOGA-FLBPID is the best hybrid-fuzzy 

controller in the experiment 2 (moderate condition). 

Comparing with the simulation results, the best performance is different because 

the tuning process was done on the transfer function as a result of s-modeling of the 

system, but the experiment results are more valid than the simulation results. 

In the experiment 3a, the best overshoot, settling time and the best fitness value 

for the first 8-second starting speed based on ITAEvp (fvp) for speed control is SPOGA-

FLBPID controller. The total fitness value for speed control (fitv) is obtained based on 

the overshoot, settling time, undershoot, ITAEvpl and ITAEvp and the best is SPOGA-

FLBPI controller. When start loading, the best undershoot is FLBPID controller. 

In the position control, the best SSEP is SPOGA-FLBPID controller but the best 

fitness value based on ITAEp (fp) is SPOGA-FLBPI controller. The total fitness value 

for position control (fitp) is obtained based on the SSEP and ITAEp , and the best is the 

SPOGA-FLBPI controller. 

The best total fitness value for speed and position control in the experiment 3a 

(f3a) is SPOGA-FLBPI controller. Therefore, SPOGA-FLBPI controller is the best 

hybrid-fuzzy controller in the experiment 3a (variable load) 
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Comparing with the simulation results, the performance is not exactly the same 

but the best controller with the best total fitness value for speed and position control is 

the same. 

The best overshoot and settling for speed control in the experiment 3b is SPOGA-

FLBPID controller, but the the best fitness value for the first 8-second starting speed 

based on ITAEvp (fvp) is SPOGA-FLBPI controller. The total fitness value for speed 

control (fitv) is obtained based on the overshoot, settling time, overshoot 2, ITAEvpl 

and ITAEvp and the best is SPOGA-FLBPID controller. The best overshoot 2 when 

start unloading is FLBPIGA controller.  

In the position control, the best SSEP and the best fitness value based on ITAEp 

(fp) is SPOGA-FLBPI controller. The total fitness value for position control (fitp) is 

obtained based on the SSEP and ITAEp , and the best is the SPOGA-FLBPI controller. 

The best total fitness value for speed and position control in the experiment 3b 

(f3b) is SPOGA-FLBPID controller. Therefore, SPOGA-FLBPID controller is the best 

hybrid-fuzzy controller in the experiment 3b (variable load condition). 

Comparing with the simulation results, the best performance is different because 

the tuning process was done on the transfer function as a result of s-modeling of the 

system, but the experiment results are more valid than the simulation results. 

The experiment 4a presents the speed performance without overshoot and settling 

time since it is in the variations of speed set point. The best fitness value based on 

IAEv (fv) is SPOGA-FLBPID controller. The best total fitness value for speed control 

(fitv) is obtained based on the IAEv only, and the best is the SPOGA-FLBPID 

controller. 

The best total fitness value for speed and position control in the experiment 4a 

(f4a) is SPOGA-FLBPID controller. Therefore, SPOGA-FLBPID controller is the best 

hybrid-fuzzy controller in the experiment 4a, as in the simulation experiment. 

The best overshoot for speed control in the experiment 4b is SPOGA-FLIC. The 

best settling time and the best fitness value for the first 8-second starting speed based 
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on ITAEvp (fvp) is SPOGA-FLBPID controller. The total fitness value for speed control 

(fitv) is obtained based on the overshoot, settling time, and ITAEvp and the best is the 

SPOGA-FLBPI controller.  

In the position control, the best SSEP and the best fitness value based on ITAEp 

(fp) is SPOGA-FLBPID controller. The total fitness value for position control (fitp) is 

obtained based on the SSEP and ITAEp , and the best is the SPOGA-FLBPID 

controller. 

The best total fitness value for speed and position control in the experiment 4b 

(f4b) is SPOGA-FLBPI controller. Therefore, SPOGA-FLBPI controller is the best 

hybrid-fuzzy controller in the experiment 4b (variable set point condition). 

Comparing with the simulation results, the performance is not exactly the same 

but the best controller with the best total fitness value for speed and position control is 

the same. 

5.5.2 Experiment Results Summary of SPOGA Optimized Hybrid-Fuzzy 

Controllers 

The speed and position control experiment of SPOGA optimized hybrid-fuzzy 

controller has been presented. SPOGA-FLBPI controller is the best speed controller 

as compared to SPOGA-FLBPID controller and SPOGA-FLIC for experiment of 

Type 3a and 4b. SPOGA-FLBPID controller is the best speed controller as compared 

to SPOGA-FLBPI controller and SPOGA-FLIC for experiment of Type 1a, 2, 3b, and 

4a. SPOGA-FLIC is not as good as SPOGA-FLBPI controller and SPOGA-FLBPID 

controller for speed control. Using Eq. ( 3 - 45 ), the best overall speed controller is 

SPOGA-FLBPI as compared to SPOGA-FLBPID and SPOGA-FLIC.  

In the both speed and position control, SPOGA-FLBPI controller is the best speed 

controller as compared to SPOGA-FLBPID controller and SPOGA-FLIC for 

experiment of Type 3a and 3b. SPOGA-FLBPID controller is the best speed 

controller as compared to SPOGA-FLBPI controller and SPOGA-FLIC for 

experiment of Type 1a, 1b, 2, 4a and 4b. SPOGA-FLIC is not as good as SPOGA-
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FLBPI controller and SPOGA-FLBPID controller for speed and position control. 

Using Eq. ( 3 - 45 ), the best overall speed and position controller is SPOGA-FLBPID 

controller as compared to SPOGA-FLBPI and SPOGA-FLIC. 

Comparing with the simulation results, the real-time implementation results tend 

to be similar to the simulation results. 

5.6 Performance Comparisons of SPOGA to non-SPOGA Controllers 

This section presents the performance improvements of non-SPOGA hybrid-fuzzy 

controllers and SPOGA optimized hybrid-fuzzy controllers based on the fitness values 

where the performance items are based on Table 5.7 to Table 5.12. 

There are seven types of hardware experiment as explained in Section 3.7 which 

are summarized in Table 5.3. 

The graphs of input-output characteristic of speed error, speed, and position 

between the best improvement of SPOGA optimized hybrid controllers and the 

corresponding hybrid controllers are presented in this section for each experiment 

type. 

5.6.1 Results of Performance Comparisons of SPOGA to non-SPOGA 

Controllers in Real-time Implementation 

The comparison on the improvement of SPOGA optimized and non-SPOGA hybrid-

fuzzy controllers based on the performance metrics for hardware experiment is 

presented in Table 5.13 where the performance items are based on Table 5.9 and 

Table 5.12. 

It is shown in Table 5.13 that SPOGA-FLBPI in the experiment 1a makes the best 

fit improvement for speed control. This means that SPOGA-FLBPI makes the best fit 

improvement in the experiment 1a. The best position controller is FLBPI but it is not 

optimized by SPOGA. The improvement of SPOGA-FLIC is less than zero, this 
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means that the SPOGA-FLIC cannot make improvement in the experiment 1a. The 

graphical comparisons of SPOGA-FLBPI to FLBPI are shown in Fig. 5.1 and        

Fig. 5.2. 

It is shown in Fig. 5.1 and Fig. 5.2 that SPOGA-FLBPI has no overshoot and the 

settling time is faster than FLBPI. This makes the absolute error of SPOGA-FLBPI is 

smaller than FLBPI. 

In the experiment 1b, SPOGA-FLBPID has the best fit for position control but the 

SPOGA is not optimize the position controller.  

Table 5.13  Performance improvement comparison of SPOGA optimized and non-

SPOGA hybrid-fuzzy controllers for hardware experiment 

Type 
PERFORMANCE 

ITEMS 

Controller 

FLBPI 
SPOGA-

FLBPI 
FLBPID 

SPOGA-

FLBPID 
FLIC 

SPOGA-

FLIC 

1a 

fitv 0.08 0.26 0.20 0.27 0.14 0.05 

fitp 0.30 0.02 0.17 0.16 0.24 0.12 

fit 0.15 0.18 0.19 0.23 0.17 0.08 

Ipv1a  0.18  0.07  -0.08 

1b 

fitv - - - - - - 

fitp 0.10 0.24 0.10 0.28 0.00 0.27 

fit 0.10 0.24 0.10 0.28 0.00 0.27 

Ipv1b  -  -  - 

2 

fitv 0.22 0.20 0.21 0.21 0.01 0.15 

fitp 0.21 0.14 0.08 0.29 0.29 0.00 

fit 0.21 0.19 0.16 0.24 0.10 0.10 

Ipv2  -0.01  0.01  0.14 

3a 

fitv 0.18 0.30 0.13 0.22 0.04 0.12 

fitp 0.26 0.25 0.19 0.21 0.09 0.00 

fit 0.20 0.29 0.15 0.21 0.06 0.08 

Ipv3a  0.12  0.09  0.08 

3b 

fitv 0.19 0.20 0.16 0.25 0.09 0.03 

fitp 0.27 0.25 0.14 0.00 0.12 0.23 

fit 0.22 0.21 0.15 0.17 0.10 0.10 

Ipv3b  0.01  0.09  -0.06 

4a 

fitv 0.22 0.22 0.22 0.26 0.09 0.00 

fitp - - - - - - 

fit 0.22 0.22 0.22 0.26 0.09 0.00 

Ipv4a  -0.00  0.04  -0.09 

4b 

fitv 0.13 0.22 0.24 0.19 0.09 0.12 

fitp 0.32 0.15 0.18 0.24 0.08 0.04 

fit 0.19 0.20 0.22 0.21 0.09 0.09 

Ipv4b  0.09  -0.05  0.03 

 

In the experiment 2, SPOGA-FLIC makes the best fit improvement in the 

experiment 1a eventhough the performance of SPOGA-FLIC is not as good as 
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SPOGA-FLBPI and SPOGA-FLBPID. The improvement of SPOGA-FLBPI is less 

than zero, this means that both SPOGA-FLBPI cannot make improvement in the 

experiment 2. The graphical comparisons of SPOGA-FLIC to FLIC are shown in    

Fig. 5.3 and Fig. 5.4. 

 

Fig. 5.1  Step response of speed control of DC servomotor using SPOGA-FLBPI vs. 

FLBPI for experiment 1a (see Fig. D.6) 

 

Fig. 5.2  Absolute error of speed control of DC servomotor using SPOGA-FLBPI vs. 

FLBPI for experiment 1a 
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Fig. 5.3  Step response of speed control of DC servomotor using SPOGA-FLIC vs. 

FIC for experiment 2 (see Fig. D.7) 

It shown in the Fig. 5.3 and Fig. 5.4 that SPOGA-FLIC has smaller overshoot and 

settling time than FLIC. This makes the absolute error of SPOGA-FLIC smaller than 

FLIC. Actually, SPOGA-FLIC has not the best performace as compared to SPOGA-

FLBPI and SPOGA-FLBPID but the the SPOGA improvement is the best as 

compared to FLBPI and FLBPID. 

 

Fig. 5.4  Absolute error of speed control of DC servomotor using SPOGA-FLIC vs. 

FLIC for experiment 2 

In the experiment 3a, SPOGA-FLBPI makes the best fit improvement in the 

experiment 3a. The graphical comparisons of SPOGA-FLBPI to FLBPI are shown in    

Fig. 5.5 and Fig. 5.6. 
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Fig. 5.5  Step response of speed control of DC servomotor using SPOGA-FLBPI vs. 

FLBPI for experiment 3a (see Fig. D.8) 

 

Fig. 5.6  Absolute error of speed control of DC servomotor using SPOGA-FLBPI vs. 

FLBPI for experiment 3a 

It shown in the Fig. 5.5 and Fig. 5.6 that SPOGA-FLBPI is similar to FLBPI, 

based on Table 5.8 and Table 5.11, the ITAE of SPOGA-FLBPI is smaller than the 

ITAE of FLBPI. This makes the fit of SPOGA-FLBPI better than FLBPI. 

In the experiment 3b, SPOGA-FLBPID makes the best fit improvement. The 

improvement of SPOGA-FLIC is less than zero, this means that SPOGA-FLIC cannot 

make improvement in the experiment 3b. The graphical comparisons of SPOGA-

FLBPID to FLBPID are shown in Fig. 5.7 and Fig. 5.8. 
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Fig. 5.7  Step response of speed control of DC servomotor using SPOGA-FLBPID vs. 

FLBPID for experiment 3b (see Fig. D.9) 

 

Fig. 5.8  Absolute error of speed control of DC servomotor using SPOGA-FLBPID 

vs. FLBPID for experiment 3b 

It shown in the Fig. 5.7 and Fig. 5.8 that SPOGA-FLBPI has smaller settling time 

and overshoot 2 than FLBPI.  

In the experiment 4a, SPOGA-FLBPID makes the best fit improvement. The 

improvement of SPOGA-FLIC and GAFLBPI are less than zero, this means that both 

SPOGA-FLIC and SPOGA-FLBPI cannot make improvement in the experiment 4a. 

The graphical comparisons of SPOGA-FLBPID to FLBPID are shown in Fig. 5.9 and         

Fig. 5.10. 
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Fig. 5.9  Speed control of DC servomotor using SPOGA-FLBPID vs. FLBPID for 

experiment 4a  

 

Fig. 5.10  Absolute error of speed control of DC servomotor using SPOGA-FLBPID 

vs. FLBPID for experiment 4a 

It shown in the Fig. 5.9 and Fig. 5.10 that SPOGA-FLBPI has smaller settling 

time than FLBPI. This makes the absolute error of SPOGA-FLBPI smaller than 

FLBPI. 

In the experiment 4b, SPOGA-FLBPI makes the best fit improvement. The 

improvement of SPOGA-FLBPID is less than zero, this means that SPOGA-FLBPID 

cannot any improvement in the experiment 4b. The graphical comparisons of 

SPOGA-FLBPI to FLBPI are shown in Fig. 5.11 to Fig. 5.13. 
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Fig. 5.11  Step response of speed control of DC servomotor using SPOGA-FLBPI vs. 

FLBPI for experiment 4b (see Fig. D.10) 

 

Fig. 5.12  Absolute error of speed control of DC servomotor using SPOGA-FLBPI vs. 

FLBPI for experiment 4b 

It shown in the Fig. 5.11 and Fig. 5.12 that SPOGA-FLBPI has smaller overshoot 

than FLBPI. This makes the absolute error of SPOGA-FLBPI smaller than FLBPI. 

It is shown in Fig. 5.13 that SPOGA-FLBPI is similar to FLBPI. This means that 

SPOGA-FLBPI does not make any improvement in position control, but the SPOGA 

is for optimizing the speed controller only. 
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Fig. 5.13  Position control of DC servomotor using SPOGA-FLBPI vs. FLPI for 

experiment 4b 

 

5.6.2 Experiment Results Summary of SPOGA optimized and non-SPOGA 

optimized Hybrid-Fuzzy Controllers 

The improvement tests of GA optimized hybrid-fuzzy controller to non-GA optimized 

hybrid PID-fuzzy controller have been presented. It was shown that SPOGA-FLBPI 

can make fit improvement in all of the experiment types except in the simulation of 

Type 2 and 4a which failed. SPOGA-FLBPID can make improvement in all of the 

experiment types except in the simulation of Type 4b which failed. SPOGA-FLIC can 

make improvement in the experiment of Type 2, 3a, and 4b, and fails to make 

improvement in the experiment of Type 1a, 3b, and 4a 

The experiment results show that based on Eq. ( 3 - 47 ), the best total 

improvement of speed control is SPOGA-FLBPI. This means that the SPOGA can 

optimize the parameters of FLBPI successfully. 

Comparing with the simulation results, the real-time implementation results tend 

to be similar to the simulation results. 
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5.7 Performance Comparisons of Conventional, Fuzzy, and SPOGA Optimized 

Hybrid-Fuzzy Controllers 

This section presents the performance comparisons of conventional (PI and PID 

controllers), FLC, and SPOGA optimized hybrid-fuzzy controllers based on the 

fitness values where the performance items are based on Table 5.6 and Table 5.12. 

There are seven types of hardware experiment as explained in Section 3.7 which 

are summarized in Table 5.3. 

The graphs of input-output characteristic of speed error, position error,  speed, and 

position between the best conventional and fuzzy controllers and the best SPOGA 

optimized hybrid controllers are presented in this section for each experiment type. 

5.7.1 Results on Performance Comparisons of Conventional, Fuzzy, and 

SPOGA Optimized Hybrid-Fuzzy Controllers 

The comparison on the effectiveness of implementing conventional, fuzzy, and 

hybrid-fuzzy controllers based on the performance metrics for hardware experiment is 

presented in Table 5.14 where the performance items are based on Table 5.6 and 

Table 5.12. 

It is shown in Table 5.14 that the best speed controller in the experiment 1a is PI 

for conventional controller and SPOGA-FLBPID for hybrid controller, and the best 

position controller is PID for conventional controller and SPOGA-FLBPID for hybrid 

controller. As a speed and position controller, PI is the best conventional controller 

and SPOGA-FLBPID is the best hybrid controller. Comparison on the best 

conventional to the best hybrid are shown in the table that SPOGA optimized hybrid-

fuzzy controllers are better then conventional controllers in the experiment 1a. The 

graphical comparisons are shown in the Fig. 5.14 to Fig. 5.17. 

It is shown in Fig. 5.14 and Fig. 5.15 that SPOGA-FLBPI has the faster settling 

time than PI where both have no overshoot. Consequently, the absolute error of 

SPOGA-FLBPI is smaller than PI. 
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Table 5.14  Performance comparisons of conventional, fuzzy, and SPOGA optimized 

hybrid-fuzzy controllers for hardware experiment 

TYPE CONTROLLERS 
Controller 

fitv fitp fit1a 

1a 

PI  0.20  0.12  0.18 

PID  0.16  0.17  0.16 

FLC  0.06  0.00  0.04 

SPOGA-FLBPI  0.22  0.22  0.22 

SPOGA-FLBPID  0.22  0.25  0.23 

SPOGA-FLIC  0.14  0.24  0.17 

1b 

PI -  0.18  0.18 

PID -  0.19  0.19 

FLC -  0.00  0.00 

SPOGA-FLBPI -  0.21  0.21 

SPOGA-FLBPID -  0.21  0.21 

SPOGA-FLIC -  0.21  0.21 

2 

PI  0.16  0.19  0.17 

PID  0.20  0.20  0.20 

FLC  0.00  0.00  0.00 

SPOGA-FLBPI  0.22  0.20  0.21 

SPOGA-FLBPID  0.22  0.21  0.22 

SPOGA-FLIC  0.20  0.19  0.20 

3a 

PI  0.16  0.15  0.16 

PID  0.16  0.26  0.19 

FLC  0.00  0.04  0.01 

SPOGA-FLBPI  0.28  0.27  0.27 

SPOGA-FLBPID  0.22  0.24  0.23 

SPOGA-FLIC  0.18  0.04  0.13 

3b 

PI  0.18  0.20  0.18 

PID  0.16  0.21  0.18 

FLC  0.01  0.00  0.01 

SPOGA-FLBPI  0.20  0.21  0.20 

SPOGA-FLBPID  0.24  0.17  0.22 

SPOGA-FLIC  0.11  0.21  0.14 

4a 

PI  0.17 -  0.18 

PID  0.22 -  0.22 

FLC  0.00 -  0.00 

SPOGA-FLBPI  0.22 -  0.22 

SPOGA-FLBPID  0.23 -  0.23 

SPOGA-FLIC  0.15 -  0.15 

4b 

PI  0.17  0.14  0.16 

PID  0.21  0.15  0.19 

FLC  0.00  0.00  0.00 

SPOGA-FLBPI  0.22  0.16  0.20 

SPOGA-FLBPID  0.21  0.18  0.20 

SPOGA-FLIC  0.19  0.09  0.16 
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Fig. 5.14  Step response of speed control of DC servomotor using SPOGA-FLBPI vs. 

PI for experiment 1a (see Fig. D.11) 

 

Fig. 5.15  Absolute error of speed control of DC servomotor using SPOGA-FLBPI vs. 

PI for experiment 1a 

It is shown in Fig. 5.16 and Fig. 5.17 that SPOGA-FLBPID has the faster settling 

time than the PID. This makes the absolute error of SPOGA-FLBPID is smaller than 

PID. 

In the experiment 1b, the best position controller is PID for conventional 

controller and SPOGA-FLBPID for hybrid controller. As a speed and position 

controller, PID is the best conventional controller and SPOGA-FLBPID is the best 

hybrid controller. Comparison on the best conventional to the best hybrid are shown 

in the table that SPOGA optimized hybrid-fuzzy controllers are better then 
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conventional controllers in the experiment 1b. The graphical comparisons are shown 

in the Fig. 5.18 and Fig. 5.19. 

 

Fig. 5.16  Position control of DC servomotor using SPOGA-FLBPID vs. PID for 

experiment 1a 

 

Fig. 5.17  Absolute error of position control of DC servomotor using SPOGA-

FLBPID vs. PID for experiment 1a 

 

It is shown in Fig. 5.18 and Fig. 5.19 that SPOGA-FLBPID can reach the setpoint 

while PID has steady state error. This makes the absolute error of PID larger than 

SPOGA-FLBPID. 
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Fig. 5.18  Position control of DC servomotor using SPOGA-FLBPID vs. PID for 

experiment 1b 

 

Fig. 5.19  Absolute error of position control of DC servomotor using SPOGA-

FLBPID vs. PID for experiment 1b 

In the experiment 2, the best speed controller is PID for conventional controller 

and SPOGA-FLBPID for hybrid-fuzzy controller, and the best position controller is 

PID for conventional controller and SPOGA-FLBPID for hybrid-fuzzy controller. As 

a speed and position controller, PID is the best conventional controller and SPOGA-

FLBPID is the best hybrid-fuzzy controller. Comparison on the best conventional to 

the best hybrid are shown in the table that SPOGA optimized hybrid-fuzzy controllers 

are better then conventional controllers in the experiment 2. The graphical 

comparisons are shown in the Fig. 5.20 to Fig. 5.23. 
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Fig. 5.20  Step response of speed control of DC servomotor using SPOGA-FLBPID 

vs. PID for experiment 2 (see Fig. D.12) 

 

Fig. 5.21  Absolute error of speed control of DC servomotor using SPOGA-FLBPID 

vs. PID for experiment 2 

 

It is shown in Fig. 5.20 and Fig. 5.21 that SPOGA-FLBPID has the faster settling 

time than PID. Consequently, the absolute error of SPOGA-FLBPID is smaller than 

PID. 

It is shown in Fig. 5.22 and Fig. 5.23 that SPOGA-FLBPID has the faster settling 

time than PID. This makes the absolute error of SPOGA-FLBPID smaller than PID. 
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Fig. 5.22  Position control of DC servomotor using SPOGA-FLBPID vs. PID for 

experiment 2 

 

Fig. 5.23  Absolute error of position control of DC servomotor using SPOGA-

FLBPID vs. PID for experiment 2 

In the experiment 3a, the best speed controller is PID for conventional controller 

and SPOGA-FLBPI for hybrid-fuzzy controller, and the best position controller is 

PID for conventional controller and SPOGA-FLBPI for hybrid-fuzzy controller. As a 

speed and position controller, PID is the best conventional controller and SPOGA-

FLBPI is the best hybrid-fuzzy controller. Comparison on the best conventional to the 

best hybrid are shown in the table that hybrid-fuzzy controllers are better then 

conventional controllers in the experiment 3a. The graphical comparisons are shown 

in the Fig. 5.24 to Fig. 5.27. 
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Based on Fig. 5.24 and Fig. 5.25, SPOGA-FLBPI has the faster settling time than 

PID either unloaded or loaded eventhough there is a very small of overshoot. 

Consequently, the absolute error of SPOGA-FLBPI is smaller than PID. 

 

Fig. 5.24  Step response of speed control of DC servomotor using SPOGA-FLBPI vs. 

PID for experiment 3a (see Fig. D.13) 

 

Fig. 5.25  Absolute error of speed control of DC servomotor using SPOGA-FLBPI vs. 

PID for experiment 3a 

 

Based on Fig. 5.26 and Fig. 5.27, SPOGA-FLBPI has the faster settling time than 

PID. This makes the absolute error of SPOGA-FLBPI smaller than PID. 
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Fig. 5.26  Position control of DC servomotor using SPOGA-FLBPI vs. PID for 

experiment 3a 

 

Fig. 5.27  Absolute error of position control of DC servomotor using SPOGA-FLBPI 

vs. PID for experiment 3a 

In the experiment 3b, the best speed controller is PI for conventional controller 

and SPOGA-FLBPID for hybrid-fuzzy controller, and the best position controller is 

PID for conventional controller and SPOGA-FLBPI for hybrid-fuzzy controller. As a 

speed and position controller, PI is the best conventional controller and SPOGA-

FLBPID is the best hybrid-fuzzy controller. Comparison on the best conventional to 

the best hybrid are shown in the table that hybrid-fuzzy controllers are better then 

conventional controllers in the experiment 3b. The graphical comparisons are shown 

in the Fig. 5.28 to Fig. 5.31. 
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Fig. 5.28  Step response of speed control of DC servomotor using SPOGA-FLBPI vs. 

PID for experiment 3b (see Fig. D.14) 

 

Fig. 5.29  Absolute error of speed control of DC servomotor using SPOGA-FLBPID 

vs. PI for experiment 3b 

Based on Fig. 5.28 and Fig. 5.29, SPOGA-FLBPID has the faster settling time 

than PI. Consequently, the absolute error of SPOGA-FLBPID smaller than PI. 

Based on Fig. 5.30 and Fig. 5.31, SPOGA-FLBPI has the faster settling time than 

PID. This makes the absolute error of SPOGA-FLBPI smaller than PID. 
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Fig. 5.30  Position control of DC servomotor using SPOGA-FLBPI vs. PID for 

experiment 3b 

 

Fig. 5.31  Absolute error of position control of DC servomotor using SPOGA-FLBPI 

vs. PID for experiment 3b 

In the experiment 4a, the best speed controller is PID for conventional controller 

and SPOGA-FLBPID for hybrid-fuzzy controller. As a speed and position controller, 

PID is the best conventional controller and SPOGA-FLBPID is the best hybrid-fuzzy 

controller. Comparison on the best conventional to the best hybrid are shown in the 

table that SPOGA optimized hybrid-fuzzy controllers are better then conventional 

controllers in the experiment 4a. The graphical comparisons are shown in the         

Fig. 5.32 and Fig. 5.33. 
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Fig. 5.32  Speed control of DC servomotor using SPOGA-FLBPID vs. PID for 

experiment 4a 

 

Fig. 5.33  Absolute error of speed control of DC servomotor using SPOGA-FLBPID 

vs. PID for experiment 4a 

Based on Fig. 5.32 and Fig. 5.33, SPOGA-FLBPID has faster settling time than 

PID. This makes the absolute error of SPOGA-FLBPID smaller than PID. 

In the experiment 4b, the best speed controller is PID for conventional controller 

and SPOGA-FLBPI for hybrid-fuzzy controller, and the best position controller is 

PID for conventional controller and SPOGA-FLBPID for hybrid-fuzzy controller. As 

a speed and position controller, PID is the best conventional controller and SPOGA-

FLBPI is the best hybrid-fuzzy controller. Comparison on the best conventional to the 

best hybrid are shown in the table that SPOGA optimized hybrid-fuzzy controllers are 
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better than conventional controllers in the experiment 4b. The graphical comparisons 

are shown in the Fig. 5.34 to Fig. 5.37. 

 

Fig. 5.34  Step response of speed control of DC servomotor using SPOGA-FLBPI vs. 

PID for experiment 4b (see Fig. D.15) 

 

Fig. 5.35  Absolute error of speed control of DC servomotor using SPOGA-FLBPI vs. 

PID for experiment 4b 

Based on in Fig. 5.34 and Fig. 5.35, SPOGA-FLBPI has the faster settling time 

than PID and on the second start, PID has overshoot. Consequently, the absolute error 

of SPOGA-FLBPI is smaller than PID. 
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Fig. 5.36  Position control of DC servomotor using SPOGA-FLBPID vs. PID for 

simulation 4b 

 

Fig. 5.37  Absolute error of position control of DC servomotor using SPOGA-

FLBPID vs. PID for simulation 4b 

Based on Fig. 5.36 and Fig. 5.37, SPOGA-FLBPID has faster settling time than 

PID on the second set point. This makes the absolute error of SPOGA-FLBPID 

smaller than PID. 
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5.7.2 Experiment Results Summary of Coventional, Fuzzy, and SPOGA 

Optimized Hybrid-Fuzzy Controllers 

The speed and position control experiment of SPOGA optimized hybrid-fuzzy 

controller compared to conventional and fuzzy controller has been presented. 

SPOGA-FLBPID controller is the best speed controller as compared to SPOGA-

FLBPI controller, SPOGA-FLIC, conventional controllers and fuzzy controller for the 

experiment of Type 2, 3b, and 4a. SPOGA-FLBPI is the best speed controller as 

compared to SPOGA-FLBPID controller, SPOGA-FLIC, conventional controllers and 

fuzzy controller for the experiment of Type 1a, 3a and 4b. Using Eq. ( 3 - 45 ), the 

best overall speed controller is SPOGA-FLBPI.  

In both speed and position control, SPOGA-FLBPID controller is the best 

controller as compared to SPOGA-FLBPI controller, SPOGA-FLIC, conventional 

controllers and fuzzy controller for the experiment of Type 1a, 1b, 2, 3b, and 4a. 

SPOGA-FLBPI is the best controller as compared to SPOGA-FLIC, SPOGA-FLBPID 

controller, conventional controllers and fuzzy controller for the experiment of Type 3a 

and 4b. Using  Eq. ( 3 - 45 ), PID controller is the best overall speed and position 

controller as compared conventional and fuzzy controller, and the best overall speed 

and position controller as compared to conventional, fuzzy, and hybrid controllers is 

SPOGA-FLBPI. 

It is concluded that SPOGA optmized hybrid controllers have the better 

performance than conventional and fuzzy controllers. Therefore, it is proved that the 

SPOGA can be applied to optimize the parameters of hybrid controllers with the 

performance improvements. 

5.8 Summary 

This Chapter has presented the experiment of speed and position controllers using 

conventional controllers (PI and PID controllers), FLC, and hybrid-fuzzy controllers 

(FLBPI, FLBPID, and FLIC) based on the parameters as discussed in Chapter 4.  
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The experiment results show that hybrid-fuzzy controllers have the better 

performance than conventional controllers and FLC is shown to be having not as good 

performance as conventional and hybrid-fuzzy controllers. The results are basically 

the same as in the simulation experiments but the detailed performance and the 

performance results of each experiment type are not exactly the same since the tuning 

process was done in the s-modeled DC servomotor which is the approximation of real 

DC servomotor. The s-modeling of DC servomotor is very useful for running the 

SPOGA in the optimization process. 

Experimentally, the appropriate pm for optimization process of FLBPI, FLBPID, 

and FLIC is 0.01. The simulation results of GA and SPOGA show that to fulfil the 

minimum criteria, SPOGA can reduce 50% of the test runs and to fulfil the good 

criteria, SPOGA can reduce 9.46 % of the test runs. Therefore, SPOGA is selected as 

an algorithm to optimize the hybrid PID-fuzzy controllers using minimum criteria. 

Experiment results of SPOGA optimized hybrid-fuzzy controllers show that 

SPOGA can optimize the parameters of FLBPI successfully, but in some experiments, 

the SPOGA-FLBPID is better than SPOGA-FLBPI.  

Based on the simulation and experiment conducted in Chapter 4 and 5, the results 

reveal the following: 

 The FLBPID developed based on FLBPI helps in improving the performance, in 

several cases. 

 SPOGA has the influence to decrease the number of test runs for the optimization 

of some parameters. 

 The population initialization in the GA using the principle of twisted ring counter 

would lead to more consistent outcomes from the genetic process. 

 



 

CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

The aim of this thesis has been to design the optimization algorithm to improve the 

controller's performance for a DC servomotor. The controller's performance is 

evaluated based on the following criterion: minimizing the overshoot, minimizing the 

settling time, IAE, ITAE and achieving a zero steady state error. 

It discusses fundamental issues in the development of a simulation model for a 

DC servomotor, the simulation and experimental design and the optimization of the 

controller used for the servomotor. In particular it has been organised to answer 

questions such as what controlling method is needed to achieve the effective speed 

and position control, how to optimize the controller, and how to devise and evaluate 

some performance criterion for different operating conditions. 

GA is effective in acquiring the optimal or near-optimal for solving optimization 

problem in control engineering, specifically achieving the best values for a predefined 

set of priorities defining a process model or a control law. However, GA shows 

indication of several limitations such as premature convergence and occurance of 

local maxima, an increase of population size without a corresponding increase in 

fitness, and undesirable searching speed. 

Chapter 3 describes a new proposed algorithm to reduce the iteration number and 

the optimization process duration time. The proposed GA is called semi-parallel 

operation genetic algorithm (SPOGA), and the application of SPOGA to optimize the 

parameters of three hybrid-fuzzy controllers are presented. The three hybrid fuzzy-

controllers optimized are: FLBPI, FLBPID, and FLIC. The discussion on the 

optimization process conducted in simulation model and the application of the 
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optimized parameters to the hardware experimental test rig are presented in Chapter 4 

and 5, respectively.  

In this study, the hybrid controllers were shown to be better controllers as 

compared to the conventional and fuzzy controllers for both speed and position 

control in both the simulation and in real-time implementation. The performance 

comparison based on simulations conducted for GA and SPOGA reveals that SPOGA 

can reduce the number of test runs (iterative number) and the duration time of the 

optimization process.  

In real-time optimization, SPOGA has shown to be able to improve the 

performance of the hybrid controllers, namely FLBPI and FLBPID, in which during 

the earlier evaluations have proven to be better than the conventional (PI and PID) 

and fuzzy controllers. A closer observation shows that SPOGA-optimized FLBPI 

performs better than the non-SPOGA-optimized FLBPI. The main contributions of 

this work are: 

 This work proposes a new GA optimization algorithm and demonstrates the steps 

taken in developing the semi-parallel operation GA (SPOGA) based on the 

hierarchical GA (HGA) and parallel GA (PGA) to decrease the number of test 

runs during the optimization process, for some parameters. 

 This work demonstrates the step taken in developing the population initialization 

in the GA using the principle of twisted ring counter where the origin uses the 

random principle. The purpose is to make the outcomes of the genetic process 

more consistent. 

 By adapting the hybrid control system viewpoint, FLBPI and FLBPID were 

developed and the controller parameters for the control of a servomotor were 

optimized using SPOGA. This paves way for the similar idea to be utilized in a 

more complex system. 

 In SPOGA each parameter to be optimized has its own sub-chromosome and each 

sub-chromosome is processed separately in consequent with the others. In 

contrast with PGA which use multiprocessor, SPOGA work with one processor 

only. 
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6.2 Directions for Future Work 

Future work should include : 

 Improvement in the convergence speed: 

The improved optimized algorithm proposed in this work used fixed crossover 

and mutation rates. Applying variable crossover and mutation rates can speed up 

the convergence and restrain the premature convergence. The improved fitness 

value in GA is also relevant to SPOGA. 

 Sensorless position control : 

The hardware test rig developed use a DC motor in which the speed was detected 

using speed sensor and the position was simulated using mathematical approach. 

Practically, position control is better to be sensorless as this will reduce cost and 

size and increase reliability of the overall system. 

 SPOGA performance analysis : 

There exists several size and ratings of DC servomotors. The analysis of the 

SPOGA performance in optimizing the hybrid-fuzzy controller for the control of 

the different ratings of servomotors, would be very useful. 

 Real-time implementation on actual robotic arm : 

The extension of the hardware test rig to have the DC motor shaft connected to a 

robotic arm with real gear ratio such that the arm's movement follows the desired 

position and speed, would still be required. 

 Evaluation of GA optimization algorithm: 

The evaluation of other GA optimization algorithms that already exist, and 

comparison with SPOGA to provide better understanding of the performances, 

would need to be explored. 
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